1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
12 * 10Apr2002 Andrew Morton
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35 * 4MB minimal write chunk size
36 */
37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40 * Passed into wb_writeback(), essentially a subset of writeback_control
41 */
42 struct wb_writeback_work {
43 long nr_pages;
44 struct super_block *sb;
45 enum writeback_sync_modes sync_mode;
46 unsigned int tagged_writepages:1;
47 unsigned int for_kupdate:1;
48 unsigned int range_cyclic:1;
49 unsigned int for_background:1;
50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
51 unsigned int auto_free:1; /* free on completion */
52 enum wb_reason reason; /* why was writeback initiated? */
53
54 struct list_head list; /* pending work list */
55 struct wb_completion *done; /* set if the caller waits */
56 };
57
58 /*
59 * If an inode is constantly having its pages dirtied, but then the
60 * updates stop dirtytime_expire_interval seconds in the past, it's
61 * possible for the worst case time between when an inode has its
62 * timestamps updated and when they finally get written out to be two
63 * dirtytime_expire_intervals. We set the default to 12 hours (in
64 * seconds), which means most of the time inodes will have their
65 * timestamps written to disk after 12 hours, but in the worst case a
66 * few inodes might not their timestamps updated for 24 hours.
67 */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
wb_inode(struct list_head * head)70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76 * Include the creation of the trace points after defining the
77 * wb_writeback_work structure and inline functions so that the definition
78 * remains local to this file.
79 */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
wb_io_lists_populated(struct bdi_writeback * wb)85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 if (wb_has_dirty_io(wb)) {
88 return false;
89 } else {
90 set_bit(WB_has_dirty_io, &wb->state);
91 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 atomic_long_add(wb->avg_write_bandwidth,
93 &wb->bdi->tot_write_bandwidth);
94 return true;
95 }
96 }
97
wb_io_lists_depopulated(struct bdi_writeback * wb)98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 clear_bit(WB_has_dirty_io, &wb->state);
103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 &wb->bdi->tot_write_bandwidth) < 0);
105 }
106 }
107
108 /**
109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110 * @inode: inode to be moved
111 * @wb: target bdi_writeback
112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113 *
114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115 * Returns %true if @inode is the first occupant of the !dirty_time IO
116 * lists; otherwise, %false.
117 */
inode_io_list_move_locked(struct inode * inode,struct bdi_writeback * wb,struct list_head * head)118 static bool inode_io_list_move_locked(struct inode *inode,
119 struct bdi_writeback *wb,
120 struct list_head *head)
121 {
122 assert_spin_locked(&wb->list_lock);
123 assert_spin_locked(&inode->i_lock);
124
125 list_move(&inode->i_io_list, head);
126
127 /* dirty_time doesn't count as dirty_io until expiration */
128 if (head != &wb->b_dirty_time)
129 return wb_io_lists_populated(wb);
130
131 wb_io_lists_depopulated(wb);
132 return false;
133 }
134
wb_wakeup(struct bdi_writeback * wb)135 static void wb_wakeup(struct bdi_writeback *wb)
136 {
137 spin_lock_irq(&wb->work_lock);
138 if (test_bit(WB_registered, &wb->state))
139 mod_delayed_work(bdi_wq, &wb->dwork, 0);
140 spin_unlock_irq(&wb->work_lock);
141 }
142
finish_writeback_work(struct bdi_writeback * wb,struct wb_writeback_work * work)143 static void finish_writeback_work(struct bdi_writeback *wb,
144 struct wb_writeback_work *work)
145 {
146 struct wb_completion *done = work->done;
147
148 if (work->auto_free)
149 kfree(work);
150 if (done) {
151 wait_queue_head_t *waitq = done->waitq;
152
153 /* @done can't be accessed after the following dec */
154 if (atomic_dec_and_test(&done->cnt))
155 wake_up_all(waitq);
156 }
157 }
158
wb_queue_work(struct bdi_writeback * wb,struct wb_writeback_work * work)159 static void wb_queue_work(struct bdi_writeback *wb,
160 struct wb_writeback_work *work)
161 {
162 trace_writeback_queue(wb, work);
163
164 if (work->done)
165 atomic_inc(&work->done->cnt);
166
167 spin_lock_irq(&wb->work_lock);
168
169 if (test_bit(WB_registered, &wb->state)) {
170 list_add_tail(&work->list, &wb->work_list);
171 mod_delayed_work(bdi_wq, &wb->dwork, 0);
172 } else
173 finish_writeback_work(wb, work);
174
175 spin_unlock_irq(&wb->work_lock);
176 }
177
178 /**
179 * wb_wait_for_completion - wait for completion of bdi_writeback_works
180 * @done: target wb_completion
181 *
182 * Wait for one or more work items issued to @bdi with their ->done field
183 * set to @done, which should have been initialized with
184 * DEFINE_WB_COMPLETION(). This function returns after all such work items
185 * are completed. Work items which are waited upon aren't freed
186 * automatically on completion.
187 */
wb_wait_for_completion(struct wb_completion * done)188 void wb_wait_for_completion(struct wb_completion *done)
189 {
190 atomic_dec(&done->cnt); /* put down the initial count */
191 wait_event(*done->waitq, !atomic_read(&done->cnt));
192 }
193
194 #ifdef CONFIG_CGROUP_WRITEBACK
195
196 /*
197 * Parameters for foreign inode detection, see wbc_detach_inode() to see
198 * how they're used.
199 *
200 * These paramters are inherently heuristical as the detection target
201 * itself is fuzzy. All we want to do is detaching an inode from the
202 * current owner if it's being written to by some other cgroups too much.
203 *
204 * The current cgroup writeback is built on the assumption that multiple
205 * cgroups writing to the same inode concurrently is very rare and a mode
206 * of operation which isn't well supported. As such, the goal is not
207 * taking too long when a different cgroup takes over an inode while
208 * avoiding too aggressive flip-flops from occasional foreign writes.
209 *
210 * We record, very roughly, 2s worth of IO time history and if more than
211 * half of that is foreign, trigger the switch. The recording is quantized
212 * to 16 slots. To avoid tiny writes from swinging the decision too much,
213 * writes smaller than 1/8 of avg size are ignored.
214 */
215 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
216 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
217 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
218 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
219
220 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
221 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
222 /* each slot's duration is 2s / 16 */
223 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
224 /* if foreign slots >= 8, switch */
225 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
226 /* one round can affect upto 5 slots */
227 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
228
229 /*
230 * Maximum inodes per isw. A specific value has been chosen to make
231 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
232 */
233 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \
234 / sizeof(struct inode *))
235
236 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
237 static struct workqueue_struct *isw_wq;
238
__inode_attach_wb(struct inode * inode,struct page * page)239 void __inode_attach_wb(struct inode *inode, struct page *page)
240 {
241 struct backing_dev_info *bdi = inode_to_bdi(inode);
242 struct bdi_writeback *wb = NULL;
243
244 if (inode_cgwb_enabled(inode)) {
245 struct cgroup_subsys_state *memcg_css;
246
247 if (page) {
248 memcg_css = mem_cgroup_css_from_page(page);
249 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
250 } else {
251 /* must pin memcg_css, see wb_get_create() */
252 memcg_css = task_get_css(current, memory_cgrp_id);
253 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254 css_put(memcg_css);
255 }
256 }
257
258 if (!wb)
259 wb = &bdi->wb;
260
261 /*
262 * There may be multiple instances of this function racing to
263 * update the same inode. Use cmpxchg() to tell the winner.
264 */
265 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
266 wb_put(wb);
267 }
268 EXPORT_SYMBOL_GPL(__inode_attach_wb);
269
270 /**
271 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
272 * @inode: inode of interest with i_lock held
273 * @wb: target bdi_writeback
274 *
275 * Remove the inode from wb's io lists and if necessarily put onto b_attached
276 * list. Only inodes attached to cgwb's are kept on this list.
277 */
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)278 static void inode_cgwb_move_to_attached(struct inode *inode,
279 struct bdi_writeback *wb)
280 {
281 assert_spin_locked(&wb->list_lock);
282 assert_spin_locked(&inode->i_lock);
283
284 inode->i_state &= ~I_SYNC_QUEUED;
285 if (wb != &wb->bdi->wb)
286 list_move(&inode->i_io_list, &wb->b_attached);
287 else
288 list_del_init(&inode->i_io_list);
289 wb_io_lists_depopulated(wb);
290 }
291
292 /**
293 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
294 * @inode: inode of interest with i_lock held
295 *
296 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
297 * held on entry and is released on return. The returned wb is guaranteed
298 * to stay @inode's associated wb until its list_lock is released.
299 */
300 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)301 locked_inode_to_wb_and_lock_list(struct inode *inode)
302 __releases(&inode->i_lock)
303 __acquires(&wb->list_lock)
304 {
305 while (true) {
306 struct bdi_writeback *wb = inode_to_wb(inode);
307
308 /*
309 * inode_to_wb() association is protected by both
310 * @inode->i_lock and @wb->list_lock but list_lock nests
311 * outside i_lock. Drop i_lock and verify that the
312 * association hasn't changed after acquiring list_lock.
313 */
314 wb_get(wb);
315 spin_unlock(&inode->i_lock);
316 spin_lock(&wb->list_lock);
317
318 /* i_wb may have changed inbetween, can't use inode_to_wb() */
319 if (likely(wb == inode->i_wb)) {
320 wb_put(wb); /* @inode already has ref */
321 return wb;
322 }
323
324 spin_unlock(&wb->list_lock);
325 wb_put(wb);
326 cpu_relax();
327 spin_lock(&inode->i_lock);
328 }
329 }
330
331 /**
332 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
333 * @inode: inode of interest
334 *
335 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
336 * on entry.
337 */
inode_to_wb_and_lock_list(struct inode * inode)338 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
339 __acquires(&wb->list_lock)
340 {
341 spin_lock(&inode->i_lock);
342 return locked_inode_to_wb_and_lock_list(inode);
343 }
344
345 struct inode_switch_wbs_context {
346 struct rcu_work work;
347
348 /*
349 * Multiple inodes can be switched at once. The switching procedure
350 * consists of two parts, separated by a RCU grace period. To make
351 * sure that the second part is executed for each inode gone through
352 * the first part, all inode pointers are placed into a NULL-terminated
353 * array embedded into struct inode_switch_wbs_context. Otherwise
354 * an inode could be left in a non-consistent state.
355 */
356 struct bdi_writeback *new_wb;
357 struct inode *inodes[];
358 };
359
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)360 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
361 {
362 down_write(&bdi->wb_switch_rwsem);
363 }
364
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)365 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
366 {
367 up_write(&bdi->wb_switch_rwsem);
368 }
369
inode_do_switch_wbs(struct inode * inode,struct bdi_writeback * old_wb,struct bdi_writeback * new_wb)370 static bool inode_do_switch_wbs(struct inode *inode,
371 struct bdi_writeback *old_wb,
372 struct bdi_writeback *new_wb)
373 {
374 struct address_space *mapping = inode->i_mapping;
375 XA_STATE(xas, &mapping->i_pages, 0);
376 struct folio *folio;
377 bool switched = false;
378
379 spin_lock(&inode->i_lock);
380 xa_lock_irq(&mapping->i_pages);
381
382 /*
383 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
384 * path owns the inode and we shouldn't modify ->i_io_list.
385 */
386 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
387 goto skip_switch;
388
389 trace_inode_switch_wbs(inode, old_wb, new_wb);
390
391 /*
392 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
393 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
394 * folios actually under writeback.
395 */
396 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
397 if (folio_test_dirty(folio)) {
398 long nr = folio_nr_pages(folio);
399 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
400 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
401 }
402 }
403
404 xas_set(&xas, 0);
405 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
406 long nr = folio_nr_pages(folio);
407 WARN_ON_ONCE(!folio_test_writeback(folio));
408 wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
409 wb_stat_mod(new_wb, WB_WRITEBACK, nr);
410 }
411
412 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
413 atomic_dec(&old_wb->writeback_inodes);
414 atomic_inc(&new_wb->writeback_inodes);
415 }
416
417 wb_get(new_wb);
418
419 /*
420 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty,
421 * the specific list @inode was on is ignored and the @inode is put on
422 * ->b_dirty which is always correct including from ->b_dirty_time.
423 * The transfer preserves @inode->dirtied_when ordering. If the @inode
424 * was clean, it means it was on the b_attached list, so move it onto
425 * the b_attached list of @new_wb.
426 */
427 if (!list_empty(&inode->i_io_list)) {
428 inode->i_wb = new_wb;
429
430 if (inode->i_state & I_DIRTY_ALL) {
431 struct inode *pos;
432
433 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
434 if (time_after_eq(inode->dirtied_when,
435 pos->dirtied_when))
436 break;
437 inode_io_list_move_locked(inode, new_wb,
438 pos->i_io_list.prev);
439 } else {
440 inode_cgwb_move_to_attached(inode, new_wb);
441 }
442 } else {
443 inode->i_wb = new_wb;
444 }
445
446 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
447 inode->i_wb_frn_winner = 0;
448 inode->i_wb_frn_avg_time = 0;
449 inode->i_wb_frn_history = 0;
450 switched = true;
451 skip_switch:
452 /*
453 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
454 * ensures that the new wb is visible if they see !I_WB_SWITCH.
455 */
456 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
457
458 xa_unlock_irq(&mapping->i_pages);
459 spin_unlock(&inode->i_lock);
460
461 return switched;
462 }
463
inode_switch_wbs_work_fn(struct work_struct * work)464 static void inode_switch_wbs_work_fn(struct work_struct *work)
465 {
466 struct inode_switch_wbs_context *isw =
467 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
468 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
469 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
470 struct bdi_writeback *new_wb = isw->new_wb;
471 unsigned long nr_switched = 0;
472 struct inode **inodep;
473
474 /*
475 * If @inode switches cgwb membership while sync_inodes_sb() is
476 * being issued, sync_inodes_sb() might miss it. Synchronize.
477 */
478 down_read(&bdi->wb_switch_rwsem);
479
480 /*
481 * By the time control reaches here, RCU grace period has passed
482 * since I_WB_SWITCH assertion and all wb stat update transactions
483 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
484 * synchronizing against the i_pages lock.
485 *
486 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
487 * gives us exclusion against all wb related operations on @inode
488 * including IO list manipulations and stat updates.
489 */
490 if (old_wb < new_wb) {
491 spin_lock(&old_wb->list_lock);
492 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
493 } else {
494 spin_lock(&new_wb->list_lock);
495 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
496 }
497
498 for (inodep = isw->inodes; *inodep; inodep++) {
499 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
500 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
501 nr_switched++;
502 }
503
504 spin_unlock(&new_wb->list_lock);
505 spin_unlock(&old_wb->list_lock);
506
507 up_read(&bdi->wb_switch_rwsem);
508
509 if (nr_switched) {
510 wb_wakeup(new_wb);
511 wb_put_many(old_wb, nr_switched);
512 }
513
514 for (inodep = isw->inodes; *inodep; inodep++)
515 iput(*inodep);
516 wb_put(new_wb);
517 kfree(isw);
518 atomic_dec(&isw_nr_in_flight);
519 }
520
inode_prepare_wbs_switch(struct inode * inode,struct bdi_writeback * new_wb)521 static bool inode_prepare_wbs_switch(struct inode *inode,
522 struct bdi_writeback *new_wb)
523 {
524 /*
525 * Paired with smp_mb() in cgroup_writeback_umount().
526 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
527 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
528 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
529 */
530 smp_mb();
531
532 if (IS_DAX(inode))
533 return false;
534
535 /* while holding I_WB_SWITCH, no one else can update the association */
536 spin_lock(&inode->i_lock);
537 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
538 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
539 inode_to_wb(inode) == new_wb) {
540 spin_unlock(&inode->i_lock);
541 return false;
542 }
543 inode->i_state |= I_WB_SWITCH;
544 __iget(inode);
545 spin_unlock(&inode->i_lock);
546
547 return true;
548 }
549
550 /**
551 * inode_switch_wbs - change the wb association of an inode
552 * @inode: target inode
553 * @new_wb_id: ID of the new wb
554 *
555 * Switch @inode's wb association to the wb identified by @new_wb_id. The
556 * switching is performed asynchronously and may fail silently.
557 */
inode_switch_wbs(struct inode * inode,int new_wb_id)558 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
559 {
560 struct backing_dev_info *bdi = inode_to_bdi(inode);
561 struct cgroup_subsys_state *memcg_css;
562 struct inode_switch_wbs_context *isw;
563
564 /* noop if seems to be already in progress */
565 if (inode->i_state & I_WB_SWITCH)
566 return;
567
568 /* avoid queueing a new switch if too many are already in flight */
569 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
570 return;
571
572 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
573 if (!isw)
574 return;
575
576 atomic_inc(&isw_nr_in_flight);
577
578 /* find and pin the new wb */
579 rcu_read_lock();
580 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
581 if (memcg_css && !css_tryget(memcg_css))
582 memcg_css = NULL;
583 rcu_read_unlock();
584 if (!memcg_css)
585 goto out_free;
586
587 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
588 css_put(memcg_css);
589 if (!isw->new_wb)
590 goto out_free;
591
592 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
593 goto out_free;
594
595 isw->inodes[0] = inode;
596
597 /*
598 * In addition to synchronizing among switchers, I_WB_SWITCH tells
599 * the RCU protected stat update paths to grab the i_page
600 * lock so that stat transfer can synchronize against them.
601 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
602 */
603 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
604 queue_rcu_work(isw_wq, &isw->work);
605 return;
606
607 out_free:
608 atomic_dec(&isw_nr_in_flight);
609 if (isw->new_wb)
610 wb_put(isw->new_wb);
611 kfree(isw);
612 }
613
isw_prepare_wbs_switch(struct inode_switch_wbs_context * isw,struct list_head * list,int * nr)614 static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw,
615 struct list_head *list, int *nr)
616 {
617 struct inode *inode;
618
619 list_for_each_entry(inode, list, i_io_list) {
620 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
621 continue;
622
623 isw->inodes[*nr] = inode;
624 (*nr)++;
625
626 if (*nr >= WB_MAX_INODES_PER_ISW - 1)
627 return true;
628 }
629 return false;
630 }
631
632 /**
633 * cleanup_offline_cgwb - detach associated inodes
634 * @wb: target wb
635 *
636 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
637 * to eventually release the dying @wb. Returns %true if not all inodes were
638 * switched and the function has to be restarted.
639 */
cleanup_offline_cgwb(struct bdi_writeback * wb)640 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
641 {
642 struct cgroup_subsys_state *memcg_css;
643 struct inode_switch_wbs_context *isw;
644 int nr;
645 bool restart = false;
646
647 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
648 GFP_KERNEL);
649 if (!isw)
650 return restart;
651
652 atomic_inc(&isw_nr_in_flight);
653
654 for (memcg_css = wb->memcg_css->parent; memcg_css;
655 memcg_css = memcg_css->parent) {
656 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
657 if (isw->new_wb)
658 break;
659 }
660 if (unlikely(!isw->new_wb))
661 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
662
663 nr = 0;
664 spin_lock(&wb->list_lock);
665 /*
666 * In addition to the inodes that have completed writeback, also switch
667 * cgwbs for those inodes only with dirty timestamps. Otherwise, those
668 * inodes won't be written back for a long time when lazytime is
669 * enabled, and thus pinning the dying cgwbs. It won't break the
670 * bandwidth restrictions, as writeback of inode metadata is not
671 * accounted for.
672 */
673 restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr);
674 if (!restart)
675 restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr);
676 spin_unlock(&wb->list_lock);
677
678 /* no attached inodes? bail out */
679 if (nr == 0) {
680 atomic_dec(&isw_nr_in_flight);
681 wb_put(isw->new_wb);
682 kfree(isw);
683 return restart;
684 }
685
686 /*
687 * In addition to synchronizing among switchers, I_WB_SWITCH tells
688 * the RCU protected stat update paths to grab the i_page
689 * lock so that stat transfer can synchronize against them.
690 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
691 */
692 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
693 queue_rcu_work(isw_wq, &isw->work);
694
695 return restart;
696 }
697
698 /**
699 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
700 * @wbc: writeback_control of interest
701 * @inode: target inode
702 *
703 * @inode is locked and about to be written back under the control of @wbc.
704 * Record @inode's writeback context into @wbc and unlock the i_lock. On
705 * writeback completion, wbc_detach_inode() should be called. This is used
706 * to track the cgroup writeback context.
707 */
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)708 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
709 struct inode *inode)
710 {
711 if (!inode_cgwb_enabled(inode)) {
712 spin_unlock(&inode->i_lock);
713 return;
714 }
715
716 wbc->wb = inode_to_wb(inode);
717 wbc->inode = inode;
718
719 wbc->wb_id = wbc->wb->memcg_css->id;
720 wbc->wb_lcand_id = inode->i_wb_frn_winner;
721 wbc->wb_tcand_id = 0;
722 wbc->wb_bytes = 0;
723 wbc->wb_lcand_bytes = 0;
724 wbc->wb_tcand_bytes = 0;
725
726 wb_get(wbc->wb);
727 spin_unlock(&inode->i_lock);
728
729 /*
730 * A dying wb indicates that either the blkcg associated with the
731 * memcg changed or the associated memcg is dying. In the first
732 * case, a replacement wb should already be available and we should
733 * refresh the wb immediately. In the second case, trying to
734 * refresh will keep failing.
735 */
736 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
737 inode_switch_wbs(inode, wbc->wb_id);
738 }
739 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
740
741 /**
742 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
743 * @wbc: writeback_control of the just finished writeback
744 *
745 * To be called after a writeback attempt of an inode finishes and undoes
746 * wbc_attach_and_unlock_inode(). Can be called under any context.
747 *
748 * As concurrent write sharing of an inode is expected to be very rare and
749 * memcg only tracks page ownership on first-use basis severely confining
750 * the usefulness of such sharing, cgroup writeback tracks ownership
751 * per-inode. While the support for concurrent write sharing of an inode
752 * is deemed unnecessary, an inode being written to by different cgroups at
753 * different points in time is a lot more common, and, more importantly,
754 * charging only by first-use can too readily lead to grossly incorrect
755 * behaviors (single foreign page can lead to gigabytes of writeback to be
756 * incorrectly attributed).
757 *
758 * To resolve this issue, cgroup writeback detects the majority dirtier of
759 * an inode and transfers the ownership to it. To avoid unnecessary
760 * oscillation, the detection mechanism keeps track of history and gives
761 * out the switch verdict only if the foreign usage pattern is stable over
762 * a certain amount of time and/or writeback attempts.
763 *
764 * On each writeback attempt, @wbc tries to detect the majority writer
765 * using Boyer-Moore majority vote algorithm. In addition to the byte
766 * count from the majority voting, it also counts the bytes written for the
767 * current wb and the last round's winner wb (max of last round's current
768 * wb, the winner from two rounds ago, and the last round's majority
769 * candidate). Keeping track of the historical winner helps the algorithm
770 * to semi-reliably detect the most active writer even when it's not the
771 * absolute majority.
772 *
773 * Once the winner of the round is determined, whether the winner is
774 * foreign or not and how much IO time the round consumed is recorded in
775 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
776 * over a certain threshold, the switch verdict is given.
777 */
wbc_detach_inode(struct writeback_control * wbc)778 void wbc_detach_inode(struct writeback_control *wbc)
779 {
780 struct bdi_writeback *wb = wbc->wb;
781 struct inode *inode = wbc->inode;
782 unsigned long avg_time, max_bytes, max_time;
783 u16 history;
784 int max_id;
785
786 if (!wb)
787 return;
788
789 history = inode->i_wb_frn_history;
790 avg_time = inode->i_wb_frn_avg_time;
791
792 /* pick the winner of this round */
793 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
794 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
795 max_id = wbc->wb_id;
796 max_bytes = wbc->wb_bytes;
797 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
798 max_id = wbc->wb_lcand_id;
799 max_bytes = wbc->wb_lcand_bytes;
800 } else {
801 max_id = wbc->wb_tcand_id;
802 max_bytes = wbc->wb_tcand_bytes;
803 }
804
805 /*
806 * Calculate the amount of IO time the winner consumed and fold it
807 * into the running average kept per inode. If the consumed IO
808 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
809 * deciding whether to switch or not. This is to prevent one-off
810 * small dirtiers from skewing the verdict.
811 */
812 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
813 wb->avg_write_bandwidth);
814 if (avg_time)
815 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
816 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
817 else
818 avg_time = max_time; /* immediate catch up on first run */
819
820 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
821 int slots;
822
823 /*
824 * The switch verdict is reached if foreign wb's consume
825 * more than a certain proportion of IO time in a
826 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
827 * history mask where each bit represents one sixteenth of
828 * the period. Determine the number of slots to shift into
829 * history from @max_time.
830 */
831 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
832 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
833 history <<= slots;
834 if (wbc->wb_id != max_id)
835 history |= (1U << slots) - 1;
836
837 if (history)
838 trace_inode_foreign_history(inode, wbc, history);
839
840 /*
841 * Switch if the current wb isn't the consistent winner.
842 * If there are multiple closely competing dirtiers, the
843 * inode may switch across them repeatedly over time, which
844 * is okay. The main goal is avoiding keeping an inode on
845 * the wrong wb for an extended period of time.
846 */
847 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
848 inode_switch_wbs(inode, max_id);
849 }
850
851 /*
852 * Multiple instances of this function may race to update the
853 * following fields but we don't mind occassional inaccuracies.
854 */
855 inode->i_wb_frn_winner = max_id;
856 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
857 inode->i_wb_frn_history = history;
858
859 wb_put(wbc->wb);
860 wbc->wb = NULL;
861 }
862 EXPORT_SYMBOL_GPL(wbc_detach_inode);
863
864 /**
865 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
866 * @wbc: writeback_control of the writeback in progress
867 * @page: page being written out
868 * @bytes: number of bytes being written out
869 *
870 * @bytes from @page are about to written out during the writeback
871 * controlled by @wbc. Keep the book for foreign inode detection. See
872 * wbc_detach_inode().
873 */
wbc_account_cgroup_owner(struct writeback_control * wbc,struct page * page,size_t bytes)874 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
875 size_t bytes)
876 {
877 struct cgroup_subsys_state *css;
878 int id;
879
880 /*
881 * pageout() path doesn't attach @wbc to the inode being written
882 * out. This is intentional as we don't want the function to block
883 * behind a slow cgroup. Ultimately, we want pageout() to kick off
884 * regular writeback instead of writing things out itself.
885 */
886 if (!wbc->wb || wbc->no_cgroup_owner)
887 return;
888
889 css = mem_cgroup_css_from_page(page);
890 /* dead cgroups shouldn't contribute to inode ownership arbitration */
891 if (!(css->flags & CSS_ONLINE))
892 return;
893
894 id = css->id;
895
896 if (id == wbc->wb_id) {
897 wbc->wb_bytes += bytes;
898 return;
899 }
900
901 if (id == wbc->wb_lcand_id)
902 wbc->wb_lcand_bytes += bytes;
903
904 /* Boyer-Moore majority vote algorithm */
905 if (!wbc->wb_tcand_bytes)
906 wbc->wb_tcand_id = id;
907 if (id == wbc->wb_tcand_id)
908 wbc->wb_tcand_bytes += bytes;
909 else
910 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
911 }
912 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
913
914 /**
915 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
916 * @wb: target bdi_writeback to split @nr_pages to
917 * @nr_pages: number of pages to write for the whole bdi
918 *
919 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
920 * relation to the total write bandwidth of all wb's w/ dirty inodes on
921 * @wb->bdi.
922 */
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)923 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
924 {
925 unsigned long this_bw = wb->avg_write_bandwidth;
926 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
927
928 if (nr_pages == LONG_MAX)
929 return LONG_MAX;
930
931 /*
932 * This may be called on clean wb's and proportional distribution
933 * may not make sense, just use the original @nr_pages in those
934 * cases. In general, we wanna err on the side of writing more.
935 */
936 if (!tot_bw || this_bw >= tot_bw)
937 return nr_pages;
938 else
939 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
940 }
941
942 /**
943 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
944 * @bdi: target backing_dev_info
945 * @base_work: wb_writeback_work to issue
946 * @skip_if_busy: skip wb's which already have writeback in progress
947 *
948 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
949 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
950 * distributed to the busy wbs according to each wb's proportion in the
951 * total active write bandwidth of @bdi.
952 */
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)953 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
954 struct wb_writeback_work *base_work,
955 bool skip_if_busy)
956 {
957 struct bdi_writeback *last_wb = NULL;
958 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
959 struct bdi_writeback, bdi_node);
960
961 might_sleep();
962 restart:
963 rcu_read_lock();
964 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
965 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
966 struct wb_writeback_work fallback_work;
967 struct wb_writeback_work *work;
968 long nr_pages;
969
970 if (last_wb) {
971 wb_put(last_wb);
972 last_wb = NULL;
973 }
974
975 /* SYNC_ALL writes out I_DIRTY_TIME too */
976 if (!wb_has_dirty_io(wb) &&
977 (base_work->sync_mode == WB_SYNC_NONE ||
978 list_empty(&wb->b_dirty_time)))
979 continue;
980 if (skip_if_busy && writeback_in_progress(wb))
981 continue;
982
983 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
984
985 work = kmalloc(sizeof(*work), GFP_ATOMIC);
986 if (work) {
987 *work = *base_work;
988 work->nr_pages = nr_pages;
989 work->auto_free = 1;
990 wb_queue_work(wb, work);
991 continue;
992 }
993
994 /*
995 * If wb_tryget fails, the wb has been shutdown, skip it.
996 *
997 * Pin @wb so that it stays on @bdi->wb_list. This allows
998 * continuing iteration from @wb after dropping and
999 * regrabbing rcu read lock.
1000 */
1001 if (!wb_tryget(wb))
1002 continue;
1003
1004 /* alloc failed, execute synchronously using on-stack fallback */
1005 work = &fallback_work;
1006 *work = *base_work;
1007 work->nr_pages = nr_pages;
1008 work->auto_free = 0;
1009 work->done = &fallback_work_done;
1010
1011 wb_queue_work(wb, work);
1012 last_wb = wb;
1013
1014 rcu_read_unlock();
1015 wb_wait_for_completion(&fallback_work_done);
1016 goto restart;
1017 }
1018 rcu_read_unlock();
1019
1020 if (last_wb)
1021 wb_put(last_wb);
1022 }
1023
1024 /**
1025 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1026 * @bdi_id: target bdi id
1027 * @memcg_id: target memcg css id
1028 * @reason: reason why some writeback work initiated
1029 * @done: target wb_completion
1030 *
1031 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1032 * with the specified parameters.
1033 */
cgroup_writeback_by_id(u64 bdi_id,int memcg_id,enum wb_reason reason,struct wb_completion * done)1034 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1035 enum wb_reason reason, struct wb_completion *done)
1036 {
1037 struct backing_dev_info *bdi;
1038 struct cgroup_subsys_state *memcg_css;
1039 struct bdi_writeback *wb;
1040 struct wb_writeback_work *work;
1041 unsigned long dirty;
1042 int ret;
1043
1044 /* lookup bdi and memcg */
1045 bdi = bdi_get_by_id(bdi_id);
1046 if (!bdi)
1047 return -ENOENT;
1048
1049 rcu_read_lock();
1050 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1051 if (memcg_css && !css_tryget(memcg_css))
1052 memcg_css = NULL;
1053 rcu_read_unlock();
1054 if (!memcg_css) {
1055 ret = -ENOENT;
1056 goto out_bdi_put;
1057 }
1058
1059 /*
1060 * And find the associated wb. If the wb isn't there already
1061 * there's nothing to flush, don't create one.
1062 */
1063 wb = wb_get_lookup(bdi, memcg_css);
1064 if (!wb) {
1065 ret = -ENOENT;
1066 goto out_css_put;
1067 }
1068
1069 /*
1070 * The caller is attempting to write out most of
1071 * the currently dirty pages. Let's take the current dirty page
1072 * count and inflate it by 25% which should be large enough to
1073 * flush out most dirty pages while avoiding getting livelocked by
1074 * concurrent dirtiers.
1075 *
1076 * BTW the memcg stats are flushed periodically and this is best-effort
1077 * estimation, so some potential error is ok.
1078 */
1079 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1080 dirty = dirty * 10 / 8;
1081
1082 /* issue the writeback work */
1083 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1084 if (work) {
1085 work->nr_pages = dirty;
1086 work->sync_mode = WB_SYNC_NONE;
1087 work->range_cyclic = 1;
1088 work->reason = reason;
1089 work->done = done;
1090 work->auto_free = 1;
1091 wb_queue_work(wb, work);
1092 ret = 0;
1093 } else {
1094 ret = -ENOMEM;
1095 }
1096
1097 wb_put(wb);
1098 out_css_put:
1099 css_put(memcg_css);
1100 out_bdi_put:
1101 bdi_put(bdi);
1102 return ret;
1103 }
1104
1105 /**
1106 * cgroup_writeback_umount - flush inode wb switches for umount
1107 *
1108 * This function is called when a super_block is about to be destroyed and
1109 * flushes in-flight inode wb switches. An inode wb switch goes through
1110 * RCU and then workqueue, so the two need to be flushed in order to ensure
1111 * that all previously scheduled switches are finished. As wb switches are
1112 * rare occurrences and synchronize_rcu() can take a while, perform
1113 * flushing iff wb switches are in flight.
1114 */
cgroup_writeback_umount(void)1115 void cgroup_writeback_umount(void)
1116 {
1117 /*
1118 * SB_ACTIVE should be reliably cleared before checking
1119 * isw_nr_in_flight, see generic_shutdown_super().
1120 */
1121 smp_mb();
1122
1123 if (atomic_read(&isw_nr_in_flight)) {
1124 /*
1125 * Use rcu_barrier() to wait for all pending callbacks to
1126 * ensure that all in-flight wb switches are in the workqueue.
1127 */
1128 rcu_barrier();
1129 flush_workqueue(isw_wq);
1130 }
1131 }
1132
cgroup_writeback_init(void)1133 static int __init cgroup_writeback_init(void)
1134 {
1135 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1136 if (!isw_wq)
1137 return -ENOMEM;
1138 return 0;
1139 }
1140 fs_initcall(cgroup_writeback_init);
1141
1142 #else /* CONFIG_CGROUP_WRITEBACK */
1143
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)1144 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)1145 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1146
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)1147 static void inode_cgwb_move_to_attached(struct inode *inode,
1148 struct bdi_writeback *wb)
1149 {
1150 assert_spin_locked(&wb->list_lock);
1151 assert_spin_locked(&inode->i_lock);
1152
1153 inode->i_state &= ~I_SYNC_QUEUED;
1154 list_del_init(&inode->i_io_list);
1155 wb_io_lists_depopulated(wb);
1156 }
1157
1158 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)1159 locked_inode_to_wb_and_lock_list(struct inode *inode)
1160 __releases(&inode->i_lock)
1161 __acquires(&wb->list_lock)
1162 {
1163 struct bdi_writeback *wb = inode_to_wb(inode);
1164
1165 spin_unlock(&inode->i_lock);
1166 spin_lock(&wb->list_lock);
1167 return wb;
1168 }
1169
inode_to_wb_and_lock_list(struct inode * inode)1170 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1171 __acquires(&wb->list_lock)
1172 {
1173 struct bdi_writeback *wb = inode_to_wb(inode);
1174
1175 spin_lock(&wb->list_lock);
1176 return wb;
1177 }
1178
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)1179 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1180 {
1181 return nr_pages;
1182 }
1183
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)1184 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1185 struct wb_writeback_work *base_work,
1186 bool skip_if_busy)
1187 {
1188 might_sleep();
1189
1190 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1191 base_work->auto_free = 0;
1192 wb_queue_work(&bdi->wb, base_work);
1193 }
1194 }
1195
1196 #endif /* CONFIG_CGROUP_WRITEBACK */
1197
1198 /*
1199 * Add in the number of potentially dirty inodes, because each inode
1200 * write can dirty pagecache in the underlying blockdev.
1201 */
get_nr_dirty_pages(void)1202 static unsigned long get_nr_dirty_pages(void)
1203 {
1204 return global_node_page_state(NR_FILE_DIRTY) +
1205 get_nr_dirty_inodes();
1206 }
1207
wb_start_writeback(struct bdi_writeback * wb,enum wb_reason reason)1208 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1209 {
1210 if (!wb_has_dirty_io(wb))
1211 return;
1212
1213 /*
1214 * All callers of this function want to start writeback of all
1215 * dirty pages. Places like vmscan can call this at a very
1216 * high frequency, causing pointless allocations of tons of
1217 * work items and keeping the flusher threads busy retrieving
1218 * that work. Ensure that we only allow one of them pending and
1219 * inflight at the time.
1220 */
1221 if (test_bit(WB_start_all, &wb->state) ||
1222 test_and_set_bit(WB_start_all, &wb->state))
1223 return;
1224
1225 wb->start_all_reason = reason;
1226 wb_wakeup(wb);
1227 }
1228
1229 /**
1230 * wb_start_background_writeback - start background writeback
1231 * @wb: bdi_writback to write from
1232 *
1233 * Description:
1234 * This makes sure WB_SYNC_NONE background writeback happens. When
1235 * this function returns, it is only guaranteed that for given wb
1236 * some IO is happening if we are over background dirty threshold.
1237 * Caller need not hold sb s_umount semaphore.
1238 */
wb_start_background_writeback(struct bdi_writeback * wb)1239 void wb_start_background_writeback(struct bdi_writeback *wb)
1240 {
1241 /*
1242 * We just wake up the flusher thread. It will perform background
1243 * writeback as soon as there is no other work to do.
1244 */
1245 trace_writeback_wake_background(wb);
1246 wb_wakeup(wb);
1247 }
1248
1249 /*
1250 * Remove the inode from the writeback list it is on.
1251 */
inode_io_list_del(struct inode * inode)1252 void inode_io_list_del(struct inode *inode)
1253 {
1254 struct bdi_writeback *wb;
1255
1256 wb = inode_to_wb_and_lock_list(inode);
1257 spin_lock(&inode->i_lock);
1258
1259 inode->i_state &= ~I_SYNC_QUEUED;
1260 list_del_init(&inode->i_io_list);
1261 wb_io_lists_depopulated(wb);
1262
1263 spin_unlock(&inode->i_lock);
1264 spin_unlock(&wb->list_lock);
1265 }
1266 EXPORT_SYMBOL(inode_io_list_del);
1267
1268 /*
1269 * mark an inode as under writeback on the sb
1270 */
sb_mark_inode_writeback(struct inode * inode)1271 void sb_mark_inode_writeback(struct inode *inode)
1272 {
1273 struct super_block *sb = inode->i_sb;
1274 unsigned long flags;
1275
1276 if (list_empty(&inode->i_wb_list)) {
1277 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1278 if (list_empty(&inode->i_wb_list)) {
1279 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1280 trace_sb_mark_inode_writeback(inode);
1281 }
1282 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1283 }
1284 }
1285
1286 /*
1287 * clear an inode as under writeback on the sb
1288 */
sb_clear_inode_writeback(struct inode * inode)1289 void sb_clear_inode_writeback(struct inode *inode)
1290 {
1291 struct super_block *sb = inode->i_sb;
1292 unsigned long flags;
1293
1294 if (!list_empty(&inode->i_wb_list)) {
1295 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1296 if (!list_empty(&inode->i_wb_list)) {
1297 list_del_init(&inode->i_wb_list);
1298 trace_sb_clear_inode_writeback(inode);
1299 }
1300 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1301 }
1302 }
1303
1304 /*
1305 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1306 * furthest end of its superblock's dirty-inode list.
1307 *
1308 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1309 * already the most-recently-dirtied inode on the b_dirty list. If that is
1310 * the case then the inode must have been redirtied while it was being written
1311 * out and we don't reset its dirtied_when.
1312 */
redirty_tail_locked(struct inode * inode,struct bdi_writeback * wb)1313 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1314 {
1315 assert_spin_locked(&inode->i_lock);
1316
1317 if (!list_empty(&wb->b_dirty)) {
1318 struct inode *tail;
1319
1320 tail = wb_inode(wb->b_dirty.next);
1321 if (time_before(inode->dirtied_when, tail->dirtied_when))
1322 inode->dirtied_when = jiffies;
1323 }
1324 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1325 inode->i_state &= ~I_SYNC_QUEUED;
1326 }
1327
redirty_tail(struct inode * inode,struct bdi_writeback * wb)1328 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1329 {
1330 spin_lock(&inode->i_lock);
1331 redirty_tail_locked(inode, wb);
1332 spin_unlock(&inode->i_lock);
1333 }
1334
1335 /*
1336 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1337 */
requeue_io(struct inode * inode,struct bdi_writeback * wb)1338 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1339 {
1340 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1341 }
1342
inode_sync_complete(struct inode * inode)1343 static void inode_sync_complete(struct inode *inode)
1344 {
1345 inode->i_state &= ~I_SYNC;
1346 /* If inode is clean an unused, put it into LRU now... */
1347 inode_add_lru(inode);
1348 /* Waiters must see I_SYNC cleared before being woken up */
1349 smp_mb();
1350 wake_up_bit(&inode->i_state, __I_SYNC);
1351 }
1352
inode_dirtied_after(struct inode * inode,unsigned long t)1353 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1354 {
1355 bool ret = time_after(inode->dirtied_when, t);
1356 #ifndef CONFIG_64BIT
1357 /*
1358 * For inodes being constantly redirtied, dirtied_when can get stuck.
1359 * It _appears_ to be in the future, but is actually in distant past.
1360 * This test is necessary to prevent such wrapped-around relative times
1361 * from permanently stopping the whole bdi writeback.
1362 */
1363 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1364 #endif
1365 return ret;
1366 }
1367
1368 #define EXPIRE_DIRTY_ATIME 0x0001
1369
1370 /*
1371 * Move expired (dirtied before dirtied_before) dirty inodes from
1372 * @delaying_queue to @dispatch_queue.
1373 */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,unsigned long dirtied_before)1374 static int move_expired_inodes(struct list_head *delaying_queue,
1375 struct list_head *dispatch_queue,
1376 unsigned long dirtied_before)
1377 {
1378 LIST_HEAD(tmp);
1379 struct list_head *pos, *node;
1380 struct super_block *sb = NULL;
1381 struct inode *inode;
1382 int do_sb_sort = 0;
1383 int moved = 0;
1384
1385 while (!list_empty(delaying_queue)) {
1386 inode = wb_inode(delaying_queue->prev);
1387 if (inode_dirtied_after(inode, dirtied_before))
1388 break;
1389 spin_lock(&inode->i_lock);
1390 list_move(&inode->i_io_list, &tmp);
1391 moved++;
1392 inode->i_state |= I_SYNC_QUEUED;
1393 spin_unlock(&inode->i_lock);
1394 if (sb_is_blkdev_sb(inode->i_sb))
1395 continue;
1396 if (sb && sb != inode->i_sb)
1397 do_sb_sort = 1;
1398 sb = inode->i_sb;
1399 }
1400
1401 /* just one sb in list, splice to dispatch_queue and we're done */
1402 if (!do_sb_sort) {
1403 list_splice(&tmp, dispatch_queue);
1404 goto out;
1405 }
1406
1407 /*
1408 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1409 * we don't take inode->i_lock here because it is just a pointless overhead.
1410 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1411 * fully under our control.
1412 */
1413 while (!list_empty(&tmp)) {
1414 sb = wb_inode(tmp.prev)->i_sb;
1415 list_for_each_prev_safe(pos, node, &tmp) {
1416 inode = wb_inode(pos);
1417 if (inode->i_sb == sb)
1418 list_move(&inode->i_io_list, dispatch_queue);
1419 }
1420 }
1421 out:
1422 return moved;
1423 }
1424
1425 /*
1426 * Queue all expired dirty inodes for io, eldest first.
1427 * Before
1428 * newly dirtied b_dirty b_io b_more_io
1429 * =============> gf edc BA
1430 * After
1431 * newly dirtied b_dirty b_io b_more_io
1432 * =============> g fBAedc
1433 * |
1434 * +--> dequeue for IO
1435 */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work,unsigned long dirtied_before)1436 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1437 unsigned long dirtied_before)
1438 {
1439 int moved;
1440 unsigned long time_expire_jif = dirtied_before;
1441
1442 assert_spin_locked(&wb->list_lock);
1443 list_splice_init(&wb->b_more_io, &wb->b_io);
1444 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1445 if (!work->for_sync)
1446 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1447 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1448 time_expire_jif);
1449 if (moved)
1450 wb_io_lists_populated(wb);
1451 trace_writeback_queue_io(wb, work, dirtied_before, moved);
1452 }
1453
write_inode(struct inode * inode,struct writeback_control * wbc)1454 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1455 {
1456 int ret;
1457
1458 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1459 trace_writeback_write_inode_start(inode, wbc);
1460 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1461 trace_writeback_write_inode(inode, wbc);
1462 return ret;
1463 }
1464 return 0;
1465 }
1466
1467 /*
1468 * Wait for writeback on an inode to complete. Called with i_lock held.
1469 * Caller must make sure inode cannot go away when we drop i_lock.
1470 */
__inode_wait_for_writeback(struct inode * inode)1471 static void __inode_wait_for_writeback(struct inode *inode)
1472 __releases(inode->i_lock)
1473 __acquires(inode->i_lock)
1474 {
1475 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1476 wait_queue_head_t *wqh;
1477
1478 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1479 while (inode->i_state & I_SYNC) {
1480 spin_unlock(&inode->i_lock);
1481 __wait_on_bit(wqh, &wq, bit_wait,
1482 TASK_UNINTERRUPTIBLE);
1483 spin_lock(&inode->i_lock);
1484 }
1485 }
1486
1487 /*
1488 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1489 */
inode_wait_for_writeback(struct inode * inode)1490 void inode_wait_for_writeback(struct inode *inode)
1491 {
1492 spin_lock(&inode->i_lock);
1493 __inode_wait_for_writeback(inode);
1494 spin_unlock(&inode->i_lock);
1495 }
1496
1497 /*
1498 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1499 * held and drops it. It is aimed for callers not holding any inode reference
1500 * so once i_lock is dropped, inode can go away.
1501 */
inode_sleep_on_writeback(struct inode * inode)1502 static void inode_sleep_on_writeback(struct inode *inode)
1503 __releases(inode->i_lock)
1504 {
1505 DEFINE_WAIT(wait);
1506 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1507 int sleep;
1508
1509 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1510 sleep = inode->i_state & I_SYNC;
1511 spin_unlock(&inode->i_lock);
1512 if (sleep)
1513 schedule();
1514 finish_wait(wqh, &wait);
1515 }
1516
1517 /*
1518 * Find proper writeback list for the inode depending on its current state and
1519 * possibly also change of its state while we were doing writeback. Here we
1520 * handle things such as livelock prevention or fairness of writeback among
1521 * inodes. This function can be called only by flusher thread - noone else
1522 * processes all inodes in writeback lists and requeueing inodes behind flusher
1523 * thread's back can have unexpected consequences.
1524 */
requeue_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc)1525 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1526 struct writeback_control *wbc)
1527 {
1528 if (inode->i_state & I_FREEING)
1529 return;
1530
1531 /*
1532 * Sync livelock prevention. Each inode is tagged and synced in one
1533 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1534 * the dirty time to prevent enqueue and sync it again.
1535 */
1536 if ((inode->i_state & I_DIRTY) &&
1537 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1538 inode->dirtied_when = jiffies;
1539
1540 if (wbc->pages_skipped) {
1541 /*
1542 * Writeback is not making progress due to locked buffers.
1543 * Skip this inode for now. Although having skipped pages
1544 * is odd for clean inodes, it can happen for some
1545 * filesystems so handle that gracefully.
1546 */
1547 if (inode->i_state & I_DIRTY_ALL)
1548 redirty_tail_locked(inode, wb);
1549 else
1550 inode_cgwb_move_to_attached(inode, wb);
1551 return;
1552 }
1553
1554 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1555 /*
1556 * We didn't write back all the pages. nfs_writepages()
1557 * sometimes bales out without doing anything.
1558 */
1559 if (wbc->nr_to_write <= 0) {
1560 /* Slice used up. Queue for next turn. */
1561 requeue_io(inode, wb);
1562 } else {
1563 /*
1564 * Writeback blocked by something other than
1565 * congestion. Delay the inode for some time to
1566 * avoid spinning on the CPU (100% iowait)
1567 * retrying writeback of the dirty page/inode
1568 * that cannot be performed immediately.
1569 */
1570 redirty_tail_locked(inode, wb);
1571 }
1572 } else if (inode->i_state & I_DIRTY) {
1573 /*
1574 * Filesystems can dirty the inode during writeback operations,
1575 * such as delayed allocation during submission or metadata
1576 * updates after data IO completion.
1577 */
1578 redirty_tail_locked(inode, wb);
1579 } else if (inode->i_state & I_DIRTY_TIME) {
1580 inode->dirtied_when = jiffies;
1581 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1582 inode->i_state &= ~I_SYNC_QUEUED;
1583 } else {
1584 /* The inode is clean. Remove from writeback lists. */
1585 inode_cgwb_move_to_attached(inode, wb);
1586 }
1587 }
1588
1589 /*
1590 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1591 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1592 *
1593 * This doesn't remove the inode from the writeback list it is on, except
1594 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1595 * expiration. The caller is otherwise responsible for writeback list handling.
1596 *
1597 * The caller is also responsible for setting the I_SYNC flag beforehand and
1598 * calling inode_sync_complete() to clear it afterwards.
1599 */
1600 static int
__writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1601 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1602 {
1603 struct address_space *mapping = inode->i_mapping;
1604 long nr_to_write = wbc->nr_to_write;
1605 unsigned dirty;
1606 int ret;
1607
1608 WARN_ON(!(inode->i_state & I_SYNC));
1609
1610 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1611
1612 ret = do_writepages(mapping, wbc);
1613
1614 /*
1615 * Make sure to wait on the data before writing out the metadata.
1616 * This is important for filesystems that modify metadata on data
1617 * I/O completion. We don't do it for sync(2) writeback because it has a
1618 * separate, external IO completion path and ->sync_fs for guaranteeing
1619 * inode metadata is written back correctly.
1620 */
1621 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1622 int err = filemap_fdatawait(mapping);
1623 if (ret == 0)
1624 ret = err;
1625 }
1626
1627 /*
1628 * If the inode has dirty timestamps and we need to write them, call
1629 * mark_inode_dirty_sync() to notify the filesystem about it and to
1630 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1631 */
1632 if ((inode->i_state & I_DIRTY_TIME) &&
1633 (wbc->sync_mode == WB_SYNC_ALL ||
1634 time_after(jiffies, inode->dirtied_time_when +
1635 dirtytime_expire_interval * HZ))) {
1636 trace_writeback_lazytime(inode);
1637 mark_inode_dirty_sync(inode);
1638 }
1639
1640 /*
1641 * Get and clear the dirty flags from i_state. This needs to be done
1642 * after calling writepages because some filesystems may redirty the
1643 * inode during writepages due to delalloc. It also needs to be done
1644 * after handling timestamp expiration, as that may dirty the inode too.
1645 */
1646 spin_lock(&inode->i_lock);
1647 dirty = inode->i_state & I_DIRTY;
1648 inode->i_state &= ~dirty;
1649
1650 /*
1651 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1652 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1653 * either they see the I_DIRTY bits cleared or we see the dirtied
1654 * inode.
1655 *
1656 * I_DIRTY_PAGES is always cleared together above even if @mapping
1657 * still has dirty pages. The flag is reinstated after smp_mb() if
1658 * necessary. This guarantees that either __mark_inode_dirty()
1659 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1660 */
1661 smp_mb();
1662
1663 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1664 inode->i_state |= I_DIRTY_PAGES;
1665 else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) {
1666 if (!(inode->i_state & I_DIRTY_PAGES)) {
1667 inode->i_state &= ~I_PINNING_FSCACHE_WB;
1668 wbc->unpinned_fscache_wb = true;
1669 dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */
1670 }
1671 }
1672
1673 spin_unlock(&inode->i_lock);
1674
1675 /* Don't write the inode if only I_DIRTY_PAGES was set */
1676 if (dirty & ~I_DIRTY_PAGES) {
1677 int err = write_inode(inode, wbc);
1678 if (ret == 0)
1679 ret = err;
1680 }
1681 wbc->unpinned_fscache_wb = false;
1682 trace_writeback_single_inode(inode, wbc, nr_to_write);
1683 return ret;
1684 }
1685
1686 /*
1687 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1688 * the regular batched writeback done by the flusher threads in
1689 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
1690 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1691 *
1692 * To prevent the inode from going away, either the caller must have a reference
1693 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1694 */
writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1695 static int writeback_single_inode(struct inode *inode,
1696 struct writeback_control *wbc)
1697 {
1698 struct bdi_writeback *wb;
1699 int ret = 0;
1700
1701 spin_lock(&inode->i_lock);
1702 if (!atomic_read(&inode->i_count))
1703 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1704 else
1705 WARN_ON(inode->i_state & I_WILL_FREE);
1706
1707 if (inode->i_state & I_SYNC) {
1708 /*
1709 * Writeback is already running on the inode. For WB_SYNC_NONE,
1710 * that's enough and we can just return. For WB_SYNC_ALL, we
1711 * must wait for the existing writeback to complete, then do
1712 * writeback again if there's anything left.
1713 */
1714 if (wbc->sync_mode != WB_SYNC_ALL)
1715 goto out;
1716 __inode_wait_for_writeback(inode);
1717 }
1718 WARN_ON(inode->i_state & I_SYNC);
1719 /*
1720 * If the inode is already fully clean, then there's nothing to do.
1721 *
1722 * For data-integrity syncs we also need to check whether any pages are
1723 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
1724 * there are any such pages, we'll need to wait for them.
1725 */
1726 if (!(inode->i_state & I_DIRTY_ALL) &&
1727 (wbc->sync_mode != WB_SYNC_ALL ||
1728 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1729 goto out;
1730 inode->i_state |= I_SYNC;
1731 wbc_attach_and_unlock_inode(wbc, inode);
1732
1733 ret = __writeback_single_inode(inode, wbc);
1734
1735 wbc_detach_inode(wbc);
1736
1737 wb = inode_to_wb_and_lock_list(inode);
1738 spin_lock(&inode->i_lock);
1739 /*
1740 * If the inode is freeing, its i_io_list shoudn't be updated
1741 * as it can be finally deleted at this moment.
1742 */
1743 if (!(inode->i_state & I_FREEING)) {
1744 /*
1745 * If the inode is now fully clean, then it can be safely
1746 * removed from its writeback list (if any). Otherwise the
1747 * flusher threads are responsible for the writeback lists.
1748 */
1749 if (!(inode->i_state & I_DIRTY_ALL))
1750 inode_cgwb_move_to_attached(inode, wb);
1751 else if (!(inode->i_state & I_SYNC_QUEUED)) {
1752 if ((inode->i_state & I_DIRTY))
1753 redirty_tail_locked(inode, wb);
1754 else if (inode->i_state & I_DIRTY_TIME) {
1755 inode->dirtied_when = jiffies;
1756 inode_io_list_move_locked(inode,
1757 wb,
1758 &wb->b_dirty_time);
1759 }
1760 }
1761 }
1762
1763 spin_unlock(&wb->list_lock);
1764 inode_sync_complete(inode);
1765 out:
1766 spin_unlock(&inode->i_lock);
1767 return ret;
1768 }
1769
writeback_chunk_size(struct bdi_writeback * wb,struct wb_writeback_work * work)1770 static long writeback_chunk_size(struct bdi_writeback *wb,
1771 struct wb_writeback_work *work)
1772 {
1773 long pages;
1774
1775 /*
1776 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1777 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1778 * here avoids calling into writeback_inodes_wb() more than once.
1779 *
1780 * The intended call sequence for WB_SYNC_ALL writeback is:
1781 *
1782 * wb_writeback()
1783 * writeback_sb_inodes() <== called only once
1784 * write_cache_pages() <== called once for each inode
1785 * (quickly) tag currently dirty pages
1786 * (maybe slowly) sync all tagged pages
1787 */
1788 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1789 pages = LONG_MAX;
1790 else {
1791 pages = min(wb->avg_write_bandwidth / 2,
1792 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1793 pages = min(pages, work->nr_pages);
1794 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1795 MIN_WRITEBACK_PAGES);
1796 }
1797
1798 return pages;
1799 }
1800
1801 /*
1802 * Write a portion of b_io inodes which belong to @sb.
1803 *
1804 * Return the number of pages and/or inodes written.
1805 *
1806 * NOTE! This is called with wb->list_lock held, and will
1807 * unlock and relock that for each inode it ends up doing
1808 * IO for.
1809 */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)1810 static long writeback_sb_inodes(struct super_block *sb,
1811 struct bdi_writeback *wb,
1812 struct wb_writeback_work *work)
1813 {
1814 struct writeback_control wbc = {
1815 .sync_mode = work->sync_mode,
1816 .tagged_writepages = work->tagged_writepages,
1817 .for_kupdate = work->for_kupdate,
1818 .for_background = work->for_background,
1819 .for_sync = work->for_sync,
1820 .range_cyclic = work->range_cyclic,
1821 .range_start = 0,
1822 .range_end = LLONG_MAX,
1823 };
1824 unsigned long start_time = jiffies;
1825 long write_chunk;
1826 long total_wrote = 0; /* count both pages and inodes */
1827
1828 while (!list_empty(&wb->b_io)) {
1829 struct inode *inode = wb_inode(wb->b_io.prev);
1830 struct bdi_writeback *tmp_wb;
1831 long wrote;
1832
1833 if (inode->i_sb != sb) {
1834 if (work->sb) {
1835 /*
1836 * We only want to write back data for this
1837 * superblock, move all inodes not belonging
1838 * to it back onto the dirty list.
1839 */
1840 redirty_tail(inode, wb);
1841 continue;
1842 }
1843
1844 /*
1845 * The inode belongs to a different superblock.
1846 * Bounce back to the caller to unpin this and
1847 * pin the next superblock.
1848 */
1849 break;
1850 }
1851
1852 /*
1853 * Don't bother with new inodes or inodes being freed, first
1854 * kind does not need periodic writeout yet, and for the latter
1855 * kind writeout is handled by the freer.
1856 */
1857 spin_lock(&inode->i_lock);
1858 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1859 redirty_tail_locked(inode, wb);
1860 spin_unlock(&inode->i_lock);
1861 continue;
1862 }
1863 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1864 /*
1865 * If this inode is locked for writeback and we are not
1866 * doing writeback-for-data-integrity, move it to
1867 * b_more_io so that writeback can proceed with the
1868 * other inodes on s_io.
1869 *
1870 * We'll have another go at writing back this inode
1871 * when we completed a full scan of b_io.
1872 */
1873 requeue_io(inode, wb);
1874 spin_unlock(&inode->i_lock);
1875 trace_writeback_sb_inodes_requeue(inode);
1876 continue;
1877 }
1878 spin_unlock(&wb->list_lock);
1879
1880 /*
1881 * We already requeued the inode if it had I_SYNC set and we
1882 * are doing WB_SYNC_NONE writeback. So this catches only the
1883 * WB_SYNC_ALL case.
1884 */
1885 if (inode->i_state & I_SYNC) {
1886 /* Wait for I_SYNC. This function drops i_lock... */
1887 inode_sleep_on_writeback(inode);
1888 /* Inode may be gone, start again */
1889 spin_lock(&wb->list_lock);
1890 continue;
1891 }
1892 inode->i_state |= I_SYNC;
1893 wbc_attach_and_unlock_inode(&wbc, inode);
1894
1895 write_chunk = writeback_chunk_size(wb, work);
1896 wbc.nr_to_write = write_chunk;
1897 wbc.pages_skipped = 0;
1898
1899 /*
1900 * We use I_SYNC to pin the inode in memory. While it is set
1901 * evict_inode() will wait so the inode cannot be freed.
1902 */
1903 __writeback_single_inode(inode, &wbc);
1904
1905 wbc_detach_inode(&wbc);
1906 work->nr_pages -= write_chunk - wbc.nr_to_write;
1907 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1908 wrote = wrote < 0 ? 0 : wrote;
1909 total_wrote += wrote;
1910
1911 if (need_resched()) {
1912 /*
1913 * We're trying to balance between building up a nice
1914 * long list of IOs to improve our merge rate, and
1915 * getting those IOs out quickly for anyone throttling
1916 * in balance_dirty_pages(). cond_resched() doesn't
1917 * unplug, so get our IOs out the door before we
1918 * give up the CPU.
1919 */
1920 blk_flush_plug(current->plug, false);
1921 cond_resched();
1922 }
1923
1924 /*
1925 * Requeue @inode if still dirty. Be careful as @inode may
1926 * have been switched to another wb in the meantime.
1927 */
1928 tmp_wb = inode_to_wb_and_lock_list(inode);
1929 spin_lock(&inode->i_lock);
1930 if (!(inode->i_state & I_DIRTY_ALL))
1931 total_wrote++;
1932 requeue_inode(inode, tmp_wb, &wbc);
1933 inode_sync_complete(inode);
1934 spin_unlock(&inode->i_lock);
1935
1936 if (unlikely(tmp_wb != wb)) {
1937 spin_unlock(&tmp_wb->list_lock);
1938 spin_lock(&wb->list_lock);
1939 }
1940
1941 /*
1942 * bail out to wb_writeback() often enough to check
1943 * background threshold and other termination conditions.
1944 */
1945 if (total_wrote) {
1946 if (time_is_before_jiffies(start_time + HZ / 10UL))
1947 break;
1948 if (work->nr_pages <= 0)
1949 break;
1950 }
1951 }
1952 return total_wrote;
1953 }
1954
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)1955 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1956 struct wb_writeback_work *work)
1957 {
1958 unsigned long start_time = jiffies;
1959 long wrote = 0;
1960
1961 while (!list_empty(&wb->b_io)) {
1962 struct inode *inode = wb_inode(wb->b_io.prev);
1963 struct super_block *sb = inode->i_sb;
1964
1965 if (!trylock_super(sb)) {
1966 /*
1967 * trylock_super() may fail consistently due to
1968 * s_umount being grabbed by someone else. Don't use
1969 * requeue_io() to avoid busy retrying the inode/sb.
1970 */
1971 redirty_tail(inode, wb);
1972 continue;
1973 }
1974 wrote += writeback_sb_inodes(sb, wb, work);
1975 up_read(&sb->s_umount);
1976
1977 /* refer to the same tests at the end of writeback_sb_inodes */
1978 if (wrote) {
1979 if (time_is_before_jiffies(start_time + HZ / 10UL))
1980 break;
1981 if (work->nr_pages <= 0)
1982 break;
1983 }
1984 }
1985 /* Leave any unwritten inodes on b_io */
1986 return wrote;
1987 }
1988
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)1989 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1990 enum wb_reason reason)
1991 {
1992 struct wb_writeback_work work = {
1993 .nr_pages = nr_pages,
1994 .sync_mode = WB_SYNC_NONE,
1995 .range_cyclic = 1,
1996 .reason = reason,
1997 };
1998 struct blk_plug plug;
1999
2000 blk_start_plug(&plug);
2001 spin_lock(&wb->list_lock);
2002 if (list_empty(&wb->b_io))
2003 queue_io(wb, &work, jiffies);
2004 __writeback_inodes_wb(wb, &work);
2005 spin_unlock(&wb->list_lock);
2006 blk_finish_plug(&plug);
2007
2008 return nr_pages - work.nr_pages;
2009 }
2010
2011 /*
2012 * Explicit flushing or periodic writeback of "old" data.
2013 *
2014 * Define "old": the first time one of an inode's pages is dirtied, we mark the
2015 * dirtying-time in the inode's address_space. So this periodic writeback code
2016 * just walks the superblock inode list, writing back any inodes which are
2017 * older than a specific point in time.
2018 *
2019 * Try to run once per dirty_writeback_interval. But if a writeback event
2020 * takes longer than a dirty_writeback_interval interval, then leave a
2021 * one-second gap.
2022 *
2023 * dirtied_before takes precedence over nr_to_write. So we'll only write back
2024 * all dirty pages if they are all attached to "old" mappings.
2025 */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)2026 static long wb_writeback(struct bdi_writeback *wb,
2027 struct wb_writeback_work *work)
2028 {
2029 long nr_pages = work->nr_pages;
2030 unsigned long dirtied_before = jiffies;
2031 struct inode *inode;
2032 long progress;
2033 struct blk_plug plug;
2034
2035 blk_start_plug(&plug);
2036 spin_lock(&wb->list_lock);
2037 for (;;) {
2038 /*
2039 * Stop writeback when nr_pages has been consumed
2040 */
2041 if (work->nr_pages <= 0)
2042 break;
2043
2044 /*
2045 * Background writeout and kupdate-style writeback may
2046 * run forever. Stop them if there is other work to do
2047 * so that e.g. sync can proceed. They'll be restarted
2048 * after the other works are all done.
2049 */
2050 if ((work->for_background || work->for_kupdate) &&
2051 !list_empty(&wb->work_list))
2052 break;
2053
2054 /*
2055 * For background writeout, stop when we are below the
2056 * background dirty threshold
2057 */
2058 if (work->for_background && !wb_over_bg_thresh(wb))
2059 break;
2060
2061 /*
2062 * Kupdate and background works are special and we want to
2063 * include all inodes that need writing. Livelock avoidance is
2064 * handled by these works yielding to any other work so we are
2065 * safe.
2066 */
2067 if (work->for_kupdate) {
2068 dirtied_before = jiffies -
2069 msecs_to_jiffies(dirty_expire_interval * 10);
2070 } else if (work->for_background)
2071 dirtied_before = jiffies;
2072
2073 trace_writeback_start(wb, work);
2074 if (list_empty(&wb->b_io))
2075 queue_io(wb, work, dirtied_before);
2076 if (work->sb)
2077 progress = writeback_sb_inodes(work->sb, wb, work);
2078 else
2079 progress = __writeback_inodes_wb(wb, work);
2080 trace_writeback_written(wb, work);
2081
2082 /*
2083 * Did we write something? Try for more
2084 *
2085 * Dirty inodes are moved to b_io for writeback in batches.
2086 * The completion of the current batch does not necessarily
2087 * mean the overall work is done. So we keep looping as long
2088 * as made some progress on cleaning pages or inodes.
2089 */
2090 if (progress)
2091 continue;
2092 /*
2093 * No more inodes for IO, bail
2094 */
2095 if (list_empty(&wb->b_more_io))
2096 break;
2097 /*
2098 * Nothing written. Wait for some inode to
2099 * become available for writeback. Otherwise
2100 * we'll just busyloop.
2101 */
2102 trace_writeback_wait(wb, work);
2103 inode = wb_inode(wb->b_more_io.prev);
2104 spin_lock(&inode->i_lock);
2105 spin_unlock(&wb->list_lock);
2106 /* This function drops i_lock... */
2107 inode_sleep_on_writeback(inode);
2108 spin_lock(&wb->list_lock);
2109 }
2110 spin_unlock(&wb->list_lock);
2111 blk_finish_plug(&plug);
2112
2113 return nr_pages - work->nr_pages;
2114 }
2115
2116 /*
2117 * Return the next wb_writeback_work struct that hasn't been processed yet.
2118 */
get_next_work_item(struct bdi_writeback * wb)2119 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2120 {
2121 struct wb_writeback_work *work = NULL;
2122
2123 spin_lock_irq(&wb->work_lock);
2124 if (!list_empty(&wb->work_list)) {
2125 work = list_entry(wb->work_list.next,
2126 struct wb_writeback_work, list);
2127 list_del_init(&work->list);
2128 }
2129 spin_unlock_irq(&wb->work_lock);
2130 return work;
2131 }
2132
wb_check_background_flush(struct bdi_writeback * wb)2133 static long wb_check_background_flush(struct bdi_writeback *wb)
2134 {
2135 if (wb_over_bg_thresh(wb)) {
2136
2137 struct wb_writeback_work work = {
2138 .nr_pages = LONG_MAX,
2139 .sync_mode = WB_SYNC_NONE,
2140 .for_background = 1,
2141 .range_cyclic = 1,
2142 .reason = WB_REASON_BACKGROUND,
2143 };
2144
2145 return wb_writeback(wb, &work);
2146 }
2147
2148 return 0;
2149 }
2150
wb_check_old_data_flush(struct bdi_writeback * wb)2151 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2152 {
2153 unsigned long expired;
2154 long nr_pages;
2155
2156 /*
2157 * When set to zero, disable periodic writeback
2158 */
2159 if (!dirty_writeback_interval)
2160 return 0;
2161
2162 expired = wb->last_old_flush +
2163 msecs_to_jiffies(dirty_writeback_interval * 10);
2164 if (time_before(jiffies, expired))
2165 return 0;
2166
2167 wb->last_old_flush = jiffies;
2168 nr_pages = get_nr_dirty_pages();
2169
2170 if (nr_pages) {
2171 struct wb_writeback_work work = {
2172 .nr_pages = nr_pages,
2173 .sync_mode = WB_SYNC_NONE,
2174 .for_kupdate = 1,
2175 .range_cyclic = 1,
2176 .reason = WB_REASON_PERIODIC,
2177 };
2178
2179 return wb_writeback(wb, &work);
2180 }
2181
2182 return 0;
2183 }
2184
wb_check_start_all(struct bdi_writeback * wb)2185 static long wb_check_start_all(struct bdi_writeback *wb)
2186 {
2187 long nr_pages;
2188
2189 if (!test_bit(WB_start_all, &wb->state))
2190 return 0;
2191
2192 nr_pages = get_nr_dirty_pages();
2193 if (nr_pages) {
2194 struct wb_writeback_work work = {
2195 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2196 .sync_mode = WB_SYNC_NONE,
2197 .range_cyclic = 1,
2198 .reason = wb->start_all_reason,
2199 };
2200
2201 nr_pages = wb_writeback(wb, &work);
2202 }
2203
2204 clear_bit(WB_start_all, &wb->state);
2205 return nr_pages;
2206 }
2207
2208
2209 /*
2210 * Retrieve work items and do the writeback they describe
2211 */
wb_do_writeback(struct bdi_writeback * wb)2212 static long wb_do_writeback(struct bdi_writeback *wb)
2213 {
2214 struct wb_writeback_work *work;
2215 long wrote = 0;
2216
2217 set_bit(WB_writeback_running, &wb->state);
2218 while ((work = get_next_work_item(wb)) != NULL) {
2219 trace_writeback_exec(wb, work);
2220 wrote += wb_writeback(wb, work);
2221 finish_writeback_work(wb, work);
2222 }
2223
2224 /*
2225 * Check for a flush-everything request
2226 */
2227 wrote += wb_check_start_all(wb);
2228
2229 /*
2230 * Check for periodic writeback, kupdated() style
2231 */
2232 wrote += wb_check_old_data_flush(wb);
2233 wrote += wb_check_background_flush(wb);
2234 clear_bit(WB_writeback_running, &wb->state);
2235
2236 return wrote;
2237 }
2238
2239 /*
2240 * Handle writeback of dirty data for the device backed by this bdi. Also
2241 * reschedules periodically and does kupdated style flushing.
2242 */
wb_workfn(struct work_struct * work)2243 void wb_workfn(struct work_struct *work)
2244 {
2245 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2246 struct bdi_writeback, dwork);
2247 long pages_written;
2248
2249 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2250
2251 if (likely(!current_is_workqueue_rescuer() ||
2252 !test_bit(WB_registered, &wb->state))) {
2253 /*
2254 * The normal path. Keep writing back @wb until its
2255 * work_list is empty. Note that this path is also taken
2256 * if @wb is shutting down even when we're running off the
2257 * rescuer as work_list needs to be drained.
2258 */
2259 do {
2260 pages_written = wb_do_writeback(wb);
2261 trace_writeback_pages_written(pages_written);
2262 } while (!list_empty(&wb->work_list));
2263 } else {
2264 /*
2265 * bdi_wq can't get enough workers and we're running off
2266 * the emergency worker. Don't hog it. Hopefully, 1024 is
2267 * enough for efficient IO.
2268 */
2269 pages_written = writeback_inodes_wb(wb, 1024,
2270 WB_REASON_FORKER_THREAD);
2271 trace_writeback_pages_written(pages_written);
2272 }
2273
2274 if (!list_empty(&wb->work_list))
2275 wb_wakeup(wb);
2276 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2277 wb_wakeup_delayed(wb);
2278 }
2279
2280 /*
2281 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2282 * write back the whole world.
2283 */
__wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2284 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2285 enum wb_reason reason)
2286 {
2287 struct bdi_writeback *wb;
2288
2289 if (!bdi_has_dirty_io(bdi))
2290 return;
2291
2292 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2293 wb_start_writeback(wb, reason);
2294 }
2295
wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2296 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2297 enum wb_reason reason)
2298 {
2299 rcu_read_lock();
2300 __wakeup_flusher_threads_bdi(bdi, reason);
2301 rcu_read_unlock();
2302 }
2303
2304 /*
2305 * Wakeup the flusher threads to start writeback of all currently dirty pages
2306 */
wakeup_flusher_threads(enum wb_reason reason)2307 void wakeup_flusher_threads(enum wb_reason reason)
2308 {
2309 struct backing_dev_info *bdi;
2310
2311 /*
2312 * If we are expecting writeback progress we must submit plugged IO.
2313 */
2314 blk_flush_plug(current->plug, true);
2315
2316 rcu_read_lock();
2317 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2318 __wakeup_flusher_threads_bdi(bdi, reason);
2319 rcu_read_unlock();
2320 }
2321
2322 /*
2323 * Wake up bdi's periodically to make sure dirtytime inodes gets
2324 * written back periodically. We deliberately do *not* check the
2325 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2326 * kernel to be constantly waking up once there are any dirtytime
2327 * inodes on the system. So instead we define a separate delayed work
2328 * function which gets called much more rarely. (By default, only
2329 * once every 12 hours.)
2330 *
2331 * If there is any other write activity going on in the file system,
2332 * this function won't be necessary. But if the only thing that has
2333 * happened on the file system is a dirtytime inode caused by an atime
2334 * update, we need this infrastructure below to make sure that inode
2335 * eventually gets pushed out to disk.
2336 */
2337 static void wakeup_dirtytime_writeback(struct work_struct *w);
2338 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2339
wakeup_dirtytime_writeback(struct work_struct * w)2340 static void wakeup_dirtytime_writeback(struct work_struct *w)
2341 {
2342 struct backing_dev_info *bdi;
2343
2344 rcu_read_lock();
2345 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2346 struct bdi_writeback *wb;
2347
2348 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2349 if (!list_empty(&wb->b_dirty_time))
2350 wb_wakeup(wb);
2351 }
2352 rcu_read_unlock();
2353 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2354 }
2355
start_dirtytime_writeback(void)2356 static int __init start_dirtytime_writeback(void)
2357 {
2358 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2359 return 0;
2360 }
2361 __initcall(start_dirtytime_writeback);
2362
dirtytime_interval_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2363 int dirtytime_interval_handler(struct ctl_table *table, int write,
2364 void *buffer, size_t *lenp, loff_t *ppos)
2365 {
2366 int ret;
2367
2368 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2369 if (ret == 0 && write)
2370 mod_delayed_work(system_wq, &dirtytime_work, 0);
2371 return ret;
2372 }
2373
2374 /**
2375 * __mark_inode_dirty - internal function to mark an inode dirty
2376 *
2377 * @inode: inode to mark
2378 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
2379 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2380 * with I_DIRTY_PAGES.
2381 *
2382 * Mark an inode as dirty. We notify the filesystem, then update the inode's
2383 * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
2384 *
2385 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2386 * instead of calling this directly.
2387 *
2388 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
2389 * refers to a blockdev. Unhashed inodes will never be added to the dirty list
2390 * even if they are later hashed, as they will have been marked dirty already.
2391 *
2392 * In short, ensure you hash any inodes _before_ you start marking them dirty.
2393 *
2394 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2395 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2396 * the kernel-internal blockdev inode represents the dirtying time of the
2397 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2398 * page->mapping->host, so the page-dirtying time is recorded in the internal
2399 * blockdev inode.
2400 */
__mark_inode_dirty(struct inode * inode,int flags)2401 void __mark_inode_dirty(struct inode *inode, int flags)
2402 {
2403 struct super_block *sb = inode->i_sb;
2404 int dirtytime = 0;
2405 struct bdi_writeback *wb = NULL;
2406
2407 trace_writeback_mark_inode_dirty(inode, flags);
2408
2409 if (flags & I_DIRTY_INODE) {
2410 /*
2411 * Inode timestamp update will piggback on this dirtying.
2412 * We tell ->dirty_inode callback that timestamps need to
2413 * be updated by setting I_DIRTY_TIME in flags.
2414 */
2415 if (inode->i_state & I_DIRTY_TIME) {
2416 spin_lock(&inode->i_lock);
2417 if (inode->i_state & I_DIRTY_TIME) {
2418 inode->i_state &= ~I_DIRTY_TIME;
2419 flags |= I_DIRTY_TIME;
2420 }
2421 spin_unlock(&inode->i_lock);
2422 }
2423
2424 /*
2425 * Notify the filesystem about the inode being dirtied, so that
2426 * (if needed) it can update on-disk fields and journal the
2427 * inode. This is only needed when the inode itself is being
2428 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
2429 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2430 */
2431 trace_writeback_dirty_inode_start(inode, flags);
2432 if (sb->s_op->dirty_inode)
2433 sb->s_op->dirty_inode(inode,
2434 flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2435 trace_writeback_dirty_inode(inode, flags);
2436
2437 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2438 flags &= ~I_DIRTY_TIME;
2439 } else {
2440 /*
2441 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2442 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2443 * in one call to __mark_inode_dirty().)
2444 */
2445 dirtytime = flags & I_DIRTY_TIME;
2446 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2447 }
2448
2449 /*
2450 * Paired with smp_mb() in __writeback_single_inode() for the
2451 * following lockless i_state test. See there for details.
2452 */
2453 smp_mb();
2454
2455 if ((inode->i_state & flags) == flags)
2456 return;
2457
2458 spin_lock(&inode->i_lock);
2459 if ((inode->i_state & flags) != flags) {
2460 const int was_dirty = inode->i_state & I_DIRTY;
2461
2462 inode_attach_wb(inode, NULL);
2463
2464 inode->i_state |= flags;
2465
2466 /*
2467 * Grab inode's wb early because it requires dropping i_lock and we
2468 * need to make sure following checks happen atomically with dirty
2469 * list handling so that we don't move inodes under flush worker's
2470 * hands.
2471 */
2472 if (!was_dirty) {
2473 wb = locked_inode_to_wb_and_lock_list(inode);
2474 spin_lock(&inode->i_lock);
2475 }
2476
2477 /*
2478 * If the inode is queued for writeback by flush worker, just
2479 * update its dirty state. Once the flush worker is done with
2480 * the inode it will place it on the appropriate superblock
2481 * list, based upon its state.
2482 */
2483 if (inode->i_state & I_SYNC_QUEUED)
2484 goto out_unlock;
2485
2486 /*
2487 * Only add valid (hashed) inodes to the superblock's
2488 * dirty list. Add blockdev inodes as well.
2489 */
2490 if (!S_ISBLK(inode->i_mode)) {
2491 if (inode_unhashed(inode))
2492 goto out_unlock;
2493 }
2494 if (inode->i_state & I_FREEING)
2495 goto out_unlock;
2496
2497 /*
2498 * If the inode was already on b_dirty/b_io/b_more_io, don't
2499 * reposition it (that would break b_dirty time-ordering).
2500 */
2501 if (!was_dirty) {
2502 struct list_head *dirty_list;
2503 bool wakeup_bdi = false;
2504
2505 inode->dirtied_when = jiffies;
2506 if (dirtytime)
2507 inode->dirtied_time_when = jiffies;
2508
2509 if (inode->i_state & I_DIRTY)
2510 dirty_list = &wb->b_dirty;
2511 else
2512 dirty_list = &wb->b_dirty_time;
2513
2514 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2515 dirty_list);
2516
2517 spin_unlock(&wb->list_lock);
2518 spin_unlock(&inode->i_lock);
2519 trace_writeback_dirty_inode_enqueue(inode);
2520
2521 /*
2522 * If this is the first dirty inode for this bdi,
2523 * we have to wake-up the corresponding bdi thread
2524 * to make sure background write-back happens
2525 * later.
2526 */
2527 if (wakeup_bdi &&
2528 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2529 wb_wakeup_delayed(wb);
2530 return;
2531 }
2532 }
2533 out_unlock:
2534 if (wb)
2535 spin_unlock(&wb->list_lock);
2536 spin_unlock(&inode->i_lock);
2537 }
2538 EXPORT_SYMBOL(__mark_inode_dirty);
2539
2540 /*
2541 * The @s_sync_lock is used to serialise concurrent sync operations
2542 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2543 * Concurrent callers will block on the s_sync_lock rather than doing contending
2544 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2545 * has been issued up to the time this function is enter is guaranteed to be
2546 * completed by the time we have gained the lock and waited for all IO that is
2547 * in progress regardless of the order callers are granted the lock.
2548 */
wait_sb_inodes(struct super_block * sb)2549 static void wait_sb_inodes(struct super_block *sb)
2550 {
2551 LIST_HEAD(sync_list);
2552
2553 /*
2554 * We need to be protected against the filesystem going from
2555 * r/o to r/w or vice versa.
2556 */
2557 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2558
2559 mutex_lock(&sb->s_sync_lock);
2560
2561 /*
2562 * Splice the writeback list onto a temporary list to avoid waiting on
2563 * inodes that have started writeback after this point.
2564 *
2565 * Use rcu_read_lock() to keep the inodes around until we have a
2566 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2567 * the local list because inodes can be dropped from either by writeback
2568 * completion.
2569 */
2570 rcu_read_lock();
2571 spin_lock_irq(&sb->s_inode_wblist_lock);
2572 list_splice_init(&sb->s_inodes_wb, &sync_list);
2573
2574 /*
2575 * Data integrity sync. Must wait for all pages under writeback, because
2576 * there may have been pages dirtied before our sync call, but which had
2577 * writeout started before we write it out. In which case, the inode
2578 * may not be on the dirty list, but we still have to wait for that
2579 * writeout.
2580 */
2581 while (!list_empty(&sync_list)) {
2582 struct inode *inode = list_first_entry(&sync_list, struct inode,
2583 i_wb_list);
2584 struct address_space *mapping = inode->i_mapping;
2585
2586 /*
2587 * Move each inode back to the wb list before we drop the lock
2588 * to preserve consistency between i_wb_list and the mapping
2589 * writeback tag. Writeback completion is responsible to remove
2590 * the inode from either list once the writeback tag is cleared.
2591 */
2592 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2593
2594 /*
2595 * The mapping can appear untagged while still on-list since we
2596 * do not have the mapping lock. Skip it here, wb completion
2597 * will remove it.
2598 */
2599 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2600 continue;
2601
2602 spin_unlock_irq(&sb->s_inode_wblist_lock);
2603
2604 spin_lock(&inode->i_lock);
2605 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2606 spin_unlock(&inode->i_lock);
2607
2608 spin_lock_irq(&sb->s_inode_wblist_lock);
2609 continue;
2610 }
2611 __iget(inode);
2612 spin_unlock(&inode->i_lock);
2613 rcu_read_unlock();
2614
2615 /*
2616 * We keep the error status of individual mapping so that
2617 * applications can catch the writeback error using fsync(2).
2618 * See filemap_fdatawait_keep_errors() for details.
2619 */
2620 filemap_fdatawait_keep_errors(mapping);
2621
2622 cond_resched();
2623
2624 iput(inode);
2625
2626 rcu_read_lock();
2627 spin_lock_irq(&sb->s_inode_wblist_lock);
2628 }
2629 spin_unlock_irq(&sb->s_inode_wblist_lock);
2630 rcu_read_unlock();
2631 mutex_unlock(&sb->s_sync_lock);
2632 }
2633
__writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason,bool skip_if_busy)2634 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2635 enum wb_reason reason, bool skip_if_busy)
2636 {
2637 struct backing_dev_info *bdi = sb->s_bdi;
2638 DEFINE_WB_COMPLETION(done, bdi);
2639 struct wb_writeback_work work = {
2640 .sb = sb,
2641 .sync_mode = WB_SYNC_NONE,
2642 .tagged_writepages = 1,
2643 .done = &done,
2644 .nr_pages = nr,
2645 .reason = reason,
2646 };
2647
2648 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2649 return;
2650 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2651
2652 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2653 wb_wait_for_completion(&done);
2654 }
2655
2656 /**
2657 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2658 * @sb: the superblock
2659 * @nr: the number of pages to write
2660 * @reason: reason why some writeback work initiated
2661 *
2662 * Start writeback on some inodes on this super_block. No guarantees are made
2663 * on how many (if any) will be written, and this function does not wait
2664 * for IO completion of submitted IO.
2665 */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2666 void writeback_inodes_sb_nr(struct super_block *sb,
2667 unsigned long nr,
2668 enum wb_reason reason)
2669 {
2670 __writeback_inodes_sb_nr(sb, nr, reason, false);
2671 }
2672 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2673
2674 /**
2675 * writeback_inodes_sb - writeback dirty inodes from given super_block
2676 * @sb: the superblock
2677 * @reason: reason why some writeback work was initiated
2678 *
2679 * Start writeback on some inodes on this super_block. No guarantees are made
2680 * on how many (if any) will be written, and this function does not wait
2681 * for IO completion of submitted IO.
2682 */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2683 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2684 {
2685 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2686 }
2687 EXPORT_SYMBOL(writeback_inodes_sb);
2688
2689 /**
2690 * try_to_writeback_inodes_sb - try to start writeback if none underway
2691 * @sb: the superblock
2692 * @reason: reason why some writeback work was initiated
2693 *
2694 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2695 */
try_to_writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2696 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2697 {
2698 if (!down_read_trylock(&sb->s_umount))
2699 return;
2700
2701 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2702 up_read(&sb->s_umount);
2703 }
2704 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2705
2706 /**
2707 * sync_inodes_sb - sync sb inode pages
2708 * @sb: the superblock
2709 *
2710 * This function writes and waits on any dirty inode belonging to this
2711 * super_block.
2712 */
sync_inodes_sb(struct super_block * sb)2713 void sync_inodes_sb(struct super_block *sb)
2714 {
2715 struct backing_dev_info *bdi = sb->s_bdi;
2716 DEFINE_WB_COMPLETION(done, bdi);
2717 struct wb_writeback_work work = {
2718 .sb = sb,
2719 .sync_mode = WB_SYNC_ALL,
2720 .nr_pages = LONG_MAX,
2721 .range_cyclic = 0,
2722 .done = &done,
2723 .reason = WB_REASON_SYNC,
2724 .for_sync = 1,
2725 };
2726
2727 /*
2728 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2729 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2730 * bdi_has_dirty() need to be written out too.
2731 */
2732 if (bdi == &noop_backing_dev_info)
2733 return;
2734 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2735
2736 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2737 bdi_down_write_wb_switch_rwsem(bdi);
2738 bdi_split_work_to_wbs(bdi, &work, false);
2739 wb_wait_for_completion(&done);
2740 bdi_up_write_wb_switch_rwsem(bdi);
2741
2742 wait_sb_inodes(sb);
2743 }
2744 EXPORT_SYMBOL(sync_inodes_sb);
2745
2746 /**
2747 * write_inode_now - write an inode to disk
2748 * @inode: inode to write to disk
2749 * @sync: whether the write should be synchronous or not
2750 *
2751 * This function commits an inode to disk immediately if it is dirty. This is
2752 * primarily needed by knfsd.
2753 *
2754 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2755 */
write_inode_now(struct inode * inode,int sync)2756 int write_inode_now(struct inode *inode, int sync)
2757 {
2758 struct writeback_control wbc = {
2759 .nr_to_write = LONG_MAX,
2760 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2761 .range_start = 0,
2762 .range_end = LLONG_MAX,
2763 };
2764
2765 if (!mapping_can_writeback(inode->i_mapping))
2766 wbc.nr_to_write = 0;
2767
2768 might_sleep();
2769 return writeback_single_inode(inode, &wbc);
2770 }
2771 EXPORT_SYMBOL(write_inode_now);
2772
2773 /**
2774 * sync_inode_metadata - write an inode to disk
2775 * @inode: the inode to sync
2776 * @wait: wait for I/O to complete.
2777 *
2778 * Write an inode to disk and adjust its dirty state after completion.
2779 *
2780 * Note: only writes the actual inode, no associated data or other metadata.
2781 */
sync_inode_metadata(struct inode * inode,int wait)2782 int sync_inode_metadata(struct inode *inode, int wait)
2783 {
2784 struct writeback_control wbc = {
2785 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2786 .nr_to_write = 0, /* metadata-only */
2787 };
2788
2789 return writeback_single_inode(inode, &wbc);
2790 }
2791 EXPORT_SYMBOL(sync_inode_metadata);
2792