• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64 
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/mctp.h>
74 #include <net/page_pool.h>
75 
76 #include <linux/uaccess.h>
77 #include <trace/events/skb.h>
78 #include <linux/highmem.h>
79 #include <linux/capability.h>
80 #include <linux/user_namespace.h>
81 #include <linux/indirect_call_wrapper.h>
82 
83 #include "dev.h"
84 #include "sock_destructor.h"
85 
86 struct kmem_cache *skbuff_head_cache __ro_after_init;
87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88 #ifdef CONFIG_SKB_EXTENSIONS
89 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90 #endif
91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92 EXPORT_SYMBOL(sysctl_max_skb_frags);
93 
94 #undef FN
95 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
96 const char * const drop_reasons[] = {
97 	DEFINE_DROP_REASON(FN, FN)
98 };
99 EXPORT_SYMBOL(drop_reasons);
100 
101 /**
102  *	skb_panic - private function for out-of-line support
103  *	@skb:	buffer
104  *	@sz:	size
105  *	@addr:	address
106  *	@msg:	skb_over_panic or skb_under_panic
107  *
108  *	Out-of-line support for skb_put() and skb_push().
109  *	Called via the wrapper skb_over_panic() or skb_under_panic().
110  *	Keep out of line to prevent kernel bloat.
111  *	__builtin_return_address is not used because it is not always reliable.
112  */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])113 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
114 		      const char msg[])
115 {
116 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
117 		 msg, addr, skb->len, sz, skb->head, skb->data,
118 		 (unsigned long)skb->tail, (unsigned long)skb->end,
119 		 skb->dev ? skb->dev->name : "<NULL>");
120 	BUG();
121 }
122 
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)123 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
124 {
125 	skb_panic(skb, sz, addr, __func__);
126 }
127 
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)128 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
129 {
130 	skb_panic(skb, sz, addr, __func__);
131 }
132 
133 #define NAPI_SKB_CACHE_SIZE	64
134 #define NAPI_SKB_CACHE_BULK	16
135 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
136 
137 #if PAGE_SIZE == SZ_4K
138 
139 #define NAPI_HAS_SMALL_PAGE_FRAG	1
140 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
141 
142 /* specialized page frag allocator using a single order 0 page
143  * and slicing it into 1K sized fragment. Constrained to systems
144  * with a very limited amount of 1K fragments fitting a single
145  * page - to avoid excessive truesize underestimation
146  */
147 
148 struct page_frag_1k {
149 	void *va;
150 	u16 offset;
151 	bool pfmemalloc;
152 };
153 
page_frag_alloc_1k(struct page_frag_1k * nc,gfp_t gfp)154 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
155 {
156 	struct page *page;
157 	int offset;
158 
159 	offset = nc->offset - SZ_1K;
160 	if (likely(offset >= 0))
161 		goto use_frag;
162 
163 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
164 	if (!page)
165 		return NULL;
166 
167 	nc->va = page_address(page);
168 	nc->pfmemalloc = page_is_pfmemalloc(page);
169 	offset = PAGE_SIZE - SZ_1K;
170 	page_ref_add(page, offset / SZ_1K);
171 
172 use_frag:
173 	nc->offset = offset;
174 	return nc->va + offset;
175 }
176 #else
177 
178 /* the small page is actually unused in this build; add dummy helpers
179  * to please the compiler and avoid later preprocessor's conditionals
180  */
181 #define NAPI_HAS_SMALL_PAGE_FRAG	0
182 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
183 
184 struct page_frag_1k {
185 };
186 
page_frag_alloc_1k(struct page_frag_1k * nc,gfp_t gfp_mask)187 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
188 {
189 	return NULL;
190 }
191 
192 #endif
193 
194 struct napi_alloc_cache {
195 	struct page_frag_cache page;
196 	struct page_frag_1k page_small;
197 	unsigned int skb_count;
198 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
199 };
200 
201 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
202 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
203 
204 /* Double check that napi_get_frags() allocates skbs with
205  * skb->head being backed by slab, not a page fragment.
206  * This is to make sure bug fixed in 3226b158e67c
207  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
208  * does not accidentally come back.
209  */
napi_get_frags_check(struct napi_struct * napi)210 void napi_get_frags_check(struct napi_struct *napi)
211 {
212 	struct sk_buff *skb;
213 
214 	local_bh_disable();
215 	skb = napi_get_frags(napi);
216 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
217 	napi_free_frags(napi);
218 	local_bh_enable();
219 }
220 
__napi_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)221 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
222 {
223 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
224 
225 	fragsz = SKB_DATA_ALIGN(fragsz);
226 
227 	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
228 }
229 EXPORT_SYMBOL(__napi_alloc_frag_align);
230 
__netdev_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)231 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
232 {
233 	void *data;
234 
235 	fragsz = SKB_DATA_ALIGN(fragsz);
236 	if (in_hardirq() || irqs_disabled()) {
237 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
238 
239 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
240 	} else {
241 		struct napi_alloc_cache *nc;
242 
243 		local_bh_disable();
244 		nc = this_cpu_ptr(&napi_alloc_cache);
245 		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
246 		local_bh_enable();
247 	}
248 	return data;
249 }
250 EXPORT_SYMBOL(__netdev_alloc_frag_align);
251 
napi_skb_cache_get(void)252 static struct sk_buff *napi_skb_cache_get(void)
253 {
254 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
255 	struct sk_buff *skb;
256 
257 	if (unlikely(!nc->skb_count)) {
258 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
259 						      GFP_ATOMIC,
260 						      NAPI_SKB_CACHE_BULK,
261 						      nc->skb_cache);
262 		if (unlikely(!nc->skb_count))
263 			return NULL;
264 	}
265 
266 	skb = nc->skb_cache[--nc->skb_count];
267 	kasan_unpoison_object_data(skbuff_head_cache, skb);
268 
269 	return skb;
270 }
271 
272 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)273 static void __build_skb_around(struct sk_buff *skb, void *data,
274 			       unsigned int frag_size)
275 {
276 	struct skb_shared_info *shinfo;
277 	unsigned int size = frag_size ? : ksize(data);
278 
279 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
280 
281 	/* Assumes caller memset cleared SKB */
282 	skb->truesize = SKB_TRUESIZE(size);
283 	refcount_set(&skb->users, 1);
284 	skb->head = data;
285 	skb->data = data;
286 	skb_reset_tail_pointer(skb);
287 	skb_set_end_offset(skb, size);
288 	skb->mac_header = (typeof(skb->mac_header))~0U;
289 	skb->transport_header = (typeof(skb->transport_header))~0U;
290 	skb->alloc_cpu = raw_smp_processor_id();
291 	/* make sure we initialize shinfo sequentially */
292 	shinfo = skb_shinfo(skb);
293 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
294 	atomic_set(&shinfo->dataref, 1);
295 
296 	skb_set_kcov_handle(skb, kcov_common_handle());
297 }
298 
299 /**
300  * __build_skb - build a network buffer
301  * @data: data buffer provided by caller
302  * @frag_size: size of data, or 0 if head was kmalloced
303  *
304  * Allocate a new &sk_buff. Caller provides space holding head and
305  * skb_shared_info. @data must have been allocated by kmalloc() only if
306  * @frag_size is 0, otherwise data should come from the page allocator
307  *  or vmalloc()
308  * The return is the new skb buffer.
309  * On a failure the return is %NULL, and @data is not freed.
310  * Notes :
311  *  Before IO, driver allocates only data buffer where NIC put incoming frame
312  *  Driver should add room at head (NET_SKB_PAD) and
313  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
314  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
315  *  before giving packet to stack.
316  *  RX rings only contains data buffers, not full skbs.
317  */
__build_skb(void * data,unsigned int frag_size)318 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
319 {
320 	struct sk_buff *skb;
321 
322 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
323 	if (unlikely(!skb))
324 		return NULL;
325 
326 	memset(skb, 0, offsetof(struct sk_buff, tail));
327 	__build_skb_around(skb, data, frag_size);
328 
329 	return skb;
330 }
331 
332 /* build_skb() is wrapper over __build_skb(), that specifically
333  * takes care of skb->head and skb->pfmemalloc
334  * This means that if @frag_size is not zero, then @data must be backed
335  * by a page fragment, not kmalloc() or vmalloc()
336  */
build_skb(void * data,unsigned int frag_size)337 struct sk_buff *build_skb(void *data, unsigned int frag_size)
338 {
339 	struct sk_buff *skb = __build_skb(data, frag_size);
340 
341 	if (skb && frag_size) {
342 		skb->head_frag = 1;
343 		if (page_is_pfmemalloc(virt_to_head_page(data)))
344 			skb->pfmemalloc = 1;
345 	}
346 	return skb;
347 }
348 EXPORT_SYMBOL(build_skb);
349 
350 /**
351  * build_skb_around - build a network buffer around provided skb
352  * @skb: sk_buff provide by caller, must be memset cleared
353  * @data: data buffer provided by caller
354  * @frag_size: size of data, or 0 if head was kmalloced
355  */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)356 struct sk_buff *build_skb_around(struct sk_buff *skb,
357 				 void *data, unsigned int frag_size)
358 {
359 	if (unlikely(!skb))
360 		return NULL;
361 
362 	__build_skb_around(skb, data, frag_size);
363 
364 	if (frag_size) {
365 		skb->head_frag = 1;
366 		if (page_is_pfmemalloc(virt_to_head_page(data)))
367 			skb->pfmemalloc = 1;
368 	}
369 	return skb;
370 }
371 EXPORT_SYMBOL(build_skb_around);
372 
373 /**
374  * __napi_build_skb - build a network buffer
375  * @data: data buffer provided by caller
376  * @frag_size: size of data, or 0 if head was kmalloced
377  *
378  * Version of __build_skb() that uses NAPI percpu caches to obtain
379  * skbuff_head instead of inplace allocation.
380  *
381  * Returns a new &sk_buff on success, %NULL on allocation failure.
382  */
__napi_build_skb(void * data,unsigned int frag_size)383 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
384 {
385 	struct sk_buff *skb;
386 
387 	skb = napi_skb_cache_get();
388 	if (unlikely(!skb))
389 		return NULL;
390 
391 	memset(skb, 0, offsetof(struct sk_buff, tail));
392 	__build_skb_around(skb, data, frag_size);
393 
394 	return skb;
395 }
396 
397 /**
398  * napi_build_skb - build a network buffer
399  * @data: data buffer provided by caller
400  * @frag_size: size of data, or 0 if head was kmalloced
401  *
402  * Version of __napi_build_skb() that takes care of skb->head_frag
403  * and skb->pfmemalloc when the data is a page or page fragment.
404  *
405  * Returns a new &sk_buff on success, %NULL on allocation failure.
406  */
napi_build_skb(void * data,unsigned int frag_size)407 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
408 {
409 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
410 
411 	if (likely(skb) && frag_size) {
412 		skb->head_frag = 1;
413 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
414 	}
415 
416 	return skb;
417 }
418 EXPORT_SYMBOL(napi_build_skb);
419 
420 /*
421  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
422  * the caller if emergency pfmemalloc reserves are being used. If it is and
423  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
424  * may be used. Otherwise, the packet data may be discarded until enough
425  * memory is free
426  */
kmalloc_reserve(unsigned int * size,gfp_t flags,int node,bool * pfmemalloc)427 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
428 			     bool *pfmemalloc)
429 {
430 	bool ret_pfmemalloc = false;
431 	size_t obj_size;
432 	void *obj;
433 
434 	obj_size = SKB_HEAD_ALIGN(*size);
435 
436 	obj_size = kmalloc_size_roundup(obj_size);
437 	/* The following cast might truncate high-order bits of obj_size, this
438 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
439 	 */
440 	*size = (unsigned int)obj_size;
441 
442 	/*
443 	 * Try a regular allocation, when that fails and we're not entitled
444 	 * to the reserves, fail.
445 	 */
446 	obj = kmalloc_node_track_caller(obj_size,
447 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
448 					node);
449 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
450 		goto out;
451 
452 	/* Try again but now we are using pfmemalloc reserves */
453 	ret_pfmemalloc = true;
454 	obj = kmalloc_node_track_caller(obj_size, flags, node);
455 
456 out:
457 	if (pfmemalloc)
458 		*pfmemalloc = ret_pfmemalloc;
459 
460 	return obj;
461 }
462 
463 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
464  *	'private' fields and also do memory statistics to find all the
465  *	[BEEP] leaks.
466  *
467  */
468 
469 /**
470  *	__alloc_skb	-	allocate a network buffer
471  *	@size: size to allocate
472  *	@gfp_mask: allocation mask
473  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
474  *		instead of head cache and allocate a cloned (child) skb.
475  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
476  *		allocations in case the data is required for writeback
477  *	@node: numa node to allocate memory on
478  *
479  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
480  *	tail room of at least size bytes. The object has a reference count
481  *	of one. The return is the buffer. On a failure the return is %NULL.
482  *
483  *	Buffers may only be allocated from interrupts using a @gfp_mask of
484  *	%GFP_ATOMIC.
485  */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)486 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
487 			    int flags, int node)
488 {
489 	struct kmem_cache *cache;
490 	struct sk_buff *skb;
491 	bool pfmemalloc;
492 	u8 *data;
493 
494 	cache = (flags & SKB_ALLOC_FCLONE)
495 		? skbuff_fclone_cache : skbuff_head_cache;
496 
497 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
498 		gfp_mask |= __GFP_MEMALLOC;
499 
500 	/* Get the HEAD */
501 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
502 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
503 		skb = napi_skb_cache_get();
504 	else
505 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
506 	if (unlikely(!skb))
507 		return NULL;
508 	prefetchw(skb);
509 
510 	/* We do our best to align skb_shared_info on a separate cache
511 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
512 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
513 	 * Both skb->head and skb_shared_info are cache line aligned.
514 	 */
515 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
516 	if (unlikely(!data))
517 		goto nodata;
518 	/* kmalloc_size_roundup() might give us more room than requested.
519 	 * Put skb_shared_info exactly at the end of allocated zone,
520 	 * to allow max possible filling before reallocation.
521 	 */
522 	prefetchw(data + SKB_WITH_OVERHEAD(size));
523 
524 	/*
525 	 * Only clear those fields we need to clear, not those that we will
526 	 * actually initialise below. Hence, don't put any more fields after
527 	 * the tail pointer in struct sk_buff!
528 	 */
529 	memset(skb, 0, offsetof(struct sk_buff, tail));
530 	__build_skb_around(skb, data, size);
531 	skb->pfmemalloc = pfmemalloc;
532 
533 	if (flags & SKB_ALLOC_FCLONE) {
534 		struct sk_buff_fclones *fclones;
535 
536 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
537 
538 		skb->fclone = SKB_FCLONE_ORIG;
539 		refcount_set(&fclones->fclone_ref, 1);
540 	}
541 
542 	return skb;
543 
544 nodata:
545 	kmem_cache_free(cache, skb);
546 	return NULL;
547 }
548 EXPORT_SYMBOL(__alloc_skb);
549 
550 /**
551  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
552  *	@dev: network device to receive on
553  *	@len: length to allocate
554  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
555  *
556  *	Allocate a new &sk_buff and assign it a usage count of one. The
557  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
558  *	the headroom they think they need without accounting for the
559  *	built in space. The built in space is used for optimisations.
560  *
561  *	%NULL is returned if there is no free memory.
562  */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)563 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
564 				   gfp_t gfp_mask)
565 {
566 	struct page_frag_cache *nc;
567 	struct sk_buff *skb;
568 	bool pfmemalloc;
569 	void *data;
570 
571 	len += NET_SKB_PAD;
572 
573 	/* If requested length is either too small or too big,
574 	 * we use kmalloc() for skb->head allocation.
575 	 */
576 	if (len <= SKB_WITH_OVERHEAD(1024) ||
577 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
578 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
579 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
580 		if (!skb)
581 			goto skb_fail;
582 		goto skb_success;
583 	}
584 
585 	len = SKB_HEAD_ALIGN(len);
586 
587 	if (sk_memalloc_socks())
588 		gfp_mask |= __GFP_MEMALLOC;
589 
590 	if (in_hardirq() || irqs_disabled()) {
591 		nc = this_cpu_ptr(&netdev_alloc_cache);
592 		data = page_frag_alloc(nc, len, gfp_mask);
593 		pfmemalloc = nc->pfmemalloc;
594 	} else {
595 		local_bh_disable();
596 		nc = this_cpu_ptr(&napi_alloc_cache.page);
597 		data = page_frag_alloc(nc, len, gfp_mask);
598 		pfmemalloc = nc->pfmemalloc;
599 		local_bh_enable();
600 	}
601 
602 	if (unlikely(!data))
603 		return NULL;
604 
605 	skb = __build_skb(data, len);
606 	if (unlikely(!skb)) {
607 		skb_free_frag(data);
608 		return NULL;
609 	}
610 
611 	if (pfmemalloc)
612 		skb->pfmemalloc = 1;
613 	skb->head_frag = 1;
614 
615 skb_success:
616 	skb_reserve(skb, NET_SKB_PAD);
617 	skb->dev = dev;
618 
619 skb_fail:
620 	return skb;
621 }
622 EXPORT_SYMBOL(__netdev_alloc_skb);
623 
624 /**
625  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
626  *	@napi: napi instance this buffer was allocated for
627  *	@len: length to allocate
628  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
629  *
630  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
631  *	attempt to allocate the head from a special reserved region used
632  *	only for NAPI Rx allocation.  By doing this we can save several
633  *	CPU cycles by avoiding having to disable and re-enable IRQs.
634  *
635  *	%NULL is returned if there is no free memory.
636  */
__napi_alloc_skb(struct napi_struct * napi,unsigned int len,gfp_t gfp_mask)637 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
638 				 gfp_t gfp_mask)
639 {
640 	struct napi_alloc_cache *nc;
641 	struct sk_buff *skb;
642 	bool pfmemalloc;
643 	void *data;
644 
645 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
646 	len += NET_SKB_PAD + NET_IP_ALIGN;
647 
648 	/* If requested length is either too small or too big,
649 	 * we use kmalloc() for skb->head allocation.
650 	 * When the small frag allocator is available, prefer it over kmalloc
651 	 * for small fragments
652 	 */
653 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
654 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
655 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
656 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
657 				  NUMA_NO_NODE);
658 		if (!skb)
659 			goto skb_fail;
660 		goto skb_success;
661 	}
662 
663 	nc = this_cpu_ptr(&napi_alloc_cache);
664 
665 	if (sk_memalloc_socks())
666 		gfp_mask |= __GFP_MEMALLOC;
667 
668 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
669 		/* we are artificially inflating the allocation size, but
670 		 * that is not as bad as it may look like, as:
671 		 * - 'len' less than GRO_MAX_HEAD makes little sense
672 		 * - On most systems, larger 'len' values lead to fragment
673 		 *   size above 512 bytes
674 		 * - kmalloc would use the kmalloc-1k slab for such values
675 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
676 		 *   little networking, as that implies no WiFi and no
677 		 *   tunnels support, and 32 bits arches.
678 		 */
679 		len = SZ_1K;
680 
681 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
682 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
683 	} else {
684 		len = SKB_HEAD_ALIGN(len);
685 
686 		data = page_frag_alloc(&nc->page, len, gfp_mask);
687 		pfmemalloc = nc->page.pfmemalloc;
688 	}
689 
690 	if (unlikely(!data))
691 		return NULL;
692 
693 	skb = __napi_build_skb(data, len);
694 	if (unlikely(!skb)) {
695 		skb_free_frag(data);
696 		return NULL;
697 	}
698 
699 	if (pfmemalloc)
700 		skb->pfmemalloc = 1;
701 	skb->head_frag = 1;
702 
703 skb_success:
704 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
705 	skb->dev = napi->dev;
706 
707 skb_fail:
708 	return skb;
709 }
710 EXPORT_SYMBOL(__napi_alloc_skb);
711 
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)712 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
713 		     int size, unsigned int truesize)
714 {
715 	skb_fill_page_desc(skb, i, page, off, size);
716 	skb->len += size;
717 	skb->data_len += size;
718 	skb->truesize += truesize;
719 }
720 EXPORT_SYMBOL(skb_add_rx_frag);
721 
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)722 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
723 			  unsigned int truesize)
724 {
725 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
726 
727 	skb_frag_size_add(frag, size);
728 	skb->len += size;
729 	skb->data_len += size;
730 	skb->truesize += truesize;
731 }
732 EXPORT_SYMBOL(skb_coalesce_rx_frag);
733 
skb_drop_list(struct sk_buff ** listp)734 static void skb_drop_list(struct sk_buff **listp)
735 {
736 	kfree_skb_list(*listp);
737 	*listp = NULL;
738 }
739 
skb_drop_fraglist(struct sk_buff * skb)740 static inline void skb_drop_fraglist(struct sk_buff *skb)
741 {
742 	skb_drop_list(&skb_shinfo(skb)->frag_list);
743 }
744 
skb_clone_fraglist(struct sk_buff * skb)745 static void skb_clone_fraglist(struct sk_buff *skb)
746 {
747 	struct sk_buff *list;
748 
749 	skb_walk_frags(skb, list)
750 		skb_get(list);
751 }
752 
skb_free_head(struct sk_buff * skb)753 static void skb_free_head(struct sk_buff *skb)
754 {
755 	unsigned char *head = skb->head;
756 
757 	if (skb->head_frag) {
758 		if (skb_pp_recycle(skb, head))
759 			return;
760 		skb_free_frag(head);
761 	} else {
762 		kfree(head);
763 	}
764 }
765 
skb_release_data(struct sk_buff * skb)766 static void skb_release_data(struct sk_buff *skb)
767 {
768 	struct skb_shared_info *shinfo = skb_shinfo(skb);
769 	int i;
770 
771 	if (skb->cloned &&
772 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
773 			      &shinfo->dataref))
774 		goto exit;
775 
776 	if (skb_zcopy(skb)) {
777 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
778 
779 		skb_zcopy_clear(skb, true);
780 		if (skip_unref)
781 			goto free_head;
782 	}
783 
784 	for (i = 0; i < shinfo->nr_frags; i++)
785 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
786 
787 free_head:
788 	if (shinfo->frag_list)
789 		kfree_skb_list(shinfo->frag_list);
790 
791 	skb_free_head(skb);
792 exit:
793 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
794 	 * bit is only set on the head though, so in order to avoid races
795 	 * while trying to recycle fragments on __skb_frag_unref() we need
796 	 * to make one SKB responsible for triggering the recycle path.
797 	 * So disable the recycling bit if an SKB is cloned and we have
798 	 * additional references to the fragmented part of the SKB.
799 	 * Eventually the last SKB will have the recycling bit set and it's
800 	 * dataref set to 0, which will trigger the recycling
801 	 */
802 	skb->pp_recycle = 0;
803 }
804 
805 /*
806  *	Free an skbuff by memory without cleaning the state.
807  */
kfree_skbmem(struct sk_buff * skb)808 static void kfree_skbmem(struct sk_buff *skb)
809 {
810 	struct sk_buff_fclones *fclones;
811 
812 	switch (skb->fclone) {
813 	case SKB_FCLONE_UNAVAILABLE:
814 		kmem_cache_free(skbuff_head_cache, skb);
815 		return;
816 
817 	case SKB_FCLONE_ORIG:
818 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
819 
820 		/* We usually free the clone (TX completion) before original skb
821 		 * This test would have no chance to be true for the clone,
822 		 * while here, branch prediction will be good.
823 		 */
824 		if (refcount_read(&fclones->fclone_ref) == 1)
825 			goto fastpath;
826 		break;
827 
828 	default: /* SKB_FCLONE_CLONE */
829 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
830 		break;
831 	}
832 	if (!refcount_dec_and_test(&fclones->fclone_ref))
833 		return;
834 fastpath:
835 	kmem_cache_free(skbuff_fclone_cache, fclones);
836 }
837 
skb_release_head_state(struct sk_buff * skb)838 void skb_release_head_state(struct sk_buff *skb)
839 {
840 	skb_dst_drop(skb);
841 	if (skb->destructor) {
842 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
843 		skb->destructor(skb);
844 	}
845 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
846 	nf_conntrack_put(skb_nfct(skb));
847 #endif
848 	skb_ext_put(skb);
849 }
850 
851 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)852 static void skb_release_all(struct sk_buff *skb)
853 {
854 	skb_release_head_state(skb);
855 	if (likely(skb->head))
856 		skb_release_data(skb);
857 }
858 
859 /**
860  *	__kfree_skb - private function
861  *	@skb: buffer
862  *
863  *	Free an sk_buff. Release anything attached to the buffer.
864  *	Clean the state. This is an internal helper function. Users should
865  *	always call kfree_skb
866  */
867 
__kfree_skb(struct sk_buff * skb)868 void __kfree_skb(struct sk_buff *skb)
869 {
870 	skb_release_all(skb);
871 	kfree_skbmem(skb);
872 }
873 EXPORT_SYMBOL(__kfree_skb);
874 
875 /**
876  *	kfree_skb_reason - free an sk_buff with special reason
877  *	@skb: buffer to free
878  *	@reason: reason why this skb is dropped
879  *
880  *	Drop a reference to the buffer and free it if the usage count has
881  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
882  *	tracepoint.
883  */
884 void __fix_address
kfree_skb_reason(struct sk_buff * skb,enum skb_drop_reason reason)885 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
886 {
887 	if (unlikely(!skb_unref(skb)))
888 		return;
889 
890 	DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX);
891 
892 	trace_kfree_skb(skb, __builtin_return_address(0), reason);
893 	__kfree_skb(skb);
894 }
895 EXPORT_SYMBOL(kfree_skb_reason);
896 
kfree_skb_list_reason(struct sk_buff * segs,enum skb_drop_reason reason)897 void kfree_skb_list_reason(struct sk_buff *segs,
898 			   enum skb_drop_reason reason)
899 {
900 	while (segs) {
901 		struct sk_buff *next = segs->next;
902 
903 		kfree_skb_reason(segs, reason);
904 		segs = next;
905 	}
906 }
907 EXPORT_SYMBOL(kfree_skb_list_reason);
908 
909 /* Dump skb information and contents.
910  *
911  * Must only be called from net_ratelimit()-ed paths.
912  *
913  * Dumps whole packets if full_pkt, only headers otherwise.
914  */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)915 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
916 {
917 	struct skb_shared_info *sh = skb_shinfo(skb);
918 	struct net_device *dev = skb->dev;
919 	struct sock *sk = skb->sk;
920 	struct sk_buff *list_skb;
921 	bool has_mac, has_trans;
922 	int headroom, tailroom;
923 	int i, len, seg_len;
924 
925 	if (full_pkt)
926 		len = skb->len;
927 	else
928 		len = min_t(int, skb->len, MAX_HEADER + 128);
929 
930 	headroom = skb_headroom(skb);
931 	tailroom = skb_tailroom(skb);
932 
933 	has_mac = skb_mac_header_was_set(skb);
934 	has_trans = skb_transport_header_was_set(skb);
935 
936 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
937 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
938 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
939 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
940 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
941 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
942 	       has_mac ? skb->mac_header : -1,
943 	       has_mac ? skb_mac_header_len(skb) : -1,
944 	       skb->network_header,
945 	       has_trans ? skb_network_header_len(skb) : -1,
946 	       has_trans ? skb->transport_header : -1,
947 	       sh->tx_flags, sh->nr_frags,
948 	       sh->gso_size, sh->gso_type, sh->gso_segs,
949 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
950 	       skb->csum_valid, skb->csum_level,
951 	       skb->hash, skb->sw_hash, skb->l4_hash,
952 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
953 
954 	if (dev)
955 		printk("%sdev name=%s feat=%pNF\n",
956 		       level, dev->name, &dev->features);
957 	if (sk)
958 		printk("%ssk family=%hu type=%u proto=%u\n",
959 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
960 
961 	if (full_pkt && headroom)
962 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
963 			       16, 1, skb->head, headroom, false);
964 
965 	seg_len = min_t(int, skb_headlen(skb), len);
966 	if (seg_len)
967 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
968 			       16, 1, skb->data, seg_len, false);
969 	len -= seg_len;
970 
971 	if (full_pkt && tailroom)
972 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
973 			       16, 1, skb_tail_pointer(skb), tailroom, false);
974 
975 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
976 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
977 		u32 p_off, p_len, copied;
978 		struct page *p;
979 		u8 *vaddr;
980 
981 		skb_frag_foreach_page(frag, skb_frag_off(frag),
982 				      skb_frag_size(frag), p, p_off, p_len,
983 				      copied) {
984 			seg_len = min_t(int, p_len, len);
985 			vaddr = kmap_atomic(p);
986 			print_hex_dump(level, "skb frag:     ",
987 				       DUMP_PREFIX_OFFSET,
988 				       16, 1, vaddr + p_off, seg_len, false);
989 			kunmap_atomic(vaddr);
990 			len -= seg_len;
991 			if (!len)
992 				break;
993 		}
994 	}
995 
996 	if (full_pkt && skb_has_frag_list(skb)) {
997 		printk("skb fraglist:\n");
998 		skb_walk_frags(skb, list_skb)
999 			skb_dump(level, list_skb, true);
1000 	}
1001 }
1002 EXPORT_SYMBOL(skb_dump);
1003 
1004 /**
1005  *	skb_tx_error - report an sk_buff xmit error
1006  *	@skb: buffer that triggered an error
1007  *
1008  *	Report xmit error if a device callback is tracking this skb.
1009  *	skb must be freed afterwards.
1010  */
skb_tx_error(struct sk_buff * skb)1011 void skb_tx_error(struct sk_buff *skb)
1012 {
1013 	if (skb) {
1014 		skb_zcopy_downgrade_managed(skb);
1015 		skb_zcopy_clear(skb, true);
1016 	}
1017 }
1018 EXPORT_SYMBOL(skb_tx_error);
1019 
1020 #ifdef CONFIG_TRACEPOINTS
1021 /**
1022  *	consume_skb - free an skbuff
1023  *	@skb: buffer to free
1024  *
1025  *	Drop a ref to the buffer and free it if the usage count has hit zero
1026  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1027  *	is being dropped after a failure and notes that
1028  */
consume_skb(struct sk_buff * skb)1029 void consume_skb(struct sk_buff *skb)
1030 {
1031 	if (!skb_unref(skb))
1032 		return;
1033 
1034 	trace_consume_skb(skb);
1035 	__kfree_skb(skb);
1036 }
1037 EXPORT_SYMBOL(consume_skb);
1038 #endif
1039 
1040 /**
1041  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1042  *	@skb: buffer to free
1043  *
1044  *	Alike consume_skb(), but this variant assumes that this is the last
1045  *	skb reference and all the head states have been already dropped
1046  */
__consume_stateless_skb(struct sk_buff * skb)1047 void __consume_stateless_skb(struct sk_buff *skb)
1048 {
1049 	trace_consume_skb(skb);
1050 	skb_release_data(skb);
1051 	kfree_skbmem(skb);
1052 }
1053 
napi_skb_cache_put(struct sk_buff * skb)1054 static void napi_skb_cache_put(struct sk_buff *skb)
1055 {
1056 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1057 	u32 i;
1058 
1059 	kasan_poison_object_data(skbuff_head_cache, skb);
1060 	nc->skb_cache[nc->skb_count++] = skb;
1061 
1062 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1063 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1064 			kasan_unpoison_object_data(skbuff_head_cache,
1065 						   nc->skb_cache[i]);
1066 
1067 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
1068 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1069 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1070 	}
1071 }
1072 
__kfree_skb_defer(struct sk_buff * skb)1073 void __kfree_skb_defer(struct sk_buff *skb)
1074 {
1075 	skb_release_all(skb);
1076 	napi_skb_cache_put(skb);
1077 }
1078 
napi_skb_free_stolen_head(struct sk_buff * skb)1079 void napi_skb_free_stolen_head(struct sk_buff *skb)
1080 {
1081 	if (unlikely(skb->slow_gro)) {
1082 		nf_reset_ct(skb);
1083 		skb_dst_drop(skb);
1084 		skb_ext_put(skb);
1085 		skb_orphan(skb);
1086 		skb->slow_gro = 0;
1087 	}
1088 	napi_skb_cache_put(skb);
1089 }
1090 
napi_consume_skb(struct sk_buff * skb,int budget)1091 void napi_consume_skb(struct sk_buff *skb, int budget)
1092 {
1093 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1094 	if (unlikely(!budget)) {
1095 		dev_consume_skb_any(skb);
1096 		return;
1097 	}
1098 
1099 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1100 
1101 	if (!skb_unref(skb))
1102 		return;
1103 
1104 	/* if reaching here SKB is ready to free */
1105 	trace_consume_skb(skb);
1106 
1107 	/* if SKB is a clone, don't handle this case */
1108 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1109 		__kfree_skb(skb);
1110 		return;
1111 	}
1112 
1113 	skb_release_all(skb);
1114 	napi_skb_cache_put(skb);
1115 }
1116 EXPORT_SYMBOL(napi_consume_skb);
1117 
1118 /* Make sure a field is contained by headers group */
1119 #define CHECK_SKB_FIELD(field) \
1120 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1121 		     offsetof(struct sk_buff, headers.field));	\
1122 
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)1123 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1124 {
1125 	new->tstamp		= old->tstamp;
1126 	/* We do not copy old->sk */
1127 	new->dev		= old->dev;
1128 	memcpy(new->cb, old->cb, sizeof(old->cb));
1129 	skb_dst_copy(new, old);
1130 	__skb_ext_copy(new, old);
1131 	__nf_copy(new, old, false);
1132 
1133 	/* Note : this field could be in the headers group.
1134 	 * It is not yet because we do not want to have a 16 bit hole
1135 	 */
1136 	new->queue_mapping = old->queue_mapping;
1137 
1138 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1139 	CHECK_SKB_FIELD(protocol);
1140 	CHECK_SKB_FIELD(csum);
1141 	CHECK_SKB_FIELD(hash);
1142 	CHECK_SKB_FIELD(priority);
1143 	CHECK_SKB_FIELD(skb_iif);
1144 	CHECK_SKB_FIELD(vlan_proto);
1145 	CHECK_SKB_FIELD(vlan_tci);
1146 	CHECK_SKB_FIELD(transport_header);
1147 	CHECK_SKB_FIELD(network_header);
1148 	CHECK_SKB_FIELD(mac_header);
1149 	CHECK_SKB_FIELD(inner_protocol);
1150 	CHECK_SKB_FIELD(inner_transport_header);
1151 	CHECK_SKB_FIELD(inner_network_header);
1152 	CHECK_SKB_FIELD(inner_mac_header);
1153 	CHECK_SKB_FIELD(mark);
1154 #ifdef CONFIG_NETWORK_SECMARK
1155 	CHECK_SKB_FIELD(secmark);
1156 #endif
1157 #ifdef CONFIG_NET_RX_BUSY_POLL
1158 	CHECK_SKB_FIELD(napi_id);
1159 #endif
1160 	CHECK_SKB_FIELD(alloc_cpu);
1161 #ifdef CONFIG_XPS
1162 	CHECK_SKB_FIELD(sender_cpu);
1163 #endif
1164 #ifdef CONFIG_NET_SCHED
1165 	CHECK_SKB_FIELD(tc_index);
1166 #endif
1167 
1168 }
1169 
1170 /*
1171  * You should not add any new code to this function.  Add it to
1172  * __copy_skb_header above instead.
1173  */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)1174 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1175 {
1176 #define C(x) n->x = skb->x
1177 
1178 	n->next = n->prev = NULL;
1179 	n->sk = NULL;
1180 	__copy_skb_header(n, skb);
1181 
1182 	C(len);
1183 	C(data_len);
1184 	C(mac_len);
1185 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1186 	n->cloned = 1;
1187 	n->nohdr = 0;
1188 	n->peeked = 0;
1189 	C(pfmemalloc);
1190 	C(pp_recycle);
1191 	n->destructor = NULL;
1192 	C(tail);
1193 	C(end);
1194 	C(head);
1195 	C(head_frag);
1196 	C(data);
1197 	C(truesize);
1198 	refcount_set(&n->users, 1);
1199 
1200 	atomic_inc(&(skb_shinfo(skb)->dataref));
1201 	skb->cloned = 1;
1202 
1203 	return n;
1204 #undef C
1205 }
1206 
1207 /**
1208  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1209  * @first: first sk_buff of the msg
1210  */
alloc_skb_for_msg(struct sk_buff * first)1211 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1212 {
1213 	struct sk_buff *n;
1214 
1215 	n = alloc_skb(0, GFP_ATOMIC);
1216 	if (!n)
1217 		return NULL;
1218 
1219 	n->len = first->len;
1220 	n->data_len = first->len;
1221 	n->truesize = first->truesize;
1222 
1223 	skb_shinfo(n)->frag_list = first;
1224 
1225 	__copy_skb_header(n, first);
1226 	n->destructor = NULL;
1227 
1228 	return n;
1229 }
1230 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1231 
1232 /**
1233  *	skb_morph	-	morph one skb into another
1234  *	@dst: the skb to receive the contents
1235  *	@src: the skb to supply the contents
1236  *
1237  *	This is identical to skb_clone except that the target skb is
1238  *	supplied by the user.
1239  *
1240  *	The target skb is returned upon exit.
1241  */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1242 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1243 {
1244 	skb_release_all(dst);
1245 	return __skb_clone(dst, src);
1246 }
1247 EXPORT_SYMBOL_GPL(skb_morph);
1248 
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1249 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1250 {
1251 	unsigned long max_pg, num_pg, new_pg, old_pg;
1252 	struct user_struct *user;
1253 
1254 	if (capable(CAP_IPC_LOCK) || !size)
1255 		return 0;
1256 
1257 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1258 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1259 	user = mmp->user ? : current_user();
1260 
1261 	do {
1262 		old_pg = atomic_long_read(&user->locked_vm);
1263 		new_pg = old_pg + num_pg;
1264 		if (new_pg > max_pg)
1265 			return -ENOBUFS;
1266 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1267 		 old_pg);
1268 
1269 	if (!mmp->user) {
1270 		mmp->user = get_uid(user);
1271 		mmp->num_pg = num_pg;
1272 	} else {
1273 		mmp->num_pg += num_pg;
1274 	}
1275 
1276 	return 0;
1277 }
1278 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1279 
mm_unaccount_pinned_pages(struct mmpin * mmp)1280 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1281 {
1282 	if (mmp->user) {
1283 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1284 		free_uid(mmp->user);
1285 	}
1286 }
1287 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1288 
msg_zerocopy_alloc(struct sock * sk,size_t size)1289 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1290 {
1291 	struct ubuf_info_msgzc *uarg;
1292 	struct sk_buff *skb;
1293 
1294 	WARN_ON_ONCE(!in_task());
1295 
1296 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1297 	if (!skb)
1298 		return NULL;
1299 
1300 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1301 	uarg = (void *)skb->cb;
1302 	uarg->mmp.user = NULL;
1303 
1304 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1305 		kfree_skb(skb);
1306 		return NULL;
1307 	}
1308 
1309 	uarg->ubuf.callback = msg_zerocopy_callback;
1310 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1311 	uarg->len = 1;
1312 	uarg->bytelen = size;
1313 	uarg->zerocopy = 1;
1314 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1315 	refcount_set(&uarg->ubuf.refcnt, 1);
1316 	sock_hold(sk);
1317 
1318 	return &uarg->ubuf;
1319 }
1320 
skb_from_uarg(struct ubuf_info_msgzc * uarg)1321 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1322 {
1323 	return container_of((void *)uarg, struct sk_buff, cb);
1324 }
1325 
msg_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)1326 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1327 				       struct ubuf_info *uarg)
1328 {
1329 	if (uarg) {
1330 		struct ubuf_info_msgzc *uarg_zc;
1331 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1332 		u32 bytelen, next;
1333 
1334 		/* there might be non MSG_ZEROCOPY users */
1335 		if (uarg->callback != msg_zerocopy_callback)
1336 			return NULL;
1337 
1338 		/* realloc only when socket is locked (TCP, UDP cork),
1339 		 * so uarg->len and sk_zckey access is serialized
1340 		 */
1341 		if (!sock_owned_by_user(sk)) {
1342 			WARN_ON_ONCE(1);
1343 			return NULL;
1344 		}
1345 
1346 		uarg_zc = uarg_to_msgzc(uarg);
1347 		bytelen = uarg_zc->bytelen + size;
1348 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1349 			/* TCP can create new skb to attach new uarg */
1350 			if (sk->sk_type == SOCK_STREAM)
1351 				goto new_alloc;
1352 			return NULL;
1353 		}
1354 
1355 		next = (u32)atomic_read(&sk->sk_zckey);
1356 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1357 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1358 				return NULL;
1359 			uarg_zc->len++;
1360 			uarg_zc->bytelen = bytelen;
1361 			atomic_set(&sk->sk_zckey, ++next);
1362 
1363 			/* no extra ref when appending to datagram (MSG_MORE) */
1364 			if (sk->sk_type == SOCK_STREAM)
1365 				net_zcopy_get(uarg);
1366 
1367 			return uarg;
1368 		}
1369 	}
1370 
1371 new_alloc:
1372 	return msg_zerocopy_alloc(sk, size);
1373 }
1374 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1375 
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1376 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1377 {
1378 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1379 	u32 old_lo, old_hi;
1380 	u64 sum_len;
1381 
1382 	old_lo = serr->ee.ee_info;
1383 	old_hi = serr->ee.ee_data;
1384 	sum_len = old_hi - old_lo + 1ULL + len;
1385 
1386 	if (sum_len >= (1ULL << 32))
1387 		return false;
1388 
1389 	if (lo != old_hi + 1)
1390 		return false;
1391 
1392 	serr->ee.ee_data += len;
1393 	return true;
1394 }
1395 
__msg_zerocopy_callback(struct ubuf_info_msgzc * uarg)1396 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1397 {
1398 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1399 	struct sock_exterr_skb *serr;
1400 	struct sock *sk = skb->sk;
1401 	struct sk_buff_head *q;
1402 	unsigned long flags;
1403 	bool is_zerocopy;
1404 	u32 lo, hi;
1405 	u16 len;
1406 
1407 	mm_unaccount_pinned_pages(&uarg->mmp);
1408 
1409 	/* if !len, there was only 1 call, and it was aborted
1410 	 * so do not queue a completion notification
1411 	 */
1412 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1413 		goto release;
1414 
1415 	len = uarg->len;
1416 	lo = uarg->id;
1417 	hi = uarg->id + len - 1;
1418 	is_zerocopy = uarg->zerocopy;
1419 
1420 	serr = SKB_EXT_ERR(skb);
1421 	memset(serr, 0, sizeof(*serr));
1422 	serr->ee.ee_errno = 0;
1423 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1424 	serr->ee.ee_data = hi;
1425 	serr->ee.ee_info = lo;
1426 	if (!is_zerocopy)
1427 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1428 
1429 	q = &sk->sk_error_queue;
1430 	spin_lock_irqsave(&q->lock, flags);
1431 	tail = skb_peek_tail(q);
1432 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1433 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1434 		__skb_queue_tail(q, skb);
1435 		skb = NULL;
1436 	}
1437 	spin_unlock_irqrestore(&q->lock, flags);
1438 
1439 	sk_error_report(sk);
1440 
1441 release:
1442 	consume_skb(skb);
1443 	sock_put(sk);
1444 }
1445 
msg_zerocopy_callback(struct sk_buff * skb,struct ubuf_info * uarg,bool success)1446 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1447 			   bool success)
1448 {
1449 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1450 
1451 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1452 
1453 	if (refcount_dec_and_test(&uarg->refcnt))
1454 		__msg_zerocopy_callback(uarg_zc);
1455 }
1456 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1457 
msg_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1458 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1459 {
1460 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1461 
1462 	atomic_dec(&sk->sk_zckey);
1463 	uarg_to_msgzc(uarg)->len--;
1464 
1465 	if (have_uref)
1466 		msg_zerocopy_callback(NULL, uarg, true);
1467 }
1468 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1469 
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1470 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1471 			     struct msghdr *msg, int len,
1472 			     struct ubuf_info *uarg)
1473 {
1474 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1475 	int err, orig_len = skb->len;
1476 
1477 	/* An skb can only point to one uarg. This edge case happens when
1478 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1479 	 */
1480 	if (orig_uarg && uarg != orig_uarg)
1481 		return -EEXIST;
1482 
1483 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1484 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1485 		struct sock *save_sk = skb->sk;
1486 
1487 		/* Streams do not free skb on error. Reset to prev state. */
1488 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1489 		skb->sk = sk;
1490 		___pskb_trim(skb, orig_len);
1491 		skb->sk = save_sk;
1492 		return err;
1493 	}
1494 
1495 	skb_zcopy_set(skb, uarg, NULL);
1496 	return skb->len - orig_len;
1497 }
1498 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1499 
__skb_zcopy_downgrade_managed(struct sk_buff * skb)1500 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1501 {
1502 	int i;
1503 
1504 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1505 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1506 		skb_frag_ref(skb, i);
1507 }
1508 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1509 
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1510 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1511 			      gfp_t gfp_mask)
1512 {
1513 	if (skb_zcopy(orig)) {
1514 		if (skb_zcopy(nskb)) {
1515 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1516 			if (!gfp_mask) {
1517 				WARN_ON_ONCE(1);
1518 				return -ENOMEM;
1519 			}
1520 			if (skb_uarg(nskb) == skb_uarg(orig))
1521 				return 0;
1522 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1523 				return -EIO;
1524 		}
1525 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1526 	}
1527 	return 0;
1528 }
1529 
1530 /**
1531  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1532  *	@skb: the skb to modify
1533  *	@gfp_mask: allocation priority
1534  *
1535  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1536  *	It will copy all frags into kernel and drop the reference
1537  *	to userspace pages.
1538  *
1539  *	If this function is called from an interrupt gfp_mask() must be
1540  *	%GFP_ATOMIC.
1541  *
1542  *	Returns 0 on success or a negative error code on failure
1543  *	to allocate kernel memory to copy to.
1544  */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1545 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1546 {
1547 	int num_frags = skb_shinfo(skb)->nr_frags;
1548 	struct page *page, *head = NULL;
1549 	int i, order, psize, new_frags;
1550 	u32 d_off;
1551 
1552 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1553 		return -EINVAL;
1554 
1555 	if (!num_frags)
1556 		goto release;
1557 
1558 	/* We might have to allocate high order pages, so compute what minimum
1559 	 * page order is needed.
1560 	 */
1561 	order = 0;
1562 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1563 		order++;
1564 	psize = (PAGE_SIZE << order);
1565 
1566 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1567 	for (i = 0; i < new_frags; i++) {
1568 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1569 		if (!page) {
1570 			while (head) {
1571 				struct page *next = (struct page *)page_private(head);
1572 				put_page(head);
1573 				head = next;
1574 			}
1575 			return -ENOMEM;
1576 		}
1577 		set_page_private(page, (unsigned long)head);
1578 		head = page;
1579 	}
1580 
1581 	page = head;
1582 	d_off = 0;
1583 	for (i = 0; i < num_frags; i++) {
1584 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1585 		u32 p_off, p_len, copied;
1586 		struct page *p;
1587 		u8 *vaddr;
1588 
1589 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1590 				      p, p_off, p_len, copied) {
1591 			u32 copy, done = 0;
1592 			vaddr = kmap_atomic(p);
1593 
1594 			while (done < p_len) {
1595 				if (d_off == psize) {
1596 					d_off = 0;
1597 					page = (struct page *)page_private(page);
1598 				}
1599 				copy = min_t(u32, psize - d_off, p_len - done);
1600 				memcpy(page_address(page) + d_off,
1601 				       vaddr + p_off + done, copy);
1602 				done += copy;
1603 				d_off += copy;
1604 			}
1605 			kunmap_atomic(vaddr);
1606 		}
1607 	}
1608 
1609 	/* skb frags release userspace buffers */
1610 	for (i = 0; i < num_frags; i++)
1611 		skb_frag_unref(skb, i);
1612 
1613 	/* skb frags point to kernel buffers */
1614 	for (i = 0; i < new_frags - 1; i++) {
1615 		__skb_fill_page_desc(skb, i, head, 0, psize);
1616 		head = (struct page *)page_private(head);
1617 	}
1618 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1619 	skb_shinfo(skb)->nr_frags = new_frags;
1620 
1621 release:
1622 	skb_zcopy_clear(skb, false);
1623 	return 0;
1624 }
1625 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1626 
1627 /**
1628  *	skb_clone	-	duplicate an sk_buff
1629  *	@skb: buffer to clone
1630  *	@gfp_mask: allocation priority
1631  *
1632  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1633  *	copies share the same packet data but not structure. The new
1634  *	buffer has a reference count of 1. If the allocation fails the
1635  *	function returns %NULL otherwise the new buffer is returned.
1636  *
1637  *	If this function is called from an interrupt gfp_mask() must be
1638  *	%GFP_ATOMIC.
1639  */
1640 
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)1641 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1642 {
1643 	struct sk_buff_fclones *fclones = container_of(skb,
1644 						       struct sk_buff_fclones,
1645 						       skb1);
1646 	struct sk_buff *n;
1647 
1648 	if (skb_orphan_frags(skb, gfp_mask))
1649 		return NULL;
1650 
1651 	if (skb->fclone == SKB_FCLONE_ORIG &&
1652 	    refcount_read(&fclones->fclone_ref) == 1) {
1653 		n = &fclones->skb2;
1654 		refcount_set(&fclones->fclone_ref, 2);
1655 		n->fclone = SKB_FCLONE_CLONE;
1656 	} else {
1657 		if (skb_pfmemalloc(skb))
1658 			gfp_mask |= __GFP_MEMALLOC;
1659 
1660 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1661 		if (!n)
1662 			return NULL;
1663 
1664 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1665 	}
1666 
1667 	return __skb_clone(n, skb);
1668 }
1669 EXPORT_SYMBOL(skb_clone);
1670 
skb_headers_offset_update(struct sk_buff * skb,int off)1671 void skb_headers_offset_update(struct sk_buff *skb, int off)
1672 {
1673 	/* Only adjust this if it actually is csum_start rather than csum */
1674 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1675 		skb->csum_start += off;
1676 	/* {transport,network,mac}_header and tail are relative to skb->head */
1677 	skb->transport_header += off;
1678 	skb->network_header   += off;
1679 	if (skb_mac_header_was_set(skb))
1680 		skb->mac_header += off;
1681 	skb->inner_transport_header += off;
1682 	skb->inner_network_header += off;
1683 	skb->inner_mac_header += off;
1684 }
1685 EXPORT_SYMBOL(skb_headers_offset_update);
1686 
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)1687 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1688 {
1689 	__copy_skb_header(new, old);
1690 
1691 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1692 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1693 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1694 }
1695 EXPORT_SYMBOL(skb_copy_header);
1696 
skb_alloc_rx_flag(const struct sk_buff * skb)1697 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1698 {
1699 	if (skb_pfmemalloc(skb))
1700 		return SKB_ALLOC_RX;
1701 	return 0;
1702 }
1703 
1704 /**
1705  *	skb_copy	-	create private copy of an sk_buff
1706  *	@skb: buffer to copy
1707  *	@gfp_mask: allocation priority
1708  *
1709  *	Make a copy of both an &sk_buff and its data. This is used when the
1710  *	caller wishes to modify the data and needs a private copy of the
1711  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1712  *	on success. The returned buffer has a reference count of 1.
1713  *
1714  *	As by-product this function converts non-linear &sk_buff to linear
1715  *	one, so that &sk_buff becomes completely private and caller is allowed
1716  *	to modify all the data of returned buffer. This means that this
1717  *	function is not recommended for use in circumstances when only
1718  *	header is going to be modified. Use pskb_copy() instead.
1719  */
1720 
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1721 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1722 {
1723 	int headerlen = skb_headroom(skb);
1724 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1725 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1726 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1727 
1728 	if (!n)
1729 		return NULL;
1730 
1731 	/* Set the data pointer */
1732 	skb_reserve(n, headerlen);
1733 	/* Set the tail pointer and length */
1734 	skb_put(n, skb->len);
1735 
1736 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1737 
1738 	skb_copy_header(n, skb);
1739 	return n;
1740 }
1741 EXPORT_SYMBOL(skb_copy);
1742 
1743 /**
1744  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1745  *	@skb: buffer to copy
1746  *	@headroom: headroom of new skb
1747  *	@gfp_mask: allocation priority
1748  *	@fclone: if true allocate the copy of the skb from the fclone
1749  *	cache instead of the head cache; it is recommended to set this
1750  *	to true for the cases where the copy will likely be cloned
1751  *
1752  *	Make a copy of both an &sk_buff and part of its data, located
1753  *	in header. Fragmented data remain shared. This is used when
1754  *	the caller wishes to modify only header of &sk_buff and needs
1755  *	private copy of the header to alter. Returns %NULL on failure
1756  *	or the pointer to the buffer on success.
1757  *	The returned buffer has a reference count of 1.
1758  */
1759 
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)1760 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1761 				   gfp_t gfp_mask, bool fclone)
1762 {
1763 	unsigned int size = skb_headlen(skb) + headroom;
1764 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1765 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1766 
1767 	if (!n)
1768 		goto out;
1769 
1770 	/* Set the data pointer */
1771 	skb_reserve(n, headroom);
1772 	/* Set the tail pointer and length */
1773 	skb_put(n, skb_headlen(skb));
1774 	/* Copy the bytes */
1775 	skb_copy_from_linear_data(skb, n->data, n->len);
1776 
1777 	n->truesize += skb->data_len;
1778 	n->data_len  = skb->data_len;
1779 	n->len	     = skb->len;
1780 
1781 	if (skb_shinfo(skb)->nr_frags) {
1782 		int i;
1783 
1784 		if (skb_orphan_frags(skb, gfp_mask) ||
1785 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1786 			kfree_skb(n);
1787 			n = NULL;
1788 			goto out;
1789 		}
1790 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1791 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1792 			skb_frag_ref(skb, i);
1793 		}
1794 		skb_shinfo(n)->nr_frags = i;
1795 	}
1796 
1797 	if (skb_has_frag_list(skb)) {
1798 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1799 		skb_clone_fraglist(n);
1800 	}
1801 
1802 	skb_copy_header(n, skb);
1803 out:
1804 	return n;
1805 }
1806 EXPORT_SYMBOL(__pskb_copy_fclone);
1807 
1808 /**
1809  *	pskb_expand_head - reallocate header of &sk_buff
1810  *	@skb: buffer to reallocate
1811  *	@nhead: room to add at head
1812  *	@ntail: room to add at tail
1813  *	@gfp_mask: allocation priority
1814  *
1815  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1816  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1817  *	reference count of 1. Returns zero in the case of success or error,
1818  *	if expansion failed. In the last case, &sk_buff is not changed.
1819  *
1820  *	All the pointers pointing into skb header may change and must be
1821  *	reloaded after call to this function.
1822  */
1823 
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1824 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1825 		     gfp_t gfp_mask)
1826 {
1827 	unsigned int osize = skb_end_offset(skb);
1828 	unsigned int size = osize + nhead + ntail;
1829 	long off;
1830 	u8 *data;
1831 	int i;
1832 
1833 	BUG_ON(nhead < 0);
1834 
1835 	BUG_ON(skb_shared(skb));
1836 
1837 	skb_zcopy_downgrade_managed(skb);
1838 
1839 	if (skb_pfmemalloc(skb))
1840 		gfp_mask |= __GFP_MEMALLOC;
1841 
1842 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
1843 	if (!data)
1844 		goto nodata;
1845 	size = SKB_WITH_OVERHEAD(size);
1846 
1847 	/* Copy only real data... and, alas, header. This should be
1848 	 * optimized for the cases when header is void.
1849 	 */
1850 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1851 
1852 	memcpy((struct skb_shared_info *)(data + size),
1853 	       skb_shinfo(skb),
1854 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1855 
1856 	/*
1857 	 * if shinfo is shared we must drop the old head gracefully, but if it
1858 	 * is not we can just drop the old head and let the existing refcount
1859 	 * be since all we did is relocate the values
1860 	 */
1861 	if (skb_cloned(skb)) {
1862 		if (skb_orphan_frags(skb, gfp_mask))
1863 			goto nofrags;
1864 		if (skb_zcopy(skb))
1865 			refcount_inc(&skb_uarg(skb)->refcnt);
1866 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1867 			skb_frag_ref(skb, i);
1868 
1869 		if (skb_has_frag_list(skb))
1870 			skb_clone_fraglist(skb);
1871 
1872 		skb_release_data(skb);
1873 	} else {
1874 		skb_free_head(skb);
1875 	}
1876 	off = (data + nhead) - skb->head;
1877 
1878 	skb->head     = data;
1879 	skb->head_frag = 0;
1880 	skb->data    += off;
1881 
1882 	skb_set_end_offset(skb, size);
1883 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1884 	off           = nhead;
1885 #endif
1886 	skb->tail	      += off;
1887 	skb_headers_offset_update(skb, nhead);
1888 	skb->cloned   = 0;
1889 	skb->hdr_len  = 0;
1890 	skb->nohdr    = 0;
1891 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1892 
1893 	skb_metadata_clear(skb);
1894 
1895 	/* It is not generally safe to change skb->truesize.
1896 	 * For the moment, we really care of rx path, or
1897 	 * when skb is orphaned (not attached to a socket).
1898 	 */
1899 	if (!skb->sk || skb->destructor == sock_edemux)
1900 		skb->truesize += size - osize;
1901 
1902 	return 0;
1903 
1904 nofrags:
1905 	kfree(data);
1906 nodata:
1907 	return -ENOMEM;
1908 }
1909 EXPORT_SYMBOL(pskb_expand_head);
1910 
1911 /* Make private copy of skb with writable head and some headroom */
1912 
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1913 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1914 {
1915 	struct sk_buff *skb2;
1916 	int delta = headroom - skb_headroom(skb);
1917 
1918 	if (delta <= 0)
1919 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1920 	else {
1921 		skb2 = skb_clone(skb, GFP_ATOMIC);
1922 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1923 					     GFP_ATOMIC)) {
1924 			kfree_skb(skb2);
1925 			skb2 = NULL;
1926 		}
1927 	}
1928 	return skb2;
1929 }
1930 EXPORT_SYMBOL(skb_realloc_headroom);
1931 
__skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)1932 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1933 {
1934 	unsigned int saved_end_offset, saved_truesize;
1935 	struct skb_shared_info *shinfo;
1936 	int res;
1937 
1938 	saved_end_offset = skb_end_offset(skb);
1939 	saved_truesize = skb->truesize;
1940 
1941 	res = pskb_expand_head(skb, 0, 0, pri);
1942 	if (res)
1943 		return res;
1944 
1945 	skb->truesize = saved_truesize;
1946 
1947 	if (likely(skb_end_offset(skb) == saved_end_offset))
1948 		return 0;
1949 
1950 	shinfo = skb_shinfo(skb);
1951 
1952 	/* We are about to change back skb->end,
1953 	 * we need to move skb_shinfo() to its new location.
1954 	 */
1955 	memmove(skb->head + saved_end_offset,
1956 		shinfo,
1957 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
1958 
1959 	skb_set_end_offset(skb, saved_end_offset);
1960 
1961 	return 0;
1962 }
1963 
1964 /**
1965  *	skb_expand_head - reallocate header of &sk_buff
1966  *	@skb: buffer to reallocate
1967  *	@headroom: needed headroom
1968  *
1969  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
1970  *	if possible; copies skb->sk to new skb as needed
1971  *	and frees original skb in case of failures.
1972  *
1973  *	It expect increased headroom and generates warning otherwise.
1974  */
1975 
skb_expand_head(struct sk_buff * skb,unsigned int headroom)1976 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1977 {
1978 	int delta = headroom - skb_headroom(skb);
1979 	int osize = skb_end_offset(skb);
1980 	struct sock *sk = skb->sk;
1981 
1982 	if (WARN_ONCE(delta <= 0,
1983 		      "%s is expecting an increase in the headroom", __func__))
1984 		return skb;
1985 
1986 	delta = SKB_DATA_ALIGN(delta);
1987 	/* pskb_expand_head() might crash, if skb is shared. */
1988 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
1989 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1990 
1991 		if (unlikely(!nskb))
1992 			goto fail;
1993 
1994 		if (sk)
1995 			skb_set_owner_w(nskb, sk);
1996 		consume_skb(skb);
1997 		skb = nskb;
1998 	}
1999 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2000 		goto fail;
2001 
2002 	if (sk && is_skb_wmem(skb)) {
2003 		delta = skb_end_offset(skb) - osize;
2004 		refcount_add(delta, &sk->sk_wmem_alloc);
2005 		skb->truesize += delta;
2006 	}
2007 	return skb;
2008 
2009 fail:
2010 	kfree_skb(skb);
2011 	return NULL;
2012 }
2013 EXPORT_SYMBOL(skb_expand_head);
2014 
2015 /**
2016  *	skb_copy_expand	-	copy and expand sk_buff
2017  *	@skb: buffer to copy
2018  *	@newheadroom: new free bytes at head
2019  *	@newtailroom: new free bytes at tail
2020  *	@gfp_mask: allocation priority
2021  *
2022  *	Make a copy of both an &sk_buff and its data and while doing so
2023  *	allocate additional space.
2024  *
2025  *	This is used when the caller wishes to modify the data and needs a
2026  *	private copy of the data to alter as well as more space for new fields.
2027  *	Returns %NULL on failure or the pointer to the buffer
2028  *	on success. The returned buffer has a reference count of 1.
2029  *
2030  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2031  *	is called from an interrupt.
2032  */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)2033 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2034 				int newheadroom, int newtailroom,
2035 				gfp_t gfp_mask)
2036 {
2037 	/*
2038 	 *	Allocate the copy buffer
2039 	 */
2040 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2041 					gfp_mask, skb_alloc_rx_flag(skb),
2042 					NUMA_NO_NODE);
2043 	int oldheadroom = skb_headroom(skb);
2044 	int head_copy_len, head_copy_off;
2045 
2046 	if (!n)
2047 		return NULL;
2048 
2049 	skb_reserve(n, newheadroom);
2050 
2051 	/* Set the tail pointer and length */
2052 	skb_put(n, skb->len);
2053 
2054 	head_copy_len = oldheadroom;
2055 	head_copy_off = 0;
2056 	if (newheadroom <= head_copy_len)
2057 		head_copy_len = newheadroom;
2058 	else
2059 		head_copy_off = newheadroom - head_copy_len;
2060 
2061 	/* Copy the linear header and data. */
2062 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2063 			     skb->len + head_copy_len));
2064 
2065 	skb_copy_header(n, skb);
2066 
2067 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2068 
2069 	return n;
2070 }
2071 EXPORT_SYMBOL(skb_copy_expand);
2072 
2073 /**
2074  *	__skb_pad		-	zero pad the tail of an skb
2075  *	@skb: buffer to pad
2076  *	@pad: space to pad
2077  *	@free_on_error: free buffer on error
2078  *
2079  *	Ensure that a buffer is followed by a padding area that is zero
2080  *	filled. Used by network drivers which may DMA or transfer data
2081  *	beyond the buffer end onto the wire.
2082  *
2083  *	May return error in out of memory cases. The skb is freed on error
2084  *	if @free_on_error is true.
2085  */
2086 
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)2087 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2088 {
2089 	int err;
2090 	int ntail;
2091 
2092 	/* If the skbuff is non linear tailroom is always zero.. */
2093 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2094 		memset(skb->data+skb->len, 0, pad);
2095 		return 0;
2096 	}
2097 
2098 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2099 	if (likely(skb_cloned(skb) || ntail > 0)) {
2100 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2101 		if (unlikely(err))
2102 			goto free_skb;
2103 	}
2104 
2105 	/* FIXME: The use of this function with non-linear skb's really needs
2106 	 * to be audited.
2107 	 */
2108 	err = skb_linearize(skb);
2109 	if (unlikely(err))
2110 		goto free_skb;
2111 
2112 	memset(skb->data + skb->len, 0, pad);
2113 	return 0;
2114 
2115 free_skb:
2116 	if (free_on_error)
2117 		kfree_skb(skb);
2118 	return err;
2119 }
2120 EXPORT_SYMBOL(__skb_pad);
2121 
2122 /**
2123  *	pskb_put - add data to the tail of a potentially fragmented buffer
2124  *	@skb: start of the buffer to use
2125  *	@tail: tail fragment of the buffer to use
2126  *	@len: amount of data to add
2127  *
2128  *	This function extends the used data area of the potentially
2129  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2130  *	@skb itself. If this would exceed the total buffer size the kernel
2131  *	will panic. A pointer to the first byte of the extra data is
2132  *	returned.
2133  */
2134 
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)2135 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2136 {
2137 	if (tail != skb) {
2138 		skb->data_len += len;
2139 		skb->len += len;
2140 	}
2141 	return skb_put(tail, len);
2142 }
2143 EXPORT_SYMBOL_GPL(pskb_put);
2144 
2145 /**
2146  *	skb_put - add data to a buffer
2147  *	@skb: buffer to use
2148  *	@len: amount of data to add
2149  *
2150  *	This function extends the used data area of the buffer. If this would
2151  *	exceed the total buffer size the kernel will panic. A pointer to the
2152  *	first byte of the extra data is returned.
2153  */
skb_put(struct sk_buff * skb,unsigned int len)2154 void *skb_put(struct sk_buff *skb, unsigned int len)
2155 {
2156 	void *tmp = skb_tail_pointer(skb);
2157 	SKB_LINEAR_ASSERT(skb);
2158 	skb->tail += len;
2159 	skb->len  += len;
2160 	if (unlikely(skb->tail > skb->end))
2161 		skb_over_panic(skb, len, __builtin_return_address(0));
2162 	return tmp;
2163 }
2164 EXPORT_SYMBOL(skb_put);
2165 
2166 /**
2167  *	skb_push - add data to the start of a buffer
2168  *	@skb: buffer to use
2169  *	@len: amount of data to add
2170  *
2171  *	This function extends the used data area of the buffer at the buffer
2172  *	start. If this would exceed the total buffer headroom the kernel will
2173  *	panic. A pointer to the first byte of the extra data is returned.
2174  */
skb_push(struct sk_buff * skb,unsigned int len)2175 void *skb_push(struct sk_buff *skb, unsigned int len)
2176 {
2177 	skb->data -= len;
2178 	skb->len  += len;
2179 	if (unlikely(skb->data < skb->head))
2180 		skb_under_panic(skb, len, __builtin_return_address(0));
2181 	return skb->data;
2182 }
2183 EXPORT_SYMBOL(skb_push);
2184 
2185 /**
2186  *	skb_pull - remove data from the start of a buffer
2187  *	@skb: buffer to use
2188  *	@len: amount of data to remove
2189  *
2190  *	This function removes data from the start of a buffer, returning
2191  *	the memory to the headroom. A pointer to the next data in the buffer
2192  *	is returned. Once the data has been pulled future pushes will overwrite
2193  *	the old data.
2194  */
skb_pull(struct sk_buff * skb,unsigned int len)2195 void *skb_pull(struct sk_buff *skb, unsigned int len)
2196 {
2197 	return skb_pull_inline(skb, len);
2198 }
2199 EXPORT_SYMBOL(skb_pull);
2200 
2201 /**
2202  *	skb_pull_data - remove data from the start of a buffer returning its
2203  *	original position.
2204  *	@skb: buffer to use
2205  *	@len: amount of data to remove
2206  *
2207  *	This function removes data from the start of a buffer, returning
2208  *	the memory to the headroom. A pointer to the original data in the buffer
2209  *	is returned after checking if there is enough data to pull. Once the
2210  *	data has been pulled future pushes will overwrite the old data.
2211  */
skb_pull_data(struct sk_buff * skb,size_t len)2212 void *skb_pull_data(struct sk_buff *skb, size_t len)
2213 {
2214 	void *data = skb->data;
2215 
2216 	if (skb->len < len)
2217 		return NULL;
2218 
2219 	skb_pull(skb, len);
2220 
2221 	return data;
2222 }
2223 EXPORT_SYMBOL(skb_pull_data);
2224 
2225 /**
2226  *	skb_trim - remove end from a buffer
2227  *	@skb: buffer to alter
2228  *	@len: new length
2229  *
2230  *	Cut the length of a buffer down by removing data from the tail. If
2231  *	the buffer is already under the length specified it is not modified.
2232  *	The skb must be linear.
2233  */
skb_trim(struct sk_buff * skb,unsigned int len)2234 void skb_trim(struct sk_buff *skb, unsigned int len)
2235 {
2236 	if (skb->len > len)
2237 		__skb_trim(skb, len);
2238 }
2239 EXPORT_SYMBOL(skb_trim);
2240 
2241 /* Trims skb to length len. It can change skb pointers.
2242  */
2243 
___pskb_trim(struct sk_buff * skb,unsigned int len)2244 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2245 {
2246 	struct sk_buff **fragp;
2247 	struct sk_buff *frag;
2248 	int offset = skb_headlen(skb);
2249 	int nfrags = skb_shinfo(skb)->nr_frags;
2250 	int i;
2251 	int err;
2252 
2253 	if (skb_cloned(skb) &&
2254 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2255 		return err;
2256 
2257 	i = 0;
2258 	if (offset >= len)
2259 		goto drop_pages;
2260 
2261 	for (; i < nfrags; i++) {
2262 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2263 
2264 		if (end < len) {
2265 			offset = end;
2266 			continue;
2267 		}
2268 
2269 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2270 
2271 drop_pages:
2272 		skb_shinfo(skb)->nr_frags = i;
2273 
2274 		for (; i < nfrags; i++)
2275 			skb_frag_unref(skb, i);
2276 
2277 		if (skb_has_frag_list(skb))
2278 			skb_drop_fraglist(skb);
2279 		goto done;
2280 	}
2281 
2282 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2283 	     fragp = &frag->next) {
2284 		int end = offset + frag->len;
2285 
2286 		if (skb_shared(frag)) {
2287 			struct sk_buff *nfrag;
2288 
2289 			nfrag = skb_clone(frag, GFP_ATOMIC);
2290 			if (unlikely(!nfrag))
2291 				return -ENOMEM;
2292 
2293 			nfrag->next = frag->next;
2294 			consume_skb(frag);
2295 			frag = nfrag;
2296 			*fragp = frag;
2297 		}
2298 
2299 		if (end < len) {
2300 			offset = end;
2301 			continue;
2302 		}
2303 
2304 		if (end > len &&
2305 		    unlikely((err = pskb_trim(frag, len - offset))))
2306 			return err;
2307 
2308 		if (frag->next)
2309 			skb_drop_list(&frag->next);
2310 		break;
2311 	}
2312 
2313 done:
2314 	if (len > skb_headlen(skb)) {
2315 		skb->data_len -= skb->len - len;
2316 		skb->len       = len;
2317 	} else {
2318 		skb->len       = len;
2319 		skb->data_len  = 0;
2320 		skb_set_tail_pointer(skb, len);
2321 	}
2322 
2323 	if (!skb->sk || skb->destructor == sock_edemux)
2324 		skb_condense(skb);
2325 	return 0;
2326 }
2327 EXPORT_SYMBOL(___pskb_trim);
2328 
2329 /* Note : use pskb_trim_rcsum() instead of calling this directly
2330  */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2331 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2332 {
2333 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2334 		int delta = skb->len - len;
2335 
2336 		skb->csum = csum_block_sub(skb->csum,
2337 					   skb_checksum(skb, len, delta, 0),
2338 					   len);
2339 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2340 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2341 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2342 
2343 		if (offset + sizeof(__sum16) > hdlen)
2344 			return -EINVAL;
2345 	}
2346 	return __pskb_trim(skb, len);
2347 }
2348 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2349 
2350 /**
2351  *	__pskb_pull_tail - advance tail of skb header
2352  *	@skb: buffer to reallocate
2353  *	@delta: number of bytes to advance tail
2354  *
2355  *	The function makes a sense only on a fragmented &sk_buff,
2356  *	it expands header moving its tail forward and copying necessary
2357  *	data from fragmented part.
2358  *
2359  *	&sk_buff MUST have reference count of 1.
2360  *
2361  *	Returns %NULL (and &sk_buff does not change) if pull failed
2362  *	or value of new tail of skb in the case of success.
2363  *
2364  *	All the pointers pointing into skb header may change and must be
2365  *	reloaded after call to this function.
2366  */
2367 
2368 /* Moves tail of skb head forward, copying data from fragmented part,
2369  * when it is necessary.
2370  * 1. It may fail due to malloc failure.
2371  * 2. It may change skb pointers.
2372  *
2373  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2374  */
__pskb_pull_tail(struct sk_buff * skb,int delta)2375 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2376 {
2377 	/* If skb has not enough free space at tail, get new one
2378 	 * plus 128 bytes for future expansions. If we have enough
2379 	 * room at tail, reallocate without expansion only if skb is cloned.
2380 	 */
2381 	int i, k, eat = (skb->tail + delta) - skb->end;
2382 
2383 	if (eat > 0 || skb_cloned(skb)) {
2384 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2385 				     GFP_ATOMIC))
2386 			return NULL;
2387 	}
2388 
2389 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2390 			     skb_tail_pointer(skb), delta));
2391 
2392 	/* Optimization: no fragments, no reasons to preestimate
2393 	 * size of pulled pages. Superb.
2394 	 */
2395 	if (!skb_has_frag_list(skb))
2396 		goto pull_pages;
2397 
2398 	/* Estimate size of pulled pages. */
2399 	eat = delta;
2400 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2401 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2402 
2403 		if (size >= eat)
2404 			goto pull_pages;
2405 		eat -= size;
2406 	}
2407 
2408 	/* If we need update frag list, we are in troubles.
2409 	 * Certainly, it is possible to add an offset to skb data,
2410 	 * but taking into account that pulling is expected to
2411 	 * be very rare operation, it is worth to fight against
2412 	 * further bloating skb head and crucify ourselves here instead.
2413 	 * Pure masohism, indeed. 8)8)
2414 	 */
2415 	if (eat) {
2416 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2417 		struct sk_buff *clone = NULL;
2418 		struct sk_buff *insp = NULL;
2419 
2420 		do {
2421 			if (list->len <= eat) {
2422 				/* Eaten as whole. */
2423 				eat -= list->len;
2424 				list = list->next;
2425 				insp = list;
2426 			} else {
2427 				/* Eaten partially. */
2428 				if (skb_is_gso(skb) && !list->head_frag &&
2429 				    skb_headlen(list))
2430 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2431 
2432 				if (skb_shared(list)) {
2433 					/* Sucks! We need to fork list. :-( */
2434 					clone = skb_clone(list, GFP_ATOMIC);
2435 					if (!clone)
2436 						return NULL;
2437 					insp = list->next;
2438 					list = clone;
2439 				} else {
2440 					/* This may be pulled without
2441 					 * problems. */
2442 					insp = list;
2443 				}
2444 				if (!pskb_pull(list, eat)) {
2445 					kfree_skb(clone);
2446 					return NULL;
2447 				}
2448 				break;
2449 			}
2450 		} while (eat);
2451 
2452 		/* Free pulled out fragments. */
2453 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2454 			skb_shinfo(skb)->frag_list = list->next;
2455 			consume_skb(list);
2456 		}
2457 		/* And insert new clone at head. */
2458 		if (clone) {
2459 			clone->next = list;
2460 			skb_shinfo(skb)->frag_list = clone;
2461 		}
2462 	}
2463 	/* Success! Now we may commit changes to skb data. */
2464 
2465 pull_pages:
2466 	eat = delta;
2467 	k = 0;
2468 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2469 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2470 
2471 		if (size <= eat) {
2472 			skb_frag_unref(skb, i);
2473 			eat -= size;
2474 		} else {
2475 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2476 
2477 			*frag = skb_shinfo(skb)->frags[i];
2478 			if (eat) {
2479 				skb_frag_off_add(frag, eat);
2480 				skb_frag_size_sub(frag, eat);
2481 				if (!i)
2482 					goto end;
2483 				eat = 0;
2484 			}
2485 			k++;
2486 		}
2487 	}
2488 	skb_shinfo(skb)->nr_frags = k;
2489 
2490 end:
2491 	skb->tail     += delta;
2492 	skb->data_len -= delta;
2493 
2494 	if (!skb->data_len)
2495 		skb_zcopy_clear(skb, false);
2496 
2497 	return skb_tail_pointer(skb);
2498 }
2499 EXPORT_SYMBOL(__pskb_pull_tail);
2500 
2501 /**
2502  *	skb_copy_bits - copy bits from skb to kernel buffer
2503  *	@skb: source skb
2504  *	@offset: offset in source
2505  *	@to: destination buffer
2506  *	@len: number of bytes to copy
2507  *
2508  *	Copy the specified number of bytes from the source skb to the
2509  *	destination buffer.
2510  *
2511  *	CAUTION ! :
2512  *		If its prototype is ever changed,
2513  *		check arch/{*}/net/{*}.S files,
2514  *		since it is called from BPF assembly code.
2515  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2516 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2517 {
2518 	int start = skb_headlen(skb);
2519 	struct sk_buff *frag_iter;
2520 	int i, copy;
2521 
2522 	if (offset > (int)skb->len - len)
2523 		goto fault;
2524 
2525 	/* Copy header. */
2526 	if ((copy = start - offset) > 0) {
2527 		if (copy > len)
2528 			copy = len;
2529 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2530 		if ((len -= copy) == 0)
2531 			return 0;
2532 		offset += copy;
2533 		to     += copy;
2534 	}
2535 
2536 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2537 		int end;
2538 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2539 
2540 		WARN_ON(start > offset + len);
2541 
2542 		end = start + skb_frag_size(f);
2543 		if ((copy = end - offset) > 0) {
2544 			u32 p_off, p_len, copied;
2545 			struct page *p;
2546 			u8 *vaddr;
2547 
2548 			if (copy > len)
2549 				copy = len;
2550 
2551 			skb_frag_foreach_page(f,
2552 					      skb_frag_off(f) + offset - start,
2553 					      copy, p, p_off, p_len, copied) {
2554 				vaddr = kmap_atomic(p);
2555 				memcpy(to + copied, vaddr + p_off, p_len);
2556 				kunmap_atomic(vaddr);
2557 			}
2558 
2559 			if ((len -= copy) == 0)
2560 				return 0;
2561 			offset += copy;
2562 			to     += copy;
2563 		}
2564 		start = end;
2565 	}
2566 
2567 	skb_walk_frags(skb, frag_iter) {
2568 		int end;
2569 
2570 		WARN_ON(start > offset + len);
2571 
2572 		end = start + frag_iter->len;
2573 		if ((copy = end - offset) > 0) {
2574 			if (copy > len)
2575 				copy = len;
2576 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2577 				goto fault;
2578 			if ((len -= copy) == 0)
2579 				return 0;
2580 			offset += copy;
2581 			to     += copy;
2582 		}
2583 		start = end;
2584 	}
2585 
2586 	if (!len)
2587 		return 0;
2588 
2589 fault:
2590 	return -EFAULT;
2591 }
2592 EXPORT_SYMBOL(skb_copy_bits);
2593 
2594 /*
2595  * Callback from splice_to_pipe(), if we need to release some pages
2596  * at the end of the spd in case we error'ed out in filling the pipe.
2597  */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)2598 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2599 {
2600 	put_page(spd->pages[i]);
2601 }
2602 
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)2603 static struct page *linear_to_page(struct page *page, unsigned int *len,
2604 				   unsigned int *offset,
2605 				   struct sock *sk)
2606 {
2607 	struct page_frag *pfrag = sk_page_frag(sk);
2608 
2609 	if (!sk_page_frag_refill(sk, pfrag))
2610 		return NULL;
2611 
2612 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2613 
2614 	memcpy(page_address(pfrag->page) + pfrag->offset,
2615 	       page_address(page) + *offset, *len);
2616 	*offset = pfrag->offset;
2617 	pfrag->offset += *len;
2618 
2619 	return pfrag->page;
2620 }
2621 
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)2622 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2623 			     struct page *page,
2624 			     unsigned int offset)
2625 {
2626 	return	spd->nr_pages &&
2627 		spd->pages[spd->nr_pages - 1] == page &&
2628 		(spd->partial[spd->nr_pages - 1].offset +
2629 		 spd->partial[spd->nr_pages - 1].len == offset);
2630 }
2631 
2632 /*
2633  * Fill page/offset/length into spd, if it can hold more pages.
2634  */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)2635 static bool spd_fill_page(struct splice_pipe_desc *spd,
2636 			  struct pipe_inode_info *pipe, struct page *page,
2637 			  unsigned int *len, unsigned int offset,
2638 			  bool linear,
2639 			  struct sock *sk)
2640 {
2641 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2642 		return true;
2643 
2644 	if (linear) {
2645 		page = linear_to_page(page, len, &offset, sk);
2646 		if (!page)
2647 			return true;
2648 	}
2649 	if (spd_can_coalesce(spd, page, offset)) {
2650 		spd->partial[spd->nr_pages - 1].len += *len;
2651 		return false;
2652 	}
2653 	get_page(page);
2654 	spd->pages[spd->nr_pages] = page;
2655 	spd->partial[spd->nr_pages].len = *len;
2656 	spd->partial[spd->nr_pages].offset = offset;
2657 	spd->nr_pages++;
2658 
2659 	return false;
2660 }
2661 
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)2662 static bool __splice_segment(struct page *page, unsigned int poff,
2663 			     unsigned int plen, unsigned int *off,
2664 			     unsigned int *len,
2665 			     struct splice_pipe_desc *spd, bool linear,
2666 			     struct sock *sk,
2667 			     struct pipe_inode_info *pipe)
2668 {
2669 	if (!*len)
2670 		return true;
2671 
2672 	/* skip this segment if already processed */
2673 	if (*off >= plen) {
2674 		*off -= plen;
2675 		return false;
2676 	}
2677 
2678 	/* ignore any bits we already processed */
2679 	poff += *off;
2680 	plen -= *off;
2681 	*off = 0;
2682 
2683 	do {
2684 		unsigned int flen = min(*len, plen);
2685 
2686 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2687 				  linear, sk))
2688 			return true;
2689 		poff += flen;
2690 		plen -= flen;
2691 		*len -= flen;
2692 	} while (*len && plen);
2693 
2694 	return false;
2695 }
2696 
2697 /*
2698  * Map linear and fragment data from the skb to spd. It reports true if the
2699  * pipe is full or if we already spliced the requested length.
2700  */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)2701 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2702 			      unsigned int *offset, unsigned int *len,
2703 			      struct splice_pipe_desc *spd, struct sock *sk)
2704 {
2705 	int seg;
2706 	struct sk_buff *iter;
2707 
2708 	/* map the linear part :
2709 	 * If skb->head_frag is set, this 'linear' part is backed by a
2710 	 * fragment, and if the head is not shared with any clones then
2711 	 * we can avoid a copy since we own the head portion of this page.
2712 	 */
2713 	if (__splice_segment(virt_to_page(skb->data),
2714 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2715 			     skb_headlen(skb),
2716 			     offset, len, spd,
2717 			     skb_head_is_locked(skb),
2718 			     sk, pipe))
2719 		return true;
2720 
2721 	/*
2722 	 * then map the fragments
2723 	 */
2724 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2725 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2726 
2727 		if (__splice_segment(skb_frag_page(f),
2728 				     skb_frag_off(f), skb_frag_size(f),
2729 				     offset, len, spd, false, sk, pipe))
2730 			return true;
2731 	}
2732 
2733 	skb_walk_frags(skb, iter) {
2734 		if (*offset >= iter->len) {
2735 			*offset -= iter->len;
2736 			continue;
2737 		}
2738 		/* __skb_splice_bits() only fails if the output has no room
2739 		 * left, so no point in going over the frag_list for the error
2740 		 * case.
2741 		 */
2742 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2743 			return true;
2744 	}
2745 
2746 	return false;
2747 }
2748 
2749 /*
2750  * Map data from the skb to a pipe. Should handle both the linear part,
2751  * the fragments, and the frag list.
2752  */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)2753 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2754 		    struct pipe_inode_info *pipe, unsigned int tlen,
2755 		    unsigned int flags)
2756 {
2757 	struct partial_page partial[MAX_SKB_FRAGS];
2758 	struct page *pages[MAX_SKB_FRAGS];
2759 	struct splice_pipe_desc spd = {
2760 		.pages = pages,
2761 		.partial = partial,
2762 		.nr_pages_max = MAX_SKB_FRAGS,
2763 		.ops = &nosteal_pipe_buf_ops,
2764 		.spd_release = sock_spd_release,
2765 	};
2766 	int ret = 0;
2767 
2768 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2769 
2770 	if (spd.nr_pages)
2771 		ret = splice_to_pipe(pipe, &spd);
2772 
2773 	return ret;
2774 }
2775 EXPORT_SYMBOL_GPL(skb_splice_bits);
2776 
sendmsg_unlocked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)2777 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2778 			    struct kvec *vec, size_t num, size_t size)
2779 {
2780 	struct socket *sock = sk->sk_socket;
2781 
2782 	if (!sock)
2783 		return -EINVAL;
2784 	return kernel_sendmsg(sock, msg, vec, num, size);
2785 }
2786 
sendpage_unlocked(struct sock * sk,struct page * page,int offset,size_t size,int flags)2787 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2788 			     size_t size, int flags)
2789 {
2790 	struct socket *sock = sk->sk_socket;
2791 
2792 	if (!sock)
2793 		return -EINVAL;
2794 	return kernel_sendpage(sock, page, offset, size, flags);
2795 }
2796 
2797 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2798 			    struct kvec *vec, size_t num, size_t size);
2799 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2800 			     size_t size, int flags);
__skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len,sendmsg_func sendmsg,sendpage_func sendpage)2801 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2802 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
2803 {
2804 	unsigned int orig_len = len;
2805 	struct sk_buff *head = skb;
2806 	unsigned short fragidx;
2807 	int slen, ret;
2808 
2809 do_frag_list:
2810 
2811 	/* Deal with head data */
2812 	while (offset < skb_headlen(skb) && len) {
2813 		struct kvec kv;
2814 		struct msghdr msg;
2815 
2816 		slen = min_t(int, len, skb_headlen(skb) - offset);
2817 		kv.iov_base = skb->data + offset;
2818 		kv.iov_len = slen;
2819 		memset(&msg, 0, sizeof(msg));
2820 		msg.msg_flags = MSG_DONTWAIT;
2821 
2822 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2823 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2824 		if (ret <= 0)
2825 			goto error;
2826 
2827 		offset += ret;
2828 		len -= ret;
2829 	}
2830 
2831 	/* All the data was skb head? */
2832 	if (!len)
2833 		goto out;
2834 
2835 	/* Make offset relative to start of frags */
2836 	offset -= skb_headlen(skb);
2837 
2838 	/* Find where we are in frag list */
2839 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2840 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2841 
2842 		if (offset < skb_frag_size(frag))
2843 			break;
2844 
2845 		offset -= skb_frag_size(frag);
2846 	}
2847 
2848 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2849 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2850 
2851 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2852 
2853 		while (slen) {
2854 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2855 					      sendpage_unlocked, sk,
2856 					      skb_frag_page(frag),
2857 					      skb_frag_off(frag) + offset,
2858 					      slen, MSG_DONTWAIT);
2859 			if (ret <= 0)
2860 				goto error;
2861 
2862 			len -= ret;
2863 			offset += ret;
2864 			slen -= ret;
2865 		}
2866 
2867 		offset = 0;
2868 	}
2869 
2870 	if (len) {
2871 		/* Process any frag lists */
2872 
2873 		if (skb == head) {
2874 			if (skb_has_frag_list(skb)) {
2875 				skb = skb_shinfo(skb)->frag_list;
2876 				goto do_frag_list;
2877 			}
2878 		} else if (skb->next) {
2879 			skb = skb->next;
2880 			goto do_frag_list;
2881 		}
2882 	}
2883 
2884 out:
2885 	return orig_len - len;
2886 
2887 error:
2888 	return orig_len == len ? ret : orig_len - len;
2889 }
2890 
2891 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)2892 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2893 			 int len)
2894 {
2895 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2896 			       kernel_sendpage_locked);
2897 }
2898 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2899 
2900 /* Send skb data on a socket. Socket must be unlocked. */
skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len)2901 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2902 {
2903 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2904 			       sendpage_unlocked);
2905 }
2906 
2907 /**
2908  *	skb_store_bits - store bits from kernel buffer to skb
2909  *	@skb: destination buffer
2910  *	@offset: offset in destination
2911  *	@from: source buffer
2912  *	@len: number of bytes to copy
2913  *
2914  *	Copy the specified number of bytes from the source buffer to the
2915  *	destination skb.  This function handles all the messy bits of
2916  *	traversing fragment lists and such.
2917  */
2918 
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)2919 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2920 {
2921 	int start = skb_headlen(skb);
2922 	struct sk_buff *frag_iter;
2923 	int i, copy;
2924 
2925 	if (offset > (int)skb->len - len)
2926 		goto fault;
2927 
2928 	if ((copy = start - offset) > 0) {
2929 		if (copy > len)
2930 			copy = len;
2931 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2932 		if ((len -= copy) == 0)
2933 			return 0;
2934 		offset += copy;
2935 		from += copy;
2936 	}
2937 
2938 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2939 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2940 		int end;
2941 
2942 		WARN_ON(start > offset + len);
2943 
2944 		end = start + skb_frag_size(frag);
2945 		if ((copy = end - offset) > 0) {
2946 			u32 p_off, p_len, copied;
2947 			struct page *p;
2948 			u8 *vaddr;
2949 
2950 			if (copy > len)
2951 				copy = len;
2952 
2953 			skb_frag_foreach_page(frag,
2954 					      skb_frag_off(frag) + offset - start,
2955 					      copy, p, p_off, p_len, copied) {
2956 				vaddr = kmap_atomic(p);
2957 				memcpy(vaddr + p_off, from + copied, p_len);
2958 				kunmap_atomic(vaddr);
2959 			}
2960 
2961 			if ((len -= copy) == 0)
2962 				return 0;
2963 			offset += copy;
2964 			from += copy;
2965 		}
2966 		start = end;
2967 	}
2968 
2969 	skb_walk_frags(skb, frag_iter) {
2970 		int end;
2971 
2972 		WARN_ON(start > offset + len);
2973 
2974 		end = start + frag_iter->len;
2975 		if ((copy = end - offset) > 0) {
2976 			if (copy > len)
2977 				copy = len;
2978 			if (skb_store_bits(frag_iter, offset - start,
2979 					   from, copy))
2980 				goto fault;
2981 			if ((len -= copy) == 0)
2982 				return 0;
2983 			offset += copy;
2984 			from += copy;
2985 		}
2986 		start = end;
2987 	}
2988 	if (!len)
2989 		return 0;
2990 
2991 fault:
2992 	return -EFAULT;
2993 }
2994 EXPORT_SYMBOL(skb_store_bits);
2995 
2996 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)2997 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2998 		      __wsum csum, const struct skb_checksum_ops *ops)
2999 {
3000 	int start = skb_headlen(skb);
3001 	int i, copy = start - offset;
3002 	struct sk_buff *frag_iter;
3003 	int pos = 0;
3004 
3005 	/* Checksum header. */
3006 	if (copy > 0) {
3007 		if (copy > len)
3008 			copy = len;
3009 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3010 				       skb->data + offset, copy, csum);
3011 		if ((len -= copy) == 0)
3012 			return csum;
3013 		offset += copy;
3014 		pos	= copy;
3015 	}
3016 
3017 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3018 		int end;
3019 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3020 
3021 		WARN_ON(start > offset + len);
3022 
3023 		end = start + skb_frag_size(frag);
3024 		if ((copy = end - offset) > 0) {
3025 			u32 p_off, p_len, copied;
3026 			struct page *p;
3027 			__wsum csum2;
3028 			u8 *vaddr;
3029 
3030 			if (copy > len)
3031 				copy = len;
3032 
3033 			skb_frag_foreach_page(frag,
3034 					      skb_frag_off(frag) + offset - start,
3035 					      copy, p, p_off, p_len, copied) {
3036 				vaddr = kmap_atomic(p);
3037 				csum2 = INDIRECT_CALL_1(ops->update,
3038 							csum_partial_ext,
3039 							vaddr + p_off, p_len, 0);
3040 				kunmap_atomic(vaddr);
3041 				csum = INDIRECT_CALL_1(ops->combine,
3042 						       csum_block_add_ext, csum,
3043 						       csum2, pos, p_len);
3044 				pos += p_len;
3045 			}
3046 
3047 			if (!(len -= copy))
3048 				return csum;
3049 			offset += copy;
3050 		}
3051 		start = end;
3052 	}
3053 
3054 	skb_walk_frags(skb, frag_iter) {
3055 		int end;
3056 
3057 		WARN_ON(start > offset + len);
3058 
3059 		end = start + frag_iter->len;
3060 		if ((copy = end - offset) > 0) {
3061 			__wsum csum2;
3062 			if (copy > len)
3063 				copy = len;
3064 			csum2 = __skb_checksum(frag_iter, offset - start,
3065 					       copy, 0, ops);
3066 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3067 					       csum, csum2, pos, copy);
3068 			if ((len -= copy) == 0)
3069 				return csum;
3070 			offset += copy;
3071 			pos    += copy;
3072 		}
3073 		start = end;
3074 	}
3075 	BUG_ON(len);
3076 
3077 	return csum;
3078 }
3079 EXPORT_SYMBOL(__skb_checksum);
3080 
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)3081 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3082 		    int len, __wsum csum)
3083 {
3084 	const struct skb_checksum_ops ops = {
3085 		.update  = csum_partial_ext,
3086 		.combine = csum_block_add_ext,
3087 	};
3088 
3089 	return __skb_checksum(skb, offset, len, csum, &ops);
3090 }
3091 EXPORT_SYMBOL(skb_checksum);
3092 
3093 /* Both of above in one bottle. */
3094 
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)3095 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3096 				    u8 *to, int len)
3097 {
3098 	int start = skb_headlen(skb);
3099 	int i, copy = start - offset;
3100 	struct sk_buff *frag_iter;
3101 	int pos = 0;
3102 	__wsum csum = 0;
3103 
3104 	/* Copy header. */
3105 	if (copy > 0) {
3106 		if (copy > len)
3107 			copy = len;
3108 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3109 						 copy);
3110 		if ((len -= copy) == 0)
3111 			return csum;
3112 		offset += copy;
3113 		to     += copy;
3114 		pos	= copy;
3115 	}
3116 
3117 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3118 		int end;
3119 
3120 		WARN_ON(start > offset + len);
3121 
3122 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3123 		if ((copy = end - offset) > 0) {
3124 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3125 			u32 p_off, p_len, copied;
3126 			struct page *p;
3127 			__wsum csum2;
3128 			u8 *vaddr;
3129 
3130 			if (copy > len)
3131 				copy = len;
3132 
3133 			skb_frag_foreach_page(frag,
3134 					      skb_frag_off(frag) + offset - start,
3135 					      copy, p, p_off, p_len, copied) {
3136 				vaddr = kmap_atomic(p);
3137 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3138 								  to + copied,
3139 								  p_len);
3140 				kunmap_atomic(vaddr);
3141 				csum = csum_block_add(csum, csum2, pos);
3142 				pos += p_len;
3143 			}
3144 
3145 			if (!(len -= copy))
3146 				return csum;
3147 			offset += copy;
3148 			to     += copy;
3149 		}
3150 		start = end;
3151 	}
3152 
3153 	skb_walk_frags(skb, frag_iter) {
3154 		__wsum csum2;
3155 		int end;
3156 
3157 		WARN_ON(start > offset + len);
3158 
3159 		end = start + frag_iter->len;
3160 		if ((copy = end - offset) > 0) {
3161 			if (copy > len)
3162 				copy = len;
3163 			csum2 = skb_copy_and_csum_bits(frag_iter,
3164 						       offset - start,
3165 						       to, copy);
3166 			csum = csum_block_add(csum, csum2, pos);
3167 			if ((len -= copy) == 0)
3168 				return csum;
3169 			offset += copy;
3170 			to     += copy;
3171 			pos    += copy;
3172 		}
3173 		start = end;
3174 	}
3175 	BUG_ON(len);
3176 	return csum;
3177 }
3178 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3179 
__skb_checksum_complete_head(struct sk_buff * skb,int len)3180 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3181 {
3182 	__sum16 sum;
3183 
3184 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3185 	/* See comments in __skb_checksum_complete(). */
3186 	if (likely(!sum)) {
3187 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3188 		    !skb->csum_complete_sw)
3189 			netdev_rx_csum_fault(skb->dev, skb);
3190 	}
3191 	if (!skb_shared(skb))
3192 		skb->csum_valid = !sum;
3193 	return sum;
3194 }
3195 EXPORT_SYMBOL(__skb_checksum_complete_head);
3196 
3197 /* This function assumes skb->csum already holds pseudo header's checksum,
3198  * which has been changed from the hardware checksum, for example, by
3199  * __skb_checksum_validate_complete(). And, the original skb->csum must
3200  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3201  *
3202  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3203  * zero. The new checksum is stored back into skb->csum unless the skb is
3204  * shared.
3205  */
__skb_checksum_complete(struct sk_buff * skb)3206 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3207 {
3208 	__wsum csum;
3209 	__sum16 sum;
3210 
3211 	csum = skb_checksum(skb, 0, skb->len, 0);
3212 
3213 	sum = csum_fold(csum_add(skb->csum, csum));
3214 	/* This check is inverted, because we already knew the hardware
3215 	 * checksum is invalid before calling this function. So, if the
3216 	 * re-computed checksum is valid instead, then we have a mismatch
3217 	 * between the original skb->csum and skb_checksum(). This means either
3218 	 * the original hardware checksum is incorrect or we screw up skb->csum
3219 	 * when moving skb->data around.
3220 	 */
3221 	if (likely(!sum)) {
3222 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3223 		    !skb->csum_complete_sw)
3224 			netdev_rx_csum_fault(skb->dev, skb);
3225 	}
3226 
3227 	if (!skb_shared(skb)) {
3228 		/* Save full packet checksum */
3229 		skb->csum = csum;
3230 		skb->ip_summed = CHECKSUM_COMPLETE;
3231 		skb->csum_complete_sw = 1;
3232 		skb->csum_valid = !sum;
3233 	}
3234 
3235 	return sum;
3236 }
3237 EXPORT_SYMBOL(__skb_checksum_complete);
3238 
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)3239 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3240 {
3241 	net_warn_ratelimited(
3242 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3243 		__func__);
3244 	return 0;
3245 }
3246 
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)3247 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3248 				       int offset, int len)
3249 {
3250 	net_warn_ratelimited(
3251 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3252 		__func__);
3253 	return 0;
3254 }
3255 
3256 static const struct skb_checksum_ops default_crc32c_ops = {
3257 	.update  = warn_crc32c_csum_update,
3258 	.combine = warn_crc32c_csum_combine,
3259 };
3260 
3261 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3262 	&default_crc32c_ops;
3263 EXPORT_SYMBOL(crc32c_csum_stub);
3264 
3265  /**
3266  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3267  *	@from: source buffer
3268  *
3269  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3270  *	into skb_zerocopy().
3271  */
3272 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)3273 skb_zerocopy_headlen(const struct sk_buff *from)
3274 {
3275 	unsigned int hlen = 0;
3276 
3277 	if (!from->head_frag ||
3278 	    skb_headlen(from) < L1_CACHE_BYTES ||
3279 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3280 		hlen = skb_headlen(from);
3281 		if (!hlen)
3282 			hlen = from->len;
3283 	}
3284 
3285 	if (skb_has_frag_list(from))
3286 		hlen = from->len;
3287 
3288 	return hlen;
3289 }
3290 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3291 
3292 /**
3293  *	skb_zerocopy - Zero copy skb to skb
3294  *	@to: destination buffer
3295  *	@from: source buffer
3296  *	@len: number of bytes to copy from source buffer
3297  *	@hlen: size of linear headroom in destination buffer
3298  *
3299  *	Copies up to `len` bytes from `from` to `to` by creating references
3300  *	to the frags in the source buffer.
3301  *
3302  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3303  *	headroom in the `to` buffer.
3304  *
3305  *	Return value:
3306  *	0: everything is OK
3307  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3308  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3309  */
3310 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)3311 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3312 {
3313 	int i, j = 0;
3314 	int plen = 0; /* length of skb->head fragment */
3315 	int ret;
3316 	struct page *page;
3317 	unsigned int offset;
3318 
3319 	BUG_ON(!from->head_frag && !hlen);
3320 
3321 	/* dont bother with small payloads */
3322 	if (len <= skb_tailroom(to))
3323 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3324 
3325 	if (hlen) {
3326 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3327 		if (unlikely(ret))
3328 			return ret;
3329 		len -= hlen;
3330 	} else {
3331 		plen = min_t(int, skb_headlen(from), len);
3332 		if (plen) {
3333 			page = virt_to_head_page(from->head);
3334 			offset = from->data - (unsigned char *)page_address(page);
3335 			__skb_fill_page_desc(to, 0, page, offset, plen);
3336 			get_page(page);
3337 			j = 1;
3338 			len -= plen;
3339 		}
3340 	}
3341 
3342 	skb_len_add(to, len + plen);
3343 
3344 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3345 		skb_tx_error(from);
3346 		return -ENOMEM;
3347 	}
3348 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3349 
3350 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3351 		int size;
3352 
3353 		if (!len)
3354 			break;
3355 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3356 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3357 					len);
3358 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3359 		len -= size;
3360 		skb_frag_ref(to, j);
3361 		j++;
3362 	}
3363 	skb_shinfo(to)->nr_frags = j;
3364 
3365 	return 0;
3366 }
3367 EXPORT_SYMBOL_GPL(skb_zerocopy);
3368 
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3369 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3370 {
3371 	__wsum csum;
3372 	long csstart;
3373 
3374 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3375 		csstart = skb_checksum_start_offset(skb);
3376 	else
3377 		csstart = skb_headlen(skb);
3378 
3379 	BUG_ON(csstart > skb_headlen(skb));
3380 
3381 	skb_copy_from_linear_data(skb, to, csstart);
3382 
3383 	csum = 0;
3384 	if (csstart != skb->len)
3385 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3386 					      skb->len - csstart);
3387 
3388 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3389 		long csstuff = csstart + skb->csum_offset;
3390 
3391 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3392 	}
3393 }
3394 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3395 
3396 /**
3397  *	skb_dequeue - remove from the head of the queue
3398  *	@list: list to dequeue from
3399  *
3400  *	Remove the head of the list. The list lock is taken so the function
3401  *	may be used safely with other locking list functions. The head item is
3402  *	returned or %NULL if the list is empty.
3403  */
3404 
skb_dequeue(struct sk_buff_head * list)3405 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3406 {
3407 	unsigned long flags;
3408 	struct sk_buff *result;
3409 
3410 	spin_lock_irqsave(&list->lock, flags);
3411 	result = __skb_dequeue(list);
3412 	spin_unlock_irqrestore(&list->lock, flags);
3413 	return result;
3414 }
3415 EXPORT_SYMBOL(skb_dequeue);
3416 
3417 /**
3418  *	skb_dequeue_tail - remove from the tail of the queue
3419  *	@list: list to dequeue from
3420  *
3421  *	Remove the tail of the list. The list lock is taken so the function
3422  *	may be used safely with other locking list functions. The tail item is
3423  *	returned or %NULL if the list is empty.
3424  */
skb_dequeue_tail(struct sk_buff_head * list)3425 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3426 {
3427 	unsigned long flags;
3428 	struct sk_buff *result;
3429 
3430 	spin_lock_irqsave(&list->lock, flags);
3431 	result = __skb_dequeue_tail(list);
3432 	spin_unlock_irqrestore(&list->lock, flags);
3433 	return result;
3434 }
3435 EXPORT_SYMBOL(skb_dequeue_tail);
3436 
3437 /**
3438  *	skb_queue_purge - empty a list
3439  *	@list: list to empty
3440  *
3441  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3442  *	the list and one reference dropped. This function takes the list
3443  *	lock and is atomic with respect to other list locking functions.
3444  */
skb_queue_purge(struct sk_buff_head * list)3445 void skb_queue_purge(struct sk_buff_head *list)
3446 {
3447 	struct sk_buff *skb;
3448 	while ((skb = skb_dequeue(list)) != NULL)
3449 		kfree_skb(skb);
3450 }
3451 EXPORT_SYMBOL(skb_queue_purge);
3452 
3453 /**
3454  *	skb_rbtree_purge - empty a skb rbtree
3455  *	@root: root of the rbtree to empty
3456  *	Return value: the sum of truesizes of all purged skbs.
3457  *
3458  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3459  *	the list and one reference dropped. This function does not take
3460  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3461  *	out-of-order queue is protected by the socket lock).
3462  */
skb_rbtree_purge(struct rb_root * root)3463 unsigned int skb_rbtree_purge(struct rb_root *root)
3464 {
3465 	struct rb_node *p = rb_first(root);
3466 	unsigned int sum = 0;
3467 
3468 	while (p) {
3469 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3470 
3471 		p = rb_next(p);
3472 		rb_erase(&skb->rbnode, root);
3473 		sum += skb->truesize;
3474 		kfree_skb(skb);
3475 	}
3476 	return sum;
3477 }
3478 
3479 /**
3480  *	skb_queue_head - queue a buffer at the list head
3481  *	@list: list to use
3482  *	@newsk: buffer to queue
3483  *
3484  *	Queue a buffer at the start of the list. This function takes the
3485  *	list lock and can be used safely with other locking &sk_buff functions
3486  *	safely.
3487  *
3488  *	A buffer cannot be placed on two lists at the same time.
3489  */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)3490 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3491 {
3492 	unsigned long flags;
3493 
3494 	spin_lock_irqsave(&list->lock, flags);
3495 	__skb_queue_head(list, newsk);
3496 	spin_unlock_irqrestore(&list->lock, flags);
3497 }
3498 EXPORT_SYMBOL(skb_queue_head);
3499 
3500 /**
3501  *	skb_queue_tail - queue a buffer at the list tail
3502  *	@list: list to use
3503  *	@newsk: buffer to queue
3504  *
3505  *	Queue a buffer at the tail of the list. This function takes the
3506  *	list lock and can be used safely with other locking &sk_buff functions
3507  *	safely.
3508  *
3509  *	A buffer cannot be placed on two lists at the same time.
3510  */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)3511 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3512 {
3513 	unsigned long flags;
3514 
3515 	spin_lock_irqsave(&list->lock, flags);
3516 	__skb_queue_tail(list, newsk);
3517 	spin_unlock_irqrestore(&list->lock, flags);
3518 }
3519 EXPORT_SYMBOL(skb_queue_tail);
3520 
3521 /**
3522  *	skb_unlink	-	remove a buffer from a list
3523  *	@skb: buffer to remove
3524  *	@list: list to use
3525  *
3526  *	Remove a packet from a list. The list locks are taken and this
3527  *	function is atomic with respect to other list locked calls
3528  *
3529  *	You must know what list the SKB is on.
3530  */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)3531 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3532 {
3533 	unsigned long flags;
3534 
3535 	spin_lock_irqsave(&list->lock, flags);
3536 	__skb_unlink(skb, list);
3537 	spin_unlock_irqrestore(&list->lock, flags);
3538 }
3539 EXPORT_SYMBOL(skb_unlink);
3540 
3541 /**
3542  *	skb_append	-	append a buffer
3543  *	@old: buffer to insert after
3544  *	@newsk: buffer to insert
3545  *	@list: list to use
3546  *
3547  *	Place a packet after a given packet in a list. The list locks are taken
3548  *	and this function is atomic with respect to other list locked calls.
3549  *	A buffer cannot be placed on two lists at the same time.
3550  */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)3551 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3552 {
3553 	unsigned long flags;
3554 
3555 	spin_lock_irqsave(&list->lock, flags);
3556 	__skb_queue_after(list, old, newsk);
3557 	spin_unlock_irqrestore(&list->lock, flags);
3558 }
3559 EXPORT_SYMBOL(skb_append);
3560 
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)3561 static inline void skb_split_inside_header(struct sk_buff *skb,
3562 					   struct sk_buff* skb1,
3563 					   const u32 len, const int pos)
3564 {
3565 	int i;
3566 
3567 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3568 					 pos - len);
3569 	/* And move data appendix as is. */
3570 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3571 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3572 
3573 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3574 	skb_shinfo(skb)->nr_frags  = 0;
3575 	skb1->data_len		   = skb->data_len;
3576 	skb1->len		   += skb1->data_len;
3577 	skb->data_len		   = 0;
3578 	skb->len		   = len;
3579 	skb_set_tail_pointer(skb, len);
3580 }
3581 
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)3582 static inline void skb_split_no_header(struct sk_buff *skb,
3583 				       struct sk_buff* skb1,
3584 				       const u32 len, int pos)
3585 {
3586 	int i, k = 0;
3587 	const int nfrags = skb_shinfo(skb)->nr_frags;
3588 
3589 	skb_shinfo(skb)->nr_frags = 0;
3590 	skb1->len		  = skb1->data_len = skb->len - len;
3591 	skb->len		  = len;
3592 	skb->data_len		  = len - pos;
3593 
3594 	for (i = 0; i < nfrags; i++) {
3595 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3596 
3597 		if (pos + size > len) {
3598 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3599 
3600 			if (pos < len) {
3601 				/* Split frag.
3602 				 * We have two variants in this case:
3603 				 * 1. Move all the frag to the second
3604 				 *    part, if it is possible. F.e.
3605 				 *    this approach is mandatory for TUX,
3606 				 *    where splitting is expensive.
3607 				 * 2. Split is accurately. We make this.
3608 				 */
3609 				skb_frag_ref(skb, i);
3610 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3611 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3612 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3613 				skb_shinfo(skb)->nr_frags++;
3614 			}
3615 			k++;
3616 		} else
3617 			skb_shinfo(skb)->nr_frags++;
3618 		pos += size;
3619 	}
3620 	skb_shinfo(skb1)->nr_frags = k;
3621 }
3622 
3623 /**
3624  * skb_split - Split fragmented skb to two parts at length len.
3625  * @skb: the buffer to split
3626  * @skb1: the buffer to receive the second part
3627  * @len: new length for skb
3628  */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)3629 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3630 {
3631 	int pos = skb_headlen(skb);
3632 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3633 
3634 	skb_zcopy_downgrade_managed(skb);
3635 
3636 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3637 	skb_zerocopy_clone(skb1, skb, 0);
3638 	if (len < pos)	/* Split line is inside header. */
3639 		skb_split_inside_header(skb, skb1, len, pos);
3640 	else		/* Second chunk has no header, nothing to copy. */
3641 		skb_split_no_header(skb, skb1, len, pos);
3642 }
3643 EXPORT_SYMBOL(skb_split);
3644 
3645 /* Shifting from/to a cloned skb is a no-go.
3646  *
3647  * Caller cannot keep skb_shinfo related pointers past calling here!
3648  */
skb_prepare_for_shift(struct sk_buff * skb)3649 static int skb_prepare_for_shift(struct sk_buff *skb)
3650 {
3651 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3652 }
3653 
3654 /**
3655  * skb_shift - Shifts paged data partially from skb to another
3656  * @tgt: buffer into which tail data gets added
3657  * @skb: buffer from which the paged data comes from
3658  * @shiftlen: shift up to this many bytes
3659  *
3660  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3661  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3662  * It's up to caller to free skb if everything was shifted.
3663  *
3664  * If @tgt runs out of frags, the whole operation is aborted.
3665  *
3666  * Skb cannot include anything else but paged data while tgt is allowed
3667  * to have non-paged data as well.
3668  *
3669  * TODO: full sized shift could be optimized but that would need
3670  * specialized skb free'er to handle frags without up-to-date nr_frags.
3671  */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)3672 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3673 {
3674 	int from, to, merge, todo;
3675 	skb_frag_t *fragfrom, *fragto;
3676 
3677 	BUG_ON(shiftlen > skb->len);
3678 
3679 	if (skb_headlen(skb))
3680 		return 0;
3681 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3682 		return 0;
3683 
3684 	todo = shiftlen;
3685 	from = 0;
3686 	to = skb_shinfo(tgt)->nr_frags;
3687 	fragfrom = &skb_shinfo(skb)->frags[from];
3688 
3689 	/* Actual merge is delayed until the point when we know we can
3690 	 * commit all, so that we don't have to undo partial changes
3691 	 */
3692 	if (!to ||
3693 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3694 			      skb_frag_off(fragfrom))) {
3695 		merge = -1;
3696 	} else {
3697 		merge = to - 1;
3698 
3699 		todo -= skb_frag_size(fragfrom);
3700 		if (todo < 0) {
3701 			if (skb_prepare_for_shift(skb) ||
3702 			    skb_prepare_for_shift(tgt))
3703 				return 0;
3704 
3705 			/* All previous frag pointers might be stale! */
3706 			fragfrom = &skb_shinfo(skb)->frags[from];
3707 			fragto = &skb_shinfo(tgt)->frags[merge];
3708 
3709 			skb_frag_size_add(fragto, shiftlen);
3710 			skb_frag_size_sub(fragfrom, shiftlen);
3711 			skb_frag_off_add(fragfrom, shiftlen);
3712 
3713 			goto onlymerged;
3714 		}
3715 
3716 		from++;
3717 	}
3718 
3719 	/* Skip full, not-fitting skb to avoid expensive operations */
3720 	if ((shiftlen == skb->len) &&
3721 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3722 		return 0;
3723 
3724 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3725 		return 0;
3726 
3727 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3728 		if (to == MAX_SKB_FRAGS)
3729 			return 0;
3730 
3731 		fragfrom = &skb_shinfo(skb)->frags[from];
3732 		fragto = &skb_shinfo(tgt)->frags[to];
3733 
3734 		if (todo >= skb_frag_size(fragfrom)) {
3735 			*fragto = *fragfrom;
3736 			todo -= skb_frag_size(fragfrom);
3737 			from++;
3738 			to++;
3739 
3740 		} else {
3741 			__skb_frag_ref(fragfrom);
3742 			skb_frag_page_copy(fragto, fragfrom);
3743 			skb_frag_off_copy(fragto, fragfrom);
3744 			skb_frag_size_set(fragto, todo);
3745 
3746 			skb_frag_off_add(fragfrom, todo);
3747 			skb_frag_size_sub(fragfrom, todo);
3748 			todo = 0;
3749 
3750 			to++;
3751 			break;
3752 		}
3753 	}
3754 
3755 	/* Ready to "commit" this state change to tgt */
3756 	skb_shinfo(tgt)->nr_frags = to;
3757 
3758 	if (merge >= 0) {
3759 		fragfrom = &skb_shinfo(skb)->frags[0];
3760 		fragto = &skb_shinfo(tgt)->frags[merge];
3761 
3762 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3763 		__skb_frag_unref(fragfrom, skb->pp_recycle);
3764 	}
3765 
3766 	/* Reposition in the original skb */
3767 	to = 0;
3768 	while (from < skb_shinfo(skb)->nr_frags)
3769 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3770 	skb_shinfo(skb)->nr_frags = to;
3771 
3772 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3773 
3774 onlymerged:
3775 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3776 	 * the other hand might need it if it needs to be resent
3777 	 */
3778 	tgt->ip_summed = CHECKSUM_PARTIAL;
3779 	skb->ip_summed = CHECKSUM_PARTIAL;
3780 
3781 	skb_len_add(skb, -shiftlen);
3782 	skb_len_add(tgt, shiftlen);
3783 
3784 	return shiftlen;
3785 }
3786 
3787 /**
3788  * skb_prepare_seq_read - Prepare a sequential read of skb data
3789  * @skb: the buffer to read
3790  * @from: lower offset of data to be read
3791  * @to: upper offset of data to be read
3792  * @st: state variable
3793  *
3794  * Initializes the specified state variable. Must be called before
3795  * invoking skb_seq_read() for the first time.
3796  */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)3797 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3798 			  unsigned int to, struct skb_seq_state *st)
3799 {
3800 	st->lower_offset = from;
3801 	st->upper_offset = to;
3802 	st->root_skb = st->cur_skb = skb;
3803 	st->frag_idx = st->stepped_offset = 0;
3804 	st->frag_data = NULL;
3805 	st->frag_off = 0;
3806 }
3807 EXPORT_SYMBOL(skb_prepare_seq_read);
3808 
3809 /**
3810  * skb_seq_read - Sequentially read skb data
3811  * @consumed: number of bytes consumed by the caller so far
3812  * @data: destination pointer for data to be returned
3813  * @st: state variable
3814  *
3815  * Reads a block of skb data at @consumed relative to the
3816  * lower offset specified to skb_prepare_seq_read(). Assigns
3817  * the head of the data block to @data and returns the length
3818  * of the block or 0 if the end of the skb data or the upper
3819  * offset has been reached.
3820  *
3821  * The caller is not required to consume all of the data
3822  * returned, i.e. @consumed is typically set to the number
3823  * of bytes already consumed and the next call to
3824  * skb_seq_read() will return the remaining part of the block.
3825  *
3826  * Note 1: The size of each block of data returned can be arbitrary,
3827  *       this limitation is the cost for zerocopy sequential
3828  *       reads of potentially non linear data.
3829  *
3830  * Note 2: Fragment lists within fragments are not implemented
3831  *       at the moment, state->root_skb could be replaced with
3832  *       a stack for this purpose.
3833  */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)3834 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3835 			  struct skb_seq_state *st)
3836 {
3837 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3838 	skb_frag_t *frag;
3839 
3840 	if (unlikely(abs_offset >= st->upper_offset)) {
3841 		if (st->frag_data) {
3842 			kunmap_atomic(st->frag_data);
3843 			st->frag_data = NULL;
3844 		}
3845 		return 0;
3846 	}
3847 
3848 next_skb:
3849 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3850 
3851 	if (abs_offset < block_limit && !st->frag_data) {
3852 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3853 		return block_limit - abs_offset;
3854 	}
3855 
3856 	if (st->frag_idx == 0 && !st->frag_data)
3857 		st->stepped_offset += skb_headlen(st->cur_skb);
3858 
3859 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3860 		unsigned int pg_idx, pg_off, pg_sz;
3861 
3862 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3863 
3864 		pg_idx = 0;
3865 		pg_off = skb_frag_off(frag);
3866 		pg_sz = skb_frag_size(frag);
3867 
3868 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3869 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3870 			pg_off = offset_in_page(pg_off + st->frag_off);
3871 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3872 						    PAGE_SIZE - pg_off);
3873 		}
3874 
3875 		block_limit = pg_sz + st->stepped_offset;
3876 		if (abs_offset < block_limit) {
3877 			if (!st->frag_data)
3878 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3879 
3880 			*data = (u8 *)st->frag_data + pg_off +
3881 				(abs_offset - st->stepped_offset);
3882 
3883 			return block_limit - abs_offset;
3884 		}
3885 
3886 		if (st->frag_data) {
3887 			kunmap_atomic(st->frag_data);
3888 			st->frag_data = NULL;
3889 		}
3890 
3891 		st->stepped_offset += pg_sz;
3892 		st->frag_off += pg_sz;
3893 		if (st->frag_off == skb_frag_size(frag)) {
3894 			st->frag_off = 0;
3895 			st->frag_idx++;
3896 		}
3897 	}
3898 
3899 	if (st->frag_data) {
3900 		kunmap_atomic(st->frag_data);
3901 		st->frag_data = NULL;
3902 	}
3903 
3904 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3905 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3906 		st->frag_idx = 0;
3907 		goto next_skb;
3908 	} else if (st->cur_skb->next) {
3909 		st->cur_skb = st->cur_skb->next;
3910 		st->frag_idx = 0;
3911 		goto next_skb;
3912 	}
3913 
3914 	return 0;
3915 }
3916 EXPORT_SYMBOL(skb_seq_read);
3917 
3918 /**
3919  * skb_abort_seq_read - Abort a sequential read of skb data
3920  * @st: state variable
3921  *
3922  * Must be called if skb_seq_read() was not called until it
3923  * returned 0.
3924  */
skb_abort_seq_read(struct skb_seq_state * st)3925 void skb_abort_seq_read(struct skb_seq_state *st)
3926 {
3927 	if (st->frag_data)
3928 		kunmap_atomic(st->frag_data);
3929 }
3930 EXPORT_SYMBOL(skb_abort_seq_read);
3931 
3932 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3933 
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)3934 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3935 					  struct ts_config *conf,
3936 					  struct ts_state *state)
3937 {
3938 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3939 }
3940 
skb_ts_finish(struct ts_config * conf,struct ts_state * state)3941 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3942 {
3943 	skb_abort_seq_read(TS_SKB_CB(state));
3944 }
3945 
3946 /**
3947  * skb_find_text - Find a text pattern in skb data
3948  * @skb: the buffer to look in
3949  * @from: search offset
3950  * @to: search limit
3951  * @config: textsearch configuration
3952  *
3953  * Finds a pattern in the skb data according to the specified
3954  * textsearch configuration. Use textsearch_next() to retrieve
3955  * subsequent occurrences of the pattern. Returns the offset
3956  * to the first occurrence or UINT_MAX if no match was found.
3957  */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)3958 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3959 			   unsigned int to, struct ts_config *config)
3960 {
3961 	unsigned int patlen = config->ops->get_pattern_len(config);
3962 	struct ts_state state;
3963 	unsigned int ret;
3964 
3965 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3966 
3967 	config->get_next_block = skb_ts_get_next_block;
3968 	config->finish = skb_ts_finish;
3969 
3970 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3971 
3972 	ret = textsearch_find(config, &state);
3973 	return (ret + patlen <= to - from ? ret : UINT_MAX);
3974 }
3975 EXPORT_SYMBOL(skb_find_text);
3976 
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size)3977 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3978 			 int offset, size_t size)
3979 {
3980 	int i = skb_shinfo(skb)->nr_frags;
3981 
3982 	if (skb_can_coalesce(skb, i, page, offset)) {
3983 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3984 	} else if (i < MAX_SKB_FRAGS) {
3985 		skb_zcopy_downgrade_managed(skb);
3986 		get_page(page);
3987 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
3988 	} else {
3989 		return -EMSGSIZE;
3990 	}
3991 
3992 	return 0;
3993 }
3994 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3995 
3996 /**
3997  *	skb_pull_rcsum - pull skb and update receive checksum
3998  *	@skb: buffer to update
3999  *	@len: length of data pulled
4000  *
4001  *	This function performs an skb_pull on the packet and updates
4002  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4003  *	receive path processing instead of skb_pull unless you know
4004  *	that the checksum difference is zero (e.g., a valid IP header)
4005  *	or you are setting ip_summed to CHECKSUM_NONE.
4006  */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)4007 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4008 {
4009 	unsigned char *data = skb->data;
4010 
4011 	BUG_ON(len > skb->len);
4012 	__skb_pull(skb, len);
4013 	skb_postpull_rcsum(skb, data, len);
4014 	return skb->data;
4015 }
4016 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4017 
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)4018 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4019 {
4020 	skb_frag_t head_frag;
4021 	struct page *page;
4022 
4023 	page = virt_to_head_page(frag_skb->head);
4024 	__skb_frag_set_page(&head_frag, page);
4025 	skb_frag_off_set(&head_frag, frag_skb->data -
4026 			 (unsigned char *)page_address(page));
4027 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
4028 	return head_frag;
4029 }
4030 
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)4031 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4032 				 netdev_features_t features,
4033 				 unsigned int offset)
4034 {
4035 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4036 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4037 	unsigned int delta_truesize = 0;
4038 	unsigned int delta_len = 0;
4039 	struct sk_buff *tail = NULL;
4040 	struct sk_buff *nskb, *tmp;
4041 	int len_diff, err;
4042 
4043 	skb_push(skb, -skb_network_offset(skb) + offset);
4044 
4045 	/* Ensure the head is writeable before touching the shared info */
4046 	err = skb_unclone(skb, GFP_ATOMIC);
4047 	if (err)
4048 		goto err_linearize;
4049 
4050 	skb_shinfo(skb)->frag_list = NULL;
4051 
4052 	while (list_skb) {
4053 		nskb = list_skb;
4054 		list_skb = list_skb->next;
4055 
4056 		err = 0;
4057 		delta_truesize += nskb->truesize;
4058 		if (skb_shared(nskb)) {
4059 			tmp = skb_clone(nskb, GFP_ATOMIC);
4060 			if (tmp) {
4061 				consume_skb(nskb);
4062 				nskb = tmp;
4063 				err = skb_unclone(nskb, GFP_ATOMIC);
4064 			} else {
4065 				err = -ENOMEM;
4066 			}
4067 		}
4068 
4069 		if (!tail)
4070 			skb->next = nskb;
4071 		else
4072 			tail->next = nskb;
4073 
4074 		if (unlikely(err)) {
4075 			nskb->next = list_skb;
4076 			goto err_linearize;
4077 		}
4078 
4079 		tail = nskb;
4080 
4081 		delta_len += nskb->len;
4082 
4083 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4084 
4085 		skb_release_head_state(nskb);
4086 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4087 		__copy_skb_header(nskb, skb);
4088 
4089 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4090 		nskb->transport_header += len_diff;
4091 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4092 						 nskb->data - tnl_hlen,
4093 						 offset + tnl_hlen);
4094 
4095 		if (skb_needs_linearize(nskb, features) &&
4096 		    __skb_linearize(nskb))
4097 			goto err_linearize;
4098 	}
4099 
4100 	skb->truesize = skb->truesize - delta_truesize;
4101 	skb->data_len = skb->data_len - delta_len;
4102 	skb->len = skb->len - delta_len;
4103 
4104 	skb_gso_reset(skb);
4105 
4106 	skb->prev = tail;
4107 
4108 	if (skb_needs_linearize(skb, features) &&
4109 	    __skb_linearize(skb))
4110 		goto err_linearize;
4111 
4112 	skb_get(skb);
4113 
4114 	return skb;
4115 
4116 err_linearize:
4117 	kfree_skb_list(skb->next);
4118 	skb->next = NULL;
4119 	return ERR_PTR(-ENOMEM);
4120 }
4121 EXPORT_SYMBOL_GPL(skb_segment_list);
4122 
4123 /**
4124  *	skb_segment - Perform protocol segmentation on skb.
4125  *	@head_skb: buffer to segment
4126  *	@features: features for the output path (see dev->features)
4127  *
4128  *	This function performs segmentation on the given skb.  It returns
4129  *	a pointer to the first in a list of new skbs for the segments.
4130  *	In case of error it returns ERR_PTR(err).
4131  */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)4132 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4133 			    netdev_features_t features)
4134 {
4135 	struct sk_buff *segs = NULL;
4136 	struct sk_buff *tail = NULL;
4137 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4138 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4139 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4140 	unsigned int offset = doffset;
4141 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4142 	unsigned int partial_segs = 0;
4143 	unsigned int headroom;
4144 	unsigned int len = head_skb->len;
4145 	struct sk_buff *frag_skb;
4146 	skb_frag_t *frag;
4147 	__be16 proto;
4148 	bool csum, sg;
4149 	int err = -ENOMEM;
4150 	int i = 0;
4151 	int nfrags, pos;
4152 
4153 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4154 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4155 		struct sk_buff *check_skb;
4156 
4157 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4158 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4159 				/* gso_size is untrusted, and we have a frag_list with
4160 				 * a linear non head_frag item.
4161 				 *
4162 				 * If head_skb's headlen does not fit requested gso_size,
4163 				 * it means that the frag_list members do NOT terminate
4164 				 * on exact gso_size boundaries. Hence we cannot perform
4165 				 * skb_frag_t page sharing. Therefore we must fallback to
4166 				 * copying the frag_list skbs; we do so by disabling SG.
4167 				 */
4168 				features &= ~NETIF_F_SG;
4169 				break;
4170 			}
4171 		}
4172 	}
4173 
4174 	__skb_push(head_skb, doffset);
4175 	proto = skb_network_protocol(head_skb, NULL);
4176 	if (unlikely(!proto))
4177 		return ERR_PTR(-EINVAL);
4178 
4179 	sg = !!(features & NETIF_F_SG);
4180 	csum = !!can_checksum_protocol(features, proto);
4181 
4182 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4183 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4184 			struct sk_buff *iter;
4185 			unsigned int frag_len;
4186 
4187 			if (!list_skb ||
4188 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4189 				goto normal;
4190 
4191 			/* If we get here then all the required
4192 			 * GSO features except frag_list are supported.
4193 			 * Try to split the SKB to multiple GSO SKBs
4194 			 * with no frag_list.
4195 			 * Currently we can do that only when the buffers don't
4196 			 * have a linear part and all the buffers except
4197 			 * the last are of the same length.
4198 			 */
4199 			frag_len = list_skb->len;
4200 			skb_walk_frags(head_skb, iter) {
4201 				if (frag_len != iter->len && iter->next)
4202 					goto normal;
4203 				if (skb_headlen(iter) && !iter->head_frag)
4204 					goto normal;
4205 
4206 				len -= iter->len;
4207 			}
4208 
4209 			if (len != frag_len)
4210 				goto normal;
4211 		}
4212 
4213 		/* GSO partial only requires that we trim off any excess that
4214 		 * doesn't fit into an MSS sized block, so take care of that
4215 		 * now.
4216 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4217 		 */
4218 		partial_segs = min(len, GSO_BY_FRAGS - 1U) / mss;
4219 		if (partial_segs > 1)
4220 			mss *= partial_segs;
4221 		else
4222 			partial_segs = 0;
4223 	}
4224 
4225 normal:
4226 	headroom = skb_headroom(head_skb);
4227 	pos = skb_headlen(head_skb);
4228 
4229 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4230 		return ERR_PTR(-ENOMEM);
4231 
4232 	nfrags = skb_shinfo(head_skb)->nr_frags;
4233 	frag = skb_shinfo(head_skb)->frags;
4234 	frag_skb = head_skb;
4235 
4236 	do {
4237 		struct sk_buff *nskb;
4238 		skb_frag_t *nskb_frag;
4239 		int hsize;
4240 		int size;
4241 
4242 		if (unlikely(mss == GSO_BY_FRAGS)) {
4243 			len = list_skb->len;
4244 		} else {
4245 			len = head_skb->len - offset;
4246 			if (len > mss)
4247 				len = mss;
4248 		}
4249 
4250 		hsize = skb_headlen(head_skb) - offset;
4251 
4252 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4253 		    (skb_headlen(list_skb) == len || sg)) {
4254 			BUG_ON(skb_headlen(list_skb) > len);
4255 
4256 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4257 			if (unlikely(!nskb))
4258 				goto err;
4259 
4260 			i = 0;
4261 			nfrags = skb_shinfo(list_skb)->nr_frags;
4262 			frag = skb_shinfo(list_skb)->frags;
4263 			frag_skb = list_skb;
4264 			pos += skb_headlen(list_skb);
4265 
4266 			while (pos < offset + len) {
4267 				BUG_ON(i >= nfrags);
4268 
4269 				size = skb_frag_size(frag);
4270 				if (pos + size > offset + len)
4271 					break;
4272 
4273 				i++;
4274 				pos += size;
4275 				frag++;
4276 			}
4277 
4278 			list_skb = list_skb->next;
4279 
4280 			if (unlikely(pskb_trim(nskb, len))) {
4281 				kfree_skb(nskb);
4282 				goto err;
4283 			}
4284 
4285 			hsize = skb_end_offset(nskb);
4286 			if (skb_cow_head(nskb, doffset + headroom)) {
4287 				kfree_skb(nskb);
4288 				goto err;
4289 			}
4290 
4291 			nskb->truesize += skb_end_offset(nskb) - hsize;
4292 			skb_release_head_state(nskb);
4293 			__skb_push(nskb, doffset);
4294 		} else {
4295 			if (hsize < 0)
4296 				hsize = 0;
4297 			if (hsize > len || !sg)
4298 				hsize = len;
4299 
4300 			nskb = __alloc_skb(hsize + doffset + headroom,
4301 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4302 					   NUMA_NO_NODE);
4303 
4304 			if (unlikely(!nskb))
4305 				goto err;
4306 
4307 			skb_reserve(nskb, headroom);
4308 			__skb_put(nskb, doffset);
4309 		}
4310 
4311 		if (segs)
4312 			tail->next = nskb;
4313 		else
4314 			segs = nskb;
4315 		tail = nskb;
4316 
4317 		__copy_skb_header(nskb, head_skb);
4318 
4319 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4320 		skb_reset_mac_len(nskb);
4321 
4322 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4323 						 nskb->data - tnl_hlen,
4324 						 doffset + tnl_hlen);
4325 
4326 		if (nskb->len == len + doffset)
4327 			goto perform_csum_check;
4328 
4329 		if (!sg) {
4330 			if (!csum) {
4331 				if (!nskb->remcsum_offload)
4332 					nskb->ip_summed = CHECKSUM_NONE;
4333 				SKB_GSO_CB(nskb)->csum =
4334 					skb_copy_and_csum_bits(head_skb, offset,
4335 							       skb_put(nskb,
4336 								       len),
4337 							       len);
4338 				SKB_GSO_CB(nskb)->csum_start =
4339 					skb_headroom(nskb) + doffset;
4340 			} else {
4341 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4342 					goto err;
4343 			}
4344 			continue;
4345 		}
4346 
4347 		nskb_frag = skb_shinfo(nskb)->frags;
4348 
4349 		skb_copy_from_linear_data_offset(head_skb, offset,
4350 						 skb_put(nskb, hsize), hsize);
4351 
4352 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4353 					   SKBFL_SHARED_FRAG;
4354 
4355 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4356 			goto err;
4357 
4358 		while (pos < offset + len) {
4359 			if (i >= nfrags) {
4360 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4361 				    skb_zerocopy_clone(nskb, list_skb,
4362 						       GFP_ATOMIC))
4363 					goto err;
4364 
4365 				i = 0;
4366 				nfrags = skb_shinfo(list_skb)->nr_frags;
4367 				frag = skb_shinfo(list_skb)->frags;
4368 				frag_skb = list_skb;
4369 				if (!skb_headlen(list_skb)) {
4370 					BUG_ON(!nfrags);
4371 				} else {
4372 					BUG_ON(!list_skb->head_frag);
4373 
4374 					/* to make room for head_frag. */
4375 					i--;
4376 					frag--;
4377 				}
4378 
4379 				list_skb = list_skb->next;
4380 			}
4381 
4382 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4383 				     MAX_SKB_FRAGS)) {
4384 				net_warn_ratelimited(
4385 					"skb_segment: too many frags: %u %u\n",
4386 					pos, mss);
4387 				err = -EINVAL;
4388 				goto err;
4389 			}
4390 
4391 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4392 			__skb_frag_ref(nskb_frag);
4393 			size = skb_frag_size(nskb_frag);
4394 
4395 			if (pos < offset) {
4396 				skb_frag_off_add(nskb_frag, offset - pos);
4397 				skb_frag_size_sub(nskb_frag, offset - pos);
4398 			}
4399 
4400 			skb_shinfo(nskb)->nr_frags++;
4401 
4402 			if (pos + size <= offset + len) {
4403 				i++;
4404 				frag++;
4405 				pos += size;
4406 			} else {
4407 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4408 				goto skip_fraglist;
4409 			}
4410 
4411 			nskb_frag++;
4412 		}
4413 
4414 skip_fraglist:
4415 		nskb->data_len = len - hsize;
4416 		nskb->len += nskb->data_len;
4417 		nskb->truesize += nskb->data_len;
4418 
4419 perform_csum_check:
4420 		if (!csum) {
4421 			if (skb_has_shared_frag(nskb) &&
4422 			    __skb_linearize(nskb))
4423 				goto err;
4424 
4425 			if (!nskb->remcsum_offload)
4426 				nskb->ip_summed = CHECKSUM_NONE;
4427 			SKB_GSO_CB(nskb)->csum =
4428 				skb_checksum(nskb, doffset,
4429 					     nskb->len - doffset, 0);
4430 			SKB_GSO_CB(nskb)->csum_start =
4431 				skb_headroom(nskb) + doffset;
4432 		}
4433 	} while ((offset += len) < head_skb->len);
4434 
4435 	/* Some callers want to get the end of the list.
4436 	 * Put it in segs->prev to avoid walking the list.
4437 	 * (see validate_xmit_skb_list() for example)
4438 	 */
4439 	segs->prev = tail;
4440 
4441 	if (partial_segs) {
4442 		struct sk_buff *iter;
4443 		int type = skb_shinfo(head_skb)->gso_type;
4444 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4445 
4446 		/* Update type to add partial and then remove dodgy if set */
4447 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4448 		type &= ~SKB_GSO_DODGY;
4449 
4450 		/* Update GSO info and prepare to start updating headers on
4451 		 * our way back down the stack of protocols.
4452 		 */
4453 		for (iter = segs; iter; iter = iter->next) {
4454 			skb_shinfo(iter)->gso_size = gso_size;
4455 			skb_shinfo(iter)->gso_segs = partial_segs;
4456 			skb_shinfo(iter)->gso_type = type;
4457 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4458 		}
4459 
4460 		if (tail->len - doffset <= gso_size)
4461 			skb_shinfo(tail)->gso_size = 0;
4462 		else if (tail != segs)
4463 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4464 	}
4465 
4466 	/* Following permits correct backpressure, for protocols
4467 	 * using skb_set_owner_w().
4468 	 * Idea is to tranfert ownership from head_skb to last segment.
4469 	 */
4470 	if (head_skb->destructor == sock_wfree) {
4471 		swap(tail->truesize, head_skb->truesize);
4472 		swap(tail->destructor, head_skb->destructor);
4473 		swap(tail->sk, head_skb->sk);
4474 	}
4475 	return segs;
4476 
4477 err:
4478 	kfree_skb_list(segs);
4479 	return ERR_PTR(err);
4480 }
4481 EXPORT_SYMBOL_GPL(skb_segment);
4482 
4483 #ifdef CONFIG_SKB_EXTENSIONS
4484 #define SKB_EXT_ALIGN_VALUE	8
4485 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4486 
4487 static const u8 skb_ext_type_len[] = {
4488 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4489 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4490 #endif
4491 #ifdef CONFIG_XFRM
4492 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4493 #endif
4494 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4495 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4496 #endif
4497 #if IS_ENABLED(CONFIG_MPTCP)
4498 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4499 #endif
4500 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4501 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4502 #endif
4503 };
4504 
skb_ext_total_length(void)4505 static __always_inline unsigned int skb_ext_total_length(void)
4506 {
4507 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4508 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4509 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4510 #endif
4511 #ifdef CONFIG_XFRM
4512 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4513 #endif
4514 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4515 		skb_ext_type_len[TC_SKB_EXT] +
4516 #endif
4517 #if IS_ENABLED(CONFIG_MPTCP)
4518 		skb_ext_type_len[SKB_EXT_MPTCP] +
4519 #endif
4520 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4521 		skb_ext_type_len[SKB_EXT_MCTP] +
4522 #endif
4523 		0;
4524 }
4525 
skb_extensions_init(void)4526 static void skb_extensions_init(void)
4527 {
4528 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4529 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4530 
4531 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4532 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4533 					     0,
4534 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4535 					     NULL);
4536 }
4537 #else
skb_extensions_init(void)4538 static void skb_extensions_init(void) {}
4539 #endif
4540 
skb_init(void)4541 void __init skb_init(void)
4542 {
4543 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4544 					      sizeof(struct sk_buff),
4545 					      0,
4546 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4547 					      offsetof(struct sk_buff, cb),
4548 					      sizeof_field(struct sk_buff, cb),
4549 					      NULL);
4550 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4551 						sizeof(struct sk_buff_fclones),
4552 						0,
4553 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4554 						NULL);
4555 	skb_extensions_init();
4556 }
4557 
4558 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)4559 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4560 	       unsigned int recursion_level)
4561 {
4562 	int start = skb_headlen(skb);
4563 	int i, copy = start - offset;
4564 	struct sk_buff *frag_iter;
4565 	int elt = 0;
4566 
4567 	if (unlikely(recursion_level >= 24))
4568 		return -EMSGSIZE;
4569 
4570 	if (copy > 0) {
4571 		if (copy > len)
4572 			copy = len;
4573 		sg_set_buf(sg, skb->data + offset, copy);
4574 		elt++;
4575 		if ((len -= copy) == 0)
4576 			return elt;
4577 		offset += copy;
4578 	}
4579 
4580 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4581 		int end;
4582 
4583 		WARN_ON(start > offset + len);
4584 
4585 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4586 		if ((copy = end - offset) > 0) {
4587 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4588 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4589 				return -EMSGSIZE;
4590 
4591 			if (copy > len)
4592 				copy = len;
4593 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4594 				    skb_frag_off(frag) + offset - start);
4595 			elt++;
4596 			if (!(len -= copy))
4597 				return elt;
4598 			offset += copy;
4599 		}
4600 		start = end;
4601 	}
4602 
4603 	skb_walk_frags(skb, frag_iter) {
4604 		int end, ret;
4605 
4606 		WARN_ON(start > offset + len);
4607 
4608 		end = start + frag_iter->len;
4609 		if ((copy = end - offset) > 0) {
4610 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4611 				return -EMSGSIZE;
4612 
4613 			if (copy > len)
4614 				copy = len;
4615 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4616 					      copy, recursion_level + 1);
4617 			if (unlikely(ret < 0))
4618 				return ret;
4619 			elt += ret;
4620 			if ((len -= copy) == 0)
4621 				return elt;
4622 			offset += copy;
4623 		}
4624 		start = end;
4625 	}
4626 	BUG_ON(len);
4627 	return elt;
4628 }
4629 
4630 /**
4631  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4632  *	@skb: Socket buffer containing the buffers to be mapped
4633  *	@sg: The scatter-gather list to map into
4634  *	@offset: The offset into the buffer's contents to start mapping
4635  *	@len: Length of buffer space to be mapped
4636  *
4637  *	Fill the specified scatter-gather list with mappings/pointers into a
4638  *	region of the buffer space attached to a socket buffer. Returns either
4639  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4640  *	could not fit.
4641  */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4642 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4643 {
4644 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4645 
4646 	if (nsg <= 0)
4647 		return nsg;
4648 
4649 	sg_mark_end(&sg[nsg - 1]);
4650 
4651 	return nsg;
4652 }
4653 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4654 
4655 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4656  * sglist without mark the sg which contain last skb data as the end.
4657  * So the caller can mannipulate sg list as will when padding new data after
4658  * the first call without calling sg_unmark_end to expend sg list.
4659  *
4660  * Scenario to use skb_to_sgvec_nomark:
4661  * 1. sg_init_table
4662  * 2. skb_to_sgvec_nomark(payload1)
4663  * 3. skb_to_sgvec_nomark(payload2)
4664  *
4665  * This is equivalent to:
4666  * 1. sg_init_table
4667  * 2. skb_to_sgvec(payload1)
4668  * 3. sg_unmark_end
4669  * 4. skb_to_sgvec(payload2)
4670  *
4671  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4672  * is more preferable.
4673  */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4674 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4675 			int offset, int len)
4676 {
4677 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4678 }
4679 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4680 
4681 
4682 
4683 /**
4684  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4685  *	@skb: The socket buffer to check.
4686  *	@tailbits: Amount of trailing space to be added
4687  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4688  *
4689  *	Make sure that the data buffers attached to a socket buffer are
4690  *	writable. If they are not, private copies are made of the data buffers
4691  *	and the socket buffer is set to use these instead.
4692  *
4693  *	If @tailbits is given, make sure that there is space to write @tailbits
4694  *	bytes of data beyond current end of socket buffer.  @trailer will be
4695  *	set to point to the skb in which this space begins.
4696  *
4697  *	The number of scatterlist elements required to completely map the
4698  *	COW'd and extended socket buffer will be returned.
4699  */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)4700 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4701 {
4702 	int copyflag;
4703 	int elt;
4704 	struct sk_buff *skb1, **skb_p;
4705 
4706 	/* If skb is cloned or its head is paged, reallocate
4707 	 * head pulling out all the pages (pages are considered not writable
4708 	 * at the moment even if they are anonymous).
4709 	 */
4710 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4711 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4712 		return -ENOMEM;
4713 
4714 	/* Easy case. Most of packets will go this way. */
4715 	if (!skb_has_frag_list(skb)) {
4716 		/* A little of trouble, not enough of space for trailer.
4717 		 * This should not happen, when stack is tuned to generate
4718 		 * good frames. OK, on miss we reallocate and reserve even more
4719 		 * space, 128 bytes is fair. */
4720 
4721 		if (skb_tailroom(skb) < tailbits &&
4722 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4723 			return -ENOMEM;
4724 
4725 		/* Voila! */
4726 		*trailer = skb;
4727 		return 1;
4728 	}
4729 
4730 	/* Misery. We are in troubles, going to mincer fragments... */
4731 
4732 	elt = 1;
4733 	skb_p = &skb_shinfo(skb)->frag_list;
4734 	copyflag = 0;
4735 
4736 	while ((skb1 = *skb_p) != NULL) {
4737 		int ntail = 0;
4738 
4739 		/* The fragment is partially pulled by someone,
4740 		 * this can happen on input. Copy it and everything
4741 		 * after it. */
4742 
4743 		if (skb_shared(skb1))
4744 			copyflag = 1;
4745 
4746 		/* If the skb is the last, worry about trailer. */
4747 
4748 		if (skb1->next == NULL && tailbits) {
4749 			if (skb_shinfo(skb1)->nr_frags ||
4750 			    skb_has_frag_list(skb1) ||
4751 			    skb_tailroom(skb1) < tailbits)
4752 				ntail = tailbits + 128;
4753 		}
4754 
4755 		if (copyflag ||
4756 		    skb_cloned(skb1) ||
4757 		    ntail ||
4758 		    skb_shinfo(skb1)->nr_frags ||
4759 		    skb_has_frag_list(skb1)) {
4760 			struct sk_buff *skb2;
4761 
4762 			/* Fuck, we are miserable poor guys... */
4763 			if (ntail == 0)
4764 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4765 			else
4766 				skb2 = skb_copy_expand(skb1,
4767 						       skb_headroom(skb1),
4768 						       ntail,
4769 						       GFP_ATOMIC);
4770 			if (unlikely(skb2 == NULL))
4771 				return -ENOMEM;
4772 
4773 			if (skb1->sk)
4774 				skb_set_owner_w(skb2, skb1->sk);
4775 
4776 			/* Looking around. Are we still alive?
4777 			 * OK, link new skb, drop old one */
4778 
4779 			skb2->next = skb1->next;
4780 			*skb_p = skb2;
4781 			kfree_skb(skb1);
4782 			skb1 = skb2;
4783 		}
4784 		elt++;
4785 		*trailer = skb1;
4786 		skb_p = &skb1->next;
4787 	}
4788 
4789 	return elt;
4790 }
4791 EXPORT_SYMBOL_GPL(skb_cow_data);
4792 
sock_rmem_free(struct sk_buff * skb)4793 static void sock_rmem_free(struct sk_buff *skb)
4794 {
4795 	struct sock *sk = skb->sk;
4796 
4797 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4798 }
4799 
skb_set_err_queue(struct sk_buff * skb)4800 static void skb_set_err_queue(struct sk_buff *skb)
4801 {
4802 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4803 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4804 	 */
4805 	skb->pkt_type = PACKET_OUTGOING;
4806 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4807 }
4808 
4809 /*
4810  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4811  */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)4812 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4813 {
4814 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4815 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4816 		return -ENOMEM;
4817 
4818 	skb_orphan(skb);
4819 	skb->sk = sk;
4820 	skb->destructor = sock_rmem_free;
4821 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4822 	skb_set_err_queue(skb);
4823 
4824 	/* before exiting rcu section, make sure dst is refcounted */
4825 	skb_dst_force(skb);
4826 
4827 	skb_queue_tail(&sk->sk_error_queue, skb);
4828 	if (!sock_flag(sk, SOCK_DEAD))
4829 		sk_error_report(sk);
4830 	return 0;
4831 }
4832 EXPORT_SYMBOL(sock_queue_err_skb);
4833 
is_icmp_err_skb(const struct sk_buff * skb)4834 static bool is_icmp_err_skb(const struct sk_buff *skb)
4835 {
4836 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4837 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4838 }
4839 
sock_dequeue_err_skb(struct sock * sk)4840 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4841 {
4842 	struct sk_buff_head *q = &sk->sk_error_queue;
4843 	struct sk_buff *skb, *skb_next = NULL;
4844 	bool icmp_next = false;
4845 	unsigned long flags;
4846 
4847 	spin_lock_irqsave(&q->lock, flags);
4848 	skb = __skb_dequeue(q);
4849 	if (skb && (skb_next = skb_peek(q))) {
4850 		icmp_next = is_icmp_err_skb(skb_next);
4851 		if (icmp_next)
4852 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4853 	}
4854 	spin_unlock_irqrestore(&q->lock, flags);
4855 
4856 	if (is_icmp_err_skb(skb) && !icmp_next)
4857 		sk->sk_err = 0;
4858 
4859 	if (skb_next)
4860 		sk_error_report(sk);
4861 
4862 	return skb;
4863 }
4864 EXPORT_SYMBOL(sock_dequeue_err_skb);
4865 
4866 /**
4867  * skb_clone_sk - create clone of skb, and take reference to socket
4868  * @skb: the skb to clone
4869  *
4870  * This function creates a clone of a buffer that holds a reference on
4871  * sk_refcnt.  Buffers created via this function are meant to be
4872  * returned using sock_queue_err_skb, or free via kfree_skb.
4873  *
4874  * When passing buffers allocated with this function to sock_queue_err_skb
4875  * it is necessary to wrap the call with sock_hold/sock_put in order to
4876  * prevent the socket from being released prior to being enqueued on
4877  * the sk_error_queue.
4878  */
skb_clone_sk(struct sk_buff * skb)4879 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4880 {
4881 	struct sock *sk = skb->sk;
4882 	struct sk_buff *clone;
4883 
4884 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4885 		return NULL;
4886 
4887 	clone = skb_clone(skb, GFP_ATOMIC);
4888 	if (!clone) {
4889 		sock_put(sk);
4890 		return NULL;
4891 	}
4892 
4893 	clone->sk = sk;
4894 	clone->destructor = sock_efree;
4895 
4896 	return clone;
4897 }
4898 EXPORT_SYMBOL(skb_clone_sk);
4899 
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)4900 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4901 					struct sock *sk,
4902 					int tstype,
4903 					bool opt_stats)
4904 {
4905 	struct sock_exterr_skb *serr;
4906 	int err;
4907 
4908 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4909 
4910 	serr = SKB_EXT_ERR(skb);
4911 	memset(serr, 0, sizeof(*serr));
4912 	serr->ee.ee_errno = ENOMSG;
4913 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4914 	serr->ee.ee_info = tstype;
4915 	serr->opt_stats = opt_stats;
4916 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4917 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
4918 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4919 		if (sk_is_tcp(sk))
4920 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
4921 	}
4922 
4923 	err = sock_queue_err_skb(sk, skb);
4924 
4925 	if (err)
4926 		kfree_skb(skb);
4927 }
4928 
skb_may_tx_timestamp(struct sock * sk,bool tsonly)4929 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4930 {
4931 	bool ret;
4932 
4933 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
4934 		return true;
4935 
4936 	read_lock_bh(&sk->sk_callback_lock);
4937 	ret = sk->sk_socket && sk->sk_socket->file &&
4938 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4939 	read_unlock_bh(&sk->sk_callback_lock);
4940 	return ret;
4941 }
4942 
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)4943 void skb_complete_tx_timestamp(struct sk_buff *skb,
4944 			       struct skb_shared_hwtstamps *hwtstamps)
4945 {
4946 	struct sock *sk = skb->sk;
4947 
4948 	if (!skb_may_tx_timestamp(sk, false))
4949 		goto err;
4950 
4951 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4952 	 * but only if the socket refcount is not zero.
4953 	 */
4954 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4955 		*skb_hwtstamps(skb) = *hwtstamps;
4956 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4957 		sock_put(sk);
4958 		return;
4959 	}
4960 
4961 err:
4962 	kfree_skb(skb);
4963 }
4964 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4965 
__skb_tstamp_tx(struct sk_buff * orig_skb,const struct sk_buff * ack_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)4966 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4967 		     const struct sk_buff *ack_skb,
4968 		     struct skb_shared_hwtstamps *hwtstamps,
4969 		     struct sock *sk, int tstype)
4970 {
4971 	struct sk_buff *skb;
4972 	bool tsonly, opt_stats = false;
4973 	u32 tsflags;
4974 
4975 	if (!sk)
4976 		return;
4977 
4978 	tsflags = READ_ONCE(sk->sk_tsflags);
4979 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4980 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4981 		return;
4982 
4983 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4984 	if (!skb_may_tx_timestamp(sk, tsonly))
4985 		return;
4986 
4987 	if (tsonly) {
4988 #ifdef CONFIG_INET
4989 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4990 		    sk_is_tcp(sk)) {
4991 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4992 							     ack_skb);
4993 			opt_stats = true;
4994 		} else
4995 #endif
4996 			skb = alloc_skb(0, GFP_ATOMIC);
4997 	} else {
4998 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4999 
5000 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5001 			kfree_skb(skb);
5002 			return;
5003 		}
5004 	}
5005 	if (!skb)
5006 		return;
5007 
5008 	if (tsonly) {
5009 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5010 					     SKBTX_ANY_TSTAMP;
5011 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5012 	}
5013 
5014 	if (hwtstamps)
5015 		*skb_hwtstamps(skb) = *hwtstamps;
5016 	else
5017 		__net_timestamp(skb);
5018 
5019 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5020 }
5021 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5022 
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)5023 void skb_tstamp_tx(struct sk_buff *orig_skb,
5024 		   struct skb_shared_hwtstamps *hwtstamps)
5025 {
5026 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5027 			       SCM_TSTAMP_SND);
5028 }
5029 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5030 
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)5031 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5032 {
5033 	struct sock *sk = skb->sk;
5034 	struct sock_exterr_skb *serr;
5035 	int err = 1;
5036 
5037 	skb->wifi_acked_valid = 1;
5038 	skb->wifi_acked = acked;
5039 
5040 	serr = SKB_EXT_ERR(skb);
5041 	memset(serr, 0, sizeof(*serr));
5042 	serr->ee.ee_errno = ENOMSG;
5043 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5044 
5045 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5046 	 * but only if the socket refcount is not zero.
5047 	 */
5048 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5049 		err = sock_queue_err_skb(sk, skb);
5050 		sock_put(sk);
5051 	}
5052 	if (err)
5053 		kfree_skb(skb);
5054 }
5055 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5056 
5057 /**
5058  * skb_partial_csum_set - set up and verify partial csum values for packet
5059  * @skb: the skb to set
5060  * @start: the number of bytes after skb->data to start checksumming.
5061  * @off: the offset from start to place the checksum.
5062  *
5063  * For untrusted partially-checksummed packets, we need to make sure the values
5064  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5065  *
5066  * This function checks and sets those values and skb->ip_summed: if this
5067  * returns false you should drop the packet.
5068  */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)5069 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5070 {
5071 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5072 	u32 csum_start = skb_headroom(skb) + (u32)start;
5073 
5074 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5075 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5076 				     start, off, skb_headroom(skb), skb_headlen(skb));
5077 		return false;
5078 	}
5079 	skb->ip_summed = CHECKSUM_PARTIAL;
5080 	skb->csum_start = csum_start;
5081 	skb->csum_offset = off;
5082 	skb->transport_header = csum_start;
5083 	return true;
5084 }
5085 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5086 
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)5087 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5088 			       unsigned int max)
5089 {
5090 	if (skb_headlen(skb) >= len)
5091 		return 0;
5092 
5093 	/* If we need to pullup then pullup to the max, so we
5094 	 * won't need to do it again.
5095 	 */
5096 	if (max > skb->len)
5097 		max = skb->len;
5098 
5099 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5100 		return -ENOMEM;
5101 
5102 	if (skb_headlen(skb) < len)
5103 		return -EPROTO;
5104 
5105 	return 0;
5106 }
5107 
5108 #define MAX_TCP_HDR_LEN (15 * 4)
5109 
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)5110 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5111 				      typeof(IPPROTO_IP) proto,
5112 				      unsigned int off)
5113 {
5114 	int err;
5115 
5116 	switch (proto) {
5117 	case IPPROTO_TCP:
5118 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5119 					  off + MAX_TCP_HDR_LEN);
5120 		if (!err && !skb_partial_csum_set(skb, off,
5121 						  offsetof(struct tcphdr,
5122 							   check)))
5123 			err = -EPROTO;
5124 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5125 
5126 	case IPPROTO_UDP:
5127 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5128 					  off + sizeof(struct udphdr));
5129 		if (!err && !skb_partial_csum_set(skb, off,
5130 						  offsetof(struct udphdr,
5131 							   check)))
5132 			err = -EPROTO;
5133 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5134 	}
5135 
5136 	return ERR_PTR(-EPROTO);
5137 }
5138 
5139 /* This value should be large enough to cover a tagged ethernet header plus
5140  * maximally sized IP and TCP or UDP headers.
5141  */
5142 #define MAX_IP_HDR_LEN 128
5143 
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)5144 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5145 {
5146 	unsigned int off;
5147 	bool fragment;
5148 	__sum16 *csum;
5149 	int err;
5150 
5151 	fragment = false;
5152 
5153 	err = skb_maybe_pull_tail(skb,
5154 				  sizeof(struct iphdr),
5155 				  MAX_IP_HDR_LEN);
5156 	if (err < 0)
5157 		goto out;
5158 
5159 	if (ip_is_fragment(ip_hdr(skb)))
5160 		fragment = true;
5161 
5162 	off = ip_hdrlen(skb);
5163 
5164 	err = -EPROTO;
5165 
5166 	if (fragment)
5167 		goto out;
5168 
5169 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5170 	if (IS_ERR(csum))
5171 		return PTR_ERR(csum);
5172 
5173 	if (recalculate)
5174 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5175 					   ip_hdr(skb)->daddr,
5176 					   skb->len - off,
5177 					   ip_hdr(skb)->protocol, 0);
5178 	err = 0;
5179 
5180 out:
5181 	return err;
5182 }
5183 
5184 /* This value should be large enough to cover a tagged ethernet header plus
5185  * an IPv6 header, all options, and a maximal TCP or UDP header.
5186  */
5187 #define MAX_IPV6_HDR_LEN 256
5188 
5189 #define OPT_HDR(type, skb, off) \
5190 	(type *)(skb_network_header(skb) + (off))
5191 
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)5192 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5193 {
5194 	int err;
5195 	u8 nexthdr;
5196 	unsigned int off;
5197 	unsigned int len;
5198 	bool fragment;
5199 	bool done;
5200 	__sum16 *csum;
5201 
5202 	fragment = false;
5203 	done = false;
5204 
5205 	off = sizeof(struct ipv6hdr);
5206 
5207 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5208 	if (err < 0)
5209 		goto out;
5210 
5211 	nexthdr = ipv6_hdr(skb)->nexthdr;
5212 
5213 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5214 	while (off <= len && !done) {
5215 		switch (nexthdr) {
5216 		case IPPROTO_DSTOPTS:
5217 		case IPPROTO_HOPOPTS:
5218 		case IPPROTO_ROUTING: {
5219 			struct ipv6_opt_hdr *hp;
5220 
5221 			err = skb_maybe_pull_tail(skb,
5222 						  off +
5223 						  sizeof(struct ipv6_opt_hdr),
5224 						  MAX_IPV6_HDR_LEN);
5225 			if (err < 0)
5226 				goto out;
5227 
5228 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5229 			nexthdr = hp->nexthdr;
5230 			off += ipv6_optlen(hp);
5231 			break;
5232 		}
5233 		case IPPROTO_AH: {
5234 			struct ip_auth_hdr *hp;
5235 
5236 			err = skb_maybe_pull_tail(skb,
5237 						  off +
5238 						  sizeof(struct ip_auth_hdr),
5239 						  MAX_IPV6_HDR_LEN);
5240 			if (err < 0)
5241 				goto out;
5242 
5243 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5244 			nexthdr = hp->nexthdr;
5245 			off += ipv6_authlen(hp);
5246 			break;
5247 		}
5248 		case IPPROTO_FRAGMENT: {
5249 			struct frag_hdr *hp;
5250 
5251 			err = skb_maybe_pull_tail(skb,
5252 						  off +
5253 						  sizeof(struct frag_hdr),
5254 						  MAX_IPV6_HDR_LEN);
5255 			if (err < 0)
5256 				goto out;
5257 
5258 			hp = OPT_HDR(struct frag_hdr, skb, off);
5259 
5260 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5261 				fragment = true;
5262 
5263 			nexthdr = hp->nexthdr;
5264 			off += sizeof(struct frag_hdr);
5265 			break;
5266 		}
5267 		default:
5268 			done = true;
5269 			break;
5270 		}
5271 	}
5272 
5273 	err = -EPROTO;
5274 
5275 	if (!done || fragment)
5276 		goto out;
5277 
5278 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5279 	if (IS_ERR(csum))
5280 		return PTR_ERR(csum);
5281 
5282 	if (recalculate)
5283 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5284 					 &ipv6_hdr(skb)->daddr,
5285 					 skb->len - off, nexthdr, 0);
5286 	err = 0;
5287 
5288 out:
5289 	return err;
5290 }
5291 
5292 /**
5293  * skb_checksum_setup - set up partial checksum offset
5294  * @skb: the skb to set up
5295  * @recalculate: if true the pseudo-header checksum will be recalculated
5296  */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5297 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5298 {
5299 	int err;
5300 
5301 	switch (skb->protocol) {
5302 	case htons(ETH_P_IP):
5303 		err = skb_checksum_setup_ipv4(skb, recalculate);
5304 		break;
5305 
5306 	case htons(ETH_P_IPV6):
5307 		err = skb_checksum_setup_ipv6(skb, recalculate);
5308 		break;
5309 
5310 	default:
5311 		err = -EPROTO;
5312 		break;
5313 	}
5314 
5315 	return err;
5316 }
5317 EXPORT_SYMBOL(skb_checksum_setup);
5318 
5319 /**
5320  * skb_checksum_maybe_trim - maybe trims the given skb
5321  * @skb: the skb to check
5322  * @transport_len: the data length beyond the network header
5323  *
5324  * Checks whether the given skb has data beyond the given transport length.
5325  * If so, returns a cloned skb trimmed to this transport length.
5326  * Otherwise returns the provided skb. Returns NULL in error cases
5327  * (e.g. transport_len exceeds skb length or out-of-memory).
5328  *
5329  * Caller needs to set the skb transport header and free any returned skb if it
5330  * differs from the provided skb.
5331  */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5332 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5333 					       unsigned int transport_len)
5334 {
5335 	struct sk_buff *skb_chk;
5336 	unsigned int len = skb_transport_offset(skb) + transport_len;
5337 	int ret;
5338 
5339 	if (skb->len < len)
5340 		return NULL;
5341 	else if (skb->len == len)
5342 		return skb;
5343 
5344 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5345 	if (!skb_chk)
5346 		return NULL;
5347 
5348 	ret = pskb_trim_rcsum(skb_chk, len);
5349 	if (ret) {
5350 		kfree_skb(skb_chk);
5351 		return NULL;
5352 	}
5353 
5354 	return skb_chk;
5355 }
5356 
5357 /**
5358  * skb_checksum_trimmed - validate checksum of an skb
5359  * @skb: the skb to check
5360  * @transport_len: the data length beyond the network header
5361  * @skb_chkf: checksum function to use
5362  *
5363  * Applies the given checksum function skb_chkf to the provided skb.
5364  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5365  *
5366  * If the skb has data beyond the given transport length, then a
5367  * trimmed & cloned skb is checked and returned.
5368  *
5369  * Caller needs to set the skb transport header and free any returned skb if it
5370  * differs from the provided skb.
5371  */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))5372 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5373 				     unsigned int transport_len,
5374 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5375 {
5376 	struct sk_buff *skb_chk;
5377 	unsigned int offset = skb_transport_offset(skb);
5378 	__sum16 ret;
5379 
5380 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5381 	if (!skb_chk)
5382 		goto err;
5383 
5384 	if (!pskb_may_pull(skb_chk, offset))
5385 		goto err;
5386 
5387 	skb_pull_rcsum(skb_chk, offset);
5388 	ret = skb_chkf(skb_chk);
5389 	skb_push_rcsum(skb_chk, offset);
5390 
5391 	if (ret)
5392 		goto err;
5393 
5394 	return skb_chk;
5395 
5396 err:
5397 	if (skb_chk && skb_chk != skb)
5398 		kfree_skb(skb_chk);
5399 
5400 	return NULL;
5401 
5402 }
5403 EXPORT_SYMBOL(skb_checksum_trimmed);
5404 
__skb_warn_lro_forwarding(const struct sk_buff * skb)5405 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5406 {
5407 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5408 			     skb->dev->name);
5409 }
5410 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5411 
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)5412 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5413 {
5414 	if (head_stolen) {
5415 		skb_release_head_state(skb);
5416 		kmem_cache_free(skbuff_head_cache, skb);
5417 	} else {
5418 		__kfree_skb(skb);
5419 	}
5420 }
5421 EXPORT_SYMBOL(kfree_skb_partial);
5422 
5423 /**
5424  * skb_try_coalesce - try to merge skb to prior one
5425  * @to: prior buffer
5426  * @from: buffer to add
5427  * @fragstolen: pointer to boolean
5428  * @delta_truesize: how much more was allocated than was requested
5429  */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)5430 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5431 		      bool *fragstolen, int *delta_truesize)
5432 {
5433 	struct skb_shared_info *to_shinfo, *from_shinfo;
5434 	int i, delta, len = from->len;
5435 
5436 	*fragstolen = false;
5437 
5438 	if (skb_cloned(to))
5439 		return false;
5440 
5441 	/* In general, avoid mixing page_pool and non-page_pool allocated
5442 	 * pages within the same SKB. Additionally avoid dealing with clones
5443 	 * with page_pool pages, in case the SKB is using page_pool fragment
5444 	 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5445 	 * references for cloned SKBs at the moment that would result in
5446 	 * inconsistent reference counts.
5447 	 * In theory we could take full references if @from is cloned and
5448 	 * !@to->pp_recycle but its tricky (due to potential race with
5449 	 * the clone disappearing) and rare, so not worth dealing with.
5450 	 */
5451 	if (to->pp_recycle != from->pp_recycle ||
5452 	    (from->pp_recycle && skb_cloned(from)))
5453 		return false;
5454 
5455 	if (len <= skb_tailroom(to)) {
5456 		if (len)
5457 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5458 		*delta_truesize = 0;
5459 		return true;
5460 	}
5461 
5462 	to_shinfo = skb_shinfo(to);
5463 	from_shinfo = skb_shinfo(from);
5464 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5465 		return false;
5466 	if (skb_zcopy(to) || skb_zcopy(from))
5467 		return false;
5468 
5469 	if (skb_headlen(from) != 0) {
5470 		struct page *page;
5471 		unsigned int offset;
5472 
5473 		if (to_shinfo->nr_frags +
5474 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5475 			return false;
5476 
5477 		if (skb_head_is_locked(from))
5478 			return false;
5479 
5480 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5481 
5482 		page = virt_to_head_page(from->head);
5483 		offset = from->data - (unsigned char *)page_address(page);
5484 
5485 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5486 				   page, offset, skb_headlen(from));
5487 		*fragstolen = true;
5488 	} else {
5489 		if (to_shinfo->nr_frags +
5490 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5491 			return false;
5492 
5493 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5494 	}
5495 
5496 	WARN_ON_ONCE(delta < len);
5497 
5498 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5499 	       from_shinfo->frags,
5500 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5501 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5502 
5503 	if (!skb_cloned(from))
5504 		from_shinfo->nr_frags = 0;
5505 
5506 	/* if the skb is not cloned this does nothing
5507 	 * since we set nr_frags to 0.
5508 	 */
5509 	for (i = 0; i < from_shinfo->nr_frags; i++)
5510 		__skb_frag_ref(&from_shinfo->frags[i]);
5511 
5512 	to->truesize += delta;
5513 	to->len += len;
5514 	to->data_len += len;
5515 
5516 	*delta_truesize = delta;
5517 	return true;
5518 }
5519 EXPORT_SYMBOL(skb_try_coalesce);
5520 
5521 /**
5522  * skb_scrub_packet - scrub an skb
5523  *
5524  * @skb: buffer to clean
5525  * @xnet: packet is crossing netns
5526  *
5527  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5528  * into/from a tunnel. Some information have to be cleared during these
5529  * operations.
5530  * skb_scrub_packet can also be used to clean a skb before injecting it in
5531  * another namespace (@xnet == true). We have to clear all information in the
5532  * skb that could impact namespace isolation.
5533  */
skb_scrub_packet(struct sk_buff * skb,bool xnet)5534 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5535 {
5536 	skb->pkt_type = PACKET_HOST;
5537 	skb->skb_iif = 0;
5538 	skb->ignore_df = 0;
5539 	skb_dst_drop(skb);
5540 	skb_ext_reset(skb);
5541 	nf_reset_ct(skb);
5542 	nf_reset_trace(skb);
5543 
5544 #ifdef CONFIG_NET_SWITCHDEV
5545 	skb->offload_fwd_mark = 0;
5546 	skb->offload_l3_fwd_mark = 0;
5547 #endif
5548 
5549 	if (!xnet)
5550 		return;
5551 
5552 	ipvs_reset(skb);
5553 	skb->mark = 0;
5554 	skb_clear_tstamp(skb);
5555 }
5556 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5557 
5558 /**
5559  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5560  *
5561  * @skb: GSO skb
5562  *
5563  * skb_gso_transport_seglen is used to determine the real size of the
5564  * individual segments, including Layer4 headers (TCP/UDP).
5565  *
5566  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5567  */
skb_gso_transport_seglen(const struct sk_buff * skb)5568 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5569 {
5570 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5571 	unsigned int thlen = 0;
5572 
5573 	if (skb->encapsulation) {
5574 		thlen = skb_inner_transport_header(skb) -
5575 			skb_transport_header(skb);
5576 
5577 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5578 			thlen += inner_tcp_hdrlen(skb);
5579 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5580 		thlen = tcp_hdrlen(skb);
5581 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5582 		thlen = sizeof(struct sctphdr);
5583 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5584 		thlen = sizeof(struct udphdr);
5585 	}
5586 	/* UFO sets gso_size to the size of the fragmentation
5587 	 * payload, i.e. the size of the L4 (UDP) header is already
5588 	 * accounted for.
5589 	 */
5590 	return thlen + shinfo->gso_size;
5591 }
5592 
5593 /**
5594  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5595  *
5596  * @skb: GSO skb
5597  *
5598  * skb_gso_network_seglen is used to determine the real size of the
5599  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5600  *
5601  * The MAC/L2 header is not accounted for.
5602  */
skb_gso_network_seglen(const struct sk_buff * skb)5603 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5604 {
5605 	unsigned int hdr_len = skb_transport_header(skb) -
5606 			       skb_network_header(skb);
5607 
5608 	return hdr_len + skb_gso_transport_seglen(skb);
5609 }
5610 
5611 /**
5612  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5613  *
5614  * @skb: GSO skb
5615  *
5616  * skb_gso_mac_seglen is used to determine the real size of the
5617  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5618  * headers (TCP/UDP).
5619  */
skb_gso_mac_seglen(const struct sk_buff * skb)5620 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5621 {
5622 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5623 
5624 	return hdr_len + skb_gso_transport_seglen(skb);
5625 }
5626 
5627 /**
5628  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5629  *
5630  * There are a couple of instances where we have a GSO skb, and we
5631  * want to determine what size it would be after it is segmented.
5632  *
5633  * We might want to check:
5634  * -    L3+L4+payload size (e.g. IP forwarding)
5635  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5636  *
5637  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5638  *
5639  * @skb: GSO skb
5640  *
5641  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5642  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5643  *
5644  * @max_len: The maximum permissible length.
5645  *
5646  * Returns true if the segmented length <= max length.
5647  */
skb_gso_size_check(const struct sk_buff * skb,unsigned int seg_len,unsigned int max_len)5648 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5649 				      unsigned int seg_len,
5650 				      unsigned int max_len) {
5651 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5652 	const struct sk_buff *iter;
5653 
5654 	if (shinfo->gso_size != GSO_BY_FRAGS)
5655 		return seg_len <= max_len;
5656 
5657 	/* Undo this so we can re-use header sizes */
5658 	seg_len -= GSO_BY_FRAGS;
5659 
5660 	skb_walk_frags(skb, iter) {
5661 		if (seg_len + skb_headlen(iter) > max_len)
5662 			return false;
5663 	}
5664 
5665 	return true;
5666 }
5667 
5668 /**
5669  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5670  *
5671  * @skb: GSO skb
5672  * @mtu: MTU to validate against
5673  *
5674  * skb_gso_validate_network_len validates if a given skb will fit a
5675  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5676  * payload.
5677  */
skb_gso_validate_network_len(const struct sk_buff * skb,unsigned int mtu)5678 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5679 {
5680 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5681 }
5682 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5683 
5684 /**
5685  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5686  *
5687  * @skb: GSO skb
5688  * @len: length to validate against
5689  *
5690  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5691  * length once split, including L2, L3 and L4 headers and the payload.
5692  */
skb_gso_validate_mac_len(const struct sk_buff * skb,unsigned int len)5693 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5694 {
5695 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5696 }
5697 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5698 
skb_reorder_vlan_header(struct sk_buff * skb)5699 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5700 {
5701 	int mac_len, meta_len;
5702 	void *meta;
5703 
5704 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5705 		kfree_skb(skb);
5706 		return NULL;
5707 	}
5708 
5709 	mac_len = skb->data - skb_mac_header(skb);
5710 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5711 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5712 			mac_len - VLAN_HLEN - ETH_TLEN);
5713 	}
5714 
5715 	meta_len = skb_metadata_len(skb);
5716 	if (meta_len) {
5717 		meta = skb_metadata_end(skb) - meta_len;
5718 		memmove(meta + VLAN_HLEN, meta, meta_len);
5719 	}
5720 
5721 	skb->mac_header += VLAN_HLEN;
5722 	return skb;
5723 }
5724 
skb_vlan_untag(struct sk_buff * skb)5725 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5726 {
5727 	struct vlan_hdr *vhdr;
5728 	u16 vlan_tci;
5729 
5730 	if (unlikely(skb_vlan_tag_present(skb))) {
5731 		/* vlan_tci is already set-up so leave this for another time */
5732 		return skb;
5733 	}
5734 
5735 	skb = skb_share_check(skb, GFP_ATOMIC);
5736 	if (unlikely(!skb))
5737 		goto err_free;
5738 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5739 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5740 		goto err_free;
5741 
5742 	vhdr = (struct vlan_hdr *)skb->data;
5743 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5744 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5745 
5746 	skb_pull_rcsum(skb, VLAN_HLEN);
5747 	vlan_set_encap_proto(skb, vhdr);
5748 
5749 	skb = skb_reorder_vlan_header(skb);
5750 	if (unlikely(!skb))
5751 		goto err_free;
5752 
5753 	skb_reset_network_header(skb);
5754 	if (!skb_transport_header_was_set(skb))
5755 		skb_reset_transport_header(skb);
5756 	skb_reset_mac_len(skb);
5757 
5758 	return skb;
5759 
5760 err_free:
5761 	kfree_skb(skb);
5762 	return NULL;
5763 }
5764 EXPORT_SYMBOL(skb_vlan_untag);
5765 
skb_ensure_writable(struct sk_buff * skb,unsigned int write_len)5766 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5767 {
5768 	if (!pskb_may_pull(skb, write_len))
5769 		return -ENOMEM;
5770 
5771 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5772 		return 0;
5773 
5774 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5775 }
5776 EXPORT_SYMBOL(skb_ensure_writable);
5777 
5778 /* remove VLAN header from packet and update csum accordingly.
5779  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5780  */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)5781 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5782 {
5783 	struct vlan_hdr *vhdr;
5784 	int offset = skb->data - skb_mac_header(skb);
5785 	int err;
5786 
5787 	if (WARN_ONCE(offset,
5788 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5789 		      offset)) {
5790 		return -EINVAL;
5791 	}
5792 
5793 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5794 	if (unlikely(err))
5795 		return err;
5796 
5797 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5798 
5799 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5800 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5801 
5802 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5803 	__skb_pull(skb, VLAN_HLEN);
5804 
5805 	vlan_set_encap_proto(skb, vhdr);
5806 	skb->mac_header += VLAN_HLEN;
5807 
5808 	if (skb_network_offset(skb) < ETH_HLEN)
5809 		skb_set_network_header(skb, ETH_HLEN);
5810 
5811 	skb_reset_mac_len(skb);
5812 
5813 	return err;
5814 }
5815 EXPORT_SYMBOL(__skb_vlan_pop);
5816 
5817 /* Pop a vlan tag either from hwaccel or from payload.
5818  * Expects skb->data at mac header.
5819  */
skb_vlan_pop(struct sk_buff * skb)5820 int skb_vlan_pop(struct sk_buff *skb)
5821 {
5822 	u16 vlan_tci;
5823 	__be16 vlan_proto;
5824 	int err;
5825 
5826 	if (likely(skb_vlan_tag_present(skb))) {
5827 		__vlan_hwaccel_clear_tag(skb);
5828 	} else {
5829 		if (unlikely(!eth_type_vlan(skb->protocol)))
5830 			return 0;
5831 
5832 		err = __skb_vlan_pop(skb, &vlan_tci);
5833 		if (err)
5834 			return err;
5835 	}
5836 	/* move next vlan tag to hw accel tag */
5837 	if (likely(!eth_type_vlan(skb->protocol)))
5838 		return 0;
5839 
5840 	vlan_proto = skb->protocol;
5841 	err = __skb_vlan_pop(skb, &vlan_tci);
5842 	if (unlikely(err))
5843 		return err;
5844 
5845 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5846 	return 0;
5847 }
5848 EXPORT_SYMBOL(skb_vlan_pop);
5849 
5850 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5851  * Expects skb->data at mac header.
5852  */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)5853 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5854 {
5855 	if (skb_vlan_tag_present(skb)) {
5856 		int offset = skb->data - skb_mac_header(skb);
5857 		int err;
5858 
5859 		if (WARN_ONCE(offset,
5860 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5861 			      offset)) {
5862 			return -EINVAL;
5863 		}
5864 
5865 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5866 					skb_vlan_tag_get(skb));
5867 		if (err)
5868 			return err;
5869 
5870 		skb->protocol = skb->vlan_proto;
5871 		skb->mac_len += VLAN_HLEN;
5872 
5873 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5874 	}
5875 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5876 	return 0;
5877 }
5878 EXPORT_SYMBOL(skb_vlan_push);
5879 
5880 /**
5881  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5882  *
5883  * @skb: Socket buffer to modify
5884  *
5885  * Drop the Ethernet header of @skb.
5886  *
5887  * Expects that skb->data points to the mac header and that no VLAN tags are
5888  * present.
5889  *
5890  * Returns 0 on success, -errno otherwise.
5891  */
skb_eth_pop(struct sk_buff * skb)5892 int skb_eth_pop(struct sk_buff *skb)
5893 {
5894 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5895 	    skb_network_offset(skb) < ETH_HLEN)
5896 		return -EPROTO;
5897 
5898 	skb_pull_rcsum(skb, ETH_HLEN);
5899 	skb_reset_mac_header(skb);
5900 	skb_reset_mac_len(skb);
5901 
5902 	return 0;
5903 }
5904 EXPORT_SYMBOL(skb_eth_pop);
5905 
5906 /**
5907  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5908  *
5909  * @skb: Socket buffer to modify
5910  * @dst: Destination MAC address of the new header
5911  * @src: Source MAC address of the new header
5912  *
5913  * Prepend @skb with a new Ethernet header.
5914  *
5915  * Expects that skb->data points to the mac header, which must be empty.
5916  *
5917  * Returns 0 on success, -errno otherwise.
5918  */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)5919 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5920 		 const unsigned char *src)
5921 {
5922 	struct ethhdr *eth;
5923 	int err;
5924 
5925 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5926 		return -EPROTO;
5927 
5928 	err = skb_cow_head(skb, sizeof(*eth));
5929 	if (err < 0)
5930 		return err;
5931 
5932 	skb_push(skb, sizeof(*eth));
5933 	skb_reset_mac_header(skb);
5934 	skb_reset_mac_len(skb);
5935 
5936 	eth = eth_hdr(skb);
5937 	ether_addr_copy(eth->h_dest, dst);
5938 	ether_addr_copy(eth->h_source, src);
5939 	eth->h_proto = skb->protocol;
5940 
5941 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5942 
5943 	return 0;
5944 }
5945 EXPORT_SYMBOL(skb_eth_push);
5946 
5947 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)5948 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5949 			     __be16 ethertype)
5950 {
5951 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5952 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5953 
5954 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5955 	}
5956 
5957 	hdr->h_proto = ethertype;
5958 }
5959 
5960 /**
5961  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5962  *                   the packet
5963  *
5964  * @skb: buffer
5965  * @mpls_lse: MPLS label stack entry to push
5966  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5967  * @mac_len: length of the MAC header
5968  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5969  *            ethernet
5970  *
5971  * Expects skb->data at mac header.
5972  *
5973  * Returns 0 on success, -errno otherwise.
5974  */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)5975 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5976 		  int mac_len, bool ethernet)
5977 {
5978 	struct mpls_shim_hdr *lse;
5979 	int err;
5980 
5981 	if (unlikely(!eth_p_mpls(mpls_proto)))
5982 		return -EINVAL;
5983 
5984 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5985 	if (skb->encapsulation)
5986 		return -EINVAL;
5987 
5988 	err = skb_cow_head(skb, MPLS_HLEN);
5989 	if (unlikely(err))
5990 		return err;
5991 
5992 	if (!skb->inner_protocol) {
5993 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5994 		skb_set_inner_protocol(skb, skb->protocol);
5995 	}
5996 
5997 	skb_push(skb, MPLS_HLEN);
5998 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5999 		mac_len);
6000 	skb_reset_mac_header(skb);
6001 	skb_set_network_header(skb, mac_len);
6002 	skb_reset_mac_len(skb);
6003 
6004 	lse = mpls_hdr(skb);
6005 	lse->label_stack_entry = mpls_lse;
6006 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6007 
6008 	if (ethernet && mac_len >= ETH_HLEN)
6009 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6010 	skb->protocol = mpls_proto;
6011 
6012 	return 0;
6013 }
6014 EXPORT_SYMBOL_GPL(skb_mpls_push);
6015 
6016 /**
6017  * skb_mpls_pop() - pop the outermost MPLS header
6018  *
6019  * @skb: buffer
6020  * @next_proto: ethertype of header after popped MPLS header
6021  * @mac_len: length of the MAC header
6022  * @ethernet: flag to indicate if the packet is ethernet
6023  *
6024  * Expects skb->data at mac header.
6025  *
6026  * Returns 0 on success, -errno otherwise.
6027  */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)6028 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6029 		 bool ethernet)
6030 {
6031 	int err;
6032 
6033 	if (unlikely(!eth_p_mpls(skb->protocol)))
6034 		return 0;
6035 
6036 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6037 	if (unlikely(err))
6038 		return err;
6039 
6040 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6041 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6042 		mac_len);
6043 
6044 	__skb_pull(skb, MPLS_HLEN);
6045 	skb_reset_mac_header(skb);
6046 	skb_set_network_header(skb, mac_len);
6047 
6048 	if (ethernet && mac_len >= ETH_HLEN) {
6049 		struct ethhdr *hdr;
6050 
6051 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6052 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6053 		skb_mod_eth_type(skb, hdr, next_proto);
6054 	}
6055 	skb->protocol = next_proto;
6056 
6057 	return 0;
6058 }
6059 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6060 
6061 /**
6062  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6063  *
6064  * @skb: buffer
6065  * @mpls_lse: new MPLS label stack entry to update to
6066  *
6067  * Expects skb->data at mac header.
6068  *
6069  * Returns 0 on success, -errno otherwise.
6070  */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)6071 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6072 {
6073 	int err;
6074 
6075 	if (unlikely(!eth_p_mpls(skb->protocol)))
6076 		return -EINVAL;
6077 
6078 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6079 	if (unlikely(err))
6080 		return err;
6081 
6082 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6083 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6084 
6085 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6086 	}
6087 
6088 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6089 
6090 	return 0;
6091 }
6092 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6093 
6094 /**
6095  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6096  *
6097  * @skb: buffer
6098  *
6099  * Expects skb->data at mac header.
6100  *
6101  * Returns 0 on success, -errno otherwise.
6102  */
skb_mpls_dec_ttl(struct sk_buff * skb)6103 int skb_mpls_dec_ttl(struct sk_buff *skb)
6104 {
6105 	u32 lse;
6106 	u8 ttl;
6107 
6108 	if (unlikely(!eth_p_mpls(skb->protocol)))
6109 		return -EINVAL;
6110 
6111 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6112 		return -ENOMEM;
6113 
6114 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6115 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6116 	if (!--ttl)
6117 		return -EINVAL;
6118 
6119 	lse &= ~MPLS_LS_TTL_MASK;
6120 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6121 
6122 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6123 }
6124 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6125 
6126 /**
6127  * alloc_skb_with_frags - allocate skb with page frags
6128  *
6129  * @header_len: size of linear part
6130  * @data_len: needed length in frags
6131  * @max_page_order: max page order desired.
6132  * @errcode: pointer to error code if any
6133  * @gfp_mask: allocation mask
6134  *
6135  * This can be used to allocate a paged skb, given a maximal order for frags.
6136  */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int max_page_order,int * errcode,gfp_t gfp_mask)6137 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6138 				     unsigned long data_len,
6139 				     int max_page_order,
6140 				     int *errcode,
6141 				     gfp_t gfp_mask)
6142 {
6143 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6144 	unsigned long chunk;
6145 	struct sk_buff *skb;
6146 	struct page *page;
6147 	int i;
6148 
6149 	*errcode = -EMSGSIZE;
6150 	/* Note this test could be relaxed, if we succeed to allocate
6151 	 * high order pages...
6152 	 */
6153 	if (npages > MAX_SKB_FRAGS)
6154 		return NULL;
6155 
6156 	*errcode = -ENOBUFS;
6157 	skb = alloc_skb(header_len, gfp_mask);
6158 	if (!skb)
6159 		return NULL;
6160 
6161 	skb->truesize += npages << PAGE_SHIFT;
6162 
6163 	for (i = 0; npages > 0; i++) {
6164 		int order = max_page_order;
6165 
6166 		while (order) {
6167 			if (npages >= 1 << order) {
6168 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6169 						   __GFP_COMP |
6170 						   __GFP_NOWARN,
6171 						   order);
6172 				if (page)
6173 					goto fill_page;
6174 				/* Do not retry other high order allocations */
6175 				order = 1;
6176 				max_page_order = 0;
6177 			}
6178 			order--;
6179 		}
6180 		page = alloc_page(gfp_mask);
6181 		if (!page)
6182 			goto failure;
6183 fill_page:
6184 		chunk = min_t(unsigned long, data_len,
6185 			      PAGE_SIZE << order);
6186 		skb_fill_page_desc(skb, i, page, 0, chunk);
6187 		data_len -= chunk;
6188 		npages -= 1 << order;
6189 	}
6190 	return skb;
6191 
6192 failure:
6193 	kfree_skb(skb);
6194 	return NULL;
6195 }
6196 EXPORT_SYMBOL(alloc_skb_with_frags);
6197 
6198 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)6199 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6200 				    const int headlen, gfp_t gfp_mask)
6201 {
6202 	int i;
6203 	unsigned int size = skb_end_offset(skb);
6204 	int new_hlen = headlen - off;
6205 	u8 *data;
6206 
6207 	if (skb_pfmemalloc(skb))
6208 		gfp_mask |= __GFP_MEMALLOC;
6209 
6210 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6211 	if (!data)
6212 		return -ENOMEM;
6213 	size = SKB_WITH_OVERHEAD(size);
6214 
6215 	/* Copy real data, and all frags */
6216 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6217 	skb->len -= off;
6218 
6219 	memcpy((struct skb_shared_info *)(data + size),
6220 	       skb_shinfo(skb),
6221 	       offsetof(struct skb_shared_info,
6222 			frags[skb_shinfo(skb)->nr_frags]));
6223 	if (skb_cloned(skb)) {
6224 		/* drop the old head gracefully */
6225 		if (skb_orphan_frags(skb, gfp_mask)) {
6226 			kfree(data);
6227 			return -ENOMEM;
6228 		}
6229 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6230 			skb_frag_ref(skb, i);
6231 		if (skb_has_frag_list(skb))
6232 			skb_clone_fraglist(skb);
6233 		skb_release_data(skb);
6234 	} else {
6235 		/* we can reuse existing recount- all we did was
6236 		 * relocate values
6237 		 */
6238 		skb_free_head(skb);
6239 	}
6240 
6241 	skb->head = data;
6242 	skb->data = data;
6243 	skb->head_frag = 0;
6244 	skb_set_end_offset(skb, size);
6245 	skb_set_tail_pointer(skb, skb_headlen(skb));
6246 	skb_headers_offset_update(skb, 0);
6247 	skb->cloned = 0;
6248 	skb->hdr_len = 0;
6249 	skb->nohdr = 0;
6250 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6251 
6252 	return 0;
6253 }
6254 
6255 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6256 
6257 /* carve out the first eat bytes from skb's frag_list. May recurse into
6258  * pskb_carve()
6259  */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6260 static int pskb_carve_frag_list(struct sk_buff *skb,
6261 				struct skb_shared_info *shinfo, int eat,
6262 				gfp_t gfp_mask)
6263 {
6264 	struct sk_buff *list = shinfo->frag_list;
6265 	struct sk_buff *clone = NULL;
6266 	struct sk_buff *insp = NULL;
6267 
6268 	do {
6269 		if (!list) {
6270 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6271 			return -EFAULT;
6272 		}
6273 		if (list->len <= eat) {
6274 			/* Eaten as whole. */
6275 			eat -= list->len;
6276 			list = list->next;
6277 			insp = list;
6278 		} else {
6279 			/* Eaten partially. */
6280 			if (skb_shared(list)) {
6281 				clone = skb_clone(list, gfp_mask);
6282 				if (!clone)
6283 					return -ENOMEM;
6284 				insp = list->next;
6285 				list = clone;
6286 			} else {
6287 				/* This may be pulled without problems. */
6288 				insp = list;
6289 			}
6290 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6291 				kfree_skb(clone);
6292 				return -ENOMEM;
6293 			}
6294 			break;
6295 		}
6296 	} while (eat);
6297 
6298 	/* Free pulled out fragments. */
6299 	while ((list = shinfo->frag_list) != insp) {
6300 		shinfo->frag_list = list->next;
6301 		consume_skb(list);
6302 	}
6303 	/* And insert new clone at head. */
6304 	if (clone) {
6305 		clone->next = list;
6306 		shinfo->frag_list = clone;
6307 	}
6308 	return 0;
6309 }
6310 
6311 /* carve off first len bytes from skb. Split line (off) is in the
6312  * non-linear part of skb
6313  */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6314 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6315 				       int pos, gfp_t gfp_mask)
6316 {
6317 	int i, k = 0;
6318 	unsigned int size = skb_end_offset(skb);
6319 	u8 *data;
6320 	const int nfrags = skb_shinfo(skb)->nr_frags;
6321 	struct skb_shared_info *shinfo;
6322 
6323 	if (skb_pfmemalloc(skb))
6324 		gfp_mask |= __GFP_MEMALLOC;
6325 
6326 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6327 	if (!data)
6328 		return -ENOMEM;
6329 	size = SKB_WITH_OVERHEAD(size);
6330 
6331 	memcpy((struct skb_shared_info *)(data + size),
6332 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6333 	if (skb_orphan_frags(skb, gfp_mask)) {
6334 		kfree(data);
6335 		return -ENOMEM;
6336 	}
6337 	shinfo = (struct skb_shared_info *)(data + size);
6338 	for (i = 0; i < nfrags; i++) {
6339 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6340 
6341 		if (pos + fsize > off) {
6342 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6343 
6344 			if (pos < off) {
6345 				/* Split frag.
6346 				 * We have two variants in this case:
6347 				 * 1. Move all the frag to the second
6348 				 *    part, if it is possible. F.e.
6349 				 *    this approach is mandatory for TUX,
6350 				 *    where splitting is expensive.
6351 				 * 2. Split is accurately. We make this.
6352 				 */
6353 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6354 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6355 			}
6356 			skb_frag_ref(skb, i);
6357 			k++;
6358 		}
6359 		pos += fsize;
6360 	}
6361 	shinfo->nr_frags = k;
6362 	if (skb_has_frag_list(skb))
6363 		skb_clone_fraglist(skb);
6364 
6365 	/* split line is in frag list */
6366 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6367 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6368 		if (skb_has_frag_list(skb))
6369 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6370 		kfree(data);
6371 		return -ENOMEM;
6372 	}
6373 	skb_release_data(skb);
6374 
6375 	skb->head = data;
6376 	skb->head_frag = 0;
6377 	skb->data = data;
6378 	skb_set_end_offset(skb, size);
6379 	skb_reset_tail_pointer(skb);
6380 	skb_headers_offset_update(skb, 0);
6381 	skb->cloned   = 0;
6382 	skb->hdr_len  = 0;
6383 	skb->nohdr    = 0;
6384 	skb->len -= off;
6385 	skb->data_len = skb->len;
6386 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6387 	return 0;
6388 }
6389 
6390 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6391 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6392 {
6393 	int headlen = skb_headlen(skb);
6394 
6395 	if (len < headlen)
6396 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6397 	else
6398 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6399 }
6400 
6401 /* Extract to_copy bytes starting at off from skb, and return this in
6402  * a new skb
6403  */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6404 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6405 			     int to_copy, gfp_t gfp)
6406 {
6407 	struct sk_buff  *clone = skb_clone(skb, gfp);
6408 
6409 	if (!clone)
6410 		return NULL;
6411 
6412 	if (pskb_carve(clone, off, gfp) < 0 ||
6413 	    pskb_trim(clone, to_copy)) {
6414 		kfree_skb(clone);
6415 		return NULL;
6416 	}
6417 	return clone;
6418 }
6419 EXPORT_SYMBOL(pskb_extract);
6420 
6421 /**
6422  * skb_condense - try to get rid of fragments/frag_list if possible
6423  * @skb: buffer
6424  *
6425  * Can be used to save memory before skb is added to a busy queue.
6426  * If packet has bytes in frags and enough tail room in skb->head,
6427  * pull all of them, so that we can free the frags right now and adjust
6428  * truesize.
6429  * Notes:
6430  *	We do not reallocate skb->head thus can not fail.
6431  *	Caller must re-evaluate skb->truesize if needed.
6432  */
skb_condense(struct sk_buff * skb)6433 void skb_condense(struct sk_buff *skb)
6434 {
6435 	if (skb->data_len) {
6436 		if (skb->data_len > skb->end - skb->tail ||
6437 		    skb_cloned(skb))
6438 			return;
6439 
6440 		/* Nice, we can free page frag(s) right now */
6441 		__pskb_pull_tail(skb, skb->data_len);
6442 	}
6443 	/* At this point, skb->truesize might be over estimated,
6444 	 * because skb had a fragment, and fragments do not tell
6445 	 * their truesize.
6446 	 * When we pulled its content into skb->head, fragment
6447 	 * was freed, but __pskb_pull_tail() could not possibly
6448 	 * adjust skb->truesize, not knowing the frag truesize.
6449 	 */
6450 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6451 }
6452 
6453 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6454 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6455 {
6456 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6457 }
6458 
6459 /**
6460  * __skb_ext_alloc - allocate a new skb extensions storage
6461  *
6462  * @flags: See kmalloc().
6463  *
6464  * Returns the newly allocated pointer. The pointer can later attached to a
6465  * skb via __skb_ext_set().
6466  * Note: caller must handle the skb_ext as an opaque data.
6467  */
__skb_ext_alloc(gfp_t flags)6468 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6469 {
6470 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6471 
6472 	if (new) {
6473 		memset(new->offset, 0, sizeof(new->offset));
6474 		refcount_set(&new->refcnt, 1);
6475 	}
6476 
6477 	return new;
6478 }
6479 
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6480 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6481 					 unsigned int old_active)
6482 {
6483 	struct skb_ext *new;
6484 
6485 	if (refcount_read(&old->refcnt) == 1)
6486 		return old;
6487 
6488 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6489 	if (!new)
6490 		return NULL;
6491 
6492 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6493 	refcount_set(&new->refcnt, 1);
6494 
6495 #ifdef CONFIG_XFRM
6496 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6497 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6498 		unsigned int i;
6499 
6500 		for (i = 0; i < sp->len; i++)
6501 			xfrm_state_hold(sp->xvec[i]);
6502 	}
6503 #endif
6504 	__skb_ext_put(old);
6505 	return new;
6506 }
6507 
6508 /**
6509  * __skb_ext_set - attach the specified extension storage to this skb
6510  * @skb: buffer
6511  * @id: extension id
6512  * @ext: extension storage previously allocated via __skb_ext_alloc()
6513  *
6514  * Existing extensions, if any, are cleared.
6515  *
6516  * Returns the pointer to the extension.
6517  */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)6518 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6519 		    struct skb_ext *ext)
6520 {
6521 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6522 
6523 	skb_ext_put(skb);
6524 	newlen = newoff + skb_ext_type_len[id];
6525 	ext->chunks = newlen;
6526 	ext->offset[id] = newoff;
6527 	skb->extensions = ext;
6528 	skb->active_extensions = 1 << id;
6529 	return skb_ext_get_ptr(ext, id);
6530 }
6531 
6532 /**
6533  * skb_ext_add - allocate space for given extension, COW if needed
6534  * @skb: buffer
6535  * @id: extension to allocate space for
6536  *
6537  * Allocates enough space for the given extension.
6538  * If the extension is already present, a pointer to that extension
6539  * is returned.
6540  *
6541  * If the skb was cloned, COW applies and the returned memory can be
6542  * modified without changing the extension space of clones buffers.
6543  *
6544  * Returns pointer to the extension or NULL on allocation failure.
6545  */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)6546 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6547 {
6548 	struct skb_ext *new, *old = NULL;
6549 	unsigned int newlen, newoff;
6550 
6551 	if (skb->active_extensions) {
6552 		old = skb->extensions;
6553 
6554 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6555 		if (!new)
6556 			return NULL;
6557 
6558 		if (__skb_ext_exist(new, id))
6559 			goto set_active;
6560 
6561 		newoff = new->chunks;
6562 	} else {
6563 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6564 
6565 		new = __skb_ext_alloc(GFP_ATOMIC);
6566 		if (!new)
6567 			return NULL;
6568 	}
6569 
6570 	newlen = newoff + skb_ext_type_len[id];
6571 	new->chunks = newlen;
6572 	new->offset[id] = newoff;
6573 set_active:
6574 	skb->slow_gro = 1;
6575 	skb->extensions = new;
6576 	skb->active_extensions |= 1 << id;
6577 	return skb_ext_get_ptr(new, id);
6578 }
6579 EXPORT_SYMBOL(skb_ext_add);
6580 
6581 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)6582 static void skb_ext_put_sp(struct sec_path *sp)
6583 {
6584 	unsigned int i;
6585 
6586 	for (i = 0; i < sp->len; i++)
6587 		xfrm_state_put(sp->xvec[i]);
6588 }
6589 #endif
6590 
6591 #ifdef CONFIG_MCTP_FLOWS
skb_ext_put_mctp(struct mctp_flow * flow)6592 static void skb_ext_put_mctp(struct mctp_flow *flow)
6593 {
6594 	if (flow->key)
6595 		mctp_key_unref(flow->key);
6596 }
6597 #endif
6598 
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)6599 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6600 {
6601 	struct skb_ext *ext = skb->extensions;
6602 
6603 	skb->active_extensions &= ~(1 << id);
6604 	if (skb->active_extensions == 0) {
6605 		skb->extensions = NULL;
6606 		__skb_ext_put(ext);
6607 #ifdef CONFIG_XFRM
6608 	} else if (id == SKB_EXT_SEC_PATH &&
6609 		   refcount_read(&ext->refcnt) == 1) {
6610 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6611 
6612 		skb_ext_put_sp(sp);
6613 		sp->len = 0;
6614 #endif
6615 	}
6616 }
6617 EXPORT_SYMBOL(__skb_ext_del);
6618 
__skb_ext_put(struct skb_ext * ext)6619 void __skb_ext_put(struct skb_ext *ext)
6620 {
6621 	/* If this is last clone, nothing can increment
6622 	 * it after check passes.  Avoids one atomic op.
6623 	 */
6624 	if (refcount_read(&ext->refcnt) == 1)
6625 		goto free_now;
6626 
6627 	if (!refcount_dec_and_test(&ext->refcnt))
6628 		return;
6629 free_now:
6630 #ifdef CONFIG_XFRM
6631 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6632 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6633 #endif
6634 #ifdef CONFIG_MCTP_FLOWS
6635 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6636 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6637 #endif
6638 
6639 	kmem_cache_free(skbuff_ext_cache, ext);
6640 }
6641 EXPORT_SYMBOL(__skb_ext_put);
6642 #endif /* CONFIG_SKB_EXTENSIONS */
6643 
6644 /**
6645  * skb_attempt_defer_free - queue skb for remote freeing
6646  * @skb: buffer
6647  *
6648  * Put @skb in a per-cpu list, using the cpu which
6649  * allocated the skb/pages to reduce false sharing
6650  * and memory zone spinlock contention.
6651  */
skb_attempt_defer_free(struct sk_buff * skb)6652 void skb_attempt_defer_free(struct sk_buff *skb)
6653 {
6654 	int cpu = skb->alloc_cpu;
6655 	struct softnet_data *sd;
6656 	unsigned long flags;
6657 	unsigned int defer_max;
6658 	bool kick;
6659 
6660 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6661 	    !cpu_online(cpu) ||
6662 	    cpu == raw_smp_processor_id()) {
6663 nodefer:	__kfree_skb(skb);
6664 		return;
6665 	}
6666 
6667 	sd = &per_cpu(softnet_data, cpu);
6668 	defer_max = READ_ONCE(sysctl_skb_defer_max);
6669 	if (READ_ONCE(sd->defer_count) >= defer_max)
6670 		goto nodefer;
6671 
6672 	spin_lock_irqsave(&sd->defer_lock, flags);
6673 	/* Send an IPI every time queue reaches half capacity. */
6674 	kick = sd->defer_count == (defer_max >> 1);
6675 	/* Paired with the READ_ONCE() few lines above */
6676 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6677 
6678 	skb->next = sd->defer_list;
6679 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
6680 	WRITE_ONCE(sd->defer_list, skb);
6681 	spin_unlock_irqrestore(&sd->defer_lock, flags);
6682 
6683 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6684 	 * if we are unlucky enough (this seems very unlikely).
6685 	 */
6686 	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6687 		smp_call_function_single_async(cpu, &sd->defer_csd);
6688 }
6689