• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002	Andrew Morton
13  *		Split out of fs/inode.c
14  *		Additions for address_space-based writeback
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33 
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38 
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43 	long nr_pages;
44 	struct super_block *sb;
45 	enum writeback_sync_modes sync_mode;
46 	unsigned int tagged_writepages:1;
47 	unsigned int for_kupdate:1;
48 	unsigned int range_cyclic:1;
49 	unsigned int for_background:1;
50 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
51 	unsigned int auto_free:1;	/* free on completion */
52 	enum wb_reason reason;		/* why was writeback initiated? */
53 
54 	struct list_head list;		/* pending work list */
55 	struct wb_completion *done;	/* set if the caller waits */
56 };
57 
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69 
wb_inode(struct list_head * head)70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 	return list_entry(head, struct inode, i_io_list);
73 }
74 
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82 
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84 
wb_io_lists_populated(struct bdi_writeback * wb)85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 	if (wb_has_dirty_io(wb)) {
88 		return false;
89 	} else {
90 		set_bit(WB_has_dirty_io, &wb->state);
91 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 		atomic_long_add(wb->avg_write_bandwidth,
93 				&wb->bdi->tot_write_bandwidth);
94 		return true;
95 	}
96 }
97 
wb_io_lists_depopulated(struct bdi_writeback * wb)98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 		clear_bit(WB_has_dirty_io, &wb->state);
103 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 					&wb->bdi->tot_write_bandwidth) < 0);
105 	}
106 }
107 
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
inode_io_list_move_locked(struct inode * inode,struct bdi_writeback * wb,struct list_head * head)118 static bool inode_io_list_move_locked(struct inode *inode,
119 				      struct bdi_writeback *wb,
120 				      struct list_head *head)
121 {
122 	assert_spin_locked(&wb->list_lock);
123 	assert_spin_locked(&inode->i_lock);
124 
125 	list_move(&inode->i_io_list, head);
126 
127 	/* dirty_time doesn't count as dirty_io until expiration */
128 	if (head != &wb->b_dirty_time)
129 		return wb_io_lists_populated(wb);
130 
131 	wb_io_lists_depopulated(wb);
132 	return false;
133 }
134 
wb_wakeup(struct bdi_writeback * wb)135 static void wb_wakeup(struct bdi_writeback *wb)
136 {
137 	spin_lock_irq(&wb->work_lock);
138 	if (test_bit(WB_registered, &wb->state))
139 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
140 	spin_unlock_irq(&wb->work_lock);
141 }
142 
finish_writeback_work(struct bdi_writeback * wb,struct wb_writeback_work * work)143 static void finish_writeback_work(struct bdi_writeback *wb,
144 				  struct wb_writeback_work *work)
145 {
146 	struct wb_completion *done = work->done;
147 
148 	if (work->auto_free)
149 		kfree(work);
150 	if (done) {
151 		wait_queue_head_t *waitq = done->waitq;
152 
153 		/* @done can't be accessed after the following dec */
154 		if (atomic_dec_and_test(&done->cnt))
155 			wake_up_all(waitq);
156 	}
157 }
158 
wb_queue_work(struct bdi_writeback * wb,struct wb_writeback_work * work)159 static void wb_queue_work(struct bdi_writeback *wb,
160 			  struct wb_writeback_work *work)
161 {
162 	trace_writeback_queue(wb, work);
163 
164 	if (work->done)
165 		atomic_inc(&work->done->cnt);
166 
167 	spin_lock_irq(&wb->work_lock);
168 
169 	if (test_bit(WB_registered, &wb->state)) {
170 		list_add_tail(&work->list, &wb->work_list);
171 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
172 	} else
173 		finish_writeback_work(wb, work);
174 
175 	spin_unlock_irq(&wb->work_lock);
176 }
177 
178 /**
179  * wb_wait_for_completion - wait for completion of bdi_writeback_works
180  * @done: target wb_completion
181  *
182  * Wait for one or more work items issued to @bdi with their ->done field
183  * set to @done, which should have been initialized with
184  * DEFINE_WB_COMPLETION().  This function returns after all such work items
185  * are completed.  Work items which are waited upon aren't freed
186  * automatically on completion.
187  */
wb_wait_for_completion(struct wb_completion * done)188 void wb_wait_for_completion(struct wb_completion *done)
189 {
190 	atomic_dec(&done->cnt);		/* put down the initial count */
191 	wait_event(*done->waitq, !atomic_read(&done->cnt));
192 }
193 
194 #ifdef CONFIG_CGROUP_WRITEBACK
195 
196 /*
197  * Parameters for foreign inode detection, see wbc_detach_inode() to see
198  * how they're used.
199  *
200  * These paramters are inherently heuristical as the detection target
201  * itself is fuzzy.  All we want to do is detaching an inode from the
202  * current owner if it's being written to by some other cgroups too much.
203  *
204  * The current cgroup writeback is built on the assumption that multiple
205  * cgroups writing to the same inode concurrently is very rare and a mode
206  * of operation which isn't well supported.  As such, the goal is not
207  * taking too long when a different cgroup takes over an inode while
208  * avoiding too aggressive flip-flops from occasional foreign writes.
209  *
210  * We record, very roughly, 2s worth of IO time history and if more than
211  * half of that is foreign, trigger the switch.  The recording is quantized
212  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
213  * writes smaller than 1/8 of avg size are ignored.
214  */
215 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
216 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
217 #define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
218 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
219 
220 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
221 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
222 					/* each slot's duration is 2s / 16 */
223 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
224 					/* if foreign slots >= 8, switch */
225 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
226 					/* one round can affect upto 5 slots */
227 #define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
228 
229 /*
230  * Maximum inodes per isw.  A specific value has been chosen to make
231  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
232  */
233 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
234                                 / sizeof(struct inode *))
235 
236 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
237 static struct workqueue_struct *isw_wq;
238 
__inode_attach_wb(struct inode * inode,struct page * page)239 void __inode_attach_wb(struct inode *inode, struct page *page)
240 {
241 	struct backing_dev_info *bdi = inode_to_bdi(inode);
242 	struct bdi_writeback *wb = NULL;
243 
244 	if (inode_cgwb_enabled(inode)) {
245 		struct cgroup_subsys_state *memcg_css;
246 
247 		if (page) {
248 			memcg_css = mem_cgroup_css_from_page(page);
249 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
250 		} else {
251 			/* must pin memcg_css, see wb_get_create() */
252 			memcg_css = task_get_css(current, memory_cgrp_id);
253 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254 			css_put(memcg_css);
255 		}
256 	}
257 
258 	if (!wb)
259 		wb = &bdi->wb;
260 
261 	/*
262 	 * There may be multiple instances of this function racing to
263 	 * update the same inode.  Use cmpxchg() to tell the winner.
264 	 */
265 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
266 		wb_put(wb);
267 }
268 EXPORT_SYMBOL_GPL(__inode_attach_wb);
269 
270 /**
271  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
272  * @inode: inode of interest with i_lock held
273  * @wb: target bdi_writeback
274  *
275  * Remove the inode from wb's io lists and if necessarily put onto b_attached
276  * list.  Only inodes attached to cgwb's are kept on this list.
277  */
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)278 static void inode_cgwb_move_to_attached(struct inode *inode,
279 					struct bdi_writeback *wb)
280 {
281 	assert_spin_locked(&wb->list_lock);
282 	assert_spin_locked(&inode->i_lock);
283 
284 	inode->i_state &= ~I_SYNC_QUEUED;
285 	if (wb != &wb->bdi->wb)
286 		list_move(&inode->i_io_list, &wb->b_attached);
287 	else
288 		list_del_init(&inode->i_io_list);
289 	wb_io_lists_depopulated(wb);
290 }
291 
292 /**
293  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
294  * @inode: inode of interest with i_lock held
295  *
296  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
297  * held on entry and is released on return.  The returned wb is guaranteed
298  * to stay @inode's associated wb until its list_lock is released.
299  */
300 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)301 locked_inode_to_wb_and_lock_list(struct inode *inode)
302 	__releases(&inode->i_lock)
303 	__acquires(&wb->list_lock)
304 {
305 	while (true) {
306 		struct bdi_writeback *wb = inode_to_wb(inode);
307 
308 		/*
309 		 * inode_to_wb() association is protected by both
310 		 * @inode->i_lock and @wb->list_lock but list_lock nests
311 		 * outside i_lock.  Drop i_lock and verify that the
312 		 * association hasn't changed after acquiring list_lock.
313 		 */
314 		wb_get(wb);
315 		spin_unlock(&inode->i_lock);
316 		spin_lock(&wb->list_lock);
317 
318 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
319 		if (likely(wb == inode->i_wb)) {
320 			wb_put(wb);	/* @inode already has ref */
321 			return wb;
322 		}
323 
324 		spin_unlock(&wb->list_lock);
325 		wb_put(wb);
326 		cpu_relax();
327 		spin_lock(&inode->i_lock);
328 	}
329 }
330 
331 /**
332  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
333  * @inode: inode of interest
334  *
335  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
336  * on entry.
337  */
inode_to_wb_and_lock_list(struct inode * inode)338 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
339 	__acquires(&wb->list_lock)
340 {
341 	spin_lock(&inode->i_lock);
342 	return locked_inode_to_wb_and_lock_list(inode);
343 }
344 
345 struct inode_switch_wbs_context {
346 	struct rcu_work		work;
347 
348 	/*
349 	 * Multiple inodes can be switched at once.  The switching procedure
350 	 * consists of two parts, separated by a RCU grace period.  To make
351 	 * sure that the second part is executed for each inode gone through
352 	 * the first part, all inode pointers are placed into a NULL-terminated
353 	 * array embedded into struct inode_switch_wbs_context.  Otherwise
354 	 * an inode could be left in a non-consistent state.
355 	 */
356 	struct bdi_writeback	*new_wb;
357 	struct inode		*inodes[];
358 };
359 
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)360 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
361 {
362 	down_write(&bdi->wb_switch_rwsem);
363 }
364 
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)365 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
366 {
367 	up_write(&bdi->wb_switch_rwsem);
368 }
369 
inode_do_switch_wbs(struct inode * inode,struct bdi_writeback * old_wb,struct bdi_writeback * new_wb)370 static bool inode_do_switch_wbs(struct inode *inode,
371 				struct bdi_writeback *old_wb,
372 				struct bdi_writeback *new_wb)
373 {
374 	struct address_space *mapping = inode->i_mapping;
375 	XA_STATE(xas, &mapping->i_pages, 0);
376 	struct folio *folio;
377 	bool switched = false;
378 
379 	spin_lock(&inode->i_lock);
380 	xa_lock_irq(&mapping->i_pages);
381 
382 	/*
383 	 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
384 	 * path owns the inode and we shouldn't modify ->i_io_list.
385 	 */
386 	if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
387 		goto skip_switch;
388 
389 	trace_inode_switch_wbs(inode, old_wb, new_wb);
390 
391 	/*
392 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
393 	 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
394 	 * folios actually under writeback.
395 	 */
396 	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
397 		if (folio_test_dirty(folio)) {
398 			long nr = folio_nr_pages(folio);
399 			wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
400 			wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
401 		}
402 	}
403 
404 	xas_set(&xas, 0);
405 	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
406 		long nr = folio_nr_pages(folio);
407 		WARN_ON_ONCE(!folio_test_writeback(folio));
408 		wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
409 		wb_stat_mod(new_wb, WB_WRITEBACK, nr);
410 	}
411 
412 	if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
413 		atomic_dec(&old_wb->writeback_inodes);
414 		atomic_inc(&new_wb->writeback_inodes);
415 	}
416 
417 	wb_get(new_wb);
418 
419 	/*
420 	 * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
421 	 * the specific list @inode was on is ignored and the @inode is put on
422 	 * ->b_dirty which is always correct including from ->b_dirty_time.
423 	 * The transfer preserves @inode->dirtied_when ordering.  If the @inode
424 	 * was clean, it means it was on the b_attached list, so move it onto
425 	 * the b_attached list of @new_wb.
426 	 */
427 	if (!list_empty(&inode->i_io_list)) {
428 		inode->i_wb = new_wb;
429 
430 		if (inode->i_state & I_DIRTY_ALL) {
431 			struct inode *pos;
432 
433 			list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
434 				if (time_after_eq(inode->dirtied_when,
435 						  pos->dirtied_when))
436 					break;
437 			inode_io_list_move_locked(inode, new_wb,
438 						  pos->i_io_list.prev);
439 		} else {
440 			inode_cgwb_move_to_attached(inode, new_wb);
441 		}
442 	} else {
443 		inode->i_wb = new_wb;
444 	}
445 
446 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
447 	inode->i_wb_frn_winner = 0;
448 	inode->i_wb_frn_avg_time = 0;
449 	inode->i_wb_frn_history = 0;
450 	switched = true;
451 skip_switch:
452 	/*
453 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
454 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
455 	 */
456 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
457 
458 	xa_unlock_irq(&mapping->i_pages);
459 	spin_unlock(&inode->i_lock);
460 
461 	return switched;
462 }
463 
inode_switch_wbs_work_fn(struct work_struct * work)464 static void inode_switch_wbs_work_fn(struct work_struct *work)
465 {
466 	struct inode_switch_wbs_context *isw =
467 		container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
468 	struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
469 	struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
470 	struct bdi_writeback *new_wb = isw->new_wb;
471 	unsigned long nr_switched = 0;
472 	struct inode **inodep;
473 
474 	/*
475 	 * If @inode switches cgwb membership while sync_inodes_sb() is
476 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
477 	 */
478 	down_read(&bdi->wb_switch_rwsem);
479 
480 	/*
481 	 * By the time control reaches here, RCU grace period has passed
482 	 * since I_WB_SWITCH assertion and all wb stat update transactions
483 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
484 	 * synchronizing against the i_pages lock.
485 	 *
486 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
487 	 * gives us exclusion against all wb related operations on @inode
488 	 * including IO list manipulations and stat updates.
489 	 */
490 	if (old_wb < new_wb) {
491 		spin_lock(&old_wb->list_lock);
492 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
493 	} else {
494 		spin_lock(&new_wb->list_lock);
495 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
496 	}
497 
498 	for (inodep = isw->inodes; *inodep; inodep++) {
499 		WARN_ON_ONCE((*inodep)->i_wb != old_wb);
500 		if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
501 			nr_switched++;
502 	}
503 
504 	spin_unlock(&new_wb->list_lock);
505 	spin_unlock(&old_wb->list_lock);
506 
507 	up_read(&bdi->wb_switch_rwsem);
508 
509 	if (nr_switched) {
510 		wb_wakeup(new_wb);
511 		wb_put_many(old_wb, nr_switched);
512 	}
513 
514 	for (inodep = isw->inodes; *inodep; inodep++)
515 		iput(*inodep);
516 	wb_put(new_wb);
517 	kfree(isw);
518 	atomic_dec(&isw_nr_in_flight);
519 }
520 
inode_prepare_wbs_switch(struct inode * inode,struct bdi_writeback * new_wb)521 static bool inode_prepare_wbs_switch(struct inode *inode,
522 				     struct bdi_writeback *new_wb)
523 {
524 	/*
525 	 * Paired with smp_mb() in cgroup_writeback_umount().
526 	 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
527 	 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
528 	 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
529 	 */
530 	smp_mb();
531 
532 	if (IS_DAX(inode))
533 		return false;
534 
535 	/* while holding I_WB_SWITCH, no one else can update the association */
536 	spin_lock(&inode->i_lock);
537 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
538 	    inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
539 	    inode_to_wb(inode) == new_wb) {
540 		spin_unlock(&inode->i_lock);
541 		return false;
542 	}
543 	inode->i_state |= I_WB_SWITCH;
544 	__iget(inode);
545 	spin_unlock(&inode->i_lock);
546 
547 	return true;
548 }
549 
550 /**
551  * inode_switch_wbs - change the wb association of an inode
552  * @inode: target inode
553  * @new_wb_id: ID of the new wb
554  *
555  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
556  * switching is performed asynchronously and may fail silently.
557  */
inode_switch_wbs(struct inode * inode,int new_wb_id)558 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
559 {
560 	struct backing_dev_info *bdi = inode_to_bdi(inode);
561 	struct cgroup_subsys_state *memcg_css;
562 	struct inode_switch_wbs_context *isw;
563 
564 	/* noop if seems to be already in progress */
565 	if (inode->i_state & I_WB_SWITCH)
566 		return;
567 
568 	/* avoid queueing a new switch if too many are already in flight */
569 	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
570 		return;
571 
572 	isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
573 	if (!isw)
574 		return;
575 
576 	atomic_inc(&isw_nr_in_flight);
577 
578 	/* find and pin the new wb */
579 	rcu_read_lock();
580 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
581 	if (memcg_css && !css_tryget(memcg_css))
582 		memcg_css = NULL;
583 	rcu_read_unlock();
584 	if (!memcg_css)
585 		goto out_free;
586 
587 	isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
588 	css_put(memcg_css);
589 	if (!isw->new_wb)
590 		goto out_free;
591 
592 	if (!inode_prepare_wbs_switch(inode, isw->new_wb))
593 		goto out_free;
594 
595 	isw->inodes[0] = inode;
596 
597 	/*
598 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
599 	 * the RCU protected stat update paths to grab the i_page
600 	 * lock so that stat transfer can synchronize against them.
601 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
602 	 */
603 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
604 	queue_rcu_work(isw_wq, &isw->work);
605 	return;
606 
607 out_free:
608 	atomic_dec(&isw_nr_in_flight);
609 	if (isw->new_wb)
610 		wb_put(isw->new_wb);
611 	kfree(isw);
612 }
613 
isw_prepare_wbs_switch(struct inode_switch_wbs_context * isw,struct list_head * list,int * nr)614 static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw,
615 				   struct list_head *list, int *nr)
616 {
617 	struct inode *inode;
618 
619 	list_for_each_entry(inode, list, i_io_list) {
620 		if (!inode_prepare_wbs_switch(inode, isw->new_wb))
621 			continue;
622 
623 		isw->inodes[*nr] = inode;
624 		(*nr)++;
625 
626 		if (*nr >= WB_MAX_INODES_PER_ISW - 1)
627 			return true;
628 	}
629 	return false;
630 }
631 
632 /**
633  * cleanup_offline_cgwb - detach associated inodes
634  * @wb: target wb
635  *
636  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
637  * to eventually release the dying @wb.  Returns %true if not all inodes were
638  * switched and the function has to be restarted.
639  */
cleanup_offline_cgwb(struct bdi_writeback * wb)640 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
641 {
642 	struct cgroup_subsys_state *memcg_css;
643 	struct inode_switch_wbs_context *isw;
644 	int nr;
645 	bool restart = false;
646 
647 	isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
648 		      GFP_KERNEL);
649 	if (!isw)
650 		return restart;
651 
652 	atomic_inc(&isw_nr_in_flight);
653 
654 	for (memcg_css = wb->memcg_css->parent; memcg_css;
655 	     memcg_css = memcg_css->parent) {
656 		isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
657 		if (isw->new_wb)
658 			break;
659 	}
660 	if (unlikely(!isw->new_wb))
661 		isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
662 
663 	nr = 0;
664 	spin_lock(&wb->list_lock);
665 	/*
666 	 * In addition to the inodes that have completed writeback, also switch
667 	 * cgwbs for those inodes only with dirty timestamps. Otherwise, those
668 	 * inodes won't be written back for a long time when lazytime is
669 	 * enabled, and thus pinning the dying cgwbs. It won't break the
670 	 * bandwidth restrictions, as writeback of inode metadata is not
671 	 * accounted for.
672 	 */
673 	restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr);
674 	if (!restart)
675 		restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr);
676 	spin_unlock(&wb->list_lock);
677 
678 	/* no attached inodes? bail out */
679 	if (nr == 0) {
680 		atomic_dec(&isw_nr_in_flight);
681 		wb_put(isw->new_wb);
682 		kfree(isw);
683 		return restart;
684 	}
685 
686 	/*
687 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
688 	 * the RCU protected stat update paths to grab the i_page
689 	 * lock so that stat transfer can synchronize against them.
690 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
691 	 */
692 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
693 	queue_rcu_work(isw_wq, &isw->work);
694 
695 	return restart;
696 }
697 
698 /**
699  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
700  * @wbc: writeback_control of interest
701  * @inode: target inode
702  *
703  * @inode is locked and about to be written back under the control of @wbc.
704  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
705  * writeback completion, wbc_detach_inode() should be called.  This is used
706  * to track the cgroup writeback context.
707  */
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)708 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
709 				 struct inode *inode)
710 {
711 	if (!inode_cgwb_enabled(inode)) {
712 		spin_unlock(&inode->i_lock);
713 		return;
714 	}
715 
716 	wbc->wb = inode_to_wb(inode);
717 	wbc->inode = inode;
718 
719 	wbc->wb_id = wbc->wb->memcg_css->id;
720 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
721 	wbc->wb_tcand_id = 0;
722 	wbc->wb_bytes = 0;
723 	wbc->wb_lcand_bytes = 0;
724 	wbc->wb_tcand_bytes = 0;
725 
726 	wb_get(wbc->wb);
727 	spin_unlock(&inode->i_lock);
728 
729 	/*
730 	 * A dying wb indicates that either the blkcg associated with the
731 	 * memcg changed or the associated memcg is dying.  In the first
732 	 * case, a replacement wb should already be available and we should
733 	 * refresh the wb immediately.  In the second case, trying to
734 	 * refresh will keep failing.
735 	 */
736 	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
737 		inode_switch_wbs(inode, wbc->wb_id);
738 }
739 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
740 
741 /**
742  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
743  * @wbc: writeback_control of the just finished writeback
744  *
745  * To be called after a writeback attempt of an inode finishes and undoes
746  * wbc_attach_and_unlock_inode().  Can be called under any context.
747  *
748  * As concurrent write sharing of an inode is expected to be very rare and
749  * memcg only tracks page ownership on first-use basis severely confining
750  * the usefulness of such sharing, cgroup writeback tracks ownership
751  * per-inode.  While the support for concurrent write sharing of an inode
752  * is deemed unnecessary, an inode being written to by different cgroups at
753  * different points in time is a lot more common, and, more importantly,
754  * charging only by first-use can too readily lead to grossly incorrect
755  * behaviors (single foreign page can lead to gigabytes of writeback to be
756  * incorrectly attributed).
757  *
758  * To resolve this issue, cgroup writeback detects the majority dirtier of
759  * an inode and transfers the ownership to it.  To avoid unnecessary
760  * oscillation, the detection mechanism keeps track of history and gives
761  * out the switch verdict only if the foreign usage pattern is stable over
762  * a certain amount of time and/or writeback attempts.
763  *
764  * On each writeback attempt, @wbc tries to detect the majority writer
765  * using Boyer-Moore majority vote algorithm.  In addition to the byte
766  * count from the majority voting, it also counts the bytes written for the
767  * current wb and the last round's winner wb (max of last round's current
768  * wb, the winner from two rounds ago, and the last round's majority
769  * candidate).  Keeping track of the historical winner helps the algorithm
770  * to semi-reliably detect the most active writer even when it's not the
771  * absolute majority.
772  *
773  * Once the winner of the round is determined, whether the winner is
774  * foreign or not and how much IO time the round consumed is recorded in
775  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
776  * over a certain threshold, the switch verdict is given.
777  */
wbc_detach_inode(struct writeback_control * wbc)778 void wbc_detach_inode(struct writeback_control *wbc)
779 {
780 	struct bdi_writeback *wb = wbc->wb;
781 	struct inode *inode = wbc->inode;
782 	unsigned long avg_time, max_bytes, max_time;
783 	u16 history;
784 	int max_id;
785 
786 	if (!wb)
787 		return;
788 
789 	history = inode->i_wb_frn_history;
790 	avg_time = inode->i_wb_frn_avg_time;
791 
792 	/* pick the winner of this round */
793 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
794 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
795 		max_id = wbc->wb_id;
796 		max_bytes = wbc->wb_bytes;
797 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
798 		max_id = wbc->wb_lcand_id;
799 		max_bytes = wbc->wb_lcand_bytes;
800 	} else {
801 		max_id = wbc->wb_tcand_id;
802 		max_bytes = wbc->wb_tcand_bytes;
803 	}
804 
805 	/*
806 	 * Calculate the amount of IO time the winner consumed and fold it
807 	 * into the running average kept per inode.  If the consumed IO
808 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
809 	 * deciding whether to switch or not.  This is to prevent one-off
810 	 * small dirtiers from skewing the verdict.
811 	 */
812 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
813 				wb->avg_write_bandwidth);
814 	if (avg_time)
815 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
816 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
817 	else
818 		avg_time = max_time;	/* immediate catch up on first run */
819 
820 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
821 		int slots;
822 
823 		/*
824 		 * The switch verdict is reached if foreign wb's consume
825 		 * more than a certain proportion of IO time in a
826 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
827 		 * history mask where each bit represents one sixteenth of
828 		 * the period.  Determine the number of slots to shift into
829 		 * history from @max_time.
830 		 */
831 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
832 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
833 		history <<= slots;
834 		if (wbc->wb_id != max_id)
835 			history |= (1U << slots) - 1;
836 
837 		if (history)
838 			trace_inode_foreign_history(inode, wbc, history);
839 
840 		/*
841 		 * Switch if the current wb isn't the consistent winner.
842 		 * If there are multiple closely competing dirtiers, the
843 		 * inode may switch across them repeatedly over time, which
844 		 * is okay.  The main goal is avoiding keeping an inode on
845 		 * the wrong wb for an extended period of time.
846 		 */
847 		if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
848 			inode_switch_wbs(inode, max_id);
849 	}
850 
851 	/*
852 	 * Multiple instances of this function may race to update the
853 	 * following fields but we don't mind occassional inaccuracies.
854 	 */
855 	inode->i_wb_frn_winner = max_id;
856 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
857 	inode->i_wb_frn_history = history;
858 
859 	wb_put(wbc->wb);
860 	wbc->wb = NULL;
861 }
862 EXPORT_SYMBOL_GPL(wbc_detach_inode);
863 
864 /**
865  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
866  * @wbc: writeback_control of the writeback in progress
867  * @page: page being written out
868  * @bytes: number of bytes being written out
869  *
870  * @bytes from @page are about to written out during the writeback
871  * controlled by @wbc.  Keep the book for foreign inode detection.  See
872  * wbc_detach_inode().
873  */
wbc_account_cgroup_owner(struct writeback_control * wbc,struct page * page,size_t bytes)874 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
875 			      size_t bytes)
876 {
877 	struct cgroup_subsys_state *css;
878 	int id;
879 
880 	/*
881 	 * pageout() path doesn't attach @wbc to the inode being written
882 	 * out.  This is intentional as we don't want the function to block
883 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
884 	 * regular writeback instead of writing things out itself.
885 	 */
886 	if (!wbc->wb || wbc->no_cgroup_owner)
887 		return;
888 
889 	css = mem_cgroup_css_from_page(page);
890 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
891 	if (!(css->flags & CSS_ONLINE))
892 		return;
893 
894 	id = css->id;
895 
896 	if (id == wbc->wb_id) {
897 		wbc->wb_bytes += bytes;
898 		return;
899 	}
900 
901 	if (id == wbc->wb_lcand_id)
902 		wbc->wb_lcand_bytes += bytes;
903 
904 	/* Boyer-Moore majority vote algorithm */
905 	if (!wbc->wb_tcand_bytes)
906 		wbc->wb_tcand_id = id;
907 	if (id == wbc->wb_tcand_id)
908 		wbc->wb_tcand_bytes += bytes;
909 	else
910 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
911 }
912 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
913 
914 /**
915  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
916  * @wb: target bdi_writeback to split @nr_pages to
917  * @nr_pages: number of pages to write for the whole bdi
918  *
919  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
920  * relation to the total write bandwidth of all wb's w/ dirty inodes on
921  * @wb->bdi.
922  */
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)923 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
924 {
925 	unsigned long this_bw = wb->avg_write_bandwidth;
926 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
927 
928 	if (nr_pages == LONG_MAX)
929 		return LONG_MAX;
930 
931 	/*
932 	 * This may be called on clean wb's and proportional distribution
933 	 * may not make sense, just use the original @nr_pages in those
934 	 * cases.  In general, we wanna err on the side of writing more.
935 	 */
936 	if (!tot_bw || this_bw >= tot_bw)
937 		return nr_pages;
938 	else
939 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
940 }
941 
942 /**
943  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
944  * @bdi: target backing_dev_info
945  * @base_work: wb_writeback_work to issue
946  * @skip_if_busy: skip wb's which already have writeback in progress
947  *
948  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
949  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
950  * distributed to the busy wbs according to each wb's proportion in the
951  * total active write bandwidth of @bdi.
952  */
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)953 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
954 				  struct wb_writeback_work *base_work,
955 				  bool skip_if_busy)
956 {
957 	struct bdi_writeback *last_wb = NULL;
958 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
959 					      struct bdi_writeback, bdi_node);
960 
961 	might_sleep();
962 restart:
963 	rcu_read_lock();
964 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
965 		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
966 		struct wb_writeback_work fallback_work;
967 		struct wb_writeback_work *work;
968 		long nr_pages;
969 
970 		if (last_wb) {
971 			wb_put(last_wb);
972 			last_wb = NULL;
973 		}
974 
975 		/* SYNC_ALL writes out I_DIRTY_TIME too */
976 		if (!wb_has_dirty_io(wb) &&
977 		    (base_work->sync_mode == WB_SYNC_NONE ||
978 		     list_empty(&wb->b_dirty_time)))
979 			continue;
980 		if (skip_if_busy && writeback_in_progress(wb))
981 			continue;
982 
983 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
984 
985 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
986 		if (work) {
987 			*work = *base_work;
988 			work->nr_pages = nr_pages;
989 			work->auto_free = 1;
990 			wb_queue_work(wb, work);
991 			continue;
992 		}
993 
994 		/*
995 		 * If wb_tryget fails, the wb has been shutdown, skip it.
996 		 *
997 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
998 		 * continuing iteration from @wb after dropping and
999 		 * regrabbing rcu read lock.
1000 		 */
1001 		if (!wb_tryget(wb))
1002 			continue;
1003 
1004 		/* alloc failed, execute synchronously using on-stack fallback */
1005 		work = &fallback_work;
1006 		*work = *base_work;
1007 		work->nr_pages = nr_pages;
1008 		work->auto_free = 0;
1009 		work->done = &fallback_work_done;
1010 
1011 		wb_queue_work(wb, work);
1012 		last_wb = wb;
1013 
1014 		rcu_read_unlock();
1015 		wb_wait_for_completion(&fallback_work_done);
1016 		goto restart;
1017 	}
1018 	rcu_read_unlock();
1019 
1020 	if (last_wb)
1021 		wb_put(last_wb);
1022 }
1023 
1024 /**
1025  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1026  * @bdi_id: target bdi id
1027  * @memcg_id: target memcg css id
1028  * @reason: reason why some writeback work initiated
1029  * @done: target wb_completion
1030  *
1031  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1032  * with the specified parameters.
1033  */
cgroup_writeback_by_id(u64 bdi_id,int memcg_id,enum wb_reason reason,struct wb_completion * done)1034 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1035 			   enum wb_reason reason, struct wb_completion *done)
1036 {
1037 	struct backing_dev_info *bdi;
1038 	struct cgroup_subsys_state *memcg_css;
1039 	struct bdi_writeback *wb;
1040 	struct wb_writeback_work *work;
1041 	unsigned long dirty;
1042 	int ret;
1043 
1044 	/* lookup bdi and memcg */
1045 	bdi = bdi_get_by_id(bdi_id);
1046 	if (!bdi)
1047 		return -ENOENT;
1048 
1049 	rcu_read_lock();
1050 	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1051 	if (memcg_css && !css_tryget(memcg_css))
1052 		memcg_css = NULL;
1053 	rcu_read_unlock();
1054 	if (!memcg_css) {
1055 		ret = -ENOENT;
1056 		goto out_bdi_put;
1057 	}
1058 
1059 	/*
1060 	 * And find the associated wb.  If the wb isn't there already
1061 	 * there's nothing to flush, don't create one.
1062 	 */
1063 	wb = wb_get_lookup(bdi, memcg_css);
1064 	if (!wb) {
1065 		ret = -ENOENT;
1066 		goto out_css_put;
1067 	}
1068 
1069 	/*
1070 	 * The caller is attempting to write out most of
1071 	 * the currently dirty pages.  Let's take the current dirty page
1072 	 * count and inflate it by 25% which should be large enough to
1073 	 * flush out most dirty pages while avoiding getting livelocked by
1074 	 * concurrent dirtiers.
1075 	 *
1076 	 * BTW the memcg stats are flushed periodically and this is best-effort
1077 	 * estimation, so some potential error is ok.
1078 	 */
1079 	dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1080 	dirty = dirty * 10 / 8;
1081 
1082 	/* issue the writeback work */
1083 	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1084 	if (work) {
1085 		work->nr_pages = dirty;
1086 		work->sync_mode = WB_SYNC_NONE;
1087 		work->range_cyclic = 1;
1088 		work->reason = reason;
1089 		work->done = done;
1090 		work->auto_free = 1;
1091 		wb_queue_work(wb, work);
1092 		ret = 0;
1093 	} else {
1094 		ret = -ENOMEM;
1095 	}
1096 
1097 	wb_put(wb);
1098 out_css_put:
1099 	css_put(memcg_css);
1100 out_bdi_put:
1101 	bdi_put(bdi);
1102 	return ret;
1103 }
1104 
1105 /**
1106  * cgroup_writeback_umount - flush inode wb switches for umount
1107  *
1108  * This function is called when a super_block is about to be destroyed and
1109  * flushes in-flight inode wb switches.  An inode wb switch goes through
1110  * RCU and then workqueue, so the two need to be flushed in order to ensure
1111  * that all previously scheduled switches are finished.  As wb switches are
1112  * rare occurrences and synchronize_rcu() can take a while, perform
1113  * flushing iff wb switches are in flight.
1114  */
cgroup_writeback_umount(void)1115 void cgroup_writeback_umount(void)
1116 {
1117 	/*
1118 	 * SB_ACTIVE should be reliably cleared before checking
1119 	 * isw_nr_in_flight, see generic_shutdown_super().
1120 	 */
1121 	smp_mb();
1122 
1123 	if (atomic_read(&isw_nr_in_flight)) {
1124 		/*
1125 		 * Use rcu_barrier() to wait for all pending callbacks to
1126 		 * ensure that all in-flight wb switches are in the workqueue.
1127 		 */
1128 		rcu_barrier();
1129 		flush_workqueue(isw_wq);
1130 	}
1131 }
1132 
cgroup_writeback_init(void)1133 static int __init cgroup_writeback_init(void)
1134 {
1135 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1136 	if (!isw_wq)
1137 		return -ENOMEM;
1138 	return 0;
1139 }
1140 fs_initcall(cgroup_writeback_init);
1141 
1142 #else	/* CONFIG_CGROUP_WRITEBACK */
1143 
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)1144 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)1145 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1146 
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)1147 static void inode_cgwb_move_to_attached(struct inode *inode,
1148 					struct bdi_writeback *wb)
1149 {
1150 	assert_spin_locked(&wb->list_lock);
1151 	assert_spin_locked(&inode->i_lock);
1152 
1153 	inode->i_state &= ~I_SYNC_QUEUED;
1154 	list_del_init(&inode->i_io_list);
1155 	wb_io_lists_depopulated(wb);
1156 }
1157 
1158 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)1159 locked_inode_to_wb_and_lock_list(struct inode *inode)
1160 	__releases(&inode->i_lock)
1161 	__acquires(&wb->list_lock)
1162 {
1163 	struct bdi_writeback *wb = inode_to_wb(inode);
1164 
1165 	spin_unlock(&inode->i_lock);
1166 	spin_lock(&wb->list_lock);
1167 	return wb;
1168 }
1169 
inode_to_wb_and_lock_list(struct inode * inode)1170 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1171 	__acquires(&wb->list_lock)
1172 {
1173 	struct bdi_writeback *wb = inode_to_wb(inode);
1174 
1175 	spin_lock(&wb->list_lock);
1176 	return wb;
1177 }
1178 
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)1179 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1180 {
1181 	return nr_pages;
1182 }
1183 
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)1184 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1185 				  struct wb_writeback_work *base_work,
1186 				  bool skip_if_busy)
1187 {
1188 	might_sleep();
1189 
1190 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1191 		base_work->auto_free = 0;
1192 		wb_queue_work(&bdi->wb, base_work);
1193 	}
1194 }
1195 
1196 #endif	/* CONFIG_CGROUP_WRITEBACK */
1197 
1198 /*
1199  * Add in the number of potentially dirty inodes, because each inode
1200  * write can dirty pagecache in the underlying blockdev.
1201  */
get_nr_dirty_pages(void)1202 static unsigned long get_nr_dirty_pages(void)
1203 {
1204 	return global_node_page_state(NR_FILE_DIRTY) +
1205 		get_nr_dirty_inodes();
1206 }
1207 
wb_start_writeback(struct bdi_writeback * wb,enum wb_reason reason)1208 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1209 {
1210 	if (!wb_has_dirty_io(wb))
1211 		return;
1212 
1213 	/*
1214 	 * All callers of this function want to start writeback of all
1215 	 * dirty pages. Places like vmscan can call this at a very
1216 	 * high frequency, causing pointless allocations of tons of
1217 	 * work items and keeping the flusher threads busy retrieving
1218 	 * that work. Ensure that we only allow one of them pending and
1219 	 * inflight at the time.
1220 	 */
1221 	if (test_bit(WB_start_all, &wb->state) ||
1222 	    test_and_set_bit(WB_start_all, &wb->state))
1223 		return;
1224 
1225 	wb->start_all_reason = reason;
1226 	wb_wakeup(wb);
1227 }
1228 
1229 /**
1230  * wb_start_background_writeback - start background writeback
1231  * @wb: bdi_writback to write from
1232  *
1233  * Description:
1234  *   This makes sure WB_SYNC_NONE background writeback happens. When
1235  *   this function returns, it is only guaranteed that for given wb
1236  *   some IO is happening if we are over background dirty threshold.
1237  *   Caller need not hold sb s_umount semaphore.
1238  */
wb_start_background_writeback(struct bdi_writeback * wb)1239 void wb_start_background_writeback(struct bdi_writeback *wb)
1240 {
1241 	/*
1242 	 * We just wake up the flusher thread. It will perform background
1243 	 * writeback as soon as there is no other work to do.
1244 	 */
1245 	trace_writeback_wake_background(wb);
1246 	wb_wakeup(wb);
1247 }
1248 
1249 /*
1250  * Remove the inode from the writeback list it is on.
1251  */
inode_io_list_del(struct inode * inode)1252 void inode_io_list_del(struct inode *inode)
1253 {
1254 	struct bdi_writeback *wb;
1255 
1256 	wb = inode_to_wb_and_lock_list(inode);
1257 	spin_lock(&inode->i_lock);
1258 
1259 	inode->i_state &= ~I_SYNC_QUEUED;
1260 	list_del_init(&inode->i_io_list);
1261 	wb_io_lists_depopulated(wb);
1262 
1263 	spin_unlock(&inode->i_lock);
1264 	spin_unlock(&wb->list_lock);
1265 }
1266 EXPORT_SYMBOL(inode_io_list_del);
1267 
1268 /*
1269  * mark an inode as under writeback on the sb
1270  */
sb_mark_inode_writeback(struct inode * inode)1271 void sb_mark_inode_writeback(struct inode *inode)
1272 {
1273 	struct super_block *sb = inode->i_sb;
1274 	unsigned long flags;
1275 
1276 	if (list_empty(&inode->i_wb_list)) {
1277 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1278 		if (list_empty(&inode->i_wb_list)) {
1279 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1280 			trace_sb_mark_inode_writeback(inode);
1281 		}
1282 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1283 	}
1284 }
1285 
1286 /*
1287  * clear an inode as under writeback on the sb
1288  */
sb_clear_inode_writeback(struct inode * inode)1289 void sb_clear_inode_writeback(struct inode *inode)
1290 {
1291 	struct super_block *sb = inode->i_sb;
1292 	unsigned long flags;
1293 
1294 	if (!list_empty(&inode->i_wb_list)) {
1295 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1296 		if (!list_empty(&inode->i_wb_list)) {
1297 			list_del_init(&inode->i_wb_list);
1298 			trace_sb_clear_inode_writeback(inode);
1299 		}
1300 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1301 	}
1302 }
1303 
1304 /*
1305  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1306  * furthest end of its superblock's dirty-inode list.
1307  *
1308  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1309  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1310  * the case then the inode must have been redirtied while it was being written
1311  * out and we don't reset its dirtied_when.
1312  */
redirty_tail_locked(struct inode * inode,struct bdi_writeback * wb)1313 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1314 {
1315 	assert_spin_locked(&inode->i_lock);
1316 
1317 	if (!list_empty(&wb->b_dirty)) {
1318 		struct inode *tail;
1319 
1320 		tail = wb_inode(wb->b_dirty.next);
1321 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1322 			inode->dirtied_when = jiffies;
1323 	}
1324 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1325 	inode->i_state &= ~I_SYNC_QUEUED;
1326 }
1327 
redirty_tail(struct inode * inode,struct bdi_writeback * wb)1328 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1329 {
1330 	spin_lock(&inode->i_lock);
1331 	redirty_tail_locked(inode, wb);
1332 	spin_unlock(&inode->i_lock);
1333 }
1334 
1335 /*
1336  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1337  */
requeue_io(struct inode * inode,struct bdi_writeback * wb)1338 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1339 {
1340 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1341 }
1342 
inode_sync_complete(struct inode * inode)1343 static void inode_sync_complete(struct inode *inode)
1344 {
1345 	inode->i_state &= ~I_SYNC;
1346 	/* If inode is clean an unused, put it into LRU now... */
1347 	inode_add_lru(inode);
1348 	/* Waiters must see I_SYNC cleared before being woken up */
1349 	smp_mb();
1350 	wake_up_bit(&inode->i_state, __I_SYNC);
1351 }
1352 
inode_dirtied_after(struct inode * inode,unsigned long t)1353 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1354 {
1355 	bool ret = time_after(inode->dirtied_when, t);
1356 #ifndef CONFIG_64BIT
1357 	/*
1358 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1359 	 * It _appears_ to be in the future, but is actually in distant past.
1360 	 * This test is necessary to prevent such wrapped-around relative times
1361 	 * from permanently stopping the whole bdi writeback.
1362 	 */
1363 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1364 #endif
1365 	return ret;
1366 }
1367 
1368 #define EXPIRE_DIRTY_ATIME 0x0001
1369 
1370 /*
1371  * Move expired (dirtied before dirtied_before) dirty inodes from
1372  * @delaying_queue to @dispatch_queue.
1373  */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,unsigned long dirtied_before)1374 static int move_expired_inodes(struct list_head *delaying_queue,
1375 			       struct list_head *dispatch_queue,
1376 			       unsigned long dirtied_before)
1377 {
1378 	LIST_HEAD(tmp);
1379 	struct list_head *pos, *node;
1380 	struct super_block *sb = NULL;
1381 	struct inode *inode;
1382 	int do_sb_sort = 0;
1383 	int moved = 0;
1384 
1385 	while (!list_empty(delaying_queue)) {
1386 		inode = wb_inode(delaying_queue->prev);
1387 		if (inode_dirtied_after(inode, dirtied_before))
1388 			break;
1389 		spin_lock(&inode->i_lock);
1390 		list_move(&inode->i_io_list, &tmp);
1391 		moved++;
1392 		inode->i_state |= I_SYNC_QUEUED;
1393 		spin_unlock(&inode->i_lock);
1394 		if (sb_is_blkdev_sb(inode->i_sb))
1395 			continue;
1396 		if (sb && sb != inode->i_sb)
1397 			do_sb_sort = 1;
1398 		sb = inode->i_sb;
1399 	}
1400 
1401 	/* just one sb in list, splice to dispatch_queue and we're done */
1402 	if (!do_sb_sort) {
1403 		list_splice(&tmp, dispatch_queue);
1404 		goto out;
1405 	}
1406 
1407 	/*
1408 	 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1409 	 * we don't take inode->i_lock here because it is just a pointless overhead.
1410 	 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1411 	 * fully under our control.
1412 	 */
1413 	while (!list_empty(&tmp)) {
1414 		sb = wb_inode(tmp.prev)->i_sb;
1415 		list_for_each_prev_safe(pos, node, &tmp) {
1416 			inode = wb_inode(pos);
1417 			if (inode->i_sb == sb)
1418 				list_move(&inode->i_io_list, dispatch_queue);
1419 		}
1420 	}
1421 out:
1422 	return moved;
1423 }
1424 
1425 /*
1426  * Queue all expired dirty inodes for io, eldest first.
1427  * Before
1428  *         newly dirtied     b_dirty    b_io    b_more_io
1429  *         =============>    gf         edc     BA
1430  * After
1431  *         newly dirtied     b_dirty    b_io    b_more_io
1432  *         =============>    g          fBAedc
1433  *                                           |
1434  *                                           +--> dequeue for IO
1435  */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work,unsigned long dirtied_before)1436 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1437 		     unsigned long dirtied_before)
1438 {
1439 	int moved;
1440 	unsigned long time_expire_jif = dirtied_before;
1441 
1442 	assert_spin_locked(&wb->list_lock);
1443 	list_splice_init(&wb->b_more_io, &wb->b_io);
1444 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1445 	if (!work->for_sync)
1446 		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1447 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1448 				     time_expire_jif);
1449 	if (moved)
1450 		wb_io_lists_populated(wb);
1451 	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1452 }
1453 
write_inode(struct inode * inode,struct writeback_control * wbc)1454 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1455 {
1456 	int ret;
1457 
1458 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1459 		trace_writeback_write_inode_start(inode, wbc);
1460 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1461 		trace_writeback_write_inode(inode, wbc);
1462 		return ret;
1463 	}
1464 	return 0;
1465 }
1466 
1467 /*
1468  * Wait for writeback on an inode to complete. Called with i_lock held.
1469  * Caller must make sure inode cannot go away when we drop i_lock.
1470  */
__inode_wait_for_writeback(struct inode * inode)1471 static void __inode_wait_for_writeback(struct inode *inode)
1472 	__releases(inode->i_lock)
1473 	__acquires(inode->i_lock)
1474 {
1475 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1476 	wait_queue_head_t *wqh;
1477 
1478 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1479 	while (inode->i_state & I_SYNC) {
1480 		spin_unlock(&inode->i_lock);
1481 		__wait_on_bit(wqh, &wq, bit_wait,
1482 			      TASK_UNINTERRUPTIBLE);
1483 		spin_lock(&inode->i_lock);
1484 	}
1485 }
1486 
1487 /*
1488  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1489  */
inode_wait_for_writeback(struct inode * inode)1490 void inode_wait_for_writeback(struct inode *inode)
1491 {
1492 	spin_lock(&inode->i_lock);
1493 	__inode_wait_for_writeback(inode);
1494 	spin_unlock(&inode->i_lock);
1495 }
1496 
1497 /*
1498  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1499  * held and drops it. It is aimed for callers not holding any inode reference
1500  * so once i_lock is dropped, inode can go away.
1501  */
inode_sleep_on_writeback(struct inode * inode)1502 static void inode_sleep_on_writeback(struct inode *inode)
1503 	__releases(inode->i_lock)
1504 {
1505 	DEFINE_WAIT(wait);
1506 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1507 	int sleep;
1508 
1509 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1510 	sleep = inode->i_state & I_SYNC;
1511 	spin_unlock(&inode->i_lock);
1512 	if (sleep)
1513 		schedule();
1514 	finish_wait(wqh, &wait);
1515 }
1516 
1517 /*
1518  * Find proper writeback list for the inode depending on its current state and
1519  * possibly also change of its state while we were doing writeback.  Here we
1520  * handle things such as livelock prevention or fairness of writeback among
1521  * inodes. This function can be called only by flusher thread - noone else
1522  * processes all inodes in writeback lists and requeueing inodes behind flusher
1523  * thread's back can have unexpected consequences.
1524  */
requeue_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc)1525 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1526 			  struct writeback_control *wbc)
1527 {
1528 	if (inode->i_state & I_FREEING)
1529 		return;
1530 
1531 	/*
1532 	 * Sync livelock prevention. Each inode is tagged and synced in one
1533 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1534 	 * the dirty time to prevent enqueue and sync it again.
1535 	 */
1536 	if ((inode->i_state & I_DIRTY) &&
1537 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1538 		inode->dirtied_when = jiffies;
1539 
1540 	if (wbc->pages_skipped) {
1541 		/*
1542 		 * Writeback is not making progress due to locked buffers.
1543 		 * Skip this inode for now. Although having skipped pages
1544 		 * is odd for clean inodes, it can happen for some
1545 		 * filesystems so handle that gracefully.
1546 		 */
1547 		if (inode->i_state & I_DIRTY_ALL)
1548 			redirty_tail_locked(inode, wb);
1549 		else
1550 			inode_cgwb_move_to_attached(inode, wb);
1551 		return;
1552 	}
1553 
1554 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1555 		/*
1556 		 * We didn't write back all the pages.  nfs_writepages()
1557 		 * sometimes bales out without doing anything.
1558 		 */
1559 		if (wbc->nr_to_write <= 0) {
1560 			/* Slice used up. Queue for next turn. */
1561 			requeue_io(inode, wb);
1562 		} else {
1563 			/*
1564 			 * Writeback blocked by something other than
1565 			 * congestion. Delay the inode for some time to
1566 			 * avoid spinning on the CPU (100% iowait)
1567 			 * retrying writeback of the dirty page/inode
1568 			 * that cannot be performed immediately.
1569 			 */
1570 			redirty_tail_locked(inode, wb);
1571 		}
1572 	} else if (inode->i_state & I_DIRTY) {
1573 		/*
1574 		 * Filesystems can dirty the inode during writeback operations,
1575 		 * such as delayed allocation during submission or metadata
1576 		 * updates after data IO completion.
1577 		 */
1578 		redirty_tail_locked(inode, wb);
1579 	} else if (inode->i_state & I_DIRTY_TIME) {
1580 		inode->dirtied_when = jiffies;
1581 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1582 		inode->i_state &= ~I_SYNC_QUEUED;
1583 	} else {
1584 		/* The inode is clean. Remove from writeback lists. */
1585 		inode_cgwb_move_to_attached(inode, wb);
1586 	}
1587 }
1588 
1589 /*
1590  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1591  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1592  *
1593  * This doesn't remove the inode from the writeback list it is on, except
1594  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1595  * expiration.  The caller is otherwise responsible for writeback list handling.
1596  *
1597  * The caller is also responsible for setting the I_SYNC flag beforehand and
1598  * calling inode_sync_complete() to clear it afterwards.
1599  */
1600 static int
__writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1601 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1602 {
1603 	struct address_space *mapping = inode->i_mapping;
1604 	long nr_to_write = wbc->nr_to_write;
1605 	unsigned dirty;
1606 	int ret;
1607 
1608 	WARN_ON(!(inode->i_state & I_SYNC));
1609 
1610 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1611 
1612 	ret = do_writepages(mapping, wbc);
1613 
1614 	/*
1615 	 * Make sure to wait on the data before writing out the metadata.
1616 	 * This is important for filesystems that modify metadata on data
1617 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1618 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1619 	 * inode metadata is written back correctly.
1620 	 */
1621 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1622 		int err = filemap_fdatawait(mapping);
1623 		if (ret == 0)
1624 			ret = err;
1625 	}
1626 
1627 	/*
1628 	 * If the inode has dirty timestamps and we need to write them, call
1629 	 * mark_inode_dirty_sync() to notify the filesystem about it and to
1630 	 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1631 	 */
1632 	if ((inode->i_state & I_DIRTY_TIME) &&
1633 	    (wbc->sync_mode == WB_SYNC_ALL ||
1634 	     time_after(jiffies, inode->dirtied_time_when +
1635 			dirtytime_expire_interval * HZ))) {
1636 		trace_writeback_lazytime(inode);
1637 		mark_inode_dirty_sync(inode);
1638 	}
1639 
1640 	/*
1641 	 * Get and clear the dirty flags from i_state.  This needs to be done
1642 	 * after calling writepages because some filesystems may redirty the
1643 	 * inode during writepages due to delalloc.  It also needs to be done
1644 	 * after handling timestamp expiration, as that may dirty the inode too.
1645 	 */
1646 	spin_lock(&inode->i_lock);
1647 	dirty = inode->i_state & I_DIRTY;
1648 	inode->i_state &= ~dirty;
1649 
1650 	/*
1651 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1652 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1653 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1654 	 * inode.
1655 	 *
1656 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1657 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1658 	 * necessary.  This guarantees that either __mark_inode_dirty()
1659 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1660 	 */
1661 	smp_mb();
1662 
1663 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1664 		inode->i_state |= I_DIRTY_PAGES;
1665 	else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) {
1666 		if (!(inode->i_state & I_DIRTY_PAGES)) {
1667 			inode->i_state &= ~I_PINNING_FSCACHE_WB;
1668 			wbc->unpinned_fscache_wb = true;
1669 			dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */
1670 		}
1671 	}
1672 
1673 	spin_unlock(&inode->i_lock);
1674 
1675 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1676 	if (dirty & ~I_DIRTY_PAGES) {
1677 		int err = write_inode(inode, wbc);
1678 		if (ret == 0)
1679 			ret = err;
1680 	}
1681 	wbc->unpinned_fscache_wb = false;
1682 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1683 	return ret;
1684 }
1685 
1686 /*
1687  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1688  * the regular batched writeback done by the flusher threads in
1689  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1690  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1691  *
1692  * To prevent the inode from going away, either the caller must have a reference
1693  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1694  */
writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1695 static int writeback_single_inode(struct inode *inode,
1696 				  struct writeback_control *wbc)
1697 {
1698 	struct bdi_writeback *wb;
1699 	int ret = 0;
1700 
1701 	spin_lock(&inode->i_lock);
1702 	if (!atomic_read(&inode->i_count))
1703 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1704 	else
1705 		WARN_ON(inode->i_state & I_WILL_FREE);
1706 
1707 	if (inode->i_state & I_SYNC) {
1708 		/*
1709 		 * Writeback is already running on the inode.  For WB_SYNC_NONE,
1710 		 * that's enough and we can just return.  For WB_SYNC_ALL, we
1711 		 * must wait for the existing writeback to complete, then do
1712 		 * writeback again if there's anything left.
1713 		 */
1714 		if (wbc->sync_mode != WB_SYNC_ALL)
1715 			goto out;
1716 		__inode_wait_for_writeback(inode);
1717 	}
1718 	WARN_ON(inode->i_state & I_SYNC);
1719 	/*
1720 	 * If the inode is already fully clean, then there's nothing to do.
1721 	 *
1722 	 * For data-integrity syncs we also need to check whether any pages are
1723 	 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1724 	 * there are any such pages, we'll need to wait for them.
1725 	 */
1726 	if (!(inode->i_state & I_DIRTY_ALL) &&
1727 	    (wbc->sync_mode != WB_SYNC_ALL ||
1728 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1729 		goto out;
1730 	inode->i_state |= I_SYNC;
1731 	wbc_attach_and_unlock_inode(wbc, inode);
1732 
1733 	ret = __writeback_single_inode(inode, wbc);
1734 
1735 	wbc_detach_inode(wbc);
1736 
1737 	wb = inode_to_wb_and_lock_list(inode);
1738 	spin_lock(&inode->i_lock);
1739 	/*
1740 	 * If the inode is freeing, its i_io_list shoudn't be updated
1741 	 * as it can be finally deleted at this moment.
1742 	 */
1743 	if (!(inode->i_state & I_FREEING)) {
1744 		/*
1745 		 * If the inode is now fully clean, then it can be safely
1746 		 * removed from its writeback list (if any). Otherwise the
1747 		 * flusher threads are responsible for the writeback lists.
1748 		 */
1749 		if (!(inode->i_state & I_DIRTY_ALL))
1750 			inode_cgwb_move_to_attached(inode, wb);
1751 		else if (!(inode->i_state & I_SYNC_QUEUED)) {
1752 			if ((inode->i_state & I_DIRTY))
1753 				redirty_tail_locked(inode, wb);
1754 			else if (inode->i_state & I_DIRTY_TIME) {
1755 				inode->dirtied_when = jiffies;
1756 				inode_io_list_move_locked(inode,
1757 							  wb,
1758 							  &wb->b_dirty_time);
1759 			}
1760 		}
1761 	}
1762 
1763 	spin_unlock(&wb->list_lock);
1764 	inode_sync_complete(inode);
1765 out:
1766 	spin_unlock(&inode->i_lock);
1767 	return ret;
1768 }
1769 
writeback_chunk_size(struct bdi_writeback * wb,struct wb_writeback_work * work)1770 static long writeback_chunk_size(struct bdi_writeback *wb,
1771 				 struct wb_writeback_work *work)
1772 {
1773 	long pages;
1774 
1775 	/*
1776 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1777 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1778 	 * here avoids calling into writeback_inodes_wb() more than once.
1779 	 *
1780 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1781 	 *
1782 	 *      wb_writeback()
1783 	 *          writeback_sb_inodes()       <== called only once
1784 	 *              write_cache_pages()     <== called once for each inode
1785 	 *                   (quickly) tag currently dirty pages
1786 	 *                   (maybe slowly) sync all tagged pages
1787 	 */
1788 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1789 		pages = LONG_MAX;
1790 	else {
1791 		pages = min(wb->avg_write_bandwidth / 2,
1792 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1793 		pages = min(pages, work->nr_pages);
1794 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1795 				   MIN_WRITEBACK_PAGES);
1796 	}
1797 
1798 	return pages;
1799 }
1800 
1801 /*
1802  * Write a portion of b_io inodes which belong to @sb.
1803  *
1804  * Return the number of pages and/or inodes written.
1805  *
1806  * NOTE! This is called with wb->list_lock held, and will
1807  * unlock and relock that for each inode it ends up doing
1808  * IO for.
1809  */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)1810 static long writeback_sb_inodes(struct super_block *sb,
1811 				struct bdi_writeback *wb,
1812 				struct wb_writeback_work *work)
1813 {
1814 	struct writeback_control wbc = {
1815 		.sync_mode		= work->sync_mode,
1816 		.tagged_writepages	= work->tagged_writepages,
1817 		.for_kupdate		= work->for_kupdate,
1818 		.for_background		= work->for_background,
1819 		.for_sync		= work->for_sync,
1820 		.range_cyclic		= work->range_cyclic,
1821 		.range_start		= 0,
1822 		.range_end		= LLONG_MAX,
1823 	};
1824 	unsigned long start_time = jiffies;
1825 	long write_chunk;
1826 	long total_wrote = 0;  /* count both pages and inodes */
1827 
1828 	while (!list_empty(&wb->b_io)) {
1829 		struct inode *inode = wb_inode(wb->b_io.prev);
1830 		struct bdi_writeback *tmp_wb;
1831 		long wrote;
1832 
1833 		if (inode->i_sb != sb) {
1834 			if (work->sb) {
1835 				/*
1836 				 * We only want to write back data for this
1837 				 * superblock, move all inodes not belonging
1838 				 * to it back onto the dirty list.
1839 				 */
1840 				redirty_tail(inode, wb);
1841 				continue;
1842 			}
1843 
1844 			/*
1845 			 * The inode belongs to a different superblock.
1846 			 * Bounce back to the caller to unpin this and
1847 			 * pin the next superblock.
1848 			 */
1849 			break;
1850 		}
1851 
1852 		/*
1853 		 * Don't bother with new inodes or inodes being freed, first
1854 		 * kind does not need periodic writeout yet, and for the latter
1855 		 * kind writeout is handled by the freer.
1856 		 */
1857 		spin_lock(&inode->i_lock);
1858 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1859 			redirty_tail_locked(inode, wb);
1860 			spin_unlock(&inode->i_lock);
1861 			continue;
1862 		}
1863 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1864 			/*
1865 			 * If this inode is locked for writeback and we are not
1866 			 * doing writeback-for-data-integrity, move it to
1867 			 * b_more_io so that writeback can proceed with the
1868 			 * other inodes on s_io.
1869 			 *
1870 			 * We'll have another go at writing back this inode
1871 			 * when we completed a full scan of b_io.
1872 			 */
1873 			requeue_io(inode, wb);
1874 			spin_unlock(&inode->i_lock);
1875 			trace_writeback_sb_inodes_requeue(inode);
1876 			continue;
1877 		}
1878 		spin_unlock(&wb->list_lock);
1879 
1880 		/*
1881 		 * We already requeued the inode if it had I_SYNC set and we
1882 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1883 		 * WB_SYNC_ALL case.
1884 		 */
1885 		if (inode->i_state & I_SYNC) {
1886 			/* Wait for I_SYNC. This function drops i_lock... */
1887 			inode_sleep_on_writeback(inode);
1888 			/* Inode may be gone, start again */
1889 			spin_lock(&wb->list_lock);
1890 			continue;
1891 		}
1892 		inode->i_state |= I_SYNC;
1893 		wbc_attach_and_unlock_inode(&wbc, inode);
1894 
1895 		write_chunk = writeback_chunk_size(wb, work);
1896 		wbc.nr_to_write = write_chunk;
1897 		wbc.pages_skipped = 0;
1898 
1899 		/*
1900 		 * We use I_SYNC to pin the inode in memory. While it is set
1901 		 * evict_inode() will wait so the inode cannot be freed.
1902 		 */
1903 		__writeback_single_inode(inode, &wbc);
1904 
1905 		wbc_detach_inode(&wbc);
1906 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1907 		wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1908 		wrote = wrote < 0 ? 0 : wrote;
1909 		total_wrote += wrote;
1910 
1911 		if (need_resched()) {
1912 			/*
1913 			 * We're trying to balance between building up a nice
1914 			 * long list of IOs to improve our merge rate, and
1915 			 * getting those IOs out quickly for anyone throttling
1916 			 * in balance_dirty_pages().  cond_resched() doesn't
1917 			 * unplug, so get our IOs out the door before we
1918 			 * give up the CPU.
1919 			 */
1920 			blk_flush_plug(current->plug, false);
1921 			cond_resched();
1922 		}
1923 
1924 		/*
1925 		 * Requeue @inode if still dirty.  Be careful as @inode may
1926 		 * have been switched to another wb in the meantime.
1927 		 */
1928 		tmp_wb = inode_to_wb_and_lock_list(inode);
1929 		spin_lock(&inode->i_lock);
1930 		if (!(inode->i_state & I_DIRTY_ALL))
1931 			total_wrote++;
1932 		requeue_inode(inode, tmp_wb, &wbc);
1933 		inode_sync_complete(inode);
1934 		spin_unlock(&inode->i_lock);
1935 
1936 		if (unlikely(tmp_wb != wb)) {
1937 			spin_unlock(&tmp_wb->list_lock);
1938 			spin_lock(&wb->list_lock);
1939 		}
1940 
1941 		/*
1942 		 * bail out to wb_writeback() often enough to check
1943 		 * background threshold and other termination conditions.
1944 		 */
1945 		if (total_wrote) {
1946 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1947 				break;
1948 			if (work->nr_pages <= 0)
1949 				break;
1950 		}
1951 	}
1952 	return total_wrote;
1953 }
1954 
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)1955 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1956 				  struct wb_writeback_work *work)
1957 {
1958 	unsigned long start_time = jiffies;
1959 	long wrote = 0;
1960 
1961 	while (!list_empty(&wb->b_io)) {
1962 		struct inode *inode = wb_inode(wb->b_io.prev);
1963 		struct super_block *sb = inode->i_sb;
1964 
1965 		if (!trylock_super(sb)) {
1966 			/*
1967 			 * trylock_super() may fail consistently due to
1968 			 * s_umount being grabbed by someone else. Don't use
1969 			 * requeue_io() to avoid busy retrying the inode/sb.
1970 			 */
1971 			redirty_tail(inode, wb);
1972 			continue;
1973 		}
1974 		wrote += writeback_sb_inodes(sb, wb, work);
1975 		up_read(&sb->s_umount);
1976 
1977 		/* refer to the same tests at the end of writeback_sb_inodes */
1978 		if (wrote) {
1979 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1980 				break;
1981 			if (work->nr_pages <= 0)
1982 				break;
1983 		}
1984 	}
1985 	/* Leave any unwritten inodes on b_io */
1986 	return wrote;
1987 }
1988 
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)1989 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1990 				enum wb_reason reason)
1991 {
1992 	struct wb_writeback_work work = {
1993 		.nr_pages	= nr_pages,
1994 		.sync_mode	= WB_SYNC_NONE,
1995 		.range_cyclic	= 1,
1996 		.reason		= reason,
1997 	};
1998 	struct blk_plug plug;
1999 
2000 	blk_start_plug(&plug);
2001 	spin_lock(&wb->list_lock);
2002 	if (list_empty(&wb->b_io))
2003 		queue_io(wb, &work, jiffies);
2004 	__writeback_inodes_wb(wb, &work);
2005 	spin_unlock(&wb->list_lock);
2006 	blk_finish_plug(&plug);
2007 
2008 	return nr_pages - work.nr_pages;
2009 }
2010 
2011 /*
2012  * Explicit flushing or periodic writeback of "old" data.
2013  *
2014  * Define "old": the first time one of an inode's pages is dirtied, we mark the
2015  * dirtying-time in the inode's address_space.  So this periodic writeback code
2016  * just walks the superblock inode list, writing back any inodes which are
2017  * older than a specific point in time.
2018  *
2019  * Try to run once per dirty_writeback_interval.  But if a writeback event
2020  * takes longer than a dirty_writeback_interval interval, then leave a
2021  * one-second gap.
2022  *
2023  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2024  * all dirty pages if they are all attached to "old" mappings.
2025  */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)2026 static long wb_writeback(struct bdi_writeback *wb,
2027 			 struct wb_writeback_work *work)
2028 {
2029 	long nr_pages = work->nr_pages;
2030 	unsigned long dirtied_before = jiffies;
2031 	struct inode *inode;
2032 	long progress;
2033 	struct blk_plug plug;
2034 
2035 	blk_start_plug(&plug);
2036 	spin_lock(&wb->list_lock);
2037 	for (;;) {
2038 		/*
2039 		 * Stop writeback when nr_pages has been consumed
2040 		 */
2041 		if (work->nr_pages <= 0)
2042 			break;
2043 
2044 		/*
2045 		 * Background writeout and kupdate-style writeback may
2046 		 * run forever. Stop them if there is other work to do
2047 		 * so that e.g. sync can proceed. They'll be restarted
2048 		 * after the other works are all done.
2049 		 */
2050 		if ((work->for_background || work->for_kupdate) &&
2051 		    !list_empty(&wb->work_list))
2052 			break;
2053 
2054 		/*
2055 		 * For background writeout, stop when we are below the
2056 		 * background dirty threshold
2057 		 */
2058 		if (work->for_background && !wb_over_bg_thresh(wb))
2059 			break;
2060 
2061 		/*
2062 		 * Kupdate and background works are special and we want to
2063 		 * include all inodes that need writing. Livelock avoidance is
2064 		 * handled by these works yielding to any other work so we are
2065 		 * safe.
2066 		 */
2067 		if (work->for_kupdate) {
2068 			dirtied_before = jiffies -
2069 				msecs_to_jiffies(dirty_expire_interval * 10);
2070 		} else if (work->for_background)
2071 			dirtied_before = jiffies;
2072 
2073 		trace_writeback_start(wb, work);
2074 		if (list_empty(&wb->b_io))
2075 			queue_io(wb, work, dirtied_before);
2076 		if (work->sb)
2077 			progress = writeback_sb_inodes(work->sb, wb, work);
2078 		else
2079 			progress = __writeback_inodes_wb(wb, work);
2080 		trace_writeback_written(wb, work);
2081 
2082 		/*
2083 		 * Did we write something? Try for more
2084 		 *
2085 		 * Dirty inodes are moved to b_io for writeback in batches.
2086 		 * The completion of the current batch does not necessarily
2087 		 * mean the overall work is done. So we keep looping as long
2088 		 * as made some progress on cleaning pages or inodes.
2089 		 */
2090 		if (progress)
2091 			continue;
2092 		/*
2093 		 * No more inodes for IO, bail
2094 		 */
2095 		if (list_empty(&wb->b_more_io))
2096 			break;
2097 		/*
2098 		 * Nothing written. Wait for some inode to
2099 		 * become available for writeback. Otherwise
2100 		 * we'll just busyloop.
2101 		 */
2102 		trace_writeback_wait(wb, work);
2103 		inode = wb_inode(wb->b_more_io.prev);
2104 		spin_lock(&inode->i_lock);
2105 		spin_unlock(&wb->list_lock);
2106 		/* This function drops i_lock... */
2107 		inode_sleep_on_writeback(inode);
2108 		spin_lock(&wb->list_lock);
2109 	}
2110 	spin_unlock(&wb->list_lock);
2111 	blk_finish_plug(&plug);
2112 
2113 	return nr_pages - work->nr_pages;
2114 }
2115 
2116 /*
2117  * Return the next wb_writeback_work struct that hasn't been processed yet.
2118  */
get_next_work_item(struct bdi_writeback * wb)2119 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2120 {
2121 	struct wb_writeback_work *work = NULL;
2122 
2123 	spin_lock_irq(&wb->work_lock);
2124 	if (!list_empty(&wb->work_list)) {
2125 		work = list_entry(wb->work_list.next,
2126 				  struct wb_writeback_work, list);
2127 		list_del_init(&work->list);
2128 	}
2129 	spin_unlock_irq(&wb->work_lock);
2130 	return work;
2131 }
2132 
wb_check_background_flush(struct bdi_writeback * wb)2133 static long wb_check_background_flush(struct bdi_writeback *wb)
2134 {
2135 	if (wb_over_bg_thresh(wb)) {
2136 
2137 		struct wb_writeback_work work = {
2138 			.nr_pages	= LONG_MAX,
2139 			.sync_mode	= WB_SYNC_NONE,
2140 			.for_background	= 1,
2141 			.range_cyclic	= 1,
2142 			.reason		= WB_REASON_BACKGROUND,
2143 		};
2144 
2145 		return wb_writeback(wb, &work);
2146 	}
2147 
2148 	return 0;
2149 }
2150 
wb_check_old_data_flush(struct bdi_writeback * wb)2151 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2152 {
2153 	unsigned long expired;
2154 	long nr_pages;
2155 
2156 	/*
2157 	 * When set to zero, disable periodic writeback
2158 	 */
2159 	if (!dirty_writeback_interval)
2160 		return 0;
2161 
2162 	expired = wb->last_old_flush +
2163 			msecs_to_jiffies(dirty_writeback_interval * 10);
2164 	if (time_before(jiffies, expired))
2165 		return 0;
2166 
2167 	wb->last_old_flush = jiffies;
2168 	nr_pages = get_nr_dirty_pages();
2169 
2170 	if (nr_pages) {
2171 		struct wb_writeback_work work = {
2172 			.nr_pages	= nr_pages,
2173 			.sync_mode	= WB_SYNC_NONE,
2174 			.for_kupdate	= 1,
2175 			.range_cyclic	= 1,
2176 			.reason		= WB_REASON_PERIODIC,
2177 		};
2178 
2179 		return wb_writeback(wb, &work);
2180 	}
2181 
2182 	return 0;
2183 }
2184 
wb_check_start_all(struct bdi_writeback * wb)2185 static long wb_check_start_all(struct bdi_writeback *wb)
2186 {
2187 	long nr_pages;
2188 
2189 	if (!test_bit(WB_start_all, &wb->state))
2190 		return 0;
2191 
2192 	nr_pages = get_nr_dirty_pages();
2193 	if (nr_pages) {
2194 		struct wb_writeback_work work = {
2195 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2196 			.sync_mode	= WB_SYNC_NONE,
2197 			.range_cyclic	= 1,
2198 			.reason		= wb->start_all_reason,
2199 		};
2200 
2201 		nr_pages = wb_writeback(wb, &work);
2202 	}
2203 
2204 	clear_bit(WB_start_all, &wb->state);
2205 	return nr_pages;
2206 }
2207 
2208 
2209 /*
2210  * Retrieve work items and do the writeback they describe
2211  */
wb_do_writeback(struct bdi_writeback * wb)2212 static long wb_do_writeback(struct bdi_writeback *wb)
2213 {
2214 	struct wb_writeback_work *work;
2215 	long wrote = 0;
2216 
2217 	set_bit(WB_writeback_running, &wb->state);
2218 	while ((work = get_next_work_item(wb)) != NULL) {
2219 		trace_writeback_exec(wb, work);
2220 		wrote += wb_writeback(wb, work);
2221 		finish_writeback_work(wb, work);
2222 	}
2223 
2224 	/*
2225 	 * Check for a flush-everything request
2226 	 */
2227 	wrote += wb_check_start_all(wb);
2228 
2229 	/*
2230 	 * Check for periodic writeback, kupdated() style
2231 	 */
2232 	wrote += wb_check_old_data_flush(wb);
2233 	wrote += wb_check_background_flush(wb);
2234 	clear_bit(WB_writeback_running, &wb->state);
2235 
2236 	return wrote;
2237 }
2238 
2239 /*
2240  * Handle writeback of dirty data for the device backed by this bdi. Also
2241  * reschedules periodically and does kupdated style flushing.
2242  */
wb_workfn(struct work_struct * work)2243 void wb_workfn(struct work_struct *work)
2244 {
2245 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2246 						struct bdi_writeback, dwork);
2247 	long pages_written;
2248 
2249 	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2250 
2251 	if (likely(!current_is_workqueue_rescuer() ||
2252 		   !test_bit(WB_registered, &wb->state))) {
2253 		/*
2254 		 * The normal path.  Keep writing back @wb until its
2255 		 * work_list is empty.  Note that this path is also taken
2256 		 * if @wb is shutting down even when we're running off the
2257 		 * rescuer as work_list needs to be drained.
2258 		 */
2259 		do {
2260 			pages_written = wb_do_writeback(wb);
2261 			trace_writeback_pages_written(pages_written);
2262 		} while (!list_empty(&wb->work_list));
2263 	} else {
2264 		/*
2265 		 * bdi_wq can't get enough workers and we're running off
2266 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2267 		 * enough for efficient IO.
2268 		 */
2269 		pages_written = writeback_inodes_wb(wb, 1024,
2270 						    WB_REASON_FORKER_THREAD);
2271 		trace_writeback_pages_written(pages_written);
2272 	}
2273 
2274 	if (!list_empty(&wb->work_list))
2275 		wb_wakeup(wb);
2276 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2277 		wb_wakeup_delayed(wb);
2278 }
2279 
2280 /*
2281  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2282  * write back the whole world.
2283  */
__wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2284 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2285 					 enum wb_reason reason)
2286 {
2287 	struct bdi_writeback *wb;
2288 
2289 	if (!bdi_has_dirty_io(bdi))
2290 		return;
2291 
2292 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2293 		wb_start_writeback(wb, reason);
2294 }
2295 
wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2296 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2297 				enum wb_reason reason)
2298 {
2299 	rcu_read_lock();
2300 	__wakeup_flusher_threads_bdi(bdi, reason);
2301 	rcu_read_unlock();
2302 }
2303 
2304 /*
2305  * Wakeup the flusher threads to start writeback of all currently dirty pages
2306  */
wakeup_flusher_threads(enum wb_reason reason)2307 void wakeup_flusher_threads(enum wb_reason reason)
2308 {
2309 	struct backing_dev_info *bdi;
2310 
2311 	/*
2312 	 * If we are expecting writeback progress we must submit plugged IO.
2313 	 */
2314 	blk_flush_plug(current->plug, true);
2315 
2316 	rcu_read_lock();
2317 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2318 		__wakeup_flusher_threads_bdi(bdi, reason);
2319 	rcu_read_unlock();
2320 }
2321 
2322 /*
2323  * Wake up bdi's periodically to make sure dirtytime inodes gets
2324  * written back periodically.  We deliberately do *not* check the
2325  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2326  * kernel to be constantly waking up once there are any dirtytime
2327  * inodes on the system.  So instead we define a separate delayed work
2328  * function which gets called much more rarely.  (By default, only
2329  * once every 12 hours.)
2330  *
2331  * If there is any other write activity going on in the file system,
2332  * this function won't be necessary.  But if the only thing that has
2333  * happened on the file system is a dirtytime inode caused by an atime
2334  * update, we need this infrastructure below to make sure that inode
2335  * eventually gets pushed out to disk.
2336  */
2337 static void wakeup_dirtytime_writeback(struct work_struct *w);
2338 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2339 
wakeup_dirtytime_writeback(struct work_struct * w)2340 static void wakeup_dirtytime_writeback(struct work_struct *w)
2341 {
2342 	struct backing_dev_info *bdi;
2343 
2344 	rcu_read_lock();
2345 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2346 		struct bdi_writeback *wb;
2347 
2348 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2349 			if (!list_empty(&wb->b_dirty_time))
2350 				wb_wakeup(wb);
2351 	}
2352 	rcu_read_unlock();
2353 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2354 }
2355 
start_dirtytime_writeback(void)2356 static int __init start_dirtytime_writeback(void)
2357 {
2358 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2359 	return 0;
2360 }
2361 __initcall(start_dirtytime_writeback);
2362 
dirtytime_interval_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2363 int dirtytime_interval_handler(struct ctl_table *table, int write,
2364 			       void *buffer, size_t *lenp, loff_t *ppos)
2365 {
2366 	int ret;
2367 
2368 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2369 	if (ret == 0 && write)
2370 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2371 	return ret;
2372 }
2373 
2374 /**
2375  * __mark_inode_dirty -	internal function to mark an inode dirty
2376  *
2377  * @inode: inode to mark
2378  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2379  *	   multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2380  *	   with I_DIRTY_PAGES.
2381  *
2382  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2383  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2384  *
2385  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2386  * instead of calling this directly.
2387  *
2388  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2389  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2390  * even if they are later hashed, as they will have been marked dirty already.
2391  *
2392  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2393  *
2394  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2395  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2396  * the kernel-internal blockdev inode represents the dirtying time of the
2397  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2398  * page->mapping->host, so the page-dirtying time is recorded in the internal
2399  * blockdev inode.
2400  */
__mark_inode_dirty(struct inode * inode,int flags)2401 void __mark_inode_dirty(struct inode *inode, int flags)
2402 {
2403 	struct super_block *sb = inode->i_sb;
2404 	int dirtytime = 0;
2405 	struct bdi_writeback *wb = NULL;
2406 
2407 	trace_writeback_mark_inode_dirty(inode, flags);
2408 
2409 	if (flags & I_DIRTY_INODE) {
2410 		/*
2411 		 * Inode timestamp update will piggback on this dirtying.
2412 		 * We tell ->dirty_inode callback that timestamps need to
2413 		 * be updated by setting I_DIRTY_TIME in flags.
2414 		 */
2415 		if (inode->i_state & I_DIRTY_TIME) {
2416 			spin_lock(&inode->i_lock);
2417 			if (inode->i_state & I_DIRTY_TIME) {
2418 				inode->i_state &= ~I_DIRTY_TIME;
2419 				flags |= I_DIRTY_TIME;
2420 			}
2421 			spin_unlock(&inode->i_lock);
2422 		}
2423 
2424 		/*
2425 		 * Notify the filesystem about the inode being dirtied, so that
2426 		 * (if needed) it can update on-disk fields and journal the
2427 		 * inode.  This is only needed when the inode itself is being
2428 		 * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2429 		 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2430 		 */
2431 		trace_writeback_dirty_inode_start(inode, flags);
2432 		if (sb->s_op->dirty_inode)
2433 			sb->s_op->dirty_inode(inode,
2434 				flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2435 		trace_writeback_dirty_inode(inode, flags);
2436 
2437 		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2438 		flags &= ~I_DIRTY_TIME;
2439 	} else {
2440 		/*
2441 		 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2442 		 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2443 		 * in one call to __mark_inode_dirty().)
2444 		 */
2445 		dirtytime = flags & I_DIRTY_TIME;
2446 		WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2447 	}
2448 
2449 	/*
2450 	 * Paired with smp_mb() in __writeback_single_inode() for the
2451 	 * following lockless i_state test.  See there for details.
2452 	 */
2453 	smp_mb();
2454 
2455 	if ((inode->i_state & flags) == flags)
2456 		return;
2457 
2458 	spin_lock(&inode->i_lock);
2459 	if ((inode->i_state & flags) != flags) {
2460 		const int was_dirty = inode->i_state & I_DIRTY;
2461 
2462 		inode_attach_wb(inode, NULL);
2463 
2464 		inode->i_state |= flags;
2465 
2466 		/*
2467 		 * Grab inode's wb early because it requires dropping i_lock and we
2468 		 * need to make sure following checks happen atomically with dirty
2469 		 * list handling so that we don't move inodes under flush worker's
2470 		 * hands.
2471 		 */
2472 		if (!was_dirty) {
2473 			wb = locked_inode_to_wb_and_lock_list(inode);
2474 			spin_lock(&inode->i_lock);
2475 		}
2476 
2477 		/*
2478 		 * If the inode is queued for writeback by flush worker, just
2479 		 * update its dirty state. Once the flush worker is done with
2480 		 * the inode it will place it on the appropriate superblock
2481 		 * list, based upon its state.
2482 		 */
2483 		if (inode->i_state & I_SYNC_QUEUED)
2484 			goto out_unlock;
2485 
2486 		/*
2487 		 * Only add valid (hashed) inodes to the superblock's
2488 		 * dirty list.  Add blockdev inodes as well.
2489 		 */
2490 		if (!S_ISBLK(inode->i_mode)) {
2491 			if (inode_unhashed(inode))
2492 				goto out_unlock;
2493 		}
2494 		if (inode->i_state & I_FREEING)
2495 			goto out_unlock;
2496 
2497 		/*
2498 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2499 		 * reposition it (that would break b_dirty time-ordering).
2500 		 */
2501 		if (!was_dirty) {
2502 			struct list_head *dirty_list;
2503 			bool wakeup_bdi = false;
2504 
2505 			inode->dirtied_when = jiffies;
2506 			if (dirtytime)
2507 				inode->dirtied_time_when = jiffies;
2508 
2509 			if (inode->i_state & I_DIRTY)
2510 				dirty_list = &wb->b_dirty;
2511 			else
2512 				dirty_list = &wb->b_dirty_time;
2513 
2514 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2515 							       dirty_list);
2516 
2517 			spin_unlock(&wb->list_lock);
2518 			spin_unlock(&inode->i_lock);
2519 			trace_writeback_dirty_inode_enqueue(inode);
2520 
2521 			/*
2522 			 * If this is the first dirty inode for this bdi,
2523 			 * we have to wake-up the corresponding bdi thread
2524 			 * to make sure background write-back happens
2525 			 * later.
2526 			 */
2527 			if (wakeup_bdi &&
2528 			    (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2529 				wb_wakeup_delayed(wb);
2530 			return;
2531 		}
2532 	}
2533 out_unlock:
2534 	if (wb)
2535 		spin_unlock(&wb->list_lock);
2536 	spin_unlock(&inode->i_lock);
2537 }
2538 EXPORT_SYMBOL(__mark_inode_dirty);
2539 
2540 /*
2541  * The @s_sync_lock is used to serialise concurrent sync operations
2542  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2543  * Concurrent callers will block on the s_sync_lock rather than doing contending
2544  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2545  * has been issued up to the time this function is enter is guaranteed to be
2546  * completed by the time we have gained the lock and waited for all IO that is
2547  * in progress regardless of the order callers are granted the lock.
2548  */
wait_sb_inodes(struct super_block * sb)2549 static void wait_sb_inodes(struct super_block *sb)
2550 {
2551 	LIST_HEAD(sync_list);
2552 
2553 	/*
2554 	 * We need to be protected against the filesystem going from
2555 	 * r/o to r/w or vice versa.
2556 	 */
2557 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2558 
2559 	mutex_lock(&sb->s_sync_lock);
2560 
2561 	/*
2562 	 * Splice the writeback list onto a temporary list to avoid waiting on
2563 	 * inodes that have started writeback after this point.
2564 	 *
2565 	 * Use rcu_read_lock() to keep the inodes around until we have a
2566 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2567 	 * the local list because inodes can be dropped from either by writeback
2568 	 * completion.
2569 	 */
2570 	rcu_read_lock();
2571 	spin_lock_irq(&sb->s_inode_wblist_lock);
2572 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2573 
2574 	/*
2575 	 * Data integrity sync. Must wait for all pages under writeback, because
2576 	 * there may have been pages dirtied before our sync call, but which had
2577 	 * writeout started before we write it out.  In which case, the inode
2578 	 * may not be on the dirty list, but we still have to wait for that
2579 	 * writeout.
2580 	 */
2581 	while (!list_empty(&sync_list)) {
2582 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2583 						       i_wb_list);
2584 		struct address_space *mapping = inode->i_mapping;
2585 
2586 		/*
2587 		 * Move each inode back to the wb list before we drop the lock
2588 		 * to preserve consistency between i_wb_list and the mapping
2589 		 * writeback tag. Writeback completion is responsible to remove
2590 		 * the inode from either list once the writeback tag is cleared.
2591 		 */
2592 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2593 
2594 		/*
2595 		 * The mapping can appear untagged while still on-list since we
2596 		 * do not have the mapping lock. Skip it here, wb completion
2597 		 * will remove it.
2598 		 */
2599 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2600 			continue;
2601 
2602 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2603 
2604 		spin_lock(&inode->i_lock);
2605 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2606 			spin_unlock(&inode->i_lock);
2607 
2608 			spin_lock_irq(&sb->s_inode_wblist_lock);
2609 			continue;
2610 		}
2611 		__iget(inode);
2612 		spin_unlock(&inode->i_lock);
2613 		rcu_read_unlock();
2614 
2615 		/*
2616 		 * We keep the error status of individual mapping so that
2617 		 * applications can catch the writeback error using fsync(2).
2618 		 * See filemap_fdatawait_keep_errors() for details.
2619 		 */
2620 		filemap_fdatawait_keep_errors(mapping);
2621 
2622 		cond_resched();
2623 
2624 		iput(inode);
2625 
2626 		rcu_read_lock();
2627 		spin_lock_irq(&sb->s_inode_wblist_lock);
2628 	}
2629 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2630 	rcu_read_unlock();
2631 	mutex_unlock(&sb->s_sync_lock);
2632 }
2633 
__writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason,bool skip_if_busy)2634 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2635 				     enum wb_reason reason, bool skip_if_busy)
2636 {
2637 	struct backing_dev_info *bdi = sb->s_bdi;
2638 	DEFINE_WB_COMPLETION(done, bdi);
2639 	struct wb_writeback_work work = {
2640 		.sb			= sb,
2641 		.sync_mode		= WB_SYNC_NONE,
2642 		.tagged_writepages	= 1,
2643 		.done			= &done,
2644 		.nr_pages		= nr,
2645 		.reason			= reason,
2646 	};
2647 
2648 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2649 		return;
2650 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2651 
2652 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2653 	wb_wait_for_completion(&done);
2654 }
2655 
2656 /**
2657  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2658  * @sb: the superblock
2659  * @nr: the number of pages to write
2660  * @reason: reason why some writeback work initiated
2661  *
2662  * Start writeback on some inodes on this super_block. No guarantees are made
2663  * on how many (if any) will be written, and this function does not wait
2664  * for IO completion of submitted IO.
2665  */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2666 void writeback_inodes_sb_nr(struct super_block *sb,
2667 			    unsigned long nr,
2668 			    enum wb_reason reason)
2669 {
2670 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2671 }
2672 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2673 
2674 /**
2675  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2676  * @sb: the superblock
2677  * @reason: reason why some writeback work was initiated
2678  *
2679  * Start writeback on some inodes on this super_block. No guarantees are made
2680  * on how many (if any) will be written, and this function does not wait
2681  * for IO completion of submitted IO.
2682  */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2683 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2684 {
2685 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2686 }
2687 EXPORT_SYMBOL(writeback_inodes_sb);
2688 
2689 /**
2690  * try_to_writeback_inodes_sb - try to start writeback if none underway
2691  * @sb: the superblock
2692  * @reason: reason why some writeback work was initiated
2693  *
2694  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2695  */
try_to_writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2696 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2697 {
2698 	if (!down_read_trylock(&sb->s_umount))
2699 		return;
2700 
2701 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2702 	up_read(&sb->s_umount);
2703 }
2704 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2705 
2706 /**
2707  * sync_inodes_sb	-	sync sb inode pages
2708  * @sb: the superblock
2709  *
2710  * This function writes and waits on any dirty inode belonging to this
2711  * super_block.
2712  */
sync_inodes_sb(struct super_block * sb)2713 void sync_inodes_sb(struct super_block *sb)
2714 {
2715 	struct backing_dev_info *bdi = sb->s_bdi;
2716 	DEFINE_WB_COMPLETION(done, bdi);
2717 	struct wb_writeback_work work = {
2718 		.sb		= sb,
2719 		.sync_mode	= WB_SYNC_ALL,
2720 		.nr_pages	= LONG_MAX,
2721 		.range_cyclic	= 0,
2722 		.done		= &done,
2723 		.reason		= WB_REASON_SYNC,
2724 		.for_sync	= 1,
2725 	};
2726 
2727 	/*
2728 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2729 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2730 	 * bdi_has_dirty() need to be written out too.
2731 	 */
2732 	if (bdi == &noop_backing_dev_info)
2733 		return;
2734 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2735 
2736 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2737 	bdi_down_write_wb_switch_rwsem(bdi);
2738 	bdi_split_work_to_wbs(bdi, &work, false);
2739 	wb_wait_for_completion(&done);
2740 	bdi_up_write_wb_switch_rwsem(bdi);
2741 
2742 	wait_sb_inodes(sb);
2743 }
2744 EXPORT_SYMBOL(sync_inodes_sb);
2745 
2746 /**
2747  * write_inode_now	-	write an inode to disk
2748  * @inode: inode to write to disk
2749  * @sync: whether the write should be synchronous or not
2750  *
2751  * This function commits an inode to disk immediately if it is dirty. This is
2752  * primarily needed by knfsd.
2753  *
2754  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2755  */
write_inode_now(struct inode * inode,int sync)2756 int write_inode_now(struct inode *inode, int sync)
2757 {
2758 	struct writeback_control wbc = {
2759 		.nr_to_write = LONG_MAX,
2760 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2761 		.range_start = 0,
2762 		.range_end = LLONG_MAX,
2763 	};
2764 
2765 	if (!mapping_can_writeback(inode->i_mapping))
2766 		wbc.nr_to_write = 0;
2767 
2768 	might_sleep();
2769 	return writeback_single_inode(inode, &wbc);
2770 }
2771 EXPORT_SYMBOL(write_inode_now);
2772 
2773 /**
2774  * sync_inode_metadata - write an inode to disk
2775  * @inode: the inode to sync
2776  * @wait: wait for I/O to complete.
2777  *
2778  * Write an inode to disk and adjust its dirty state after completion.
2779  *
2780  * Note: only writes the actual inode, no associated data or other metadata.
2781  */
sync_inode_metadata(struct inode * inode,int wait)2782 int sync_inode_metadata(struct inode *inode, int wait)
2783 {
2784 	struct writeback_control wbc = {
2785 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2786 		.nr_to_write = 0, /* metadata-only */
2787 	};
2788 
2789 	return writeback_single_inode(inode, &wbc);
2790 }
2791 EXPORT_SYMBOL(sync_inode_metadata);
2792