• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 #undef CREATE_TRACE_POINTS
58 #include <trace/hooks/printk.h>
59 
60 #include "printk_ringbuffer.h"
61 #include "console_cmdline.h"
62 #include "braille.h"
63 #include "internal.h"
64 
65 int console_printk[4] = {
66 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
67 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
68 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
69 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
70 };
71 EXPORT_SYMBOL_GPL(console_printk);
72 
73 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
74 EXPORT_SYMBOL(ignore_console_lock_warning);
75 
76 /*
77  * Low level drivers may need that to know if they can schedule in
78  * their unblank() callback or not. So let's export it.
79  */
80 int oops_in_progress;
81 EXPORT_SYMBOL(oops_in_progress);
82 
83 /*
84  * console_sem protects the console_drivers list, and also
85  * provides serialisation for access to the entire console
86  * driver system.
87  */
88 static DEFINE_SEMAPHORE(console_sem);
89 struct console *console_drivers;
90 EXPORT_SYMBOL_GPL(console_drivers);
91 
92 /*
93  * System may need to suppress printk message under certain
94  * circumstances, like after kernel panic happens.
95  */
96 int __read_mostly suppress_printk;
97 
98 /*
99  * During panic, heavy printk by other CPUs can delay the
100  * panic and risk deadlock on console resources.
101  */
102 static int __read_mostly suppress_panic_printk;
103 
104 #ifdef CONFIG_LOCKDEP
105 static struct lockdep_map console_lock_dep_map = {
106 	.name = "console_lock"
107 };
108 #endif
109 
110 enum devkmsg_log_bits {
111 	__DEVKMSG_LOG_BIT_ON = 0,
112 	__DEVKMSG_LOG_BIT_OFF,
113 	__DEVKMSG_LOG_BIT_LOCK,
114 };
115 
116 enum devkmsg_log_masks {
117 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
118 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
119 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
120 };
121 
122 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
123 #define DEVKMSG_LOG_MASK_DEFAULT	0
124 
125 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
126 
__control_devkmsg(char * str)127 static int __control_devkmsg(char *str)
128 {
129 	size_t len;
130 
131 	if (!str)
132 		return -EINVAL;
133 
134 	len = str_has_prefix(str, "on");
135 	if (len) {
136 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
137 		return len;
138 	}
139 
140 	len = str_has_prefix(str, "off");
141 	if (len) {
142 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
143 		return len;
144 	}
145 
146 	len = str_has_prefix(str, "ratelimit");
147 	if (len) {
148 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
149 		return len;
150 	}
151 
152 	return -EINVAL;
153 }
154 
control_devkmsg(char * str)155 static int __init control_devkmsg(char *str)
156 {
157 	if (__control_devkmsg(str) < 0) {
158 		pr_warn("printk.devkmsg: bad option string '%s'\n", str);
159 		return 1;
160 	}
161 
162 	/*
163 	 * Set sysctl string accordingly:
164 	 */
165 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
166 		strcpy(devkmsg_log_str, "on");
167 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
168 		strcpy(devkmsg_log_str, "off");
169 	/* else "ratelimit" which is set by default. */
170 
171 	/*
172 	 * Sysctl cannot change it anymore. The kernel command line setting of
173 	 * this parameter is to force the setting to be permanent throughout the
174 	 * runtime of the system. This is a precation measure against userspace
175 	 * trying to be a smarta** and attempting to change it up on us.
176 	 */
177 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
178 
179 	return 1;
180 }
181 __setup("printk.devkmsg=", control_devkmsg);
182 
183 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
184 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
devkmsg_sysctl_set_loglvl(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)185 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
186 			      void *buffer, size_t *lenp, loff_t *ppos)
187 {
188 	char old_str[DEVKMSG_STR_MAX_SIZE];
189 	unsigned int old;
190 	int err;
191 
192 	if (write) {
193 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
194 			return -EINVAL;
195 
196 		old = devkmsg_log;
197 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
198 	}
199 
200 	err = proc_dostring(table, write, buffer, lenp, ppos);
201 	if (err)
202 		return err;
203 
204 	if (write) {
205 		err = __control_devkmsg(devkmsg_log_str);
206 
207 		/*
208 		 * Do not accept an unknown string OR a known string with
209 		 * trailing crap...
210 		 */
211 		if (err < 0 || (err + 1 != *lenp)) {
212 
213 			/* ... and restore old setting. */
214 			devkmsg_log = old;
215 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
216 
217 			return -EINVAL;
218 		}
219 	}
220 
221 	return 0;
222 }
223 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
224 
225 /*
226  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
227  * macros instead of functions so that _RET_IP_ contains useful information.
228  */
229 #define down_console_sem() do { \
230 	down(&console_sem);\
231 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
232 } while (0)
233 
__down_trylock_console_sem(unsigned long ip)234 static int __down_trylock_console_sem(unsigned long ip)
235 {
236 	int lock_failed;
237 	unsigned long flags;
238 
239 	/*
240 	 * Here and in __up_console_sem() we need to be in safe mode,
241 	 * because spindump/WARN/etc from under console ->lock will
242 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
243 	 */
244 	printk_safe_enter_irqsave(flags);
245 	lock_failed = down_trylock(&console_sem);
246 	printk_safe_exit_irqrestore(flags);
247 
248 	if (lock_failed)
249 		return 1;
250 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
251 	return 0;
252 }
253 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
254 
__up_console_sem(unsigned long ip)255 static void __up_console_sem(unsigned long ip)
256 {
257 	unsigned long flags;
258 
259 	mutex_release(&console_lock_dep_map, ip);
260 
261 	printk_safe_enter_irqsave(flags);
262 	up(&console_sem);
263 	printk_safe_exit_irqrestore(flags);
264 }
265 #define up_console_sem() __up_console_sem(_RET_IP_)
266 
panic_in_progress(void)267 static bool panic_in_progress(void)
268 {
269 	return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
270 }
271 
272 /*
273  * This is used for debugging the mess that is the VT code by
274  * keeping track if we have the console semaphore held. It's
275  * definitely not the perfect debug tool (we don't know if _WE_
276  * hold it and are racing, but it helps tracking those weird code
277  * paths in the console code where we end up in places I want
278  * locked without the console semaphore held).
279  */
280 static int console_locked, console_suspended;
281 
282 /*
283  *	Array of consoles built from command line options (console=)
284  */
285 
286 #define MAX_CMDLINECONSOLES 8
287 
288 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
289 
290 static int preferred_console = -1;
291 int console_set_on_cmdline;
292 EXPORT_SYMBOL(console_set_on_cmdline);
293 
294 /* Flag: console code may call schedule() */
295 static int console_may_schedule;
296 
297 enum con_msg_format_flags {
298 	MSG_FORMAT_DEFAULT	= 0,
299 	MSG_FORMAT_SYSLOG	= (1 << 0),
300 };
301 
302 static int console_msg_format = MSG_FORMAT_DEFAULT;
303 
304 /*
305  * The printk log buffer consists of a sequenced collection of records, each
306  * containing variable length message text. Every record also contains its
307  * own meta-data (@info).
308  *
309  * Every record meta-data carries the timestamp in microseconds, as well as
310  * the standard userspace syslog level and syslog facility. The usual kernel
311  * messages use LOG_KERN; userspace-injected messages always carry a matching
312  * syslog facility, by default LOG_USER. The origin of every message can be
313  * reliably determined that way.
314  *
315  * The human readable log message of a record is available in @text, the
316  * length of the message text in @text_len. The stored message is not
317  * terminated.
318  *
319  * Optionally, a record can carry a dictionary of properties (key/value
320  * pairs), to provide userspace with a machine-readable message context.
321  *
322  * Examples for well-defined, commonly used property names are:
323  *   DEVICE=b12:8               device identifier
324  *                                b12:8         block dev_t
325  *                                c127:3        char dev_t
326  *                                n8            netdev ifindex
327  *                                +sound:card0  subsystem:devname
328  *   SUBSYSTEM=pci              driver-core subsystem name
329  *
330  * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
331  * and values are terminated by a '\0' character.
332  *
333  * Example of record values:
334  *   record.text_buf                = "it's a line" (unterminated)
335  *   record.info.seq                = 56
336  *   record.info.ts_nsec            = 36863
337  *   record.info.text_len           = 11
338  *   record.info.facility           = 0 (LOG_KERN)
339  *   record.info.flags              = 0
340  *   record.info.level              = 3 (LOG_ERR)
341  *   record.info.caller_id          = 299 (task 299)
342  *   record.info.dev_info.subsystem = "pci" (terminated)
343  *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
344  *
345  * The 'struct printk_info' buffer must never be directly exported to
346  * userspace, it is a kernel-private implementation detail that might
347  * need to be changed in the future, when the requirements change.
348  *
349  * /dev/kmsg exports the structured data in the following line format:
350  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
351  *
352  * Users of the export format should ignore possible additional values
353  * separated by ',', and find the message after the ';' character.
354  *
355  * The optional key/value pairs are attached as continuation lines starting
356  * with a space character and terminated by a newline. All possible
357  * non-prinatable characters are escaped in the "\xff" notation.
358  */
359 
360 /* syslog_lock protects syslog_* variables and write access to clear_seq. */
361 static DEFINE_MUTEX(syslog_lock);
362 
363 #ifdef CONFIG_PRINTK
364 DECLARE_WAIT_QUEUE_HEAD(log_wait);
365 /* All 3 protected by @syslog_lock. */
366 /* the next printk record to read by syslog(READ) or /proc/kmsg */
367 static u64 syslog_seq;
368 static size_t syslog_partial;
369 static bool syslog_time;
370 
371 struct latched_seq {
372 	seqcount_latch_t	latch;
373 	u64			val[2];
374 };
375 
376 /*
377  * The next printk record to read after the last 'clear' command. There are
378  * two copies (updated with seqcount_latch) so that reads can locklessly
379  * access a valid value. Writers are synchronized by @syslog_lock.
380  */
381 static struct latched_seq clear_seq = {
382 	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
383 	.val[0]		= 0,
384 	.val[1]		= 0,
385 };
386 
387 #ifdef CONFIG_PRINTK_CALLER
388 #define PREFIX_MAX		48
389 #else
390 #define PREFIX_MAX		32
391 #endif
392 
393 /* the maximum size of a formatted record (i.e. with prefix added per line) */
394 #define CONSOLE_LOG_MAX		1024
395 
396 /* the maximum size for a dropped text message */
397 #define DROPPED_TEXT_MAX	64
398 
399 /* the maximum size allowed to be reserved for a record */
400 #define LOG_LINE_MAX		(CONSOLE_LOG_MAX - PREFIX_MAX)
401 
402 #define LOG_LEVEL(v)		((v) & 0x07)
403 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
404 
405 /* record buffer */
406 #define LOG_ALIGN __alignof__(unsigned long)
407 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
408 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
409 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
410 static char *log_buf = __log_buf;
411 static u32 log_buf_len = __LOG_BUF_LEN;
412 
413 /*
414  * Define the average message size. This only affects the number of
415  * descriptors that will be available. Underestimating is better than
416  * overestimating (too many available descriptors is better than not enough).
417  */
418 #define PRB_AVGBITS 5	/* 32 character average length */
419 
420 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
421 #error CONFIG_LOG_BUF_SHIFT value too small.
422 #endif
423 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
424 		 PRB_AVGBITS, &__log_buf[0]);
425 
426 static struct printk_ringbuffer printk_rb_dynamic;
427 
428 static struct printk_ringbuffer *prb = &printk_rb_static;
429 
430 /*
431  * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
432  * per_cpu_areas are initialised. This variable is set to true when
433  * it's safe to access per-CPU data.
434  */
435 static bool __printk_percpu_data_ready __ro_after_init;
436 
printk_percpu_data_ready(void)437 bool printk_percpu_data_ready(void)
438 {
439 	return __printk_percpu_data_ready;
440 }
441 
442 /* Must be called under syslog_lock. */
latched_seq_write(struct latched_seq * ls,u64 val)443 static void latched_seq_write(struct latched_seq *ls, u64 val)
444 {
445 	raw_write_seqcount_latch(&ls->latch);
446 	ls->val[0] = val;
447 	raw_write_seqcount_latch(&ls->latch);
448 	ls->val[1] = val;
449 }
450 
451 /* Can be called from any context. */
latched_seq_read_nolock(struct latched_seq * ls)452 static u64 latched_seq_read_nolock(struct latched_seq *ls)
453 {
454 	unsigned int seq;
455 	unsigned int idx;
456 	u64 val;
457 
458 	do {
459 		seq = raw_read_seqcount_latch(&ls->latch);
460 		idx = seq & 0x1;
461 		val = ls->val[idx];
462 	} while (read_seqcount_latch_retry(&ls->latch, seq));
463 
464 	return val;
465 }
466 
467 /* Return log buffer address */
log_buf_addr_get(void)468 char *log_buf_addr_get(void)
469 {
470 	return log_buf;
471 }
472 
473 /* Return log buffer size */
log_buf_len_get(void)474 u32 log_buf_len_get(void)
475 {
476 	return log_buf_len;
477 }
478 
479 /*
480  * Define how much of the log buffer we could take at maximum. The value
481  * must be greater than two. Note that only half of the buffer is available
482  * when the index points to the middle.
483  */
484 #define MAX_LOG_TAKE_PART 4
485 static const char trunc_msg[] = "<truncated>";
486 
truncate_msg(u16 * text_len,u16 * trunc_msg_len)487 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
488 {
489 	/*
490 	 * The message should not take the whole buffer. Otherwise, it might
491 	 * get removed too soon.
492 	 */
493 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
494 
495 	if (*text_len > max_text_len)
496 		*text_len = max_text_len;
497 
498 	/* enable the warning message (if there is room) */
499 	*trunc_msg_len = strlen(trunc_msg);
500 	if (*text_len >= *trunc_msg_len)
501 		*text_len -= *trunc_msg_len;
502 	else
503 		*trunc_msg_len = 0;
504 }
505 
506 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
507 
syslog_action_restricted(int type)508 static int syslog_action_restricted(int type)
509 {
510 	if (dmesg_restrict)
511 		return 1;
512 	/*
513 	 * Unless restricted, we allow "read all" and "get buffer size"
514 	 * for everybody.
515 	 */
516 	return type != SYSLOG_ACTION_READ_ALL &&
517 	       type != SYSLOG_ACTION_SIZE_BUFFER;
518 }
519 
check_syslog_permissions(int type,int source)520 static int check_syslog_permissions(int type, int source)
521 {
522 	/*
523 	 * If this is from /proc/kmsg and we've already opened it, then we've
524 	 * already done the capabilities checks at open time.
525 	 */
526 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
527 		goto ok;
528 
529 	if (syslog_action_restricted(type)) {
530 		if (capable(CAP_SYSLOG))
531 			goto ok;
532 		/*
533 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
534 		 * a warning.
535 		 */
536 		if (capable(CAP_SYS_ADMIN)) {
537 			pr_warn_once("%s (%d): Attempt to access syslog with "
538 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
539 				     "(deprecated).\n",
540 				 current->comm, task_pid_nr(current));
541 			goto ok;
542 		}
543 		return -EPERM;
544 	}
545 ok:
546 	return security_syslog(type);
547 }
548 
append_char(char ** pp,char * e,char c)549 static void append_char(char **pp, char *e, char c)
550 {
551 	if (*pp < e)
552 		*(*pp)++ = c;
553 }
554 
info_print_ext_header(char * buf,size_t size,struct printk_info * info)555 static ssize_t info_print_ext_header(char *buf, size_t size,
556 				     struct printk_info *info)
557 {
558 	u64 ts_usec = info->ts_nsec;
559 	char caller[20];
560 #ifdef CONFIG_PRINTK_CALLER
561 	u32 id = info->caller_id;
562 
563 	snprintf(caller, sizeof(caller), ",caller=%c%u",
564 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
565 #else
566 	caller[0] = '\0';
567 #endif
568 
569 	do_div(ts_usec, 1000);
570 
571 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
572 			 (info->facility << 3) | info->level, info->seq,
573 			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
574 }
575 
msg_add_ext_text(char * buf,size_t size,const char * text,size_t text_len,unsigned char endc)576 static ssize_t msg_add_ext_text(char *buf, size_t size,
577 				const char *text, size_t text_len,
578 				unsigned char endc)
579 {
580 	char *p = buf, *e = buf + size;
581 	size_t i;
582 
583 	/* escape non-printable characters */
584 	for (i = 0; i < text_len; i++) {
585 		unsigned char c = text[i];
586 
587 		if (c < ' ' || c >= 127 || c == '\\')
588 			p += scnprintf(p, e - p, "\\x%02x", c);
589 		else
590 			append_char(&p, e, c);
591 	}
592 	append_char(&p, e, endc);
593 
594 	return p - buf;
595 }
596 
msg_add_dict_text(char * buf,size_t size,const char * key,const char * val)597 static ssize_t msg_add_dict_text(char *buf, size_t size,
598 				 const char *key, const char *val)
599 {
600 	size_t val_len = strlen(val);
601 	ssize_t len;
602 
603 	if (!val_len)
604 		return 0;
605 
606 	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
607 	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
608 	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
609 
610 	return len;
611 }
612 
msg_print_ext_body(char * buf,size_t size,char * text,size_t text_len,struct dev_printk_info * dev_info)613 static ssize_t msg_print_ext_body(char *buf, size_t size,
614 				  char *text, size_t text_len,
615 				  struct dev_printk_info *dev_info)
616 {
617 	ssize_t len;
618 
619 	len = msg_add_ext_text(buf, size, text, text_len, '\n');
620 
621 	if (!dev_info)
622 		goto out;
623 
624 	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
625 				 dev_info->subsystem);
626 	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
627 				 dev_info->device);
628 out:
629 	return len;
630 }
631 
632 /* /dev/kmsg - userspace message inject/listen interface */
633 struct devkmsg_user {
634 	atomic64_t seq;
635 	struct ratelimit_state rs;
636 	struct mutex lock;
637 	char buf[CONSOLE_EXT_LOG_MAX];
638 
639 	struct printk_info info;
640 	char text_buf[CONSOLE_EXT_LOG_MAX];
641 	struct printk_record record;
642 };
643 
644 static __printf(3, 4) __cold
devkmsg_emit(int facility,int level,const char * fmt,...)645 int devkmsg_emit(int facility, int level, const char *fmt, ...)
646 {
647 	va_list args;
648 	int r;
649 
650 	va_start(args, fmt);
651 	r = vprintk_emit(facility, level, NULL, fmt, args);
652 	va_end(args);
653 
654 	return r;
655 }
656 
devkmsg_write(struct kiocb * iocb,struct iov_iter * from)657 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
658 {
659 	char *buf, *line;
660 	int level = default_message_loglevel;
661 	int facility = 1;	/* LOG_USER */
662 	struct file *file = iocb->ki_filp;
663 	struct devkmsg_user *user = file->private_data;
664 	size_t len = iov_iter_count(from);
665 	ssize_t ret = len;
666 
667 	if (!user || len > LOG_LINE_MAX)
668 		return -EINVAL;
669 
670 	/* Ignore when user logging is disabled. */
671 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
672 		return len;
673 
674 	/* Ratelimit when not explicitly enabled. */
675 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
676 		if (!___ratelimit(&user->rs, current->comm))
677 			return ret;
678 	}
679 
680 	buf = kmalloc(len+1, GFP_KERNEL);
681 	if (buf == NULL)
682 		return -ENOMEM;
683 
684 	buf[len] = '\0';
685 	if (!copy_from_iter_full(buf, len, from)) {
686 		kfree(buf);
687 		return -EFAULT;
688 	}
689 
690 	/*
691 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
692 	 * the decimal value represents 32bit, the lower 3 bit are the log
693 	 * level, the rest are the log facility.
694 	 *
695 	 * If no prefix or no userspace facility is specified, we
696 	 * enforce LOG_USER, to be able to reliably distinguish
697 	 * kernel-generated messages from userspace-injected ones.
698 	 */
699 	line = buf;
700 	if (line[0] == '<') {
701 		char *endp = NULL;
702 		unsigned int u;
703 
704 		u = simple_strtoul(line + 1, &endp, 10);
705 		if (endp && endp[0] == '>') {
706 			level = LOG_LEVEL(u);
707 			if (LOG_FACILITY(u) != 0)
708 				facility = LOG_FACILITY(u);
709 			endp++;
710 			line = endp;
711 		}
712 	}
713 
714 	devkmsg_emit(facility, level, "%s", line);
715 	kfree(buf);
716 	return ret;
717 }
718 
devkmsg_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)719 static ssize_t devkmsg_read(struct file *file, char __user *buf,
720 			    size_t count, loff_t *ppos)
721 {
722 	struct devkmsg_user *user = file->private_data;
723 	struct printk_record *r = &user->record;
724 	size_t len;
725 	ssize_t ret;
726 
727 	if (!user)
728 		return -EBADF;
729 
730 	ret = mutex_lock_interruptible(&user->lock);
731 	if (ret)
732 		return ret;
733 
734 	if (!prb_read_valid(prb, atomic64_read(&user->seq), r)) {
735 		if (file->f_flags & O_NONBLOCK) {
736 			ret = -EAGAIN;
737 			goto out;
738 		}
739 
740 		/*
741 		 * Guarantee this task is visible on the waitqueue before
742 		 * checking the wake condition.
743 		 *
744 		 * The full memory barrier within set_current_state() of
745 		 * prepare_to_wait_event() pairs with the full memory barrier
746 		 * within wq_has_sleeper().
747 		 *
748 		 * This pairs with __wake_up_klogd:A.
749 		 */
750 		ret = wait_event_interruptible(log_wait,
751 				prb_read_valid(prb,
752 					atomic64_read(&user->seq), r)); /* LMM(devkmsg_read:A) */
753 		if (ret)
754 			goto out;
755 	}
756 
757 	if (r->info->seq != atomic64_read(&user->seq)) {
758 		/* our last seen message is gone, return error and reset */
759 		atomic64_set(&user->seq, r->info->seq);
760 		ret = -EPIPE;
761 		goto out;
762 	}
763 
764 	len = info_print_ext_header(user->buf, sizeof(user->buf), r->info);
765 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
766 				  &r->text_buf[0], r->info->text_len,
767 				  &r->info->dev_info);
768 
769 	atomic64_set(&user->seq, r->info->seq + 1);
770 
771 	if (len > count) {
772 		ret = -EINVAL;
773 		goto out;
774 	}
775 
776 	if (copy_to_user(buf, user->buf, len)) {
777 		ret = -EFAULT;
778 		goto out;
779 	}
780 	ret = len;
781 out:
782 	mutex_unlock(&user->lock);
783 	return ret;
784 }
785 
786 /*
787  * Be careful when modifying this function!!!
788  *
789  * Only few operations are supported because the device works only with the
790  * entire variable length messages (records). Non-standard values are
791  * returned in the other cases and has been this way for quite some time.
792  * User space applications might depend on this behavior.
793  */
devkmsg_llseek(struct file * file,loff_t offset,int whence)794 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
795 {
796 	struct devkmsg_user *user = file->private_data;
797 	loff_t ret = 0;
798 
799 	if (!user)
800 		return -EBADF;
801 	if (offset)
802 		return -ESPIPE;
803 
804 	switch (whence) {
805 	case SEEK_SET:
806 		/* the first record */
807 		atomic64_set(&user->seq, prb_first_valid_seq(prb));
808 		break;
809 	case SEEK_DATA:
810 		/*
811 		 * The first record after the last SYSLOG_ACTION_CLEAR,
812 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
813 		 * changes no global state, and does not clear anything.
814 		 */
815 		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
816 		break;
817 	case SEEK_END:
818 		/* after the last record */
819 		atomic64_set(&user->seq, prb_next_seq(prb));
820 		break;
821 	default:
822 		ret = -EINVAL;
823 	}
824 	return ret;
825 }
826 
devkmsg_poll(struct file * file,poll_table * wait)827 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
828 {
829 	struct devkmsg_user *user = file->private_data;
830 	struct printk_info info;
831 	__poll_t ret = 0;
832 
833 	if (!user)
834 		return EPOLLERR|EPOLLNVAL;
835 
836 	poll_wait(file, &log_wait, wait);
837 
838 	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
839 		/* return error when data has vanished underneath us */
840 		if (info.seq != atomic64_read(&user->seq))
841 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
842 		else
843 			ret = EPOLLIN|EPOLLRDNORM;
844 	}
845 
846 	return ret;
847 }
848 
devkmsg_open(struct inode * inode,struct file * file)849 static int devkmsg_open(struct inode *inode, struct file *file)
850 {
851 	struct devkmsg_user *user;
852 	int err;
853 
854 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
855 		return -EPERM;
856 
857 	/* write-only does not need any file context */
858 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
859 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
860 					       SYSLOG_FROM_READER);
861 		if (err)
862 			return err;
863 	}
864 
865 	user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
866 	if (!user)
867 		return -ENOMEM;
868 
869 	ratelimit_default_init(&user->rs);
870 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
871 
872 	mutex_init(&user->lock);
873 
874 	prb_rec_init_rd(&user->record, &user->info,
875 			&user->text_buf[0], sizeof(user->text_buf));
876 
877 	atomic64_set(&user->seq, prb_first_valid_seq(prb));
878 
879 	file->private_data = user;
880 	return 0;
881 }
882 
devkmsg_release(struct inode * inode,struct file * file)883 static int devkmsg_release(struct inode *inode, struct file *file)
884 {
885 	struct devkmsg_user *user = file->private_data;
886 
887 	if (!user)
888 		return 0;
889 
890 	ratelimit_state_exit(&user->rs);
891 
892 	mutex_destroy(&user->lock);
893 	kvfree(user);
894 	return 0;
895 }
896 
897 const struct file_operations kmsg_fops = {
898 	.open = devkmsg_open,
899 	.read = devkmsg_read,
900 	.write_iter = devkmsg_write,
901 	.llseek = devkmsg_llseek,
902 	.poll = devkmsg_poll,
903 	.release = devkmsg_release,
904 };
905 
906 #ifdef CONFIG_CRASH_CORE
907 /*
908  * This appends the listed symbols to /proc/vmcore
909  *
910  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
911  * obtain access to symbols that are otherwise very difficult to locate.  These
912  * symbols are specifically used so that utilities can access and extract the
913  * dmesg log from a vmcore file after a crash.
914  */
log_buf_vmcoreinfo_setup(void)915 void log_buf_vmcoreinfo_setup(void)
916 {
917 	struct dev_printk_info *dev_info = NULL;
918 
919 	VMCOREINFO_SYMBOL(prb);
920 	VMCOREINFO_SYMBOL(printk_rb_static);
921 	VMCOREINFO_SYMBOL(clear_seq);
922 
923 	/*
924 	 * Export struct size and field offsets. User space tools can
925 	 * parse it and detect any changes to structure down the line.
926 	 */
927 
928 	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
929 	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
930 	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
931 	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
932 
933 	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
934 	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
935 	VMCOREINFO_OFFSET(prb_desc_ring, descs);
936 	VMCOREINFO_OFFSET(prb_desc_ring, infos);
937 	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
938 	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
939 
940 	VMCOREINFO_STRUCT_SIZE(prb_desc);
941 	VMCOREINFO_OFFSET(prb_desc, state_var);
942 	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
943 
944 	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
945 	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
946 	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
947 
948 	VMCOREINFO_STRUCT_SIZE(printk_info);
949 	VMCOREINFO_OFFSET(printk_info, seq);
950 	VMCOREINFO_OFFSET(printk_info, ts_nsec);
951 	VMCOREINFO_OFFSET(printk_info, text_len);
952 	VMCOREINFO_OFFSET(printk_info, caller_id);
953 	VMCOREINFO_OFFSET(printk_info, dev_info);
954 
955 	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
956 	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
957 	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
958 	VMCOREINFO_OFFSET(dev_printk_info, device);
959 	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
960 
961 	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
962 	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
963 	VMCOREINFO_OFFSET(prb_data_ring, data);
964 	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
965 	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
966 
967 	VMCOREINFO_SIZE(atomic_long_t);
968 	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
969 
970 	VMCOREINFO_STRUCT_SIZE(latched_seq);
971 	VMCOREINFO_OFFSET(latched_seq, val);
972 }
973 #endif
974 
975 /* requested log_buf_len from kernel cmdline */
976 static unsigned long __initdata new_log_buf_len;
977 
978 /* we practice scaling the ring buffer by powers of 2 */
log_buf_len_update(u64 size)979 static void __init log_buf_len_update(u64 size)
980 {
981 	if (size > (u64)LOG_BUF_LEN_MAX) {
982 		size = (u64)LOG_BUF_LEN_MAX;
983 		pr_err("log_buf over 2G is not supported.\n");
984 	}
985 
986 	if (size)
987 		size = roundup_pow_of_two(size);
988 	if (size > log_buf_len)
989 		new_log_buf_len = (unsigned long)size;
990 }
991 
992 /* save requested log_buf_len since it's too early to process it */
log_buf_len_setup(char * str)993 static int __init log_buf_len_setup(char *str)
994 {
995 	u64 size;
996 
997 	if (!str)
998 		return -EINVAL;
999 
1000 	size = memparse(str, &str);
1001 
1002 	log_buf_len_update(size);
1003 
1004 	return 0;
1005 }
1006 early_param("log_buf_len", log_buf_len_setup);
1007 
1008 #ifdef CONFIG_SMP
1009 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1010 
log_buf_add_cpu(void)1011 static void __init log_buf_add_cpu(void)
1012 {
1013 	unsigned int cpu_extra;
1014 
1015 	/*
1016 	 * archs should set up cpu_possible_bits properly with
1017 	 * set_cpu_possible() after setup_arch() but just in
1018 	 * case lets ensure this is valid.
1019 	 */
1020 	if (num_possible_cpus() == 1)
1021 		return;
1022 
1023 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1024 
1025 	/* by default this will only continue through for large > 64 CPUs */
1026 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1027 		return;
1028 
1029 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1030 		__LOG_CPU_MAX_BUF_LEN);
1031 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1032 		cpu_extra);
1033 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1034 
1035 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1036 }
1037 #else /* !CONFIG_SMP */
log_buf_add_cpu(void)1038 static inline void log_buf_add_cpu(void) {}
1039 #endif /* CONFIG_SMP */
1040 
set_percpu_data_ready(void)1041 static void __init set_percpu_data_ready(void)
1042 {
1043 	__printk_percpu_data_ready = true;
1044 }
1045 
add_to_rb(struct printk_ringbuffer * rb,struct printk_record * r)1046 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1047 				     struct printk_record *r)
1048 {
1049 	struct prb_reserved_entry e;
1050 	struct printk_record dest_r;
1051 
1052 	prb_rec_init_wr(&dest_r, r->info->text_len);
1053 
1054 	if (!prb_reserve(&e, rb, &dest_r))
1055 		return 0;
1056 
1057 	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1058 	dest_r.info->text_len = r->info->text_len;
1059 	dest_r.info->facility = r->info->facility;
1060 	dest_r.info->level = r->info->level;
1061 	dest_r.info->flags = r->info->flags;
1062 	dest_r.info->ts_nsec = r->info->ts_nsec;
1063 	dest_r.info->caller_id = r->info->caller_id;
1064 	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1065 
1066 	prb_final_commit(&e);
1067 
1068 	return prb_record_text_space(&e);
1069 }
1070 
1071 static char setup_text_buf[LOG_LINE_MAX] __initdata;
1072 
setup_log_buf(int early)1073 void __init setup_log_buf(int early)
1074 {
1075 	struct printk_info *new_infos;
1076 	unsigned int new_descs_count;
1077 	struct prb_desc *new_descs;
1078 	struct printk_info info;
1079 	struct printk_record r;
1080 	unsigned int text_size;
1081 	size_t new_descs_size;
1082 	size_t new_infos_size;
1083 	unsigned long flags;
1084 	char *new_log_buf;
1085 	unsigned int free;
1086 	u64 seq;
1087 
1088 	/*
1089 	 * Some archs call setup_log_buf() multiple times - first is very
1090 	 * early, e.g. from setup_arch(), and second - when percpu_areas
1091 	 * are initialised.
1092 	 */
1093 	if (!early)
1094 		set_percpu_data_ready();
1095 
1096 	if (log_buf != __log_buf)
1097 		return;
1098 
1099 	if (!early && !new_log_buf_len)
1100 		log_buf_add_cpu();
1101 
1102 	if (!new_log_buf_len)
1103 		return;
1104 
1105 	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1106 	if (new_descs_count == 0) {
1107 		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1108 		return;
1109 	}
1110 
1111 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1112 	if (unlikely(!new_log_buf)) {
1113 		pr_err("log_buf_len: %lu text bytes not available\n",
1114 		       new_log_buf_len);
1115 		return;
1116 	}
1117 
1118 	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1119 	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1120 	if (unlikely(!new_descs)) {
1121 		pr_err("log_buf_len: %zu desc bytes not available\n",
1122 		       new_descs_size);
1123 		goto err_free_log_buf;
1124 	}
1125 
1126 	new_infos_size = new_descs_count * sizeof(struct printk_info);
1127 	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1128 	if (unlikely(!new_infos)) {
1129 		pr_err("log_buf_len: %zu info bytes not available\n",
1130 		       new_infos_size);
1131 		goto err_free_descs;
1132 	}
1133 
1134 	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1135 
1136 	prb_init(&printk_rb_dynamic,
1137 		 new_log_buf, ilog2(new_log_buf_len),
1138 		 new_descs, ilog2(new_descs_count),
1139 		 new_infos);
1140 
1141 	local_irq_save(flags);
1142 
1143 	log_buf_len = new_log_buf_len;
1144 	log_buf = new_log_buf;
1145 	new_log_buf_len = 0;
1146 
1147 	free = __LOG_BUF_LEN;
1148 	prb_for_each_record(0, &printk_rb_static, seq, &r) {
1149 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1150 		if (text_size > free)
1151 			free = 0;
1152 		else
1153 			free -= text_size;
1154 	}
1155 
1156 	prb = &printk_rb_dynamic;
1157 
1158 	local_irq_restore(flags);
1159 
1160 	/*
1161 	 * Copy any remaining messages that might have appeared from
1162 	 * NMI context after copying but before switching to the
1163 	 * dynamic buffer.
1164 	 */
1165 	prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1166 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1167 		if (text_size > free)
1168 			free = 0;
1169 		else
1170 			free -= text_size;
1171 	}
1172 
1173 	if (seq != prb_next_seq(&printk_rb_static)) {
1174 		pr_err("dropped %llu messages\n",
1175 		       prb_next_seq(&printk_rb_static) - seq);
1176 	}
1177 
1178 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1179 	pr_info("early log buf free: %u(%u%%)\n",
1180 		free, (free * 100) / __LOG_BUF_LEN);
1181 	return;
1182 
1183 err_free_descs:
1184 	memblock_free(new_descs, new_descs_size);
1185 err_free_log_buf:
1186 	memblock_free(new_log_buf, new_log_buf_len);
1187 }
1188 
1189 static bool __read_mostly ignore_loglevel;
1190 
ignore_loglevel_setup(char * str)1191 static int __init ignore_loglevel_setup(char *str)
1192 {
1193 	ignore_loglevel = true;
1194 	pr_info("debug: ignoring loglevel setting.\n");
1195 
1196 	return 0;
1197 }
1198 
1199 early_param("ignore_loglevel", ignore_loglevel_setup);
1200 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1201 MODULE_PARM_DESC(ignore_loglevel,
1202 		 "ignore loglevel setting (prints all kernel messages to the console)");
1203 
suppress_message_printing(int level)1204 static bool suppress_message_printing(int level)
1205 {
1206 	return (level >= console_loglevel && !ignore_loglevel);
1207 }
1208 
1209 #ifdef CONFIG_BOOT_PRINTK_DELAY
1210 
1211 static int boot_delay; /* msecs delay after each printk during bootup */
1212 static unsigned long long loops_per_msec;	/* based on boot_delay */
1213 
boot_delay_setup(char * str)1214 static int __init boot_delay_setup(char *str)
1215 {
1216 	unsigned long lpj;
1217 
1218 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1219 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1220 
1221 	get_option(&str, &boot_delay);
1222 	if (boot_delay > 10 * 1000)
1223 		boot_delay = 0;
1224 
1225 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1226 		"HZ: %d, loops_per_msec: %llu\n",
1227 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1228 	return 0;
1229 }
1230 early_param("boot_delay", boot_delay_setup);
1231 
boot_delay_msec(int level)1232 static void boot_delay_msec(int level)
1233 {
1234 	unsigned long long k;
1235 	unsigned long timeout;
1236 
1237 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1238 		|| suppress_message_printing(level)) {
1239 		return;
1240 	}
1241 
1242 	k = (unsigned long long)loops_per_msec * boot_delay;
1243 
1244 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1245 	while (k) {
1246 		k--;
1247 		cpu_relax();
1248 		/*
1249 		 * use (volatile) jiffies to prevent
1250 		 * compiler reduction; loop termination via jiffies
1251 		 * is secondary and may or may not happen.
1252 		 */
1253 		if (time_after(jiffies, timeout))
1254 			break;
1255 		touch_nmi_watchdog();
1256 	}
1257 }
1258 #else
boot_delay_msec(int level)1259 static inline void boot_delay_msec(int level)
1260 {
1261 }
1262 #endif
1263 
1264 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1265 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1266 
print_syslog(unsigned int level,char * buf)1267 static size_t print_syslog(unsigned int level, char *buf)
1268 {
1269 	return sprintf(buf, "<%u>", level);
1270 }
1271 
print_time(u64 ts,char * buf)1272 static size_t print_time(u64 ts, char *buf)
1273 {
1274 	unsigned long rem_nsec = do_div(ts, 1000000000);
1275 
1276 	return sprintf(buf, "[%5lu.%06lu]",
1277 		       (unsigned long)ts, rem_nsec / 1000);
1278 }
1279 
1280 #ifdef CONFIG_PRINTK_CALLER
print_caller(u32 id,char * buf)1281 static size_t print_caller(u32 id, char *buf)
1282 {
1283 	char caller[12];
1284 
1285 	snprintf(caller, sizeof(caller), "%c%u",
1286 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1287 	return sprintf(buf, "[%6s]", caller);
1288 }
1289 #else
1290 #define print_caller(id, buf) 0
1291 #endif
1292 
info_print_prefix(const struct printk_info * info,bool syslog,bool time,char * buf)1293 static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1294 				bool time, char *buf)
1295 {
1296 	size_t len = 0;
1297 
1298 	if (syslog)
1299 		len = print_syslog((info->facility << 3) | info->level, buf);
1300 
1301 	if (time)
1302 		len += print_time(info->ts_nsec, buf + len);
1303 
1304 	len += print_caller(info->caller_id, buf + len);
1305 
1306 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1307 		buf[len++] = ' ';
1308 		buf[len] = '\0';
1309 	}
1310 
1311 	return len;
1312 }
1313 
1314 /*
1315  * Prepare the record for printing. The text is shifted within the given
1316  * buffer to avoid a need for another one. The following operations are
1317  * done:
1318  *
1319  *   - Add prefix for each line.
1320  *   - Drop truncated lines that no longer fit into the buffer.
1321  *   - Add the trailing newline that has been removed in vprintk_store().
1322  *   - Add a string terminator.
1323  *
1324  * Since the produced string is always terminated, the maximum possible
1325  * return value is @r->text_buf_size - 1;
1326  *
1327  * Return: The length of the updated/prepared text, including the added
1328  * prefixes and the newline. The terminator is not counted. The dropped
1329  * line(s) are not counted.
1330  */
record_print_text(struct printk_record * r,bool syslog,bool time)1331 static size_t record_print_text(struct printk_record *r, bool syslog,
1332 				bool time)
1333 {
1334 	size_t text_len = r->info->text_len;
1335 	size_t buf_size = r->text_buf_size;
1336 	char *text = r->text_buf;
1337 	char prefix[PREFIX_MAX];
1338 	bool truncated = false;
1339 	size_t prefix_len;
1340 	size_t line_len;
1341 	size_t len = 0;
1342 	char *next;
1343 
1344 	/*
1345 	 * If the message was truncated because the buffer was not large
1346 	 * enough, treat the available text as if it were the full text.
1347 	 */
1348 	if (text_len > buf_size)
1349 		text_len = buf_size;
1350 
1351 	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1352 
1353 	/*
1354 	 * @text_len: bytes of unprocessed text
1355 	 * @line_len: bytes of current line _without_ newline
1356 	 * @text:     pointer to beginning of current line
1357 	 * @len:      number of bytes prepared in r->text_buf
1358 	 */
1359 	for (;;) {
1360 		next = memchr(text, '\n', text_len);
1361 		if (next) {
1362 			line_len = next - text;
1363 		} else {
1364 			/* Drop truncated line(s). */
1365 			if (truncated)
1366 				break;
1367 			line_len = text_len;
1368 		}
1369 
1370 		/*
1371 		 * Truncate the text if there is not enough space to add the
1372 		 * prefix and a trailing newline and a terminator.
1373 		 */
1374 		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1375 			/* Drop even the current line if no space. */
1376 			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1377 				break;
1378 
1379 			text_len = buf_size - len - prefix_len - 1 - 1;
1380 			truncated = true;
1381 		}
1382 
1383 		memmove(text + prefix_len, text, text_len);
1384 		memcpy(text, prefix, prefix_len);
1385 
1386 		/*
1387 		 * Increment the prepared length to include the text and
1388 		 * prefix that were just moved+copied. Also increment for the
1389 		 * newline at the end of this line. If this is the last line,
1390 		 * there is no newline, but it will be added immediately below.
1391 		 */
1392 		len += prefix_len + line_len + 1;
1393 		if (text_len == line_len) {
1394 			/*
1395 			 * This is the last line. Add the trailing newline
1396 			 * removed in vprintk_store().
1397 			 */
1398 			text[prefix_len + line_len] = '\n';
1399 			break;
1400 		}
1401 
1402 		/*
1403 		 * Advance beyond the added prefix and the related line with
1404 		 * its newline.
1405 		 */
1406 		text += prefix_len + line_len + 1;
1407 
1408 		/*
1409 		 * The remaining text has only decreased by the line with its
1410 		 * newline.
1411 		 *
1412 		 * Note that @text_len can become zero. It happens when @text
1413 		 * ended with a newline (either due to truncation or the
1414 		 * original string ending with "\n\n"). The loop is correctly
1415 		 * repeated and (if not truncated) an empty line with a prefix
1416 		 * will be prepared.
1417 		 */
1418 		text_len -= line_len + 1;
1419 	}
1420 
1421 	/*
1422 	 * If a buffer was provided, it will be terminated. Space for the
1423 	 * string terminator is guaranteed to be available. The terminator is
1424 	 * not counted in the return value.
1425 	 */
1426 	if (buf_size > 0)
1427 		r->text_buf[len] = 0;
1428 
1429 	return len;
1430 }
1431 
get_record_print_text_size(struct printk_info * info,unsigned int line_count,bool syslog,bool time)1432 static size_t get_record_print_text_size(struct printk_info *info,
1433 					 unsigned int line_count,
1434 					 bool syslog, bool time)
1435 {
1436 	char prefix[PREFIX_MAX];
1437 	size_t prefix_len;
1438 
1439 	prefix_len = info_print_prefix(info, syslog, time, prefix);
1440 
1441 	/*
1442 	 * Each line will be preceded with a prefix. The intermediate
1443 	 * newlines are already within the text, but a final trailing
1444 	 * newline will be added.
1445 	 */
1446 	return ((prefix_len * line_count) + info->text_len + 1);
1447 }
1448 
1449 /*
1450  * Beginning with @start_seq, find the first record where it and all following
1451  * records up to (but not including) @max_seq fit into @size.
1452  *
1453  * @max_seq is simply an upper bound and does not need to exist. If the caller
1454  * does not require an upper bound, -1 can be used for @max_seq.
1455  */
find_first_fitting_seq(u64 start_seq,u64 max_seq,size_t size,bool syslog,bool time)1456 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1457 				  bool syslog, bool time)
1458 {
1459 	struct printk_info info;
1460 	unsigned int line_count;
1461 	size_t len = 0;
1462 	u64 seq;
1463 
1464 	/* Determine the size of the records up to @max_seq. */
1465 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1466 		if (info.seq >= max_seq)
1467 			break;
1468 		len += get_record_print_text_size(&info, line_count, syslog, time);
1469 	}
1470 
1471 	/*
1472 	 * Adjust the upper bound for the next loop to avoid subtracting
1473 	 * lengths that were never added.
1474 	 */
1475 	if (seq < max_seq)
1476 		max_seq = seq;
1477 
1478 	/*
1479 	 * Move first record forward until length fits into the buffer. Ignore
1480 	 * newest messages that were not counted in the above cycle. Messages
1481 	 * might appear and get lost in the meantime. This is a best effort
1482 	 * that prevents an infinite loop that could occur with a retry.
1483 	 */
1484 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1485 		if (len <= size || info.seq >= max_seq)
1486 			break;
1487 		len -= get_record_print_text_size(&info, line_count, syslog, time);
1488 	}
1489 
1490 	return seq;
1491 }
1492 
1493 /* The caller is responsible for making sure @size is greater than 0. */
syslog_print(char __user * buf,int size)1494 static int syslog_print(char __user *buf, int size)
1495 {
1496 	struct printk_info info;
1497 	struct printk_record r;
1498 	char *text;
1499 	int len = 0;
1500 	u64 seq;
1501 
1502 	text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1503 	if (!text)
1504 		return -ENOMEM;
1505 
1506 	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
1507 
1508 	mutex_lock(&syslog_lock);
1509 
1510 	/*
1511 	 * Wait for the @syslog_seq record to be available. @syslog_seq may
1512 	 * change while waiting.
1513 	 */
1514 	do {
1515 		seq = syslog_seq;
1516 
1517 		mutex_unlock(&syslog_lock);
1518 		/*
1519 		 * Guarantee this task is visible on the waitqueue before
1520 		 * checking the wake condition.
1521 		 *
1522 		 * The full memory barrier within set_current_state() of
1523 		 * prepare_to_wait_event() pairs with the full memory barrier
1524 		 * within wq_has_sleeper().
1525 		 *
1526 		 * This pairs with __wake_up_klogd:A.
1527 		 */
1528 		len = wait_event_interruptible(log_wait,
1529 				prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
1530 		mutex_lock(&syslog_lock);
1531 
1532 		if (len)
1533 			goto out;
1534 	} while (syslog_seq != seq);
1535 
1536 	/*
1537 	 * Copy records that fit into the buffer. The above cycle makes sure
1538 	 * that the first record is always available.
1539 	 */
1540 	do {
1541 		size_t n;
1542 		size_t skip;
1543 		int err;
1544 
1545 		if (!prb_read_valid(prb, syslog_seq, &r))
1546 			break;
1547 
1548 		if (r.info->seq != syslog_seq) {
1549 			/* message is gone, move to next valid one */
1550 			syslog_seq = r.info->seq;
1551 			syslog_partial = 0;
1552 		}
1553 
1554 		/*
1555 		 * To keep reading/counting partial line consistent,
1556 		 * use printk_time value as of the beginning of a line.
1557 		 */
1558 		if (!syslog_partial)
1559 			syslog_time = printk_time;
1560 
1561 		skip = syslog_partial;
1562 		n = record_print_text(&r, true, syslog_time);
1563 		if (n - syslog_partial <= size) {
1564 			/* message fits into buffer, move forward */
1565 			syslog_seq = r.info->seq + 1;
1566 			n -= syslog_partial;
1567 			syslog_partial = 0;
1568 		} else if (!len){
1569 			/* partial read(), remember position */
1570 			n = size;
1571 			syslog_partial += n;
1572 		} else
1573 			n = 0;
1574 
1575 		if (!n)
1576 			break;
1577 
1578 		mutex_unlock(&syslog_lock);
1579 		err = copy_to_user(buf, text + skip, n);
1580 		mutex_lock(&syslog_lock);
1581 
1582 		if (err) {
1583 			if (!len)
1584 				len = -EFAULT;
1585 			break;
1586 		}
1587 
1588 		len += n;
1589 		size -= n;
1590 		buf += n;
1591 	} while (size);
1592 out:
1593 	mutex_unlock(&syslog_lock);
1594 	kfree(text);
1595 	return len;
1596 }
1597 
syslog_print_all(char __user * buf,int size,bool clear)1598 static int syslog_print_all(char __user *buf, int size, bool clear)
1599 {
1600 	struct printk_info info;
1601 	struct printk_record r;
1602 	char *text;
1603 	int len = 0;
1604 	u64 seq;
1605 	bool time;
1606 
1607 	text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1608 	if (!text)
1609 		return -ENOMEM;
1610 
1611 	time = printk_time;
1612 	/*
1613 	 * Find first record that fits, including all following records,
1614 	 * into the user-provided buffer for this dump.
1615 	 */
1616 	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1617 				     size, true, time);
1618 
1619 	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
1620 
1621 	len = 0;
1622 	prb_for_each_record(seq, prb, seq, &r) {
1623 		int textlen;
1624 
1625 		textlen = record_print_text(&r, true, time);
1626 
1627 		if (len + textlen > size) {
1628 			seq--;
1629 			break;
1630 		}
1631 
1632 		if (copy_to_user(buf + len, text, textlen))
1633 			len = -EFAULT;
1634 		else
1635 			len += textlen;
1636 
1637 		if (len < 0)
1638 			break;
1639 	}
1640 
1641 	if (clear) {
1642 		mutex_lock(&syslog_lock);
1643 		latched_seq_write(&clear_seq, seq);
1644 		mutex_unlock(&syslog_lock);
1645 	}
1646 
1647 	kfree(text);
1648 	return len;
1649 }
1650 
syslog_clear(void)1651 static void syslog_clear(void)
1652 {
1653 	mutex_lock(&syslog_lock);
1654 	latched_seq_write(&clear_seq, prb_next_seq(prb));
1655 	mutex_unlock(&syslog_lock);
1656 }
1657 
do_syslog(int type,char __user * buf,int len,int source)1658 int do_syslog(int type, char __user *buf, int len, int source)
1659 {
1660 	struct printk_info info;
1661 	bool clear = false;
1662 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1663 	int error;
1664 
1665 	error = check_syslog_permissions(type, source);
1666 	if (error)
1667 		return error;
1668 
1669 	switch (type) {
1670 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1671 		break;
1672 	case SYSLOG_ACTION_OPEN:	/* Open log */
1673 		break;
1674 	case SYSLOG_ACTION_READ:	/* Read from log */
1675 		if (!buf || len < 0)
1676 			return -EINVAL;
1677 		if (!len)
1678 			return 0;
1679 		if (!access_ok(buf, len))
1680 			return -EFAULT;
1681 		error = syslog_print(buf, len);
1682 		break;
1683 	/* Read/clear last kernel messages */
1684 	case SYSLOG_ACTION_READ_CLEAR:
1685 		clear = true;
1686 		fallthrough;
1687 	/* Read last kernel messages */
1688 	case SYSLOG_ACTION_READ_ALL:
1689 		if (!buf || len < 0)
1690 			return -EINVAL;
1691 		if (!len)
1692 			return 0;
1693 		if (!access_ok(buf, len))
1694 			return -EFAULT;
1695 		error = syslog_print_all(buf, len, clear);
1696 		break;
1697 	/* Clear ring buffer */
1698 	case SYSLOG_ACTION_CLEAR:
1699 		syslog_clear();
1700 		break;
1701 	/* Disable logging to console */
1702 	case SYSLOG_ACTION_CONSOLE_OFF:
1703 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1704 			saved_console_loglevel = console_loglevel;
1705 		console_loglevel = minimum_console_loglevel;
1706 		break;
1707 	/* Enable logging to console */
1708 	case SYSLOG_ACTION_CONSOLE_ON:
1709 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1710 			console_loglevel = saved_console_loglevel;
1711 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1712 		}
1713 		break;
1714 	/* Set level of messages printed to console */
1715 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1716 		if (len < 1 || len > 8)
1717 			return -EINVAL;
1718 		if (len < minimum_console_loglevel)
1719 			len = minimum_console_loglevel;
1720 		console_loglevel = len;
1721 		/* Implicitly re-enable logging to console */
1722 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1723 		break;
1724 	/* Number of chars in the log buffer */
1725 	case SYSLOG_ACTION_SIZE_UNREAD:
1726 		mutex_lock(&syslog_lock);
1727 		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1728 			/* No unread messages. */
1729 			mutex_unlock(&syslog_lock);
1730 			return 0;
1731 		}
1732 		if (info.seq != syslog_seq) {
1733 			/* messages are gone, move to first one */
1734 			syslog_seq = info.seq;
1735 			syslog_partial = 0;
1736 		}
1737 		if (source == SYSLOG_FROM_PROC) {
1738 			/*
1739 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1740 			 * for pending data, not the size; return the count of
1741 			 * records, not the length.
1742 			 */
1743 			error = prb_next_seq(prb) - syslog_seq;
1744 		} else {
1745 			bool time = syslog_partial ? syslog_time : printk_time;
1746 			unsigned int line_count;
1747 			u64 seq;
1748 
1749 			prb_for_each_info(syslog_seq, prb, seq, &info,
1750 					  &line_count) {
1751 				error += get_record_print_text_size(&info, line_count,
1752 								    true, time);
1753 				time = printk_time;
1754 			}
1755 			error -= syslog_partial;
1756 		}
1757 		mutex_unlock(&syslog_lock);
1758 		break;
1759 	/* Size of the log buffer */
1760 	case SYSLOG_ACTION_SIZE_BUFFER:
1761 		error = log_buf_len;
1762 		break;
1763 	default:
1764 		error = -EINVAL;
1765 		break;
1766 	}
1767 
1768 	return error;
1769 }
1770 
SYSCALL_DEFINE3(syslog,int,type,char __user *,buf,int,len)1771 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1772 {
1773 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1774 }
1775 
1776 /*
1777  * Special console_lock variants that help to reduce the risk of soft-lockups.
1778  * They allow to pass console_lock to another printk() call using a busy wait.
1779  */
1780 
1781 #ifdef CONFIG_LOCKDEP
1782 static struct lockdep_map console_owner_dep_map = {
1783 	.name = "console_owner"
1784 };
1785 #endif
1786 
1787 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1788 static struct task_struct *console_owner;
1789 static bool console_waiter;
1790 
1791 /**
1792  * console_lock_spinning_enable - mark beginning of code where another
1793  *	thread might safely busy wait
1794  *
1795  * This basically converts console_lock into a spinlock. This marks
1796  * the section where the console_lock owner can not sleep, because
1797  * there may be a waiter spinning (like a spinlock). Also it must be
1798  * ready to hand over the lock at the end of the section.
1799  */
console_lock_spinning_enable(void)1800 static void console_lock_spinning_enable(void)
1801 {
1802 	raw_spin_lock(&console_owner_lock);
1803 	console_owner = current;
1804 	raw_spin_unlock(&console_owner_lock);
1805 
1806 	/* The waiter may spin on us after setting console_owner */
1807 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1808 }
1809 
1810 /**
1811  * console_lock_spinning_disable_and_check - mark end of code where another
1812  *	thread was able to busy wait and check if there is a waiter
1813  *
1814  * This is called at the end of the section where spinning is allowed.
1815  * It has two functions. First, it is a signal that it is no longer
1816  * safe to start busy waiting for the lock. Second, it checks if
1817  * there is a busy waiter and passes the lock rights to her.
1818  *
1819  * Important: Callers lose the lock if there was a busy waiter.
1820  *	They must not touch items synchronized by console_lock
1821  *	in this case.
1822  *
1823  * Return: 1 if the lock rights were passed, 0 otherwise.
1824  */
console_lock_spinning_disable_and_check(void)1825 static int console_lock_spinning_disable_and_check(void)
1826 {
1827 	int waiter;
1828 
1829 	raw_spin_lock(&console_owner_lock);
1830 	waiter = READ_ONCE(console_waiter);
1831 	console_owner = NULL;
1832 	raw_spin_unlock(&console_owner_lock);
1833 
1834 	if (!waiter) {
1835 		spin_release(&console_owner_dep_map, _THIS_IP_);
1836 		return 0;
1837 	}
1838 
1839 	/* The waiter is now free to continue */
1840 	WRITE_ONCE(console_waiter, false);
1841 
1842 	spin_release(&console_owner_dep_map, _THIS_IP_);
1843 
1844 	/*
1845 	 * Hand off console_lock to waiter. The waiter will perform
1846 	 * the up(). After this, the waiter is the console_lock owner.
1847 	 */
1848 	mutex_release(&console_lock_dep_map, _THIS_IP_);
1849 	return 1;
1850 }
1851 
1852 /**
1853  * console_trylock_spinning - try to get console_lock by busy waiting
1854  *
1855  * This allows to busy wait for the console_lock when the current
1856  * owner is running in specially marked sections. It means that
1857  * the current owner is running and cannot reschedule until it
1858  * is ready to lose the lock.
1859  *
1860  * Return: 1 if we got the lock, 0 othrewise
1861  */
console_trylock_spinning(void)1862 static int console_trylock_spinning(void)
1863 {
1864 	struct task_struct *owner = NULL;
1865 	bool waiter;
1866 	bool spin = false;
1867 	unsigned long flags;
1868 
1869 	if (console_trylock())
1870 		return 1;
1871 
1872 	/*
1873 	 * It's unsafe to spin once a panic has begun. If we are the
1874 	 * panic CPU, we may have already halted the owner of the
1875 	 * console_sem. If we are not the panic CPU, then we should
1876 	 * avoid taking console_sem, so the panic CPU has a better
1877 	 * chance of cleanly acquiring it later.
1878 	 */
1879 	if (panic_in_progress())
1880 		return 0;
1881 
1882 	printk_safe_enter_irqsave(flags);
1883 
1884 	raw_spin_lock(&console_owner_lock);
1885 	owner = READ_ONCE(console_owner);
1886 	waiter = READ_ONCE(console_waiter);
1887 	if (!waiter && owner && owner != current) {
1888 		WRITE_ONCE(console_waiter, true);
1889 		spin = true;
1890 	}
1891 	raw_spin_unlock(&console_owner_lock);
1892 
1893 	/*
1894 	 * If there is an active printk() writing to the
1895 	 * consoles, instead of having it write our data too,
1896 	 * see if we can offload that load from the active
1897 	 * printer, and do some printing ourselves.
1898 	 * Go into a spin only if there isn't already a waiter
1899 	 * spinning, and there is an active printer, and
1900 	 * that active printer isn't us (recursive printk?).
1901 	 */
1902 	if (!spin) {
1903 		printk_safe_exit_irqrestore(flags);
1904 		return 0;
1905 	}
1906 
1907 	/* We spin waiting for the owner to release us */
1908 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1909 	/* Owner will clear console_waiter on hand off */
1910 	while (READ_ONCE(console_waiter))
1911 		cpu_relax();
1912 	spin_release(&console_owner_dep_map, _THIS_IP_);
1913 
1914 	printk_safe_exit_irqrestore(flags);
1915 	/*
1916 	 * The owner passed the console lock to us.
1917 	 * Since we did not spin on console lock, annotate
1918 	 * this as a trylock. Otherwise lockdep will
1919 	 * complain.
1920 	 */
1921 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1922 
1923 	return 1;
1924 }
1925 
1926 /*
1927  * Call the specified console driver, asking it to write out the specified
1928  * text and length. If @dropped_text is non-NULL and any records have been
1929  * dropped, a dropped message will be written out first.
1930  */
call_console_driver(struct console * con,const char * text,size_t len,char * dropped_text)1931 static void call_console_driver(struct console *con, const char *text, size_t len,
1932 				char *dropped_text)
1933 {
1934 	size_t dropped_len;
1935 
1936 	if (con->dropped && dropped_text) {
1937 		dropped_len = snprintf(dropped_text, DROPPED_TEXT_MAX,
1938 				       "** %lu printk messages dropped **\n",
1939 				       con->dropped);
1940 		con->dropped = 0;
1941 		con->write(con, dropped_text, dropped_len);
1942 	}
1943 
1944 	con->write(con, text, len);
1945 }
1946 
1947 /*
1948  * Recursion is tracked separately on each CPU. If NMIs are supported, an
1949  * additional NMI context per CPU is also separately tracked. Until per-CPU
1950  * is available, a separate "early tracking" is performed.
1951  */
1952 static DEFINE_PER_CPU(u8, printk_count);
1953 static u8 printk_count_early;
1954 #ifdef CONFIG_HAVE_NMI
1955 static DEFINE_PER_CPU(u8, printk_count_nmi);
1956 static u8 printk_count_nmi_early;
1957 #endif
1958 
1959 /*
1960  * Recursion is limited to keep the output sane. printk() should not require
1961  * more than 1 level of recursion (allowing, for example, printk() to trigger
1962  * a WARN), but a higher value is used in case some printk-internal errors
1963  * exist, such as the ringbuffer validation checks failing.
1964  */
1965 #define PRINTK_MAX_RECURSION 3
1966 
1967 /*
1968  * Return a pointer to the dedicated counter for the CPU+context of the
1969  * caller.
1970  */
__printk_recursion_counter(void)1971 static u8 *__printk_recursion_counter(void)
1972 {
1973 #ifdef CONFIG_HAVE_NMI
1974 	if (in_nmi()) {
1975 		if (printk_percpu_data_ready())
1976 			return this_cpu_ptr(&printk_count_nmi);
1977 		return &printk_count_nmi_early;
1978 	}
1979 #endif
1980 	if (printk_percpu_data_ready())
1981 		return this_cpu_ptr(&printk_count);
1982 	return &printk_count_early;
1983 }
1984 
1985 /*
1986  * Enter recursion tracking. Interrupts are disabled to simplify tracking.
1987  * The caller must check the boolean return value to see if the recursion is
1988  * allowed. On failure, interrupts are not disabled.
1989  *
1990  * @recursion_ptr must be a variable of type (u8 *) and is the same variable
1991  * that is passed to printk_exit_irqrestore().
1992  */
1993 #define printk_enter_irqsave(recursion_ptr, flags)	\
1994 ({							\
1995 	bool success = true;				\
1996 							\
1997 	typecheck(u8 *, recursion_ptr);			\
1998 	local_irq_save(flags);				\
1999 	(recursion_ptr) = __printk_recursion_counter();	\
2000 	if (*(recursion_ptr) > PRINTK_MAX_RECURSION) {	\
2001 		local_irq_restore(flags);		\
2002 		success = false;			\
2003 	} else {					\
2004 		(*(recursion_ptr))++;			\
2005 	}						\
2006 	success;					\
2007 })
2008 
2009 /* Exit recursion tracking, restoring interrupts. */
2010 #define printk_exit_irqrestore(recursion_ptr, flags)	\
2011 	do {						\
2012 		typecheck(u8 *, recursion_ptr);		\
2013 		(*(recursion_ptr))--;			\
2014 		local_irq_restore(flags);		\
2015 	} while (0)
2016 
2017 int printk_delay_msec __read_mostly;
2018 
printk_delay(int level)2019 static inline void printk_delay(int level)
2020 {
2021 	boot_delay_msec(level);
2022 
2023 	if (unlikely(printk_delay_msec)) {
2024 		int m = printk_delay_msec;
2025 
2026 		while (m--) {
2027 			mdelay(1);
2028 			touch_nmi_watchdog();
2029 		}
2030 	}
2031 }
2032 
printk_caller_id(void)2033 static inline u32 printk_caller_id(void)
2034 {
2035 	return in_task() ? task_pid_nr(current) :
2036 		0x80000000 + smp_processor_id();
2037 }
2038 
2039 /**
2040  * printk_parse_prefix - Parse level and control flags.
2041  *
2042  * @text:     The terminated text message.
2043  * @level:    A pointer to the current level value, will be updated.
2044  * @flags:    A pointer to the current printk_info flags, will be updated.
2045  *
2046  * @level may be NULL if the caller is not interested in the parsed value.
2047  * Otherwise the variable pointed to by @level must be set to
2048  * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2049  *
2050  * @flags may be NULL if the caller is not interested in the parsed value.
2051  * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2052  * value.
2053  *
2054  * Return: The length of the parsed level and control flags.
2055  */
printk_parse_prefix(const char * text,int * level,enum printk_info_flags * flags)2056 u16 printk_parse_prefix(const char *text, int *level,
2057 			enum printk_info_flags *flags)
2058 {
2059 	u16 prefix_len = 0;
2060 	int kern_level;
2061 
2062 	while (*text) {
2063 		kern_level = printk_get_level(text);
2064 		if (!kern_level)
2065 			break;
2066 
2067 		switch (kern_level) {
2068 		case '0' ... '7':
2069 			if (level && *level == LOGLEVEL_DEFAULT)
2070 				*level = kern_level - '0';
2071 			break;
2072 		case 'c':	/* KERN_CONT */
2073 			if (flags)
2074 				*flags |= LOG_CONT;
2075 		}
2076 
2077 		prefix_len += 2;
2078 		text += 2;
2079 	}
2080 
2081 	return prefix_len;
2082 }
2083 
2084 __printf(5, 0)
printk_sprint(char * text,u16 size,int facility,enum printk_info_flags * flags,const char * fmt,va_list args)2085 static u16 printk_sprint(char *text, u16 size, int facility,
2086 			 enum printk_info_flags *flags, const char *fmt,
2087 			 va_list args)
2088 {
2089 	u16 text_len;
2090 
2091 	text_len = vscnprintf(text, size, fmt, args);
2092 
2093 	/* Mark and strip a trailing newline. */
2094 	if (text_len && text[text_len - 1] == '\n') {
2095 		text_len--;
2096 		*flags |= LOG_NEWLINE;
2097 	}
2098 
2099 	/* Strip log level and control flags. */
2100 	if (facility == 0) {
2101 		u16 prefix_len;
2102 
2103 		prefix_len = printk_parse_prefix(text, NULL, NULL);
2104 		if (prefix_len) {
2105 			text_len -= prefix_len;
2106 			memmove(text, text + prefix_len, text_len);
2107 		}
2108 	}
2109 
2110 	trace_console_rcuidle(text, text_len);
2111 
2112 	return text_len;
2113 }
2114 
2115 EXPORT_TRACEPOINT_SYMBOL_GPL(console);
2116 
2117 __printf(4, 0)
vprintk_store(int facility,int level,const struct dev_printk_info * dev_info,const char * fmt,va_list args)2118 int vprintk_store(int facility, int level,
2119 		  const struct dev_printk_info *dev_info,
2120 		  const char *fmt, va_list args)
2121 {
2122 	struct prb_reserved_entry e;
2123 	enum printk_info_flags flags = 0;
2124 	struct printk_record r;
2125 	unsigned long irqflags;
2126 	u16 trunc_msg_len = 0;
2127 	char prefix_buf[8];
2128 	u8 *recursion_ptr;
2129 	u16 reserve_size;
2130 	va_list args2;
2131 	u32 caller_id;
2132 	u16 text_len;
2133 	int ret = 0;
2134 	u64 ts_nsec;
2135 
2136 	if (!printk_enter_irqsave(recursion_ptr, irqflags))
2137 		return 0;
2138 
2139 	/*
2140 	 * Since the duration of printk() can vary depending on the message
2141 	 * and state of the ringbuffer, grab the timestamp now so that it is
2142 	 * close to the call of printk(). This provides a more deterministic
2143 	 * timestamp with respect to the caller.
2144 	 */
2145 	ts_nsec = local_clock();
2146 
2147 	caller_id = printk_caller_id();
2148 
2149 	/*
2150 	 * The sprintf needs to come first since the syslog prefix might be
2151 	 * passed in as a parameter. An extra byte must be reserved so that
2152 	 * later the vscnprintf() into the reserved buffer has room for the
2153 	 * terminating '\0', which is not counted by vsnprintf().
2154 	 */
2155 	va_copy(args2, args);
2156 	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2157 	va_end(args2);
2158 
2159 	if (reserve_size > LOG_LINE_MAX)
2160 		reserve_size = LOG_LINE_MAX;
2161 
2162 	/* Extract log level or control flags. */
2163 	if (facility == 0)
2164 		printk_parse_prefix(&prefix_buf[0], &level, &flags);
2165 
2166 	if (level == LOGLEVEL_DEFAULT)
2167 		level = default_message_loglevel;
2168 
2169 	if (dev_info)
2170 		flags |= LOG_NEWLINE;
2171 
2172 	if (flags & LOG_CONT) {
2173 		prb_rec_init_wr(&r, reserve_size);
2174 		if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) {
2175 			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2176 						 facility, &flags, fmt, args);
2177 			r.info->text_len += text_len;
2178 
2179 			if (flags & LOG_NEWLINE) {
2180 				r.info->flags |= LOG_NEWLINE;
2181 				prb_final_commit(&e);
2182 			} else {
2183 				prb_commit(&e);
2184 			}
2185 
2186 			ret = text_len;
2187 			goto out;
2188 		}
2189 	}
2190 
2191 	/*
2192 	 * Explicitly initialize the record before every prb_reserve() call.
2193 	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2194 	 * structure when they fail.
2195 	 */
2196 	prb_rec_init_wr(&r, reserve_size);
2197 	if (!prb_reserve(&e, prb, &r)) {
2198 		/* truncate the message if it is too long for empty buffer */
2199 		truncate_msg(&reserve_size, &trunc_msg_len);
2200 
2201 		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2202 		if (!prb_reserve(&e, prb, &r))
2203 			goto out;
2204 	}
2205 
2206 	/* fill message */
2207 	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2208 	if (trunc_msg_len)
2209 		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2210 	r.info->text_len = text_len + trunc_msg_len;
2211 	r.info->facility = facility;
2212 	r.info->level = level & 7;
2213 	r.info->flags = flags & 0x1f;
2214 	r.info->ts_nsec = ts_nsec;
2215 	r.info->caller_id = caller_id;
2216 	if (dev_info)
2217 		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2218 
2219 	/* A message without a trailing newline can be continued. */
2220 	if (!(flags & LOG_NEWLINE))
2221 		prb_commit(&e);
2222 	else
2223 		prb_final_commit(&e);
2224 
2225 	ret = text_len + trunc_msg_len;
2226 out:
2227 	printk_exit_irqrestore(recursion_ptr, irqflags);
2228 	return ret;
2229 }
2230 
vprintk_emit(int facility,int level,const struct dev_printk_info * dev_info,const char * fmt,va_list args)2231 asmlinkage int vprintk_emit(int facility, int level,
2232 			    const struct dev_printk_info *dev_info,
2233 			    const char *fmt, va_list args)
2234 {
2235 	int printed_len;
2236 	bool in_sched = false;
2237 
2238 	/* Suppress unimportant messages after panic happens */
2239 	if (unlikely(suppress_printk))
2240 		return 0;
2241 
2242 	if (unlikely(suppress_panic_printk) &&
2243 	    atomic_read(&panic_cpu) != raw_smp_processor_id())
2244 		return 0;
2245 
2246 	if (level == LOGLEVEL_SCHED) {
2247 		level = LOGLEVEL_DEFAULT;
2248 		in_sched = true;
2249 	}
2250 
2251 	printk_delay(level);
2252 
2253 	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2254 
2255 	/* If called from the scheduler, we can not call up(). */
2256 	if (!in_sched) {
2257 		/*
2258 		 * The caller may be holding system-critical or
2259 		 * timing-sensitive locks. Disable preemption during
2260 		 * printing of all remaining records to all consoles so that
2261 		 * this context can return as soon as possible. Hopefully
2262 		 * another printk() caller will take over the printing.
2263 		 */
2264 		preempt_disable();
2265 		/*
2266 		 * Try to acquire and then immediately release the console
2267 		 * semaphore. The release will print out buffers. With the
2268 		 * spinning variant, this context tries to take over the
2269 		 * printing from another printing context.
2270 		 */
2271 		if (console_trylock_spinning())
2272 			console_unlock();
2273 		preempt_enable();
2274 	}
2275 
2276 	if (in_sched)
2277 		defer_console_output();
2278 	else
2279 		wake_up_klogd();
2280 
2281 	return printed_len;
2282 }
2283 EXPORT_SYMBOL(vprintk_emit);
2284 
vprintk_default(const char * fmt,va_list args)2285 int vprintk_default(const char *fmt, va_list args)
2286 {
2287 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2288 }
2289 EXPORT_SYMBOL_GPL(vprintk_default);
2290 
_printk(const char * fmt,...)2291 asmlinkage __visible int _printk(const char *fmt, ...)
2292 {
2293 	va_list args;
2294 	int r;
2295 
2296 	va_start(args, fmt);
2297 	r = vprintk(fmt, args);
2298 	va_end(args);
2299 
2300 	return r;
2301 }
2302 EXPORT_SYMBOL(_printk);
2303 
2304 static bool pr_flush(int timeout_ms, bool reset_on_progress);
2305 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
2306 
2307 #else /* CONFIG_PRINTK */
2308 
2309 #define CONSOLE_LOG_MAX		0
2310 #define DROPPED_TEXT_MAX	0
2311 #define printk_time		false
2312 
2313 #define prb_read_valid(rb, seq, r)	false
2314 #define prb_first_valid_seq(rb)		0
2315 #define prb_next_seq(rb)		0
2316 
2317 static u64 syslog_seq;
2318 
record_print_text(const struct printk_record * r,bool syslog,bool time)2319 static size_t record_print_text(const struct printk_record *r,
2320 				bool syslog, bool time)
2321 {
2322 	return 0;
2323 }
info_print_ext_header(char * buf,size_t size,struct printk_info * info)2324 static ssize_t info_print_ext_header(char *buf, size_t size,
2325 				     struct printk_info *info)
2326 {
2327 	return 0;
2328 }
msg_print_ext_body(char * buf,size_t size,char * text,size_t text_len,struct dev_printk_info * dev_info)2329 static ssize_t msg_print_ext_body(char *buf, size_t size,
2330 				  char *text, size_t text_len,
2331 				  struct dev_printk_info *dev_info) { return 0; }
console_lock_spinning_enable(void)2332 static void console_lock_spinning_enable(void) { }
console_lock_spinning_disable_and_check(void)2333 static int console_lock_spinning_disable_and_check(void) { return 0; }
call_console_driver(struct console * con,const char * text,size_t len,char * dropped_text)2334 static void call_console_driver(struct console *con, const char *text, size_t len,
2335 				char *dropped_text)
2336 {
2337 }
suppress_message_printing(int level)2338 static bool suppress_message_printing(int level) { return false; }
pr_flush(int timeout_ms,bool reset_on_progress)2339 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; }
__pr_flush(struct console * con,int timeout_ms,bool reset_on_progress)2340 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
2341 
2342 #endif /* CONFIG_PRINTK */
2343 
2344 #ifdef CONFIG_EARLY_PRINTK
2345 struct console *early_console;
2346 
early_printk(const char * fmt,...)2347 asmlinkage __visible void early_printk(const char *fmt, ...)
2348 {
2349 	va_list ap;
2350 	char buf[512];
2351 	int n;
2352 
2353 	if (!early_console)
2354 		return;
2355 
2356 	va_start(ap, fmt);
2357 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2358 	va_end(ap);
2359 
2360 	early_console->write(early_console, buf, n);
2361 }
2362 #endif
2363 
set_user_specified(struct console_cmdline * c,bool user_specified)2364 static void set_user_specified(struct console_cmdline *c, bool user_specified)
2365 {
2366 	if (!user_specified)
2367 		return;
2368 
2369 	/*
2370 	 * @c console was defined by the user on the command line.
2371 	 * Do not clear when added twice also by SPCR or the device tree.
2372 	 */
2373 	c->user_specified = true;
2374 	/* At least one console defined by the user on the command line. */
2375 	console_set_on_cmdline = 1;
2376 }
2377 
__add_preferred_console(char * name,int idx,char * options,char * brl_options,bool user_specified)2378 static int __add_preferred_console(char *name, int idx, char *options,
2379 				   char *brl_options, bool user_specified)
2380 {
2381 	struct console_cmdline *c;
2382 	int i;
2383 
2384 	/*
2385 	 *	See if this tty is not yet registered, and
2386 	 *	if we have a slot free.
2387 	 */
2388 	for (i = 0, c = console_cmdline;
2389 	     i < MAX_CMDLINECONSOLES && c->name[0];
2390 	     i++, c++) {
2391 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2392 			if (!brl_options)
2393 				preferred_console = i;
2394 			set_user_specified(c, user_specified);
2395 			return 0;
2396 		}
2397 	}
2398 	if (i == MAX_CMDLINECONSOLES)
2399 		return -E2BIG;
2400 	if (!brl_options)
2401 		preferred_console = i;
2402 	strlcpy(c->name, name, sizeof(c->name));
2403 	c->options = options;
2404 	set_user_specified(c, user_specified);
2405 	braille_set_options(c, brl_options);
2406 
2407 	c->index = idx;
2408 	return 0;
2409 }
2410 
console_msg_format_setup(char * str)2411 static int __init console_msg_format_setup(char *str)
2412 {
2413 	if (!strcmp(str, "syslog"))
2414 		console_msg_format = MSG_FORMAT_SYSLOG;
2415 	if (!strcmp(str, "default"))
2416 		console_msg_format = MSG_FORMAT_DEFAULT;
2417 	return 1;
2418 }
2419 __setup("console_msg_format=", console_msg_format_setup);
2420 
2421 /*
2422  * Set up a console.  Called via do_early_param() in init/main.c
2423  * for each "console=" parameter in the boot command line.
2424  */
console_setup(char * str)2425 static int __init console_setup(char *str)
2426 {
2427 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2428 	char *s, *options, *brl_options = NULL;
2429 	int idx;
2430 
2431 	/*
2432 	 * console="" or console=null have been suggested as a way to
2433 	 * disable console output. Use ttynull that has been created
2434 	 * for exactly this purpose.
2435 	 */
2436 	if (str[0] == 0 || strcmp(str, "null") == 0) {
2437 		__add_preferred_console("ttynull", 0, NULL, NULL, true);
2438 		return 1;
2439 	}
2440 
2441 	if (_braille_console_setup(&str, &brl_options))
2442 		return 1;
2443 
2444 	/*
2445 	 * Decode str into name, index, options.
2446 	 */
2447 	if (str[0] >= '0' && str[0] <= '9') {
2448 		strcpy(buf, "ttyS");
2449 		strncpy(buf + 4, str, sizeof(buf) - 5);
2450 	} else {
2451 		strncpy(buf, str, sizeof(buf) - 1);
2452 	}
2453 	buf[sizeof(buf) - 1] = 0;
2454 	options = strchr(str, ',');
2455 	if (options)
2456 		*(options++) = 0;
2457 #ifdef __sparc__
2458 	if (!strcmp(str, "ttya"))
2459 		strcpy(buf, "ttyS0");
2460 	if (!strcmp(str, "ttyb"))
2461 		strcpy(buf, "ttyS1");
2462 #endif
2463 	for (s = buf; *s; s++)
2464 		if (isdigit(*s) || *s == ',')
2465 			break;
2466 	idx = simple_strtoul(s, NULL, 10);
2467 	*s = 0;
2468 
2469 	__add_preferred_console(buf, idx, options, brl_options, true);
2470 	return 1;
2471 }
2472 __setup("console=", console_setup);
2473 
2474 /**
2475  * add_preferred_console - add a device to the list of preferred consoles.
2476  * @name: device name
2477  * @idx: device index
2478  * @options: options for this console
2479  *
2480  * The last preferred console added will be used for kernel messages
2481  * and stdin/out/err for init.  Normally this is used by console_setup
2482  * above to handle user-supplied console arguments; however it can also
2483  * be used by arch-specific code either to override the user or more
2484  * commonly to provide a default console (ie from PROM variables) when
2485  * the user has not supplied one.
2486  */
add_preferred_console(char * name,int idx,char * options)2487 int add_preferred_console(char *name, int idx, char *options)
2488 {
2489 	return __add_preferred_console(name, idx, options, NULL, false);
2490 }
2491 
2492 bool console_suspend_enabled = true;
2493 EXPORT_SYMBOL(console_suspend_enabled);
2494 
console_suspend_disable(char * str)2495 static int __init console_suspend_disable(char *str)
2496 {
2497 	console_suspend_enabled = false;
2498 	return 1;
2499 }
2500 __setup("no_console_suspend", console_suspend_disable);
2501 module_param_named(console_suspend, console_suspend_enabled,
2502 		bool, S_IRUGO | S_IWUSR);
2503 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2504 	" and hibernate operations");
2505 
2506 static bool printk_console_no_auto_verbose;
2507 
console_verbose(void)2508 void console_verbose(void)
2509 {
2510 	if (console_loglevel && !printk_console_no_auto_verbose)
2511 		console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2512 }
2513 EXPORT_SYMBOL_GPL(console_verbose);
2514 
2515 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2516 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2517 
2518 /**
2519  * suspend_console - suspend the console subsystem
2520  *
2521  * This disables printk() while we go into suspend states
2522  */
suspend_console(void)2523 void suspend_console(void)
2524 {
2525 	if (!console_suspend_enabled)
2526 		return;
2527 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2528 	pr_flush(1000, true);
2529 	console_lock();
2530 	console_suspended = 1;
2531 	up_console_sem();
2532 }
2533 
resume_console(void)2534 void resume_console(void)
2535 {
2536 	if (!console_suspend_enabled)
2537 		return;
2538 	down_console_sem();
2539 	console_suspended = 0;
2540 	console_unlock();
2541 	pr_flush(1000, true);
2542 }
2543 
2544 /**
2545  * console_cpu_notify - print deferred console messages after CPU hotplug
2546  * @cpu: unused
2547  *
2548  * If printk() is called from a CPU that is not online yet, the messages
2549  * will be printed on the console only if there are CON_ANYTIME consoles.
2550  * This function is called when a new CPU comes online (or fails to come
2551  * up) or goes offline.
2552  */
console_cpu_notify(unsigned int cpu)2553 static int console_cpu_notify(unsigned int cpu)
2554 {
2555 	int flag = 0;
2556 
2557 	trace_android_vh_printk_hotplug(&flag);
2558 	if (flag)
2559 		return 0;
2560 
2561 	if (!cpuhp_tasks_frozen) {
2562 		/* If trylock fails, someone else is doing the printing */
2563 		if (console_trylock())
2564 			console_unlock();
2565 	}
2566 	return 0;
2567 }
2568 
2569 /*
2570  * Return true when this CPU should unlock console_sem without pushing all
2571  * messages to the console. This reduces the chance that the console is
2572  * locked when the panic CPU tries to use it.
2573  */
abandon_console_lock_in_panic(void)2574 static bool abandon_console_lock_in_panic(void)
2575 {
2576 	if (!panic_in_progress())
2577 		return false;
2578 
2579 	/*
2580 	 * We can use raw_smp_processor_id() here because it is impossible for
2581 	 * the task to be migrated to the panic_cpu, or away from it. If
2582 	 * panic_cpu has already been set, and we're not currently executing on
2583 	 * that CPU, then we never will be.
2584 	 */
2585 	return atomic_read(&panic_cpu) != raw_smp_processor_id();
2586 }
2587 
2588 /**
2589  * console_lock - lock the console system for exclusive use.
2590  *
2591  * Acquires a lock which guarantees that the caller has
2592  * exclusive access to the console system and the console_drivers list.
2593  *
2594  * Can sleep, returns nothing.
2595  */
console_lock(void)2596 void console_lock(void)
2597 {
2598 	might_sleep();
2599 
2600 	/* On panic, the console_lock must be left to the panic cpu. */
2601 	while (abandon_console_lock_in_panic())
2602 		msleep(1000);
2603 
2604 	down_console_sem();
2605 	if (console_suspended)
2606 		return;
2607 	console_locked = 1;
2608 	console_may_schedule = 1;
2609 }
2610 EXPORT_SYMBOL(console_lock);
2611 
2612 /**
2613  * console_trylock - try to lock the console system for exclusive use.
2614  *
2615  * Try to acquire a lock which guarantees that the caller has exclusive
2616  * access to the console system and the console_drivers list.
2617  *
2618  * returns 1 on success, and 0 on failure to acquire the lock.
2619  */
console_trylock(void)2620 int console_trylock(void)
2621 {
2622 	/* On panic, the console_lock must be left to the panic cpu. */
2623 	if (abandon_console_lock_in_panic())
2624 		return 0;
2625 	if (down_trylock_console_sem())
2626 		return 0;
2627 	if (console_suspended) {
2628 		up_console_sem();
2629 		return 0;
2630 	}
2631 	console_locked = 1;
2632 	console_may_schedule = 0;
2633 	return 1;
2634 }
2635 EXPORT_SYMBOL(console_trylock);
2636 
is_console_locked(void)2637 int is_console_locked(void)
2638 {
2639 	return console_locked;
2640 }
2641 EXPORT_SYMBOL(is_console_locked);
2642 
2643 /*
2644  * Check if the given console is currently capable and allowed to print
2645  * records.
2646  *
2647  * Requires the console_lock.
2648  */
console_is_usable(struct console * con)2649 static inline bool console_is_usable(struct console *con)
2650 {
2651 	if (!(con->flags & CON_ENABLED))
2652 		return false;
2653 
2654 	if (!con->write)
2655 		return false;
2656 
2657 	/*
2658 	 * Console drivers may assume that per-cpu resources have been
2659 	 * allocated. So unless they're explicitly marked as being able to
2660 	 * cope (CON_ANYTIME) don't call them until this CPU is officially up.
2661 	 */
2662 	if (!cpu_online(raw_smp_processor_id()) &&
2663 	    !(con->flags & CON_ANYTIME))
2664 		return false;
2665 
2666 	return true;
2667 }
2668 
__console_unlock(void)2669 static void __console_unlock(void)
2670 {
2671 	console_locked = 0;
2672 	up_console_sem();
2673 }
2674 
2675 /*
2676  * Print one record for the given console. The record printed is whatever
2677  * record is the next available record for the given console.
2678  *
2679  * @text is a buffer of size CONSOLE_LOG_MAX.
2680  *
2681  * If extended messages should be printed, @ext_text is a buffer of size
2682  * CONSOLE_EXT_LOG_MAX. Otherwise @ext_text must be NULL.
2683  *
2684  * If dropped messages should be printed, @dropped_text is a buffer of size
2685  * DROPPED_TEXT_MAX. Otherwise @dropped_text must be NULL.
2686  *
2687  * @handover will be set to true if a printk waiter has taken over the
2688  * console_lock, in which case the caller is no longer holding the
2689  * console_lock. Otherwise it is set to false.
2690  *
2691  * Returns false if the given console has no next record to print, otherwise
2692  * true.
2693  *
2694  * Requires the console_lock.
2695  */
console_emit_next_record(struct console * con,char * text,char * ext_text,char * dropped_text,bool * handover)2696 static bool console_emit_next_record(struct console *con, char *text, char *ext_text,
2697 				     char *dropped_text, bool *handover)
2698 {
2699 	static int panic_console_dropped;
2700 	struct printk_info info;
2701 	struct printk_record r;
2702 	unsigned long flags;
2703 	char *write_text;
2704 	size_t len;
2705 
2706 	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
2707 
2708 	*handover = false;
2709 
2710 	if (!prb_read_valid(prb, con->seq, &r))
2711 		return false;
2712 
2713 	if (con->seq != r.info->seq) {
2714 		con->dropped += r.info->seq - con->seq;
2715 		con->seq = r.info->seq;
2716 		if (panic_in_progress() && panic_console_dropped++ > 10) {
2717 			suppress_panic_printk = 1;
2718 			pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n");
2719 		}
2720 	}
2721 
2722 	/* Skip record that has level above the console loglevel. */
2723 	if (suppress_message_printing(r.info->level)) {
2724 		con->seq++;
2725 		goto skip;
2726 	}
2727 
2728 	if (ext_text) {
2729 		write_text = ext_text;
2730 		len = info_print_ext_header(ext_text, CONSOLE_EXT_LOG_MAX, r.info);
2731 		len += msg_print_ext_body(ext_text + len, CONSOLE_EXT_LOG_MAX - len,
2732 					  &r.text_buf[0], r.info->text_len, &r.info->dev_info);
2733 	} else {
2734 		write_text = text;
2735 		len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
2736 	}
2737 
2738 	/*
2739 	 * While actively printing out messages, if another printk()
2740 	 * were to occur on another CPU, it may wait for this one to
2741 	 * finish. This task can not be preempted if there is a
2742 	 * waiter waiting to take over.
2743 	 *
2744 	 * Interrupts are disabled because the hand over to a waiter
2745 	 * must not be interrupted until the hand over is completed
2746 	 * (@console_waiter is cleared).
2747 	 */
2748 	printk_safe_enter_irqsave(flags);
2749 	console_lock_spinning_enable();
2750 
2751 	stop_critical_timings();	/* don't trace print latency */
2752 	call_console_driver(con, write_text, len, dropped_text);
2753 	start_critical_timings();
2754 
2755 	con->seq++;
2756 
2757 	*handover = console_lock_spinning_disable_and_check();
2758 	printk_safe_exit_irqrestore(flags);
2759 skip:
2760 	return true;
2761 }
2762 
2763 /*
2764  * Print out all remaining records to all consoles.
2765  *
2766  * @do_cond_resched is set by the caller. It can be true only in schedulable
2767  * context.
2768  *
2769  * @next_seq is set to the sequence number after the last available record.
2770  * The value is valid only when this function returns true. It means that all
2771  * usable consoles are completely flushed.
2772  *
2773  * @handover will be set to true if a printk waiter has taken over the
2774  * console_lock, in which case the caller is no longer holding the
2775  * console_lock. Otherwise it is set to false.
2776  *
2777  * Returns true when there was at least one usable console and all messages
2778  * were flushed to all usable consoles. A returned false informs the caller
2779  * that everything was not flushed (either there were no usable consoles or
2780  * another context has taken over printing or it is a panic situation and this
2781  * is not the panic CPU). Regardless the reason, the caller should assume it
2782  * is not useful to immediately try again.
2783  *
2784  * Requires the console_lock.
2785  */
console_flush_all(bool do_cond_resched,u64 * next_seq,bool * handover)2786 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
2787 {
2788 	static char dropped_text[DROPPED_TEXT_MAX];
2789 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2790 	static char text[CONSOLE_LOG_MAX];
2791 	bool any_usable = false;
2792 	struct console *con;
2793 	bool any_progress;
2794 
2795 	*next_seq = 0;
2796 	*handover = false;
2797 
2798 	do {
2799 		any_progress = false;
2800 
2801 		for_each_console(con) {
2802 			bool progress;
2803 
2804 			if (!console_is_usable(con))
2805 				continue;
2806 			any_usable = true;
2807 
2808 			if (con->flags & CON_EXTENDED) {
2809 				/* Extended consoles do not print "dropped messages". */
2810 				progress = console_emit_next_record(con, &text[0],
2811 								    &ext_text[0], NULL,
2812 								    handover);
2813 			} else {
2814 				progress = console_emit_next_record(con, &text[0],
2815 								    NULL, &dropped_text[0],
2816 								    handover);
2817 			}
2818 			if (*handover)
2819 				return false;
2820 
2821 			/* Track the next of the highest seq flushed. */
2822 			if (con->seq > *next_seq)
2823 				*next_seq = con->seq;
2824 
2825 			if (!progress)
2826 				continue;
2827 			any_progress = true;
2828 
2829 			/* Allow panic_cpu to take over the consoles safely. */
2830 			if (abandon_console_lock_in_panic())
2831 				return false;
2832 
2833 			if (do_cond_resched)
2834 				cond_resched();
2835 		}
2836 	} while (any_progress);
2837 
2838 	return any_usable;
2839 }
2840 
2841 /**
2842  * console_unlock - unlock the console system
2843  *
2844  * Releases the console_lock which the caller holds on the console system
2845  * and the console driver list.
2846  *
2847  * While the console_lock was held, console output may have been buffered
2848  * by printk().  If this is the case, console_unlock(); emits
2849  * the output prior to releasing the lock.
2850  *
2851  * console_unlock(); may be called from any context.
2852  */
console_unlock(void)2853 void console_unlock(void)
2854 {
2855 	bool do_cond_resched;
2856 	bool handover;
2857 	bool flushed;
2858 	u64 next_seq;
2859 
2860 	if (console_suspended) {
2861 		up_console_sem();
2862 		return;
2863 	}
2864 
2865 	/*
2866 	 * Console drivers are called with interrupts disabled, so
2867 	 * @console_may_schedule should be cleared before; however, we may
2868 	 * end up dumping a lot of lines, for example, if called from
2869 	 * console registration path, and should invoke cond_resched()
2870 	 * between lines if allowable.  Not doing so can cause a very long
2871 	 * scheduling stall on a slow console leading to RCU stall and
2872 	 * softlockup warnings which exacerbate the issue with more
2873 	 * messages practically incapacitating the system. Therefore, create
2874 	 * a local to use for the printing loop.
2875 	 */
2876 	do_cond_resched = console_may_schedule;
2877 
2878 	do {
2879 		console_may_schedule = 0;
2880 
2881 		flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
2882 		if (!handover)
2883 			__console_unlock();
2884 
2885 		/*
2886 		 * Abort if there was a failure to flush all messages to all
2887 		 * usable consoles. Either it is not possible to flush (in
2888 		 * which case it would be an infinite loop of retrying) or
2889 		 * another context has taken over printing.
2890 		 */
2891 		if (!flushed)
2892 			break;
2893 
2894 		/*
2895 		 * Some context may have added new records after
2896 		 * console_flush_all() but before unlocking the console.
2897 		 * Re-check if there is a new record to flush. If the trylock
2898 		 * fails, another context is already handling the printing.
2899 		 */
2900 	} while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
2901 }
2902 EXPORT_SYMBOL(console_unlock);
2903 
2904 /**
2905  * console_conditional_schedule - yield the CPU if required
2906  *
2907  * If the console code is currently allowed to sleep, and
2908  * if this CPU should yield the CPU to another task, do
2909  * so here.
2910  *
2911  * Must be called within console_lock();.
2912  */
console_conditional_schedule(void)2913 void __sched console_conditional_schedule(void)
2914 {
2915 	if (console_may_schedule)
2916 		cond_resched();
2917 }
2918 EXPORT_SYMBOL(console_conditional_schedule);
2919 
console_unblank(void)2920 void console_unblank(void)
2921 {
2922 	struct console *c;
2923 
2924 	/*
2925 	 * console_unblank can no longer be called in interrupt context unless
2926 	 * oops_in_progress is set to 1..
2927 	 */
2928 	if (oops_in_progress) {
2929 		if (down_trylock_console_sem() != 0)
2930 			return;
2931 	} else
2932 		console_lock();
2933 
2934 	console_locked = 1;
2935 	console_may_schedule = 0;
2936 	for_each_console(c)
2937 		if ((c->flags & CON_ENABLED) && c->unblank)
2938 			c->unblank();
2939 	console_unlock();
2940 
2941 	if (!oops_in_progress)
2942 		pr_flush(1000, true);
2943 }
2944 
2945 /**
2946  * console_flush_on_panic - flush console content on panic
2947  * @mode: flush all messages in buffer or just the pending ones
2948  *
2949  * Immediately output all pending messages no matter what.
2950  */
console_flush_on_panic(enum con_flush_mode mode)2951 void console_flush_on_panic(enum con_flush_mode mode)
2952 {
2953 	/*
2954 	 * If someone else is holding the console lock, trylock will fail
2955 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2956 	 * that messages are flushed out.  As this can be called from any
2957 	 * context and we don't want to get preempted while flushing,
2958 	 * ensure may_schedule is cleared.
2959 	 */
2960 	console_trylock();
2961 	console_may_schedule = 0;
2962 
2963 	if (mode == CONSOLE_REPLAY_ALL) {
2964 		struct console *c;
2965 		u64 seq;
2966 
2967 		seq = prb_first_valid_seq(prb);
2968 		for_each_console(c)
2969 			c->seq = seq;
2970 	}
2971 	console_unlock();
2972 }
2973 
2974 /*
2975  * Return the console tty driver structure and its associated index
2976  */
console_device(int * index)2977 struct tty_driver *console_device(int *index)
2978 {
2979 	struct console *c;
2980 	struct tty_driver *driver = NULL;
2981 
2982 	console_lock();
2983 	for_each_console(c) {
2984 		if (!c->device)
2985 			continue;
2986 		driver = c->device(c, index);
2987 		if (driver)
2988 			break;
2989 	}
2990 	console_unlock();
2991 	return driver;
2992 }
2993 
2994 /*
2995  * Prevent further output on the passed console device so that (for example)
2996  * serial drivers can disable console output before suspending a port, and can
2997  * re-enable output afterwards.
2998  */
console_stop(struct console * console)2999 void console_stop(struct console *console)
3000 {
3001 	__pr_flush(console, 1000, true);
3002 	console_lock();
3003 	console->flags &= ~CON_ENABLED;
3004 	console_unlock();
3005 }
3006 EXPORT_SYMBOL(console_stop);
3007 
console_start(struct console * console)3008 void console_start(struct console *console)
3009 {
3010 	console_lock();
3011 	console->flags |= CON_ENABLED;
3012 	console_unlock();
3013 	__pr_flush(console, 1000, true);
3014 }
3015 EXPORT_SYMBOL(console_start);
3016 
3017 static int __read_mostly keep_bootcon;
3018 
keep_bootcon_setup(char * str)3019 static int __init keep_bootcon_setup(char *str)
3020 {
3021 	keep_bootcon = 1;
3022 	pr_info("debug: skip boot console de-registration.\n");
3023 
3024 	return 0;
3025 }
3026 
3027 early_param("keep_bootcon", keep_bootcon_setup);
3028 
3029 /*
3030  * This is called by register_console() to try to match
3031  * the newly registered console with any of the ones selected
3032  * by either the command line or add_preferred_console() and
3033  * setup/enable it.
3034  *
3035  * Care need to be taken with consoles that are statically
3036  * enabled such as netconsole
3037  */
try_enable_preferred_console(struct console * newcon,bool user_specified)3038 static int try_enable_preferred_console(struct console *newcon,
3039 					bool user_specified)
3040 {
3041 	struct console_cmdline *c;
3042 	int i, err;
3043 
3044 	for (i = 0, c = console_cmdline;
3045 	     i < MAX_CMDLINECONSOLES && c->name[0];
3046 	     i++, c++) {
3047 		if (c->user_specified != user_specified)
3048 			continue;
3049 		if (!newcon->match ||
3050 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
3051 			/* default matching */
3052 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
3053 			if (strcmp(c->name, newcon->name) != 0)
3054 				continue;
3055 			if (newcon->index >= 0 &&
3056 			    newcon->index != c->index)
3057 				continue;
3058 			if (newcon->index < 0)
3059 				newcon->index = c->index;
3060 
3061 			if (_braille_register_console(newcon, c))
3062 				return 0;
3063 
3064 			if (newcon->setup &&
3065 			    (err = newcon->setup(newcon, c->options)) != 0)
3066 				return err;
3067 		}
3068 		newcon->flags |= CON_ENABLED;
3069 		if (i == preferred_console)
3070 			newcon->flags |= CON_CONSDEV;
3071 		return 0;
3072 	}
3073 
3074 	/*
3075 	 * Some consoles, such as pstore and netconsole, can be enabled even
3076 	 * without matching. Accept the pre-enabled consoles only when match()
3077 	 * and setup() had a chance to be called.
3078 	 */
3079 	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
3080 		return 0;
3081 
3082 	return -ENOENT;
3083 }
3084 
3085 /* Try to enable the console unconditionally */
try_enable_default_console(struct console * newcon)3086 static void try_enable_default_console(struct console *newcon)
3087 {
3088 	if (newcon->index < 0)
3089 		newcon->index = 0;
3090 
3091 	if (newcon->setup && newcon->setup(newcon, NULL) != 0)
3092 		return;
3093 
3094 	newcon->flags |= CON_ENABLED;
3095 
3096 	if (newcon->device)
3097 		newcon->flags |= CON_CONSDEV;
3098 }
3099 
3100 #define con_printk(lvl, con, fmt, ...)			\
3101 	printk(lvl pr_fmt("%sconsole [%s%d] " fmt),	\
3102 	       (con->flags & CON_BOOT) ? "boot" : "",	\
3103 	       con->name, con->index, ##__VA_ARGS__)
3104 
3105 /*
3106  * The console driver calls this routine during kernel initialization
3107  * to register the console printing procedure with printk() and to
3108  * print any messages that were printed by the kernel before the
3109  * console driver was initialized.
3110  *
3111  * This can happen pretty early during the boot process (because of
3112  * early_printk) - sometimes before setup_arch() completes - be careful
3113  * of what kernel features are used - they may not be initialised yet.
3114  *
3115  * There are two types of consoles - bootconsoles (early_printk) and
3116  * "real" consoles (everything which is not a bootconsole) which are
3117  * handled differently.
3118  *  - Any number of bootconsoles can be registered at any time.
3119  *  - As soon as a "real" console is registered, all bootconsoles
3120  *    will be unregistered automatically.
3121  *  - Once a "real" console is registered, any attempt to register a
3122  *    bootconsoles will be rejected
3123  */
register_console(struct console * newcon)3124 void register_console(struct console *newcon)
3125 {
3126 	struct console *con;
3127 	bool bootcon_enabled = false;
3128 	bool realcon_enabled = false;
3129 	int err;
3130 
3131 	for_each_console(con) {
3132 		if (WARN(con == newcon, "console '%s%d' already registered\n",
3133 					 con->name, con->index))
3134 			return;
3135 	}
3136 
3137 	for_each_console(con) {
3138 		if (con->flags & CON_BOOT)
3139 			bootcon_enabled = true;
3140 		else
3141 			realcon_enabled = true;
3142 	}
3143 
3144 	/* Do not register boot consoles when there already is a real one. */
3145 	if (newcon->flags & CON_BOOT && realcon_enabled) {
3146 		pr_info("Too late to register bootconsole %s%d\n",
3147 			newcon->name, newcon->index);
3148 		return;
3149 	}
3150 
3151 	/*
3152 	 * See if we want to enable this console driver by default.
3153 	 *
3154 	 * Nope when a console is preferred by the command line, device
3155 	 * tree, or SPCR.
3156 	 *
3157 	 * The first real console with tty binding (driver) wins. More
3158 	 * consoles might get enabled before the right one is found.
3159 	 *
3160 	 * Note that a console with tty binding will have CON_CONSDEV
3161 	 * flag set and will be first in the list.
3162 	 */
3163 	if (preferred_console < 0) {
3164 		if (!console_drivers || !console_drivers->device ||
3165 		    console_drivers->flags & CON_BOOT) {
3166 			try_enable_default_console(newcon);
3167 		}
3168 	}
3169 
3170 	/* See if this console matches one we selected on the command line */
3171 	err = try_enable_preferred_console(newcon, true);
3172 
3173 	/* If not, try to match against the platform default(s) */
3174 	if (err == -ENOENT)
3175 		err = try_enable_preferred_console(newcon, false);
3176 
3177 	/* printk() messages are not printed to the Braille console. */
3178 	if (err || newcon->flags & CON_BRL)
3179 		return;
3180 
3181 	/*
3182 	 * If we have a bootconsole, and are switching to a real console,
3183 	 * don't print everything out again, since when the boot console, and
3184 	 * the real console are the same physical device, it's annoying to
3185 	 * see the beginning boot messages twice
3186 	 */
3187 	if (bootcon_enabled &&
3188 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
3189 		newcon->flags &= ~CON_PRINTBUFFER;
3190 	}
3191 
3192 	/*
3193 	 *	Put this console in the list - keep the
3194 	 *	preferred driver at the head of the list.
3195 	 */
3196 	console_lock();
3197 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
3198 		newcon->next = console_drivers;
3199 		console_drivers = newcon;
3200 		if (newcon->next)
3201 			newcon->next->flags &= ~CON_CONSDEV;
3202 		/* Ensure this flag is always set for the head of the list */
3203 		newcon->flags |= CON_CONSDEV;
3204 	} else {
3205 		newcon->next = console_drivers->next;
3206 		console_drivers->next = newcon;
3207 	}
3208 
3209 	newcon->dropped = 0;
3210 	if (newcon->flags & CON_PRINTBUFFER) {
3211 		/* Get a consistent copy of @syslog_seq. */
3212 		mutex_lock(&syslog_lock);
3213 		newcon->seq = syslog_seq;
3214 		mutex_unlock(&syslog_lock);
3215 	} else {
3216 		/* Begin with next message. */
3217 		newcon->seq = prb_next_seq(prb);
3218 	}
3219 	console_unlock();
3220 	console_sysfs_notify();
3221 
3222 	/*
3223 	 * By unregistering the bootconsoles after we enable the real console
3224 	 * we get the "console xxx enabled" message on all the consoles -
3225 	 * boot consoles, real consoles, etc - this is to ensure that end
3226 	 * users know there might be something in the kernel's log buffer that
3227 	 * went to the bootconsole (that they do not see on the real console)
3228 	 */
3229 	con_printk(KERN_INFO, newcon, "enabled\n");
3230 	if (bootcon_enabled &&
3231 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
3232 	    !keep_bootcon) {
3233 		for_each_console(con)
3234 			if (con->flags & CON_BOOT)
3235 				unregister_console(con);
3236 	}
3237 }
3238 EXPORT_SYMBOL(register_console);
3239 
unregister_console(struct console * console)3240 int unregister_console(struct console *console)
3241 {
3242 	struct console *con;
3243 	int res;
3244 
3245 	con_printk(KERN_INFO, console, "disabled\n");
3246 
3247 	res = _braille_unregister_console(console);
3248 	if (res < 0)
3249 		return res;
3250 	if (res > 0)
3251 		return 0;
3252 
3253 	res = -ENODEV;
3254 	console_lock();
3255 	if (console_drivers == console) {
3256 		console_drivers=console->next;
3257 		res = 0;
3258 	} else {
3259 		for_each_console(con) {
3260 			if (con->next == console) {
3261 				con->next = console->next;
3262 				res = 0;
3263 				break;
3264 			}
3265 		}
3266 	}
3267 
3268 	if (res)
3269 		goto out_disable_unlock;
3270 
3271 	/*
3272 	 * If this isn't the last console and it has CON_CONSDEV set, we
3273 	 * need to set it on the next preferred console.
3274 	 */
3275 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
3276 		console_drivers->flags |= CON_CONSDEV;
3277 
3278 	console->flags &= ~CON_ENABLED;
3279 	console_unlock();
3280 	console_sysfs_notify();
3281 
3282 	if (console->exit)
3283 		res = console->exit(console);
3284 
3285 	return res;
3286 
3287 out_disable_unlock:
3288 	console->flags &= ~CON_ENABLED;
3289 	console_unlock();
3290 
3291 	return res;
3292 }
3293 EXPORT_SYMBOL(unregister_console);
3294 
3295 /*
3296  * Initialize the console device. This is called *early*, so
3297  * we can't necessarily depend on lots of kernel help here.
3298  * Just do some early initializations, and do the complex setup
3299  * later.
3300  */
console_init(void)3301 void __init console_init(void)
3302 {
3303 	int ret;
3304 	initcall_t call;
3305 	initcall_entry_t *ce;
3306 
3307 	/* Setup the default TTY line discipline. */
3308 	n_tty_init();
3309 
3310 	/*
3311 	 * set up the console device so that later boot sequences can
3312 	 * inform about problems etc..
3313 	 */
3314 	ce = __con_initcall_start;
3315 	trace_initcall_level("console");
3316 	while (ce < __con_initcall_end) {
3317 		call = initcall_from_entry(ce);
3318 		trace_initcall_start(call);
3319 		ret = call();
3320 		trace_initcall_finish(call, ret);
3321 		ce++;
3322 	}
3323 }
3324 
3325 /*
3326  * Some boot consoles access data that is in the init section and which will
3327  * be discarded after the initcalls have been run. To make sure that no code
3328  * will access this data, unregister the boot consoles in a late initcall.
3329  *
3330  * If for some reason, such as deferred probe or the driver being a loadable
3331  * module, the real console hasn't registered yet at this point, there will
3332  * be a brief interval in which no messages are logged to the console, which
3333  * makes it difficult to diagnose problems that occur during this time.
3334  *
3335  * To mitigate this problem somewhat, only unregister consoles whose memory
3336  * intersects with the init section. Note that all other boot consoles will
3337  * get unregistered when the real preferred console is registered.
3338  */
printk_late_init(void)3339 static int __init printk_late_init(void)
3340 {
3341 	struct console *con;
3342 	int ret;
3343 
3344 	for_each_console(con) {
3345 		if (!(con->flags & CON_BOOT))
3346 			continue;
3347 
3348 		/* Check addresses that might be used for enabled consoles. */
3349 		if (init_section_intersects(con, sizeof(*con)) ||
3350 		    init_section_contains(con->write, 0) ||
3351 		    init_section_contains(con->read, 0) ||
3352 		    init_section_contains(con->device, 0) ||
3353 		    init_section_contains(con->unblank, 0) ||
3354 		    init_section_contains(con->data, 0)) {
3355 			/*
3356 			 * Please, consider moving the reported consoles out
3357 			 * of the init section.
3358 			 */
3359 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3360 				con->name, con->index);
3361 			unregister_console(con);
3362 		}
3363 	}
3364 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3365 					console_cpu_notify);
3366 	WARN_ON(ret < 0);
3367 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3368 					console_cpu_notify, NULL);
3369 	WARN_ON(ret < 0);
3370 	printk_sysctl_init();
3371 	return 0;
3372 }
3373 late_initcall(printk_late_init);
3374 
3375 #if defined CONFIG_PRINTK
3376 /* If @con is specified, only wait for that console. Otherwise wait for all. */
__pr_flush(struct console * con,int timeout_ms,bool reset_on_progress)3377 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
3378 {
3379 	int remaining = timeout_ms;
3380 	struct console *c;
3381 	u64 last_diff = 0;
3382 	u64 printk_seq;
3383 	u64 diff;
3384 	u64 seq;
3385 
3386 	might_sleep();
3387 
3388 	seq = prb_next_seq(prb);
3389 
3390 	for (;;) {
3391 		diff = 0;
3392 
3393 		console_lock();
3394 
3395 		for_each_console(c) {
3396 			if (con && con != c)
3397 				continue;
3398 			if (!console_is_usable(c))
3399 				continue;
3400 			printk_seq = c->seq;
3401 			if (printk_seq < seq)
3402 				diff += seq - printk_seq;
3403 		}
3404 
3405 		/*
3406 		 * If consoles are suspended, it cannot be expected that they
3407 		 * make forward progress, so timeout immediately. @diff is
3408 		 * still used to return a valid flush status.
3409 		 */
3410 		if (console_suspended)
3411 			remaining = 0;
3412 		else if (diff != last_diff && reset_on_progress)
3413 			remaining = timeout_ms;
3414 
3415 		console_unlock();
3416 
3417 		if (diff == 0 || remaining == 0)
3418 			break;
3419 
3420 		if (remaining < 0) {
3421 			/* no timeout limit */
3422 			msleep(100);
3423 		} else if (remaining < 100) {
3424 			msleep(remaining);
3425 			remaining = 0;
3426 		} else {
3427 			msleep(100);
3428 			remaining -= 100;
3429 		}
3430 
3431 		last_diff = diff;
3432 	}
3433 
3434 	return (diff == 0);
3435 }
3436 
3437 /**
3438  * pr_flush() - Wait for printing threads to catch up.
3439  *
3440  * @timeout_ms:        The maximum time (in ms) to wait.
3441  * @reset_on_progress: Reset the timeout if forward progress is seen.
3442  *
3443  * A value of 0 for @timeout_ms means no waiting will occur. A value of -1
3444  * represents infinite waiting.
3445  *
3446  * If @reset_on_progress is true, the timeout will be reset whenever any
3447  * printer has been seen to make some forward progress.
3448  *
3449  * Context: Process context. May sleep while acquiring console lock.
3450  * Return: true if all enabled printers are caught up.
3451  */
pr_flush(int timeout_ms,bool reset_on_progress)3452 static bool pr_flush(int timeout_ms, bool reset_on_progress)
3453 {
3454 	return __pr_flush(NULL, timeout_ms, reset_on_progress);
3455 }
3456 
3457 /*
3458  * Delayed printk version, for scheduler-internal messages:
3459  */
3460 #define PRINTK_PENDING_WAKEUP	0x01
3461 #define PRINTK_PENDING_OUTPUT	0x02
3462 
3463 static DEFINE_PER_CPU(int, printk_pending);
3464 
wake_up_klogd_work_func(struct irq_work * irq_work)3465 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3466 {
3467 	int pending = this_cpu_xchg(printk_pending, 0);
3468 
3469 	if (pending & PRINTK_PENDING_OUTPUT) {
3470 		/* If trylock fails, someone else is doing the printing */
3471 		if (console_trylock())
3472 			console_unlock();
3473 	}
3474 
3475 	if (pending & PRINTK_PENDING_WAKEUP)
3476 		wake_up_interruptible(&log_wait);
3477 }
3478 
3479 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3480 	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
3481 
__wake_up_klogd(int val)3482 static void __wake_up_klogd(int val)
3483 {
3484 	if (!printk_percpu_data_ready())
3485 		return;
3486 
3487 	preempt_disable();
3488 	/*
3489 	 * Guarantee any new records can be seen by tasks preparing to wait
3490 	 * before this context checks if the wait queue is empty.
3491 	 *
3492 	 * The full memory barrier within wq_has_sleeper() pairs with the full
3493 	 * memory barrier within set_current_state() of
3494 	 * prepare_to_wait_event(), which is called after ___wait_event() adds
3495 	 * the waiter but before it has checked the wait condition.
3496 	 *
3497 	 * This pairs with devkmsg_read:A and syslog_print:A.
3498 	 */
3499 	if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
3500 	    (val & PRINTK_PENDING_OUTPUT)) {
3501 		this_cpu_or(printk_pending, val);
3502 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3503 	}
3504 	preempt_enable();
3505 }
3506 
3507 /**
3508  * wake_up_klogd - Wake kernel logging daemon
3509  *
3510  * Use this function when new records have been added to the ringbuffer
3511  * and the console printing of those records has already occurred or is
3512  * known to be handled by some other context. This function will only
3513  * wake the logging daemon.
3514  *
3515  * Context: Any context.
3516  */
wake_up_klogd(void)3517 void wake_up_klogd(void)
3518 {
3519 	__wake_up_klogd(PRINTK_PENDING_WAKEUP);
3520 }
3521 
3522 /**
3523  * defer_console_output - Wake kernel logging daemon and trigger
3524  *	console printing in a deferred context
3525  *
3526  * Use this function when new records have been added to the ringbuffer,
3527  * this context is responsible for console printing those records, but
3528  * the current context is not allowed to perform the console printing.
3529  * Trigger an irq_work context to perform the console printing. This
3530  * function also wakes the logging daemon.
3531  *
3532  * Context: Any context.
3533  */
defer_console_output(void)3534 void defer_console_output(void)
3535 {
3536 	/*
3537 	 * New messages may have been added directly to the ringbuffer
3538 	 * using vprintk_store(), so wake any waiters as well.
3539 	 */
3540 	__wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
3541 }
3542 
printk_trigger_flush(void)3543 void printk_trigger_flush(void)
3544 {
3545 	defer_console_output();
3546 }
3547 
vprintk_deferred(const char * fmt,va_list args)3548 int vprintk_deferred(const char *fmt, va_list args)
3549 {
3550 	return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3551 }
3552 
_printk_deferred(const char * fmt,...)3553 int _printk_deferred(const char *fmt, ...)
3554 {
3555 	va_list args;
3556 	int r;
3557 
3558 	va_start(args, fmt);
3559 	r = vprintk_deferred(fmt, args);
3560 	va_end(args);
3561 
3562 	return r;
3563 }
3564 EXPORT_SYMBOL_GPL(_printk_deferred);
3565 
3566 /*
3567  * printk rate limiting, lifted from the networking subsystem.
3568  *
3569  * This enforces a rate limit: not more than 10 kernel messages
3570  * every 5s to make a denial-of-service attack impossible.
3571  */
3572 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3573 
__printk_ratelimit(const char * func)3574 int __printk_ratelimit(const char *func)
3575 {
3576 	return ___ratelimit(&printk_ratelimit_state, func);
3577 }
3578 EXPORT_SYMBOL(__printk_ratelimit);
3579 
3580 /**
3581  * printk_timed_ratelimit - caller-controlled printk ratelimiting
3582  * @caller_jiffies: pointer to caller's state
3583  * @interval_msecs: minimum interval between prints
3584  *
3585  * printk_timed_ratelimit() returns true if more than @interval_msecs
3586  * milliseconds have elapsed since the last time printk_timed_ratelimit()
3587  * returned true.
3588  */
printk_timed_ratelimit(unsigned long * caller_jiffies,unsigned int interval_msecs)3589 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3590 			unsigned int interval_msecs)
3591 {
3592 	unsigned long elapsed = jiffies - *caller_jiffies;
3593 
3594 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3595 		return false;
3596 
3597 	*caller_jiffies = jiffies;
3598 	return true;
3599 }
3600 EXPORT_SYMBOL(printk_timed_ratelimit);
3601 
3602 static DEFINE_SPINLOCK(dump_list_lock);
3603 static LIST_HEAD(dump_list);
3604 
3605 /**
3606  * kmsg_dump_register - register a kernel log dumper.
3607  * @dumper: pointer to the kmsg_dumper structure
3608  *
3609  * Adds a kernel log dumper to the system. The dump callback in the
3610  * structure will be called when the kernel oopses or panics and must be
3611  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3612  */
kmsg_dump_register(struct kmsg_dumper * dumper)3613 int kmsg_dump_register(struct kmsg_dumper *dumper)
3614 {
3615 	unsigned long flags;
3616 	int err = -EBUSY;
3617 
3618 	/* The dump callback needs to be set */
3619 	if (!dumper->dump)
3620 		return -EINVAL;
3621 
3622 	spin_lock_irqsave(&dump_list_lock, flags);
3623 	/* Don't allow registering multiple times */
3624 	if (!dumper->registered) {
3625 		dumper->registered = 1;
3626 		list_add_tail_rcu(&dumper->list, &dump_list);
3627 		err = 0;
3628 	}
3629 	spin_unlock_irqrestore(&dump_list_lock, flags);
3630 
3631 	return err;
3632 }
3633 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3634 
3635 /**
3636  * kmsg_dump_unregister - unregister a kmsg dumper.
3637  * @dumper: pointer to the kmsg_dumper structure
3638  *
3639  * Removes a dump device from the system. Returns zero on success and
3640  * %-EINVAL otherwise.
3641  */
kmsg_dump_unregister(struct kmsg_dumper * dumper)3642 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3643 {
3644 	unsigned long flags;
3645 	int err = -EINVAL;
3646 
3647 	spin_lock_irqsave(&dump_list_lock, flags);
3648 	if (dumper->registered) {
3649 		dumper->registered = 0;
3650 		list_del_rcu(&dumper->list);
3651 		err = 0;
3652 	}
3653 	spin_unlock_irqrestore(&dump_list_lock, flags);
3654 	synchronize_rcu();
3655 
3656 	return err;
3657 }
3658 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3659 
3660 static bool always_kmsg_dump;
3661 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3662 
kmsg_dump_reason_str(enum kmsg_dump_reason reason)3663 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
3664 {
3665 	switch (reason) {
3666 	case KMSG_DUMP_PANIC:
3667 		return "Panic";
3668 	case KMSG_DUMP_OOPS:
3669 		return "Oops";
3670 	case KMSG_DUMP_EMERG:
3671 		return "Emergency";
3672 	case KMSG_DUMP_SHUTDOWN:
3673 		return "Shutdown";
3674 	default:
3675 		return "Unknown";
3676 	}
3677 }
3678 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
3679 
3680 /**
3681  * kmsg_dump - dump kernel log to kernel message dumpers.
3682  * @reason: the reason (oops, panic etc) for dumping
3683  *
3684  * Call each of the registered dumper's dump() callback, which can
3685  * retrieve the kmsg records with kmsg_dump_get_line() or
3686  * kmsg_dump_get_buffer().
3687  */
kmsg_dump(enum kmsg_dump_reason reason)3688 void kmsg_dump(enum kmsg_dump_reason reason)
3689 {
3690 	struct kmsg_dumper *dumper;
3691 
3692 	rcu_read_lock();
3693 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3694 		enum kmsg_dump_reason max_reason = dumper->max_reason;
3695 
3696 		/*
3697 		 * If client has not provided a specific max_reason, default
3698 		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
3699 		 */
3700 		if (max_reason == KMSG_DUMP_UNDEF) {
3701 			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
3702 							KMSG_DUMP_OOPS;
3703 		}
3704 		if (reason > max_reason)
3705 			continue;
3706 
3707 		/* invoke dumper which will iterate over records */
3708 		dumper->dump(dumper, reason);
3709 	}
3710 	rcu_read_unlock();
3711 }
3712 
3713 /**
3714  * kmsg_dump_get_line - retrieve one kmsg log line
3715  * @iter: kmsg dump iterator
3716  * @syslog: include the "<4>" prefixes
3717  * @line: buffer to copy the line to
3718  * @size: maximum size of the buffer
3719  * @len: length of line placed into buffer
3720  *
3721  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3722  * record, and copy one record into the provided buffer.
3723  *
3724  * Consecutive calls will return the next available record moving
3725  * towards the end of the buffer with the youngest messages.
3726  *
3727  * A return value of FALSE indicates that there are no more records to
3728  * read.
3729  */
kmsg_dump_get_line(struct kmsg_dump_iter * iter,bool syslog,char * line,size_t size,size_t * len)3730 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
3731 			char *line, size_t size, size_t *len)
3732 {
3733 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
3734 	struct printk_info info;
3735 	unsigned int line_count;
3736 	struct printk_record r;
3737 	size_t l = 0;
3738 	bool ret = false;
3739 
3740 	if (iter->cur_seq < min_seq)
3741 		iter->cur_seq = min_seq;
3742 
3743 	prb_rec_init_rd(&r, &info, line, size);
3744 
3745 	/* Read text or count text lines? */
3746 	if (line) {
3747 		if (!prb_read_valid(prb, iter->cur_seq, &r))
3748 			goto out;
3749 		l = record_print_text(&r, syslog, printk_time);
3750 	} else {
3751 		if (!prb_read_valid_info(prb, iter->cur_seq,
3752 					 &info, &line_count)) {
3753 			goto out;
3754 		}
3755 		l = get_record_print_text_size(&info, line_count, syslog,
3756 					       printk_time);
3757 
3758 	}
3759 
3760 	iter->cur_seq = r.info->seq + 1;
3761 	ret = true;
3762 out:
3763 	if (len)
3764 		*len = l;
3765 	return ret;
3766 }
3767 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3768 
3769 /**
3770  * kmsg_dump_get_buffer - copy kmsg log lines
3771  * @iter: kmsg dump iterator
3772  * @syslog: include the "<4>" prefixes
3773  * @buf: buffer to copy the line to
3774  * @size: maximum size of the buffer
3775  * @len_out: length of line placed into buffer
3776  *
3777  * Start at the end of the kmsg buffer and fill the provided buffer
3778  * with as many of the *youngest* kmsg records that fit into it.
3779  * If the buffer is large enough, all available kmsg records will be
3780  * copied with a single call.
3781  *
3782  * Consecutive calls will fill the buffer with the next block of
3783  * available older records, not including the earlier retrieved ones.
3784  *
3785  * A return value of FALSE indicates that there are no more records to
3786  * read.
3787  */
kmsg_dump_get_buffer(struct kmsg_dump_iter * iter,bool syslog,char * buf,size_t size,size_t * len_out)3788 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
3789 			  char *buf, size_t size, size_t *len_out)
3790 {
3791 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
3792 	struct printk_info info;
3793 	struct printk_record r;
3794 	u64 seq;
3795 	u64 next_seq;
3796 	size_t len = 0;
3797 	bool ret = false;
3798 	bool time = printk_time;
3799 
3800 	if (!buf || !size)
3801 		goto out;
3802 
3803 	if (iter->cur_seq < min_seq)
3804 		iter->cur_seq = min_seq;
3805 
3806 	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
3807 		if (info.seq != iter->cur_seq) {
3808 			/* messages are gone, move to first available one */
3809 			iter->cur_seq = info.seq;
3810 		}
3811 	}
3812 
3813 	/* last entry */
3814 	if (iter->cur_seq >= iter->next_seq)
3815 		goto out;
3816 
3817 	/*
3818 	 * Find first record that fits, including all following records,
3819 	 * into the user-provided buffer for this dump. Pass in size-1
3820 	 * because this function (by way of record_print_text()) will
3821 	 * not write more than size-1 bytes of text into @buf.
3822 	 */
3823 	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
3824 				     size - 1, syslog, time);
3825 
3826 	/*
3827 	 * Next kmsg_dump_get_buffer() invocation will dump block of
3828 	 * older records stored right before this one.
3829 	 */
3830 	next_seq = seq;
3831 
3832 	prb_rec_init_rd(&r, &info, buf, size);
3833 
3834 	len = 0;
3835 	prb_for_each_record(seq, prb, seq, &r) {
3836 		if (r.info->seq >= iter->next_seq)
3837 			break;
3838 
3839 		len += record_print_text(&r, syslog, time);
3840 
3841 		/* Adjust record to store to remaining buffer space. */
3842 		prb_rec_init_rd(&r, &info, buf + len, size - len);
3843 	}
3844 
3845 	iter->next_seq = next_seq;
3846 	ret = true;
3847 out:
3848 	if (len_out)
3849 		*len_out = len;
3850 	return ret;
3851 }
3852 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3853 
3854 /**
3855  * kmsg_dump_rewind - reset the iterator
3856  * @iter: kmsg dump iterator
3857  *
3858  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3859  * kmsg_dump_get_buffer() can be called again and used multiple
3860  * times within the same dumper.dump() callback.
3861  */
kmsg_dump_rewind(struct kmsg_dump_iter * iter)3862 void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
3863 {
3864 	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
3865 	iter->next_seq = prb_next_seq(prb);
3866 }
3867 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3868 
3869 #endif
3870 
3871 #ifdef CONFIG_SMP
3872 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
3873 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
3874 
3875 /**
3876  * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
3877  *                            spinning lock is not owned by any CPU.
3878  *
3879  * Context: Any context.
3880  */
__printk_cpu_sync_wait(void)3881 void __printk_cpu_sync_wait(void)
3882 {
3883 	do {
3884 		cpu_relax();
3885 	} while (atomic_read(&printk_cpu_sync_owner) != -1);
3886 }
3887 EXPORT_SYMBOL(__printk_cpu_sync_wait);
3888 
3889 /**
3890  * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
3891  *                               spinning lock.
3892  *
3893  * If no processor has the lock, the calling processor takes the lock and
3894  * becomes the owner. If the calling processor is already the owner of the
3895  * lock, this function succeeds immediately.
3896  *
3897  * Context: Any context. Expects interrupts to be disabled.
3898  * Return: 1 on success, otherwise 0.
3899  */
__printk_cpu_sync_try_get(void)3900 int __printk_cpu_sync_try_get(void)
3901 {
3902 	int cpu;
3903 	int old;
3904 
3905 	cpu = smp_processor_id();
3906 
3907 	/*
3908 	 * Guarantee loads and stores from this CPU when it is the lock owner
3909 	 * are _not_ visible to the previous lock owner. This pairs with
3910 	 * __printk_cpu_sync_put:B.
3911 	 *
3912 	 * Memory barrier involvement:
3913 	 *
3914 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
3915 	 * then __printk_cpu_sync_put:A can never read from
3916 	 * __printk_cpu_sync_try_get:B.
3917 	 *
3918 	 * Relies on:
3919 	 *
3920 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
3921 	 * of the previous CPU
3922 	 *    matching
3923 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
3924 	 * __printk_cpu_sync_try_get:B of this CPU
3925 	 */
3926 	old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
3927 				     cpu); /* LMM(__printk_cpu_sync_try_get:A) */
3928 	if (old == -1) {
3929 		/*
3930 		 * This CPU is now the owner and begins loading/storing
3931 		 * data: LMM(__printk_cpu_sync_try_get:B)
3932 		 */
3933 		return 1;
3934 
3935 	} else if (old == cpu) {
3936 		/* This CPU is already the owner. */
3937 		atomic_inc(&printk_cpu_sync_nested);
3938 		return 1;
3939 	}
3940 
3941 	return 0;
3942 }
3943 EXPORT_SYMBOL(__printk_cpu_sync_try_get);
3944 
3945 /**
3946  * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
3947  *
3948  * The calling processor must be the owner of the lock.
3949  *
3950  * Context: Any context. Expects interrupts to be disabled.
3951  */
__printk_cpu_sync_put(void)3952 void __printk_cpu_sync_put(void)
3953 {
3954 	if (atomic_read(&printk_cpu_sync_nested)) {
3955 		atomic_dec(&printk_cpu_sync_nested);
3956 		return;
3957 	}
3958 
3959 	/*
3960 	 * This CPU is finished loading/storing data:
3961 	 * LMM(__printk_cpu_sync_put:A)
3962 	 */
3963 
3964 	/*
3965 	 * Guarantee loads and stores from this CPU when it was the
3966 	 * lock owner are visible to the next lock owner. This pairs
3967 	 * with __printk_cpu_sync_try_get:A.
3968 	 *
3969 	 * Memory barrier involvement:
3970 	 *
3971 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
3972 	 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
3973 	 *
3974 	 * Relies on:
3975 	 *
3976 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
3977 	 * of this CPU
3978 	 *    matching
3979 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
3980 	 * __printk_cpu_sync_try_get:B of the next CPU
3981 	 */
3982 	atomic_set_release(&printk_cpu_sync_owner,
3983 			   -1); /* LMM(__printk_cpu_sync_put:B) */
3984 }
3985 EXPORT_SYMBOL(__printk_cpu_sync_put);
3986 #endif /* CONFIG_SMP */
3987