1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pm_domain.h>
24 #include <linux/property.h>
25 #include <linux/export.h>
26 #include <linux/sched/rt.h>
27 #include <uapi/linux/sched/types.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/ioport.h>
31 #include <linux/acpi.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/platform_data/x86/apple.h>
35 #include <linux/ptp_clock_kernel.h>
36 #include <linux/percpu.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42
43 #include "internals.h"
44
45 static DEFINE_IDR(spi_master_idr);
46
spidev_release(struct device * dev)47 static void spidev_release(struct device *dev)
48 {
49 struct spi_device *spi = to_spi_device(dev);
50
51 spi_controller_put(spi->controller);
52 kfree(spi->driver_override);
53 free_percpu(spi->pcpu_statistics);
54 kfree(spi);
55 }
56
57 static ssize_t
modalias_show(struct device * dev,struct device_attribute * a,char * buf)58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 const struct spi_device *spi = to_spi_device(dev);
61 int len;
62
63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 if (len != -ENODEV)
65 return len;
66
67 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
driver_override_store(struct device * dev,struct device_attribute * a,const char * buf,size_t count)71 static ssize_t driver_override_store(struct device *dev,
72 struct device_attribute *a,
73 const char *buf, size_t count)
74 {
75 struct spi_device *spi = to_spi_device(dev);
76 int ret;
77
78 ret = driver_set_override(dev, &spi->driver_override, buf, count);
79 if (ret)
80 return ret;
81
82 return count;
83 }
84
driver_override_show(struct device * dev,struct device_attribute * a,char * buf)85 static ssize_t driver_override_show(struct device *dev,
86 struct device_attribute *a, char *buf)
87 {
88 const struct spi_device *spi = to_spi_device(dev);
89 ssize_t len;
90
91 device_lock(dev);
92 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
93 device_unlock(dev);
94 return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97
spi_alloc_pcpu_stats(struct device * dev)98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100 struct spi_statistics __percpu *pcpu_stats;
101
102 if (dev)
103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104 else
105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106
107 if (pcpu_stats) {
108 int cpu;
109
110 for_each_possible_cpu(cpu) {
111 struct spi_statistics *stat;
112
113 stat = per_cpu_ptr(pcpu_stats, cpu);
114 u64_stats_init(&stat->syncp);
115 }
116 }
117 return pcpu_stats;
118 }
119
120 #define spi_pcpu_stats_totalize(ret, in, field) \
121 do { \
122 int i; \
123 ret = 0; \
124 for_each_possible_cpu(i) { \
125 const struct spi_statistics *pcpu_stats; \
126 u64 inc; \
127 unsigned int start; \
128 pcpu_stats = per_cpu_ptr(in, i); \
129 do { \
130 start = u64_stats_fetch_begin_irq( \
131 &pcpu_stats->syncp); \
132 inc = u64_stats_read(&pcpu_stats->field); \
133 } while (u64_stats_fetch_retry_irq( \
134 &pcpu_stats->syncp, start)); \
135 ret += inc; \
136 } \
137 } while (0)
138
139 #define SPI_STATISTICS_ATTRS(field, file) \
140 static ssize_t spi_controller_##field##_show(struct device *dev, \
141 struct device_attribute *attr, \
142 char *buf) \
143 { \
144 struct spi_controller *ctlr = container_of(dev, \
145 struct spi_controller, dev); \
146 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
147 } \
148 static struct device_attribute dev_attr_spi_controller_##field = { \
149 .attr = { .name = file, .mode = 0444 }, \
150 .show = spi_controller_##field##_show, \
151 }; \
152 static ssize_t spi_device_##field##_show(struct device *dev, \
153 struct device_attribute *attr, \
154 char *buf) \
155 { \
156 struct spi_device *spi = to_spi_device(dev); \
157 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
158 } \
159 static struct device_attribute dev_attr_spi_device_##field = { \
160 .attr = { .name = file, .mode = 0444 }, \
161 .show = spi_device_##field##_show, \
162 }
163
164 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \
165 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
166 char *buf) \
167 { \
168 ssize_t len; \
169 u64 val; \
170 spi_pcpu_stats_totalize(val, stat, field); \
171 len = sysfs_emit(buf, "%llu\n", val); \
172 return len; \
173 } \
174 SPI_STATISTICS_ATTRS(name, file)
175
176 #define SPI_STATISTICS_SHOW(field) \
177 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
178 field)
179
180 SPI_STATISTICS_SHOW(messages);
181 SPI_STATISTICS_SHOW(transfers);
182 SPI_STATISTICS_SHOW(errors);
183 SPI_STATISTICS_SHOW(timedout);
184
185 SPI_STATISTICS_SHOW(spi_sync);
186 SPI_STATISTICS_SHOW(spi_sync_immediate);
187 SPI_STATISTICS_SHOW(spi_async);
188
189 SPI_STATISTICS_SHOW(bytes);
190 SPI_STATISTICS_SHOW(bytes_rx);
191 SPI_STATISTICS_SHOW(bytes_tx);
192
193 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
194 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
195 "transfer_bytes_histo_" number, \
196 transfer_bytes_histo[index])
197 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
214
215 SPI_STATISTICS_SHOW(transfers_split_maxsize);
216
217 static struct attribute *spi_dev_attrs[] = {
218 &dev_attr_modalias.attr,
219 &dev_attr_driver_override.attr,
220 NULL,
221 };
222
223 static const struct attribute_group spi_dev_group = {
224 .attrs = spi_dev_attrs,
225 };
226
227 static struct attribute *spi_device_statistics_attrs[] = {
228 &dev_attr_spi_device_messages.attr,
229 &dev_attr_spi_device_transfers.attr,
230 &dev_attr_spi_device_errors.attr,
231 &dev_attr_spi_device_timedout.attr,
232 &dev_attr_spi_device_spi_sync.attr,
233 &dev_attr_spi_device_spi_sync_immediate.attr,
234 &dev_attr_spi_device_spi_async.attr,
235 &dev_attr_spi_device_bytes.attr,
236 &dev_attr_spi_device_bytes_rx.attr,
237 &dev_attr_spi_device_bytes_tx.attr,
238 &dev_attr_spi_device_transfer_bytes_histo0.attr,
239 &dev_attr_spi_device_transfer_bytes_histo1.attr,
240 &dev_attr_spi_device_transfer_bytes_histo2.attr,
241 &dev_attr_spi_device_transfer_bytes_histo3.attr,
242 &dev_attr_spi_device_transfer_bytes_histo4.attr,
243 &dev_attr_spi_device_transfer_bytes_histo5.attr,
244 &dev_attr_spi_device_transfer_bytes_histo6.attr,
245 &dev_attr_spi_device_transfer_bytes_histo7.attr,
246 &dev_attr_spi_device_transfer_bytes_histo8.attr,
247 &dev_attr_spi_device_transfer_bytes_histo9.attr,
248 &dev_attr_spi_device_transfer_bytes_histo10.attr,
249 &dev_attr_spi_device_transfer_bytes_histo11.attr,
250 &dev_attr_spi_device_transfer_bytes_histo12.attr,
251 &dev_attr_spi_device_transfer_bytes_histo13.attr,
252 &dev_attr_spi_device_transfer_bytes_histo14.attr,
253 &dev_attr_spi_device_transfer_bytes_histo15.attr,
254 &dev_attr_spi_device_transfer_bytes_histo16.attr,
255 &dev_attr_spi_device_transfers_split_maxsize.attr,
256 NULL,
257 };
258
259 static const struct attribute_group spi_device_statistics_group = {
260 .name = "statistics",
261 .attrs = spi_device_statistics_attrs,
262 };
263
264 static const struct attribute_group *spi_dev_groups[] = {
265 &spi_dev_group,
266 &spi_device_statistics_group,
267 NULL,
268 };
269
270 static struct attribute *spi_controller_statistics_attrs[] = {
271 &dev_attr_spi_controller_messages.attr,
272 &dev_attr_spi_controller_transfers.attr,
273 &dev_attr_spi_controller_errors.attr,
274 &dev_attr_spi_controller_timedout.attr,
275 &dev_attr_spi_controller_spi_sync.attr,
276 &dev_attr_spi_controller_spi_sync_immediate.attr,
277 &dev_attr_spi_controller_spi_async.attr,
278 &dev_attr_spi_controller_bytes.attr,
279 &dev_attr_spi_controller_bytes_rx.attr,
280 &dev_attr_spi_controller_bytes_tx.attr,
281 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
282 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
283 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
284 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
285 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
286 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
287 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
288 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
289 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
290 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
291 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
292 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
293 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
294 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
295 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
296 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
297 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
298 &dev_attr_spi_controller_transfers_split_maxsize.attr,
299 NULL,
300 };
301
302 static const struct attribute_group spi_controller_statistics_group = {
303 .name = "statistics",
304 .attrs = spi_controller_statistics_attrs,
305 };
306
307 static const struct attribute_group *spi_master_groups[] = {
308 &spi_controller_statistics_group,
309 NULL,
310 };
311
spi_statistics_add_transfer_stats(struct spi_statistics __percpu * pcpu_stats,struct spi_transfer * xfer,struct spi_controller * ctlr)312 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
313 struct spi_transfer *xfer,
314 struct spi_controller *ctlr)
315 {
316 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
317 struct spi_statistics *stats;
318
319 if (l2len < 0)
320 l2len = 0;
321
322 get_cpu();
323 stats = this_cpu_ptr(pcpu_stats);
324 u64_stats_update_begin(&stats->syncp);
325
326 u64_stats_inc(&stats->transfers);
327 u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
328
329 u64_stats_add(&stats->bytes, xfer->len);
330 if ((xfer->tx_buf) &&
331 (xfer->tx_buf != ctlr->dummy_tx))
332 u64_stats_add(&stats->bytes_tx, xfer->len);
333 if ((xfer->rx_buf) &&
334 (xfer->rx_buf != ctlr->dummy_rx))
335 u64_stats_add(&stats->bytes_rx, xfer->len);
336
337 u64_stats_update_end(&stats->syncp);
338 put_cpu();
339 }
340
341 /*
342 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
343 * and the sysfs version makes coldplug work too.
344 */
spi_match_id(const struct spi_device_id * id,const char * name)345 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
346 {
347 while (id->name[0]) {
348 if (!strcmp(name, id->name))
349 return id;
350 id++;
351 }
352 return NULL;
353 }
354
spi_get_device_id(const struct spi_device * sdev)355 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
356 {
357 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
358
359 return spi_match_id(sdrv->id_table, sdev->modalias);
360 }
361 EXPORT_SYMBOL_GPL(spi_get_device_id);
362
spi_get_device_match_data(const struct spi_device * sdev)363 const void *spi_get_device_match_data(const struct spi_device *sdev)
364 {
365 const void *match;
366
367 match = device_get_match_data(&sdev->dev);
368 if (match)
369 return match;
370
371 return (const void *)spi_get_device_id(sdev)->driver_data;
372 }
373 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
374
spi_match_device(struct device * dev,struct device_driver * drv)375 static int spi_match_device(struct device *dev, struct device_driver *drv)
376 {
377 const struct spi_device *spi = to_spi_device(dev);
378 const struct spi_driver *sdrv = to_spi_driver(drv);
379
380 /* Check override first, and if set, only use the named driver */
381 if (spi->driver_override)
382 return strcmp(spi->driver_override, drv->name) == 0;
383
384 /* Attempt an OF style match */
385 if (of_driver_match_device(dev, drv))
386 return 1;
387
388 /* Then try ACPI */
389 if (acpi_driver_match_device(dev, drv))
390 return 1;
391
392 if (sdrv->id_table)
393 return !!spi_match_id(sdrv->id_table, spi->modalias);
394
395 return strcmp(spi->modalias, drv->name) == 0;
396 }
397
spi_uevent(struct device * dev,struct kobj_uevent_env * env)398 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
399 {
400 const struct spi_device *spi = to_spi_device(dev);
401 int rc;
402
403 rc = acpi_device_uevent_modalias(dev, env);
404 if (rc != -ENODEV)
405 return rc;
406
407 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
408 }
409
spi_probe(struct device * dev)410 static int spi_probe(struct device *dev)
411 {
412 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
413 struct spi_device *spi = to_spi_device(dev);
414 int ret;
415
416 ret = of_clk_set_defaults(dev->of_node, false);
417 if (ret)
418 return ret;
419
420 if (dev->of_node) {
421 spi->irq = of_irq_get(dev->of_node, 0);
422 if (spi->irq == -EPROBE_DEFER)
423 return -EPROBE_DEFER;
424 if (spi->irq < 0)
425 spi->irq = 0;
426 }
427
428 ret = dev_pm_domain_attach(dev, true);
429 if (ret)
430 return ret;
431
432 if (sdrv->probe) {
433 ret = sdrv->probe(spi);
434 if (ret)
435 dev_pm_domain_detach(dev, true);
436 }
437
438 return ret;
439 }
440
spi_remove(struct device * dev)441 static void spi_remove(struct device *dev)
442 {
443 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
444
445 if (sdrv->remove)
446 sdrv->remove(to_spi_device(dev));
447
448 dev_pm_domain_detach(dev, true);
449 }
450
spi_shutdown(struct device * dev)451 static void spi_shutdown(struct device *dev)
452 {
453 if (dev->driver) {
454 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
455
456 if (sdrv->shutdown)
457 sdrv->shutdown(to_spi_device(dev));
458 }
459 }
460
461 struct bus_type spi_bus_type = {
462 .name = "spi",
463 .dev_groups = spi_dev_groups,
464 .match = spi_match_device,
465 .uevent = spi_uevent,
466 .probe = spi_probe,
467 .remove = spi_remove,
468 .shutdown = spi_shutdown,
469 };
470 EXPORT_SYMBOL_GPL(spi_bus_type);
471
472 /**
473 * __spi_register_driver - register a SPI driver
474 * @owner: owner module of the driver to register
475 * @sdrv: the driver to register
476 * Context: can sleep
477 *
478 * Return: zero on success, else a negative error code.
479 */
__spi_register_driver(struct module * owner,struct spi_driver * sdrv)480 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
481 {
482 sdrv->driver.owner = owner;
483 sdrv->driver.bus = &spi_bus_type;
484
485 /*
486 * For Really Good Reasons we use spi: modaliases not of:
487 * modaliases for DT so module autoloading won't work if we
488 * don't have a spi_device_id as well as a compatible string.
489 */
490 if (sdrv->driver.of_match_table) {
491 const struct of_device_id *of_id;
492
493 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
494 of_id++) {
495 const char *of_name;
496
497 /* Strip off any vendor prefix */
498 of_name = strnchr(of_id->compatible,
499 sizeof(of_id->compatible), ',');
500 if (of_name)
501 of_name++;
502 else
503 of_name = of_id->compatible;
504
505 if (sdrv->id_table) {
506 const struct spi_device_id *spi_id;
507
508 spi_id = spi_match_id(sdrv->id_table, of_name);
509 if (spi_id)
510 continue;
511 } else {
512 if (strcmp(sdrv->driver.name, of_name) == 0)
513 continue;
514 }
515
516 pr_warn("SPI driver %s has no spi_device_id for %s\n",
517 sdrv->driver.name, of_id->compatible);
518 }
519 }
520
521 return driver_register(&sdrv->driver);
522 }
523 EXPORT_SYMBOL_GPL(__spi_register_driver);
524
525 /*-------------------------------------------------------------------------*/
526
527 /*
528 * SPI devices should normally not be created by SPI device drivers; that
529 * would make them board-specific. Similarly with SPI controller drivers.
530 * Device registration normally goes into like arch/.../mach.../board-YYY.c
531 * with other readonly (flashable) information about mainboard devices.
532 */
533
534 struct boardinfo {
535 struct list_head list;
536 struct spi_board_info board_info;
537 };
538
539 static LIST_HEAD(board_list);
540 static LIST_HEAD(spi_controller_list);
541
542 /*
543 * Used to protect add/del operation for board_info list and
544 * spi_controller list, and their matching process also used
545 * to protect object of type struct idr.
546 */
547 static DEFINE_MUTEX(board_lock);
548
549 /**
550 * spi_alloc_device - Allocate a new SPI device
551 * @ctlr: Controller to which device is connected
552 * Context: can sleep
553 *
554 * Allows a driver to allocate and initialize a spi_device without
555 * registering it immediately. This allows a driver to directly
556 * fill the spi_device with device parameters before calling
557 * spi_add_device() on it.
558 *
559 * Caller is responsible to call spi_add_device() on the returned
560 * spi_device structure to add it to the SPI controller. If the caller
561 * needs to discard the spi_device without adding it, then it should
562 * call spi_dev_put() on it.
563 *
564 * Return: a pointer to the new device, or NULL.
565 */
spi_alloc_device(struct spi_controller * ctlr)566 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
567 {
568 struct spi_device *spi;
569
570 if (!spi_controller_get(ctlr))
571 return NULL;
572
573 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
574 if (!spi) {
575 spi_controller_put(ctlr);
576 return NULL;
577 }
578
579 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
580 if (!spi->pcpu_statistics) {
581 kfree(spi);
582 spi_controller_put(ctlr);
583 return NULL;
584 }
585
586 spi->master = spi->controller = ctlr;
587 spi->dev.parent = &ctlr->dev;
588 spi->dev.bus = &spi_bus_type;
589 spi->dev.release = spidev_release;
590 spi->mode = ctlr->buswidth_override_bits;
591
592 device_initialize(&spi->dev);
593 return spi;
594 }
595 EXPORT_SYMBOL_GPL(spi_alloc_device);
596
spi_dev_set_name(struct spi_device * spi)597 static void spi_dev_set_name(struct spi_device *spi)
598 {
599 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
600
601 if (adev) {
602 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
603 return;
604 }
605
606 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
607 spi_get_chipselect(spi, 0));
608 }
609
spi_dev_check(struct device * dev,void * data)610 static int spi_dev_check(struct device *dev, void *data)
611 {
612 struct spi_device *spi = to_spi_device(dev);
613 struct spi_device *new_spi = data;
614
615 if (spi->controller == new_spi->controller &&
616 spi_get_chipselect(spi, 0) == spi_get_chipselect(new_spi, 0))
617 return -EBUSY;
618 return 0;
619 }
620
spi_cleanup(struct spi_device * spi)621 static void spi_cleanup(struct spi_device *spi)
622 {
623 if (spi->controller->cleanup)
624 spi->controller->cleanup(spi);
625 }
626
__spi_add_device(struct spi_device * spi)627 static int __spi_add_device(struct spi_device *spi)
628 {
629 struct spi_controller *ctlr = spi->controller;
630 struct device *dev = ctlr->dev.parent;
631 int status;
632
633 /*
634 * We need to make sure there's no other device with this
635 * chipselect **BEFORE** we call setup(), else we'll trash
636 * its configuration.
637 */
638 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
639 if (status) {
640 dev_err(dev, "chipselect %d already in use\n",
641 spi_get_chipselect(spi, 0));
642 return status;
643 }
644
645 /* Controller may unregister concurrently */
646 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
647 !device_is_registered(&ctlr->dev)) {
648 return -ENODEV;
649 }
650
651 if (ctlr->cs_gpiods)
652 spi_set_csgpiod(spi, 0, ctlr->cs_gpiods[spi_get_chipselect(spi, 0)]);
653
654 /*
655 * Drivers may modify this initial i/o setup, but will
656 * normally rely on the device being setup. Devices
657 * using SPI_CS_HIGH can't coexist well otherwise...
658 */
659 status = spi_setup(spi);
660 if (status < 0) {
661 dev_err(dev, "can't setup %s, status %d\n",
662 dev_name(&spi->dev), status);
663 return status;
664 }
665
666 /* Device may be bound to an active driver when this returns */
667 status = device_add(&spi->dev);
668 if (status < 0) {
669 dev_err(dev, "can't add %s, status %d\n",
670 dev_name(&spi->dev), status);
671 spi_cleanup(spi);
672 } else {
673 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
674 }
675
676 return status;
677 }
678
679 /**
680 * spi_add_device - Add spi_device allocated with spi_alloc_device
681 * @spi: spi_device to register
682 *
683 * Companion function to spi_alloc_device. Devices allocated with
684 * spi_alloc_device can be added onto the spi bus with this function.
685 *
686 * Return: 0 on success; negative errno on failure
687 */
spi_add_device(struct spi_device * spi)688 int spi_add_device(struct spi_device *spi)
689 {
690 struct spi_controller *ctlr = spi->controller;
691 struct device *dev = ctlr->dev.parent;
692 int status;
693
694 /* Chipselects are numbered 0..max; validate. */
695 if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) {
696 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0),
697 ctlr->num_chipselect);
698 return -EINVAL;
699 }
700
701 /* Set the bus ID string */
702 spi_dev_set_name(spi);
703
704 mutex_lock(&ctlr->add_lock);
705 status = __spi_add_device(spi);
706 mutex_unlock(&ctlr->add_lock);
707 return status;
708 }
709 EXPORT_SYMBOL_GPL(spi_add_device);
710
spi_add_device_locked(struct spi_device * spi)711 static int spi_add_device_locked(struct spi_device *spi)
712 {
713 struct spi_controller *ctlr = spi->controller;
714 struct device *dev = ctlr->dev.parent;
715
716 /* Chipselects are numbered 0..max; validate. */
717 if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) {
718 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0),
719 ctlr->num_chipselect);
720 return -EINVAL;
721 }
722
723 /* Set the bus ID string */
724 spi_dev_set_name(spi);
725
726 WARN_ON(!mutex_is_locked(&ctlr->add_lock));
727 return __spi_add_device(spi);
728 }
729
730 /**
731 * spi_new_device - instantiate one new SPI device
732 * @ctlr: Controller to which device is connected
733 * @chip: Describes the SPI device
734 * Context: can sleep
735 *
736 * On typical mainboards, this is purely internal; and it's not needed
737 * after board init creates the hard-wired devices. Some development
738 * platforms may not be able to use spi_register_board_info though, and
739 * this is exported so that for example a USB or parport based adapter
740 * driver could add devices (which it would learn about out-of-band).
741 *
742 * Return: the new device, or NULL.
743 */
spi_new_device(struct spi_controller * ctlr,struct spi_board_info * chip)744 struct spi_device *spi_new_device(struct spi_controller *ctlr,
745 struct spi_board_info *chip)
746 {
747 struct spi_device *proxy;
748 int status;
749
750 /*
751 * NOTE: caller did any chip->bus_num checks necessary.
752 *
753 * Also, unless we change the return value convention to use
754 * error-or-pointer (not NULL-or-pointer), troubleshootability
755 * suggests syslogged diagnostics are best here (ugh).
756 */
757
758 proxy = spi_alloc_device(ctlr);
759 if (!proxy)
760 return NULL;
761
762 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
763
764 spi_set_chipselect(proxy, 0, chip->chip_select);
765 proxy->max_speed_hz = chip->max_speed_hz;
766 proxy->mode = chip->mode;
767 proxy->irq = chip->irq;
768 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
769 proxy->dev.platform_data = (void *) chip->platform_data;
770 proxy->controller_data = chip->controller_data;
771 proxy->controller_state = NULL;
772
773 if (chip->swnode) {
774 status = device_add_software_node(&proxy->dev, chip->swnode);
775 if (status) {
776 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
777 chip->modalias, status);
778 goto err_dev_put;
779 }
780 }
781
782 status = spi_add_device(proxy);
783 if (status < 0)
784 goto err_dev_put;
785
786 return proxy;
787
788 err_dev_put:
789 device_remove_software_node(&proxy->dev);
790 spi_dev_put(proxy);
791 return NULL;
792 }
793 EXPORT_SYMBOL_GPL(spi_new_device);
794
795 /**
796 * spi_unregister_device - unregister a single SPI device
797 * @spi: spi_device to unregister
798 *
799 * Start making the passed SPI device vanish. Normally this would be handled
800 * by spi_unregister_controller().
801 */
spi_unregister_device(struct spi_device * spi)802 void spi_unregister_device(struct spi_device *spi)
803 {
804 if (!spi)
805 return;
806
807 if (spi->dev.of_node) {
808 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
809 of_node_put(spi->dev.of_node);
810 }
811 if (ACPI_COMPANION(&spi->dev))
812 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
813 device_remove_software_node(&spi->dev);
814 device_del(&spi->dev);
815 spi_cleanup(spi);
816 put_device(&spi->dev);
817 }
818 EXPORT_SYMBOL_GPL(spi_unregister_device);
819
spi_match_controller_to_boardinfo(struct spi_controller * ctlr,struct spi_board_info * bi)820 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
821 struct spi_board_info *bi)
822 {
823 struct spi_device *dev;
824
825 if (ctlr->bus_num != bi->bus_num)
826 return;
827
828 dev = spi_new_device(ctlr, bi);
829 if (!dev)
830 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
831 bi->modalias);
832 }
833
834 /**
835 * spi_register_board_info - register SPI devices for a given board
836 * @info: array of chip descriptors
837 * @n: how many descriptors are provided
838 * Context: can sleep
839 *
840 * Board-specific early init code calls this (probably during arch_initcall)
841 * with segments of the SPI device table. Any device nodes are created later,
842 * after the relevant parent SPI controller (bus_num) is defined. We keep
843 * this table of devices forever, so that reloading a controller driver will
844 * not make Linux forget about these hard-wired devices.
845 *
846 * Other code can also call this, e.g. a particular add-on board might provide
847 * SPI devices through its expansion connector, so code initializing that board
848 * would naturally declare its SPI devices.
849 *
850 * The board info passed can safely be __initdata ... but be careful of
851 * any embedded pointers (platform_data, etc), they're copied as-is.
852 *
853 * Return: zero on success, else a negative error code.
854 */
spi_register_board_info(struct spi_board_info const * info,unsigned n)855 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
856 {
857 struct boardinfo *bi;
858 int i;
859
860 if (!n)
861 return 0;
862
863 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
864 if (!bi)
865 return -ENOMEM;
866
867 for (i = 0; i < n; i++, bi++, info++) {
868 struct spi_controller *ctlr;
869
870 memcpy(&bi->board_info, info, sizeof(*info));
871
872 mutex_lock(&board_lock);
873 list_add_tail(&bi->list, &board_list);
874 list_for_each_entry(ctlr, &spi_controller_list, list)
875 spi_match_controller_to_boardinfo(ctlr,
876 &bi->board_info);
877 mutex_unlock(&board_lock);
878 }
879
880 return 0;
881 }
882
883 /*-------------------------------------------------------------------------*/
884
885 /* Core methods for SPI resource management */
886
887 /**
888 * spi_res_alloc - allocate a spi resource that is life-cycle managed
889 * during the processing of a spi_message while using
890 * spi_transfer_one
891 * @spi: the spi device for which we allocate memory
892 * @release: the release code to execute for this resource
893 * @size: size to alloc and return
894 * @gfp: GFP allocation flags
895 *
896 * Return: the pointer to the allocated data
897 *
898 * This may get enhanced in the future to allocate from a memory pool
899 * of the @spi_device or @spi_controller to avoid repeated allocations.
900 */
spi_res_alloc(struct spi_device * spi,spi_res_release_t release,size_t size,gfp_t gfp)901 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
902 size_t size, gfp_t gfp)
903 {
904 struct spi_res *sres;
905
906 sres = kzalloc(sizeof(*sres) + size, gfp);
907 if (!sres)
908 return NULL;
909
910 INIT_LIST_HEAD(&sres->entry);
911 sres->release = release;
912
913 return sres->data;
914 }
915
916 /**
917 * spi_res_free - free an spi resource
918 * @res: pointer to the custom data of a resource
919 */
spi_res_free(void * res)920 static void spi_res_free(void *res)
921 {
922 struct spi_res *sres = container_of(res, struct spi_res, data);
923
924 if (!res)
925 return;
926
927 WARN_ON(!list_empty(&sres->entry));
928 kfree(sres);
929 }
930
931 /**
932 * spi_res_add - add a spi_res to the spi_message
933 * @message: the spi message
934 * @res: the spi_resource
935 */
spi_res_add(struct spi_message * message,void * res)936 static void spi_res_add(struct spi_message *message, void *res)
937 {
938 struct spi_res *sres = container_of(res, struct spi_res, data);
939
940 WARN_ON(!list_empty(&sres->entry));
941 list_add_tail(&sres->entry, &message->resources);
942 }
943
944 /**
945 * spi_res_release - release all spi resources for this message
946 * @ctlr: the @spi_controller
947 * @message: the @spi_message
948 */
spi_res_release(struct spi_controller * ctlr,struct spi_message * message)949 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
950 {
951 struct spi_res *res, *tmp;
952
953 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
954 if (res->release)
955 res->release(ctlr, message, res->data);
956
957 list_del(&res->entry);
958
959 kfree(res);
960 }
961 }
962
963 /*-------------------------------------------------------------------------*/
964
spi_set_cs(struct spi_device * spi,bool enable,bool force)965 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
966 {
967 bool activate = enable;
968
969 /*
970 * Avoid calling into the driver (or doing delays) if the chip select
971 * isn't actually changing from the last time this was called.
972 */
973 if (!force && ((enable && spi->controller->last_cs == spi_get_chipselect(spi, 0)) ||
974 (!enable && spi->controller->last_cs != spi_get_chipselect(spi, 0))) &&
975 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
976 return;
977
978 trace_spi_set_cs(spi, activate);
979
980 spi->controller->last_cs = enable ? spi_get_chipselect(spi, 0) : -1;
981 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
982
983 if ((spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) && !activate)
984 spi_delay_exec(&spi->cs_hold, NULL);
985
986 if (spi->mode & SPI_CS_HIGH)
987 enable = !enable;
988
989 if (spi_get_csgpiod(spi, 0)) {
990 if (!(spi->mode & SPI_NO_CS)) {
991 /*
992 * Historically ACPI has no means of the GPIO polarity and
993 * thus the SPISerialBus() resource defines it on the per-chip
994 * basis. In order to avoid a chain of negations, the GPIO
995 * polarity is considered being Active High. Even for the cases
996 * when _DSD() is involved (in the updated versions of ACPI)
997 * the GPIO CS polarity must be defined Active High to avoid
998 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
999 * into account.
1000 */
1001 if (has_acpi_companion(&spi->dev))
1002 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), !enable);
1003 else
1004 /* Polarity handled by GPIO library */
1005 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), activate);
1006 }
1007 /* Some SPI masters need both GPIO CS & slave_select */
1008 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
1009 spi->controller->set_cs)
1010 spi->controller->set_cs(spi, !enable);
1011 } else if (spi->controller->set_cs) {
1012 spi->controller->set_cs(spi, !enable);
1013 }
1014
1015 if (spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) {
1016 if (activate)
1017 spi_delay_exec(&spi->cs_setup, NULL);
1018 else
1019 spi_delay_exec(&spi->cs_inactive, NULL);
1020 }
1021 }
1022
1023 #ifdef CONFIG_HAS_DMA
spi_map_buf_attrs(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir,unsigned long attrs)1024 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1025 struct sg_table *sgt, void *buf, size_t len,
1026 enum dma_data_direction dir, unsigned long attrs)
1027 {
1028 const bool vmalloced_buf = is_vmalloc_addr(buf);
1029 unsigned int max_seg_size = dma_get_max_seg_size(dev);
1030 #ifdef CONFIG_HIGHMEM
1031 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1032 (unsigned long)buf < (PKMAP_BASE +
1033 (LAST_PKMAP * PAGE_SIZE)));
1034 #else
1035 const bool kmap_buf = false;
1036 #endif
1037 int desc_len;
1038 int sgs;
1039 struct page *vm_page;
1040 struct scatterlist *sg;
1041 void *sg_buf;
1042 size_t min;
1043 int i, ret;
1044
1045 if (vmalloced_buf || kmap_buf) {
1046 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1047 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1048 } else if (virt_addr_valid(buf)) {
1049 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1050 sgs = DIV_ROUND_UP(len, desc_len);
1051 } else {
1052 return -EINVAL;
1053 }
1054
1055 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1056 if (ret != 0)
1057 return ret;
1058
1059 sg = &sgt->sgl[0];
1060 for (i = 0; i < sgs; i++) {
1061
1062 if (vmalloced_buf || kmap_buf) {
1063 /*
1064 * Next scatterlist entry size is the minimum between
1065 * the desc_len and the remaining buffer length that
1066 * fits in a page.
1067 */
1068 min = min_t(size_t, desc_len,
1069 min_t(size_t, len,
1070 PAGE_SIZE - offset_in_page(buf)));
1071 if (vmalloced_buf)
1072 vm_page = vmalloc_to_page(buf);
1073 else
1074 vm_page = kmap_to_page(buf);
1075 if (!vm_page) {
1076 sg_free_table(sgt);
1077 return -ENOMEM;
1078 }
1079 sg_set_page(sg, vm_page,
1080 min, offset_in_page(buf));
1081 } else {
1082 min = min_t(size_t, len, desc_len);
1083 sg_buf = buf;
1084 sg_set_buf(sg, sg_buf, min);
1085 }
1086
1087 buf += min;
1088 len -= min;
1089 sg = sg_next(sg);
1090 }
1091
1092 ret = dma_map_sgtable(dev, sgt, dir, attrs);
1093 if (ret < 0) {
1094 sg_free_table(sgt);
1095 return ret;
1096 }
1097
1098 return 0;
1099 }
1100
spi_map_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir)1101 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1102 struct sg_table *sgt, void *buf, size_t len,
1103 enum dma_data_direction dir)
1104 {
1105 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1106 }
1107
spi_unmap_buf_attrs(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir,unsigned long attrs)1108 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1109 struct device *dev, struct sg_table *sgt,
1110 enum dma_data_direction dir,
1111 unsigned long attrs)
1112 {
1113 if (sgt->orig_nents) {
1114 dma_unmap_sgtable(dev, sgt, dir, attrs);
1115 sg_free_table(sgt);
1116 sgt->orig_nents = 0;
1117 sgt->nents = 0;
1118 }
1119 }
1120
spi_unmap_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)1121 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1122 struct sg_table *sgt, enum dma_data_direction dir)
1123 {
1124 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1125 }
1126
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1127 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1128 {
1129 struct device *tx_dev, *rx_dev;
1130 struct spi_transfer *xfer;
1131 int ret;
1132
1133 if (!ctlr->can_dma)
1134 return 0;
1135
1136 if (ctlr->dma_tx)
1137 tx_dev = ctlr->dma_tx->device->dev;
1138 else if (ctlr->dma_map_dev)
1139 tx_dev = ctlr->dma_map_dev;
1140 else
1141 tx_dev = ctlr->dev.parent;
1142
1143 if (ctlr->dma_rx)
1144 rx_dev = ctlr->dma_rx->device->dev;
1145 else if (ctlr->dma_map_dev)
1146 rx_dev = ctlr->dma_map_dev;
1147 else
1148 rx_dev = ctlr->dev.parent;
1149
1150 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1151 /* The sync is done before each transfer. */
1152 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1153
1154 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1155 continue;
1156
1157 if (xfer->tx_buf != NULL) {
1158 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1159 (void *)xfer->tx_buf,
1160 xfer->len, DMA_TO_DEVICE,
1161 attrs);
1162 if (ret != 0)
1163 return ret;
1164 }
1165
1166 if (xfer->rx_buf != NULL) {
1167 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1168 xfer->rx_buf, xfer->len,
1169 DMA_FROM_DEVICE, attrs);
1170 if (ret != 0) {
1171 spi_unmap_buf_attrs(ctlr, tx_dev,
1172 &xfer->tx_sg, DMA_TO_DEVICE,
1173 attrs);
1174
1175 return ret;
1176 }
1177 }
1178 }
1179
1180 ctlr->cur_rx_dma_dev = rx_dev;
1181 ctlr->cur_tx_dma_dev = tx_dev;
1182 ctlr->cur_msg_mapped = true;
1183
1184 return 0;
1185 }
1186
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1187 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1188 {
1189 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1190 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1191 struct spi_transfer *xfer;
1192
1193 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1194 return 0;
1195
1196 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1197 /* The sync has already been done after each transfer. */
1198 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1199
1200 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1201 continue;
1202
1203 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1204 DMA_FROM_DEVICE, attrs);
1205 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1206 DMA_TO_DEVICE, attrs);
1207 }
1208
1209 ctlr->cur_msg_mapped = false;
1210
1211 return 0;
1212 }
1213
spi_dma_sync_for_device(struct spi_controller * ctlr,struct spi_transfer * xfer)1214 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1215 struct spi_transfer *xfer)
1216 {
1217 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1218 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1219
1220 if (!ctlr->cur_msg_mapped)
1221 return;
1222
1223 if (xfer->tx_sg.orig_nents)
1224 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1225 if (xfer->rx_sg.orig_nents)
1226 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1227 }
1228
spi_dma_sync_for_cpu(struct spi_controller * ctlr,struct spi_transfer * xfer)1229 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1230 struct spi_transfer *xfer)
1231 {
1232 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1233 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1234
1235 if (!ctlr->cur_msg_mapped)
1236 return;
1237
1238 if (xfer->rx_sg.orig_nents)
1239 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1240 if (xfer->tx_sg.orig_nents)
1241 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1242 }
1243 #else /* !CONFIG_HAS_DMA */
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1244 static inline int __spi_map_msg(struct spi_controller *ctlr,
1245 struct spi_message *msg)
1246 {
1247 return 0;
1248 }
1249
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1250 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1251 struct spi_message *msg)
1252 {
1253 return 0;
1254 }
1255
spi_dma_sync_for_device(struct spi_controller * ctrl,struct spi_transfer * xfer)1256 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1257 struct spi_transfer *xfer)
1258 {
1259 }
1260
spi_dma_sync_for_cpu(struct spi_controller * ctrl,struct spi_transfer * xfer)1261 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1262 struct spi_transfer *xfer)
1263 {
1264 }
1265 #endif /* !CONFIG_HAS_DMA */
1266
spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1267 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1268 struct spi_message *msg)
1269 {
1270 struct spi_transfer *xfer;
1271
1272 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1273 /*
1274 * Restore the original value of tx_buf or rx_buf if they are
1275 * NULL.
1276 */
1277 if (xfer->tx_buf == ctlr->dummy_tx)
1278 xfer->tx_buf = NULL;
1279 if (xfer->rx_buf == ctlr->dummy_rx)
1280 xfer->rx_buf = NULL;
1281 }
1282
1283 return __spi_unmap_msg(ctlr, msg);
1284 }
1285
spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1286 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1287 {
1288 struct spi_transfer *xfer;
1289 void *tmp;
1290 unsigned int max_tx, max_rx;
1291
1292 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1293 && !(msg->spi->mode & SPI_3WIRE)) {
1294 max_tx = 0;
1295 max_rx = 0;
1296
1297 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1298 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1299 !xfer->tx_buf)
1300 max_tx = max(xfer->len, max_tx);
1301 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1302 !xfer->rx_buf)
1303 max_rx = max(xfer->len, max_rx);
1304 }
1305
1306 if (max_tx) {
1307 tmp = krealloc(ctlr->dummy_tx, max_tx,
1308 GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1309 if (!tmp)
1310 return -ENOMEM;
1311 ctlr->dummy_tx = tmp;
1312 }
1313
1314 if (max_rx) {
1315 tmp = krealloc(ctlr->dummy_rx, max_rx,
1316 GFP_KERNEL | GFP_DMA);
1317 if (!tmp)
1318 return -ENOMEM;
1319 ctlr->dummy_rx = tmp;
1320 }
1321
1322 if (max_tx || max_rx) {
1323 list_for_each_entry(xfer, &msg->transfers,
1324 transfer_list) {
1325 if (!xfer->len)
1326 continue;
1327 if (!xfer->tx_buf)
1328 xfer->tx_buf = ctlr->dummy_tx;
1329 if (!xfer->rx_buf)
1330 xfer->rx_buf = ctlr->dummy_rx;
1331 }
1332 }
1333 }
1334
1335 return __spi_map_msg(ctlr, msg);
1336 }
1337
spi_transfer_wait(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer * xfer)1338 static int spi_transfer_wait(struct spi_controller *ctlr,
1339 struct spi_message *msg,
1340 struct spi_transfer *xfer)
1341 {
1342 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1343 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1344 u32 speed_hz = xfer->speed_hz;
1345 unsigned long long ms;
1346
1347 if (spi_controller_is_slave(ctlr)) {
1348 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1349 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1350 return -EINTR;
1351 }
1352 } else {
1353 if (!speed_hz)
1354 speed_hz = 100000;
1355
1356 /*
1357 * For each byte we wait for 8 cycles of the SPI clock.
1358 * Since speed is defined in Hz and we want milliseconds,
1359 * use respective multiplier, but before the division,
1360 * otherwise we may get 0 for short transfers.
1361 */
1362 ms = 8LL * MSEC_PER_SEC * xfer->len;
1363 do_div(ms, speed_hz);
1364
1365 /*
1366 * Increase it twice and add 200 ms tolerance, use
1367 * predefined maximum in case of overflow.
1368 */
1369 ms += ms + 200;
1370 if (ms > UINT_MAX)
1371 ms = UINT_MAX;
1372
1373 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1374 msecs_to_jiffies(ms));
1375
1376 if (ms == 0) {
1377 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1378 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1379 dev_err(&msg->spi->dev,
1380 "SPI transfer timed out\n");
1381 return -ETIMEDOUT;
1382 }
1383 }
1384
1385 return 0;
1386 }
1387
_spi_transfer_delay_ns(u32 ns)1388 static void _spi_transfer_delay_ns(u32 ns)
1389 {
1390 if (!ns)
1391 return;
1392 if (ns <= NSEC_PER_USEC) {
1393 ndelay(ns);
1394 } else {
1395 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1396
1397 if (us <= 10)
1398 udelay(us);
1399 else
1400 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1401 }
1402 }
1403
spi_delay_to_ns(struct spi_delay * _delay,struct spi_transfer * xfer)1404 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1405 {
1406 u32 delay = _delay->value;
1407 u32 unit = _delay->unit;
1408 u32 hz;
1409
1410 if (!delay)
1411 return 0;
1412
1413 switch (unit) {
1414 case SPI_DELAY_UNIT_USECS:
1415 delay *= NSEC_PER_USEC;
1416 break;
1417 case SPI_DELAY_UNIT_NSECS:
1418 /* Nothing to do here */
1419 break;
1420 case SPI_DELAY_UNIT_SCK:
1421 /* Clock cycles need to be obtained from spi_transfer */
1422 if (!xfer)
1423 return -EINVAL;
1424 /*
1425 * If there is unknown effective speed, approximate it
1426 * by underestimating with half of the requested hz.
1427 */
1428 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1429 if (!hz)
1430 return -EINVAL;
1431
1432 /* Convert delay to nanoseconds */
1433 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1434 break;
1435 default:
1436 return -EINVAL;
1437 }
1438
1439 return delay;
1440 }
1441 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1442
spi_delay_exec(struct spi_delay * _delay,struct spi_transfer * xfer)1443 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1444 {
1445 int delay;
1446
1447 might_sleep();
1448
1449 if (!_delay)
1450 return -EINVAL;
1451
1452 delay = spi_delay_to_ns(_delay, xfer);
1453 if (delay < 0)
1454 return delay;
1455
1456 _spi_transfer_delay_ns(delay);
1457
1458 return 0;
1459 }
1460 EXPORT_SYMBOL_GPL(spi_delay_exec);
1461
_spi_transfer_cs_change_delay(struct spi_message * msg,struct spi_transfer * xfer)1462 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1463 struct spi_transfer *xfer)
1464 {
1465 u32 default_delay_ns = 10 * NSEC_PER_USEC;
1466 u32 delay = xfer->cs_change_delay.value;
1467 u32 unit = xfer->cs_change_delay.unit;
1468 int ret;
1469
1470 /* Return early on "fast" mode - for everything but USECS */
1471 if (!delay) {
1472 if (unit == SPI_DELAY_UNIT_USECS)
1473 _spi_transfer_delay_ns(default_delay_ns);
1474 return;
1475 }
1476
1477 ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1478 if (ret) {
1479 dev_err_once(&msg->spi->dev,
1480 "Use of unsupported delay unit %i, using default of %luus\n",
1481 unit, default_delay_ns / NSEC_PER_USEC);
1482 _spi_transfer_delay_ns(default_delay_ns);
1483 }
1484 }
1485
1486 /*
1487 * spi_transfer_one_message - Default implementation of transfer_one_message()
1488 *
1489 * This is a standard implementation of transfer_one_message() for
1490 * drivers which implement a transfer_one() operation. It provides
1491 * standard handling of delays and chip select management.
1492 */
spi_transfer_one_message(struct spi_controller * ctlr,struct spi_message * msg)1493 static int spi_transfer_one_message(struct spi_controller *ctlr,
1494 struct spi_message *msg)
1495 {
1496 struct spi_transfer *xfer;
1497 bool keep_cs = false;
1498 int ret = 0;
1499 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1500 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1501
1502 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1503 spi_set_cs(msg->spi, !xfer->cs_off, false);
1504
1505 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1506 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1507
1508 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1509 trace_spi_transfer_start(msg, xfer);
1510
1511 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1512 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1513
1514 if (!ctlr->ptp_sts_supported) {
1515 xfer->ptp_sts_word_pre = 0;
1516 ptp_read_system_prets(xfer->ptp_sts);
1517 }
1518
1519 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1520 reinit_completion(&ctlr->xfer_completion);
1521
1522 fallback_pio:
1523 spi_dma_sync_for_device(ctlr, xfer);
1524 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1525 if (ret < 0) {
1526 spi_dma_sync_for_cpu(ctlr, xfer);
1527
1528 if (ctlr->cur_msg_mapped &&
1529 (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1530 __spi_unmap_msg(ctlr, msg);
1531 ctlr->fallback = true;
1532 xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1533 goto fallback_pio;
1534 }
1535
1536 SPI_STATISTICS_INCREMENT_FIELD(statm,
1537 errors);
1538 SPI_STATISTICS_INCREMENT_FIELD(stats,
1539 errors);
1540 dev_err(&msg->spi->dev,
1541 "SPI transfer failed: %d\n", ret);
1542 goto out;
1543 }
1544
1545 if (ret > 0) {
1546 ret = spi_transfer_wait(ctlr, msg, xfer);
1547 if (ret < 0)
1548 msg->status = ret;
1549 }
1550
1551 spi_dma_sync_for_cpu(ctlr, xfer);
1552 } else {
1553 if (xfer->len)
1554 dev_err(&msg->spi->dev,
1555 "Bufferless transfer has length %u\n",
1556 xfer->len);
1557 }
1558
1559 if (!ctlr->ptp_sts_supported) {
1560 ptp_read_system_postts(xfer->ptp_sts);
1561 xfer->ptp_sts_word_post = xfer->len;
1562 }
1563
1564 trace_spi_transfer_stop(msg, xfer);
1565
1566 if (msg->status != -EINPROGRESS)
1567 goto out;
1568
1569 spi_transfer_delay_exec(xfer);
1570
1571 if (xfer->cs_change) {
1572 if (list_is_last(&xfer->transfer_list,
1573 &msg->transfers)) {
1574 keep_cs = true;
1575 } else {
1576 if (!xfer->cs_off)
1577 spi_set_cs(msg->spi, false, false);
1578 _spi_transfer_cs_change_delay(msg, xfer);
1579 if (!list_next_entry(xfer, transfer_list)->cs_off)
1580 spi_set_cs(msg->spi, true, false);
1581 }
1582 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1583 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1584 spi_set_cs(msg->spi, xfer->cs_off, false);
1585 }
1586
1587 msg->actual_length += xfer->len;
1588 }
1589
1590 out:
1591 if (ret != 0 || !keep_cs)
1592 spi_set_cs(msg->spi, false, false);
1593
1594 if (msg->status == -EINPROGRESS)
1595 msg->status = ret;
1596
1597 if (msg->status && ctlr->handle_err)
1598 ctlr->handle_err(ctlr, msg);
1599
1600 spi_finalize_current_message(ctlr);
1601
1602 return ret;
1603 }
1604
1605 /**
1606 * spi_finalize_current_transfer - report completion of a transfer
1607 * @ctlr: the controller reporting completion
1608 *
1609 * Called by SPI drivers using the core transfer_one_message()
1610 * implementation to notify it that the current interrupt driven
1611 * transfer has finished and the next one may be scheduled.
1612 */
spi_finalize_current_transfer(struct spi_controller * ctlr)1613 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1614 {
1615 complete(&ctlr->xfer_completion);
1616 }
1617 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1618
spi_idle_runtime_pm(struct spi_controller * ctlr)1619 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1620 {
1621 if (ctlr->auto_runtime_pm) {
1622 pm_runtime_mark_last_busy(ctlr->dev.parent);
1623 pm_runtime_put_autosuspend(ctlr->dev.parent);
1624 }
1625 }
1626
__spi_pump_transfer_message(struct spi_controller * ctlr,struct spi_message * msg,bool was_busy)1627 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1628 struct spi_message *msg, bool was_busy)
1629 {
1630 struct spi_transfer *xfer;
1631 int ret;
1632
1633 if (!was_busy && ctlr->auto_runtime_pm) {
1634 ret = pm_runtime_get_sync(ctlr->dev.parent);
1635 if (ret < 0) {
1636 pm_runtime_put_noidle(ctlr->dev.parent);
1637 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1638 ret);
1639
1640 msg->status = ret;
1641 spi_finalize_current_message(ctlr);
1642
1643 return ret;
1644 }
1645 }
1646
1647 if (!was_busy)
1648 trace_spi_controller_busy(ctlr);
1649
1650 if (!was_busy && ctlr->prepare_transfer_hardware) {
1651 ret = ctlr->prepare_transfer_hardware(ctlr);
1652 if (ret) {
1653 dev_err(&ctlr->dev,
1654 "failed to prepare transfer hardware: %d\n",
1655 ret);
1656
1657 if (ctlr->auto_runtime_pm)
1658 pm_runtime_put(ctlr->dev.parent);
1659
1660 msg->status = ret;
1661 spi_finalize_current_message(ctlr);
1662
1663 return ret;
1664 }
1665 }
1666
1667 trace_spi_message_start(msg);
1668
1669 ret = spi_split_transfers_maxsize(ctlr, msg,
1670 spi_max_transfer_size(msg->spi),
1671 GFP_KERNEL | GFP_DMA);
1672 if (ret) {
1673 msg->status = ret;
1674 spi_finalize_current_message(ctlr);
1675 return ret;
1676 }
1677
1678 if (ctlr->prepare_message) {
1679 ret = ctlr->prepare_message(ctlr, msg);
1680 if (ret) {
1681 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1682 ret);
1683 msg->status = ret;
1684 spi_finalize_current_message(ctlr);
1685 return ret;
1686 }
1687 msg->prepared = true;
1688 }
1689
1690 ret = spi_map_msg(ctlr, msg);
1691 if (ret) {
1692 msg->status = ret;
1693 spi_finalize_current_message(ctlr);
1694 return ret;
1695 }
1696
1697 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1698 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1699 xfer->ptp_sts_word_pre = 0;
1700 ptp_read_system_prets(xfer->ptp_sts);
1701 }
1702 }
1703
1704 /*
1705 * Drivers implementation of transfer_one_message() must arrange for
1706 * spi_finalize_current_message() to get called. Most drivers will do
1707 * this in the calling context, but some don't. For those cases, a
1708 * completion is used to guarantee that this function does not return
1709 * until spi_finalize_current_message() is done accessing
1710 * ctlr->cur_msg.
1711 * Use of the following two flags enable to opportunistically skip the
1712 * use of the completion since its use involves expensive spin locks.
1713 * In case of a race with the context that calls
1714 * spi_finalize_current_message() the completion will always be used,
1715 * due to strict ordering of these flags using barriers.
1716 */
1717 WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1718 WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1719 reinit_completion(&ctlr->cur_msg_completion);
1720 smp_wmb(); /* Make these available to spi_finalize_current_message() */
1721
1722 ret = ctlr->transfer_one_message(ctlr, msg);
1723 if (ret) {
1724 dev_err(&ctlr->dev,
1725 "failed to transfer one message from queue\n");
1726 return ret;
1727 }
1728
1729 WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1730 smp_mb(); /* See spi_finalize_current_message()... */
1731 if (READ_ONCE(ctlr->cur_msg_incomplete))
1732 wait_for_completion(&ctlr->cur_msg_completion);
1733
1734 return 0;
1735 }
1736
1737 /**
1738 * __spi_pump_messages - function which processes spi message queue
1739 * @ctlr: controller to process queue for
1740 * @in_kthread: true if we are in the context of the message pump thread
1741 *
1742 * This function checks if there is any spi message in the queue that
1743 * needs processing and if so call out to the driver to initialize hardware
1744 * and transfer each message.
1745 *
1746 * Note that it is called both from the kthread itself and also from
1747 * inside spi_sync(); the queue extraction handling at the top of the
1748 * function should deal with this safely.
1749 */
__spi_pump_messages(struct spi_controller * ctlr,bool in_kthread)1750 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1751 {
1752 struct spi_message *msg;
1753 bool was_busy = false;
1754 unsigned long flags;
1755 int ret;
1756
1757 /* Take the IO mutex */
1758 mutex_lock(&ctlr->io_mutex);
1759
1760 /* Lock queue */
1761 spin_lock_irqsave(&ctlr->queue_lock, flags);
1762
1763 /* Make sure we are not already running a message */
1764 if (ctlr->cur_msg)
1765 goto out_unlock;
1766
1767 /* Check if the queue is idle */
1768 if (list_empty(&ctlr->queue) || !ctlr->running) {
1769 if (!ctlr->busy)
1770 goto out_unlock;
1771
1772 /* Defer any non-atomic teardown to the thread */
1773 if (!in_kthread) {
1774 if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1775 !ctlr->unprepare_transfer_hardware) {
1776 spi_idle_runtime_pm(ctlr);
1777 ctlr->busy = false;
1778 ctlr->queue_empty = true;
1779 trace_spi_controller_idle(ctlr);
1780 } else {
1781 kthread_queue_work(ctlr->kworker,
1782 &ctlr->pump_messages);
1783 }
1784 goto out_unlock;
1785 }
1786
1787 ctlr->busy = false;
1788 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1789
1790 kfree(ctlr->dummy_rx);
1791 ctlr->dummy_rx = NULL;
1792 kfree(ctlr->dummy_tx);
1793 ctlr->dummy_tx = NULL;
1794 if (ctlr->unprepare_transfer_hardware &&
1795 ctlr->unprepare_transfer_hardware(ctlr))
1796 dev_err(&ctlr->dev,
1797 "failed to unprepare transfer hardware\n");
1798 spi_idle_runtime_pm(ctlr);
1799 trace_spi_controller_idle(ctlr);
1800
1801 spin_lock_irqsave(&ctlr->queue_lock, flags);
1802 ctlr->queue_empty = true;
1803 goto out_unlock;
1804 }
1805
1806 /* Extract head of queue */
1807 msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1808 ctlr->cur_msg = msg;
1809
1810 list_del_init(&msg->queue);
1811 if (ctlr->busy)
1812 was_busy = true;
1813 else
1814 ctlr->busy = true;
1815 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1816
1817 ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1818 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1819
1820 ctlr->cur_msg = NULL;
1821 ctlr->fallback = false;
1822
1823 mutex_unlock(&ctlr->io_mutex);
1824
1825 /* Prod the scheduler in case transfer_one() was busy waiting */
1826 if (!ret)
1827 cond_resched();
1828 return;
1829
1830 out_unlock:
1831 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1832 mutex_unlock(&ctlr->io_mutex);
1833 }
1834
1835 /**
1836 * spi_pump_messages - kthread work function which processes spi message queue
1837 * @work: pointer to kthread work struct contained in the controller struct
1838 */
spi_pump_messages(struct kthread_work * work)1839 static void spi_pump_messages(struct kthread_work *work)
1840 {
1841 struct spi_controller *ctlr =
1842 container_of(work, struct spi_controller, pump_messages);
1843
1844 __spi_pump_messages(ctlr, true);
1845 }
1846
1847 /**
1848 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1849 * @ctlr: Pointer to the spi_controller structure of the driver
1850 * @xfer: Pointer to the transfer being timestamped
1851 * @progress: How many words (not bytes) have been transferred so far
1852 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1853 * transfer, for less jitter in time measurement. Only compatible
1854 * with PIO drivers. If true, must follow up with
1855 * spi_take_timestamp_post or otherwise system will crash.
1856 * WARNING: for fully predictable results, the CPU frequency must
1857 * also be under control (governor).
1858 *
1859 * This is a helper for drivers to collect the beginning of the TX timestamp
1860 * for the requested byte from the SPI transfer. The frequency with which this
1861 * function must be called (once per word, once for the whole transfer, once
1862 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1863 * greater than or equal to the requested byte at the time of the call. The
1864 * timestamp is only taken once, at the first such call. It is assumed that
1865 * the driver advances its @tx buffer pointer monotonically.
1866 */
spi_take_timestamp_pre(struct spi_controller * ctlr,struct spi_transfer * xfer,size_t progress,bool irqs_off)1867 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1868 struct spi_transfer *xfer,
1869 size_t progress, bool irqs_off)
1870 {
1871 if (!xfer->ptp_sts)
1872 return;
1873
1874 if (xfer->timestamped)
1875 return;
1876
1877 if (progress > xfer->ptp_sts_word_pre)
1878 return;
1879
1880 /* Capture the resolution of the timestamp */
1881 xfer->ptp_sts_word_pre = progress;
1882
1883 if (irqs_off) {
1884 local_irq_save(ctlr->irq_flags);
1885 preempt_disable();
1886 }
1887
1888 ptp_read_system_prets(xfer->ptp_sts);
1889 }
1890 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1891
1892 /**
1893 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1894 * @ctlr: Pointer to the spi_controller structure of the driver
1895 * @xfer: Pointer to the transfer being timestamped
1896 * @progress: How many words (not bytes) have been transferred so far
1897 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1898 *
1899 * This is a helper for drivers to collect the end of the TX timestamp for
1900 * the requested byte from the SPI transfer. Can be called with an arbitrary
1901 * frequency: only the first call where @tx exceeds or is equal to the
1902 * requested word will be timestamped.
1903 */
spi_take_timestamp_post(struct spi_controller * ctlr,struct spi_transfer * xfer,size_t progress,bool irqs_off)1904 void spi_take_timestamp_post(struct spi_controller *ctlr,
1905 struct spi_transfer *xfer,
1906 size_t progress, bool irqs_off)
1907 {
1908 if (!xfer->ptp_sts)
1909 return;
1910
1911 if (xfer->timestamped)
1912 return;
1913
1914 if (progress < xfer->ptp_sts_word_post)
1915 return;
1916
1917 ptp_read_system_postts(xfer->ptp_sts);
1918
1919 if (irqs_off) {
1920 local_irq_restore(ctlr->irq_flags);
1921 preempt_enable();
1922 }
1923
1924 /* Capture the resolution of the timestamp */
1925 xfer->ptp_sts_word_post = progress;
1926
1927 xfer->timestamped = true;
1928 }
1929 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1930
1931 /**
1932 * spi_set_thread_rt - set the controller to pump at realtime priority
1933 * @ctlr: controller to boost priority of
1934 *
1935 * This can be called because the controller requested realtime priority
1936 * (by setting the ->rt value before calling spi_register_controller()) or
1937 * because a device on the bus said that its transfers needed realtime
1938 * priority.
1939 *
1940 * NOTE: at the moment if any device on a bus says it needs realtime then
1941 * the thread will be at realtime priority for all transfers on that
1942 * controller. If this eventually becomes a problem we may see if we can
1943 * find a way to boost the priority only temporarily during relevant
1944 * transfers.
1945 */
spi_set_thread_rt(struct spi_controller * ctlr)1946 static void spi_set_thread_rt(struct spi_controller *ctlr)
1947 {
1948 dev_info(&ctlr->dev,
1949 "will run message pump with realtime priority\n");
1950 sched_set_fifo(ctlr->kworker->task);
1951 }
1952
spi_init_queue(struct spi_controller * ctlr)1953 static int spi_init_queue(struct spi_controller *ctlr)
1954 {
1955 ctlr->running = false;
1956 ctlr->busy = false;
1957 ctlr->queue_empty = true;
1958
1959 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1960 if (IS_ERR(ctlr->kworker)) {
1961 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1962 return PTR_ERR(ctlr->kworker);
1963 }
1964
1965 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1966
1967 /*
1968 * Controller config will indicate if this controller should run the
1969 * message pump with high (realtime) priority to reduce the transfer
1970 * latency on the bus by minimising the delay between a transfer
1971 * request and the scheduling of the message pump thread. Without this
1972 * setting the message pump thread will remain at default priority.
1973 */
1974 if (ctlr->rt)
1975 spi_set_thread_rt(ctlr);
1976
1977 return 0;
1978 }
1979
1980 /**
1981 * spi_get_next_queued_message() - called by driver to check for queued
1982 * messages
1983 * @ctlr: the controller to check for queued messages
1984 *
1985 * If there are more messages in the queue, the next message is returned from
1986 * this call.
1987 *
1988 * Return: the next message in the queue, else NULL if the queue is empty.
1989 */
spi_get_next_queued_message(struct spi_controller * ctlr)1990 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1991 {
1992 struct spi_message *next;
1993 unsigned long flags;
1994
1995 /* Get a pointer to the next message, if any */
1996 spin_lock_irqsave(&ctlr->queue_lock, flags);
1997 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1998 queue);
1999 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2000
2001 return next;
2002 }
2003 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2004
2005 /**
2006 * spi_finalize_current_message() - the current message is complete
2007 * @ctlr: the controller to return the message to
2008 *
2009 * Called by the driver to notify the core that the message in the front of the
2010 * queue is complete and can be removed from the queue.
2011 */
spi_finalize_current_message(struct spi_controller * ctlr)2012 void spi_finalize_current_message(struct spi_controller *ctlr)
2013 {
2014 struct spi_transfer *xfer;
2015 struct spi_message *mesg;
2016 int ret;
2017
2018 mesg = ctlr->cur_msg;
2019
2020 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2021 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2022 ptp_read_system_postts(xfer->ptp_sts);
2023 xfer->ptp_sts_word_post = xfer->len;
2024 }
2025 }
2026
2027 if (unlikely(ctlr->ptp_sts_supported))
2028 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2029 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2030
2031 spi_unmap_msg(ctlr, mesg);
2032
2033 /*
2034 * In the prepare_messages callback the SPI bus has the opportunity
2035 * to split a transfer to smaller chunks.
2036 *
2037 * Release the split transfers here since spi_map_msg() is done on
2038 * the split transfers.
2039 */
2040 spi_res_release(ctlr, mesg);
2041
2042 if (mesg->prepared && ctlr->unprepare_message) {
2043 ret = ctlr->unprepare_message(ctlr, mesg);
2044 if (ret) {
2045 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2046 ret);
2047 }
2048 }
2049
2050 mesg->prepared = false;
2051
2052 WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2053 smp_mb(); /* See __spi_pump_transfer_message()... */
2054 if (READ_ONCE(ctlr->cur_msg_need_completion))
2055 complete(&ctlr->cur_msg_completion);
2056
2057 trace_spi_message_done(mesg);
2058
2059 mesg->state = NULL;
2060 if (mesg->complete)
2061 mesg->complete(mesg->context);
2062 }
2063 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2064
spi_start_queue(struct spi_controller * ctlr)2065 static int spi_start_queue(struct spi_controller *ctlr)
2066 {
2067 unsigned long flags;
2068
2069 spin_lock_irqsave(&ctlr->queue_lock, flags);
2070
2071 if (ctlr->running || ctlr->busy) {
2072 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2073 return -EBUSY;
2074 }
2075
2076 ctlr->running = true;
2077 ctlr->cur_msg = NULL;
2078 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2079
2080 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2081
2082 return 0;
2083 }
2084
spi_stop_queue(struct spi_controller * ctlr)2085 static int spi_stop_queue(struct spi_controller *ctlr)
2086 {
2087 unsigned long flags;
2088 unsigned limit = 500;
2089 int ret = 0;
2090
2091 spin_lock_irqsave(&ctlr->queue_lock, flags);
2092
2093 /*
2094 * This is a bit lame, but is optimized for the common execution path.
2095 * A wait_queue on the ctlr->busy could be used, but then the common
2096 * execution path (pump_messages) would be required to call wake_up or
2097 * friends on every SPI message. Do this instead.
2098 */
2099 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2100 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2101 usleep_range(10000, 11000);
2102 spin_lock_irqsave(&ctlr->queue_lock, flags);
2103 }
2104
2105 if (!list_empty(&ctlr->queue) || ctlr->busy)
2106 ret = -EBUSY;
2107 else
2108 ctlr->running = false;
2109
2110 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2111
2112 if (ret) {
2113 dev_warn(&ctlr->dev, "could not stop message queue\n");
2114 return ret;
2115 }
2116 return ret;
2117 }
2118
spi_destroy_queue(struct spi_controller * ctlr)2119 static int spi_destroy_queue(struct spi_controller *ctlr)
2120 {
2121 int ret;
2122
2123 ret = spi_stop_queue(ctlr);
2124
2125 /*
2126 * kthread_flush_worker will block until all work is done.
2127 * If the reason that stop_queue timed out is that the work will never
2128 * finish, then it does no good to call flush/stop thread, so
2129 * return anyway.
2130 */
2131 if (ret) {
2132 dev_err(&ctlr->dev, "problem destroying queue\n");
2133 return ret;
2134 }
2135
2136 kthread_destroy_worker(ctlr->kworker);
2137
2138 return 0;
2139 }
2140
__spi_queued_transfer(struct spi_device * spi,struct spi_message * msg,bool need_pump)2141 static int __spi_queued_transfer(struct spi_device *spi,
2142 struct spi_message *msg,
2143 bool need_pump)
2144 {
2145 struct spi_controller *ctlr = spi->controller;
2146 unsigned long flags;
2147
2148 spin_lock_irqsave(&ctlr->queue_lock, flags);
2149
2150 if (!ctlr->running) {
2151 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2152 return -ESHUTDOWN;
2153 }
2154 msg->actual_length = 0;
2155 msg->status = -EINPROGRESS;
2156
2157 list_add_tail(&msg->queue, &ctlr->queue);
2158 ctlr->queue_empty = false;
2159 if (!ctlr->busy && need_pump)
2160 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2161
2162 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2163 return 0;
2164 }
2165
2166 /**
2167 * spi_queued_transfer - transfer function for queued transfers
2168 * @spi: spi device which is requesting transfer
2169 * @msg: spi message which is to handled is queued to driver queue
2170 *
2171 * Return: zero on success, else a negative error code.
2172 */
spi_queued_transfer(struct spi_device * spi,struct spi_message * msg)2173 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2174 {
2175 return __spi_queued_transfer(spi, msg, true);
2176 }
2177
spi_controller_initialize_queue(struct spi_controller * ctlr)2178 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2179 {
2180 int ret;
2181
2182 ctlr->transfer = spi_queued_transfer;
2183 if (!ctlr->transfer_one_message)
2184 ctlr->transfer_one_message = spi_transfer_one_message;
2185
2186 /* Initialize and start queue */
2187 ret = spi_init_queue(ctlr);
2188 if (ret) {
2189 dev_err(&ctlr->dev, "problem initializing queue\n");
2190 goto err_init_queue;
2191 }
2192 ctlr->queued = true;
2193 ret = spi_start_queue(ctlr);
2194 if (ret) {
2195 dev_err(&ctlr->dev, "problem starting queue\n");
2196 goto err_start_queue;
2197 }
2198
2199 return 0;
2200
2201 err_start_queue:
2202 spi_destroy_queue(ctlr);
2203 err_init_queue:
2204 return ret;
2205 }
2206
2207 /**
2208 * spi_flush_queue - Send all pending messages in the queue from the callers'
2209 * context
2210 * @ctlr: controller to process queue for
2211 *
2212 * This should be used when one wants to ensure all pending messages have been
2213 * sent before doing something. Is used by the spi-mem code to make sure SPI
2214 * memory operations do not preempt regular SPI transfers that have been queued
2215 * before the spi-mem operation.
2216 */
spi_flush_queue(struct spi_controller * ctlr)2217 void spi_flush_queue(struct spi_controller *ctlr)
2218 {
2219 if (ctlr->transfer == spi_queued_transfer)
2220 __spi_pump_messages(ctlr, false);
2221 }
2222
2223 /*-------------------------------------------------------------------------*/
2224
2225 #if defined(CONFIG_OF)
of_spi_parse_dt(struct spi_controller * ctlr,struct spi_device * spi,struct device_node * nc)2226 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2227 struct device_node *nc)
2228 {
2229 u32 value;
2230 int rc;
2231
2232 /* Mode (clock phase/polarity/etc.) */
2233 if (of_property_read_bool(nc, "spi-cpha"))
2234 spi->mode |= SPI_CPHA;
2235 if (of_property_read_bool(nc, "spi-cpol"))
2236 spi->mode |= SPI_CPOL;
2237 if (of_property_read_bool(nc, "spi-3wire"))
2238 spi->mode |= SPI_3WIRE;
2239 if (of_property_read_bool(nc, "spi-lsb-first"))
2240 spi->mode |= SPI_LSB_FIRST;
2241 if (of_property_read_bool(nc, "spi-cs-high"))
2242 spi->mode |= SPI_CS_HIGH;
2243
2244 /* Device DUAL/QUAD mode */
2245 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2246 switch (value) {
2247 case 0:
2248 spi->mode |= SPI_NO_TX;
2249 break;
2250 case 1:
2251 break;
2252 case 2:
2253 spi->mode |= SPI_TX_DUAL;
2254 break;
2255 case 4:
2256 spi->mode |= SPI_TX_QUAD;
2257 break;
2258 case 8:
2259 spi->mode |= SPI_TX_OCTAL;
2260 break;
2261 default:
2262 dev_warn(&ctlr->dev,
2263 "spi-tx-bus-width %d not supported\n",
2264 value);
2265 break;
2266 }
2267 }
2268
2269 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2270 switch (value) {
2271 case 0:
2272 spi->mode |= SPI_NO_RX;
2273 break;
2274 case 1:
2275 break;
2276 case 2:
2277 spi->mode |= SPI_RX_DUAL;
2278 break;
2279 case 4:
2280 spi->mode |= SPI_RX_QUAD;
2281 break;
2282 case 8:
2283 spi->mode |= SPI_RX_OCTAL;
2284 break;
2285 default:
2286 dev_warn(&ctlr->dev,
2287 "spi-rx-bus-width %d not supported\n",
2288 value);
2289 break;
2290 }
2291 }
2292
2293 if (spi_controller_is_slave(ctlr)) {
2294 if (!of_node_name_eq(nc, "slave")) {
2295 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2296 nc);
2297 return -EINVAL;
2298 }
2299 return 0;
2300 }
2301
2302 /* Device address */
2303 rc = of_property_read_u32(nc, "reg", &value);
2304 if (rc) {
2305 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2306 nc, rc);
2307 return rc;
2308 }
2309 spi_set_chipselect(spi, 0, value);
2310
2311 /* Device speed */
2312 if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2313 spi->max_speed_hz = value;
2314
2315 return 0;
2316 }
2317
2318 static struct spi_device *
of_register_spi_device(struct spi_controller * ctlr,struct device_node * nc)2319 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2320 {
2321 struct spi_device *spi;
2322 int rc;
2323
2324 /* Alloc an spi_device */
2325 spi = spi_alloc_device(ctlr);
2326 if (!spi) {
2327 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2328 rc = -ENOMEM;
2329 goto err_out;
2330 }
2331
2332 /* Select device driver */
2333 rc = of_modalias_node(nc, spi->modalias,
2334 sizeof(spi->modalias));
2335 if (rc < 0) {
2336 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2337 goto err_out;
2338 }
2339
2340 rc = of_spi_parse_dt(ctlr, spi, nc);
2341 if (rc)
2342 goto err_out;
2343
2344 /* Store a pointer to the node in the device structure */
2345 of_node_get(nc);
2346 spi->dev.of_node = nc;
2347 spi->dev.fwnode = of_fwnode_handle(nc);
2348
2349 /* Register the new device */
2350 rc = spi_add_device(spi);
2351 if (rc) {
2352 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2353 goto err_of_node_put;
2354 }
2355
2356 return spi;
2357
2358 err_of_node_put:
2359 of_node_put(nc);
2360 err_out:
2361 spi_dev_put(spi);
2362 return ERR_PTR(rc);
2363 }
2364
2365 /**
2366 * of_register_spi_devices() - Register child devices onto the SPI bus
2367 * @ctlr: Pointer to spi_controller device
2368 *
2369 * Registers an spi_device for each child node of controller node which
2370 * represents a valid SPI slave.
2371 */
of_register_spi_devices(struct spi_controller * ctlr)2372 static void of_register_spi_devices(struct spi_controller *ctlr)
2373 {
2374 struct spi_device *spi;
2375 struct device_node *nc;
2376
2377 if (!ctlr->dev.of_node)
2378 return;
2379
2380 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2381 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2382 continue;
2383 spi = of_register_spi_device(ctlr, nc);
2384 if (IS_ERR(spi)) {
2385 dev_warn(&ctlr->dev,
2386 "Failed to create SPI device for %pOF\n", nc);
2387 of_node_clear_flag(nc, OF_POPULATED);
2388 }
2389 }
2390 }
2391 #else
of_register_spi_devices(struct spi_controller * ctlr)2392 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2393 #endif
2394
2395 /**
2396 * spi_new_ancillary_device() - Register ancillary SPI device
2397 * @spi: Pointer to the main SPI device registering the ancillary device
2398 * @chip_select: Chip Select of the ancillary device
2399 *
2400 * Register an ancillary SPI device; for example some chips have a chip-select
2401 * for normal device usage and another one for setup/firmware upload.
2402 *
2403 * This may only be called from main SPI device's probe routine.
2404 *
2405 * Return: 0 on success; negative errno on failure
2406 */
spi_new_ancillary_device(struct spi_device * spi,u8 chip_select)2407 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2408 u8 chip_select)
2409 {
2410 struct spi_device *ancillary;
2411 int rc = 0;
2412
2413 /* Alloc an spi_device */
2414 ancillary = spi_alloc_device(spi->controller);
2415 if (!ancillary) {
2416 rc = -ENOMEM;
2417 goto err_out;
2418 }
2419
2420 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2421
2422 /* Use provided chip-select for ancillary device */
2423 spi_set_chipselect(ancillary, 0, chip_select);
2424
2425 /* Take over SPI mode/speed from SPI main device */
2426 ancillary->max_speed_hz = spi->max_speed_hz;
2427 ancillary->mode = spi->mode;
2428
2429 /* Register the new device */
2430 rc = spi_add_device_locked(ancillary);
2431 if (rc) {
2432 dev_err(&spi->dev, "failed to register ancillary device\n");
2433 goto err_out;
2434 }
2435
2436 return ancillary;
2437
2438 err_out:
2439 spi_dev_put(ancillary);
2440 return ERR_PTR(rc);
2441 }
2442 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2443
2444 #ifdef CONFIG_ACPI
2445 struct acpi_spi_lookup {
2446 struct spi_controller *ctlr;
2447 u32 max_speed_hz;
2448 u32 mode;
2449 int irq;
2450 u8 bits_per_word;
2451 u8 chip_select;
2452 int n;
2453 int index;
2454 };
2455
acpi_spi_count(struct acpi_resource * ares,void * data)2456 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2457 {
2458 struct acpi_resource_spi_serialbus *sb;
2459 int *count = data;
2460
2461 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2462 return 1;
2463
2464 sb = &ares->data.spi_serial_bus;
2465 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2466 return 1;
2467
2468 *count = *count + 1;
2469
2470 return 1;
2471 }
2472
2473 /**
2474 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2475 * @adev: ACPI device
2476 *
2477 * Returns the number of SpiSerialBus resources in the ACPI-device's
2478 * resource-list; or a negative error code.
2479 */
acpi_spi_count_resources(struct acpi_device * adev)2480 int acpi_spi_count_resources(struct acpi_device *adev)
2481 {
2482 LIST_HEAD(r);
2483 int count = 0;
2484 int ret;
2485
2486 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2487 if (ret < 0)
2488 return ret;
2489
2490 acpi_dev_free_resource_list(&r);
2491
2492 return count;
2493 }
2494 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2495
acpi_spi_parse_apple_properties(struct acpi_device * dev,struct acpi_spi_lookup * lookup)2496 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2497 struct acpi_spi_lookup *lookup)
2498 {
2499 const union acpi_object *obj;
2500
2501 if (!x86_apple_machine)
2502 return;
2503
2504 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2505 && obj->buffer.length >= 4)
2506 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2507
2508 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2509 && obj->buffer.length == 8)
2510 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2511
2512 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2513 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2514 lookup->mode |= SPI_LSB_FIRST;
2515
2516 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2517 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2518 lookup->mode |= SPI_CPOL;
2519
2520 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2521 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2522 lookup->mode |= SPI_CPHA;
2523 }
2524
2525 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2526
acpi_spi_add_resource(struct acpi_resource * ares,void * data)2527 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2528 {
2529 struct acpi_spi_lookup *lookup = data;
2530 struct spi_controller *ctlr = lookup->ctlr;
2531
2532 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2533 struct acpi_resource_spi_serialbus *sb;
2534 acpi_handle parent_handle;
2535 acpi_status status;
2536
2537 sb = &ares->data.spi_serial_bus;
2538 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2539
2540 if (lookup->index != -1 && lookup->n++ != lookup->index)
2541 return 1;
2542
2543 status = acpi_get_handle(NULL,
2544 sb->resource_source.string_ptr,
2545 &parent_handle);
2546
2547 if (ACPI_FAILURE(status))
2548 return -ENODEV;
2549
2550 if (ctlr) {
2551 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2552 return -ENODEV;
2553 } else {
2554 struct acpi_device *adev;
2555
2556 adev = acpi_fetch_acpi_dev(parent_handle);
2557 if (!adev)
2558 return -ENODEV;
2559
2560 ctlr = acpi_spi_find_controller_by_adev(adev);
2561 if (!ctlr)
2562 return -EPROBE_DEFER;
2563
2564 lookup->ctlr = ctlr;
2565 }
2566
2567 /*
2568 * ACPI DeviceSelection numbering is handled by the
2569 * host controller driver in Windows and can vary
2570 * from driver to driver. In Linux we always expect
2571 * 0 .. max - 1 so we need to ask the driver to
2572 * translate between the two schemes.
2573 */
2574 if (ctlr->fw_translate_cs) {
2575 int cs = ctlr->fw_translate_cs(ctlr,
2576 sb->device_selection);
2577 if (cs < 0)
2578 return cs;
2579 lookup->chip_select = cs;
2580 } else {
2581 lookup->chip_select = sb->device_selection;
2582 }
2583
2584 lookup->max_speed_hz = sb->connection_speed;
2585 lookup->bits_per_word = sb->data_bit_length;
2586
2587 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2588 lookup->mode |= SPI_CPHA;
2589 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2590 lookup->mode |= SPI_CPOL;
2591 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2592 lookup->mode |= SPI_CS_HIGH;
2593 }
2594 } else if (lookup->irq < 0) {
2595 struct resource r;
2596
2597 if (acpi_dev_resource_interrupt(ares, 0, &r))
2598 lookup->irq = r.start;
2599 }
2600
2601 /* Always tell the ACPI core to skip this resource */
2602 return 1;
2603 }
2604
2605 /**
2606 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2607 * @ctlr: controller to which the spi device belongs
2608 * @adev: ACPI Device for the spi device
2609 * @index: Index of the spi resource inside the ACPI Node
2610 *
2611 * This should be used to allocate a new spi device from and ACPI Node.
2612 * The caller is responsible for calling spi_add_device to register the spi device.
2613 *
2614 * If ctlr is set to NULL, the Controller for the spi device will be looked up
2615 * using the resource.
2616 * If index is set to -1, index is not used.
2617 * Note: If index is -1, ctlr must be set.
2618 *
2619 * Return: a pointer to the new device, or ERR_PTR on error.
2620 */
acpi_spi_device_alloc(struct spi_controller * ctlr,struct acpi_device * adev,int index)2621 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2622 struct acpi_device *adev,
2623 int index)
2624 {
2625 acpi_handle parent_handle = NULL;
2626 struct list_head resource_list;
2627 struct acpi_spi_lookup lookup = {};
2628 struct spi_device *spi;
2629 int ret;
2630
2631 if (!ctlr && index == -1)
2632 return ERR_PTR(-EINVAL);
2633
2634 lookup.ctlr = ctlr;
2635 lookup.irq = -1;
2636 lookup.index = index;
2637 lookup.n = 0;
2638
2639 INIT_LIST_HEAD(&resource_list);
2640 ret = acpi_dev_get_resources(adev, &resource_list,
2641 acpi_spi_add_resource, &lookup);
2642 acpi_dev_free_resource_list(&resource_list);
2643
2644 if (ret < 0)
2645 /* Found SPI in _CRS but it points to another controller */
2646 return ERR_PTR(ret);
2647
2648 if (!lookup.max_speed_hz &&
2649 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2650 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2651 /* Apple does not use _CRS but nested devices for SPI slaves */
2652 acpi_spi_parse_apple_properties(adev, &lookup);
2653 }
2654
2655 if (!lookup.max_speed_hz)
2656 return ERR_PTR(-ENODEV);
2657
2658 spi = spi_alloc_device(lookup.ctlr);
2659 if (!spi) {
2660 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2661 dev_name(&adev->dev));
2662 return ERR_PTR(-ENOMEM);
2663 }
2664
2665 ACPI_COMPANION_SET(&spi->dev, adev);
2666 spi->max_speed_hz = lookup.max_speed_hz;
2667 spi->mode |= lookup.mode;
2668 spi->irq = lookup.irq;
2669 spi->bits_per_word = lookup.bits_per_word;
2670 spi_set_chipselect(spi, 0, lookup.chip_select);
2671
2672 return spi;
2673 }
2674 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2675
acpi_register_spi_device(struct spi_controller * ctlr,struct acpi_device * adev)2676 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2677 struct acpi_device *adev)
2678 {
2679 struct spi_device *spi;
2680
2681 if (acpi_bus_get_status(adev) || !adev->status.present ||
2682 acpi_device_enumerated(adev))
2683 return AE_OK;
2684
2685 spi = acpi_spi_device_alloc(ctlr, adev, -1);
2686 if (IS_ERR(spi)) {
2687 if (PTR_ERR(spi) == -ENOMEM)
2688 return AE_NO_MEMORY;
2689 else
2690 return AE_OK;
2691 }
2692
2693 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2694 sizeof(spi->modalias));
2695
2696 if (spi->irq < 0)
2697 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2698
2699 acpi_device_set_enumerated(adev);
2700
2701 adev->power.flags.ignore_parent = true;
2702 if (spi_add_device(spi)) {
2703 adev->power.flags.ignore_parent = false;
2704 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2705 dev_name(&adev->dev));
2706 spi_dev_put(spi);
2707 }
2708
2709 return AE_OK;
2710 }
2711
acpi_spi_add_device(acpi_handle handle,u32 level,void * data,void ** return_value)2712 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2713 void *data, void **return_value)
2714 {
2715 struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2716 struct spi_controller *ctlr = data;
2717
2718 if (!adev)
2719 return AE_OK;
2720
2721 return acpi_register_spi_device(ctlr, adev);
2722 }
2723
2724 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2725
acpi_register_spi_devices(struct spi_controller * ctlr)2726 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2727 {
2728 acpi_status status;
2729 acpi_handle handle;
2730
2731 handle = ACPI_HANDLE(ctlr->dev.parent);
2732 if (!handle)
2733 return;
2734
2735 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2736 SPI_ACPI_ENUMERATE_MAX_DEPTH,
2737 acpi_spi_add_device, NULL, ctlr, NULL);
2738 if (ACPI_FAILURE(status))
2739 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2740 }
2741 #else
acpi_register_spi_devices(struct spi_controller * ctlr)2742 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2743 #endif /* CONFIG_ACPI */
2744
spi_controller_release(struct device * dev)2745 static void spi_controller_release(struct device *dev)
2746 {
2747 struct spi_controller *ctlr;
2748
2749 ctlr = container_of(dev, struct spi_controller, dev);
2750 kfree(ctlr);
2751 }
2752
2753 static struct class spi_master_class = {
2754 .name = "spi_master",
2755 .owner = THIS_MODULE,
2756 .dev_release = spi_controller_release,
2757 .dev_groups = spi_master_groups,
2758 };
2759
2760 #ifdef CONFIG_SPI_SLAVE
2761 /**
2762 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2763 * controller
2764 * @spi: device used for the current transfer
2765 */
spi_slave_abort(struct spi_device * spi)2766 int spi_slave_abort(struct spi_device *spi)
2767 {
2768 struct spi_controller *ctlr = spi->controller;
2769
2770 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2771 return ctlr->slave_abort(ctlr);
2772
2773 return -ENOTSUPP;
2774 }
2775 EXPORT_SYMBOL_GPL(spi_slave_abort);
2776
slave_show(struct device * dev,struct device_attribute * attr,char * buf)2777 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2778 char *buf)
2779 {
2780 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2781 dev);
2782 struct device *child;
2783
2784 child = device_find_any_child(&ctlr->dev);
2785 return sprintf(buf, "%s\n",
2786 child ? to_spi_device(child)->modalias : NULL);
2787 }
2788
slave_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2789 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2790 const char *buf, size_t count)
2791 {
2792 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2793 dev);
2794 struct spi_device *spi;
2795 struct device *child;
2796 char name[32];
2797 int rc;
2798
2799 rc = sscanf(buf, "%31s", name);
2800 if (rc != 1 || !name[0])
2801 return -EINVAL;
2802
2803 child = device_find_any_child(&ctlr->dev);
2804 if (child) {
2805 /* Remove registered slave */
2806 device_unregister(child);
2807 put_device(child);
2808 }
2809
2810 if (strcmp(name, "(null)")) {
2811 /* Register new slave */
2812 spi = spi_alloc_device(ctlr);
2813 if (!spi)
2814 return -ENOMEM;
2815
2816 strscpy(spi->modalias, name, sizeof(spi->modalias));
2817
2818 rc = spi_add_device(spi);
2819 if (rc) {
2820 spi_dev_put(spi);
2821 return rc;
2822 }
2823 }
2824
2825 return count;
2826 }
2827
2828 static DEVICE_ATTR_RW(slave);
2829
2830 static struct attribute *spi_slave_attrs[] = {
2831 &dev_attr_slave.attr,
2832 NULL,
2833 };
2834
2835 static const struct attribute_group spi_slave_group = {
2836 .attrs = spi_slave_attrs,
2837 };
2838
2839 static const struct attribute_group *spi_slave_groups[] = {
2840 &spi_controller_statistics_group,
2841 &spi_slave_group,
2842 NULL,
2843 };
2844
2845 static struct class spi_slave_class = {
2846 .name = "spi_slave",
2847 .owner = THIS_MODULE,
2848 .dev_release = spi_controller_release,
2849 .dev_groups = spi_slave_groups,
2850 };
2851 #else
2852 extern struct class spi_slave_class; /* dummy */
2853 #endif
2854
2855 /**
2856 * __spi_alloc_controller - allocate an SPI master or slave controller
2857 * @dev: the controller, possibly using the platform_bus
2858 * @size: how much zeroed driver-private data to allocate; the pointer to this
2859 * memory is in the driver_data field of the returned device, accessible
2860 * with spi_controller_get_devdata(); the memory is cacheline aligned;
2861 * drivers granting DMA access to portions of their private data need to
2862 * round up @size using ALIGN(size, dma_get_cache_alignment()).
2863 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2864 * slave (true) controller
2865 * Context: can sleep
2866 *
2867 * This call is used only by SPI controller drivers, which are the
2868 * only ones directly touching chip registers. It's how they allocate
2869 * an spi_controller structure, prior to calling spi_register_controller().
2870 *
2871 * This must be called from context that can sleep.
2872 *
2873 * The caller is responsible for assigning the bus number and initializing the
2874 * controller's methods before calling spi_register_controller(); and (after
2875 * errors adding the device) calling spi_controller_put() to prevent a memory
2876 * leak.
2877 *
2878 * Return: the SPI controller structure on success, else NULL.
2879 */
__spi_alloc_controller(struct device * dev,unsigned int size,bool slave)2880 struct spi_controller *__spi_alloc_controller(struct device *dev,
2881 unsigned int size, bool slave)
2882 {
2883 struct spi_controller *ctlr;
2884 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2885
2886 if (!dev)
2887 return NULL;
2888
2889 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2890 if (!ctlr)
2891 return NULL;
2892
2893 device_initialize(&ctlr->dev);
2894 INIT_LIST_HEAD(&ctlr->queue);
2895 spin_lock_init(&ctlr->queue_lock);
2896 spin_lock_init(&ctlr->bus_lock_spinlock);
2897 mutex_init(&ctlr->bus_lock_mutex);
2898 mutex_init(&ctlr->io_mutex);
2899 mutex_init(&ctlr->add_lock);
2900 ctlr->bus_num = -1;
2901 ctlr->num_chipselect = 1;
2902 ctlr->slave = slave;
2903 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2904 ctlr->dev.class = &spi_slave_class;
2905 else
2906 ctlr->dev.class = &spi_master_class;
2907 ctlr->dev.parent = dev;
2908 pm_suspend_ignore_children(&ctlr->dev, true);
2909 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2910
2911 return ctlr;
2912 }
2913 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2914
devm_spi_release_controller(struct device * dev,void * ctlr)2915 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2916 {
2917 spi_controller_put(*(struct spi_controller **)ctlr);
2918 }
2919
2920 /**
2921 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2922 * @dev: physical device of SPI controller
2923 * @size: how much zeroed driver-private data to allocate
2924 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2925 * Context: can sleep
2926 *
2927 * Allocate an SPI controller and automatically release a reference on it
2928 * when @dev is unbound from its driver. Drivers are thus relieved from
2929 * having to call spi_controller_put().
2930 *
2931 * The arguments to this function are identical to __spi_alloc_controller().
2932 *
2933 * Return: the SPI controller structure on success, else NULL.
2934 */
__devm_spi_alloc_controller(struct device * dev,unsigned int size,bool slave)2935 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2936 unsigned int size,
2937 bool slave)
2938 {
2939 struct spi_controller **ptr, *ctlr;
2940
2941 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2942 GFP_KERNEL);
2943 if (!ptr)
2944 return NULL;
2945
2946 ctlr = __spi_alloc_controller(dev, size, slave);
2947 if (ctlr) {
2948 ctlr->devm_allocated = true;
2949 *ptr = ctlr;
2950 devres_add(dev, ptr);
2951 } else {
2952 devres_free(ptr);
2953 }
2954
2955 return ctlr;
2956 }
2957 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2958
2959 /**
2960 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2961 * @ctlr: The SPI master to grab GPIO descriptors for
2962 */
spi_get_gpio_descs(struct spi_controller * ctlr)2963 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2964 {
2965 int nb, i;
2966 struct gpio_desc **cs;
2967 struct device *dev = &ctlr->dev;
2968 unsigned long native_cs_mask = 0;
2969 unsigned int num_cs_gpios = 0;
2970
2971 nb = gpiod_count(dev, "cs");
2972 if (nb < 0) {
2973 /* No GPIOs at all is fine, else return the error */
2974 if (nb == -ENOENT)
2975 return 0;
2976 return nb;
2977 }
2978
2979 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2980
2981 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2982 GFP_KERNEL);
2983 if (!cs)
2984 return -ENOMEM;
2985 ctlr->cs_gpiods = cs;
2986
2987 for (i = 0; i < nb; i++) {
2988 /*
2989 * Most chipselects are active low, the inverted
2990 * semantics are handled by special quirks in gpiolib,
2991 * so initializing them GPIOD_OUT_LOW here means
2992 * "unasserted", in most cases this will drive the physical
2993 * line high.
2994 */
2995 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2996 GPIOD_OUT_LOW);
2997 if (IS_ERR(cs[i]))
2998 return PTR_ERR(cs[i]);
2999
3000 if (cs[i]) {
3001 /*
3002 * If we find a CS GPIO, name it after the device and
3003 * chip select line.
3004 */
3005 char *gpioname;
3006
3007 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3008 dev_name(dev), i);
3009 if (!gpioname)
3010 return -ENOMEM;
3011 gpiod_set_consumer_name(cs[i], gpioname);
3012 num_cs_gpios++;
3013 continue;
3014 }
3015
3016 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3017 dev_err(dev, "Invalid native chip select %d\n", i);
3018 return -EINVAL;
3019 }
3020 native_cs_mask |= BIT(i);
3021 }
3022
3023 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3024
3025 if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
3026 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3027 dev_err(dev, "No unused native chip select available\n");
3028 return -EINVAL;
3029 }
3030
3031 return 0;
3032 }
3033
spi_controller_check_ops(struct spi_controller * ctlr)3034 static int spi_controller_check_ops(struct spi_controller *ctlr)
3035 {
3036 /*
3037 * The controller may implement only the high-level SPI-memory like
3038 * operations if it does not support regular SPI transfers, and this is
3039 * valid use case.
3040 * If ->mem_ops is NULL, we request that at least one of the
3041 * ->transfer_xxx() method be implemented.
3042 */
3043 if (ctlr->mem_ops) {
3044 if (!ctlr->mem_ops->exec_op)
3045 return -EINVAL;
3046 } else if (!ctlr->transfer && !ctlr->transfer_one &&
3047 !ctlr->transfer_one_message) {
3048 return -EINVAL;
3049 }
3050
3051 return 0;
3052 }
3053
3054 /**
3055 * spi_register_controller - register SPI master or slave controller
3056 * @ctlr: initialized master, originally from spi_alloc_master() or
3057 * spi_alloc_slave()
3058 * Context: can sleep
3059 *
3060 * SPI controllers connect to their drivers using some non-SPI bus,
3061 * such as the platform bus. The final stage of probe() in that code
3062 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3063 *
3064 * SPI controllers use board specific (often SOC specific) bus numbers,
3065 * and board-specific addressing for SPI devices combines those numbers
3066 * with chip select numbers. Since SPI does not directly support dynamic
3067 * device identification, boards need configuration tables telling which
3068 * chip is at which address.
3069 *
3070 * This must be called from context that can sleep. It returns zero on
3071 * success, else a negative error code (dropping the controller's refcount).
3072 * After a successful return, the caller is responsible for calling
3073 * spi_unregister_controller().
3074 *
3075 * Return: zero on success, else a negative error code.
3076 */
spi_register_controller(struct spi_controller * ctlr)3077 int spi_register_controller(struct spi_controller *ctlr)
3078 {
3079 struct device *dev = ctlr->dev.parent;
3080 struct boardinfo *bi;
3081 int status;
3082 int id, first_dynamic;
3083
3084 if (!dev)
3085 return -ENODEV;
3086
3087 /*
3088 * Make sure all necessary hooks are implemented before registering
3089 * the SPI controller.
3090 */
3091 status = spi_controller_check_ops(ctlr);
3092 if (status)
3093 return status;
3094
3095 if (ctlr->bus_num >= 0) {
3096 /* Devices with a fixed bus num must check-in with the num */
3097 mutex_lock(&board_lock);
3098 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3099 ctlr->bus_num + 1, GFP_KERNEL);
3100 mutex_unlock(&board_lock);
3101 if (WARN(id < 0, "couldn't get idr"))
3102 return id == -ENOSPC ? -EBUSY : id;
3103 ctlr->bus_num = id;
3104 } else if (ctlr->dev.of_node) {
3105 /* Allocate dynamic bus number using Linux idr */
3106 id = of_alias_get_id(ctlr->dev.of_node, "spi");
3107 if (id >= 0) {
3108 ctlr->bus_num = id;
3109 mutex_lock(&board_lock);
3110 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3111 ctlr->bus_num + 1, GFP_KERNEL);
3112 mutex_unlock(&board_lock);
3113 if (WARN(id < 0, "couldn't get idr"))
3114 return id == -ENOSPC ? -EBUSY : id;
3115 }
3116 }
3117 if (ctlr->bus_num < 0) {
3118 first_dynamic = of_alias_get_highest_id("spi");
3119 if (first_dynamic < 0)
3120 first_dynamic = 0;
3121 else
3122 first_dynamic++;
3123
3124 mutex_lock(&board_lock);
3125 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
3126 0, GFP_KERNEL);
3127 mutex_unlock(&board_lock);
3128 if (WARN(id < 0, "couldn't get idr"))
3129 return id;
3130 ctlr->bus_num = id;
3131 }
3132 ctlr->bus_lock_flag = 0;
3133 init_completion(&ctlr->xfer_completion);
3134 init_completion(&ctlr->cur_msg_completion);
3135 if (!ctlr->max_dma_len)
3136 ctlr->max_dma_len = INT_MAX;
3137
3138 /*
3139 * Register the device, then userspace will see it.
3140 * Registration fails if the bus ID is in use.
3141 */
3142 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3143
3144 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3145 status = spi_get_gpio_descs(ctlr);
3146 if (status)
3147 goto free_bus_id;
3148 /*
3149 * A controller using GPIO descriptors always
3150 * supports SPI_CS_HIGH if need be.
3151 */
3152 ctlr->mode_bits |= SPI_CS_HIGH;
3153 }
3154
3155 /*
3156 * Even if it's just one always-selected device, there must
3157 * be at least one chipselect.
3158 */
3159 if (!ctlr->num_chipselect) {
3160 status = -EINVAL;
3161 goto free_bus_id;
3162 }
3163
3164 /* Setting last_cs to -1 means no chip selected */
3165 ctlr->last_cs = -1;
3166
3167 status = device_add(&ctlr->dev);
3168 if (status < 0)
3169 goto free_bus_id;
3170 dev_dbg(dev, "registered %s %s\n",
3171 spi_controller_is_slave(ctlr) ? "slave" : "master",
3172 dev_name(&ctlr->dev));
3173
3174 /*
3175 * If we're using a queued driver, start the queue. Note that we don't
3176 * need the queueing logic if the driver is only supporting high-level
3177 * memory operations.
3178 */
3179 if (ctlr->transfer) {
3180 dev_info(dev, "controller is unqueued, this is deprecated\n");
3181 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3182 status = spi_controller_initialize_queue(ctlr);
3183 if (status) {
3184 device_del(&ctlr->dev);
3185 goto free_bus_id;
3186 }
3187 }
3188 /* Add statistics */
3189 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3190 if (!ctlr->pcpu_statistics) {
3191 dev_err(dev, "Error allocating per-cpu statistics\n");
3192 status = -ENOMEM;
3193 goto destroy_queue;
3194 }
3195
3196 mutex_lock(&board_lock);
3197 list_add_tail(&ctlr->list, &spi_controller_list);
3198 list_for_each_entry(bi, &board_list, list)
3199 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3200 mutex_unlock(&board_lock);
3201
3202 /* Register devices from the device tree and ACPI */
3203 of_register_spi_devices(ctlr);
3204 acpi_register_spi_devices(ctlr);
3205 return status;
3206
3207 destroy_queue:
3208 spi_destroy_queue(ctlr);
3209 free_bus_id:
3210 mutex_lock(&board_lock);
3211 idr_remove(&spi_master_idr, ctlr->bus_num);
3212 mutex_unlock(&board_lock);
3213 return status;
3214 }
3215 EXPORT_SYMBOL_GPL(spi_register_controller);
3216
devm_spi_unregister(struct device * dev,void * res)3217 static void devm_spi_unregister(struct device *dev, void *res)
3218 {
3219 spi_unregister_controller(*(struct spi_controller **)res);
3220 }
3221
3222 /**
3223 * devm_spi_register_controller - register managed SPI master or slave
3224 * controller
3225 * @dev: device managing SPI controller
3226 * @ctlr: initialized controller, originally from spi_alloc_master() or
3227 * spi_alloc_slave()
3228 * Context: can sleep
3229 *
3230 * Register a SPI device as with spi_register_controller() which will
3231 * automatically be unregistered and freed.
3232 *
3233 * Return: zero on success, else a negative error code.
3234 */
devm_spi_register_controller(struct device * dev,struct spi_controller * ctlr)3235 int devm_spi_register_controller(struct device *dev,
3236 struct spi_controller *ctlr)
3237 {
3238 struct spi_controller **ptr;
3239 int ret;
3240
3241 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3242 if (!ptr)
3243 return -ENOMEM;
3244
3245 ret = spi_register_controller(ctlr);
3246 if (!ret) {
3247 *ptr = ctlr;
3248 devres_add(dev, ptr);
3249 } else {
3250 devres_free(ptr);
3251 }
3252
3253 return ret;
3254 }
3255 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3256
__unregister(struct device * dev,void * null)3257 static int __unregister(struct device *dev, void *null)
3258 {
3259 spi_unregister_device(to_spi_device(dev));
3260 return 0;
3261 }
3262
3263 /**
3264 * spi_unregister_controller - unregister SPI master or slave controller
3265 * @ctlr: the controller being unregistered
3266 * Context: can sleep
3267 *
3268 * This call is used only by SPI controller drivers, which are the
3269 * only ones directly touching chip registers.
3270 *
3271 * This must be called from context that can sleep.
3272 *
3273 * Note that this function also drops a reference to the controller.
3274 */
spi_unregister_controller(struct spi_controller * ctlr)3275 void spi_unregister_controller(struct spi_controller *ctlr)
3276 {
3277 struct spi_controller *found;
3278 int id = ctlr->bus_num;
3279
3280 /* Prevent addition of new devices, unregister existing ones */
3281 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3282 mutex_lock(&ctlr->add_lock);
3283
3284 device_for_each_child(&ctlr->dev, NULL, __unregister);
3285
3286 /* First make sure that this controller was ever added */
3287 mutex_lock(&board_lock);
3288 found = idr_find(&spi_master_idr, id);
3289 mutex_unlock(&board_lock);
3290 if (ctlr->queued) {
3291 if (spi_destroy_queue(ctlr))
3292 dev_err(&ctlr->dev, "queue remove failed\n");
3293 }
3294 mutex_lock(&board_lock);
3295 list_del(&ctlr->list);
3296 mutex_unlock(&board_lock);
3297
3298 device_del(&ctlr->dev);
3299
3300 /* Free bus id */
3301 mutex_lock(&board_lock);
3302 if (found == ctlr)
3303 idr_remove(&spi_master_idr, id);
3304 mutex_unlock(&board_lock);
3305
3306 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3307 mutex_unlock(&ctlr->add_lock);
3308
3309 /* Release the last reference on the controller if its driver
3310 * has not yet been converted to devm_spi_alloc_master/slave().
3311 */
3312 if (!ctlr->devm_allocated)
3313 put_device(&ctlr->dev);
3314 }
3315 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3316
__spi_check_suspended(const struct spi_controller * ctlr)3317 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3318 {
3319 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3320 }
3321
__spi_mark_suspended(struct spi_controller * ctlr)3322 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3323 {
3324 mutex_lock(&ctlr->bus_lock_mutex);
3325 ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3326 mutex_unlock(&ctlr->bus_lock_mutex);
3327 }
3328
__spi_mark_resumed(struct spi_controller * ctlr)3329 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3330 {
3331 mutex_lock(&ctlr->bus_lock_mutex);
3332 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3333 mutex_unlock(&ctlr->bus_lock_mutex);
3334 }
3335
spi_controller_suspend(struct spi_controller * ctlr)3336 int spi_controller_suspend(struct spi_controller *ctlr)
3337 {
3338 int ret = 0;
3339
3340 /* Basically no-ops for non-queued controllers */
3341 if (ctlr->queued) {
3342 ret = spi_stop_queue(ctlr);
3343 if (ret)
3344 dev_err(&ctlr->dev, "queue stop failed\n");
3345 }
3346
3347 __spi_mark_suspended(ctlr);
3348 return ret;
3349 }
3350 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3351
spi_controller_resume(struct spi_controller * ctlr)3352 int spi_controller_resume(struct spi_controller *ctlr)
3353 {
3354 int ret = 0;
3355
3356 __spi_mark_resumed(ctlr);
3357
3358 if (ctlr->queued) {
3359 ret = spi_start_queue(ctlr);
3360 if (ret)
3361 dev_err(&ctlr->dev, "queue restart failed\n");
3362 }
3363 return ret;
3364 }
3365 EXPORT_SYMBOL_GPL(spi_controller_resume);
3366
3367 /*-------------------------------------------------------------------------*/
3368
3369 /* Core methods for spi_message alterations */
3370
__spi_replace_transfers_release(struct spi_controller * ctlr,struct spi_message * msg,void * res)3371 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3372 struct spi_message *msg,
3373 void *res)
3374 {
3375 struct spi_replaced_transfers *rxfer = res;
3376 size_t i;
3377
3378 /* Call extra callback if requested */
3379 if (rxfer->release)
3380 rxfer->release(ctlr, msg, res);
3381
3382 /* Insert replaced transfers back into the message */
3383 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3384
3385 /* Remove the formerly inserted entries */
3386 for (i = 0; i < rxfer->inserted; i++)
3387 list_del(&rxfer->inserted_transfers[i].transfer_list);
3388 }
3389
3390 /**
3391 * spi_replace_transfers - replace transfers with several transfers
3392 * and register change with spi_message.resources
3393 * @msg: the spi_message we work upon
3394 * @xfer_first: the first spi_transfer we want to replace
3395 * @remove: number of transfers to remove
3396 * @insert: the number of transfers we want to insert instead
3397 * @release: extra release code necessary in some circumstances
3398 * @extradatasize: extra data to allocate (with alignment guarantees
3399 * of struct @spi_transfer)
3400 * @gfp: gfp flags
3401 *
3402 * Returns: pointer to @spi_replaced_transfers,
3403 * PTR_ERR(...) in case of errors.
3404 */
spi_replace_transfers(struct spi_message * msg,struct spi_transfer * xfer_first,size_t remove,size_t insert,spi_replaced_release_t release,size_t extradatasize,gfp_t gfp)3405 static struct spi_replaced_transfers *spi_replace_transfers(
3406 struct spi_message *msg,
3407 struct spi_transfer *xfer_first,
3408 size_t remove,
3409 size_t insert,
3410 spi_replaced_release_t release,
3411 size_t extradatasize,
3412 gfp_t gfp)
3413 {
3414 struct spi_replaced_transfers *rxfer;
3415 struct spi_transfer *xfer;
3416 size_t i;
3417
3418 /* Allocate the structure using spi_res */
3419 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3420 struct_size(rxfer, inserted_transfers, insert)
3421 + extradatasize,
3422 gfp);
3423 if (!rxfer)
3424 return ERR_PTR(-ENOMEM);
3425
3426 /* The release code to invoke before running the generic release */
3427 rxfer->release = release;
3428
3429 /* Assign extradata */
3430 if (extradatasize)
3431 rxfer->extradata =
3432 &rxfer->inserted_transfers[insert];
3433
3434 /* Init the replaced_transfers list */
3435 INIT_LIST_HEAD(&rxfer->replaced_transfers);
3436
3437 /*
3438 * Assign the list_entry after which we should reinsert
3439 * the @replaced_transfers - it may be spi_message.messages!
3440 */
3441 rxfer->replaced_after = xfer_first->transfer_list.prev;
3442
3443 /* Remove the requested number of transfers */
3444 for (i = 0; i < remove; i++) {
3445 /*
3446 * If the entry after replaced_after it is msg->transfers
3447 * then we have been requested to remove more transfers
3448 * than are in the list.
3449 */
3450 if (rxfer->replaced_after->next == &msg->transfers) {
3451 dev_err(&msg->spi->dev,
3452 "requested to remove more spi_transfers than are available\n");
3453 /* Insert replaced transfers back into the message */
3454 list_splice(&rxfer->replaced_transfers,
3455 rxfer->replaced_after);
3456
3457 /* Free the spi_replace_transfer structure... */
3458 spi_res_free(rxfer);
3459
3460 /* ...and return with an error */
3461 return ERR_PTR(-EINVAL);
3462 }
3463
3464 /*
3465 * Remove the entry after replaced_after from list of
3466 * transfers and add it to list of replaced_transfers.
3467 */
3468 list_move_tail(rxfer->replaced_after->next,
3469 &rxfer->replaced_transfers);
3470 }
3471
3472 /*
3473 * Create copy of the given xfer with identical settings
3474 * based on the first transfer to get removed.
3475 */
3476 for (i = 0; i < insert; i++) {
3477 /* We need to run in reverse order */
3478 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3479
3480 /* Copy all spi_transfer data */
3481 memcpy(xfer, xfer_first, sizeof(*xfer));
3482
3483 /* Add to list */
3484 list_add(&xfer->transfer_list, rxfer->replaced_after);
3485
3486 /* Clear cs_change and delay for all but the last */
3487 if (i) {
3488 xfer->cs_change = false;
3489 xfer->delay.value = 0;
3490 }
3491 }
3492
3493 /* Set up inserted... */
3494 rxfer->inserted = insert;
3495
3496 /* ...and register it with spi_res/spi_message */
3497 spi_res_add(msg, rxfer);
3498
3499 return rxfer;
3500 }
3501
__spi_split_transfer_maxsize(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer ** xferp,size_t maxsize,gfp_t gfp)3502 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3503 struct spi_message *msg,
3504 struct spi_transfer **xferp,
3505 size_t maxsize,
3506 gfp_t gfp)
3507 {
3508 struct spi_transfer *xfer = *xferp, *xfers;
3509 struct spi_replaced_transfers *srt;
3510 size_t offset;
3511 size_t count, i;
3512
3513 /* Calculate how many we have to replace */
3514 count = DIV_ROUND_UP(xfer->len, maxsize);
3515
3516 /* Create replacement */
3517 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3518 if (IS_ERR(srt))
3519 return PTR_ERR(srt);
3520 xfers = srt->inserted_transfers;
3521
3522 /*
3523 * Now handle each of those newly inserted spi_transfers.
3524 * Note that the replacements spi_transfers all are preset
3525 * to the same values as *xferp, so tx_buf, rx_buf and len
3526 * are all identical (as well as most others)
3527 * so we just have to fix up len and the pointers.
3528 *
3529 * This also includes support for the depreciated
3530 * spi_message.is_dma_mapped interface.
3531 */
3532
3533 /*
3534 * The first transfer just needs the length modified, so we
3535 * run it outside the loop.
3536 */
3537 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3538
3539 /* All the others need rx_buf/tx_buf also set */
3540 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3541 /* Update rx_buf, tx_buf and dma */
3542 if (xfers[i].rx_buf)
3543 xfers[i].rx_buf += offset;
3544 if (xfers[i].rx_dma)
3545 xfers[i].rx_dma += offset;
3546 if (xfers[i].tx_buf)
3547 xfers[i].tx_buf += offset;
3548 if (xfers[i].tx_dma)
3549 xfers[i].tx_dma += offset;
3550
3551 /* Update length */
3552 xfers[i].len = min(maxsize, xfers[i].len - offset);
3553 }
3554
3555 /*
3556 * We set up xferp to the last entry we have inserted,
3557 * so that we skip those already split transfers.
3558 */
3559 *xferp = &xfers[count - 1];
3560
3561 /* Increment statistics counters */
3562 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3563 transfers_split_maxsize);
3564 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3565 transfers_split_maxsize);
3566
3567 return 0;
3568 }
3569
3570 /**
3571 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3572 * when an individual transfer exceeds a
3573 * certain size
3574 * @ctlr: the @spi_controller for this transfer
3575 * @msg: the @spi_message to transform
3576 * @maxsize: the maximum when to apply this
3577 * @gfp: GFP allocation flags
3578 *
3579 * Return: status of transformation
3580 */
spi_split_transfers_maxsize(struct spi_controller * ctlr,struct spi_message * msg,size_t maxsize,gfp_t gfp)3581 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3582 struct spi_message *msg,
3583 size_t maxsize,
3584 gfp_t gfp)
3585 {
3586 struct spi_transfer *xfer;
3587 int ret;
3588
3589 /*
3590 * Iterate over the transfer_list,
3591 * but note that xfer is advanced to the last transfer inserted
3592 * to avoid checking sizes again unnecessarily (also xfer does
3593 * potentially belong to a different list by the time the
3594 * replacement has happened).
3595 */
3596 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3597 if (xfer->len > maxsize) {
3598 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3599 maxsize, gfp);
3600 if (ret)
3601 return ret;
3602 }
3603 }
3604
3605 return 0;
3606 }
3607 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3608
3609 /*-------------------------------------------------------------------------*/
3610
3611 /* Core methods for SPI controller protocol drivers. Some of the
3612 * other core methods are currently defined as inline functions.
3613 */
3614
__spi_validate_bits_per_word(struct spi_controller * ctlr,u8 bits_per_word)3615 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3616 u8 bits_per_word)
3617 {
3618 if (ctlr->bits_per_word_mask) {
3619 /* Only 32 bits fit in the mask */
3620 if (bits_per_word > 32)
3621 return -EINVAL;
3622 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3623 return -EINVAL;
3624 }
3625
3626 return 0;
3627 }
3628
3629 /**
3630 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3631 * @spi: the device that requires specific CS timing configuration
3632 *
3633 * Return: zero on success, else a negative error code.
3634 */
spi_set_cs_timing(struct spi_device * spi)3635 static int spi_set_cs_timing(struct spi_device *spi)
3636 {
3637 struct device *parent = spi->controller->dev.parent;
3638 int status = 0;
3639
3640 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3641 if (spi->controller->auto_runtime_pm) {
3642 status = pm_runtime_get_sync(parent);
3643 if (status < 0) {
3644 pm_runtime_put_noidle(parent);
3645 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3646 status);
3647 return status;
3648 }
3649
3650 status = spi->controller->set_cs_timing(spi);
3651 pm_runtime_mark_last_busy(parent);
3652 pm_runtime_put_autosuspend(parent);
3653 } else {
3654 status = spi->controller->set_cs_timing(spi);
3655 }
3656 }
3657 return status;
3658 }
3659
3660 /**
3661 * spi_setup - setup SPI mode and clock rate
3662 * @spi: the device whose settings are being modified
3663 * Context: can sleep, and no requests are queued to the device
3664 *
3665 * SPI protocol drivers may need to update the transfer mode if the
3666 * device doesn't work with its default. They may likewise need
3667 * to update clock rates or word sizes from initial values. This function
3668 * changes those settings, and must be called from a context that can sleep.
3669 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3670 * effect the next time the device is selected and data is transferred to
3671 * or from it. When this function returns, the spi device is deselected.
3672 *
3673 * Note that this call will fail if the protocol driver specifies an option
3674 * that the underlying controller or its driver does not support. For
3675 * example, not all hardware supports wire transfers using nine bit words,
3676 * LSB-first wire encoding, or active-high chipselects.
3677 *
3678 * Return: zero on success, else a negative error code.
3679 */
spi_setup(struct spi_device * spi)3680 int spi_setup(struct spi_device *spi)
3681 {
3682 unsigned bad_bits, ugly_bits;
3683 int status = 0;
3684
3685 /*
3686 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3687 * are set at the same time.
3688 */
3689 if ((hweight_long(spi->mode &
3690 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3691 (hweight_long(spi->mode &
3692 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3693 dev_err(&spi->dev,
3694 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3695 return -EINVAL;
3696 }
3697 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3698 if ((spi->mode & SPI_3WIRE) && (spi->mode &
3699 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3700 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3701 return -EINVAL;
3702 /*
3703 * Help drivers fail *cleanly* when they need options
3704 * that aren't supported with their current controller.
3705 * SPI_CS_WORD has a fallback software implementation,
3706 * so it is ignored here.
3707 */
3708 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3709 SPI_NO_TX | SPI_NO_RX);
3710 ugly_bits = bad_bits &
3711 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3712 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3713 if (ugly_bits) {
3714 dev_warn(&spi->dev,
3715 "setup: ignoring unsupported mode bits %x\n",
3716 ugly_bits);
3717 spi->mode &= ~ugly_bits;
3718 bad_bits &= ~ugly_bits;
3719 }
3720 if (bad_bits) {
3721 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3722 bad_bits);
3723 return -EINVAL;
3724 }
3725
3726 if (!spi->bits_per_word) {
3727 spi->bits_per_word = 8;
3728 } else {
3729 /*
3730 * Some controllers may not support the default 8 bits-per-word
3731 * so only perform the check when this is explicitly provided.
3732 */
3733 status = __spi_validate_bits_per_word(spi->controller,
3734 spi->bits_per_word);
3735 if (status)
3736 return status;
3737 }
3738
3739 if (spi->controller->max_speed_hz &&
3740 (!spi->max_speed_hz ||
3741 spi->max_speed_hz > spi->controller->max_speed_hz))
3742 spi->max_speed_hz = spi->controller->max_speed_hz;
3743
3744 mutex_lock(&spi->controller->io_mutex);
3745
3746 if (spi->controller->setup) {
3747 status = spi->controller->setup(spi);
3748 if (status) {
3749 mutex_unlock(&spi->controller->io_mutex);
3750 dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3751 status);
3752 return status;
3753 }
3754 }
3755
3756 status = spi_set_cs_timing(spi);
3757 if (status) {
3758 mutex_unlock(&spi->controller->io_mutex);
3759 return status;
3760 }
3761
3762 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3763 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3764 if (status < 0) {
3765 mutex_unlock(&spi->controller->io_mutex);
3766 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3767 status);
3768 return status;
3769 }
3770
3771 /*
3772 * We do not want to return positive value from pm_runtime_get,
3773 * there are many instances of devices calling spi_setup() and
3774 * checking for a non-zero return value instead of a negative
3775 * return value.
3776 */
3777 status = 0;
3778
3779 spi_set_cs(spi, false, true);
3780 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3781 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3782 } else {
3783 spi_set_cs(spi, false, true);
3784 }
3785
3786 mutex_unlock(&spi->controller->io_mutex);
3787
3788 if (spi->rt && !spi->controller->rt) {
3789 spi->controller->rt = true;
3790 spi_set_thread_rt(spi->controller);
3791 }
3792
3793 trace_spi_setup(spi, status);
3794
3795 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3796 spi->mode & SPI_MODE_X_MASK,
3797 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3798 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3799 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3800 (spi->mode & SPI_LOOP) ? "loopback, " : "",
3801 spi->bits_per_word, spi->max_speed_hz,
3802 status);
3803
3804 return status;
3805 }
3806 EXPORT_SYMBOL_GPL(spi_setup);
3807
_spi_xfer_word_delay_update(struct spi_transfer * xfer,struct spi_device * spi)3808 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3809 struct spi_device *spi)
3810 {
3811 int delay1, delay2;
3812
3813 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3814 if (delay1 < 0)
3815 return delay1;
3816
3817 delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3818 if (delay2 < 0)
3819 return delay2;
3820
3821 if (delay1 < delay2)
3822 memcpy(&xfer->word_delay, &spi->word_delay,
3823 sizeof(xfer->word_delay));
3824
3825 return 0;
3826 }
3827
__spi_validate(struct spi_device * spi,struct spi_message * message)3828 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3829 {
3830 struct spi_controller *ctlr = spi->controller;
3831 struct spi_transfer *xfer;
3832 int w_size;
3833
3834 if (list_empty(&message->transfers))
3835 return -EINVAL;
3836
3837 /*
3838 * If an SPI controller does not support toggling the CS line on each
3839 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3840 * for the CS line, we can emulate the CS-per-word hardware function by
3841 * splitting transfers into one-word transfers and ensuring that
3842 * cs_change is set for each transfer.
3843 */
3844 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3845 spi_get_csgpiod(spi, 0))) {
3846 size_t maxsize;
3847 int ret;
3848
3849 maxsize = (spi->bits_per_word + 7) / 8;
3850
3851 /* spi_split_transfers_maxsize() requires message->spi */
3852 message->spi = spi;
3853
3854 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3855 GFP_KERNEL);
3856 if (ret)
3857 return ret;
3858
3859 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3860 /* Don't change cs_change on the last entry in the list */
3861 if (list_is_last(&xfer->transfer_list, &message->transfers))
3862 break;
3863 xfer->cs_change = 1;
3864 }
3865 }
3866
3867 /*
3868 * Half-duplex links include original MicroWire, and ones with
3869 * only one data pin like SPI_3WIRE (switches direction) or where
3870 * either MOSI or MISO is missing. They can also be caused by
3871 * software limitations.
3872 */
3873 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3874 (spi->mode & SPI_3WIRE)) {
3875 unsigned flags = ctlr->flags;
3876
3877 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3878 if (xfer->rx_buf && xfer->tx_buf)
3879 return -EINVAL;
3880 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3881 return -EINVAL;
3882 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3883 return -EINVAL;
3884 }
3885 }
3886
3887 /*
3888 * Set transfer bits_per_word and max speed as spi device default if
3889 * it is not set for this transfer.
3890 * Set transfer tx_nbits and rx_nbits as single transfer default
3891 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3892 * Ensure transfer word_delay is at least as long as that required by
3893 * device itself.
3894 */
3895 message->frame_length = 0;
3896 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3897 xfer->effective_speed_hz = 0;
3898 message->frame_length += xfer->len;
3899 if (!xfer->bits_per_word)
3900 xfer->bits_per_word = spi->bits_per_word;
3901
3902 if (!xfer->speed_hz)
3903 xfer->speed_hz = spi->max_speed_hz;
3904
3905 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3906 xfer->speed_hz = ctlr->max_speed_hz;
3907
3908 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3909 return -EINVAL;
3910
3911 /*
3912 * SPI transfer length should be multiple of SPI word size
3913 * where SPI word size should be power-of-two multiple.
3914 */
3915 if (xfer->bits_per_word <= 8)
3916 w_size = 1;
3917 else if (xfer->bits_per_word <= 16)
3918 w_size = 2;
3919 else
3920 w_size = 4;
3921
3922 /* No partial transfers accepted */
3923 if (xfer->len % w_size)
3924 return -EINVAL;
3925
3926 if (xfer->speed_hz && ctlr->min_speed_hz &&
3927 xfer->speed_hz < ctlr->min_speed_hz)
3928 return -EINVAL;
3929
3930 if (xfer->tx_buf && !xfer->tx_nbits)
3931 xfer->tx_nbits = SPI_NBITS_SINGLE;
3932 if (xfer->rx_buf && !xfer->rx_nbits)
3933 xfer->rx_nbits = SPI_NBITS_SINGLE;
3934 /*
3935 * Check transfer tx/rx_nbits:
3936 * 1. check the value matches one of single, dual and quad
3937 * 2. check tx/rx_nbits match the mode in spi_device
3938 */
3939 if (xfer->tx_buf) {
3940 if (spi->mode & SPI_NO_TX)
3941 return -EINVAL;
3942 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3943 xfer->tx_nbits != SPI_NBITS_DUAL &&
3944 xfer->tx_nbits != SPI_NBITS_QUAD)
3945 return -EINVAL;
3946 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3947 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3948 return -EINVAL;
3949 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3950 !(spi->mode & SPI_TX_QUAD))
3951 return -EINVAL;
3952 }
3953 /* Check transfer rx_nbits */
3954 if (xfer->rx_buf) {
3955 if (spi->mode & SPI_NO_RX)
3956 return -EINVAL;
3957 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3958 xfer->rx_nbits != SPI_NBITS_DUAL &&
3959 xfer->rx_nbits != SPI_NBITS_QUAD)
3960 return -EINVAL;
3961 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3962 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3963 return -EINVAL;
3964 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3965 !(spi->mode & SPI_RX_QUAD))
3966 return -EINVAL;
3967 }
3968
3969 if (_spi_xfer_word_delay_update(xfer, spi))
3970 return -EINVAL;
3971 }
3972
3973 message->status = -EINPROGRESS;
3974
3975 return 0;
3976 }
3977
__spi_async(struct spi_device * spi,struct spi_message * message)3978 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3979 {
3980 struct spi_controller *ctlr = spi->controller;
3981 struct spi_transfer *xfer;
3982
3983 /*
3984 * Some controllers do not support doing regular SPI transfers. Return
3985 * ENOTSUPP when this is the case.
3986 */
3987 if (!ctlr->transfer)
3988 return -ENOTSUPP;
3989
3990 message->spi = spi;
3991
3992 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
3993 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
3994
3995 trace_spi_message_submit(message);
3996
3997 if (!ctlr->ptp_sts_supported) {
3998 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3999 xfer->ptp_sts_word_pre = 0;
4000 ptp_read_system_prets(xfer->ptp_sts);
4001 }
4002 }
4003
4004 return ctlr->transfer(spi, message);
4005 }
4006
4007 /**
4008 * spi_async - asynchronous SPI transfer
4009 * @spi: device with which data will be exchanged
4010 * @message: describes the data transfers, including completion callback
4011 * Context: any (irqs may be blocked, etc)
4012 *
4013 * This call may be used in_irq and other contexts which can't sleep,
4014 * as well as from task contexts which can sleep.
4015 *
4016 * The completion callback is invoked in a context which can't sleep.
4017 * Before that invocation, the value of message->status is undefined.
4018 * When the callback is issued, message->status holds either zero (to
4019 * indicate complete success) or a negative error code. After that
4020 * callback returns, the driver which issued the transfer request may
4021 * deallocate the associated memory; it's no longer in use by any SPI
4022 * core or controller driver code.
4023 *
4024 * Note that although all messages to a spi_device are handled in
4025 * FIFO order, messages may go to different devices in other orders.
4026 * Some device might be higher priority, or have various "hard" access
4027 * time requirements, for example.
4028 *
4029 * On detection of any fault during the transfer, processing of
4030 * the entire message is aborted, and the device is deselected.
4031 * Until returning from the associated message completion callback,
4032 * no other spi_message queued to that device will be processed.
4033 * (This rule applies equally to all the synchronous transfer calls,
4034 * which are wrappers around this core asynchronous primitive.)
4035 *
4036 * Return: zero on success, else a negative error code.
4037 */
spi_async(struct spi_device * spi,struct spi_message * message)4038 int spi_async(struct spi_device *spi, struct spi_message *message)
4039 {
4040 struct spi_controller *ctlr = spi->controller;
4041 int ret;
4042 unsigned long flags;
4043
4044 ret = __spi_validate(spi, message);
4045 if (ret != 0)
4046 return ret;
4047
4048 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4049
4050 if (ctlr->bus_lock_flag)
4051 ret = -EBUSY;
4052 else
4053 ret = __spi_async(spi, message);
4054
4055 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4056
4057 return ret;
4058 }
4059 EXPORT_SYMBOL_GPL(spi_async);
4060
4061 /**
4062 * spi_async_locked - version of spi_async with exclusive bus usage
4063 * @spi: device with which data will be exchanged
4064 * @message: describes the data transfers, including completion callback
4065 * Context: any (irqs may be blocked, etc)
4066 *
4067 * This call may be used in_irq and other contexts which can't sleep,
4068 * as well as from task contexts which can sleep.
4069 *
4070 * The completion callback is invoked in a context which can't sleep.
4071 * Before that invocation, the value of message->status is undefined.
4072 * When the callback is issued, message->status holds either zero (to
4073 * indicate complete success) or a negative error code. After that
4074 * callback returns, the driver which issued the transfer request may
4075 * deallocate the associated memory; it's no longer in use by any SPI
4076 * core or controller driver code.
4077 *
4078 * Note that although all messages to a spi_device are handled in
4079 * FIFO order, messages may go to different devices in other orders.
4080 * Some device might be higher priority, or have various "hard" access
4081 * time requirements, for example.
4082 *
4083 * On detection of any fault during the transfer, processing of
4084 * the entire message is aborted, and the device is deselected.
4085 * Until returning from the associated message completion callback,
4086 * no other spi_message queued to that device will be processed.
4087 * (This rule applies equally to all the synchronous transfer calls,
4088 * which are wrappers around this core asynchronous primitive.)
4089 *
4090 * Return: zero on success, else a negative error code.
4091 */
spi_async_locked(struct spi_device * spi,struct spi_message * message)4092 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
4093 {
4094 struct spi_controller *ctlr = spi->controller;
4095 int ret;
4096 unsigned long flags;
4097
4098 ret = __spi_validate(spi, message);
4099 if (ret != 0)
4100 return ret;
4101
4102 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4103
4104 ret = __spi_async(spi, message);
4105
4106 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4107
4108 return ret;
4109
4110 }
4111
__spi_transfer_message_noqueue(struct spi_controller * ctlr,struct spi_message * msg)4112 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4113 {
4114 bool was_busy;
4115 int ret;
4116
4117 mutex_lock(&ctlr->io_mutex);
4118
4119 was_busy = ctlr->busy;
4120
4121 ctlr->cur_msg = msg;
4122 ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4123 if (ret)
4124 dev_err(&ctlr->dev, "noqueue transfer failed\n");
4125 ctlr->cur_msg = NULL;
4126 ctlr->fallback = false;
4127
4128 if (!was_busy) {
4129 kfree(ctlr->dummy_rx);
4130 ctlr->dummy_rx = NULL;
4131 kfree(ctlr->dummy_tx);
4132 ctlr->dummy_tx = NULL;
4133 if (ctlr->unprepare_transfer_hardware &&
4134 ctlr->unprepare_transfer_hardware(ctlr))
4135 dev_err(&ctlr->dev,
4136 "failed to unprepare transfer hardware\n");
4137 spi_idle_runtime_pm(ctlr);
4138 }
4139
4140 mutex_unlock(&ctlr->io_mutex);
4141 }
4142
4143 /*-------------------------------------------------------------------------*/
4144
4145 /*
4146 * Utility methods for SPI protocol drivers, layered on
4147 * top of the core. Some other utility methods are defined as
4148 * inline functions.
4149 */
4150
spi_complete(void * arg)4151 static void spi_complete(void *arg)
4152 {
4153 complete(arg);
4154 }
4155
__spi_sync(struct spi_device * spi,struct spi_message * message)4156 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4157 {
4158 DECLARE_COMPLETION_ONSTACK(done);
4159 int status;
4160 struct spi_controller *ctlr = spi->controller;
4161
4162 if (__spi_check_suspended(ctlr)) {
4163 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4164 return -ESHUTDOWN;
4165 }
4166
4167 status = __spi_validate(spi, message);
4168 if (status != 0)
4169 return status;
4170
4171 message->spi = spi;
4172
4173 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4174 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4175
4176 /*
4177 * Checking queue_empty here only guarantees async/sync message
4178 * ordering when coming from the same context. It does not need to
4179 * guard against reentrancy from a different context. The io_mutex
4180 * will catch those cases.
4181 */
4182 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4183 message->actual_length = 0;
4184 message->status = -EINPROGRESS;
4185
4186 trace_spi_message_submit(message);
4187
4188 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4189 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4190
4191 __spi_transfer_message_noqueue(ctlr, message);
4192
4193 return message->status;
4194 }
4195
4196 /*
4197 * There are messages in the async queue that could have originated
4198 * from the same context, so we need to preserve ordering.
4199 * Therefor we send the message to the async queue and wait until they
4200 * are completed.
4201 */
4202 message->complete = spi_complete;
4203 message->context = &done;
4204 status = spi_async_locked(spi, message);
4205 if (status == 0) {
4206 wait_for_completion(&done);
4207 status = message->status;
4208 }
4209 message->context = NULL;
4210
4211 return status;
4212 }
4213
4214 /**
4215 * spi_sync - blocking/synchronous SPI data transfers
4216 * @spi: device with which data will be exchanged
4217 * @message: describes the data transfers
4218 * Context: can sleep
4219 *
4220 * This call may only be used from a context that may sleep. The sleep
4221 * is non-interruptible, and has no timeout. Low-overhead controller
4222 * drivers may DMA directly into and out of the message buffers.
4223 *
4224 * Note that the SPI device's chip select is active during the message,
4225 * and then is normally disabled between messages. Drivers for some
4226 * frequently-used devices may want to minimize costs of selecting a chip,
4227 * by leaving it selected in anticipation that the next message will go
4228 * to the same chip. (That may increase power usage.)
4229 *
4230 * Also, the caller is guaranteeing that the memory associated with the
4231 * message will not be freed before this call returns.
4232 *
4233 * Return: zero on success, else a negative error code.
4234 */
spi_sync(struct spi_device * spi,struct spi_message * message)4235 int spi_sync(struct spi_device *spi, struct spi_message *message)
4236 {
4237 int ret;
4238
4239 mutex_lock(&spi->controller->bus_lock_mutex);
4240 ret = __spi_sync(spi, message);
4241 mutex_unlock(&spi->controller->bus_lock_mutex);
4242
4243 return ret;
4244 }
4245 EXPORT_SYMBOL_GPL(spi_sync);
4246
4247 /**
4248 * spi_sync_locked - version of spi_sync with exclusive bus usage
4249 * @spi: device with which data will be exchanged
4250 * @message: describes the data transfers
4251 * Context: can sleep
4252 *
4253 * This call may only be used from a context that may sleep. The sleep
4254 * is non-interruptible, and has no timeout. Low-overhead controller
4255 * drivers may DMA directly into and out of the message buffers.
4256 *
4257 * This call should be used by drivers that require exclusive access to the
4258 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4259 * be released by a spi_bus_unlock call when the exclusive access is over.
4260 *
4261 * Return: zero on success, else a negative error code.
4262 */
spi_sync_locked(struct spi_device * spi,struct spi_message * message)4263 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4264 {
4265 return __spi_sync(spi, message);
4266 }
4267 EXPORT_SYMBOL_GPL(spi_sync_locked);
4268
4269 /**
4270 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4271 * @ctlr: SPI bus master that should be locked for exclusive bus access
4272 * Context: can sleep
4273 *
4274 * This call may only be used from a context that may sleep. The sleep
4275 * is non-interruptible, and has no timeout.
4276 *
4277 * This call should be used by drivers that require exclusive access to the
4278 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4279 * exclusive access is over. Data transfer must be done by spi_sync_locked
4280 * and spi_async_locked calls when the SPI bus lock is held.
4281 *
4282 * Return: always zero.
4283 */
spi_bus_lock(struct spi_controller * ctlr)4284 int spi_bus_lock(struct spi_controller *ctlr)
4285 {
4286 unsigned long flags;
4287
4288 mutex_lock(&ctlr->bus_lock_mutex);
4289
4290 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4291 ctlr->bus_lock_flag = 1;
4292 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4293
4294 /* Mutex remains locked until spi_bus_unlock() is called */
4295
4296 return 0;
4297 }
4298 EXPORT_SYMBOL_GPL(spi_bus_lock);
4299
4300 /**
4301 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4302 * @ctlr: SPI bus master that was locked for exclusive bus access
4303 * Context: can sleep
4304 *
4305 * This call may only be used from a context that may sleep. The sleep
4306 * is non-interruptible, and has no timeout.
4307 *
4308 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4309 * call.
4310 *
4311 * Return: always zero.
4312 */
spi_bus_unlock(struct spi_controller * ctlr)4313 int spi_bus_unlock(struct spi_controller *ctlr)
4314 {
4315 ctlr->bus_lock_flag = 0;
4316
4317 mutex_unlock(&ctlr->bus_lock_mutex);
4318
4319 return 0;
4320 }
4321 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4322
4323 /* Portable code must never pass more than 32 bytes */
4324 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
4325
4326 static u8 *buf;
4327
4328 /**
4329 * spi_write_then_read - SPI synchronous write followed by read
4330 * @spi: device with which data will be exchanged
4331 * @txbuf: data to be written (need not be dma-safe)
4332 * @n_tx: size of txbuf, in bytes
4333 * @rxbuf: buffer into which data will be read (need not be dma-safe)
4334 * @n_rx: size of rxbuf, in bytes
4335 * Context: can sleep
4336 *
4337 * This performs a half duplex MicroWire style transaction with the
4338 * device, sending txbuf and then reading rxbuf. The return value
4339 * is zero for success, else a negative errno status code.
4340 * This call may only be used from a context that may sleep.
4341 *
4342 * Parameters to this routine are always copied using a small buffer.
4343 * Performance-sensitive or bulk transfer code should instead use
4344 * spi_{async,sync}() calls with dma-safe buffers.
4345 *
4346 * Return: zero on success, else a negative error code.
4347 */
spi_write_then_read(struct spi_device * spi,const void * txbuf,unsigned n_tx,void * rxbuf,unsigned n_rx)4348 int spi_write_then_read(struct spi_device *spi,
4349 const void *txbuf, unsigned n_tx,
4350 void *rxbuf, unsigned n_rx)
4351 {
4352 static DEFINE_MUTEX(lock);
4353
4354 int status;
4355 struct spi_message message;
4356 struct spi_transfer x[2];
4357 u8 *local_buf;
4358
4359 /*
4360 * Use preallocated DMA-safe buffer if we can. We can't avoid
4361 * copying here, (as a pure convenience thing), but we can
4362 * keep heap costs out of the hot path unless someone else is
4363 * using the pre-allocated buffer or the transfer is too large.
4364 */
4365 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4366 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4367 GFP_KERNEL | GFP_DMA);
4368 if (!local_buf)
4369 return -ENOMEM;
4370 } else {
4371 local_buf = buf;
4372 }
4373
4374 spi_message_init(&message);
4375 memset(x, 0, sizeof(x));
4376 if (n_tx) {
4377 x[0].len = n_tx;
4378 spi_message_add_tail(&x[0], &message);
4379 }
4380 if (n_rx) {
4381 x[1].len = n_rx;
4382 spi_message_add_tail(&x[1], &message);
4383 }
4384
4385 memcpy(local_buf, txbuf, n_tx);
4386 x[0].tx_buf = local_buf;
4387 x[1].rx_buf = local_buf + n_tx;
4388
4389 /* Do the i/o */
4390 status = spi_sync(spi, &message);
4391 if (status == 0)
4392 memcpy(rxbuf, x[1].rx_buf, n_rx);
4393
4394 if (x[0].tx_buf == buf)
4395 mutex_unlock(&lock);
4396 else
4397 kfree(local_buf);
4398
4399 return status;
4400 }
4401 EXPORT_SYMBOL_GPL(spi_write_then_read);
4402
4403 /*-------------------------------------------------------------------------*/
4404
4405 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4406 /* Must call put_device() when done with returned spi_device device */
of_find_spi_device_by_node(struct device_node * node)4407 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4408 {
4409 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4410
4411 return dev ? to_spi_device(dev) : NULL;
4412 }
4413
4414 /* The spi controllers are not using spi_bus, so we find it with another way */
of_find_spi_controller_by_node(struct device_node * node)4415 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4416 {
4417 struct device *dev;
4418
4419 dev = class_find_device_by_of_node(&spi_master_class, node);
4420 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4421 dev = class_find_device_by_of_node(&spi_slave_class, node);
4422 if (!dev)
4423 return NULL;
4424
4425 /* Reference got in class_find_device */
4426 return container_of(dev, struct spi_controller, dev);
4427 }
4428
of_spi_notify(struct notifier_block * nb,unsigned long action,void * arg)4429 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4430 void *arg)
4431 {
4432 struct of_reconfig_data *rd = arg;
4433 struct spi_controller *ctlr;
4434 struct spi_device *spi;
4435
4436 switch (of_reconfig_get_state_change(action, arg)) {
4437 case OF_RECONFIG_CHANGE_ADD:
4438 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4439 if (ctlr == NULL)
4440 return NOTIFY_OK; /* Not for us */
4441
4442 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4443 put_device(&ctlr->dev);
4444 return NOTIFY_OK;
4445 }
4446
4447 /*
4448 * Clear the flag before adding the device so that fw_devlink
4449 * doesn't skip adding consumers to this device.
4450 */
4451 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4452 spi = of_register_spi_device(ctlr, rd->dn);
4453 put_device(&ctlr->dev);
4454
4455 if (IS_ERR(spi)) {
4456 pr_err("%s: failed to create for '%pOF'\n",
4457 __func__, rd->dn);
4458 of_node_clear_flag(rd->dn, OF_POPULATED);
4459 return notifier_from_errno(PTR_ERR(spi));
4460 }
4461 break;
4462
4463 case OF_RECONFIG_CHANGE_REMOVE:
4464 /* Already depopulated? */
4465 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4466 return NOTIFY_OK;
4467
4468 /* Find our device by node */
4469 spi = of_find_spi_device_by_node(rd->dn);
4470 if (spi == NULL)
4471 return NOTIFY_OK; /* No? not meant for us */
4472
4473 /* Unregister takes one ref away */
4474 spi_unregister_device(spi);
4475
4476 /* And put the reference of the find */
4477 put_device(&spi->dev);
4478 break;
4479 }
4480
4481 return NOTIFY_OK;
4482 }
4483
4484 static struct notifier_block spi_of_notifier = {
4485 .notifier_call = of_spi_notify,
4486 };
4487 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4488 extern struct notifier_block spi_of_notifier;
4489 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4490
4491 #if IS_ENABLED(CONFIG_ACPI)
spi_acpi_controller_match(struct device * dev,const void * data)4492 static int spi_acpi_controller_match(struct device *dev, const void *data)
4493 {
4494 return ACPI_COMPANION(dev->parent) == data;
4495 }
4496
acpi_spi_find_controller_by_adev(struct acpi_device * adev)4497 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4498 {
4499 struct device *dev;
4500
4501 dev = class_find_device(&spi_master_class, NULL, adev,
4502 spi_acpi_controller_match);
4503 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4504 dev = class_find_device(&spi_slave_class, NULL, adev,
4505 spi_acpi_controller_match);
4506 if (!dev)
4507 return NULL;
4508
4509 return container_of(dev, struct spi_controller, dev);
4510 }
4511
acpi_spi_find_device_by_adev(struct acpi_device * adev)4512 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4513 {
4514 struct device *dev;
4515
4516 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4517 return to_spi_device(dev);
4518 }
4519
acpi_spi_notify(struct notifier_block * nb,unsigned long value,void * arg)4520 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4521 void *arg)
4522 {
4523 struct acpi_device *adev = arg;
4524 struct spi_controller *ctlr;
4525 struct spi_device *spi;
4526
4527 switch (value) {
4528 case ACPI_RECONFIG_DEVICE_ADD:
4529 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4530 if (!ctlr)
4531 break;
4532
4533 acpi_register_spi_device(ctlr, adev);
4534 put_device(&ctlr->dev);
4535 break;
4536 case ACPI_RECONFIG_DEVICE_REMOVE:
4537 if (!acpi_device_enumerated(adev))
4538 break;
4539
4540 spi = acpi_spi_find_device_by_adev(adev);
4541 if (!spi)
4542 break;
4543
4544 spi_unregister_device(spi);
4545 put_device(&spi->dev);
4546 break;
4547 }
4548
4549 return NOTIFY_OK;
4550 }
4551
4552 static struct notifier_block spi_acpi_notifier = {
4553 .notifier_call = acpi_spi_notify,
4554 };
4555 #else
4556 extern struct notifier_block spi_acpi_notifier;
4557 #endif
4558
spi_init(void)4559 static int __init spi_init(void)
4560 {
4561 int status;
4562
4563 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4564 if (!buf) {
4565 status = -ENOMEM;
4566 goto err0;
4567 }
4568
4569 status = bus_register(&spi_bus_type);
4570 if (status < 0)
4571 goto err1;
4572
4573 status = class_register(&spi_master_class);
4574 if (status < 0)
4575 goto err2;
4576
4577 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4578 status = class_register(&spi_slave_class);
4579 if (status < 0)
4580 goto err3;
4581 }
4582
4583 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4584 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4585 if (IS_ENABLED(CONFIG_ACPI))
4586 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4587
4588 return 0;
4589
4590 err3:
4591 class_unregister(&spi_master_class);
4592 err2:
4593 bus_unregister(&spi_bus_type);
4594 err1:
4595 kfree(buf);
4596 buf = NULL;
4597 err0:
4598 return status;
4599 }
4600
4601 /*
4602 * A board_info is normally registered in arch_initcall(),
4603 * but even essential drivers wait till later.
4604 *
4605 * REVISIT only boardinfo really needs static linking. The rest (device and
4606 * driver registration) _could_ be dynamically linked (modular) ... Costs
4607 * include needing to have boardinfo data structures be much more public.
4608 */
4609 postcore_initcall(spi_init);
4610