• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2 /*
3  * Copyright (C) 2005-2014, 2018-2022 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #ifndef __iwl_trans_h__
8 #define __iwl_trans_h__
9 
10 #include <linux/ieee80211.h>
11 #include <linux/mm.h> /* for page_address */
12 #include <linux/lockdep.h>
13 #include <linux/kernel.h>
14 
15 #include "iwl-debug.h"
16 #include "iwl-config.h"
17 #include "fw/img.h"
18 #include "iwl-op-mode.h"
19 #include <linux/firmware.h>
20 #include "fw/api/cmdhdr.h"
21 #include "fw/api/txq.h"
22 #include "fw/api/dbg-tlv.h"
23 #include "iwl-dbg-tlv.h"
24 
25 /**
26  * DOC: Transport layer - what is it ?
27  *
28  * The transport layer is the layer that deals with the HW directly. It provides
29  * an abstraction of the underlying HW to the upper layer. The transport layer
30  * doesn't provide any policy, algorithm or anything of this kind, but only
31  * mechanisms to make the HW do something. It is not completely stateless but
32  * close to it.
33  * We will have an implementation for each different supported bus.
34  */
35 
36 /**
37  * DOC: Life cycle of the transport layer
38  *
39  * The transport layer has a very precise life cycle.
40  *
41  *	1) A helper function is called during the module initialization and
42  *	   registers the bus driver's ops with the transport's alloc function.
43  *	2) Bus's probe calls to the transport layer's allocation functions.
44  *	   Of course this function is bus specific.
45  *	3) This allocation functions will spawn the upper layer which will
46  *	   register mac80211.
47  *
48  *	4) At some point (i.e. mac80211's start call), the op_mode will call
49  *	   the following sequence:
50  *	   start_hw
51  *	   start_fw
52  *
53  *	5) Then when finished (or reset):
54  *	   stop_device
55  *
56  *	6) Eventually, the free function will be called.
57  */
58 
59 /* default preset 0 (start from bit 16)*/
60 #define IWL_FW_DBG_DOMAIN_POS	16
61 #define IWL_FW_DBG_DOMAIN	BIT(IWL_FW_DBG_DOMAIN_POS)
62 
63 #define IWL_TRANS_FW_DBG_DOMAIN(trans)	IWL_FW_INI_DOMAIN_ALWAYS_ON
64 
65 #define FH_RSCSR_FRAME_SIZE_MSK		0x00003FFF	/* bits 0-13 */
66 #define FH_RSCSR_FRAME_INVALID		0x55550000
67 #define FH_RSCSR_FRAME_ALIGN		0x40
68 #define FH_RSCSR_RPA_EN			BIT(25)
69 #define FH_RSCSR_RADA_EN		BIT(26)
70 #define FH_RSCSR_RXQ_POS		16
71 #define FH_RSCSR_RXQ_MASK		0x3F0000
72 
73 struct iwl_rx_packet {
74 	/*
75 	 * The first 4 bytes of the RX frame header contain both the RX frame
76 	 * size and some flags.
77 	 * Bit fields:
78 	 * 31:    flag flush RB request
79 	 * 30:    flag ignore TC (terminal counter) request
80 	 * 29:    flag fast IRQ request
81 	 * 28-27: Reserved
82 	 * 26:    RADA enabled
83 	 * 25:    Offload enabled
84 	 * 24:    RPF enabled
85 	 * 23:    RSS enabled
86 	 * 22:    Checksum enabled
87 	 * 21-16: RX queue
88 	 * 15-14: Reserved
89 	 * 13-00: RX frame size
90 	 */
91 	__le32 len_n_flags;
92 	struct iwl_cmd_header hdr;
93 	u8 data[];
94 } __packed;
95 
iwl_rx_packet_len(const struct iwl_rx_packet * pkt)96 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt)
97 {
98 	return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
99 }
100 
iwl_rx_packet_payload_len(const struct iwl_rx_packet * pkt)101 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt)
102 {
103 	return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr);
104 }
105 
106 /**
107  * enum CMD_MODE - how to send the host commands ?
108  *
109  * @CMD_ASYNC: Return right away and don't wait for the response
110  * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of
111  *	the response. The caller needs to call iwl_free_resp when done.
112  * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be
113  *	called after this command completes. Valid only with CMD_ASYNC.
114  * @CMD_SEND_IN_D3: Allow the command to be sent in D3 mode, relevant to
115  *	SUSPEND and RESUME commands. We are in D3 mode when we set
116  *	trans->system_pm_mode to IWL_PLAT_PM_MODE_D3.
117  */
118 enum CMD_MODE {
119 	CMD_ASYNC		= BIT(0),
120 	CMD_WANT_SKB		= BIT(1),
121 	CMD_SEND_IN_RFKILL	= BIT(2),
122 	CMD_WANT_ASYNC_CALLBACK	= BIT(3),
123 	CMD_SEND_IN_D3          = BIT(4),
124 };
125 
126 #define DEF_CMD_PAYLOAD_SIZE 320
127 
128 /**
129  * struct iwl_device_cmd
130  *
131  * For allocation of the command and tx queues, this establishes the overall
132  * size of the largest command we send to uCode, except for commands that
133  * aren't fully copied and use other TFD space.
134  */
135 struct iwl_device_cmd {
136 	union {
137 		struct {
138 			struct iwl_cmd_header hdr;	/* uCode API */
139 			u8 payload[DEF_CMD_PAYLOAD_SIZE];
140 		};
141 		struct {
142 			struct iwl_cmd_header_wide hdr_wide;
143 			u8 payload_wide[DEF_CMD_PAYLOAD_SIZE -
144 					sizeof(struct iwl_cmd_header_wide) +
145 					sizeof(struct iwl_cmd_header)];
146 		};
147 	};
148 } __packed;
149 
150 /**
151  * struct iwl_device_tx_cmd - buffer for TX command
152  * @hdr: the header
153  * @payload: the payload placeholder
154  *
155  * The actual structure is sized dynamically according to need.
156  */
157 struct iwl_device_tx_cmd {
158 	struct iwl_cmd_header hdr;
159 	u8 payload[];
160 } __packed;
161 
162 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
163 
164 /*
165  * number of transfer buffers (fragments) per transmit frame descriptor;
166  * this is just the driver's idea, the hardware supports 20
167  */
168 #define IWL_MAX_CMD_TBS_PER_TFD	2
169 
170 /* We need 2 entries for the TX command and header, and another one might
171  * be needed for potential data in the SKB's head. The remaining ones can
172  * be used for frags.
173  */
174 #define IWL_TRANS_MAX_FRAGS(trans) ((trans)->txqs.tfd.max_tbs - 3)
175 
176 /**
177  * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command
178  *
179  * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
180  *	ring. The transport layer doesn't map the command's buffer to DMA, but
181  *	rather copies it to a previously allocated DMA buffer. This flag tells
182  *	the transport layer not to copy the command, but to map the existing
183  *	buffer (that is passed in) instead. This saves the memcpy and allows
184  *	commands that are bigger than the fixed buffer to be submitted.
185  *	Note that a TFD entry after a NOCOPY one cannot be a normal copied one.
186  * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this
187  *	chunk internally and free it again after the command completes. This
188  *	can (currently) be used only once per command.
189  *	Note that a TFD entry after a DUP one cannot be a normal copied one.
190  */
191 enum iwl_hcmd_dataflag {
192 	IWL_HCMD_DFL_NOCOPY	= BIT(0),
193 	IWL_HCMD_DFL_DUP	= BIT(1),
194 };
195 
196 enum iwl_error_event_table_status {
197 	IWL_ERROR_EVENT_TABLE_LMAC1 = BIT(0),
198 	IWL_ERROR_EVENT_TABLE_LMAC2 = BIT(1),
199 	IWL_ERROR_EVENT_TABLE_UMAC = BIT(2),
200 	IWL_ERROR_EVENT_TABLE_TCM1 = BIT(3),
201 	IWL_ERROR_EVENT_TABLE_TCM2 = BIT(4),
202 	IWL_ERROR_EVENT_TABLE_RCM1 = BIT(5),
203 	IWL_ERROR_EVENT_TABLE_RCM2 = BIT(6),
204 };
205 
206 /**
207  * struct iwl_host_cmd - Host command to the uCode
208  *
209  * @data: array of chunks that composes the data of the host command
210  * @resp_pkt: response packet, if %CMD_WANT_SKB was set
211  * @_rx_page_order: (internally used to free response packet)
212  * @_rx_page_addr: (internally used to free response packet)
213  * @flags: can be CMD_*
214  * @len: array of the lengths of the chunks in data
215  * @dataflags: IWL_HCMD_DFL_*
216  * @id: command id of the host command, for wide commands encoding the
217  *	version and group as well
218  */
219 struct iwl_host_cmd {
220 	const void *data[IWL_MAX_CMD_TBS_PER_TFD];
221 	struct iwl_rx_packet *resp_pkt;
222 	unsigned long _rx_page_addr;
223 	u32 _rx_page_order;
224 
225 	u32 flags;
226 	u32 id;
227 	u16 len[IWL_MAX_CMD_TBS_PER_TFD];
228 	u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD];
229 };
230 
iwl_free_resp(struct iwl_host_cmd * cmd)231 static inline void iwl_free_resp(struct iwl_host_cmd *cmd)
232 {
233 	free_pages(cmd->_rx_page_addr, cmd->_rx_page_order);
234 }
235 
236 struct iwl_rx_cmd_buffer {
237 	struct page *_page;
238 	int _offset;
239 	bool _page_stolen;
240 	u32 _rx_page_order;
241 	unsigned int truesize;
242 };
243 
rxb_addr(struct iwl_rx_cmd_buffer * r)244 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r)
245 {
246 	return (void *)((unsigned long)page_address(r->_page) + r->_offset);
247 }
248 
rxb_offset(struct iwl_rx_cmd_buffer * r)249 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r)
250 {
251 	return r->_offset;
252 }
253 
rxb_steal_page(struct iwl_rx_cmd_buffer * r)254 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r)
255 {
256 	r->_page_stolen = true;
257 	get_page(r->_page);
258 	return r->_page;
259 }
260 
iwl_free_rxb(struct iwl_rx_cmd_buffer * r)261 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r)
262 {
263 	__free_pages(r->_page, r->_rx_page_order);
264 }
265 
266 #define MAX_NO_RECLAIM_CMDS	6
267 
268 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo))))
269 
270 /*
271  * Maximum number of HW queues the transport layer
272  * currently supports
273  */
274 #define IWL_MAX_HW_QUEUES		32
275 #define IWL_MAX_TVQM_QUEUES		512
276 
277 #define IWL_MAX_TID_COUNT	8
278 #define IWL_MGMT_TID		15
279 #define IWL_FRAME_LIMIT	64
280 #define IWL_MAX_RX_HW_QUEUES	16
281 #define IWL_9000_MAX_RX_HW_QUEUES	6
282 
283 /**
284  * enum iwl_wowlan_status - WoWLAN image/device status
285  * @IWL_D3_STATUS_ALIVE: firmware is still running after resume
286  * @IWL_D3_STATUS_RESET: device was reset while suspended
287  */
288 enum iwl_d3_status {
289 	IWL_D3_STATUS_ALIVE,
290 	IWL_D3_STATUS_RESET,
291 };
292 
293 /**
294  * enum iwl_trans_status: transport status flags
295  * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed
296  * @STATUS_DEVICE_ENABLED: APM is enabled
297  * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up)
298  * @STATUS_INT_ENABLED: interrupts are enabled
299  * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch
300  * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode
301  * @STATUS_FW_ERROR: the fw is in error state
302  * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands
303  *	are sent
304  * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent
305  * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation
306  * @STATUS_SUPPRESS_CMD_ERROR_ONCE: suppress "FW error in SYNC CMD" once,
307  *	e.g. for testing
308  */
309 enum iwl_trans_status {
310 	STATUS_SYNC_HCMD_ACTIVE,
311 	STATUS_DEVICE_ENABLED,
312 	STATUS_TPOWER_PMI,
313 	STATUS_INT_ENABLED,
314 	STATUS_RFKILL_HW,
315 	STATUS_RFKILL_OPMODE,
316 	STATUS_FW_ERROR,
317 	STATUS_TRANS_GOING_IDLE,
318 	STATUS_TRANS_IDLE,
319 	STATUS_TRANS_DEAD,
320 	STATUS_SUPPRESS_CMD_ERROR_ONCE,
321 };
322 
323 static inline int
iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)324 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)
325 {
326 	switch (rb_size) {
327 	case IWL_AMSDU_2K:
328 		return get_order(2 * 1024);
329 	case IWL_AMSDU_4K:
330 		return get_order(4 * 1024);
331 	case IWL_AMSDU_8K:
332 		return get_order(8 * 1024);
333 	case IWL_AMSDU_12K:
334 		return get_order(16 * 1024);
335 	default:
336 		WARN_ON(1);
337 		return -1;
338 	}
339 }
340 
341 static inline int
iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size)342 iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size)
343 {
344 	switch (rb_size) {
345 	case IWL_AMSDU_2K:
346 		return 2 * 1024;
347 	case IWL_AMSDU_4K:
348 		return 4 * 1024;
349 	case IWL_AMSDU_8K:
350 		return 8 * 1024;
351 	case IWL_AMSDU_12K:
352 		return 16 * 1024;
353 	default:
354 		WARN_ON(1);
355 		return 0;
356 	}
357 }
358 
359 struct iwl_hcmd_names {
360 	u8 cmd_id;
361 	const char *const cmd_name;
362 };
363 
364 #define HCMD_NAME(x)	\
365 	{ .cmd_id = x, .cmd_name = #x }
366 
367 struct iwl_hcmd_arr {
368 	const struct iwl_hcmd_names *arr;
369 	int size;
370 };
371 
372 #define HCMD_ARR(x)	\
373 	{ .arr = x, .size = ARRAY_SIZE(x) }
374 
375 /**
376  * struct iwl_dump_sanitize_ops - dump sanitization operations
377  * @frob_txf: Scrub the TX FIFO data
378  * @frob_hcmd: Scrub a host command, the %hcmd pointer is to the header
379  *	but that might be short or long (&struct iwl_cmd_header or
380  *	&struct iwl_cmd_header_wide)
381  * @frob_mem: Scrub memory data
382  */
383 struct iwl_dump_sanitize_ops {
384 	void (*frob_txf)(void *ctx, void *buf, size_t buflen);
385 	void (*frob_hcmd)(void *ctx, void *hcmd, size_t buflen);
386 	void (*frob_mem)(void *ctx, u32 mem_addr, void *mem, size_t buflen);
387 };
388 
389 /**
390  * struct iwl_trans_config - transport configuration
391  *
392  * @op_mode: pointer to the upper layer.
393  * @cmd_queue: the index of the command queue.
394  *	Must be set before start_fw.
395  * @cmd_fifo: the fifo for host commands
396  * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue.
397  * @no_reclaim_cmds: Some devices erroneously don't set the
398  *	SEQ_RX_FRAME bit on some notifications, this is the
399  *	list of such notifications to filter. Max length is
400  *	%MAX_NO_RECLAIM_CMDS.
401  * @n_no_reclaim_cmds: # of commands in list
402  * @rx_buf_size: RX buffer size needed for A-MSDUs
403  *	if unset 4k will be the RX buffer size
404  * @bc_table_dword: set to true if the BC table expects the byte count to be
405  *	in DWORD (as opposed to bytes)
406  * @scd_set_active: should the transport configure the SCD for HCMD queue
407  * @command_groups: array of command groups, each member is an array of the
408  *	commands in the group; for debugging only
409  * @command_groups_size: number of command groups, to avoid illegal access
410  * @cb_data_offs: offset inside skb->cb to store transport data at, must have
411  *	space for at least two pointers
412  * @fw_reset_handshake: firmware supports reset flow handshake
413  * @queue_alloc_cmd_ver: queue allocation command version, set to 0
414  *	for using the older SCD_QUEUE_CFG, set to the version of
415  *	SCD_QUEUE_CONFIG_CMD otherwise.
416  */
417 struct iwl_trans_config {
418 	struct iwl_op_mode *op_mode;
419 
420 	u8 cmd_queue;
421 	u8 cmd_fifo;
422 	unsigned int cmd_q_wdg_timeout;
423 	const u8 *no_reclaim_cmds;
424 	unsigned int n_no_reclaim_cmds;
425 
426 	enum iwl_amsdu_size rx_buf_size;
427 	bool bc_table_dword;
428 	bool scd_set_active;
429 	const struct iwl_hcmd_arr *command_groups;
430 	int command_groups_size;
431 
432 	u8 cb_data_offs;
433 	bool fw_reset_handshake;
434 	u8 queue_alloc_cmd_ver;
435 };
436 
437 struct iwl_trans_dump_data {
438 	u32 len;
439 	u8 data[];
440 };
441 
442 struct iwl_trans;
443 
444 struct iwl_trans_txq_scd_cfg {
445 	u8 fifo;
446 	u8 sta_id;
447 	u8 tid;
448 	bool aggregate;
449 	int frame_limit;
450 };
451 
452 /**
453  * struct iwl_trans_rxq_dma_data - RX queue DMA data
454  * @fr_bd_cb: DMA address of free BD cyclic buffer
455  * @fr_bd_wid: Initial write index of the free BD cyclic buffer
456  * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr
457  * @ur_bd_cb: DMA address of used BD cyclic buffer
458  */
459 struct iwl_trans_rxq_dma_data {
460 	u64 fr_bd_cb;
461 	u32 fr_bd_wid;
462 	u64 urbd_stts_wrptr;
463 	u64 ur_bd_cb;
464 };
465 
466 /**
467  * struct iwl_trans_ops - transport specific operations
468  *
469  * All the handlers MUST be implemented
470  *
471  * @start_hw: starts the HW. From that point on, the HW can send interrupts.
472  *	May sleep.
473  * @op_mode_leave: Turn off the HW RF kill indication if on
474  *	May sleep
475  * @start_fw: allocates and inits all the resources for the transport
476  *	layer. Also kick a fw image.
477  *	May sleep
478  * @fw_alive: called when the fw sends alive notification. If the fw provides
479  *	the SCD base address in SRAM, then provide it here, or 0 otherwise.
480  *	May sleep
481  * @stop_device: stops the whole device (embedded CPU put to reset) and stops
482  *	the HW. From that point on, the HW will be stopped but will still issue
483  *	an interrupt if the HW RF kill switch is triggered.
484  *	This callback must do the right thing and not crash even if %start_hw()
485  *	was called but not &start_fw(). May sleep.
486  * @d3_suspend: put the device into the correct mode for WoWLAN during
487  *	suspend. This is optional, if not implemented WoWLAN will not be
488  *	supported. This callback may sleep.
489  * @d3_resume: resume the device after WoWLAN, enabling the opmode to
490  *	talk to the WoWLAN image to get its status. This is optional, if not
491  *	implemented WoWLAN will not be supported. This callback may sleep.
492  * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted.
493  *	If RFkill is asserted in the middle of a SYNC host command, it must
494  *	return -ERFKILL straight away.
495  *	May sleep only if CMD_ASYNC is not set
496  * @tx: send an skb. The transport relies on the op_mode to zero the
497  *	the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all
498  *	the CSUM will be taken care of (TCP CSUM and IP header in case of
499  *	IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP
500  *	header if it is IPv4.
501  *	Must be atomic
502  * @reclaim: free packet until ssn. Returns a list of freed packets.
503  *	Must be atomic
504  * @txq_enable: setup a queue. To setup an AC queue, use the
505  *	iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before
506  *	this one. The op_mode must not configure the HCMD queue. The scheduler
507  *	configuration may be %NULL, in which case the hardware will not be
508  *	configured. If true is returned, the operation mode needs to increment
509  *	the sequence number of the packets routed to this queue because of a
510  *	hardware scheduler bug. May sleep.
511  * @txq_disable: de-configure a Tx queue to send AMPDUs
512  *	Must be atomic
513  * @txq_set_shared_mode: change Tx queue shared/unshared marking
514  * @wait_tx_queues_empty: wait until tx queues are empty. May sleep.
515  * @wait_txq_empty: wait until specific tx queue is empty. May sleep.
516  * @freeze_txq_timer: prevents the timer of the queue from firing until the
517  *	queue is set to awake. Must be atomic.
518  * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note
519  *	that the transport needs to refcount the calls since this function
520  *	will be called several times with block = true, and then the queues
521  *	need to be unblocked only after the same number of calls with
522  *	block = false.
523  * @write8: write a u8 to a register at offset ofs from the BAR
524  * @write32: write a u32 to a register at offset ofs from the BAR
525  * @read32: read a u32 register at offset ofs from the BAR
526  * @read_prph: read a DWORD from a periphery register
527  * @write_prph: write a DWORD to a periphery register
528  * @read_mem: read device's SRAM in DWORD
529  * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory
530  *	will be zeroed.
531  * @read_config32: read a u32 value from the device's config space at
532  *	the given offset.
533  * @configure: configure parameters required by the transport layer from
534  *	the op_mode. May be called several times before start_fw, can't be
535  *	called after that.
536  * @set_pmi: set the power pmi state
537  * @grab_nic_access: wake the NIC to be able to access non-HBUS regs.
538  *	Sleeping is not allowed between grab_nic_access and
539  *	release_nic_access.
540  * @release_nic_access: let the NIC go to sleep. The "flags" parameter
541  *	must be the same one that was sent before to the grab_nic_access.
542  * @set_bits_mask - set SRAM register according to value and mask.
543  * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last
544  *	TX'ed commands and similar. The buffer will be vfree'd by the caller.
545  *	Note that the transport must fill in the proper file headers.
546  * @debugfs_cleanup: used in the driver unload flow to make a proper cleanup
547  *	of the trans debugfs
548  * @set_pnvm: set the pnvm data in the prph scratch buffer, inside the
549  *	context info.
550  * @interrupts: disable/enable interrupts to transport
551  */
552 struct iwl_trans_ops {
553 
554 	int (*start_hw)(struct iwl_trans *iwl_trans);
555 	void (*op_mode_leave)(struct iwl_trans *iwl_trans);
556 	int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw,
557 			bool run_in_rfkill);
558 	void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr);
559 	void (*stop_device)(struct iwl_trans *trans);
560 
561 	int (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset);
562 	int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status,
563 			 bool test, bool reset);
564 
565 	int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
566 
567 	int (*tx)(struct iwl_trans *trans, struct sk_buff *skb,
568 		  struct iwl_device_tx_cmd *dev_cmd, int queue);
569 	void (*reclaim)(struct iwl_trans *trans, int queue, int ssn,
570 			struct sk_buff_head *skbs, bool is_flush);
571 
572 	void (*set_q_ptrs)(struct iwl_trans *trans, int queue, int ptr);
573 
574 	bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn,
575 			   const struct iwl_trans_txq_scd_cfg *cfg,
576 			   unsigned int queue_wdg_timeout);
577 	void (*txq_disable)(struct iwl_trans *trans, int queue,
578 			    bool configure_scd);
579 	/* 22000 functions */
580 	int (*txq_alloc)(struct iwl_trans *trans, u32 flags,
581 			 u32 sta_mask, u8 tid,
582 			 int size, unsigned int queue_wdg_timeout);
583 	void (*txq_free)(struct iwl_trans *trans, int queue);
584 	int (*rxq_dma_data)(struct iwl_trans *trans, int queue,
585 			    struct iwl_trans_rxq_dma_data *data);
586 
587 	void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id,
588 				    bool shared);
589 
590 	int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm);
591 	int (*wait_txq_empty)(struct iwl_trans *trans, int queue);
592 	void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs,
593 				 bool freeze);
594 	void (*block_txq_ptrs)(struct iwl_trans *trans, bool block);
595 
596 	void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val);
597 	void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val);
598 	u32 (*read32)(struct iwl_trans *trans, u32 ofs);
599 	u32 (*read_prph)(struct iwl_trans *trans, u32 ofs);
600 	void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val);
601 	int (*read_mem)(struct iwl_trans *trans, u32 addr,
602 			void *buf, int dwords);
603 	int (*write_mem)(struct iwl_trans *trans, u32 addr,
604 			 const void *buf, int dwords);
605 	int (*read_config32)(struct iwl_trans *trans, u32 ofs, u32 *val);
606 	void (*configure)(struct iwl_trans *trans,
607 			  const struct iwl_trans_config *trans_cfg);
608 	void (*set_pmi)(struct iwl_trans *trans, bool state);
609 	int (*sw_reset)(struct iwl_trans *trans, bool retake_ownership);
610 	bool (*grab_nic_access)(struct iwl_trans *trans);
611 	void (*release_nic_access)(struct iwl_trans *trans);
612 	void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask,
613 			      u32 value);
614 
615 	struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans,
616 						 u32 dump_mask,
617 						 const struct iwl_dump_sanitize_ops *sanitize_ops,
618 						 void *sanitize_ctx);
619 	void (*debugfs_cleanup)(struct iwl_trans *trans);
620 	void (*sync_nmi)(struct iwl_trans *trans);
621 	int (*set_pnvm)(struct iwl_trans *trans, const void *data, u32 len);
622 	int (*set_reduce_power)(struct iwl_trans *trans,
623 				const void *data, u32 len);
624 	void (*interrupts)(struct iwl_trans *trans, bool enable);
625 	int (*imr_dma_data)(struct iwl_trans *trans,
626 			    u32 dst_addr, u64 src_addr,
627 			    u32 byte_cnt);
628 
629 };
630 
631 /**
632  * enum iwl_trans_state - state of the transport layer
633  *
634  * @IWL_TRANS_NO_FW: firmware wasn't started yet, or crashed
635  * @IWL_TRANS_FW_STARTED: FW was started, but not alive yet
636  * @IWL_TRANS_FW_ALIVE: FW has sent an alive response
637  */
638 enum iwl_trans_state {
639 	IWL_TRANS_NO_FW,
640 	IWL_TRANS_FW_STARTED,
641 	IWL_TRANS_FW_ALIVE,
642 };
643 
644 /**
645  * DOC: Platform power management
646  *
647  * In system-wide power management the entire platform goes into a low
648  * power state (e.g. idle or suspend to RAM) at the same time and the
649  * device is configured as a wakeup source for the entire platform.
650  * This is usually triggered by userspace activity (e.g. the user
651  * presses the suspend button or a power management daemon decides to
652  * put the platform in low power mode).  The device's behavior in this
653  * mode is dictated by the wake-on-WLAN configuration.
654  *
655  * The terms used for the device's behavior are as follows:
656  *
657  *	- D0: the device is fully powered and the host is awake;
658  *	- D3: the device is in low power mode and only reacts to
659  *		specific events (e.g. magic-packet received or scan
660  *		results found);
661  *
662  * These terms reflect the power modes in the firmware and are not to
663  * be confused with the physical device power state.
664  */
665 
666 /**
667  * enum iwl_plat_pm_mode - platform power management mode
668  *
669  * This enumeration describes the device's platform power management
670  * behavior when in system-wide suspend (i.e WoWLAN).
671  *
672  * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this
673  *	device.  In system-wide suspend mode, it means that the all
674  *	connections will be closed automatically by mac80211 before
675  *	the platform is suspended.
676  * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN).
677  */
678 enum iwl_plat_pm_mode {
679 	IWL_PLAT_PM_MODE_DISABLED,
680 	IWL_PLAT_PM_MODE_D3,
681 };
682 
683 /**
684  * enum iwl_ini_cfg_state
685  * @IWL_INI_CFG_STATE_NOT_LOADED: no debug cfg was given
686  * @IWL_INI_CFG_STATE_LOADED: debug cfg was found and loaded
687  * @IWL_INI_CFG_STATE_CORRUPTED: debug cfg was found and some of the TLVs
688  *	are corrupted. The rest of the debug TLVs will still be used
689  */
690 enum iwl_ini_cfg_state {
691 	IWL_INI_CFG_STATE_NOT_LOADED,
692 	IWL_INI_CFG_STATE_LOADED,
693 	IWL_INI_CFG_STATE_CORRUPTED,
694 };
695 
696 /* Max time to wait for nmi interrupt */
697 #define IWL_TRANS_NMI_TIMEOUT (HZ / 4)
698 
699 /**
700  * struct iwl_dram_data
701  * @physical: page phy pointer
702  * @block: pointer to the allocated block/page
703  * @size: size of the block/page
704  */
705 struct iwl_dram_data {
706 	dma_addr_t physical;
707 	void *block;
708 	int size;
709 };
710 
711 /**
712  * struct iwl_fw_mon - fw monitor per allocation id
713  * @num_frags: number of fragments
714  * @frags: an array of DRAM buffer fragments
715  */
716 struct iwl_fw_mon {
717 	u32 num_frags;
718 	struct iwl_dram_data *frags;
719 };
720 
721 /**
722  * struct iwl_self_init_dram - dram data used by self init process
723  * @fw: lmac and umac dram data
724  * @fw_cnt: total number of items in array
725  * @paging: paging dram data
726  * @paging_cnt: total number of items in array
727  */
728 struct iwl_self_init_dram {
729 	struct iwl_dram_data *fw;
730 	int fw_cnt;
731 	struct iwl_dram_data *paging;
732 	int paging_cnt;
733 };
734 
735 /**
736  * struct iwl_imr_data - imr dram data used during debug process
737  * @imr_enable: imr enable status received from fw
738  * @imr_size: imr dram size received from fw
739  * @sram_addr: sram address from debug tlv
740  * @sram_size: sram size from debug tlv
741  * @imr2sram_remainbyte`: size remained after each dma transfer
742  * @imr_curr_addr: current dst address used during dma transfer
743  * @imr_base_addr: imr address received from fw
744  */
745 struct iwl_imr_data {
746 	u32 imr_enable;
747 	u32 imr_size;
748 	u32 sram_addr;
749 	u32 sram_size;
750 	u32 imr2sram_remainbyte;
751 	u64 imr_curr_addr;
752 	__le64 imr_base_addr;
753 };
754 
755 /**
756  * struct iwl_trans_debug - transport debug related data
757  *
758  * @n_dest_reg: num of reg_ops in %dbg_dest_tlv
759  * @rec_on: true iff there is a fw debug recording currently active
760  * @dest_tlv: points to the destination TLV for debug
761  * @conf_tlv: array of pointers to configuration TLVs for debug
762  * @trigger_tlv: array of pointers to triggers TLVs for debug
763  * @lmac_error_event_table: addrs of lmacs error tables
764  * @umac_error_event_table: addr of umac error table
765  * @tcm_error_event_table: address(es) of TCM error table(s)
766  * @rcm_error_event_table: address(es) of RCM error table(s)
767  * @error_event_table_tlv_status: bitmap that indicates what error table
768  *	pointers was recevied via TLV. uses enum &iwl_error_event_table_status
769  * @internal_ini_cfg: internal debug cfg state. Uses &enum iwl_ini_cfg_state
770  * @external_ini_cfg: external debug cfg state. Uses &enum iwl_ini_cfg_state
771  * @fw_mon_cfg: debug buffer allocation configuration
772  * @fw_mon_ini: DRAM buffer fragments per allocation id
773  * @fw_mon: DRAM buffer for firmware monitor
774  * @hw_error: equals true if hw error interrupt was received from the FW
775  * @ini_dest: debug monitor destination uses &enum iwl_fw_ini_buffer_location
776  * @active_regions: active regions
777  * @debug_info_tlv_list: list of debug info TLVs
778  * @time_point: array of debug time points
779  * @periodic_trig_list: periodic triggers list
780  * @domains_bitmap: bitmap of active domains other than &IWL_FW_INI_DOMAIN_ALWAYS_ON
781  * @ucode_preset: preset based on ucode
782  */
783 struct iwl_trans_debug {
784 	u8 n_dest_reg;
785 	bool rec_on;
786 
787 	const struct iwl_fw_dbg_dest_tlv_v1 *dest_tlv;
788 	const struct iwl_fw_dbg_conf_tlv *conf_tlv[FW_DBG_CONF_MAX];
789 	struct iwl_fw_dbg_trigger_tlv * const *trigger_tlv;
790 
791 	u32 lmac_error_event_table[2];
792 	u32 umac_error_event_table;
793 	u32 tcm_error_event_table[2];
794 	u32 rcm_error_event_table[2];
795 	unsigned int error_event_table_tlv_status;
796 
797 	enum iwl_ini_cfg_state internal_ini_cfg;
798 	enum iwl_ini_cfg_state external_ini_cfg;
799 
800 	struct iwl_fw_ini_allocation_tlv fw_mon_cfg[IWL_FW_INI_ALLOCATION_NUM];
801 	struct iwl_fw_mon fw_mon_ini[IWL_FW_INI_ALLOCATION_NUM];
802 
803 	struct iwl_dram_data fw_mon;
804 
805 	bool hw_error;
806 	enum iwl_fw_ini_buffer_location ini_dest;
807 
808 	u64 unsupported_region_msk;
809 	struct iwl_ucode_tlv *active_regions[IWL_FW_INI_MAX_REGION_ID];
810 	struct list_head debug_info_tlv_list;
811 	struct iwl_dbg_tlv_time_point_data
812 		time_point[IWL_FW_INI_TIME_POINT_NUM];
813 	struct list_head periodic_trig_list;
814 
815 	u32 domains_bitmap;
816 	u32 ucode_preset;
817 	bool restart_required;
818 	u32 last_tp_resetfw;
819 	struct iwl_imr_data imr_data;
820 };
821 
822 struct iwl_dma_ptr {
823 	dma_addr_t dma;
824 	void *addr;
825 	size_t size;
826 };
827 
828 struct iwl_cmd_meta {
829 	/* only for SYNC commands, iff the reply skb is wanted */
830 	struct iwl_host_cmd *source;
831 	u32 flags;
832 	u32 tbs;
833 };
834 
835 /*
836  * The FH will write back to the first TB only, so we need to copy some data
837  * into the buffer regardless of whether it should be mapped or not.
838  * This indicates how big the first TB must be to include the scratch buffer
839  * and the assigned PN.
840  * Since PN location is 8 bytes at offset 12, it's 20 now.
841  * If we make it bigger then allocations will be bigger and copy slower, so
842  * that's probably not useful.
843  */
844 #define IWL_FIRST_TB_SIZE	20
845 #define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64)
846 
847 struct iwl_pcie_txq_entry {
848 	void *cmd;
849 	struct sk_buff *skb;
850 	/* buffer to free after command completes */
851 	const void *free_buf;
852 	struct iwl_cmd_meta meta;
853 };
854 
855 struct iwl_pcie_first_tb_buf {
856 	u8 buf[IWL_FIRST_TB_SIZE_ALIGN];
857 };
858 
859 /**
860  * struct iwl_txq - Tx Queue for DMA
861  * @q: generic Rx/Tx queue descriptor
862  * @tfds: transmit frame descriptors (DMA memory)
863  * @first_tb_bufs: start of command headers, including scratch buffers, for
864  *	the writeback -- this is DMA memory and an array holding one buffer
865  *	for each command on the queue
866  * @first_tb_dma: DMA address for the first_tb_bufs start
867  * @entries: transmit entries (driver state)
868  * @lock: queue lock
869  * @stuck_timer: timer that fires if queue gets stuck
870  * @trans: pointer back to transport (for timer)
871  * @need_update: indicates need to update read/write index
872  * @ampdu: true if this queue is an ampdu queue for an specific RA/TID
873  * @wd_timeout: queue watchdog timeout (jiffies) - per queue
874  * @frozen: tx stuck queue timer is frozen
875  * @frozen_expiry_remainder: remember how long until the timer fires
876  * @bc_tbl: byte count table of the queue (relevant only for gen2 transport)
877  * @write_ptr: 1-st empty entry (index) host_w
878  * @read_ptr: last used entry (index) host_r
879  * @dma_addr:  physical addr for BD's
880  * @n_window: safe queue window
881  * @id: queue id
882  * @low_mark: low watermark, resume queue if free space more than this
883  * @high_mark: high watermark, stop queue if free space less than this
884  *
885  * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
886  * descriptors) and required locking structures.
887  *
888  * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware
889  * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless
890  * there might be HW changes in the future). For the normal TX
891  * queues, n_window, which is the size of the software queue data
892  * is also 256; however, for the command queue, n_window is only
893  * 32 since we don't need so many commands pending. Since the HW
894  * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256.
895  * This means that we end up with the following:
896  *  HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 |
897  *  SW entries:           | 0      | ... | 31          |
898  * where N is a number between 0 and 7. This means that the SW
899  * data is a window overlayed over the HW queue.
900  */
901 struct iwl_txq {
902 	void *tfds;
903 	struct iwl_pcie_first_tb_buf *first_tb_bufs;
904 	dma_addr_t first_tb_dma;
905 	struct iwl_pcie_txq_entry *entries;
906 	/* lock for syncing changes on the queue */
907 	spinlock_t lock;
908 	unsigned long frozen_expiry_remainder;
909 	struct timer_list stuck_timer;
910 	struct iwl_trans *trans;
911 	bool need_update;
912 	bool frozen;
913 	bool ampdu;
914 	int block;
915 	unsigned long wd_timeout;
916 	struct sk_buff_head overflow_q;
917 	struct iwl_dma_ptr bc_tbl;
918 
919 	int write_ptr;
920 	int read_ptr;
921 	dma_addr_t dma_addr;
922 	int n_window;
923 	u32 id;
924 	int low_mark;
925 	int high_mark;
926 
927 	bool overflow_tx;
928 };
929 
930 /**
931  * struct iwl_trans_txqs - transport tx queues data
932  *
933  * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
934  * @page_offs: offset from skb->cb to mac header page pointer
935  * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer
936  * @queue_used - bit mask of used queues
937  * @queue_stopped - bit mask of stopped queues
938  * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler
939  * @queue_alloc_cmd_ver: queue allocation command version
940  */
941 struct iwl_trans_txqs {
942 	unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
943 	unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
944 	struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES];
945 	struct dma_pool *bc_pool;
946 	size_t bc_tbl_size;
947 	bool bc_table_dword;
948 	u8 page_offs;
949 	u8 dev_cmd_offs;
950 	struct iwl_tso_hdr_page __percpu *tso_hdr_page;
951 
952 	struct {
953 		u8 fifo;
954 		u8 q_id;
955 		unsigned int wdg_timeout;
956 	} cmd;
957 
958 	struct {
959 		u8 max_tbs;
960 		u16 size;
961 		u8 addr_size;
962 	} tfd;
963 
964 	struct iwl_dma_ptr scd_bc_tbls;
965 
966 	u8 queue_alloc_cmd_ver;
967 };
968 
969 /**
970  * struct iwl_trans - transport common data
971  *
972  * @csme_own - true if we couldn't get ownership on the device
973  * @ops - pointer to iwl_trans_ops
974  * @op_mode - pointer to the op_mode
975  * @trans_cfg: the trans-specific configuration part
976  * @cfg - pointer to the configuration
977  * @drv - pointer to iwl_drv
978  * @status: a bit-mask of transport status flags
979  * @dev - pointer to struct device * that represents the device
980  * @max_skb_frags: maximum number of fragments an SKB can have when transmitted.
981  *	0 indicates that frag SKBs (NETIF_F_SG) aren't supported.
982  * @hw_rf_id a u32 with the device RF ID
983  * @hw_id: a u32 with the ID of the device / sub-device.
984  *	Set during transport allocation.
985  * @hw_id_str: a string with info about HW ID. Set during transport allocation.
986  * @hw_rev_step: The mac step of the HW
987  * @pm_support: set to true in start_hw if link pm is supported
988  * @ltr_enabled: set to true if the LTR is enabled
989  * @wide_cmd_header: true when ucode supports wide command header format
990  * @wait_command_queue: wait queue for sync commands
991  * @num_rx_queues: number of RX queues allocated by the transport;
992  *	the transport must set this before calling iwl_drv_start()
993  * @iml_len: the length of the image loader
994  * @iml: a pointer to the image loader itself
995  * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only.
996  *	The user should use iwl_trans_{alloc,free}_tx_cmd.
997  * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before
998  *	starting the firmware, used for tracing
999  * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the
1000  *	start of the 802.11 header in the @rx_mpdu_cmd
1001  * @dflt_pwr_limit: default power limit fetched from the platform (ACPI)
1002  * @system_pm_mode: the system-wide power management mode in use.
1003  *	This mode is set dynamically, depending on the WoWLAN values
1004  *	configured from the userspace at runtime.
1005  * @iwl_trans_txqs: transport tx queues data.
1006  */
1007 struct iwl_trans {
1008 	bool csme_own;
1009 	const struct iwl_trans_ops *ops;
1010 	struct iwl_op_mode *op_mode;
1011 	const struct iwl_cfg_trans_params *trans_cfg;
1012 	const struct iwl_cfg *cfg;
1013 	struct iwl_drv *drv;
1014 	enum iwl_trans_state state;
1015 	unsigned long status;
1016 
1017 	struct device *dev;
1018 	u32 max_skb_frags;
1019 	u32 hw_rev;
1020 	u32 hw_rev_step;
1021 	u32 hw_rf_id;
1022 	u32 hw_id;
1023 	char hw_id_str[52];
1024 	u32 sku_id[3];
1025 
1026 	u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size;
1027 
1028 	bool pm_support;
1029 	bool ltr_enabled;
1030 	u8 pnvm_loaded:1;
1031 	u8 reduce_power_loaded:1;
1032 
1033 	const struct iwl_hcmd_arr *command_groups;
1034 	int command_groups_size;
1035 	bool wide_cmd_header;
1036 
1037 	wait_queue_head_t wait_command_queue;
1038 	u8 num_rx_queues;
1039 
1040 	size_t iml_len;
1041 	u8 *iml;
1042 
1043 	/* The following fields are internal only */
1044 	struct kmem_cache *dev_cmd_pool;
1045 	char dev_cmd_pool_name[50];
1046 
1047 	struct dentry *dbgfs_dir;
1048 
1049 #ifdef CONFIG_LOCKDEP
1050 	struct lockdep_map sync_cmd_lockdep_map;
1051 #endif
1052 
1053 	struct iwl_trans_debug dbg;
1054 	struct iwl_self_init_dram init_dram;
1055 
1056 	enum iwl_plat_pm_mode system_pm_mode;
1057 
1058 	const char *name;
1059 	struct iwl_trans_txqs txqs;
1060 
1061 	/* pointer to trans specific struct */
1062 	/*Ensure that this pointer will always be aligned to sizeof pointer */
1063 	char trans_specific[] __aligned(sizeof(void *));
1064 };
1065 
1066 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id);
1067 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans);
1068 
iwl_trans_configure(struct iwl_trans * trans,const struct iwl_trans_config * trans_cfg)1069 static inline void iwl_trans_configure(struct iwl_trans *trans,
1070 				       const struct iwl_trans_config *trans_cfg)
1071 {
1072 	trans->op_mode = trans_cfg->op_mode;
1073 
1074 	trans->ops->configure(trans, trans_cfg);
1075 	WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg));
1076 }
1077 
iwl_trans_start_hw(struct iwl_trans * trans)1078 static inline int iwl_trans_start_hw(struct iwl_trans *trans)
1079 {
1080 	might_sleep();
1081 
1082 	return trans->ops->start_hw(trans);
1083 }
1084 
iwl_trans_op_mode_leave(struct iwl_trans * trans)1085 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans)
1086 {
1087 	might_sleep();
1088 
1089 	if (trans->ops->op_mode_leave)
1090 		trans->ops->op_mode_leave(trans);
1091 
1092 	trans->op_mode = NULL;
1093 
1094 	trans->state = IWL_TRANS_NO_FW;
1095 }
1096 
iwl_trans_fw_alive(struct iwl_trans * trans,u32 scd_addr)1097 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr)
1098 {
1099 	might_sleep();
1100 
1101 	trans->state = IWL_TRANS_FW_ALIVE;
1102 
1103 	trans->ops->fw_alive(trans, scd_addr);
1104 }
1105 
iwl_trans_start_fw(struct iwl_trans * trans,const struct fw_img * fw,bool run_in_rfkill)1106 static inline int iwl_trans_start_fw(struct iwl_trans *trans,
1107 				     const struct fw_img *fw,
1108 				     bool run_in_rfkill)
1109 {
1110 	int ret;
1111 
1112 	might_sleep();
1113 
1114 	WARN_ON_ONCE(!trans->rx_mpdu_cmd);
1115 
1116 	clear_bit(STATUS_FW_ERROR, &trans->status);
1117 	ret = trans->ops->start_fw(trans, fw, run_in_rfkill);
1118 	if (ret == 0)
1119 		trans->state = IWL_TRANS_FW_STARTED;
1120 
1121 	return ret;
1122 }
1123 
iwl_trans_stop_device(struct iwl_trans * trans)1124 static inline void iwl_trans_stop_device(struct iwl_trans *trans)
1125 {
1126 	might_sleep();
1127 
1128 	trans->ops->stop_device(trans);
1129 
1130 	trans->state = IWL_TRANS_NO_FW;
1131 }
1132 
iwl_trans_d3_suspend(struct iwl_trans * trans,bool test,bool reset)1133 static inline int iwl_trans_d3_suspend(struct iwl_trans *trans, bool test,
1134 				       bool reset)
1135 {
1136 	might_sleep();
1137 	if (!trans->ops->d3_suspend)
1138 		return 0;
1139 
1140 	return trans->ops->d3_suspend(trans, test, reset);
1141 }
1142 
iwl_trans_d3_resume(struct iwl_trans * trans,enum iwl_d3_status * status,bool test,bool reset)1143 static inline int iwl_trans_d3_resume(struct iwl_trans *trans,
1144 				      enum iwl_d3_status *status,
1145 				      bool test, bool reset)
1146 {
1147 	might_sleep();
1148 	if (!trans->ops->d3_resume)
1149 		return 0;
1150 
1151 	return trans->ops->d3_resume(trans, status, test, reset);
1152 }
1153 
1154 static inline struct iwl_trans_dump_data *
iwl_trans_dump_data(struct iwl_trans * trans,u32 dump_mask,const struct iwl_dump_sanitize_ops * sanitize_ops,void * sanitize_ctx)1155 iwl_trans_dump_data(struct iwl_trans *trans, u32 dump_mask,
1156 		    const struct iwl_dump_sanitize_ops *sanitize_ops,
1157 		    void *sanitize_ctx)
1158 {
1159 	if (!trans->ops->dump_data)
1160 		return NULL;
1161 	return trans->ops->dump_data(trans, dump_mask,
1162 				     sanitize_ops, sanitize_ctx);
1163 }
1164 
1165 static inline struct iwl_device_tx_cmd *
iwl_trans_alloc_tx_cmd(struct iwl_trans * trans)1166 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans)
1167 {
1168 	return kmem_cache_zalloc(trans->dev_cmd_pool, GFP_ATOMIC);
1169 }
1170 
1171 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
1172 
iwl_trans_free_tx_cmd(struct iwl_trans * trans,struct iwl_device_tx_cmd * dev_cmd)1173 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans,
1174 					 struct iwl_device_tx_cmd *dev_cmd)
1175 {
1176 	kmem_cache_free(trans->dev_cmd_pool, dev_cmd);
1177 }
1178 
iwl_trans_tx(struct iwl_trans * trans,struct sk_buff * skb,struct iwl_device_tx_cmd * dev_cmd,int queue)1179 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
1180 			       struct iwl_device_tx_cmd *dev_cmd, int queue)
1181 {
1182 	if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status)))
1183 		return -EIO;
1184 
1185 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1186 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1187 		return -EIO;
1188 	}
1189 
1190 	return trans->ops->tx(trans, skb, dev_cmd, queue);
1191 }
1192 
iwl_trans_reclaim(struct iwl_trans * trans,int queue,int ssn,struct sk_buff_head * skbs,bool is_flush)1193 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue,
1194 				     int ssn, struct sk_buff_head *skbs,
1195 				     bool is_flush)
1196 {
1197 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1198 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1199 		return;
1200 	}
1201 
1202 	trans->ops->reclaim(trans, queue, ssn, skbs, is_flush);
1203 }
1204 
iwl_trans_set_q_ptrs(struct iwl_trans * trans,int queue,int ptr)1205 static inline void iwl_trans_set_q_ptrs(struct iwl_trans *trans, int queue,
1206 					int ptr)
1207 {
1208 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1209 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1210 		return;
1211 	}
1212 
1213 	trans->ops->set_q_ptrs(trans, queue, ptr);
1214 }
1215 
iwl_trans_txq_disable(struct iwl_trans * trans,int queue,bool configure_scd)1216 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue,
1217 					 bool configure_scd)
1218 {
1219 	trans->ops->txq_disable(trans, queue, configure_scd);
1220 }
1221 
1222 static inline bool
iwl_trans_txq_enable_cfg(struct iwl_trans * trans,int queue,u16 ssn,const struct iwl_trans_txq_scd_cfg * cfg,unsigned int queue_wdg_timeout)1223 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn,
1224 			 const struct iwl_trans_txq_scd_cfg *cfg,
1225 			 unsigned int queue_wdg_timeout)
1226 {
1227 	might_sleep();
1228 
1229 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1230 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1231 		return false;
1232 	}
1233 
1234 	return trans->ops->txq_enable(trans, queue, ssn,
1235 				      cfg, queue_wdg_timeout);
1236 }
1237 
1238 static inline int
iwl_trans_get_rxq_dma_data(struct iwl_trans * trans,int queue,struct iwl_trans_rxq_dma_data * data)1239 iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue,
1240 			   struct iwl_trans_rxq_dma_data *data)
1241 {
1242 	if (WARN_ON_ONCE(!trans->ops->rxq_dma_data))
1243 		return -ENOTSUPP;
1244 
1245 	return trans->ops->rxq_dma_data(trans, queue, data);
1246 }
1247 
1248 static inline void
iwl_trans_txq_free(struct iwl_trans * trans,int queue)1249 iwl_trans_txq_free(struct iwl_trans *trans, int queue)
1250 {
1251 	if (WARN_ON_ONCE(!trans->ops->txq_free))
1252 		return;
1253 
1254 	trans->ops->txq_free(trans, queue);
1255 }
1256 
1257 static inline int
iwl_trans_txq_alloc(struct iwl_trans * trans,u32 flags,u32 sta_mask,u8 tid,int size,unsigned int wdg_timeout)1258 iwl_trans_txq_alloc(struct iwl_trans *trans,
1259 		    u32 flags, u32 sta_mask, u8 tid,
1260 		    int size, unsigned int wdg_timeout)
1261 {
1262 	might_sleep();
1263 
1264 	if (WARN_ON_ONCE(!trans->ops->txq_alloc))
1265 		return -ENOTSUPP;
1266 
1267 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1268 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1269 		return -EIO;
1270 	}
1271 
1272 	return trans->ops->txq_alloc(trans, flags, sta_mask, tid,
1273 				     size, wdg_timeout);
1274 }
1275 
iwl_trans_txq_set_shared_mode(struct iwl_trans * trans,int queue,bool shared_mode)1276 static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans,
1277 						 int queue, bool shared_mode)
1278 {
1279 	if (trans->ops->txq_set_shared_mode)
1280 		trans->ops->txq_set_shared_mode(trans, queue, shared_mode);
1281 }
1282 
iwl_trans_txq_enable(struct iwl_trans * trans,int queue,int fifo,int sta_id,int tid,int frame_limit,u16 ssn,unsigned int queue_wdg_timeout)1283 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue,
1284 					int fifo, int sta_id, int tid,
1285 					int frame_limit, u16 ssn,
1286 					unsigned int queue_wdg_timeout)
1287 {
1288 	struct iwl_trans_txq_scd_cfg cfg = {
1289 		.fifo = fifo,
1290 		.sta_id = sta_id,
1291 		.tid = tid,
1292 		.frame_limit = frame_limit,
1293 		.aggregate = sta_id >= 0,
1294 	};
1295 
1296 	iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout);
1297 }
1298 
1299 static inline
iwl_trans_ac_txq_enable(struct iwl_trans * trans,int queue,int fifo,unsigned int queue_wdg_timeout)1300 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo,
1301 			     unsigned int queue_wdg_timeout)
1302 {
1303 	struct iwl_trans_txq_scd_cfg cfg = {
1304 		.fifo = fifo,
1305 		.sta_id = -1,
1306 		.tid = IWL_MAX_TID_COUNT,
1307 		.frame_limit = IWL_FRAME_LIMIT,
1308 		.aggregate = false,
1309 	};
1310 
1311 	iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout);
1312 }
1313 
iwl_trans_freeze_txq_timer(struct iwl_trans * trans,unsigned long txqs,bool freeze)1314 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans,
1315 					      unsigned long txqs,
1316 					      bool freeze)
1317 {
1318 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1319 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1320 		return;
1321 	}
1322 
1323 	if (trans->ops->freeze_txq_timer)
1324 		trans->ops->freeze_txq_timer(trans, txqs, freeze);
1325 }
1326 
iwl_trans_block_txq_ptrs(struct iwl_trans * trans,bool block)1327 static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans,
1328 					    bool block)
1329 {
1330 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1331 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1332 		return;
1333 	}
1334 
1335 	if (trans->ops->block_txq_ptrs)
1336 		trans->ops->block_txq_ptrs(trans, block);
1337 }
1338 
iwl_trans_wait_tx_queues_empty(struct iwl_trans * trans,u32 txqs)1339 static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans,
1340 						 u32 txqs)
1341 {
1342 	if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty))
1343 		return -ENOTSUPP;
1344 
1345 	/* No need to wait if the firmware is not alive */
1346 	if (trans->state != IWL_TRANS_FW_ALIVE) {
1347 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1348 		return -EIO;
1349 	}
1350 
1351 	return trans->ops->wait_tx_queues_empty(trans, txqs);
1352 }
1353 
iwl_trans_wait_txq_empty(struct iwl_trans * trans,int queue)1354 static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue)
1355 {
1356 	if (WARN_ON_ONCE(!trans->ops->wait_txq_empty))
1357 		return -ENOTSUPP;
1358 
1359 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1360 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1361 		return -EIO;
1362 	}
1363 
1364 	return trans->ops->wait_txq_empty(trans, queue);
1365 }
1366 
iwl_trans_write8(struct iwl_trans * trans,u32 ofs,u8 val)1367 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val)
1368 {
1369 	trans->ops->write8(trans, ofs, val);
1370 }
1371 
iwl_trans_write32(struct iwl_trans * trans,u32 ofs,u32 val)1372 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val)
1373 {
1374 	trans->ops->write32(trans, ofs, val);
1375 }
1376 
iwl_trans_read32(struct iwl_trans * trans,u32 ofs)1377 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs)
1378 {
1379 	return trans->ops->read32(trans, ofs);
1380 }
1381 
iwl_trans_read_prph(struct iwl_trans * trans,u32 ofs)1382 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs)
1383 {
1384 	return trans->ops->read_prph(trans, ofs);
1385 }
1386 
iwl_trans_write_prph(struct iwl_trans * trans,u32 ofs,u32 val)1387 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs,
1388 					u32 val)
1389 {
1390 	return trans->ops->write_prph(trans, ofs, val);
1391 }
1392 
iwl_trans_read_mem(struct iwl_trans * trans,u32 addr,void * buf,int dwords)1393 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr,
1394 				     void *buf, int dwords)
1395 {
1396 	return trans->ops->read_mem(trans, addr, buf, dwords);
1397 }
1398 
1399 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize)		      \
1400 	do {								      \
1401 		if (__builtin_constant_p(bufsize))			      \
1402 			BUILD_BUG_ON((bufsize) % sizeof(u32));		      \
1403 		iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\
1404 	} while (0)
1405 
iwl_trans_write_imr_mem(struct iwl_trans * trans,u32 dst_addr,u64 src_addr,u32 byte_cnt)1406 static inline int iwl_trans_write_imr_mem(struct iwl_trans *trans,
1407 					  u32 dst_addr, u64 src_addr,
1408 					  u32 byte_cnt)
1409 {
1410 	if (trans->ops->imr_dma_data)
1411 		return trans->ops->imr_dma_data(trans, dst_addr, src_addr, byte_cnt);
1412 	return 0;
1413 }
1414 
iwl_trans_read_mem32(struct iwl_trans * trans,u32 addr)1415 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr)
1416 {
1417 	u32 value;
1418 
1419 	if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1)))
1420 		return 0xa5a5a5a5;
1421 
1422 	return value;
1423 }
1424 
iwl_trans_write_mem(struct iwl_trans * trans,u32 addr,const void * buf,int dwords)1425 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr,
1426 				      const void *buf, int dwords)
1427 {
1428 	return trans->ops->write_mem(trans, addr, buf, dwords);
1429 }
1430 
iwl_trans_write_mem32(struct iwl_trans * trans,u32 addr,u32 val)1431 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr,
1432 					u32 val)
1433 {
1434 	return iwl_trans_write_mem(trans, addr, &val, 1);
1435 }
1436 
iwl_trans_set_pmi(struct iwl_trans * trans,bool state)1437 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state)
1438 {
1439 	if (trans->ops->set_pmi)
1440 		trans->ops->set_pmi(trans, state);
1441 }
1442 
iwl_trans_sw_reset(struct iwl_trans * trans,bool retake_ownership)1443 static inline int iwl_trans_sw_reset(struct iwl_trans *trans,
1444 				     bool retake_ownership)
1445 {
1446 	if (trans->ops->sw_reset)
1447 		return trans->ops->sw_reset(trans, retake_ownership);
1448 	return 0;
1449 }
1450 
1451 static inline void
iwl_trans_set_bits_mask(struct iwl_trans * trans,u32 reg,u32 mask,u32 value)1452 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value)
1453 {
1454 	trans->ops->set_bits_mask(trans, reg, mask, value);
1455 }
1456 
1457 #define iwl_trans_grab_nic_access(trans)		\
1458 	__cond_lock(nic_access,				\
1459 		    likely((trans)->ops->grab_nic_access(trans)))
1460 
__releases(nic_access)1461 static inline void __releases(nic_access)
1462 iwl_trans_release_nic_access(struct iwl_trans *trans)
1463 {
1464 	trans->ops->release_nic_access(trans);
1465 	__release(nic_access);
1466 }
1467 
iwl_trans_fw_error(struct iwl_trans * trans,bool sync)1468 static inline void iwl_trans_fw_error(struct iwl_trans *trans, bool sync)
1469 {
1470 	if (WARN_ON_ONCE(!trans->op_mode))
1471 		return;
1472 
1473 	/* prevent double restarts due to the same erroneous FW */
1474 	if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) {
1475 		iwl_op_mode_nic_error(trans->op_mode, sync);
1476 		trans->state = IWL_TRANS_NO_FW;
1477 	}
1478 }
1479 
iwl_trans_fw_running(struct iwl_trans * trans)1480 static inline bool iwl_trans_fw_running(struct iwl_trans *trans)
1481 {
1482 	return trans->state == IWL_TRANS_FW_ALIVE;
1483 }
1484 
iwl_trans_sync_nmi(struct iwl_trans * trans)1485 static inline void iwl_trans_sync_nmi(struct iwl_trans *trans)
1486 {
1487 	if (trans->ops->sync_nmi)
1488 		trans->ops->sync_nmi(trans);
1489 }
1490 
1491 void iwl_trans_sync_nmi_with_addr(struct iwl_trans *trans, u32 inta_addr,
1492 				  u32 sw_err_bit);
1493 
iwl_trans_set_pnvm(struct iwl_trans * trans,const void * data,u32 len)1494 static inline int iwl_trans_set_pnvm(struct iwl_trans *trans,
1495 				     const void *data, u32 len)
1496 {
1497 	if (trans->ops->set_pnvm) {
1498 		int ret = trans->ops->set_pnvm(trans, data, len);
1499 
1500 		if (ret)
1501 			return ret;
1502 	}
1503 
1504 	trans->pnvm_loaded = true;
1505 
1506 	return 0;
1507 }
1508 
iwl_trans_set_reduce_power(struct iwl_trans * trans,const void * data,u32 len)1509 static inline int iwl_trans_set_reduce_power(struct iwl_trans *trans,
1510 					     const void *data, u32 len)
1511 {
1512 	if (trans->ops->set_reduce_power) {
1513 		int ret = trans->ops->set_reduce_power(trans, data, len);
1514 
1515 		if (ret)
1516 			return ret;
1517 	}
1518 
1519 	trans->reduce_power_loaded = true;
1520 	return 0;
1521 }
1522 
iwl_trans_dbg_ini_valid(struct iwl_trans * trans)1523 static inline bool iwl_trans_dbg_ini_valid(struct iwl_trans *trans)
1524 {
1525 	return trans->dbg.internal_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED ||
1526 		trans->dbg.external_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED;
1527 }
1528 
iwl_trans_interrupts(struct iwl_trans * trans,bool enable)1529 static inline void iwl_trans_interrupts(struct iwl_trans *trans, bool enable)
1530 {
1531 	if (trans->ops->interrupts)
1532 		trans->ops->interrupts(trans, enable);
1533 }
1534 
1535 /*****************************************************
1536  * transport helper functions
1537  *****************************************************/
1538 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size,
1539 			  struct device *dev,
1540 			  const struct iwl_trans_ops *ops,
1541 			  const struct iwl_cfg_trans_params *cfg_trans);
1542 int iwl_trans_init(struct iwl_trans *trans);
1543 void iwl_trans_free(struct iwl_trans *trans);
1544 
1545 /*****************************************************
1546 * driver (transport) register/unregister functions
1547 ******************************************************/
1548 int __must_check iwl_pci_register_driver(void);
1549 void iwl_pci_unregister_driver(void);
1550 
1551 #endif /* __iwl_trans_h__ */
1552