• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 
51 #include <asm/switch_to.h>
52 
53 #include <linux/sched/cond_resched.h>
54 
55 #include "sched.h"
56 #include "stats.h"
57 #include "autogroup.h"
58 
59 #include <trace/hooks/sched.h>
60 
61 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_runtime);
62 
63 /*
64  * Targeted preemption latency for CPU-bound tasks:
65  *
66  * NOTE: this latency value is not the same as the concept of
67  * 'timeslice length' - timeslices in CFS are of variable length
68  * and have no persistent notion like in traditional, time-slice
69  * based scheduling concepts.
70  *
71  * (to see the precise effective timeslice length of your workload,
72  *  run vmstat and monitor the context-switches (cs) field)
73  *
74  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
75  */
76 unsigned int sysctl_sched_latency			= 6000000ULL;
77 EXPORT_SYMBOL_GPL(sysctl_sched_latency);
78 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
79 
80 /*
81  * The initial- and re-scaling of tunables is configurable
82  *
83  * Options are:
84  *
85  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
86  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
87  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
88  *
89  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
90  */
91 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
92 
93 /*
94  * Minimal preemption granularity for CPU-bound tasks:
95  *
96  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
97  */
98 unsigned int sysctl_sched_min_granularity			= 750000ULL;
99 EXPORT_SYMBOL_GPL(sysctl_sched_min_granularity);
100 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
101 
102 /*
103  * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
104  * Applies only when SCHED_IDLE tasks compete with normal tasks.
105  *
106  * (default: 0.75 msec)
107  */
108 unsigned int sysctl_sched_idle_min_granularity			= 750000ULL;
109 EXPORT_SYMBOL_GPL(sysctl_sched_idle_min_granularity);
110 
111 /*
112  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
113  */
114 static unsigned int sched_nr_latency = 8;
115 
116 /*
117  * After fork, child runs first. If set to 0 (default) then
118  * parent will (try to) run first.
119  */
120 unsigned int sysctl_sched_child_runs_first __read_mostly;
121 
122 /*
123  * SCHED_OTHER wake-up granularity.
124  *
125  * This option delays the preemption effects of decoupled workloads
126  * and reduces their over-scheduling. Synchronous workloads will still
127  * have immediate wakeup/sleep latencies.
128  *
129  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
130  */
131 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
132 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
133 
134 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
135 
136 int sched_thermal_decay_shift;
setup_sched_thermal_decay_shift(char * str)137 static int __init setup_sched_thermal_decay_shift(char *str)
138 {
139 	int _shift = 0;
140 
141 	if (kstrtoint(str, 0, &_shift))
142 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
143 
144 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
145 	return 1;
146 }
147 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
148 
149 #ifdef CONFIG_SMP
150 /*
151  * For asym packing, by default the lower numbered CPU has higher priority.
152  */
arch_asym_cpu_priority(int cpu)153 int __weak arch_asym_cpu_priority(int cpu)
154 {
155 	return -cpu;
156 }
157 
158 /*
159  * The margin used when comparing utilization with CPU capacity.
160  *
161  * (default: ~20%)
162  */
163 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
164 
165 /*
166  * The margin used when comparing CPU capacities.
167  * is 'cap1' noticeably greater than 'cap2'
168  *
169  * (default: ~5%)
170  */
171 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
172 #endif
173 
174 #ifdef CONFIG_CFS_BANDWIDTH
175 /*
176  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
177  * each time a cfs_rq requests quota.
178  *
179  * Note: in the case that the slice exceeds the runtime remaining (either due
180  * to consumption or the quota being specified to be smaller than the slice)
181  * we will always only issue the remaining available time.
182  *
183  * (default: 5 msec, units: microseconds)
184  */
185 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
186 #endif
187 
188 #ifdef CONFIG_SYSCTL
189 static struct ctl_table sched_fair_sysctls[] = {
190 	{
191 		.procname       = "sched_child_runs_first",
192 		.data           = &sysctl_sched_child_runs_first,
193 		.maxlen         = sizeof(unsigned int),
194 		.mode           = 0644,
195 		.proc_handler   = proc_dointvec,
196 	},
197 #ifdef CONFIG_CFS_BANDWIDTH
198 	{
199 		.procname       = "sched_cfs_bandwidth_slice_us",
200 		.data           = &sysctl_sched_cfs_bandwidth_slice,
201 		.maxlen         = sizeof(unsigned int),
202 		.mode           = 0644,
203 		.proc_handler   = proc_dointvec_minmax,
204 		.extra1         = SYSCTL_ONE,
205 	},
206 #endif
207 	{}
208 };
209 
sched_fair_sysctl_init(void)210 static int __init sched_fair_sysctl_init(void)
211 {
212 	register_sysctl_init("kernel", sched_fair_sysctls);
213 	return 0;
214 }
215 late_initcall(sched_fair_sysctl_init);
216 #endif
217 
update_load_add(struct load_weight * lw,unsigned long inc)218 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
219 {
220 	lw->weight += inc;
221 	lw->inv_weight = 0;
222 }
223 
update_load_sub(struct load_weight * lw,unsigned long dec)224 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
225 {
226 	lw->weight -= dec;
227 	lw->inv_weight = 0;
228 }
229 
update_load_set(struct load_weight * lw,unsigned long w)230 static inline void update_load_set(struct load_weight *lw, unsigned long w)
231 {
232 	lw->weight = w;
233 	lw->inv_weight = 0;
234 }
235 
236 /*
237  * Increase the granularity value when there are more CPUs,
238  * because with more CPUs the 'effective latency' as visible
239  * to users decreases. But the relationship is not linear,
240  * so pick a second-best guess by going with the log2 of the
241  * number of CPUs.
242  *
243  * This idea comes from the SD scheduler of Con Kolivas:
244  */
get_update_sysctl_factor(void)245 static unsigned int get_update_sysctl_factor(void)
246 {
247 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
248 	unsigned int factor;
249 
250 	switch (sysctl_sched_tunable_scaling) {
251 	case SCHED_TUNABLESCALING_NONE:
252 		factor = 1;
253 		break;
254 	case SCHED_TUNABLESCALING_LINEAR:
255 		factor = cpus;
256 		break;
257 	case SCHED_TUNABLESCALING_LOG:
258 	default:
259 		factor = 1 + ilog2(cpus);
260 		break;
261 	}
262 
263 	return factor;
264 }
265 
update_sysctl(void)266 static void update_sysctl(void)
267 {
268 	unsigned int factor = get_update_sysctl_factor();
269 
270 #define SET_SYSCTL(name) \
271 	(sysctl_##name = (factor) * normalized_sysctl_##name)
272 	SET_SYSCTL(sched_min_granularity);
273 	SET_SYSCTL(sched_latency);
274 	SET_SYSCTL(sched_wakeup_granularity);
275 #undef SET_SYSCTL
276 }
277 
sched_init_granularity(void)278 void __init sched_init_granularity(void)
279 {
280 	update_sysctl();
281 }
282 
283 #define WMULT_CONST	(~0U)
284 #define WMULT_SHIFT	32
285 
__update_inv_weight(struct load_weight * lw)286 static void __update_inv_weight(struct load_weight *lw)
287 {
288 	unsigned long w;
289 
290 	if (likely(lw->inv_weight))
291 		return;
292 
293 	w = scale_load_down(lw->weight);
294 
295 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
296 		lw->inv_weight = 1;
297 	else if (unlikely(!w))
298 		lw->inv_weight = WMULT_CONST;
299 	else
300 		lw->inv_weight = WMULT_CONST / w;
301 }
302 
303 /*
304  * delta_exec * weight / lw.weight
305  *   OR
306  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
307  *
308  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
309  * we're guaranteed shift stays positive because inv_weight is guaranteed to
310  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
311  *
312  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
313  * weight/lw.weight <= 1, and therefore our shift will also be positive.
314  */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)315 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
316 {
317 	u64 fact = scale_load_down(weight);
318 	u32 fact_hi = (u32)(fact >> 32);
319 	int shift = WMULT_SHIFT;
320 	int fs;
321 
322 	__update_inv_weight(lw);
323 
324 	if (unlikely(fact_hi)) {
325 		fs = fls(fact_hi);
326 		shift -= fs;
327 		fact >>= fs;
328 	}
329 
330 	fact = mul_u32_u32(fact, lw->inv_weight);
331 
332 	fact_hi = (u32)(fact >> 32);
333 	if (fact_hi) {
334 		fs = fls(fact_hi);
335 		shift -= fs;
336 		fact >>= fs;
337 	}
338 
339 	return mul_u64_u32_shr(delta_exec, fact, shift);
340 }
341 
342 
343 const struct sched_class fair_sched_class;
344 
345 /**************************************************************
346  * CFS operations on generic schedulable entities:
347  */
348 
349 #ifdef CONFIG_FAIR_GROUP_SCHED
350 
351 /* Walk up scheduling entities hierarchy */
352 #define for_each_sched_entity(se) \
353 		for (; se; se = se->parent)
354 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)355 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
356 {
357 	struct rq *rq = rq_of(cfs_rq);
358 	int cpu = cpu_of(rq);
359 
360 	if (cfs_rq->on_list)
361 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
362 
363 	cfs_rq->on_list = 1;
364 
365 	/*
366 	 * Ensure we either appear before our parent (if already
367 	 * enqueued) or force our parent to appear after us when it is
368 	 * enqueued. The fact that we always enqueue bottom-up
369 	 * reduces this to two cases and a special case for the root
370 	 * cfs_rq. Furthermore, it also means that we will always reset
371 	 * tmp_alone_branch either when the branch is connected
372 	 * to a tree or when we reach the top of the tree
373 	 */
374 	if (cfs_rq->tg->parent &&
375 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
376 		/*
377 		 * If parent is already on the list, we add the child
378 		 * just before. Thanks to circular linked property of
379 		 * the list, this means to put the child at the tail
380 		 * of the list that starts by parent.
381 		 */
382 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
383 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
384 		/*
385 		 * The branch is now connected to its tree so we can
386 		 * reset tmp_alone_branch to the beginning of the
387 		 * list.
388 		 */
389 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
390 		return true;
391 	}
392 
393 	if (!cfs_rq->tg->parent) {
394 		/*
395 		 * cfs rq without parent should be put
396 		 * at the tail of the list.
397 		 */
398 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
399 			&rq->leaf_cfs_rq_list);
400 		/*
401 		 * We have reach the top of a tree so we can reset
402 		 * tmp_alone_branch to the beginning of the list.
403 		 */
404 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
405 		return true;
406 	}
407 
408 	/*
409 	 * The parent has not already been added so we want to
410 	 * make sure that it will be put after us.
411 	 * tmp_alone_branch points to the begin of the branch
412 	 * where we will add parent.
413 	 */
414 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
415 	/*
416 	 * update tmp_alone_branch to points to the new begin
417 	 * of the branch
418 	 */
419 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
420 	return false;
421 }
422 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)423 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
424 {
425 	if (cfs_rq->on_list) {
426 		struct rq *rq = rq_of(cfs_rq);
427 
428 		/*
429 		 * With cfs_rq being unthrottled/throttled during an enqueue,
430 		 * it can happen the tmp_alone_branch points the a leaf that
431 		 * we finally want to del. In this case, tmp_alone_branch moves
432 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
433 		 * at the end of the enqueue.
434 		 */
435 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
436 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
437 
438 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
439 		cfs_rq->on_list = 0;
440 	}
441 }
442 
assert_list_leaf_cfs_rq(struct rq * rq)443 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
444 {
445 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
446 }
447 
448 /* Iterate thr' all leaf cfs_rq's on a runqueue */
449 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
450 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
451 				 leaf_cfs_rq_list)
452 
453 /* Do the two (enqueued) entities belong to the same group ? */
454 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)455 is_same_group(struct sched_entity *se, struct sched_entity *pse)
456 {
457 	if (se->cfs_rq == pse->cfs_rq)
458 		return se->cfs_rq;
459 
460 	return NULL;
461 }
462 
parent_entity(struct sched_entity * se)463 static inline struct sched_entity *parent_entity(struct sched_entity *se)
464 {
465 	return se->parent;
466 }
467 
468 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)469 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
470 {
471 	int se_depth, pse_depth;
472 
473 	/*
474 	 * preemption test can be made between sibling entities who are in the
475 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
476 	 * both tasks until we find their ancestors who are siblings of common
477 	 * parent.
478 	 */
479 
480 	/* First walk up until both entities are at same depth */
481 	se_depth = (*se)->depth;
482 	pse_depth = (*pse)->depth;
483 
484 	while (se_depth > pse_depth) {
485 		se_depth--;
486 		*se = parent_entity(*se);
487 	}
488 
489 	while (pse_depth > se_depth) {
490 		pse_depth--;
491 		*pse = parent_entity(*pse);
492 	}
493 
494 	while (!is_same_group(*se, *pse)) {
495 		*se = parent_entity(*se);
496 		*pse = parent_entity(*pse);
497 	}
498 }
499 
tg_is_idle(struct task_group * tg)500 static int tg_is_idle(struct task_group *tg)
501 {
502 	return tg->idle > 0;
503 }
504 
cfs_rq_is_idle(struct cfs_rq * cfs_rq)505 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
506 {
507 	return cfs_rq->idle > 0;
508 }
509 
se_is_idle(struct sched_entity * se)510 static int se_is_idle(struct sched_entity *se)
511 {
512 	if (entity_is_task(se))
513 		return task_has_idle_policy(task_of(se));
514 	return cfs_rq_is_idle(group_cfs_rq(se));
515 }
516 
517 #else	/* !CONFIG_FAIR_GROUP_SCHED */
518 
519 #define for_each_sched_entity(se) \
520 		for (; se; se = NULL)
521 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)522 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
523 {
524 	return true;
525 }
526 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)527 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
528 {
529 }
530 
assert_list_leaf_cfs_rq(struct rq * rq)531 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
532 {
533 }
534 
535 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
536 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
537 
parent_entity(struct sched_entity * se)538 static inline struct sched_entity *parent_entity(struct sched_entity *se)
539 {
540 	return NULL;
541 }
542 
543 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)544 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
545 {
546 }
547 
tg_is_idle(struct task_group * tg)548 static inline int tg_is_idle(struct task_group *tg)
549 {
550 	return 0;
551 }
552 
cfs_rq_is_idle(struct cfs_rq * cfs_rq)553 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
554 {
555 	return 0;
556 }
557 
se_is_idle(struct sched_entity * se)558 static int se_is_idle(struct sched_entity *se)
559 {
560 	return 0;
561 }
562 
563 #endif	/* CONFIG_FAIR_GROUP_SCHED */
564 
565 static __always_inline
566 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
567 
568 /**************************************************************
569  * Scheduling class tree data structure manipulation methods:
570  */
571 
max_vruntime(u64 max_vruntime,u64 vruntime)572 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
573 {
574 	s64 delta = (s64)(vruntime - max_vruntime);
575 	if (delta > 0)
576 		max_vruntime = vruntime;
577 
578 	return max_vruntime;
579 }
580 
min_vruntime(u64 min_vruntime,u64 vruntime)581 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
582 {
583 	s64 delta = (s64)(vruntime - min_vruntime);
584 	if (delta < 0)
585 		min_vruntime = vruntime;
586 
587 	return min_vruntime;
588 }
589 
entity_before(struct sched_entity * a,struct sched_entity * b)590 static inline bool entity_before(struct sched_entity *a,
591 				struct sched_entity *b)
592 {
593 	return (s64)(a->vruntime - b->vruntime) < 0;
594 }
595 
596 #define __node_2_se(node) \
597 	rb_entry((node), struct sched_entity, run_node)
598 
update_min_vruntime(struct cfs_rq * cfs_rq)599 static void update_min_vruntime(struct cfs_rq *cfs_rq)
600 {
601 	struct sched_entity *curr = cfs_rq->curr;
602 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
603 
604 	u64 vruntime = cfs_rq->min_vruntime;
605 
606 	if (curr) {
607 		if (curr->on_rq)
608 			vruntime = curr->vruntime;
609 		else
610 			curr = NULL;
611 	}
612 
613 	if (leftmost) { /* non-empty tree */
614 		struct sched_entity *se = __node_2_se(leftmost);
615 
616 		if (!curr)
617 			vruntime = se->vruntime;
618 		else
619 			vruntime = min_vruntime(vruntime, se->vruntime);
620 	}
621 
622 	/* ensure we never gain time by being placed backwards. */
623 	u64_u32_store(cfs_rq->min_vruntime,
624 		      max_vruntime(cfs_rq->min_vruntime, vruntime));
625 }
626 
__entity_less(struct rb_node * a,const struct rb_node * b)627 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
628 {
629 	return entity_before(__node_2_se(a), __node_2_se(b));
630 }
631 
632 /*
633  * Enqueue an entity into the rb-tree:
634  */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)635 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
636 {
637 	trace_android_rvh_enqueue_entity(cfs_rq, se);
638 	rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
639 }
640 
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)641 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
642 {
643 	trace_android_rvh_dequeue_entity(cfs_rq, se);
644 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
645 }
646 
__pick_first_entity(struct cfs_rq * cfs_rq)647 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
648 {
649 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
650 
651 	if (!left)
652 		return NULL;
653 
654 	return __node_2_se(left);
655 }
656 
__pick_next_entity(struct sched_entity * se)657 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
658 {
659 	struct rb_node *next = rb_next(&se->run_node);
660 
661 	if (!next)
662 		return NULL;
663 
664 	return __node_2_se(next);
665 }
666 
667 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)668 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
669 {
670 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
671 
672 	if (!last)
673 		return NULL;
674 
675 	return __node_2_se(last);
676 }
677 
678 /**************************************************************
679  * Scheduling class statistics methods:
680  */
681 
sched_update_scaling(void)682 int sched_update_scaling(void)
683 {
684 	unsigned int factor = get_update_sysctl_factor();
685 
686 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
687 					sysctl_sched_min_granularity);
688 
689 #define WRT_SYSCTL(name) \
690 	(normalized_sysctl_##name = sysctl_##name / (factor))
691 	WRT_SYSCTL(sched_min_granularity);
692 	WRT_SYSCTL(sched_latency);
693 	WRT_SYSCTL(sched_wakeup_granularity);
694 #undef WRT_SYSCTL
695 
696 	return 0;
697 }
698 #endif
699 
700 /*
701  * delta /= w
702  */
calc_delta_fair(u64 delta,struct sched_entity * se)703 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
704 {
705 	if (unlikely(se->load.weight != NICE_0_LOAD))
706 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
707 
708 	return delta;
709 }
710 
711 /*
712  * The idea is to set a period in which each task runs once.
713  *
714  * When there are too many tasks (sched_nr_latency) we have to stretch
715  * this period because otherwise the slices get too small.
716  *
717  * p = (nr <= nl) ? l : l*nr/nl
718  */
__sched_period(unsigned long nr_running)719 static u64 __sched_period(unsigned long nr_running)
720 {
721 	if (unlikely(nr_running > sched_nr_latency))
722 		return nr_running * sysctl_sched_min_granularity;
723 	else
724 		return sysctl_sched_latency;
725 }
726 
727 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
728 
729 /*
730  * We calculate the wall-time slice from the period by taking a part
731  * proportional to the weight.
732  *
733  * s = p*P[w/rw]
734  */
sched_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)735 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
736 {
737 	unsigned int nr_running = cfs_rq->nr_running;
738 	struct sched_entity *init_se = se;
739 	unsigned int min_gran;
740 	u64 slice;
741 
742 	if (sched_feat(ALT_PERIOD))
743 		nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
744 
745 	slice = __sched_period(nr_running + !se->on_rq);
746 
747 	for_each_sched_entity(se) {
748 		struct load_weight *load;
749 		struct load_weight lw;
750 		struct cfs_rq *qcfs_rq;
751 
752 		qcfs_rq = cfs_rq_of(se);
753 		load = &qcfs_rq->load;
754 
755 		if (unlikely(!se->on_rq)) {
756 			lw = qcfs_rq->load;
757 
758 			update_load_add(&lw, se->load.weight);
759 			load = &lw;
760 		}
761 		slice = __calc_delta(slice, se->load.weight, load);
762 	}
763 
764 	if (sched_feat(BASE_SLICE)) {
765 		if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
766 			min_gran = sysctl_sched_idle_min_granularity;
767 		else
768 			min_gran = sysctl_sched_min_granularity;
769 
770 		slice = max_t(u64, slice, min_gran);
771 	}
772 
773 	return slice;
774 }
775 
776 /*
777  * We calculate the vruntime slice of a to-be-inserted task.
778  *
779  * vs = s/w
780  */
sched_vslice(struct cfs_rq * cfs_rq,struct sched_entity * se)781 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
782 {
783 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
784 }
785 
786 #include "pelt.h"
787 #ifdef CONFIG_SMP
788 
789 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
790 static unsigned long task_h_load(struct task_struct *p);
791 static unsigned long capacity_of(int cpu);
792 
793 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)794 void init_entity_runnable_average(struct sched_entity *se)
795 {
796 	struct sched_avg *sa = &se->avg;
797 
798 	memset(sa, 0, sizeof(*sa));
799 
800 	/*
801 	 * Tasks are initialized with full load to be seen as heavy tasks until
802 	 * they get a chance to stabilize to their real load level.
803 	 * Group entities are initialized with zero load to reflect the fact that
804 	 * nothing has been attached to the task group yet.
805 	 */
806 	if (entity_is_task(se))
807 		sa->load_avg = scale_load_down(se->load.weight);
808 
809 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
810 }
811 
812 /*
813  * With new tasks being created, their initial util_avgs are extrapolated
814  * based on the cfs_rq's current util_avg:
815  *
816  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
817  *
818  * However, in many cases, the above util_avg does not give a desired
819  * value. Moreover, the sum of the util_avgs may be divergent, such
820  * as when the series is a harmonic series.
821  *
822  * To solve this problem, we also cap the util_avg of successive tasks to
823  * only 1/2 of the left utilization budget:
824  *
825  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
826  *
827  * where n denotes the nth task and cpu_scale the CPU capacity.
828  *
829  * For example, for a CPU with 1024 of capacity, a simplest series from
830  * the beginning would be like:
831  *
832  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
833  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
834  *
835  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
836  * if util_avg > util_avg_cap.
837  */
post_init_entity_util_avg(struct task_struct * p)838 void post_init_entity_util_avg(struct task_struct *p)
839 {
840 	struct sched_entity *se = &p->se;
841 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
842 	struct sched_avg *sa = &se->avg;
843 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
844 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
845 
846 	if (p->sched_class != &fair_sched_class) {
847 		/*
848 		 * For !fair tasks do:
849 		 *
850 		update_cfs_rq_load_avg(now, cfs_rq);
851 		attach_entity_load_avg(cfs_rq, se);
852 		switched_from_fair(rq, p);
853 		 *
854 		 * such that the next switched_to_fair() has the
855 		 * expected state.
856 		 */
857 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
858 		return;
859 	}
860 
861 	if (cap > 0) {
862 		if (cfs_rq->avg.util_avg != 0) {
863 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
864 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
865 
866 			if (sa->util_avg > cap)
867 				sa->util_avg = cap;
868 		} else {
869 			sa->util_avg = cap;
870 		}
871 	}
872 
873 	sa->runnable_avg = sa->util_avg;
874 
875 	/* Hook before this se's util is attached to cfs_rq's util */
876 	trace_android_rvh_post_init_entity_util_avg(se);
877 }
878 
879 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)880 void init_entity_runnable_average(struct sched_entity *se)
881 {
882 }
post_init_entity_util_avg(struct task_struct * p)883 void post_init_entity_util_avg(struct task_struct *p)
884 {
885 }
update_tg_load_avg(struct cfs_rq * cfs_rq)886 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
887 {
888 }
889 #endif /* CONFIG_SMP */
890 
891 /*
892  * Update the current task's runtime statistics.
893  */
update_curr(struct cfs_rq * cfs_rq)894 static void update_curr(struct cfs_rq *cfs_rq)
895 {
896 	struct sched_entity *curr = cfs_rq->curr;
897 	u64 now = rq_clock_task(rq_of(cfs_rq));
898 	u64 delta_exec;
899 
900 	if (unlikely(!curr))
901 		return;
902 
903 	delta_exec = now - curr->exec_start;
904 	if (unlikely((s64)delta_exec <= 0))
905 		return;
906 
907 	curr->exec_start = now;
908 
909 	if (schedstat_enabled()) {
910 		struct sched_statistics *stats;
911 
912 		stats = __schedstats_from_se(curr);
913 		__schedstat_set(stats->exec_max,
914 				max(delta_exec, stats->exec_max));
915 	}
916 
917 	curr->sum_exec_runtime += delta_exec;
918 	schedstat_add(cfs_rq->exec_clock, delta_exec);
919 
920 	curr->vruntime += calc_delta_fair(delta_exec, curr);
921 	update_min_vruntime(cfs_rq);
922 
923 	if (entity_is_task(curr)) {
924 		struct task_struct *curtask = task_of(curr);
925 
926 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
927 		cgroup_account_cputime(curtask, delta_exec);
928 		account_group_exec_runtime(curtask, delta_exec);
929 	}
930 
931 	account_cfs_rq_runtime(cfs_rq, delta_exec);
932 }
933 
update_curr_fair(struct rq * rq)934 static void update_curr_fair(struct rq *rq)
935 {
936 	update_curr(cfs_rq_of(&rq->curr->se));
937 }
938 
939 static inline void
update_stats_wait_start_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)940 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
941 {
942 	struct sched_statistics *stats;
943 	struct task_struct *p = NULL;
944 
945 	if (!schedstat_enabled())
946 		return;
947 
948 	stats = __schedstats_from_se(se);
949 
950 	if (entity_is_task(se))
951 		p = task_of(se);
952 
953 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
954 }
955 
956 static inline void
update_stats_wait_end_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)957 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
958 {
959 	struct sched_statistics *stats;
960 	struct task_struct *p = NULL;
961 
962 	if (!schedstat_enabled())
963 		return;
964 
965 	stats = __schedstats_from_se(se);
966 
967 	/*
968 	 * When the sched_schedstat changes from 0 to 1, some sched se
969 	 * maybe already in the runqueue, the se->statistics.wait_start
970 	 * will be 0.So it will let the delta wrong. We need to avoid this
971 	 * scenario.
972 	 */
973 	if (unlikely(!schedstat_val(stats->wait_start)))
974 		return;
975 
976 	if (entity_is_task(se))
977 		p = task_of(se);
978 
979 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
980 }
981 
982 static inline void
update_stats_enqueue_sleeper_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)983 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
984 {
985 	struct sched_statistics *stats;
986 	struct task_struct *tsk = NULL;
987 
988 	if (!schedstat_enabled())
989 		return;
990 
991 	stats = __schedstats_from_se(se);
992 
993 	if (entity_is_task(se))
994 		tsk = task_of(se);
995 
996 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
997 }
998 
999 /*
1000  * Task is being enqueued - update stats:
1001  */
1002 static inline void
update_stats_enqueue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1003 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1004 {
1005 	if (!schedstat_enabled())
1006 		return;
1007 
1008 	/*
1009 	 * Are we enqueueing a waiting task? (for current tasks
1010 	 * a dequeue/enqueue event is a NOP)
1011 	 */
1012 	if (se != cfs_rq->curr)
1013 		update_stats_wait_start_fair(cfs_rq, se);
1014 
1015 	if (flags & ENQUEUE_WAKEUP)
1016 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1017 }
1018 
1019 static inline void
update_stats_dequeue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1020 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1021 {
1022 
1023 	if (!schedstat_enabled())
1024 		return;
1025 
1026 	/*
1027 	 * Mark the end of the wait period if dequeueing a
1028 	 * waiting task:
1029 	 */
1030 	if (se != cfs_rq->curr)
1031 		update_stats_wait_end_fair(cfs_rq, se);
1032 
1033 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1034 		struct task_struct *tsk = task_of(se);
1035 		unsigned int state;
1036 
1037 		/* XXX racy against TTWU */
1038 		state = READ_ONCE(tsk->__state);
1039 		if (state & TASK_INTERRUPTIBLE)
1040 			__schedstat_set(tsk->stats.sleep_start,
1041 				      rq_clock(rq_of(cfs_rq)));
1042 		if (state & TASK_UNINTERRUPTIBLE)
1043 			__schedstat_set(tsk->stats.block_start,
1044 				      rq_clock(rq_of(cfs_rq)));
1045 	}
1046 }
1047 
1048 /*
1049  * We are picking a new current task - update its stats:
1050  */
1051 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1052 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1053 {
1054 	/*
1055 	 * We are starting a new run period:
1056 	 */
1057 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1058 }
1059 
1060 /**************************************************
1061  * Scheduling class queueing methods:
1062  */
1063 
1064 #ifdef CONFIG_NUMA
1065 #define NUMA_IMBALANCE_MIN 2
1066 
1067 static inline long
adjust_numa_imbalance(int imbalance,int dst_running,int imb_numa_nr)1068 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1069 {
1070 	/*
1071 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1072 	 * threshold. Above this threshold, individual tasks may be contending
1073 	 * for both memory bandwidth and any shared HT resources.  This is an
1074 	 * approximation as the number of running tasks may not be related to
1075 	 * the number of busy CPUs due to sched_setaffinity.
1076 	 */
1077 	if (dst_running > imb_numa_nr)
1078 		return imbalance;
1079 
1080 	/*
1081 	 * Allow a small imbalance based on a simple pair of communicating
1082 	 * tasks that remain local when the destination is lightly loaded.
1083 	 */
1084 	if (imbalance <= NUMA_IMBALANCE_MIN)
1085 		return 0;
1086 
1087 	return imbalance;
1088 }
1089 #endif /* CONFIG_NUMA */
1090 
1091 #ifdef CONFIG_NUMA_BALANCING
1092 /*
1093  * Approximate time to scan a full NUMA task in ms. The task scan period is
1094  * calculated based on the tasks virtual memory size and
1095  * numa_balancing_scan_size.
1096  */
1097 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1098 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1099 
1100 /* Portion of address space to scan in MB */
1101 unsigned int sysctl_numa_balancing_scan_size = 256;
1102 
1103 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1104 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1105 
1106 /* The page with hint page fault latency < threshold in ms is considered hot */
1107 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1108 
1109 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
1110 unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
1111 
1112 struct numa_group {
1113 	refcount_t refcount;
1114 
1115 	spinlock_t lock; /* nr_tasks, tasks */
1116 	int nr_tasks;
1117 	pid_t gid;
1118 	int active_nodes;
1119 
1120 	struct rcu_head rcu;
1121 	unsigned long total_faults;
1122 	unsigned long max_faults_cpu;
1123 	/*
1124 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1125 	 *
1126 	 * Faults_cpu is used to decide whether memory should move
1127 	 * towards the CPU. As a consequence, these stats are weighted
1128 	 * more by CPU use than by memory faults.
1129 	 */
1130 	unsigned long faults[];
1131 };
1132 
1133 /*
1134  * For functions that can be called in multiple contexts that permit reading
1135  * ->numa_group (see struct task_struct for locking rules).
1136  */
deref_task_numa_group(struct task_struct * p)1137 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1138 {
1139 	return rcu_dereference_check(p->numa_group, p == current ||
1140 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1141 }
1142 
deref_curr_numa_group(struct task_struct * p)1143 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1144 {
1145 	return rcu_dereference_protected(p->numa_group, p == current);
1146 }
1147 
1148 static inline unsigned long group_faults_priv(struct numa_group *ng);
1149 static inline unsigned long group_faults_shared(struct numa_group *ng);
1150 
task_nr_scan_windows(struct task_struct * p)1151 static unsigned int task_nr_scan_windows(struct task_struct *p)
1152 {
1153 	unsigned long rss = 0;
1154 	unsigned long nr_scan_pages;
1155 
1156 	/*
1157 	 * Calculations based on RSS as non-present and empty pages are skipped
1158 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1159 	 * on resident pages
1160 	 */
1161 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1162 	rss = get_mm_rss(p->mm);
1163 	if (!rss)
1164 		rss = nr_scan_pages;
1165 
1166 	rss = round_up(rss, nr_scan_pages);
1167 	return rss / nr_scan_pages;
1168 }
1169 
1170 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1171 #define MAX_SCAN_WINDOW 2560
1172 
task_scan_min(struct task_struct * p)1173 static unsigned int task_scan_min(struct task_struct *p)
1174 {
1175 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1176 	unsigned int scan, floor;
1177 	unsigned int windows = 1;
1178 
1179 	if (scan_size < MAX_SCAN_WINDOW)
1180 		windows = MAX_SCAN_WINDOW / scan_size;
1181 	floor = 1000 / windows;
1182 
1183 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1184 	return max_t(unsigned int, floor, scan);
1185 }
1186 
task_scan_start(struct task_struct * p)1187 static unsigned int task_scan_start(struct task_struct *p)
1188 {
1189 	unsigned long smin = task_scan_min(p);
1190 	unsigned long period = smin;
1191 	struct numa_group *ng;
1192 
1193 	/* Scale the maximum scan period with the amount of shared memory. */
1194 	rcu_read_lock();
1195 	ng = rcu_dereference(p->numa_group);
1196 	if (ng) {
1197 		unsigned long shared = group_faults_shared(ng);
1198 		unsigned long private = group_faults_priv(ng);
1199 
1200 		period *= refcount_read(&ng->refcount);
1201 		period *= shared + 1;
1202 		period /= private + shared + 1;
1203 	}
1204 	rcu_read_unlock();
1205 
1206 	return max(smin, period);
1207 }
1208 
task_scan_max(struct task_struct * p)1209 static unsigned int task_scan_max(struct task_struct *p)
1210 {
1211 	unsigned long smin = task_scan_min(p);
1212 	unsigned long smax;
1213 	struct numa_group *ng;
1214 
1215 	/* Watch for min being lower than max due to floor calculations */
1216 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1217 
1218 	/* Scale the maximum scan period with the amount of shared memory. */
1219 	ng = deref_curr_numa_group(p);
1220 	if (ng) {
1221 		unsigned long shared = group_faults_shared(ng);
1222 		unsigned long private = group_faults_priv(ng);
1223 		unsigned long period = smax;
1224 
1225 		period *= refcount_read(&ng->refcount);
1226 		period *= shared + 1;
1227 		period /= private + shared + 1;
1228 
1229 		smax = max(smax, period);
1230 	}
1231 
1232 	return max(smin, smax);
1233 }
1234 
account_numa_enqueue(struct rq * rq,struct task_struct * p)1235 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1236 {
1237 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1238 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1239 }
1240 
account_numa_dequeue(struct rq * rq,struct task_struct * p)1241 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1242 {
1243 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1244 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1245 }
1246 
1247 /* Shared or private faults. */
1248 #define NR_NUMA_HINT_FAULT_TYPES 2
1249 
1250 /* Memory and CPU locality */
1251 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1252 
1253 /* Averaged statistics, and temporary buffers. */
1254 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1255 
task_numa_group_id(struct task_struct * p)1256 pid_t task_numa_group_id(struct task_struct *p)
1257 {
1258 	struct numa_group *ng;
1259 	pid_t gid = 0;
1260 
1261 	rcu_read_lock();
1262 	ng = rcu_dereference(p->numa_group);
1263 	if (ng)
1264 		gid = ng->gid;
1265 	rcu_read_unlock();
1266 
1267 	return gid;
1268 }
1269 
1270 /*
1271  * The averaged statistics, shared & private, memory & CPU,
1272  * occupy the first half of the array. The second half of the
1273  * array is for current counters, which are averaged into the
1274  * first set by task_numa_placement.
1275  */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1276 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1277 {
1278 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1279 }
1280 
task_faults(struct task_struct * p,int nid)1281 static inline unsigned long task_faults(struct task_struct *p, int nid)
1282 {
1283 	if (!p->numa_faults)
1284 		return 0;
1285 
1286 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1287 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1288 }
1289 
group_faults(struct task_struct * p,int nid)1290 static inline unsigned long group_faults(struct task_struct *p, int nid)
1291 {
1292 	struct numa_group *ng = deref_task_numa_group(p);
1293 
1294 	if (!ng)
1295 		return 0;
1296 
1297 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1298 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1299 }
1300 
group_faults_cpu(struct numa_group * group,int nid)1301 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1302 {
1303 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1304 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1305 }
1306 
group_faults_priv(struct numa_group * ng)1307 static inline unsigned long group_faults_priv(struct numa_group *ng)
1308 {
1309 	unsigned long faults = 0;
1310 	int node;
1311 
1312 	for_each_online_node(node) {
1313 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1314 	}
1315 
1316 	return faults;
1317 }
1318 
group_faults_shared(struct numa_group * ng)1319 static inline unsigned long group_faults_shared(struct numa_group *ng)
1320 {
1321 	unsigned long faults = 0;
1322 	int node;
1323 
1324 	for_each_online_node(node) {
1325 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1326 	}
1327 
1328 	return faults;
1329 }
1330 
1331 /*
1332  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1333  * considered part of a numa group's pseudo-interleaving set. Migrations
1334  * between these nodes are slowed down, to allow things to settle down.
1335  */
1336 #define ACTIVE_NODE_FRACTION 3
1337 
numa_is_active_node(int nid,struct numa_group * ng)1338 static bool numa_is_active_node(int nid, struct numa_group *ng)
1339 {
1340 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1341 }
1342 
1343 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int lim_dist,bool task)1344 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1345 					int lim_dist, bool task)
1346 {
1347 	unsigned long score = 0;
1348 	int node, max_dist;
1349 
1350 	/*
1351 	 * All nodes are directly connected, and the same distance
1352 	 * from each other. No need for fancy placement algorithms.
1353 	 */
1354 	if (sched_numa_topology_type == NUMA_DIRECT)
1355 		return 0;
1356 
1357 	/* sched_max_numa_distance may be changed in parallel. */
1358 	max_dist = READ_ONCE(sched_max_numa_distance);
1359 	/*
1360 	 * This code is called for each node, introducing N^2 complexity,
1361 	 * which should be ok given the number of nodes rarely exceeds 8.
1362 	 */
1363 	for_each_online_node(node) {
1364 		unsigned long faults;
1365 		int dist = node_distance(nid, node);
1366 
1367 		/*
1368 		 * The furthest away nodes in the system are not interesting
1369 		 * for placement; nid was already counted.
1370 		 */
1371 		if (dist >= max_dist || node == nid)
1372 			continue;
1373 
1374 		/*
1375 		 * On systems with a backplane NUMA topology, compare groups
1376 		 * of nodes, and move tasks towards the group with the most
1377 		 * memory accesses. When comparing two nodes at distance
1378 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1379 		 * of each group. Skip other nodes.
1380 		 */
1381 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1382 			continue;
1383 
1384 		/* Add up the faults from nearby nodes. */
1385 		if (task)
1386 			faults = task_faults(p, node);
1387 		else
1388 			faults = group_faults(p, node);
1389 
1390 		/*
1391 		 * On systems with a glueless mesh NUMA topology, there are
1392 		 * no fixed "groups of nodes". Instead, nodes that are not
1393 		 * directly connected bounce traffic through intermediate
1394 		 * nodes; a numa_group can occupy any set of nodes.
1395 		 * The further away a node is, the less the faults count.
1396 		 * This seems to result in good task placement.
1397 		 */
1398 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1399 			faults *= (max_dist - dist);
1400 			faults /= (max_dist - LOCAL_DISTANCE);
1401 		}
1402 
1403 		score += faults;
1404 	}
1405 
1406 	return score;
1407 }
1408 
1409 /*
1410  * These return the fraction of accesses done by a particular task, or
1411  * task group, on a particular numa node.  The group weight is given a
1412  * larger multiplier, in order to group tasks together that are almost
1413  * evenly spread out between numa nodes.
1414  */
task_weight(struct task_struct * p,int nid,int dist)1415 static inline unsigned long task_weight(struct task_struct *p, int nid,
1416 					int dist)
1417 {
1418 	unsigned long faults, total_faults;
1419 
1420 	if (!p->numa_faults)
1421 		return 0;
1422 
1423 	total_faults = p->total_numa_faults;
1424 
1425 	if (!total_faults)
1426 		return 0;
1427 
1428 	faults = task_faults(p, nid);
1429 	faults += score_nearby_nodes(p, nid, dist, true);
1430 
1431 	return 1000 * faults / total_faults;
1432 }
1433 
group_weight(struct task_struct * p,int nid,int dist)1434 static inline unsigned long group_weight(struct task_struct *p, int nid,
1435 					 int dist)
1436 {
1437 	struct numa_group *ng = deref_task_numa_group(p);
1438 	unsigned long faults, total_faults;
1439 
1440 	if (!ng)
1441 		return 0;
1442 
1443 	total_faults = ng->total_faults;
1444 
1445 	if (!total_faults)
1446 		return 0;
1447 
1448 	faults = group_faults(p, nid);
1449 	faults += score_nearby_nodes(p, nid, dist, false);
1450 
1451 	return 1000 * faults / total_faults;
1452 }
1453 
1454 /*
1455  * If memory tiering mode is enabled, cpupid of slow memory page is
1456  * used to record scan time instead of CPU and PID.  When tiering mode
1457  * is disabled at run time, the scan time (in cpupid) will be
1458  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1459  * access out of array bound.
1460  */
cpupid_valid(int cpupid)1461 static inline bool cpupid_valid(int cpupid)
1462 {
1463 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1464 }
1465 
1466 /*
1467  * For memory tiering mode, if there are enough free pages (more than
1468  * enough watermark defined here) in fast memory node, to take full
1469  * advantage of fast memory capacity, all recently accessed slow
1470  * memory pages will be migrated to fast memory node without
1471  * considering hot threshold.
1472  */
pgdat_free_space_enough(struct pglist_data * pgdat)1473 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1474 {
1475 	int z;
1476 	unsigned long enough_wmark;
1477 
1478 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1479 			   pgdat->node_present_pages >> 4);
1480 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1481 		struct zone *zone = pgdat->node_zones + z;
1482 
1483 		if (!populated_zone(zone))
1484 			continue;
1485 
1486 		if (zone_watermark_ok(zone, 0,
1487 				      wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1488 				      ZONE_MOVABLE, 0))
1489 			return true;
1490 	}
1491 	return false;
1492 }
1493 
1494 /*
1495  * For memory tiering mode, when page tables are scanned, the scan
1496  * time will be recorded in struct page in addition to make page
1497  * PROT_NONE for slow memory page.  So when the page is accessed, in
1498  * hint page fault handler, the hint page fault latency is calculated
1499  * via,
1500  *
1501  *	hint page fault latency = hint page fault time - scan time
1502  *
1503  * The smaller the hint page fault latency, the higher the possibility
1504  * for the page to be hot.
1505  */
numa_hint_fault_latency(struct page * page)1506 static int numa_hint_fault_latency(struct page *page)
1507 {
1508 	int last_time, time;
1509 
1510 	time = jiffies_to_msecs(jiffies);
1511 	last_time = xchg_page_access_time(page, time);
1512 
1513 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1514 }
1515 
1516 /*
1517  * For memory tiering mode, too high promotion/demotion throughput may
1518  * hurt application latency.  So we provide a mechanism to rate limit
1519  * the number of pages that are tried to be promoted.
1520  */
numa_promotion_rate_limit(struct pglist_data * pgdat,unsigned long rate_limit,int nr)1521 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1522 				      unsigned long rate_limit, int nr)
1523 {
1524 	unsigned long nr_cand;
1525 	unsigned int now, start;
1526 
1527 	now = jiffies_to_msecs(jiffies);
1528 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1529 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1530 	start = pgdat->nbp_rl_start;
1531 	if (now - start > MSEC_PER_SEC &&
1532 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1533 		pgdat->nbp_rl_nr_cand = nr_cand;
1534 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1535 		return true;
1536 	return false;
1537 }
1538 
1539 #define NUMA_MIGRATION_ADJUST_STEPS	16
1540 
numa_promotion_adjust_threshold(struct pglist_data * pgdat,unsigned long rate_limit,unsigned int ref_th)1541 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1542 					    unsigned long rate_limit,
1543 					    unsigned int ref_th)
1544 {
1545 	unsigned int now, start, th_period, unit_th, th;
1546 	unsigned long nr_cand, ref_cand, diff_cand;
1547 
1548 	now = jiffies_to_msecs(jiffies);
1549 	th_period = sysctl_numa_balancing_scan_period_max;
1550 	start = pgdat->nbp_th_start;
1551 	if (now - start > th_period &&
1552 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1553 		ref_cand = rate_limit *
1554 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1555 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1556 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1557 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1558 		th = pgdat->nbp_threshold ? : ref_th;
1559 		if (diff_cand > ref_cand * 11 / 10)
1560 			th = max(th - unit_th, unit_th);
1561 		else if (diff_cand < ref_cand * 9 / 10)
1562 			th = min(th + unit_th, ref_th * 2);
1563 		pgdat->nbp_th_nr_cand = nr_cand;
1564 		pgdat->nbp_threshold = th;
1565 	}
1566 }
1567 
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)1568 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1569 				int src_nid, int dst_cpu)
1570 {
1571 	struct numa_group *ng = deref_curr_numa_group(p);
1572 	int dst_nid = cpu_to_node(dst_cpu);
1573 	int last_cpupid, this_cpupid;
1574 
1575 	/*
1576 	 * The pages in slow memory node should be migrated according
1577 	 * to hot/cold instead of private/shared.
1578 	 */
1579 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1580 	    !node_is_toptier(src_nid)) {
1581 		struct pglist_data *pgdat;
1582 		unsigned long rate_limit;
1583 		unsigned int latency, th, def_th;
1584 
1585 		pgdat = NODE_DATA(dst_nid);
1586 		if (pgdat_free_space_enough(pgdat)) {
1587 			/* workload changed, reset hot threshold */
1588 			pgdat->nbp_threshold = 0;
1589 			return true;
1590 		}
1591 
1592 		def_th = sysctl_numa_balancing_hot_threshold;
1593 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1594 			(20 - PAGE_SHIFT);
1595 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1596 
1597 		th = pgdat->nbp_threshold ? : def_th;
1598 		latency = numa_hint_fault_latency(page);
1599 		if (latency >= th)
1600 			return false;
1601 
1602 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1603 						  thp_nr_pages(page));
1604 	}
1605 
1606 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1607 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1608 
1609 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1610 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1611 		return false;
1612 
1613 	/*
1614 	 * Allow first faults or private faults to migrate immediately early in
1615 	 * the lifetime of a task. The magic number 4 is based on waiting for
1616 	 * two full passes of the "multi-stage node selection" test that is
1617 	 * executed below.
1618 	 */
1619 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1620 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1621 		return true;
1622 
1623 	/*
1624 	 * Multi-stage node selection is used in conjunction with a periodic
1625 	 * migration fault to build a temporal task<->page relation. By using
1626 	 * a two-stage filter we remove short/unlikely relations.
1627 	 *
1628 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1629 	 * a task's usage of a particular page (n_p) per total usage of this
1630 	 * page (n_t) (in a given time-span) to a probability.
1631 	 *
1632 	 * Our periodic faults will sample this probability and getting the
1633 	 * same result twice in a row, given these samples are fully
1634 	 * independent, is then given by P(n)^2, provided our sample period
1635 	 * is sufficiently short compared to the usage pattern.
1636 	 *
1637 	 * This quadric squishes small probabilities, making it less likely we
1638 	 * act on an unlikely task<->page relation.
1639 	 */
1640 	if (!cpupid_pid_unset(last_cpupid) &&
1641 				cpupid_to_nid(last_cpupid) != dst_nid)
1642 		return false;
1643 
1644 	/* Always allow migrate on private faults */
1645 	if (cpupid_match_pid(p, last_cpupid))
1646 		return true;
1647 
1648 	/* A shared fault, but p->numa_group has not been set up yet. */
1649 	if (!ng)
1650 		return true;
1651 
1652 	/*
1653 	 * Destination node is much more heavily used than the source
1654 	 * node? Allow migration.
1655 	 */
1656 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1657 					ACTIVE_NODE_FRACTION)
1658 		return true;
1659 
1660 	/*
1661 	 * Distribute memory according to CPU & memory use on each node,
1662 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1663 	 *
1664 	 * faults_cpu(dst)   3   faults_cpu(src)
1665 	 * --------------- * - > ---------------
1666 	 * faults_mem(dst)   4   faults_mem(src)
1667 	 */
1668 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1669 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1670 }
1671 
1672 /*
1673  * 'numa_type' describes the node at the moment of load balancing.
1674  */
1675 enum numa_type {
1676 	/* The node has spare capacity that can be used to run more tasks.  */
1677 	node_has_spare = 0,
1678 	/*
1679 	 * The node is fully used and the tasks don't compete for more CPU
1680 	 * cycles. Nevertheless, some tasks might wait before running.
1681 	 */
1682 	node_fully_busy,
1683 	/*
1684 	 * The node is overloaded and can't provide expected CPU cycles to all
1685 	 * tasks.
1686 	 */
1687 	node_overloaded
1688 };
1689 
1690 /* Cached statistics for all CPUs within a node */
1691 struct numa_stats {
1692 	unsigned long load;
1693 	unsigned long runnable;
1694 	unsigned long util;
1695 	/* Total compute capacity of CPUs on a node */
1696 	unsigned long compute_capacity;
1697 	unsigned int nr_running;
1698 	unsigned int weight;
1699 	enum numa_type node_type;
1700 	int idle_cpu;
1701 };
1702 
is_core_idle(int cpu)1703 static inline bool is_core_idle(int cpu)
1704 {
1705 #ifdef CONFIG_SCHED_SMT
1706 	int sibling;
1707 
1708 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1709 		if (cpu == sibling)
1710 			continue;
1711 
1712 		if (!idle_cpu(sibling))
1713 			return false;
1714 	}
1715 #endif
1716 
1717 	return true;
1718 }
1719 
1720 struct task_numa_env {
1721 	struct task_struct *p;
1722 
1723 	int src_cpu, src_nid;
1724 	int dst_cpu, dst_nid;
1725 	int imb_numa_nr;
1726 
1727 	struct numa_stats src_stats, dst_stats;
1728 
1729 	int imbalance_pct;
1730 	int dist;
1731 
1732 	struct task_struct *best_task;
1733 	long best_imp;
1734 	int best_cpu;
1735 };
1736 
1737 static unsigned long cpu_load(struct rq *rq);
1738 static unsigned long cpu_runnable(struct rq *rq);
1739 
1740 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)1741 numa_type numa_classify(unsigned int imbalance_pct,
1742 			 struct numa_stats *ns)
1743 {
1744 	if ((ns->nr_running > ns->weight) &&
1745 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1746 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1747 		return node_overloaded;
1748 
1749 	if ((ns->nr_running < ns->weight) ||
1750 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1751 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1752 		return node_has_spare;
1753 
1754 	return node_fully_busy;
1755 }
1756 
1757 #ifdef CONFIG_SCHED_SMT
1758 /* Forward declarations of select_idle_sibling helpers */
1759 static inline bool test_idle_cores(int cpu);
numa_idle_core(int idle_core,int cpu)1760 static inline int numa_idle_core(int idle_core, int cpu)
1761 {
1762 	if (!static_branch_likely(&sched_smt_present) ||
1763 	    idle_core >= 0 || !test_idle_cores(cpu))
1764 		return idle_core;
1765 
1766 	/*
1767 	 * Prefer cores instead of packing HT siblings
1768 	 * and triggering future load balancing.
1769 	 */
1770 	if (is_core_idle(cpu))
1771 		idle_core = cpu;
1772 
1773 	return idle_core;
1774 }
1775 #else
numa_idle_core(int idle_core,int cpu)1776 static inline int numa_idle_core(int idle_core, int cpu)
1777 {
1778 	return idle_core;
1779 }
1780 #endif
1781 
1782 /*
1783  * Gather all necessary information to make NUMA balancing placement
1784  * decisions that are compatible with standard load balancer. This
1785  * borrows code and logic from update_sg_lb_stats but sharing a
1786  * common implementation is impractical.
1787  */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)1788 static void update_numa_stats(struct task_numa_env *env,
1789 			      struct numa_stats *ns, int nid,
1790 			      bool find_idle)
1791 {
1792 	int cpu, idle_core = -1;
1793 
1794 	memset(ns, 0, sizeof(*ns));
1795 	ns->idle_cpu = -1;
1796 
1797 	rcu_read_lock();
1798 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1799 		struct rq *rq = cpu_rq(cpu);
1800 
1801 		ns->load += cpu_load(rq);
1802 		ns->runnable += cpu_runnable(rq);
1803 		ns->util += cpu_util_cfs(cpu);
1804 		ns->nr_running += rq->cfs.h_nr_running;
1805 		ns->compute_capacity += capacity_of(cpu);
1806 
1807 		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1808 			if (READ_ONCE(rq->numa_migrate_on) ||
1809 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1810 				continue;
1811 
1812 			if (ns->idle_cpu == -1)
1813 				ns->idle_cpu = cpu;
1814 
1815 			idle_core = numa_idle_core(idle_core, cpu);
1816 		}
1817 	}
1818 	rcu_read_unlock();
1819 
1820 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1821 
1822 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1823 
1824 	if (idle_core >= 0)
1825 		ns->idle_cpu = idle_core;
1826 }
1827 
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)1828 static void task_numa_assign(struct task_numa_env *env,
1829 			     struct task_struct *p, long imp)
1830 {
1831 	struct rq *rq = cpu_rq(env->dst_cpu);
1832 
1833 	/* Check if run-queue part of active NUMA balance. */
1834 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1835 		int cpu;
1836 		int start = env->dst_cpu;
1837 
1838 		/* Find alternative idle CPU. */
1839 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1840 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1841 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1842 				continue;
1843 			}
1844 
1845 			env->dst_cpu = cpu;
1846 			rq = cpu_rq(env->dst_cpu);
1847 			if (!xchg(&rq->numa_migrate_on, 1))
1848 				goto assign;
1849 		}
1850 
1851 		/* Failed to find an alternative idle CPU */
1852 		return;
1853 	}
1854 
1855 assign:
1856 	/*
1857 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1858 	 * found a better CPU to move/swap.
1859 	 */
1860 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1861 		rq = cpu_rq(env->best_cpu);
1862 		WRITE_ONCE(rq->numa_migrate_on, 0);
1863 	}
1864 
1865 	if (env->best_task)
1866 		put_task_struct(env->best_task);
1867 	if (p)
1868 		get_task_struct(p);
1869 
1870 	env->best_task = p;
1871 	env->best_imp = imp;
1872 	env->best_cpu = env->dst_cpu;
1873 }
1874 
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)1875 static bool load_too_imbalanced(long src_load, long dst_load,
1876 				struct task_numa_env *env)
1877 {
1878 	long imb, old_imb;
1879 	long orig_src_load, orig_dst_load;
1880 	long src_capacity, dst_capacity;
1881 
1882 	/*
1883 	 * The load is corrected for the CPU capacity available on each node.
1884 	 *
1885 	 * src_load        dst_load
1886 	 * ------------ vs ---------
1887 	 * src_capacity    dst_capacity
1888 	 */
1889 	src_capacity = env->src_stats.compute_capacity;
1890 	dst_capacity = env->dst_stats.compute_capacity;
1891 
1892 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1893 
1894 	orig_src_load = env->src_stats.load;
1895 	orig_dst_load = env->dst_stats.load;
1896 
1897 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1898 
1899 	/* Would this change make things worse? */
1900 	return (imb > old_imb);
1901 }
1902 
1903 /*
1904  * Maximum NUMA importance can be 1998 (2*999);
1905  * SMALLIMP @ 30 would be close to 1998/64.
1906  * Used to deter task migration.
1907  */
1908 #define SMALLIMP	30
1909 
1910 /*
1911  * This checks if the overall compute and NUMA accesses of the system would
1912  * be improved if the source tasks was migrated to the target dst_cpu taking
1913  * into account that it might be best if task running on the dst_cpu should
1914  * be exchanged with the source task
1915  */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)1916 static bool task_numa_compare(struct task_numa_env *env,
1917 			      long taskimp, long groupimp, bool maymove)
1918 {
1919 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1920 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1921 	long imp = p_ng ? groupimp : taskimp;
1922 	struct task_struct *cur;
1923 	long src_load, dst_load;
1924 	int dist = env->dist;
1925 	long moveimp = imp;
1926 	long load;
1927 	bool stopsearch = false;
1928 
1929 	if (READ_ONCE(dst_rq->numa_migrate_on))
1930 		return false;
1931 
1932 	rcu_read_lock();
1933 	cur = rcu_dereference(dst_rq->curr);
1934 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1935 		cur = NULL;
1936 
1937 	/*
1938 	 * Because we have preemption enabled we can get migrated around and
1939 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1940 	 */
1941 	if (cur == env->p) {
1942 		stopsearch = true;
1943 		goto unlock;
1944 	}
1945 
1946 	if (!cur) {
1947 		if (maymove && moveimp >= env->best_imp)
1948 			goto assign;
1949 		else
1950 			goto unlock;
1951 	}
1952 
1953 	/* Skip this swap candidate if cannot move to the source cpu. */
1954 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1955 		goto unlock;
1956 
1957 	/*
1958 	 * Skip this swap candidate if it is not moving to its preferred
1959 	 * node and the best task is.
1960 	 */
1961 	if (env->best_task &&
1962 	    env->best_task->numa_preferred_nid == env->src_nid &&
1963 	    cur->numa_preferred_nid != env->src_nid) {
1964 		goto unlock;
1965 	}
1966 
1967 	/*
1968 	 * "imp" is the fault differential for the source task between the
1969 	 * source and destination node. Calculate the total differential for
1970 	 * the source task and potential destination task. The more negative
1971 	 * the value is, the more remote accesses that would be expected to
1972 	 * be incurred if the tasks were swapped.
1973 	 *
1974 	 * If dst and source tasks are in the same NUMA group, or not
1975 	 * in any group then look only at task weights.
1976 	 */
1977 	cur_ng = rcu_dereference(cur->numa_group);
1978 	if (cur_ng == p_ng) {
1979 		/*
1980 		 * Do not swap within a group or between tasks that have
1981 		 * no group if there is spare capacity. Swapping does
1982 		 * not address the load imbalance and helps one task at
1983 		 * the cost of punishing another.
1984 		 */
1985 		if (env->dst_stats.node_type == node_has_spare)
1986 			goto unlock;
1987 
1988 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1989 		      task_weight(cur, env->dst_nid, dist);
1990 		/*
1991 		 * Add some hysteresis to prevent swapping the
1992 		 * tasks within a group over tiny differences.
1993 		 */
1994 		if (cur_ng)
1995 			imp -= imp / 16;
1996 	} else {
1997 		/*
1998 		 * Compare the group weights. If a task is all by itself
1999 		 * (not part of a group), use the task weight instead.
2000 		 */
2001 		if (cur_ng && p_ng)
2002 			imp += group_weight(cur, env->src_nid, dist) -
2003 			       group_weight(cur, env->dst_nid, dist);
2004 		else
2005 			imp += task_weight(cur, env->src_nid, dist) -
2006 			       task_weight(cur, env->dst_nid, dist);
2007 	}
2008 
2009 	/* Discourage picking a task already on its preferred node */
2010 	if (cur->numa_preferred_nid == env->dst_nid)
2011 		imp -= imp / 16;
2012 
2013 	/*
2014 	 * Encourage picking a task that moves to its preferred node.
2015 	 * This potentially makes imp larger than it's maximum of
2016 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2017 	 * case, it does not matter.
2018 	 */
2019 	if (cur->numa_preferred_nid == env->src_nid)
2020 		imp += imp / 8;
2021 
2022 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2023 		imp = moveimp;
2024 		cur = NULL;
2025 		goto assign;
2026 	}
2027 
2028 	/*
2029 	 * Prefer swapping with a task moving to its preferred node over a
2030 	 * task that is not.
2031 	 */
2032 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2033 	    env->best_task->numa_preferred_nid != env->src_nid) {
2034 		goto assign;
2035 	}
2036 
2037 	/*
2038 	 * If the NUMA importance is less than SMALLIMP,
2039 	 * task migration might only result in ping pong
2040 	 * of tasks and also hurt performance due to cache
2041 	 * misses.
2042 	 */
2043 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2044 		goto unlock;
2045 
2046 	/*
2047 	 * In the overloaded case, try and keep the load balanced.
2048 	 */
2049 	load = task_h_load(env->p) - task_h_load(cur);
2050 	if (!load)
2051 		goto assign;
2052 
2053 	dst_load = env->dst_stats.load + load;
2054 	src_load = env->src_stats.load - load;
2055 
2056 	if (load_too_imbalanced(src_load, dst_load, env))
2057 		goto unlock;
2058 
2059 assign:
2060 	/* Evaluate an idle CPU for a task numa move. */
2061 	if (!cur) {
2062 		int cpu = env->dst_stats.idle_cpu;
2063 
2064 		/* Nothing cached so current CPU went idle since the search. */
2065 		if (cpu < 0)
2066 			cpu = env->dst_cpu;
2067 
2068 		/*
2069 		 * If the CPU is no longer truly idle and the previous best CPU
2070 		 * is, keep using it.
2071 		 */
2072 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2073 		    idle_cpu(env->best_cpu)) {
2074 			cpu = env->best_cpu;
2075 		}
2076 
2077 		env->dst_cpu = cpu;
2078 	}
2079 
2080 	task_numa_assign(env, cur, imp);
2081 
2082 	/*
2083 	 * If a move to idle is allowed because there is capacity or load
2084 	 * balance improves then stop the search. While a better swap
2085 	 * candidate may exist, a search is not free.
2086 	 */
2087 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2088 		stopsearch = true;
2089 
2090 	/*
2091 	 * If a swap candidate must be identified and the current best task
2092 	 * moves its preferred node then stop the search.
2093 	 */
2094 	if (!maymove && env->best_task &&
2095 	    env->best_task->numa_preferred_nid == env->src_nid) {
2096 		stopsearch = true;
2097 	}
2098 unlock:
2099 	rcu_read_unlock();
2100 
2101 	return stopsearch;
2102 }
2103 
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)2104 static void task_numa_find_cpu(struct task_numa_env *env,
2105 				long taskimp, long groupimp)
2106 {
2107 	bool maymove = false;
2108 	int cpu;
2109 
2110 	/*
2111 	 * If dst node has spare capacity, then check if there is an
2112 	 * imbalance that would be overruled by the load balancer.
2113 	 */
2114 	if (env->dst_stats.node_type == node_has_spare) {
2115 		unsigned int imbalance;
2116 		int src_running, dst_running;
2117 
2118 		/*
2119 		 * Would movement cause an imbalance? Note that if src has
2120 		 * more running tasks that the imbalance is ignored as the
2121 		 * move improves the imbalance from the perspective of the
2122 		 * CPU load balancer.
2123 		 * */
2124 		src_running = env->src_stats.nr_running - 1;
2125 		dst_running = env->dst_stats.nr_running + 1;
2126 		imbalance = max(0, dst_running - src_running);
2127 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2128 						  env->imb_numa_nr);
2129 
2130 		/* Use idle CPU if there is no imbalance */
2131 		if (!imbalance) {
2132 			maymove = true;
2133 			if (env->dst_stats.idle_cpu >= 0) {
2134 				env->dst_cpu = env->dst_stats.idle_cpu;
2135 				task_numa_assign(env, NULL, 0);
2136 				return;
2137 			}
2138 		}
2139 	} else {
2140 		long src_load, dst_load, load;
2141 		/*
2142 		 * If the improvement from just moving env->p direction is better
2143 		 * than swapping tasks around, check if a move is possible.
2144 		 */
2145 		load = task_h_load(env->p);
2146 		dst_load = env->dst_stats.load + load;
2147 		src_load = env->src_stats.load - load;
2148 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2149 	}
2150 
2151 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2152 		/* Skip this CPU if the source task cannot migrate */
2153 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2154 			continue;
2155 
2156 		env->dst_cpu = cpu;
2157 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2158 			break;
2159 	}
2160 }
2161 
task_numa_migrate(struct task_struct * p)2162 static int task_numa_migrate(struct task_struct *p)
2163 {
2164 	struct task_numa_env env = {
2165 		.p = p,
2166 
2167 		.src_cpu = task_cpu(p),
2168 		.src_nid = task_node(p),
2169 
2170 		.imbalance_pct = 112,
2171 
2172 		.best_task = NULL,
2173 		.best_imp = 0,
2174 		.best_cpu = -1,
2175 	};
2176 	unsigned long taskweight, groupweight;
2177 	struct sched_domain *sd;
2178 	long taskimp, groupimp;
2179 	struct numa_group *ng;
2180 	struct rq *best_rq;
2181 	int nid, ret, dist;
2182 
2183 	/*
2184 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2185 	 * imbalance and would be the first to start moving tasks about.
2186 	 *
2187 	 * And we want to avoid any moving of tasks about, as that would create
2188 	 * random movement of tasks -- counter the numa conditions we're trying
2189 	 * to satisfy here.
2190 	 */
2191 	rcu_read_lock();
2192 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2193 	if (sd) {
2194 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2195 		env.imb_numa_nr = sd->imb_numa_nr;
2196 	}
2197 	rcu_read_unlock();
2198 
2199 	/*
2200 	 * Cpusets can break the scheduler domain tree into smaller
2201 	 * balance domains, some of which do not cross NUMA boundaries.
2202 	 * Tasks that are "trapped" in such domains cannot be migrated
2203 	 * elsewhere, so there is no point in (re)trying.
2204 	 */
2205 	if (unlikely(!sd)) {
2206 		sched_setnuma(p, task_node(p));
2207 		return -EINVAL;
2208 	}
2209 
2210 	env.dst_nid = p->numa_preferred_nid;
2211 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2212 	taskweight = task_weight(p, env.src_nid, dist);
2213 	groupweight = group_weight(p, env.src_nid, dist);
2214 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2215 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2216 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2217 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2218 
2219 	/* Try to find a spot on the preferred nid. */
2220 	task_numa_find_cpu(&env, taskimp, groupimp);
2221 
2222 	/*
2223 	 * Look at other nodes in these cases:
2224 	 * - there is no space available on the preferred_nid
2225 	 * - the task is part of a numa_group that is interleaved across
2226 	 *   multiple NUMA nodes; in order to better consolidate the group,
2227 	 *   we need to check other locations.
2228 	 */
2229 	ng = deref_curr_numa_group(p);
2230 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2231 		for_each_node_state(nid, N_CPU) {
2232 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2233 				continue;
2234 
2235 			dist = node_distance(env.src_nid, env.dst_nid);
2236 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2237 						dist != env.dist) {
2238 				taskweight = task_weight(p, env.src_nid, dist);
2239 				groupweight = group_weight(p, env.src_nid, dist);
2240 			}
2241 
2242 			/* Only consider nodes where both task and groups benefit */
2243 			taskimp = task_weight(p, nid, dist) - taskweight;
2244 			groupimp = group_weight(p, nid, dist) - groupweight;
2245 			if (taskimp < 0 && groupimp < 0)
2246 				continue;
2247 
2248 			env.dist = dist;
2249 			env.dst_nid = nid;
2250 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2251 			task_numa_find_cpu(&env, taskimp, groupimp);
2252 		}
2253 	}
2254 
2255 	/*
2256 	 * If the task is part of a workload that spans multiple NUMA nodes,
2257 	 * and is migrating into one of the workload's active nodes, remember
2258 	 * this node as the task's preferred numa node, so the workload can
2259 	 * settle down.
2260 	 * A task that migrated to a second choice node will be better off
2261 	 * trying for a better one later. Do not set the preferred node here.
2262 	 */
2263 	if (ng) {
2264 		if (env.best_cpu == -1)
2265 			nid = env.src_nid;
2266 		else
2267 			nid = cpu_to_node(env.best_cpu);
2268 
2269 		if (nid != p->numa_preferred_nid)
2270 			sched_setnuma(p, nid);
2271 	}
2272 
2273 	/* No better CPU than the current one was found. */
2274 	if (env.best_cpu == -1) {
2275 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2276 		return -EAGAIN;
2277 	}
2278 
2279 	best_rq = cpu_rq(env.best_cpu);
2280 	if (env.best_task == NULL) {
2281 		ret = migrate_task_to(p, env.best_cpu);
2282 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2283 		if (ret != 0)
2284 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2285 		return ret;
2286 	}
2287 
2288 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2289 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2290 
2291 	if (ret != 0)
2292 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2293 	put_task_struct(env.best_task);
2294 	return ret;
2295 }
2296 
2297 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2298 static void numa_migrate_preferred(struct task_struct *p)
2299 {
2300 	unsigned long interval = HZ;
2301 
2302 	/* This task has no NUMA fault statistics yet */
2303 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2304 		return;
2305 
2306 	/* Periodically retry migrating the task to the preferred node */
2307 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2308 	p->numa_migrate_retry = jiffies + interval;
2309 
2310 	/* Success if task is already running on preferred CPU */
2311 	if (task_node(p) == p->numa_preferred_nid)
2312 		return;
2313 
2314 	/* Otherwise, try migrate to a CPU on the preferred node */
2315 	task_numa_migrate(p);
2316 }
2317 
2318 /*
2319  * Find out how many nodes the workload is actively running on. Do this by
2320  * tracking the nodes from which NUMA hinting faults are triggered. This can
2321  * be different from the set of nodes where the workload's memory is currently
2322  * located.
2323  */
numa_group_count_active_nodes(struct numa_group * numa_group)2324 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2325 {
2326 	unsigned long faults, max_faults = 0;
2327 	int nid, active_nodes = 0;
2328 
2329 	for_each_node_state(nid, N_CPU) {
2330 		faults = group_faults_cpu(numa_group, nid);
2331 		if (faults > max_faults)
2332 			max_faults = faults;
2333 	}
2334 
2335 	for_each_node_state(nid, N_CPU) {
2336 		faults = group_faults_cpu(numa_group, nid);
2337 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2338 			active_nodes++;
2339 	}
2340 
2341 	numa_group->max_faults_cpu = max_faults;
2342 	numa_group->active_nodes = active_nodes;
2343 }
2344 
2345 /*
2346  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2347  * increments. The more local the fault statistics are, the higher the scan
2348  * period will be for the next scan window. If local/(local+remote) ratio is
2349  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2350  * the scan period will decrease. Aim for 70% local accesses.
2351  */
2352 #define NUMA_PERIOD_SLOTS 10
2353 #define NUMA_PERIOD_THRESHOLD 7
2354 
2355 /*
2356  * Increase the scan period (slow down scanning) if the majority of
2357  * our memory is already on our local node, or if the majority of
2358  * the page accesses are shared with other processes.
2359  * Otherwise, decrease the scan period.
2360  */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2361 static void update_task_scan_period(struct task_struct *p,
2362 			unsigned long shared, unsigned long private)
2363 {
2364 	unsigned int period_slot;
2365 	int lr_ratio, ps_ratio;
2366 	int diff;
2367 
2368 	unsigned long remote = p->numa_faults_locality[0];
2369 	unsigned long local = p->numa_faults_locality[1];
2370 
2371 	/*
2372 	 * If there were no record hinting faults then either the task is
2373 	 * completely idle or all activity is in areas that are not of interest
2374 	 * to automatic numa balancing. Related to that, if there were failed
2375 	 * migration then it implies we are migrating too quickly or the local
2376 	 * node is overloaded. In either case, scan slower
2377 	 */
2378 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2379 		p->numa_scan_period = min(p->numa_scan_period_max,
2380 			p->numa_scan_period << 1);
2381 
2382 		p->mm->numa_next_scan = jiffies +
2383 			msecs_to_jiffies(p->numa_scan_period);
2384 
2385 		return;
2386 	}
2387 
2388 	/*
2389 	 * Prepare to scale scan period relative to the current period.
2390 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2391 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2392 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2393 	 */
2394 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2395 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2396 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2397 
2398 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2399 		/*
2400 		 * Most memory accesses are local. There is no need to
2401 		 * do fast NUMA scanning, since memory is already local.
2402 		 */
2403 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2404 		if (!slot)
2405 			slot = 1;
2406 		diff = slot * period_slot;
2407 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2408 		/*
2409 		 * Most memory accesses are shared with other tasks.
2410 		 * There is no point in continuing fast NUMA scanning,
2411 		 * since other tasks may just move the memory elsewhere.
2412 		 */
2413 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2414 		if (!slot)
2415 			slot = 1;
2416 		diff = slot * period_slot;
2417 	} else {
2418 		/*
2419 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2420 		 * yet they are not on the local NUMA node. Speed up
2421 		 * NUMA scanning to get the memory moved over.
2422 		 */
2423 		int ratio = max(lr_ratio, ps_ratio);
2424 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2425 	}
2426 
2427 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2428 			task_scan_min(p), task_scan_max(p));
2429 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2430 }
2431 
2432 /*
2433  * Get the fraction of time the task has been running since the last
2434  * NUMA placement cycle. The scheduler keeps similar statistics, but
2435  * decays those on a 32ms period, which is orders of magnitude off
2436  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2437  * stats only if the task is so new there are no NUMA statistics yet.
2438  */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2439 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2440 {
2441 	u64 runtime, delta, now;
2442 	/* Use the start of this time slice to avoid calculations. */
2443 	now = p->se.exec_start;
2444 	runtime = p->se.sum_exec_runtime;
2445 
2446 	if (p->last_task_numa_placement) {
2447 		delta = runtime - p->last_sum_exec_runtime;
2448 		*period = now - p->last_task_numa_placement;
2449 
2450 		/* Avoid time going backwards, prevent potential divide error: */
2451 		if (unlikely((s64)*period < 0))
2452 			*period = 0;
2453 	} else {
2454 		delta = p->se.avg.load_sum;
2455 		*period = LOAD_AVG_MAX;
2456 	}
2457 
2458 	p->last_sum_exec_runtime = runtime;
2459 	p->last_task_numa_placement = now;
2460 
2461 	return delta;
2462 }
2463 
2464 /*
2465  * Determine the preferred nid for a task in a numa_group. This needs to
2466  * be done in a way that produces consistent results with group_weight,
2467  * otherwise workloads might not converge.
2468  */
preferred_group_nid(struct task_struct * p,int nid)2469 static int preferred_group_nid(struct task_struct *p, int nid)
2470 {
2471 	nodemask_t nodes;
2472 	int dist;
2473 
2474 	/* Direct connections between all NUMA nodes. */
2475 	if (sched_numa_topology_type == NUMA_DIRECT)
2476 		return nid;
2477 
2478 	/*
2479 	 * On a system with glueless mesh NUMA topology, group_weight
2480 	 * scores nodes according to the number of NUMA hinting faults on
2481 	 * both the node itself, and on nearby nodes.
2482 	 */
2483 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2484 		unsigned long score, max_score = 0;
2485 		int node, max_node = nid;
2486 
2487 		dist = sched_max_numa_distance;
2488 
2489 		for_each_node_state(node, N_CPU) {
2490 			score = group_weight(p, node, dist);
2491 			if (score > max_score) {
2492 				max_score = score;
2493 				max_node = node;
2494 			}
2495 		}
2496 		return max_node;
2497 	}
2498 
2499 	/*
2500 	 * Finding the preferred nid in a system with NUMA backplane
2501 	 * interconnect topology is more involved. The goal is to locate
2502 	 * tasks from numa_groups near each other in the system, and
2503 	 * untangle workloads from different sides of the system. This requires
2504 	 * searching down the hierarchy of node groups, recursively searching
2505 	 * inside the highest scoring group of nodes. The nodemask tricks
2506 	 * keep the complexity of the search down.
2507 	 */
2508 	nodes = node_states[N_CPU];
2509 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2510 		unsigned long max_faults = 0;
2511 		nodemask_t max_group = NODE_MASK_NONE;
2512 		int a, b;
2513 
2514 		/* Are there nodes at this distance from each other? */
2515 		if (!find_numa_distance(dist))
2516 			continue;
2517 
2518 		for_each_node_mask(a, nodes) {
2519 			unsigned long faults = 0;
2520 			nodemask_t this_group;
2521 			nodes_clear(this_group);
2522 
2523 			/* Sum group's NUMA faults; includes a==b case. */
2524 			for_each_node_mask(b, nodes) {
2525 				if (node_distance(a, b) < dist) {
2526 					faults += group_faults(p, b);
2527 					node_set(b, this_group);
2528 					node_clear(b, nodes);
2529 				}
2530 			}
2531 
2532 			/* Remember the top group. */
2533 			if (faults > max_faults) {
2534 				max_faults = faults;
2535 				max_group = this_group;
2536 				/*
2537 				 * subtle: at the smallest distance there is
2538 				 * just one node left in each "group", the
2539 				 * winner is the preferred nid.
2540 				 */
2541 				nid = a;
2542 			}
2543 		}
2544 		/* Next round, evaluate the nodes within max_group. */
2545 		if (!max_faults)
2546 			break;
2547 		nodes = max_group;
2548 	}
2549 	return nid;
2550 }
2551 
task_numa_placement(struct task_struct * p)2552 static void task_numa_placement(struct task_struct *p)
2553 {
2554 	int seq, nid, max_nid = NUMA_NO_NODE;
2555 	unsigned long max_faults = 0;
2556 	unsigned long fault_types[2] = { 0, 0 };
2557 	unsigned long total_faults;
2558 	u64 runtime, period;
2559 	spinlock_t *group_lock = NULL;
2560 	struct numa_group *ng;
2561 
2562 	/*
2563 	 * The p->mm->numa_scan_seq field gets updated without
2564 	 * exclusive access. Use READ_ONCE() here to ensure
2565 	 * that the field is read in a single access:
2566 	 */
2567 	seq = READ_ONCE(p->mm->numa_scan_seq);
2568 	if (p->numa_scan_seq == seq)
2569 		return;
2570 	p->numa_scan_seq = seq;
2571 	p->numa_scan_period_max = task_scan_max(p);
2572 
2573 	total_faults = p->numa_faults_locality[0] +
2574 		       p->numa_faults_locality[1];
2575 	runtime = numa_get_avg_runtime(p, &period);
2576 
2577 	/* If the task is part of a group prevent parallel updates to group stats */
2578 	ng = deref_curr_numa_group(p);
2579 	if (ng) {
2580 		group_lock = &ng->lock;
2581 		spin_lock_irq(group_lock);
2582 	}
2583 
2584 	/* Find the node with the highest number of faults */
2585 	for_each_online_node(nid) {
2586 		/* Keep track of the offsets in numa_faults array */
2587 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2588 		unsigned long faults = 0, group_faults = 0;
2589 		int priv;
2590 
2591 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2592 			long diff, f_diff, f_weight;
2593 
2594 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2595 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2596 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2597 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2598 
2599 			/* Decay existing window, copy faults since last scan */
2600 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2601 			fault_types[priv] += p->numa_faults[membuf_idx];
2602 			p->numa_faults[membuf_idx] = 0;
2603 
2604 			/*
2605 			 * Normalize the faults_from, so all tasks in a group
2606 			 * count according to CPU use, instead of by the raw
2607 			 * number of faults. Tasks with little runtime have
2608 			 * little over-all impact on throughput, and thus their
2609 			 * faults are less important.
2610 			 */
2611 			f_weight = div64_u64(runtime << 16, period + 1);
2612 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2613 				   (total_faults + 1);
2614 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2615 			p->numa_faults[cpubuf_idx] = 0;
2616 
2617 			p->numa_faults[mem_idx] += diff;
2618 			p->numa_faults[cpu_idx] += f_diff;
2619 			faults += p->numa_faults[mem_idx];
2620 			p->total_numa_faults += diff;
2621 			if (ng) {
2622 				/*
2623 				 * safe because we can only change our own group
2624 				 *
2625 				 * mem_idx represents the offset for a given
2626 				 * nid and priv in a specific region because it
2627 				 * is at the beginning of the numa_faults array.
2628 				 */
2629 				ng->faults[mem_idx] += diff;
2630 				ng->faults[cpu_idx] += f_diff;
2631 				ng->total_faults += diff;
2632 				group_faults += ng->faults[mem_idx];
2633 			}
2634 		}
2635 
2636 		if (!ng) {
2637 			if (faults > max_faults) {
2638 				max_faults = faults;
2639 				max_nid = nid;
2640 			}
2641 		} else if (group_faults > max_faults) {
2642 			max_faults = group_faults;
2643 			max_nid = nid;
2644 		}
2645 	}
2646 
2647 	/* Cannot migrate task to CPU-less node */
2648 	if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2649 		int near_nid = max_nid;
2650 		int distance, near_distance = INT_MAX;
2651 
2652 		for_each_node_state(nid, N_CPU) {
2653 			distance = node_distance(max_nid, nid);
2654 			if (distance < near_distance) {
2655 				near_nid = nid;
2656 				near_distance = distance;
2657 			}
2658 		}
2659 		max_nid = near_nid;
2660 	}
2661 
2662 	if (ng) {
2663 		numa_group_count_active_nodes(ng);
2664 		spin_unlock_irq(group_lock);
2665 		max_nid = preferred_group_nid(p, max_nid);
2666 	}
2667 
2668 	if (max_faults) {
2669 		/* Set the new preferred node */
2670 		if (max_nid != p->numa_preferred_nid)
2671 			sched_setnuma(p, max_nid);
2672 	}
2673 
2674 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2675 }
2676 
get_numa_group(struct numa_group * grp)2677 static inline int get_numa_group(struct numa_group *grp)
2678 {
2679 	return refcount_inc_not_zero(&grp->refcount);
2680 }
2681 
put_numa_group(struct numa_group * grp)2682 static inline void put_numa_group(struct numa_group *grp)
2683 {
2684 	if (refcount_dec_and_test(&grp->refcount))
2685 		kfree_rcu(grp, rcu);
2686 }
2687 
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)2688 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2689 			int *priv)
2690 {
2691 	struct numa_group *grp, *my_grp;
2692 	struct task_struct *tsk;
2693 	bool join = false;
2694 	int cpu = cpupid_to_cpu(cpupid);
2695 	int i;
2696 
2697 	if (unlikely(!deref_curr_numa_group(p))) {
2698 		unsigned int size = sizeof(struct numa_group) +
2699 				    NR_NUMA_HINT_FAULT_STATS *
2700 				    nr_node_ids * sizeof(unsigned long);
2701 
2702 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2703 		if (!grp)
2704 			return;
2705 
2706 		refcount_set(&grp->refcount, 1);
2707 		grp->active_nodes = 1;
2708 		grp->max_faults_cpu = 0;
2709 		spin_lock_init(&grp->lock);
2710 		grp->gid = p->pid;
2711 
2712 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2713 			grp->faults[i] = p->numa_faults[i];
2714 
2715 		grp->total_faults = p->total_numa_faults;
2716 
2717 		grp->nr_tasks++;
2718 		rcu_assign_pointer(p->numa_group, grp);
2719 	}
2720 
2721 	rcu_read_lock();
2722 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2723 
2724 	if (!cpupid_match_pid(tsk, cpupid))
2725 		goto no_join;
2726 
2727 	grp = rcu_dereference(tsk->numa_group);
2728 	if (!grp)
2729 		goto no_join;
2730 
2731 	my_grp = deref_curr_numa_group(p);
2732 	if (grp == my_grp)
2733 		goto no_join;
2734 
2735 	/*
2736 	 * Only join the other group if its bigger; if we're the bigger group,
2737 	 * the other task will join us.
2738 	 */
2739 	if (my_grp->nr_tasks > grp->nr_tasks)
2740 		goto no_join;
2741 
2742 	/*
2743 	 * Tie-break on the grp address.
2744 	 */
2745 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2746 		goto no_join;
2747 
2748 	/* Always join threads in the same process. */
2749 	if (tsk->mm == current->mm)
2750 		join = true;
2751 
2752 	/* Simple filter to avoid false positives due to PID collisions */
2753 	if (flags & TNF_SHARED)
2754 		join = true;
2755 
2756 	/* Update priv based on whether false sharing was detected */
2757 	*priv = !join;
2758 
2759 	if (join && !get_numa_group(grp))
2760 		goto no_join;
2761 
2762 	rcu_read_unlock();
2763 
2764 	if (!join)
2765 		return;
2766 
2767 	WARN_ON_ONCE(irqs_disabled());
2768 	double_lock_irq(&my_grp->lock, &grp->lock);
2769 
2770 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2771 		my_grp->faults[i] -= p->numa_faults[i];
2772 		grp->faults[i] += p->numa_faults[i];
2773 	}
2774 	my_grp->total_faults -= p->total_numa_faults;
2775 	grp->total_faults += p->total_numa_faults;
2776 
2777 	my_grp->nr_tasks--;
2778 	grp->nr_tasks++;
2779 
2780 	spin_unlock(&my_grp->lock);
2781 	spin_unlock_irq(&grp->lock);
2782 
2783 	rcu_assign_pointer(p->numa_group, grp);
2784 
2785 	put_numa_group(my_grp);
2786 	return;
2787 
2788 no_join:
2789 	rcu_read_unlock();
2790 	return;
2791 }
2792 
2793 /*
2794  * Get rid of NUMA statistics associated with a task (either current or dead).
2795  * If @final is set, the task is dead and has reached refcount zero, so we can
2796  * safely free all relevant data structures. Otherwise, there might be
2797  * concurrent reads from places like load balancing and procfs, and we should
2798  * reset the data back to default state without freeing ->numa_faults.
2799  */
task_numa_free(struct task_struct * p,bool final)2800 void task_numa_free(struct task_struct *p, bool final)
2801 {
2802 	/* safe: p either is current or is being freed by current */
2803 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2804 	unsigned long *numa_faults = p->numa_faults;
2805 	unsigned long flags;
2806 	int i;
2807 
2808 	if (!numa_faults)
2809 		return;
2810 
2811 	if (grp) {
2812 		spin_lock_irqsave(&grp->lock, flags);
2813 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2814 			grp->faults[i] -= p->numa_faults[i];
2815 		grp->total_faults -= p->total_numa_faults;
2816 
2817 		grp->nr_tasks--;
2818 		spin_unlock_irqrestore(&grp->lock, flags);
2819 		RCU_INIT_POINTER(p->numa_group, NULL);
2820 		put_numa_group(grp);
2821 	}
2822 
2823 	if (final) {
2824 		p->numa_faults = NULL;
2825 		kfree(numa_faults);
2826 	} else {
2827 		p->total_numa_faults = 0;
2828 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2829 			numa_faults[i] = 0;
2830 	}
2831 }
2832 
2833 /*
2834  * Got a PROT_NONE fault for a page on @node.
2835  */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)2836 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2837 {
2838 	struct task_struct *p = current;
2839 	bool migrated = flags & TNF_MIGRATED;
2840 	int cpu_node = task_node(current);
2841 	int local = !!(flags & TNF_FAULT_LOCAL);
2842 	struct numa_group *ng;
2843 	int priv;
2844 
2845 	if (!static_branch_likely(&sched_numa_balancing))
2846 		return;
2847 
2848 	/* for example, ksmd faulting in a user's mm */
2849 	if (!p->mm)
2850 		return;
2851 
2852 	/*
2853 	 * NUMA faults statistics are unnecessary for the slow memory
2854 	 * node for memory tiering mode.
2855 	 */
2856 	if (!node_is_toptier(mem_node) &&
2857 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
2858 	     !cpupid_valid(last_cpupid)))
2859 		return;
2860 
2861 	/* Allocate buffer to track faults on a per-node basis */
2862 	if (unlikely(!p->numa_faults)) {
2863 		int size = sizeof(*p->numa_faults) *
2864 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2865 
2866 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2867 		if (!p->numa_faults)
2868 			return;
2869 
2870 		p->total_numa_faults = 0;
2871 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2872 	}
2873 
2874 	/*
2875 	 * First accesses are treated as private, otherwise consider accesses
2876 	 * to be private if the accessing pid has not changed
2877 	 */
2878 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2879 		priv = 1;
2880 	} else {
2881 		priv = cpupid_match_pid(p, last_cpupid);
2882 		if (!priv && !(flags & TNF_NO_GROUP))
2883 			task_numa_group(p, last_cpupid, flags, &priv);
2884 	}
2885 
2886 	/*
2887 	 * If a workload spans multiple NUMA nodes, a shared fault that
2888 	 * occurs wholly within the set of nodes that the workload is
2889 	 * actively using should be counted as local. This allows the
2890 	 * scan rate to slow down when a workload has settled down.
2891 	 */
2892 	ng = deref_curr_numa_group(p);
2893 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2894 				numa_is_active_node(cpu_node, ng) &&
2895 				numa_is_active_node(mem_node, ng))
2896 		local = 1;
2897 
2898 	/*
2899 	 * Retry to migrate task to preferred node periodically, in case it
2900 	 * previously failed, or the scheduler moved us.
2901 	 */
2902 	if (time_after(jiffies, p->numa_migrate_retry)) {
2903 		task_numa_placement(p);
2904 		numa_migrate_preferred(p);
2905 	}
2906 
2907 	if (migrated)
2908 		p->numa_pages_migrated += pages;
2909 	if (flags & TNF_MIGRATE_FAIL)
2910 		p->numa_faults_locality[2] += pages;
2911 
2912 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2913 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2914 	p->numa_faults_locality[local] += pages;
2915 }
2916 
reset_ptenuma_scan(struct task_struct * p)2917 static void reset_ptenuma_scan(struct task_struct *p)
2918 {
2919 	/*
2920 	 * We only did a read acquisition of the mmap sem, so
2921 	 * p->mm->numa_scan_seq is written to without exclusive access
2922 	 * and the update is not guaranteed to be atomic. That's not
2923 	 * much of an issue though, since this is just used for
2924 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2925 	 * expensive, to avoid any form of compiler optimizations:
2926 	 */
2927 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2928 	p->mm->numa_scan_offset = 0;
2929 }
2930 
2931 /*
2932  * The expensive part of numa migration is done from task_work context.
2933  * Triggered from task_tick_numa().
2934  */
task_numa_work(struct callback_head * work)2935 static void task_numa_work(struct callback_head *work)
2936 {
2937 	unsigned long migrate, next_scan, now = jiffies;
2938 	struct task_struct *p = current;
2939 	struct mm_struct *mm = p->mm;
2940 	u64 runtime = p->se.sum_exec_runtime;
2941 	MA_STATE(mas, &mm->mm_mt, 0, 0);
2942 	struct vm_area_struct *vma;
2943 	unsigned long start, end;
2944 	unsigned long nr_pte_updates = 0;
2945 	long pages, virtpages;
2946 
2947 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2948 
2949 	work->next = work;
2950 	/*
2951 	 * Who cares about NUMA placement when they're dying.
2952 	 *
2953 	 * NOTE: make sure not to dereference p->mm before this check,
2954 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2955 	 * without p->mm even though we still had it when we enqueued this
2956 	 * work.
2957 	 */
2958 	if (p->flags & PF_EXITING)
2959 		return;
2960 
2961 	if (!mm->numa_next_scan) {
2962 		mm->numa_next_scan = now +
2963 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2964 	}
2965 
2966 	/*
2967 	 * Enforce maximal scan/migration frequency..
2968 	 */
2969 	migrate = mm->numa_next_scan;
2970 	if (time_before(now, migrate))
2971 		return;
2972 
2973 	if (p->numa_scan_period == 0) {
2974 		p->numa_scan_period_max = task_scan_max(p);
2975 		p->numa_scan_period = task_scan_start(p);
2976 	}
2977 
2978 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2979 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2980 		return;
2981 
2982 	/*
2983 	 * Delay this task enough that another task of this mm will likely win
2984 	 * the next time around.
2985 	 */
2986 	p->node_stamp += 2 * TICK_NSEC;
2987 
2988 	start = mm->numa_scan_offset;
2989 	pages = sysctl_numa_balancing_scan_size;
2990 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2991 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2992 	if (!pages)
2993 		return;
2994 
2995 
2996 	if (!mmap_read_trylock(mm))
2997 		return;
2998 	mas_set(&mas, start);
2999 	vma = mas_find(&mas, ULONG_MAX);
3000 	if (!vma) {
3001 		reset_ptenuma_scan(p);
3002 		start = 0;
3003 		mas_set(&mas, start);
3004 		vma = mas_find(&mas, ULONG_MAX);
3005 	}
3006 
3007 	for (; vma; vma = mas_find(&mas, ULONG_MAX)) {
3008 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3009 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3010 			continue;
3011 		}
3012 
3013 		/*
3014 		 * Shared library pages mapped by multiple processes are not
3015 		 * migrated as it is expected they are cache replicated. Avoid
3016 		 * hinting faults in read-only file-backed mappings or the vdso
3017 		 * as migrating the pages will be of marginal benefit.
3018 		 */
3019 		if (!vma->vm_mm ||
3020 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
3021 			continue;
3022 
3023 		/*
3024 		 * Skip inaccessible VMAs to avoid any confusion between
3025 		 * PROT_NONE and NUMA hinting ptes
3026 		 */
3027 		if (!vma_is_accessible(vma))
3028 			continue;
3029 
3030 		do {
3031 			start = max(start, vma->vm_start);
3032 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3033 			end = min(end, vma->vm_end);
3034 			nr_pte_updates = change_prot_numa(vma, start, end);
3035 
3036 			/*
3037 			 * Try to scan sysctl_numa_balancing_size worth of
3038 			 * hpages that have at least one present PTE that
3039 			 * is not already pte-numa. If the VMA contains
3040 			 * areas that are unused or already full of prot_numa
3041 			 * PTEs, scan up to virtpages, to skip through those
3042 			 * areas faster.
3043 			 */
3044 			if (nr_pte_updates)
3045 				pages -= (end - start) >> PAGE_SHIFT;
3046 			virtpages -= (end - start) >> PAGE_SHIFT;
3047 
3048 			start = end;
3049 			if (pages <= 0 || virtpages <= 0)
3050 				goto out;
3051 
3052 			cond_resched();
3053 		} while (end != vma->vm_end);
3054 	}
3055 
3056 out:
3057 	/*
3058 	 * It is possible to reach the end of the VMA list but the last few
3059 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3060 	 * would find the !migratable VMA on the next scan but not reset the
3061 	 * scanner to the start so check it now.
3062 	 */
3063 	if (vma)
3064 		mm->numa_scan_offset = start;
3065 	else
3066 		reset_ptenuma_scan(p);
3067 	mmap_read_unlock(mm);
3068 
3069 	/*
3070 	 * Make sure tasks use at least 32x as much time to run other code
3071 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3072 	 * Usually update_task_scan_period slows down scanning enough; on an
3073 	 * overloaded system we need to limit overhead on a per task basis.
3074 	 */
3075 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3076 		u64 diff = p->se.sum_exec_runtime - runtime;
3077 		p->node_stamp += 32 * diff;
3078 	}
3079 }
3080 
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)3081 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3082 {
3083 	int mm_users = 0;
3084 	struct mm_struct *mm = p->mm;
3085 
3086 	if (mm) {
3087 		mm_users = atomic_read(&mm->mm_users);
3088 		if (mm_users == 1) {
3089 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3090 			mm->numa_scan_seq = 0;
3091 		}
3092 	}
3093 	p->node_stamp			= 0;
3094 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3095 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3096 	p->numa_migrate_retry		= 0;
3097 	/* Protect against double add, see task_tick_numa and task_numa_work */
3098 	p->numa_work.next		= &p->numa_work;
3099 	p->numa_faults			= NULL;
3100 	p->numa_pages_migrated		= 0;
3101 	p->total_numa_faults		= 0;
3102 	RCU_INIT_POINTER(p->numa_group, NULL);
3103 	p->last_task_numa_placement	= 0;
3104 	p->last_sum_exec_runtime	= 0;
3105 
3106 	init_task_work(&p->numa_work, task_numa_work);
3107 
3108 	/* New address space, reset the preferred nid */
3109 	if (!(clone_flags & CLONE_VM)) {
3110 		p->numa_preferred_nid = NUMA_NO_NODE;
3111 		return;
3112 	}
3113 
3114 	/*
3115 	 * New thread, keep existing numa_preferred_nid which should be copied
3116 	 * already by arch_dup_task_struct but stagger when scans start.
3117 	 */
3118 	if (mm) {
3119 		unsigned int delay;
3120 
3121 		delay = min_t(unsigned int, task_scan_max(current),
3122 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3123 		delay += 2 * TICK_NSEC;
3124 		p->node_stamp = delay;
3125 	}
3126 }
3127 
3128 /*
3129  * Drive the periodic memory faults..
3130  */
task_tick_numa(struct rq * rq,struct task_struct * curr)3131 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3132 {
3133 	struct callback_head *work = &curr->numa_work;
3134 	u64 period, now;
3135 
3136 	/*
3137 	 * We don't care about NUMA placement if we don't have memory.
3138 	 */
3139 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3140 		return;
3141 
3142 	/*
3143 	 * Using runtime rather than walltime has the dual advantage that
3144 	 * we (mostly) drive the selection from busy threads and that the
3145 	 * task needs to have done some actual work before we bother with
3146 	 * NUMA placement.
3147 	 */
3148 	now = curr->se.sum_exec_runtime;
3149 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3150 
3151 	if (now > curr->node_stamp + period) {
3152 		if (!curr->node_stamp)
3153 			curr->numa_scan_period = task_scan_start(curr);
3154 		curr->node_stamp += period;
3155 
3156 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3157 			task_work_add(curr, work, TWA_RESUME);
3158 	}
3159 }
3160 
update_scan_period(struct task_struct * p,int new_cpu)3161 static void update_scan_period(struct task_struct *p, int new_cpu)
3162 {
3163 	int src_nid = cpu_to_node(task_cpu(p));
3164 	int dst_nid = cpu_to_node(new_cpu);
3165 
3166 	if (!static_branch_likely(&sched_numa_balancing))
3167 		return;
3168 
3169 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3170 		return;
3171 
3172 	if (src_nid == dst_nid)
3173 		return;
3174 
3175 	/*
3176 	 * Allow resets if faults have been trapped before one scan
3177 	 * has completed. This is most likely due to a new task that
3178 	 * is pulled cross-node due to wakeups or load balancing.
3179 	 */
3180 	if (p->numa_scan_seq) {
3181 		/*
3182 		 * Avoid scan adjustments if moving to the preferred
3183 		 * node or if the task was not previously running on
3184 		 * the preferred node.
3185 		 */
3186 		if (dst_nid == p->numa_preferred_nid ||
3187 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3188 			src_nid != p->numa_preferred_nid))
3189 			return;
3190 	}
3191 
3192 	p->numa_scan_period = task_scan_start(p);
3193 }
3194 
3195 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)3196 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3197 {
3198 }
3199 
account_numa_enqueue(struct rq * rq,struct task_struct * p)3200 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3201 {
3202 }
3203 
account_numa_dequeue(struct rq * rq,struct task_struct * p)3204 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3205 {
3206 }
3207 
update_scan_period(struct task_struct * p,int new_cpu)3208 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3209 {
3210 }
3211 
3212 #endif /* CONFIG_NUMA_BALANCING */
3213 
3214 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3215 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3216 {
3217 	update_load_add(&cfs_rq->load, se->load.weight);
3218 #ifdef CONFIG_SMP
3219 	if (entity_is_task(se)) {
3220 		struct rq *rq = rq_of(cfs_rq);
3221 
3222 		account_numa_enqueue(rq, task_of(se));
3223 		list_add(&se->group_node, &rq->cfs_tasks);
3224 	}
3225 #endif
3226 	cfs_rq->nr_running++;
3227 	if (se_is_idle(se))
3228 		cfs_rq->idle_nr_running++;
3229 }
3230 
3231 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3232 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3233 {
3234 	update_load_sub(&cfs_rq->load, se->load.weight);
3235 #ifdef CONFIG_SMP
3236 	if (entity_is_task(se)) {
3237 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3238 		list_del_init(&se->group_node);
3239 	}
3240 #endif
3241 	cfs_rq->nr_running--;
3242 	if (se_is_idle(se))
3243 		cfs_rq->idle_nr_running--;
3244 }
3245 
3246 /*
3247  * Signed add and clamp on underflow.
3248  *
3249  * Explicitly do a load-store to ensure the intermediate value never hits
3250  * memory. This allows lockless observations without ever seeing the negative
3251  * values.
3252  */
3253 #define add_positive(_ptr, _val) do {                           \
3254 	typeof(_ptr) ptr = (_ptr);                              \
3255 	typeof(_val) val = (_val);                              \
3256 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3257 								\
3258 	res = var + val;                                        \
3259 								\
3260 	if (val < 0 && res > var)                               \
3261 		res = 0;                                        \
3262 								\
3263 	WRITE_ONCE(*ptr, res);                                  \
3264 } while (0)
3265 
3266 /*
3267  * Unsigned subtract and clamp on underflow.
3268  *
3269  * Explicitly do a load-store to ensure the intermediate value never hits
3270  * memory. This allows lockless observations without ever seeing the negative
3271  * values.
3272  */
3273 #define sub_positive(_ptr, _val) do {				\
3274 	typeof(_ptr) ptr = (_ptr);				\
3275 	typeof(*ptr) val = (_val);				\
3276 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3277 	res = var - val;					\
3278 	if (res > var)						\
3279 		res = 0;					\
3280 	WRITE_ONCE(*ptr, res);					\
3281 } while (0)
3282 
3283 /*
3284  * Remove and clamp on negative, from a local variable.
3285  *
3286  * A variant of sub_positive(), which does not use explicit load-store
3287  * and is thus optimized for local variable updates.
3288  */
3289 #define lsub_positive(_ptr, _val) do {				\
3290 	typeof(_ptr) ptr = (_ptr);				\
3291 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3292 } while (0)
3293 
3294 #ifdef CONFIG_SMP
3295 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3296 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3297 {
3298 	cfs_rq->avg.load_avg += se->avg.load_avg;
3299 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3300 }
3301 
3302 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3303 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3304 {
3305 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3306 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3307 	/* See update_cfs_rq_load_avg() */
3308 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3309 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3310 }
3311 #else
3312 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3313 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3314 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3315 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3316 #endif
3317 
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3318 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3319 			    unsigned long weight)
3320 {
3321 	if (se->on_rq) {
3322 		/* commit outstanding execution time */
3323 		if (cfs_rq->curr == se)
3324 			update_curr(cfs_rq);
3325 		update_load_sub(&cfs_rq->load, se->load.weight);
3326 	}
3327 	dequeue_load_avg(cfs_rq, se);
3328 
3329 	update_load_set(&se->load, weight);
3330 
3331 #ifdef CONFIG_SMP
3332 	do {
3333 		u32 divider = get_pelt_divider(&se->avg);
3334 
3335 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3336 	} while (0);
3337 #endif
3338 
3339 	enqueue_load_avg(cfs_rq, se);
3340 	if (se->on_rq)
3341 		update_load_add(&cfs_rq->load, se->load.weight);
3342 
3343 }
3344 
reweight_task(struct task_struct * p,int prio)3345 void reweight_task(struct task_struct *p, int prio)
3346 {
3347 	struct sched_entity *se = &p->se;
3348 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3349 	struct load_weight *load = &se->load;
3350 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3351 
3352 	reweight_entity(cfs_rq, se, weight);
3353 	load->inv_weight = sched_prio_to_wmult[prio];
3354 }
3355 EXPORT_SYMBOL_GPL(reweight_task);
3356 
3357 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3358 
3359 #ifdef CONFIG_FAIR_GROUP_SCHED
3360 #ifdef CONFIG_SMP
3361 /*
3362  * All this does is approximate the hierarchical proportion which includes that
3363  * global sum we all love to hate.
3364  *
3365  * That is, the weight of a group entity, is the proportional share of the
3366  * group weight based on the group runqueue weights. That is:
3367  *
3368  *                     tg->weight * grq->load.weight
3369  *   ge->load.weight = -----------------------------               (1)
3370  *                       \Sum grq->load.weight
3371  *
3372  * Now, because computing that sum is prohibitively expensive to compute (been
3373  * there, done that) we approximate it with this average stuff. The average
3374  * moves slower and therefore the approximation is cheaper and more stable.
3375  *
3376  * So instead of the above, we substitute:
3377  *
3378  *   grq->load.weight -> grq->avg.load_avg                         (2)
3379  *
3380  * which yields the following:
3381  *
3382  *                     tg->weight * grq->avg.load_avg
3383  *   ge->load.weight = ------------------------------              (3)
3384  *                             tg->load_avg
3385  *
3386  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3387  *
3388  * That is shares_avg, and it is right (given the approximation (2)).
3389  *
3390  * The problem with it is that because the average is slow -- it was designed
3391  * to be exactly that of course -- this leads to transients in boundary
3392  * conditions. In specific, the case where the group was idle and we start the
3393  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3394  * yielding bad latency etc..
3395  *
3396  * Now, in that special case (1) reduces to:
3397  *
3398  *                     tg->weight * grq->load.weight
3399  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3400  *                         grp->load.weight
3401  *
3402  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3403  *
3404  * So what we do is modify our approximation (3) to approach (4) in the (near)
3405  * UP case, like:
3406  *
3407  *   ge->load.weight =
3408  *
3409  *              tg->weight * grq->load.weight
3410  *     ---------------------------------------------------         (5)
3411  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3412  *
3413  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3414  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3415  *
3416  *
3417  *                     tg->weight * grq->load.weight
3418  *   ge->load.weight = -----------------------------		   (6)
3419  *                             tg_load_avg'
3420  *
3421  * Where:
3422  *
3423  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3424  *                  max(grq->load.weight, grq->avg.load_avg)
3425  *
3426  * And that is shares_weight and is icky. In the (near) UP case it approaches
3427  * (4) while in the normal case it approaches (3). It consistently
3428  * overestimates the ge->load.weight and therefore:
3429  *
3430  *   \Sum ge->load.weight >= tg->weight
3431  *
3432  * hence icky!
3433  */
calc_group_shares(struct cfs_rq * cfs_rq)3434 static long calc_group_shares(struct cfs_rq *cfs_rq)
3435 {
3436 	long tg_weight, tg_shares, load, shares;
3437 	struct task_group *tg = cfs_rq->tg;
3438 
3439 	tg_shares = READ_ONCE(tg->shares);
3440 
3441 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3442 
3443 	tg_weight = atomic_long_read(&tg->load_avg);
3444 
3445 	/* Ensure tg_weight >= load */
3446 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3447 	tg_weight += load;
3448 
3449 	shares = (tg_shares * load);
3450 	if (tg_weight)
3451 		shares /= tg_weight;
3452 
3453 	/*
3454 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3455 	 * of a group with small tg->shares value. It is a floor value which is
3456 	 * assigned as a minimum load.weight to the sched_entity representing
3457 	 * the group on a CPU.
3458 	 *
3459 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3460 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3461 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3462 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3463 	 * instead of 0.
3464 	 */
3465 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3466 }
3467 #endif /* CONFIG_SMP */
3468 
3469 /*
3470  * Recomputes the group entity based on the current state of its group
3471  * runqueue.
3472  */
update_cfs_group(struct sched_entity * se)3473 static void update_cfs_group(struct sched_entity *se)
3474 {
3475 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3476 	long shares;
3477 
3478 	if (!gcfs_rq)
3479 		return;
3480 
3481 	if (throttled_hierarchy(gcfs_rq))
3482 		return;
3483 
3484 #ifndef CONFIG_SMP
3485 	shares = READ_ONCE(gcfs_rq->tg->shares);
3486 
3487 	if (likely(se->load.weight == shares))
3488 		return;
3489 #else
3490 	shares   = calc_group_shares(gcfs_rq);
3491 #endif
3492 
3493 	reweight_entity(cfs_rq_of(se), se, shares);
3494 }
3495 
3496 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)3497 static inline void update_cfs_group(struct sched_entity *se)
3498 {
3499 }
3500 #endif /* CONFIG_FAIR_GROUP_SCHED */
3501 
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)3502 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3503 {
3504 	struct rq *rq = rq_of(cfs_rq);
3505 
3506 	if (&rq->cfs == cfs_rq) {
3507 		/*
3508 		 * There are a few boundary cases this might miss but it should
3509 		 * get called often enough that that should (hopefully) not be
3510 		 * a real problem.
3511 		 *
3512 		 * It will not get called when we go idle, because the idle
3513 		 * thread is a different class (!fair), nor will the utilization
3514 		 * number include things like RT tasks.
3515 		 *
3516 		 * As is, the util number is not freq-invariant (we'd have to
3517 		 * implement arch_scale_freq_capacity() for that).
3518 		 *
3519 		 * See cpu_util_cfs().
3520 		 */
3521 		cpufreq_update_util(rq, flags);
3522 	}
3523 }
3524 
3525 #ifdef CONFIG_SMP
load_avg_is_decayed(struct sched_avg * sa)3526 static inline bool load_avg_is_decayed(struct sched_avg *sa)
3527 {
3528 	if (sa->load_sum)
3529 		return false;
3530 
3531 	if (sa->util_sum)
3532 		return false;
3533 
3534 	if (sa->runnable_sum)
3535 		return false;
3536 
3537 	/*
3538 	 * _avg must be null when _sum are null because _avg = _sum / divider
3539 	 * Make sure that rounding and/or propagation of PELT values never
3540 	 * break this.
3541 	 */
3542 	SCHED_WARN_ON(sa->load_avg ||
3543 		      sa->util_avg ||
3544 		      sa->runnable_avg);
3545 
3546 	return true;
3547 }
3548 
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3549 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3550 {
3551 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
3552 				 cfs_rq->last_update_time_copy);
3553 }
3554 #ifdef CONFIG_FAIR_GROUP_SCHED
3555 /*
3556  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3557  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3558  * bottom-up, we only have to test whether the cfs_rq before us on the list
3559  * is our child.
3560  * If cfs_rq is not on the list, test whether a child needs its to be added to
3561  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
3562  */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)3563 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3564 {
3565 	struct cfs_rq *prev_cfs_rq;
3566 	struct list_head *prev;
3567 
3568 	if (cfs_rq->on_list) {
3569 		prev = cfs_rq->leaf_cfs_rq_list.prev;
3570 	} else {
3571 		struct rq *rq = rq_of(cfs_rq);
3572 
3573 		prev = rq->tmp_alone_branch;
3574 	}
3575 
3576 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3577 
3578 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3579 }
3580 
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)3581 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3582 {
3583 	if (cfs_rq->load.weight)
3584 		return false;
3585 
3586 	if (!load_avg_is_decayed(&cfs_rq->avg))
3587 		return false;
3588 
3589 	if (child_cfs_rq_on_list(cfs_rq))
3590 		return false;
3591 
3592 	return true;
3593 }
3594 
3595 /**
3596  * update_tg_load_avg - update the tg's load avg
3597  * @cfs_rq: the cfs_rq whose avg changed
3598  *
3599  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3600  * However, because tg->load_avg is a global value there are performance
3601  * considerations.
3602  *
3603  * In order to avoid having to look at the other cfs_rq's, we use a
3604  * differential update where we store the last value we propagated. This in
3605  * turn allows skipping updates if the differential is 'small'.
3606  *
3607  * Updating tg's load_avg is necessary before update_cfs_share().
3608  */
update_tg_load_avg(struct cfs_rq * cfs_rq)3609 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3610 {
3611 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3612 
3613 	/*
3614 	 * No need to update load_avg for root_task_group as it is not used.
3615 	 */
3616 	if (cfs_rq->tg == &root_task_group)
3617 		return;
3618 
3619 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3620 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3621 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3622 	}
3623 }
3624 
3625 /*
3626  * Called within set_task_rq() right before setting a task's CPU. The
3627  * caller only guarantees p->pi_lock is held; no other assumptions,
3628  * including the state of rq->lock, should be made.
3629  */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)3630 void set_task_rq_fair(struct sched_entity *se,
3631 		      struct cfs_rq *prev, struct cfs_rq *next)
3632 {
3633 	u64 p_last_update_time;
3634 	u64 n_last_update_time;
3635 
3636 	if (!sched_feat(ATTACH_AGE_LOAD))
3637 		return;
3638 
3639 	/*
3640 	 * We are supposed to update the task to "current" time, then its up to
3641 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3642 	 * getting what current time is, so simply throw away the out-of-date
3643 	 * time. This will result in the wakee task is less decayed, but giving
3644 	 * the wakee more load sounds not bad.
3645 	 */
3646 	if (!(se->avg.last_update_time && prev))
3647 		return;
3648 
3649 	p_last_update_time = cfs_rq_last_update_time(prev);
3650 	n_last_update_time = cfs_rq_last_update_time(next);
3651 
3652 	__update_load_avg_blocked_se(p_last_update_time, se);
3653 	se->avg.last_update_time = n_last_update_time;
3654 }
3655 
3656 /*
3657  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3658  * propagate its contribution. The key to this propagation is the invariant
3659  * that for each group:
3660  *
3661  *   ge->avg == grq->avg						(1)
3662  *
3663  * _IFF_ we look at the pure running and runnable sums. Because they
3664  * represent the very same entity, just at different points in the hierarchy.
3665  *
3666  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3667  * and simply copies the running/runnable sum over (but still wrong, because
3668  * the group entity and group rq do not have their PELT windows aligned).
3669  *
3670  * However, update_tg_cfs_load() is more complex. So we have:
3671  *
3672  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3673  *
3674  * And since, like util, the runnable part should be directly transferable,
3675  * the following would _appear_ to be the straight forward approach:
3676  *
3677  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3678  *
3679  * And per (1) we have:
3680  *
3681  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3682  *
3683  * Which gives:
3684  *
3685  *                      ge->load.weight * grq->avg.load_avg
3686  *   ge->avg.load_avg = -----------------------------------		(4)
3687  *                               grq->load.weight
3688  *
3689  * Except that is wrong!
3690  *
3691  * Because while for entities historical weight is not important and we
3692  * really only care about our future and therefore can consider a pure
3693  * runnable sum, runqueues can NOT do this.
3694  *
3695  * We specifically want runqueues to have a load_avg that includes
3696  * historical weights. Those represent the blocked load, the load we expect
3697  * to (shortly) return to us. This only works by keeping the weights as
3698  * integral part of the sum. We therefore cannot decompose as per (3).
3699  *
3700  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3701  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3702  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3703  * runnable section of these tasks overlap (or not). If they were to perfectly
3704  * align the rq as a whole would be runnable 2/3 of the time. If however we
3705  * always have at least 1 runnable task, the rq as a whole is always runnable.
3706  *
3707  * So we'll have to approximate.. :/
3708  *
3709  * Given the constraint:
3710  *
3711  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3712  *
3713  * We can construct a rule that adds runnable to a rq by assuming minimal
3714  * overlap.
3715  *
3716  * On removal, we'll assume each task is equally runnable; which yields:
3717  *
3718  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3719  *
3720  * XXX: only do this for the part of runnable > running ?
3721  *
3722  */
3723 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3724 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3725 {
3726 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
3727 	u32 new_sum, divider;
3728 
3729 	/* Nothing to update */
3730 	if (!delta_avg)
3731 		return;
3732 
3733 	/*
3734 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3735 	 * See ___update_load_avg() for details.
3736 	 */
3737 	divider = get_pelt_divider(&cfs_rq->avg);
3738 
3739 
3740 	/* Set new sched_entity's utilization */
3741 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3742 	new_sum = se->avg.util_avg * divider;
3743 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
3744 	se->avg.util_sum = new_sum;
3745 
3746 	/* Update parent cfs_rq utilization */
3747 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
3748 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
3749 
3750 	/* See update_cfs_rq_load_avg() */
3751 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
3752 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
3753 }
3754 
3755 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3756 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3757 {
3758 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3759 	u32 new_sum, divider;
3760 
3761 	/* Nothing to update */
3762 	if (!delta_avg)
3763 		return;
3764 
3765 	/*
3766 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3767 	 * See ___update_load_avg() for details.
3768 	 */
3769 	divider = get_pelt_divider(&cfs_rq->avg);
3770 
3771 	/* Set new sched_entity's runnable */
3772 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3773 	new_sum = se->avg.runnable_avg * divider;
3774 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
3775 	se->avg.runnable_sum = new_sum;
3776 
3777 	/* Update parent cfs_rq runnable */
3778 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
3779 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
3780 	/* See update_cfs_rq_load_avg() */
3781 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
3782 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
3783 }
3784 
3785 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3786 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3787 {
3788 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3789 	unsigned long load_avg;
3790 	u64 load_sum = 0;
3791 	s64 delta_sum;
3792 	u32 divider;
3793 
3794 	if (!runnable_sum)
3795 		return;
3796 
3797 	gcfs_rq->prop_runnable_sum = 0;
3798 
3799 	/*
3800 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3801 	 * See ___update_load_avg() for details.
3802 	 */
3803 	divider = get_pelt_divider(&cfs_rq->avg);
3804 
3805 	if (runnable_sum >= 0) {
3806 		/*
3807 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3808 		 * the CPU is saturated running == runnable.
3809 		 */
3810 		runnable_sum += se->avg.load_sum;
3811 		runnable_sum = min_t(long, runnable_sum, divider);
3812 	} else {
3813 		/*
3814 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3815 		 * assuming all tasks are equally runnable.
3816 		 */
3817 		if (scale_load_down(gcfs_rq->load.weight)) {
3818 			load_sum = div_u64(gcfs_rq->avg.load_sum,
3819 				scale_load_down(gcfs_rq->load.weight));
3820 		}
3821 
3822 		/* But make sure to not inflate se's runnable */
3823 		runnable_sum = min(se->avg.load_sum, load_sum);
3824 	}
3825 
3826 	/*
3827 	 * runnable_sum can't be lower than running_sum
3828 	 * Rescale running sum to be in the same range as runnable sum
3829 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3830 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3831 	 */
3832 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3833 	runnable_sum = max(runnable_sum, running_sum);
3834 
3835 	load_sum = se_weight(se) * runnable_sum;
3836 	load_avg = div_u64(load_sum, divider);
3837 
3838 	delta_avg = load_avg - se->avg.load_avg;
3839 	if (!delta_avg)
3840 		return;
3841 
3842 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3843 
3844 	se->avg.load_sum = runnable_sum;
3845 	se->avg.load_avg = load_avg;
3846 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3847 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3848 	/* See update_cfs_rq_load_avg() */
3849 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3850 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3851 }
3852 
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)3853 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3854 {
3855 	cfs_rq->propagate = 1;
3856 	cfs_rq->prop_runnable_sum += runnable_sum;
3857 }
3858 
3859 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)3860 static inline int propagate_entity_load_avg(struct sched_entity *se)
3861 {
3862 	struct cfs_rq *cfs_rq, *gcfs_rq;
3863 
3864 	if (entity_is_task(se))
3865 		return 0;
3866 
3867 	gcfs_rq = group_cfs_rq(se);
3868 	if (!gcfs_rq->propagate)
3869 		return 0;
3870 
3871 	gcfs_rq->propagate = 0;
3872 
3873 	cfs_rq = cfs_rq_of(se);
3874 
3875 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3876 
3877 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3878 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3879 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3880 
3881 	trace_pelt_cfs_tp(cfs_rq);
3882 	trace_pelt_se_tp(se);
3883 
3884 	return 1;
3885 }
3886 
3887 /*
3888  * Check if we need to update the load and the utilization of a blocked
3889  * group_entity:
3890  */
skip_blocked_update(struct sched_entity * se)3891 static inline bool skip_blocked_update(struct sched_entity *se)
3892 {
3893 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3894 
3895 	/*
3896 	 * If sched_entity still have not zero load or utilization, we have to
3897 	 * decay it:
3898 	 */
3899 	if (se->avg.load_avg || se->avg.util_avg)
3900 		return false;
3901 
3902 	/*
3903 	 * If there is a pending propagation, we have to update the load and
3904 	 * the utilization of the sched_entity:
3905 	 */
3906 	if (gcfs_rq->propagate)
3907 		return false;
3908 
3909 	/*
3910 	 * Otherwise, the load and the utilization of the sched_entity is
3911 	 * already zero and there is no pending propagation, so it will be a
3912 	 * waste of time to try to decay it:
3913 	 */
3914 	return true;
3915 }
3916 
3917 #else /* CONFIG_FAIR_GROUP_SCHED */
3918 
update_tg_load_avg(struct cfs_rq * cfs_rq)3919 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3920 
propagate_entity_load_avg(struct sched_entity * se)3921 static inline int propagate_entity_load_avg(struct sched_entity *se)
3922 {
3923 	return 0;
3924 }
3925 
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)3926 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3927 
3928 #endif /* CONFIG_FAIR_GROUP_SCHED */
3929 
3930 #ifdef CONFIG_NO_HZ_COMMON
migrate_se_pelt_lag(struct sched_entity * se)3931 static inline void migrate_se_pelt_lag(struct sched_entity *se)
3932 {
3933 	u64 throttled = 0, now, lut;
3934 	struct cfs_rq *cfs_rq;
3935 	struct rq *rq;
3936 	bool is_idle;
3937 
3938 	if (load_avg_is_decayed(&se->avg))
3939 		return;
3940 
3941 	cfs_rq = cfs_rq_of(se);
3942 	rq = rq_of(cfs_rq);
3943 
3944 	rcu_read_lock();
3945 	is_idle = is_idle_task(rcu_dereference(rq->curr));
3946 	rcu_read_unlock();
3947 
3948 	/*
3949 	 * The lag estimation comes with a cost we don't want to pay all the
3950 	 * time. Hence, limiting to the case where the source CPU is idle and
3951 	 * we know we are at the greatest risk to have an outdated clock.
3952 	 */
3953 	if (!is_idle)
3954 		return;
3955 
3956 	/*
3957 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
3958 	 *
3959 	 *   last_update_time (the cfs_rq's last_update_time)
3960 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
3961 	 *      = rq_clock_pelt()@cfs_rq_idle
3962 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
3963 	 *
3964 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
3965 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
3966 	 *
3967 	 *   rq_idle_lag (delta between now and rq's update)
3968 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
3969 	 *
3970 	 * We can then write:
3971 	 *
3972 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
3973 	 *          sched_clock_cpu() - rq_clock()@rq_idle
3974 	 * Where:
3975 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
3976 	 *      rq_clock()@rq_idle      is rq->clock_idle
3977 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
3978 	 *                              is cfs_rq->throttled_pelt_idle
3979 	 */
3980 
3981 #ifdef CONFIG_CFS_BANDWIDTH
3982 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
3983 	/* The clock has been stopped for throttling */
3984 	if (throttled == U64_MAX)
3985 		return;
3986 #endif
3987 	now = u64_u32_load(rq->clock_pelt_idle);
3988 	/*
3989 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
3990 	 * is observed the old clock_pelt_idle value and the new clock_idle,
3991 	 * which lead to an underestimation. The opposite would lead to an
3992 	 * overestimation.
3993 	 */
3994 	smp_rmb();
3995 	lut = cfs_rq_last_update_time(cfs_rq);
3996 
3997 	now -= throttled;
3998 	if (now < lut)
3999 		/*
4000 		 * cfs_rq->avg.last_update_time is more recent than our
4001 		 * estimation, let's use it.
4002 		 */
4003 		now = lut;
4004 	else
4005 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4006 
4007 	__update_load_avg_blocked_se(now, se);
4008 }
4009 #else
migrate_se_pelt_lag(struct sched_entity * se)4010 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4011 #endif
4012 
4013 /**
4014  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4015  * @now: current time, as per cfs_rq_clock_pelt()
4016  * @cfs_rq: cfs_rq to update
4017  *
4018  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4019  * avg. The immediate corollary is that all (fair) tasks must be attached.
4020  *
4021  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4022  *
4023  * Return: true if the load decayed or we removed load.
4024  *
4025  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4026  * call update_tg_load_avg() when this function returns true.
4027  */
4028 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)4029 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4030 {
4031 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4032 	struct sched_avg *sa = &cfs_rq->avg;
4033 	int decayed = 0;
4034 
4035 	if (cfs_rq->removed.nr) {
4036 		unsigned long r;
4037 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4038 
4039 		raw_spin_lock(&cfs_rq->removed.lock);
4040 		swap(cfs_rq->removed.util_avg, removed_util);
4041 		swap(cfs_rq->removed.load_avg, removed_load);
4042 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4043 		cfs_rq->removed.nr = 0;
4044 		raw_spin_unlock(&cfs_rq->removed.lock);
4045 
4046 		r = removed_load;
4047 		sub_positive(&sa->load_avg, r);
4048 		sub_positive(&sa->load_sum, r * divider);
4049 		/* See sa->util_sum below */
4050 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4051 
4052 		r = removed_util;
4053 		sub_positive(&sa->util_avg, r);
4054 		sub_positive(&sa->util_sum, r * divider);
4055 		/*
4056 		 * Because of rounding, se->util_sum might ends up being +1 more than
4057 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4058 		 * a lot of tasks with the rounding problem between 2 updates of
4059 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4060 		 * cfs_util_avg is not.
4061 		 * Check that util_sum is still above its lower bound for the new
4062 		 * util_avg. Given that period_contrib might have moved since the last
4063 		 * sync, we are only sure that util_sum must be above or equal to
4064 		 *    util_avg * minimum possible divider
4065 		 */
4066 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4067 
4068 		r = removed_runnable;
4069 		sub_positive(&sa->runnable_avg, r);
4070 		sub_positive(&sa->runnable_sum, r * divider);
4071 		/* See sa->util_sum above */
4072 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4073 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4074 
4075 		/*
4076 		 * removed_runnable is the unweighted version of removed_load so we
4077 		 * can use it to estimate removed_load_sum.
4078 		 */
4079 		add_tg_cfs_propagate(cfs_rq,
4080 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4081 
4082 		decayed = 1;
4083 	}
4084 
4085 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4086 	u64_u32_store_copy(sa->last_update_time,
4087 			   cfs_rq->last_update_time_copy,
4088 			   sa->last_update_time);
4089 	return decayed;
4090 }
4091 
4092 /**
4093  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4094  * @cfs_rq: cfs_rq to attach to
4095  * @se: sched_entity to attach
4096  *
4097  * Must call update_cfs_rq_load_avg() before this, since we rely on
4098  * cfs_rq->avg.last_update_time being current.
4099  */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4100 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4101 {
4102 	/*
4103 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4104 	 * See ___update_load_avg() for details.
4105 	 */
4106 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4107 
4108 	/*
4109 	 * When we attach the @se to the @cfs_rq, we must align the decay
4110 	 * window because without that, really weird and wonderful things can
4111 	 * happen.
4112 	 *
4113 	 * XXX illustrate
4114 	 */
4115 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4116 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4117 
4118 	/*
4119 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4120 	 * period_contrib. This isn't strictly correct, but since we're
4121 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4122 	 * _sum a little.
4123 	 */
4124 	se->avg.util_sum = se->avg.util_avg * divider;
4125 
4126 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4127 
4128 	se->avg.load_sum = se->avg.load_avg * divider;
4129 	if (se_weight(se) < se->avg.load_sum)
4130 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4131 	else
4132 		se->avg.load_sum = 1;
4133 
4134 	trace_android_rvh_attach_entity_load_avg(cfs_rq, se);
4135 
4136 	enqueue_load_avg(cfs_rq, se);
4137 	cfs_rq->avg.util_avg += se->avg.util_avg;
4138 	cfs_rq->avg.util_sum += se->avg.util_sum;
4139 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4140 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4141 
4142 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4143 
4144 	cfs_rq_util_change(cfs_rq, 0);
4145 
4146 	trace_pelt_cfs_tp(cfs_rq);
4147 }
4148 
4149 /**
4150  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4151  * @cfs_rq: cfs_rq to detach from
4152  * @se: sched_entity to detach
4153  *
4154  * Must call update_cfs_rq_load_avg() before this, since we rely on
4155  * cfs_rq->avg.last_update_time being current.
4156  */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4157 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4158 {
4159 	trace_android_rvh_detach_entity_load_avg(cfs_rq, se);
4160 
4161 	dequeue_load_avg(cfs_rq, se);
4162 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4163 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4164 	/* See update_cfs_rq_load_avg() */
4165 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4166 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4167 
4168 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4169 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4170 	/* See update_cfs_rq_load_avg() */
4171 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4172 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4173 
4174 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4175 
4176 	cfs_rq_util_change(cfs_rq, 0);
4177 
4178 	trace_pelt_cfs_tp(cfs_rq);
4179 }
4180 
4181 /*
4182  * Optional action to be done while updating the load average
4183  */
4184 #define UPDATE_TG	0x1
4185 #define SKIP_AGE_LOAD	0x2
4186 #define DO_ATTACH	0x4
4187 #define DO_DETACH	0x8
4188 
4189 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4190 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4191 {
4192 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4193 	int decayed;
4194 
4195 	/*
4196 	 * Track task load average for carrying it to new CPU after migrated, and
4197 	 * track group sched_entity load average for task_h_load calc in migration
4198 	 */
4199 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4200 		__update_load_avg_se(now, cfs_rq, se);
4201 
4202 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4203 	decayed |= propagate_entity_load_avg(se);
4204 
4205 	trace_android_rvh_update_load_avg(now, cfs_rq, se);
4206 
4207 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4208 
4209 		/*
4210 		 * DO_ATTACH means we're here from enqueue_entity().
4211 		 * !last_update_time means we've passed through
4212 		 * migrate_task_rq_fair() indicating we migrated.
4213 		 *
4214 		 * IOW we're enqueueing a task on a new CPU.
4215 		 */
4216 		attach_entity_load_avg(cfs_rq, se);
4217 		update_tg_load_avg(cfs_rq);
4218 
4219 	} else if (flags & DO_DETACH) {
4220 		/*
4221 		 * DO_DETACH means we're here from dequeue_entity()
4222 		 * and we are migrating task out of the CPU.
4223 		 */
4224 		detach_entity_load_avg(cfs_rq, se);
4225 		update_tg_load_avg(cfs_rq);
4226 	} else if (decayed) {
4227 		cfs_rq_util_change(cfs_rq, 0);
4228 
4229 		if (flags & UPDATE_TG)
4230 			update_tg_load_avg(cfs_rq);
4231 	}
4232 }
4233 
4234 /*
4235  * Synchronize entity load avg of dequeued entity without locking
4236  * the previous rq.
4237  */
sync_entity_load_avg(struct sched_entity * se)4238 static void sync_entity_load_avg(struct sched_entity *se)
4239 {
4240 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4241 	u64 last_update_time;
4242 
4243 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4244 	__update_load_avg_blocked_se(last_update_time, se);
4245 }
4246 
4247 /*
4248  * Task first catches up with cfs_rq, and then subtract
4249  * itself from the cfs_rq (task must be off the queue now).
4250  */
remove_entity_load_avg(struct sched_entity * se)4251 static void remove_entity_load_avg(struct sched_entity *se)
4252 {
4253 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4254 	unsigned long flags;
4255 
4256 	/*
4257 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4258 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4259 	 * so we can remove unconditionally.
4260 	 */
4261 
4262 	sync_entity_load_avg(se);
4263 
4264 	trace_android_rvh_remove_entity_load_avg(cfs_rq, se);
4265 
4266 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4267 	++cfs_rq->removed.nr;
4268 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4269 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4270 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4271 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4272 }
4273 
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)4274 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4275 {
4276 	return cfs_rq->avg.runnable_avg;
4277 }
4278 
cfs_rq_load_avg(struct cfs_rq * cfs_rq)4279 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4280 {
4281 	return cfs_rq->avg.load_avg;
4282 }
4283 
4284 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4285 
task_util(struct task_struct * p)4286 static inline unsigned long task_util(struct task_struct *p)
4287 {
4288 	return READ_ONCE(p->se.avg.util_avg);
4289 }
4290 
_task_util_est(struct task_struct * p)4291 static inline unsigned long _task_util_est(struct task_struct *p)
4292 {
4293 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
4294 
4295 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4296 }
4297 
task_util_est(struct task_struct * p)4298 static inline unsigned long task_util_est(struct task_struct *p)
4299 {
4300 	return max(task_util(p), _task_util_est(p));
4301 }
4302 
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4303 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4304 				    struct task_struct *p)
4305 {
4306 	unsigned int enqueued;
4307 
4308 	if (!sched_feat(UTIL_EST))
4309 		return;
4310 
4311 	/* Update root cfs_rq's estimated utilization */
4312 	enqueued  = cfs_rq->avg.util_est.enqueued;
4313 	enqueued += _task_util_est(p);
4314 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4315 
4316 	trace_sched_util_est_cfs_tp(cfs_rq);
4317 }
4318 
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4319 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4320 				    struct task_struct *p)
4321 {
4322 	unsigned int enqueued;
4323 
4324 	if (!sched_feat(UTIL_EST))
4325 		return;
4326 
4327 	/* Update root cfs_rq's estimated utilization */
4328 	enqueued  = cfs_rq->avg.util_est.enqueued;
4329 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4330 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4331 
4332 	trace_sched_util_est_cfs_tp(cfs_rq);
4333 }
4334 
4335 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4336 
4337 /*
4338  * Check if a (signed) value is within a specified (unsigned) margin,
4339  * based on the observation that:
4340  *
4341  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4342  *
4343  * NOTE: this only works when value + margin < INT_MAX.
4344  */
within_margin(int value,int margin)4345 static inline bool within_margin(int value, int margin)
4346 {
4347 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4348 }
4349 
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4350 static inline void util_est_update(struct cfs_rq *cfs_rq,
4351 				   struct task_struct *p,
4352 				   bool task_sleep)
4353 {
4354 	long last_ewma_diff, last_enqueued_diff;
4355 	struct util_est ue;
4356 	int ret = 0;
4357 
4358 	trace_android_rvh_util_est_update(cfs_rq, p, task_sleep, &ret);
4359 	if (ret)
4360 		return;
4361 
4362 	if (!sched_feat(UTIL_EST))
4363 		return;
4364 
4365 	/*
4366 	 * Skip update of task's estimated utilization when the task has not
4367 	 * yet completed an activation, e.g. being migrated.
4368 	 */
4369 	if (!task_sleep)
4370 		return;
4371 
4372 	/*
4373 	 * If the PELT values haven't changed since enqueue time,
4374 	 * skip the util_est update.
4375 	 */
4376 	ue = p->se.avg.util_est;
4377 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4378 		return;
4379 
4380 	last_enqueued_diff = ue.enqueued;
4381 
4382 	/*
4383 	 * Reset EWMA on utilization increases, the moving average is used only
4384 	 * to smooth utilization decreases.
4385 	 */
4386 	ue.enqueued = task_util(p);
4387 	if (sched_feat(UTIL_EST_FASTUP)) {
4388 		if (ue.ewma < ue.enqueued) {
4389 			ue.ewma = ue.enqueued;
4390 			goto done;
4391 		}
4392 	}
4393 
4394 	/*
4395 	 * Skip update of task's estimated utilization when its members are
4396 	 * already ~1% close to its last activation value.
4397 	 */
4398 	last_ewma_diff = ue.enqueued - ue.ewma;
4399 	last_enqueued_diff -= ue.enqueued;
4400 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4401 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4402 			goto done;
4403 
4404 		return;
4405 	}
4406 
4407 	/*
4408 	 * To avoid overestimation of actual task utilization, skip updates if
4409 	 * we cannot grant there is idle time in this CPU.
4410 	 */
4411 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4412 		return;
4413 
4414 	/*
4415 	 * Update Task's estimated utilization
4416 	 *
4417 	 * When *p completes an activation we can consolidate another sample
4418 	 * of the task size. This is done by storing the current PELT value
4419 	 * as ue.enqueued and by using this value to update the Exponential
4420 	 * Weighted Moving Average (EWMA):
4421 	 *
4422 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4423 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4424 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4425 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4426 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4427 	 *
4428 	 * Where 'w' is the weight of new samples, which is configured to be
4429 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4430 	 */
4431 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4432 	ue.ewma  += last_ewma_diff;
4433 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4434 done:
4435 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4436 	WRITE_ONCE(p->se.avg.util_est, ue);
4437 
4438 	trace_sched_util_est_se_tp(&p->se);
4439 }
4440 
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)4441 static inline int util_fits_cpu(unsigned long util,
4442 				unsigned long uclamp_min,
4443 				unsigned long uclamp_max,
4444 				int cpu)
4445 {
4446 	unsigned long capacity_orig, capacity_orig_thermal;
4447 	unsigned long capacity = capacity_of(cpu);
4448 	bool fits, uclamp_max_fits, done = false;
4449 
4450 	trace_android_rvh_util_fits_cpu(util, uclamp_min, uclamp_max, cpu, &fits, &done);
4451 
4452 	if (done)
4453 		return fits;
4454 
4455 	/*
4456 	 * Check if the real util fits without any uclamp boost/cap applied.
4457 	 */
4458 	fits = fits_capacity(util, capacity);
4459 
4460 	if (!uclamp_is_used())
4461 		return fits;
4462 
4463 	/*
4464 	 * We must use capacity_orig_of() for comparing against uclamp_min and
4465 	 * uclamp_max. We only care about capacity pressure (by using
4466 	 * capacity_of()) for comparing against the real util.
4467 	 *
4468 	 * If a task is boosted to 1024 for example, we don't want a tiny
4469 	 * pressure to skew the check whether it fits a CPU or not.
4470 	 *
4471 	 * Similarly if a task is capped to capacity_orig_of(little_cpu), it
4472 	 * should fit a little cpu even if there's some pressure.
4473 	 *
4474 	 * Only exception is for thermal pressure since it has a direct impact
4475 	 * on available OPP of the system.
4476 	 *
4477 	 * We honour it for uclamp_min only as a drop in performance level
4478 	 * could result in not getting the requested minimum performance level.
4479 	 *
4480 	 * For uclamp_max, we can tolerate a drop in performance level as the
4481 	 * goal is to cap the task. So it's okay if it's getting less.
4482 	 */
4483 	capacity_orig = capacity_orig_of(cpu);
4484 	capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
4485 
4486 	/*
4487 	 * We want to force a task to fit a cpu as implied by uclamp_max.
4488 	 * But we do have some corner cases to cater for..
4489 	 *
4490 	 *
4491 	 *                                 C=z
4492 	 *   |                             ___
4493 	 *   |                  C=y       |   |
4494 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
4495 	 *   |      C=x        |   |      |   |
4496 	 *   |      ___        |   |      |   |
4497 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
4498 	 *   |     |   |       |   |      |   |
4499 	 *   |     |   |       |   |      |   |
4500 	 *   +----------------------------------------
4501 	 *         cpu0        cpu1       cpu2
4502 	 *
4503 	 *   In the above example if a task is capped to a specific performance
4504 	 *   point, y, then when:
4505 	 *
4506 	 *   * util = 80% of x then it does not fit on cpu0 and should migrate
4507 	 *     to cpu1
4508 	 *   * util = 80% of y then it is forced to fit on cpu1 to honour
4509 	 *     uclamp_max request.
4510 	 *
4511 	 *   which is what we're enforcing here. A task always fits if
4512 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
4513 	 *   the normal upmigration rules should withhold still.
4514 	 *
4515 	 *   Only exception is when we are on max capacity, then we need to be
4516 	 *   careful not to block overutilized state. This is so because:
4517 	 *
4518 	 *     1. There's no concept of capping at max_capacity! We can't go
4519 	 *        beyond this performance level anyway.
4520 	 *     2. The system is being saturated when we're operating near
4521 	 *        max capacity, it doesn't make sense to block overutilized.
4522 	 */
4523 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
4524 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
4525 	fits = fits || uclamp_max_fits;
4526 
4527 	/*
4528 	 *
4529 	 *                                 C=z
4530 	 *   |                             ___       (region a, capped, util >= uclamp_max)
4531 	 *   |                  C=y       |   |
4532 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
4533 	 *   |      C=x        |   |      |   |
4534 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
4535 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
4536 	 *   |     |   |       |   |      |   |
4537 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
4538 	 *   +----------------------------------------
4539 	 *         cpu0        cpu1       cpu2
4540 	 *
4541 	 * a) If util > uclamp_max, then we're capped, we don't care about
4542 	 *    actual fitness value here. We only care if uclamp_max fits
4543 	 *    capacity without taking margin/pressure into account.
4544 	 *    See comment above.
4545 	 *
4546 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
4547 	 *    fits_capacity() rules apply. Except we need to ensure that we
4548 	 *    enforce we remain within uclamp_max, see comment above.
4549 	 *
4550 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
4551 	 *    need to take into account the boosted value fits the CPU without
4552 	 *    taking margin/pressure into account.
4553 	 *
4554 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
4555 	 * just need to consider an extra check for case (c) after ensuring we
4556 	 * handle the case uclamp_min > uclamp_max.
4557 	 */
4558 	uclamp_min = min(uclamp_min, uclamp_max);
4559 	if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
4560 		return -1;
4561 
4562 	return fits;
4563 }
4564 
task_fits_cpu(struct task_struct * p,int cpu)4565 static inline int task_fits_cpu(struct task_struct *p, int cpu)
4566 {
4567 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
4568 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
4569 	unsigned long util = task_util_est(p);
4570 	/*
4571 	 * Return true only if the cpu fully fits the task requirements, which
4572 	 * include the utilization but also the performance hints.
4573 	 */
4574 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
4575 }
4576 
update_misfit_status(struct task_struct * p,struct rq * rq)4577 inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4578 {
4579 	bool need_update = true;
4580 
4581 	trace_android_rvh_update_misfit_status(p, rq, &need_update);
4582 	if (!sched_asym_cpucap_active() || !need_update)
4583 		return;
4584 
4585 	if (!p || p->nr_cpus_allowed == 1) {
4586 		rq->misfit_task_load = 0;
4587 		return;
4588 	}
4589 
4590 	if (task_fits_cpu(p, cpu_of(rq))) {
4591 		rq->misfit_task_load = 0;
4592 		return;
4593 	}
4594 
4595 	/*
4596 	 * Make sure that misfit_task_load will not be null even if
4597 	 * task_h_load() returns 0.
4598 	 */
4599 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4600 }
4601 EXPORT_SYMBOL_GPL(update_misfit_status);
4602 
4603 #else /* CONFIG_SMP */
4604 
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4605 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4606 {
4607 	return !cfs_rq->nr_running;
4608 }
4609 
4610 #define UPDATE_TG	0x0
4611 #define SKIP_AGE_LOAD	0x0
4612 #define DO_ATTACH	0x0
4613 #define DO_DETACH	0x0
4614 
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)4615 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4616 {
4617 	cfs_rq_util_change(cfs_rq, 0);
4618 }
4619 
remove_entity_load_avg(struct sched_entity * se)4620 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4621 
4622 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4623 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4624 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4625 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4626 
newidle_balance(struct rq * rq,struct rq_flags * rf)4627 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4628 {
4629 	return 0;
4630 }
4631 
4632 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4633 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4634 
4635 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4636 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4637 
4638 static inline void
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4639 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4640 		bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)4641 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4642 
4643 #endif /* CONFIG_SMP */
4644 
check_spread(struct cfs_rq * cfs_rq,struct sched_entity * se)4645 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4646 {
4647 #ifdef CONFIG_SCHED_DEBUG
4648 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4649 
4650 	if (d < 0)
4651 		d = -d;
4652 
4653 	if (d > 3*sysctl_sched_latency)
4654 		schedstat_inc(cfs_rq->nr_spread_over);
4655 #endif
4656 }
4657 
entity_is_long_sleeper(struct sched_entity * se)4658 static inline bool entity_is_long_sleeper(struct sched_entity *se)
4659 {
4660 	struct cfs_rq *cfs_rq;
4661 	u64 sleep_time;
4662 
4663 	if (se->exec_start == 0)
4664 		return false;
4665 
4666 	cfs_rq = cfs_rq_of(se);
4667 
4668 	sleep_time = rq_clock_task(rq_of(cfs_rq));
4669 
4670 	/* Happen while migrating because of clock task divergence */
4671 	if (sleep_time <= se->exec_start)
4672 		return false;
4673 
4674 	sleep_time -= se->exec_start;
4675 	if (sleep_time > ((1ULL << 63) / scale_load_down(NICE_0_LOAD)))
4676 		return true;
4677 
4678 	return false;
4679 }
4680 
4681 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int initial)4682 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4683 {
4684 	u64 vruntime = cfs_rq->min_vruntime;
4685 
4686 	/*
4687 	 * The 'current' period is already promised to the current tasks,
4688 	 * however the extra weight of the new task will slow them down a
4689 	 * little, place the new task so that it fits in the slot that
4690 	 * stays open at the end.
4691 	 */
4692 	if (initial && sched_feat(START_DEBIT))
4693 		vruntime += sched_vslice(cfs_rq, se);
4694 
4695 	/* sleeps up to a single latency don't count. */
4696 	if (!initial) {
4697 		unsigned long thresh;
4698 
4699 		if (se_is_idle(se))
4700 			thresh = sysctl_sched_min_granularity;
4701 		else
4702 			thresh = sysctl_sched_latency;
4703 
4704 		/*
4705 		 * Halve their sleep time's effect, to allow
4706 		 * for a gentler effect of sleepers:
4707 		 */
4708 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4709 			thresh >>= 1;
4710 
4711 		vruntime -= thresh;
4712 	}
4713 
4714 	trace_android_rvh_place_entity(cfs_rq, se, initial, &vruntime);
4715 	/*
4716 	 * Pull vruntime of the entity being placed to the base level of
4717 	 * cfs_rq, to prevent boosting it if placed backwards.
4718 	 * However, min_vruntime can advance much faster than real time, with
4719 	 * the extreme being when an entity with the minimal weight always runs
4720 	 * on the cfs_rq. If the waking entity slept for a long time, its
4721 	 * vruntime difference from min_vruntime may overflow s64 and their
4722 	 * comparison may get inversed, so ignore the entity's original
4723 	 * vruntime in that case.
4724 	 * The maximal vruntime speedup is given by the ratio of normal to
4725 	 * minimal weight: scale_load_down(NICE_0_LOAD) / MIN_SHARES.
4726 	 * When placing a migrated waking entity, its exec_start has been set
4727 	 * from a different rq. In order to take into account a possible
4728 	 * divergence between new and prev rq's clocks task because of irq and
4729 	 * stolen time, we take an additional margin.
4730 	 * So, cutting off on the sleep time of
4731 	 *     2^63 / scale_load_down(NICE_0_LOAD) ~ 104 days
4732 	 * should be safe.
4733 	 */
4734 	if (entity_is_long_sleeper(se))
4735 		se->vruntime = vruntime;
4736 	else
4737 		se->vruntime = max_vruntime(se->vruntime, vruntime);
4738 }
4739 
4740 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4741 
4742 static inline bool cfs_bandwidth_used(void);
4743 
4744 /*
4745  * MIGRATION
4746  *
4747  *	dequeue
4748  *	  update_curr()
4749  *	    update_min_vruntime()
4750  *	  vruntime -= min_vruntime
4751  *
4752  *	enqueue
4753  *	  update_curr()
4754  *	    update_min_vruntime()
4755  *	  vruntime += min_vruntime
4756  *
4757  * this way the vruntime transition between RQs is done when both
4758  * min_vruntime are up-to-date.
4759  *
4760  * WAKEUP (remote)
4761  *
4762  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4763  *	  vruntime -= min_vruntime
4764  *
4765  *	enqueue
4766  *	  update_curr()
4767  *	    update_min_vruntime()
4768  *	  vruntime += min_vruntime
4769  *
4770  * this way we don't have the most up-to-date min_vruntime on the originating
4771  * CPU and an up-to-date min_vruntime on the destination CPU.
4772  */
4773 
4774 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4775 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4776 {
4777 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4778 	bool curr = cfs_rq->curr == se;
4779 
4780 	/*
4781 	 * If we're the current task, we must renormalise before calling
4782 	 * update_curr().
4783 	 */
4784 	if (renorm && curr)
4785 		se->vruntime += cfs_rq->min_vruntime;
4786 
4787 	update_curr(cfs_rq);
4788 
4789 	/*
4790 	 * Otherwise, renormalise after, such that we're placed at the current
4791 	 * moment in time, instead of some random moment in the past. Being
4792 	 * placed in the past could significantly boost this task to the
4793 	 * fairness detriment of existing tasks.
4794 	 */
4795 	if (renorm && !curr)
4796 		se->vruntime += cfs_rq->min_vruntime;
4797 
4798 	/*
4799 	 * When enqueuing a sched_entity, we must:
4800 	 *   - Update loads to have both entity and cfs_rq synced with now.
4801 	 *   - For group_entity, update its runnable_weight to reflect the new
4802 	 *     h_nr_running of its group cfs_rq.
4803 	 *   - For group_entity, update its weight to reflect the new share of
4804 	 *     its group cfs_rq
4805 	 *   - Add its new weight to cfs_rq->load.weight
4806 	 */
4807 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4808 	se_update_runnable(se);
4809 	update_cfs_group(se);
4810 	account_entity_enqueue(cfs_rq, se);
4811 
4812 	if (flags & ENQUEUE_WAKEUP)
4813 		place_entity(cfs_rq, se, 0);
4814 	/* Entity has migrated, no longer consider this task hot */
4815 	if (flags & ENQUEUE_MIGRATED)
4816 		se->exec_start = 0;
4817 
4818 	check_schedstat_required();
4819 	update_stats_enqueue_fair(cfs_rq, se, flags);
4820 	check_spread(cfs_rq, se);
4821 	if (!curr)
4822 		__enqueue_entity(cfs_rq, se);
4823 	se->on_rq = 1;
4824 
4825 	if (cfs_rq->nr_running == 1) {
4826 		check_enqueue_throttle(cfs_rq);
4827 		if (!throttled_hierarchy(cfs_rq))
4828 			list_add_leaf_cfs_rq(cfs_rq);
4829 	}
4830 }
4831 
__clear_buddies_last(struct sched_entity * se)4832 static void __clear_buddies_last(struct sched_entity *se)
4833 {
4834 	for_each_sched_entity(se) {
4835 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4836 		if (cfs_rq->last != se)
4837 			break;
4838 
4839 		cfs_rq->last = NULL;
4840 	}
4841 }
4842 
__clear_buddies_next(struct sched_entity * se)4843 static void __clear_buddies_next(struct sched_entity *se)
4844 {
4845 	for_each_sched_entity(se) {
4846 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4847 		if (cfs_rq->next != se)
4848 			break;
4849 
4850 		cfs_rq->next = NULL;
4851 	}
4852 }
4853 
__clear_buddies_skip(struct sched_entity * se)4854 static void __clear_buddies_skip(struct sched_entity *se)
4855 {
4856 	for_each_sched_entity(se) {
4857 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4858 		if (cfs_rq->skip != se)
4859 			break;
4860 
4861 		cfs_rq->skip = NULL;
4862 	}
4863 }
4864 
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)4865 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4866 {
4867 	if (cfs_rq->last == se)
4868 		__clear_buddies_last(se);
4869 
4870 	if (cfs_rq->next == se)
4871 		__clear_buddies_next(se);
4872 
4873 	if (cfs_rq->skip == se)
4874 		__clear_buddies_skip(se);
4875 }
4876 
4877 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4878 
4879 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4880 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4881 {
4882 	int action = UPDATE_TG;
4883 
4884 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
4885 		action |= DO_DETACH;
4886 
4887 	/*
4888 	 * Update run-time statistics of the 'current'.
4889 	 */
4890 	update_curr(cfs_rq);
4891 
4892 	/*
4893 	 * When dequeuing a sched_entity, we must:
4894 	 *   - Update loads to have both entity and cfs_rq synced with now.
4895 	 *   - For group_entity, update its runnable_weight to reflect the new
4896 	 *     h_nr_running of its group cfs_rq.
4897 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4898 	 *   - For group entity, update its weight to reflect the new share
4899 	 *     of its group cfs_rq.
4900 	 */
4901 	update_load_avg(cfs_rq, se, action);
4902 	se_update_runnable(se);
4903 
4904 	update_stats_dequeue_fair(cfs_rq, se, flags);
4905 
4906 	clear_buddies(cfs_rq, se);
4907 
4908 	if (se != cfs_rq->curr)
4909 		__dequeue_entity(cfs_rq, se);
4910 	se->on_rq = 0;
4911 	account_entity_dequeue(cfs_rq, se);
4912 
4913 	/*
4914 	 * Normalize after update_curr(); which will also have moved
4915 	 * min_vruntime if @se is the one holding it back. But before doing
4916 	 * update_min_vruntime() again, which will discount @se's position and
4917 	 * can move min_vruntime forward still more.
4918 	 */
4919 	if (!(flags & DEQUEUE_SLEEP))
4920 		se->vruntime -= cfs_rq->min_vruntime;
4921 
4922 	/* return excess runtime on last dequeue */
4923 	return_cfs_rq_runtime(cfs_rq);
4924 
4925 	update_cfs_group(se);
4926 
4927 	/*
4928 	 * Now advance min_vruntime if @se was the entity holding it back,
4929 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4930 	 * put back on, and if we advance min_vruntime, we'll be placed back
4931 	 * further than we started -- ie. we'll be penalized.
4932 	 */
4933 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4934 		update_min_vruntime(cfs_rq);
4935 
4936 	if (cfs_rq->nr_running == 0)
4937 		update_idle_cfs_rq_clock_pelt(cfs_rq);
4938 }
4939 
4940 /*
4941  * Preempt the current task with a newly woken task if needed:
4942  */
4943 static void
check_preempt_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr)4944 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4945 {
4946 	unsigned long ideal_runtime, delta_exec;
4947 	struct sched_entity *se;
4948 	s64 delta;
4949 	bool skip_preempt = false;
4950 
4951 	/*
4952 	 * When many tasks blow up the sched_period; it is possible that
4953 	 * sched_slice() reports unusually large results (when many tasks are
4954 	 * very light for example). Therefore impose a maximum.
4955 	 */
4956 	ideal_runtime = min_t(u64, sched_slice(cfs_rq, curr), sysctl_sched_latency);
4957 
4958 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4959 	trace_android_rvh_check_preempt_tick(current, &ideal_runtime, &skip_preempt,
4960 			delta_exec, cfs_rq, curr, sysctl_sched_min_granularity);
4961 	if (skip_preempt)
4962 		return;
4963 	if (delta_exec > ideal_runtime) {
4964 		resched_curr(rq_of(cfs_rq));
4965 		/*
4966 		 * The current task ran long enough, ensure it doesn't get
4967 		 * re-elected due to buddy favours.
4968 		 */
4969 		clear_buddies(cfs_rq, curr);
4970 		return;
4971 	}
4972 
4973 	/*
4974 	 * Ensure that a task that missed wakeup preemption by a
4975 	 * narrow margin doesn't have to wait for a full slice.
4976 	 * This also mitigates buddy induced latencies under load.
4977 	 */
4978 	if (delta_exec < sysctl_sched_min_granularity)
4979 		return;
4980 
4981 	se = __pick_first_entity(cfs_rq);
4982 	delta = curr->vruntime - se->vruntime;
4983 
4984 	if (delta < 0)
4985 		return;
4986 
4987 	if (delta > ideal_runtime)
4988 		resched_curr(rq_of(cfs_rq));
4989 }
4990 
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)4991 void set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4992 {
4993 	clear_buddies(cfs_rq, se);
4994 
4995 	/* 'current' is not kept within the tree. */
4996 	if (se->on_rq) {
4997 		/*
4998 		 * Any task has to be enqueued before it get to execute on
4999 		 * a CPU. So account for the time it spent waiting on the
5000 		 * runqueue.
5001 		 */
5002 		update_stats_wait_end_fair(cfs_rq, se);
5003 		__dequeue_entity(cfs_rq, se);
5004 		update_load_avg(cfs_rq, se, UPDATE_TG);
5005 	}
5006 
5007 	update_stats_curr_start(cfs_rq, se);
5008 	cfs_rq->curr = se;
5009 
5010 	/*
5011 	 * Track our maximum slice length, if the CPU's load is at
5012 	 * least twice that of our own weight (i.e. dont track it
5013 	 * when there are only lesser-weight tasks around):
5014 	 */
5015 	if (schedstat_enabled() &&
5016 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5017 		struct sched_statistics *stats;
5018 
5019 		stats = __schedstats_from_se(se);
5020 		__schedstat_set(stats->slice_max,
5021 				max((u64)stats->slice_max,
5022 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5023 	}
5024 
5025 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5026 }
5027 EXPORT_SYMBOL_GPL(set_next_entity);
5028 
5029 static int
5030 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
5031 
5032 /*
5033  * Pick the next process, keeping these things in mind, in this order:
5034  * 1) keep things fair between processes/task groups
5035  * 2) pick the "next" process, since someone really wants that to run
5036  * 3) pick the "last" process, for cache locality
5037  * 4) do not run the "skip" process, if something else is available
5038  */
5039 static struct sched_entity *
pick_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * curr)5040 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
5041 {
5042 	struct sched_entity *left = __pick_first_entity(cfs_rq);
5043 	struct sched_entity *se = NULL;
5044 
5045 	trace_android_rvh_pick_next_entity(cfs_rq, curr, &se);
5046 	if (se)
5047 		goto done;
5048 
5049 	/*
5050 	 * If curr is set we have to see if its left of the leftmost entity
5051 	 * still in the tree, provided there was anything in the tree at all.
5052 	 */
5053 	if (!left || (curr && entity_before(curr, left)))
5054 		left = curr;
5055 
5056 	se = left; /* ideally we run the leftmost entity */
5057 
5058 	/*
5059 	 * Avoid running the skip buddy, if running something else can
5060 	 * be done without getting too unfair.
5061 	 */
5062 	if (cfs_rq->skip && cfs_rq->skip == se) {
5063 		struct sched_entity *second;
5064 
5065 		if (se == curr) {
5066 			second = __pick_first_entity(cfs_rq);
5067 		} else {
5068 			second = __pick_next_entity(se);
5069 			if (!second || (curr && entity_before(curr, second)))
5070 				second = curr;
5071 		}
5072 
5073 		if (second && wakeup_preempt_entity(second, left) < 1)
5074 			se = second;
5075 	}
5076 
5077 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
5078 		/*
5079 		 * Someone really wants this to run. If it's not unfair, run it.
5080 		 */
5081 		se = cfs_rq->next;
5082 	} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
5083 		/*
5084 		 * Prefer last buddy, try to return the CPU to a preempted task.
5085 		 */
5086 		se = cfs_rq->last;
5087 	}
5088 
5089 done:
5090 	return se;
5091 }
5092 
5093 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5094 
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)5095 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5096 {
5097 	/*
5098 	 * If still on the runqueue then deactivate_task()
5099 	 * was not called and update_curr() has to be done:
5100 	 */
5101 	if (prev->on_rq)
5102 		update_curr(cfs_rq);
5103 
5104 	/* throttle cfs_rqs exceeding runtime */
5105 	check_cfs_rq_runtime(cfs_rq);
5106 
5107 	check_spread(cfs_rq, prev);
5108 
5109 	if (prev->on_rq) {
5110 		update_stats_wait_start_fair(cfs_rq, prev);
5111 		/* Put 'current' back into the tree. */
5112 		__enqueue_entity(cfs_rq, prev);
5113 		/* in !on_rq case, update occurred at dequeue */
5114 		update_load_avg(cfs_rq, prev, 0);
5115 	}
5116 	cfs_rq->curr = NULL;
5117 }
5118 
5119 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)5120 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5121 {
5122 	/*
5123 	 * Update run-time statistics of the 'current'.
5124 	 */
5125 	update_curr(cfs_rq);
5126 
5127 	/*
5128 	 * Ensure that runnable average is periodically updated.
5129 	 */
5130 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5131 	update_cfs_group(curr);
5132 
5133 #ifdef CONFIG_SCHED_HRTICK
5134 	/*
5135 	 * queued ticks are scheduled to match the slice, so don't bother
5136 	 * validating it and just reschedule.
5137 	 */
5138 	if (queued) {
5139 		resched_curr(rq_of(cfs_rq));
5140 		return;
5141 	}
5142 	/*
5143 	 * don't let the period tick interfere with the hrtick preemption
5144 	 */
5145 	if (!sched_feat(DOUBLE_TICK) &&
5146 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5147 		return;
5148 #endif
5149 
5150 	if (cfs_rq->nr_running > 1)
5151 		check_preempt_tick(cfs_rq, curr);
5152 	trace_android_rvh_entity_tick(cfs_rq, curr);
5153 }
5154 
5155 
5156 /**************************************************
5157  * CFS bandwidth control machinery
5158  */
5159 
5160 #ifdef CONFIG_CFS_BANDWIDTH
5161 
5162 #ifdef CONFIG_JUMP_LABEL
5163 static struct static_key __cfs_bandwidth_used;
5164 
cfs_bandwidth_used(void)5165 static inline bool cfs_bandwidth_used(void)
5166 {
5167 	return static_key_false(&__cfs_bandwidth_used);
5168 }
5169 
cfs_bandwidth_usage_inc(void)5170 void cfs_bandwidth_usage_inc(void)
5171 {
5172 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5173 }
5174 
cfs_bandwidth_usage_dec(void)5175 void cfs_bandwidth_usage_dec(void)
5176 {
5177 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5178 }
5179 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)5180 static bool cfs_bandwidth_used(void)
5181 {
5182 	return true;
5183 }
5184 
cfs_bandwidth_usage_inc(void)5185 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)5186 void cfs_bandwidth_usage_dec(void) {}
5187 #endif /* CONFIG_JUMP_LABEL */
5188 
5189 /*
5190  * default period for cfs group bandwidth.
5191  * default: 0.1s, units: nanoseconds
5192  */
default_cfs_period(void)5193 static inline u64 default_cfs_period(void)
5194 {
5195 	return 100000000ULL;
5196 }
5197 
sched_cfs_bandwidth_slice(void)5198 static inline u64 sched_cfs_bandwidth_slice(void)
5199 {
5200 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5201 }
5202 
5203 /*
5204  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5205  * directly instead of rq->clock to avoid adding additional synchronization
5206  * around rq->lock.
5207  *
5208  * requires cfs_b->lock
5209  */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)5210 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5211 {
5212 	s64 runtime;
5213 
5214 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5215 		return;
5216 
5217 	cfs_b->runtime += cfs_b->quota;
5218 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5219 	if (runtime > 0) {
5220 		cfs_b->burst_time += runtime;
5221 		cfs_b->nr_burst++;
5222 	}
5223 
5224 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5225 	cfs_b->runtime_snap = cfs_b->runtime;
5226 }
5227 
tg_cfs_bandwidth(struct task_group * tg)5228 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5229 {
5230 	return &tg->cfs_bandwidth;
5231 }
5232 
5233 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)5234 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5235 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5236 {
5237 	u64 min_amount, amount = 0;
5238 
5239 	lockdep_assert_held(&cfs_b->lock);
5240 
5241 	/* note: this is a positive sum as runtime_remaining <= 0 */
5242 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5243 
5244 	if (cfs_b->quota == RUNTIME_INF)
5245 		amount = min_amount;
5246 	else {
5247 		start_cfs_bandwidth(cfs_b);
5248 
5249 		if (cfs_b->runtime > 0) {
5250 			amount = min(cfs_b->runtime, min_amount);
5251 			cfs_b->runtime -= amount;
5252 			cfs_b->idle = 0;
5253 		}
5254 	}
5255 
5256 	cfs_rq->runtime_remaining += amount;
5257 
5258 	return cfs_rq->runtime_remaining > 0;
5259 }
5260 
5261 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)5262 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5263 {
5264 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5265 	int ret;
5266 
5267 	raw_spin_lock(&cfs_b->lock);
5268 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5269 	raw_spin_unlock(&cfs_b->lock);
5270 
5271 	return ret;
5272 }
5273 
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5274 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5275 {
5276 	/* dock delta_exec before expiring quota (as it could span periods) */
5277 	cfs_rq->runtime_remaining -= delta_exec;
5278 
5279 	if (likely(cfs_rq->runtime_remaining > 0))
5280 		return;
5281 
5282 	if (cfs_rq->throttled)
5283 		return;
5284 	/*
5285 	 * if we're unable to extend our runtime we resched so that the active
5286 	 * hierarchy can be throttled
5287 	 */
5288 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5289 		resched_curr(rq_of(cfs_rq));
5290 }
5291 
5292 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5293 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5294 {
5295 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5296 		return;
5297 
5298 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5299 }
5300 
cfs_rq_throttled(struct cfs_rq * cfs_rq)5301 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5302 {
5303 	return cfs_bandwidth_used() && cfs_rq->throttled;
5304 }
5305 
5306 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)5307 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5308 {
5309 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5310 }
5311 
5312 /*
5313  * Ensure that neither of the group entities corresponding to src_cpu or
5314  * dest_cpu are members of a throttled hierarchy when performing group
5315  * load-balance operations.
5316  */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5317 static inline int throttled_lb_pair(struct task_group *tg,
5318 				    int src_cpu, int dest_cpu)
5319 {
5320 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5321 
5322 	src_cfs_rq = tg->cfs_rq[src_cpu];
5323 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5324 
5325 	return throttled_hierarchy(src_cfs_rq) ||
5326 	       throttled_hierarchy(dest_cfs_rq);
5327 }
5328 
tg_unthrottle_up(struct task_group * tg,void * data)5329 static int tg_unthrottle_up(struct task_group *tg, void *data)
5330 {
5331 	struct rq *rq = data;
5332 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5333 
5334 	cfs_rq->throttle_count--;
5335 	if (!cfs_rq->throttle_count) {
5336 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5337 					     cfs_rq->throttled_clock_pelt;
5338 
5339 		/* Add cfs_rq with load or one or more already running entities to the list */
5340 		if (!cfs_rq_is_decayed(cfs_rq))
5341 			list_add_leaf_cfs_rq(cfs_rq);
5342 	}
5343 
5344 	return 0;
5345 }
5346 
tg_throttle_down(struct task_group * tg,void * data)5347 static int tg_throttle_down(struct task_group *tg, void *data)
5348 {
5349 	struct rq *rq = data;
5350 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5351 
5352 	/* group is entering throttled state, stop time */
5353 	if (!cfs_rq->throttle_count) {
5354 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5355 		list_del_leaf_cfs_rq(cfs_rq);
5356 	}
5357 	cfs_rq->throttle_count++;
5358 
5359 	return 0;
5360 }
5361 
throttle_cfs_rq(struct cfs_rq * cfs_rq)5362 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5363 {
5364 	struct rq *rq = rq_of(cfs_rq);
5365 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5366 	struct sched_entity *se;
5367 	long task_delta, idle_task_delta, dequeue = 1;
5368 
5369 	raw_spin_lock(&cfs_b->lock);
5370 	/* This will start the period timer if necessary */
5371 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5372 		/*
5373 		 * We have raced with bandwidth becoming available, and if we
5374 		 * actually throttled the timer might not unthrottle us for an
5375 		 * entire period. We additionally needed to make sure that any
5376 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5377 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5378 		 * for 1ns of runtime rather than just check cfs_b.
5379 		 */
5380 		dequeue = 0;
5381 	} else {
5382 		list_add_tail_rcu(&cfs_rq->throttled_list,
5383 				  &cfs_b->throttled_cfs_rq);
5384 	}
5385 	raw_spin_unlock(&cfs_b->lock);
5386 
5387 	if (!dequeue)
5388 		return false;  /* Throttle no longer required. */
5389 
5390 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5391 
5392 	/* freeze hierarchy runnable averages while throttled */
5393 	rcu_read_lock();
5394 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5395 	rcu_read_unlock();
5396 
5397 	task_delta = cfs_rq->h_nr_running;
5398 	idle_task_delta = cfs_rq->idle_h_nr_running;
5399 	for_each_sched_entity(se) {
5400 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5401 		/* throttled entity or throttle-on-deactivate */
5402 		if (!se->on_rq)
5403 			goto done;
5404 
5405 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5406 
5407 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5408 			idle_task_delta = cfs_rq->h_nr_running;
5409 
5410 		qcfs_rq->h_nr_running -= task_delta;
5411 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5412 
5413 		if (qcfs_rq->load.weight) {
5414 			/* Avoid re-evaluating load for this entity: */
5415 			se = parent_entity(se);
5416 			break;
5417 		}
5418 	}
5419 
5420 	for_each_sched_entity(se) {
5421 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5422 		/* throttled entity or throttle-on-deactivate */
5423 		if (!se->on_rq)
5424 			goto done;
5425 
5426 		update_load_avg(qcfs_rq, se, 0);
5427 		se_update_runnable(se);
5428 
5429 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5430 			idle_task_delta = cfs_rq->h_nr_running;
5431 
5432 		qcfs_rq->h_nr_running -= task_delta;
5433 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5434 	}
5435 
5436 	/* At this point se is NULL and we are at root level*/
5437 	sub_nr_running(rq, task_delta);
5438 
5439 done:
5440 	/*
5441 	 * Note: distribution will already see us throttled via the
5442 	 * throttled-list.  rq->lock protects completion.
5443 	 */
5444 	cfs_rq->throttled = 1;
5445 	cfs_rq->throttled_clock = rq_clock(rq);
5446 	return true;
5447 }
5448 
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)5449 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5450 {
5451 	struct rq *rq = rq_of(cfs_rq);
5452 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5453 	struct sched_entity *se;
5454 	long task_delta, idle_task_delta;
5455 
5456 	se = cfs_rq->tg->se[cpu_of(rq)];
5457 
5458 	cfs_rq->throttled = 0;
5459 
5460 	update_rq_clock(rq);
5461 
5462 	raw_spin_lock(&cfs_b->lock);
5463 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5464 	list_del_rcu(&cfs_rq->throttled_list);
5465 	raw_spin_unlock(&cfs_b->lock);
5466 
5467 	/* update hierarchical throttle state */
5468 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5469 
5470 	if (!cfs_rq->load.weight) {
5471 		if (!cfs_rq->on_list)
5472 			return;
5473 		/*
5474 		 * Nothing to run but something to decay (on_list)?
5475 		 * Complete the branch.
5476 		 */
5477 		for_each_sched_entity(se) {
5478 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5479 				break;
5480 		}
5481 		goto unthrottle_throttle;
5482 	}
5483 
5484 	task_delta = cfs_rq->h_nr_running;
5485 	idle_task_delta = cfs_rq->idle_h_nr_running;
5486 	for_each_sched_entity(se) {
5487 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5488 
5489 		if (se->on_rq)
5490 			break;
5491 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5492 
5493 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5494 			idle_task_delta = cfs_rq->h_nr_running;
5495 
5496 		qcfs_rq->h_nr_running += task_delta;
5497 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5498 
5499 		/* end evaluation on encountering a throttled cfs_rq */
5500 		if (cfs_rq_throttled(qcfs_rq))
5501 			goto unthrottle_throttle;
5502 	}
5503 
5504 	for_each_sched_entity(se) {
5505 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5506 
5507 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5508 		se_update_runnable(se);
5509 
5510 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5511 			idle_task_delta = cfs_rq->h_nr_running;
5512 
5513 		qcfs_rq->h_nr_running += task_delta;
5514 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5515 
5516 		/* end evaluation on encountering a throttled cfs_rq */
5517 		if (cfs_rq_throttled(qcfs_rq))
5518 			goto unthrottle_throttle;
5519 	}
5520 
5521 	/* At this point se is NULL and we are at root level*/
5522 	add_nr_running(rq, task_delta);
5523 
5524 unthrottle_throttle:
5525 	assert_list_leaf_cfs_rq(rq);
5526 
5527 	/* Determine whether we need to wake up potentially idle CPU: */
5528 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5529 		resched_curr(rq);
5530 }
5531 
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)5532 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5533 {
5534 	struct cfs_rq *cfs_rq;
5535 	u64 runtime, remaining = 1;
5536 
5537 	rcu_read_lock();
5538 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5539 				throttled_list) {
5540 		struct rq *rq = rq_of(cfs_rq);
5541 		struct rq_flags rf;
5542 
5543 		rq_lock_irqsave(rq, &rf);
5544 		if (!cfs_rq_throttled(cfs_rq))
5545 			goto next;
5546 
5547 		/* By the above check, this should never be true */
5548 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5549 
5550 		raw_spin_lock(&cfs_b->lock);
5551 		runtime = -cfs_rq->runtime_remaining + 1;
5552 		if (runtime > cfs_b->runtime)
5553 			runtime = cfs_b->runtime;
5554 		cfs_b->runtime -= runtime;
5555 		remaining = cfs_b->runtime;
5556 		raw_spin_unlock(&cfs_b->lock);
5557 
5558 		cfs_rq->runtime_remaining += runtime;
5559 
5560 		/* we check whether we're throttled above */
5561 		if (cfs_rq->runtime_remaining > 0)
5562 			unthrottle_cfs_rq(cfs_rq);
5563 
5564 next:
5565 		rq_unlock_irqrestore(rq, &rf);
5566 
5567 		if (!remaining)
5568 			break;
5569 	}
5570 	rcu_read_unlock();
5571 }
5572 
5573 /*
5574  * Responsible for refilling a task_group's bandwidth and unthrottling its
5575  * cfs_rqs as appropriate. If there has been no activity within the last
5576  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5577  * used to track this state.
5578  */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)5579 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5580 {
5581 	int throttled;
5582 
5583 	/* no need to continue the timer with no bandwidth constraint */
5584 	if (cfs_b->quota == RUNTIME_INF)
5585 		goto out_deactivate;
5586 
5587 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5588 	cfs_b->nr_periods += overrun;
5589 
5590 	/* Refill extra burst quota even if cfs_b->idle */
5591 	__refill_cfs_bandwidth_runtime(cfs_b);
5592 
5593 	/*
5594 	 * idle depends on !throttled (for the case of a large deficit), and if
5595 	 * we're going inactive then everything else can be deferred
5596 	 */
5597 	if (cfs_b->idle && !throttled)
5598 		goto out_deactivate;
5599 
5600 	if (!throttled) {
5601 		/* mark as potentially idle for the upcoming period */
5602 		cfs_b->idle = 1;
5603 		return 0;
5604 	}
5605 
5606 	/* account preceding periods in which throttling occurred */
5607 	cfs_b->nr_throttled += overrun;
5608 
5609 	/*
5610 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
5611 	 */
5612 	while (throttled && cfs_b->runtime > 0) {
5613 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5614 		/* we can't nest cfs_b->lock while distributing bandwidth */
5615 		distribute_cfs_runtime(cfs_b);
5616 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
5617 
5618 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5619 	}
5620 
5621 	/*
5622 	 * While we are ensured activity in the period following an
5623 	 * unthrottle, this also covers the case in which the new bandwidth is
5624 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
5625 	 * timer to remain active while there are any throttled entities.)
5626 	 */
5627 	cfs_b->idle = 0;
5628 
5629 	return 0;
5630 
5631 out_deactivate:
5632 	return 1;
5633 }
5634 
5635 /* a cfs_rq won't donate quota below this amount */
5636 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5637 /* minimum remaining period time to redistribute slack quota */
5638 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5639 /* how long we wait to gather additional slack before distributing */
5640 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5641 
5642 /*
5643  * Are we near the end of the current quota period?
5644  *
5645  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5646  * hrtimer base being cleared by hrtimer_start. In the case of
5647  * migrate_hrtimers, base is never cleared, so we are fine.
5648  */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)5649 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5650 {
5651 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5652 	s64 remaining;
5653 
5654 	/* if the call-back is running a quota refresh is already occurring */
5655 	if (hrtimer_callback_running(refresh_timer))
5656 		return 1;
5657 
5658 	/* is a quota refresh about to occur? */
5659 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5660 	if (remaining < (s64)min_expire)
5661 		return 1;
5662 
5663 	return 0;
5664 }
5665 
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)5666 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5667 {
5668 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5669 
5670 	/* if there's a quota refresh soon don't bother with slack */
5671 	if (runtime_refresh_within(cfs_b, min_left))
5672 		return;
5673 
5674 	/* don't push forwards an existing deferred unthrottle */
5675 	if (cfs_b->slack_started)
5676 		return;
5677 	cfs_b->slack_started = true;
5678 
5679 	hrtimer_start(&cfs_b->slack_timer,
5680 			ns_to_ktime(cfs_bandwidth_slack_period),
5681 			HRTIMER_MODE_REL);
5682 }
5683 
5684 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5685 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5686 {
5687 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5688 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5689 
5690 	if (slack_runtime <= 0)
5691 		return;
5692 
5693 	raw_spin_lock(&cfs_b->lock);
5694 	if (cfs_b->quota != RUNTIME_INF) {
5695 		cfs_b->runtime += slack_runtime;
5696 
5697 		/* we are under rq->lock, defer unthrottling using a timer */
5698 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5699 		    !list_empty(&cfs_b->throttled_cfs_rq))
5700 			start_cfs_slack_bandwidth(cfs_b);
5701 	}
5702 	raw_spin_unlock(&cfs_b->lock);
5703 
5704 	/* even if it's not valid for return we don't want to try again */
5705 	cfs_rq->runtime_remaining -= slack_runtime;
5706 }
5707 
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5708 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5709 {
5710 	if (!cfs_bandwidth_used())
5711 		return;
5712 
5713 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5714 		return;
5715 
5716 	__return_cfs_rq_runtime(cfs_rq);
5717 }
5718 
5719 /*
5720  * This is done with a timer (instead of inline with bandwidth return) since
5721  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5722  */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)5723 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5724 {
5725 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5726 	unsigned long flags;
5727 
5728 	/* confirm we're still not at a refresh boundary */
5729 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5730 	cfs_b->slack_started = false;
5731 
5732 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5733 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5734 		return;
5735 	}
5736 
5737 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5738 		runtime = cfs_b->runtime;
5739 
5740 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5741 
5742 	if (!runtime)
5743 		return;
5744 
5745 	distribute_cfs_runtime(cfs_b);
5746 }
5747 
5748 /*
5749  * When a group wakes up we want to make sure that its quota is not already
5750  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5751  * runtime as update_curr() throttling can not trigger until it's on-rq.
5752  */
check_enqueue_throttle(struct cfs_rq * cfs_rq)5753 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5754 {
5755 	if (!cfs_bandwidth_used())
5756 		return;
5757 
5758 	/* an active group must be handled by the update_curr()->put() path */
5759 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5760 		return;
5761 
5762 	/* ensure the group is not already throttled */
5763 	if (cfs_rq_throttled(cfs_rq))
5764 		return;
5765 
5766 	/* update runtime allocation */
5767 	account_cfs_rq_runtime(cfs_rq, 0);
5768 	if (cfs_rq->runtime_remaining <= 0)
5769 		throttle_cfs_rq(cfs_rq);
5770 }
5771 
sync_throttle(struct task_group * tg,int cpu)5772 static void sync_throttle(struct task_group *tg, int cpu)
5773 {
5774 	struct cfs_rq *pcfs_rq, *cfs_rq;
5775 
5776 	if (!cfs_bandwidth_used())
5777 		return;
5778 
5779 	if (!tg->parent)
5780 		return;
5781 
5782 	cfs_rq = tg->cfs_rq[cpu];
5783 	pcfs_rq = tg->parent->cfs_rq[cpu];
5784 
5785 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5786 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
5787 }
5788 
5789 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)5790 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5791 {
5792 	if (!cfs_bandwidth_used())
5793 		return false;
5794 
5795 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5796 		return false;
5797 
5798 	/*
5799 	 * it's possible for a throttled entity to be forced into a running
5800 	 * state (e.g. set_curr_task), in this case we're finished.
5801 	 */
5802 	if (cfs_rq_throttled(cfs_rq))
5803 		return true;
5804 
5805 	return throttle_cfs_rq(cfs_rq);
5806 }
5807 
sched_cfs_slack_timer(struct hrtimer * timer)5808 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5809 {
5810 	struct cfs_bandwidth *cfs_b =
5811 		container_of(timer, struct cfs_bandwidth, slack_timer);
5812 
5813 	do_sched_cfs_slack_timer(cfs_b);
5814 
5815 	return HRTIMER_NORESTART;
5816 }
5817 
5818 extern const u64 max_cfs_quota_period;
5819 
sched_cfs_period_timer(struct hrtimer * timer)5820 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5821 {
5822 	struct cfs_bandwidth *cfs_b =
5823 		container_of(timer, struct cfs_bandwidth, period_timer);
5824 	unsigned long flags;
5825 	int overrun;
5826 	int idle = 0;
5827 	int count = 0;
5828 
5829 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5830 	for (;;) {
5831 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5832 		if (!overrun)
5833 			break;
5834 
5835 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5836 
5837 		if (++count > 3) {
5838 			u64 new, old = ktime_to_ns(cfs_b->period);
5839 
5840 			/*
5841 			 * Grow period by a factor of 2 to avoid losing precision.
5842 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5843 			 * to fail.
5844 			 */
5845 			new = old * 2;
5846 			if (new < max_cfs_quota_period) {
5847 				cfs_b->period = ns_to_ktime(new);
5848 				cfs_b->quota *= 2;
5849 				cfs_b->burst *= 2;
5850 
5851 				pr_warn_ratelimited(
5852 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5853 					smp_processor_id(),
5854 					div_u64(new, NSEC_PER_USEC),
5855 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5856 			} else {
5857 				pr_warn_ratelimited(
5858 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5859 					smp_processor_id(),
5860 					div_u64(old, NSEC_PER_USEC),
5861 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5862 			}
5863 
5864 			/* reset count so we don't come right back in here */
5865 			count = 0;
5866 		}
5867 	}
5868 	if (idle)
5869 		cfs_b->period_active = 0;
5870 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5871 
5872 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5873 }
5874 
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5875 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5876 {
5877 	raw_spin_lock_init(&cfs_b->lock);
5878 	cfs_b->runtime = 0;
5879 	cfs_b->quota = RUNTIME_INF;
5880 	cfs_b->period = ns_to_ktime(default_cfs_period());
5881 	cfs_b->burst = 0;
5882 
5883 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5884 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5885 	cfs_b->period_timer.function = sched_cfs_period_timer;
5886 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5887 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5888 	cfs_b->slack_started = false;
5889 }
5890 
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)5891 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5892 {
5893 	cfs_rq->runtime_enabled = 0;
5894 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5895 }
5896 
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5897 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5898 {
5899 	lockdep_assert_held(&cfs_b->lock);
5900 
5901 	if (cfs_b->period_active)
5902 		return;
5903 
5904 	cfs_b->period_active = 1;
5905 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5906 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5907 }
5908 
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5909 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5910 {
5911 	/* init_cfs_bandwidth() was not called */
5912 	if (!cfs_b->throttled_cfs_rq.next)
5913 		return;
5914 
5915 	hrtimer_cancel(&cfs_b->period_timer);
5916 	hrtimer_cancel(&cfs_b->slack_timer);
5917 }
5918 
5919 /*
5920  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5921  *
5922  * The race is harmless, since modifying bandwidth settings of unhooked group
5923  * bits doesn't do much.
5924  */
5925 
5926 /* cpu online callback */
update_runtime_enabled(struct rq * rq)5927 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5928 {
5929 	struct task_group *tg;
5930 
5931 	lockdep_assert_rq_held(rq);
5932 
5933 	rcu_read_lock();
5934 	list_for_each_entry_rcu(tg, &task_groups, list) {
5935 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5936 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5937 
5938 		raw_spin_lock(&cfs_b->lock);
5939 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5940 		raw_spin_unlock(&cfs_b->lock);
5941 	}
5942 	rcu_read_unlock();
5943 }
5944 
5945 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)5946 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5947 {
5948 	struct task_group *tg;
5949 
5950 	lockdep_assert_rq_held(rq);
5951 
5952 	rcu_read_lock();
5953 	list_for_each_entry_rcu(tg, &task_groups, list) {
5954 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5955 
5956 		if (!cfs_rq->runtime_enabled)
5957 			continue;
5958 
5959 		/*
5960 		 * clock_task is not advancing so we just need to make sure
5961 		 * there's some valid quota amount
5962 		 */
5963 		cfs_rq->runtime_remaining = 1;
5964 		/*
5965 		 * Offline rq is schedulable till CPU is completely disabled
5966 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5967 		 */
5968 		cfs_rq->runtime_enabled = 0;
5969 
5970 		if (cfs_rq_throttled(cfs_rq))
5971 			unthrottle_cfs_rq(cfs_rq);
5972 	}
5973 	rcu_read_unlock();
5974 }
5975 
5976 #else /* CONFIG_CFS_BANDWIDTH */
5977 
cfs_bandwidth_used(void)5978 static inline bool cfs_bandwidth_used(void)
5979 {
5980 	return false;
5981 }
5982 
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5983 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)5984 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)5985 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)5986 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5987 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5988 
cfs_rq_throttled(struct cfs_rq * cfs_rq)5989 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5990 {
5991 	return 0;
5992 }
5993 
throttled_hierarchy(struct cfs_rq * cfs_rq)5994 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5995 {
5996 	return 0;
5997 }
5998 
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5999 static inline int throttled_lb_pair(struct task_group *tg,
6000 				    int src_cpu, int dest_cpu)
6001 {
6002 	return 0;
6003 }
6004 
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6005 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6006 
6007 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6008 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6009 #endif
6010 
tg_cfs_bandwidth(struct task_group * tg)6011 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6012 {
6013 	return NULL;
6014 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6015 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)6016 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)6017 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6018 
6019 #endif /* CONFIG_CFS_BANDWIDTH */
6020 
6021 /**************************************************
6022  * CFS operations on tasks:
6023  */
6024 
6025 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)6026 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6027 {
6028 	struct sched_entity *se = &p->se;
6029 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
6030 
6031 	SCHED_WARN_ON(task_rq(p) != rq);
6032 
6033 	if (rq->cfs.h_nr_running > 1) {
6034 		u64 slice = sched_slice(cfs_rq, se);
6035 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6036 		s64 delta = slice - ran;
6037 
6038 		if (delta < 0) {
6039 			if (task_current(rq, p))
6040 				resched_curr(rq);
6041 			return;
6042 		}
6043 		hrtick_start(rq, delta);
6044 	}
6045 }
6046 
6047 /*
6048  * called from enqueue/dequeue and updates the hrtick when the
6049  * current task is from our class and nr_running is low enough
6050  * to matter.
6051  */
hrtick_update(struct rq * rq)6052 static void hrtick_update(struct rq *rq)
6053 {
6054 	struct task_struct *curr = rq->curr;
6055 
6056 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6057 		return;
6058 
6059 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
6060 		hrtick_start_fair(rq, curr);
6061 }
6062 #else /* !CONFIG_SCHED_HRTICK */
6063 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)6064 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6065 {
6066 }
6067 
hrtick_update(struct rq * rq)6068 static inline void hrtick_update(struct rq *rq)
6069 {
6070 }
6071 #endif
6072 
6073 #ifdef CONFIG_SMP
cpu_overutilized(int cpu)6074 static inline bool cpu_overutilized(int cpu)
6075 {
6076 	unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6077 	unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6078 	int overutilized = -1;
6079 
6080 	trace_android_rvh_cpu_overutilized(cpu, &overutilized);
6081 	if (overutilized != -1)
6082 		return overutilized;
6083 
6084 	/* Return true only if the utilization doesn't fit CPU's capacity */
6085 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6086 }
6087 
update_overutilized_status(struct rq * rq)6088 static inline void update_overutilized_status(struct rq *rq)
6089 {
6090 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
6091 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
6092 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
6093 	}
6094 }
6095 #else
update_overutilized_status(struct rq * rq)6096 static inline void update_overutilized_status(struct rq *rq) { }
6097 #endif
6098 
6099 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)6100 static int sched_idle_rq(struct rq *rq)
6101 {
6102 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6103 			rq->nr_running);
6104 }
6105 
6106 /*
6107  * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
6108  * of idle_nr_running, which does not consider idle descendants of normal
6109  * entities.
6110  */
sched_idle_cfs_rq(struct cfs_rq * cfs_rq)6111 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
6112 {
6113 	return cfs_rq->nr_running &&
6114 		cfs_rq->nr_running == cfs_rq->idle_nr_running;
6115 }
6116 
6117 #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)6118 static int sched_idle_cpu(int cpu)
6119 {
6120 	return sched_idle_rq(cpu_rq(cpu));
6121 }
6122 #endif
6123 
6124 /*
6125  * The enqueue_task method is called before nr_running is
6126  * increased. Here we update the fair scheduling stats and
6127  * then put the task into the rbtree:
6128  */
6129 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)6130 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6131 {
6132 	struct cfs_rq *cfs_rq;
6133 	struct sched_entity *se = &p->se;
6134 	int idle_h_nr_running = task_has_idle_policy(p);
6135 	int task_new = !(flags & ENQUEUE_WAKEUP);
6136 	int should_iowait_boost;
6137 
6138 	/*
6139 	 * The code below (indirectly) updates schedutil which looks at
6140 	 * the cfs_rq utilization to select a frequency.
6141 	 * Let's add the task's estimated utilization to the cfs_rq's
6142 	 * estimated utilization, before we update schedutil.
6143 	 */
6144 	util_est_enqueue(&rq->cfs, p);
6145 
6146 	/*
6147 	 * If in_iowait is set, the code below may not trigger any cpufreq
6148 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6149 	 * passed.
6150 	 */
6151 	should_iowait_boost = p->in_iowait;
6152 	trace_android_rvh_set_iowait(p, rq, &should_iowait_boost);
6153 	if (should_iowait_boost)
6154 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6155 
6156 	for_each_sched_entity(se) {
6157 		if (se->on_rq)
6158 			break;
6159 		cfs_rq = cfs_rq_of(se);
6160 		enqueue_entity(cfs_rq, se, flags);
6161 
6162 		cfs_rq->h_nr_running++;
6163 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6164 
6165 		if (cfs_rq_is_idle(cfs_rq))
6166 			idle_h_nr_running = 1;
6167 
6168 		/* end evaluation on encountering a throttled cfs_rq */
6169 		if (cfs_rq_throttled(cfs_rq))
6170 			goto enqueue_throttle;
6171 
6172 		flags = ENQUEUE_WAKEUP;
6173 	}
6174 
6175 	trace_android_rvh_enqueue_task_fair(rq, p, flags);
6176 	for_each_sched_entity(se) {
6177 		cfs_rq = cfs_rq_of(se);
6178 
6179 		update_load_avg(cfs_rq, se, UPDATE_TG);
6180 		se_update_runnable(se);
6181 		update_cfs_group(se);
6182 
6183 		cfs_rq->h_nr_running++;
6184 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6185 
6186 		if (cfs_rq_is_idle(cfs_rq))
6187 			idle_h_nr_running = 1;
6188 
6189 		/* end evaluation on encountering a throttled cfs_rq */
6190 		if (cfs_rq_throttled(cfs_rq))
6191 			goto enqueue_throttle;
6192 	}
6193 
6194 	/* At this point se is NULL and we are at root level*/
6195 	add_nr_running(rq, 1);
6196 
6197 	/*
6198 	 * Since new tasks are assigned an initial util_avg equal to
6199 	 * half of the spare capacity of their CPU, tiny tasks have the
6200 	 * ability to cross the overutilized threshold, which will
6201 	 * result in the load balancer ruining all the task placement
6202 	 * done by EAS. As a way to mitigate that effect, do not account
6203 	 * for the first enqueue operation of new tasks during the
6204 	 * overutilized flag detection.
6205 	 *
6206 	 * A better way of solving this problem would be to wait for
6207 	 * the PELT signals of tasks to converge before taking them
6208 	 * into account, but that is not straightforward to implement,
6209 	 * and the following generally works well enough in practice.
6210 	 */
6211 	if (!task_new)
6212 		update_overutilized_status(rq);
6213 
6214 enqueue_throttle:
6215 	assert_list_leaf_cfs_rq(rq);
6216 
6217 	hrtick_update(rq);
6218 }
6219 
6220 static void set_next_buddy(struct sched_entity *se);
6221 
6222 /*
6223  * The dequeue_task method is called before nr_running is
6224  * decreased. We remove the task from the rbtree and
6225  * update the fair scheduling stats:
6226  */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)6227 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6228 {
6229 	struct cfs_rq *cfs_rq;
6230 	struct sched_entity *se = &p->se;
6231 	int task_sleep = flags & DEQUEUE_SLEEP;
6232 	int idle_h_nr_running = task_has_idle_policy(p);
6233 	bool was_sched_idle = sched_idle_rq(rq);
6234 
6235 	util_est_dequeue(&rq->cfs, p);
6236 
6237 	for_each_sched_entity(se) {
6238 		cfs_rq = cfs_rq_of(se);
6239 		dequeue_entity(cfs_rq, se, flags);
6240 
6241 		cfs_rq->h_nr_running--;
6242 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6243 
6244 		if (cfs_rq_is_idle(cfs_rq))
6245 			idle_h_nr_running = 1;
6246 
6247 		/* end evaluation on encountering a throttled cfs_rq */
6248 		if (cfs_rq_throttled(cfs_rq))
6249 			goto dequeue_throttle;
6250 
6251 		/* Don't dequeue parent if it has other entities besides us */
6252 		if (cfs_rq->load.weight) {
6253 			/* Avoid re-evaluating load for this entity: */
6254 			se = parent_entity(se);
6255 			/*
6256 			 * Bias pick_next to pick a task from this cfs_rq, as
6257 			 * p is sleeping when it is within its sched_slice.
6258 			 */
6259 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6260 				set_next_buddy(se);
6261 			break;
6262 		}
6263 		flags |= DEQUEUE_SLEEP;
6264 	}
6265 
6266 	trace_android_rvh_dequeue_task_fair(rq, p, flags);
6267 	for_each_sched_entity(se) {
6268 		cfs_rq = cfs_rq_of(se);
6269 
6270 		update_load_avg(cfs_rq, se, UPDATE_TG);
6271 		se_update_runnable(se);
6272 		update_cfs_group(se);
6273 
6274 		cfs_rq->h_nr_running--;
6275 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6276 
6277 		if (cfs_rq_is_idle(cfs_rq))
6278 			idle_h_nr_running = 1;
6279 
6280 		/* end evaluation on encountering a throttled cfs_rq */
6281 		if (cfs_rq_throttled(cfs_rq))
6282 			goto dequeue_throttle;
6283 
6284 	}
6285 
6286 	/* At this point se is NULL and we are at root level*/
6287 	sub_nr_running(rq, 1);
6288 
6289 	/* balance early to pull high priority tasks */
6290 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6291 		rq->next_balance = jiffies;
6292 
6293 dequeue_throttle:
6294 	util_est_update(&rq->cfs, p, task_sleep);
6295 	hrtick_update(rq);
6296 }
6297 
6298 #ifdef CONFIG_SMP
6299 
6300 /* Working cpumask for: load_balance, load_balance_newidle. */
6301 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6302 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6303 
6304 #ifdef CONFIG_NO_HZ_COMMON
6305 
6306 static struct {
6307 	cpumask_var_t idle_cpus_mask;
6308 	atomic_t nr_cpus;
6309 	int has_blocked;		/* Idle CPUS has blocked load */
6310 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
6311 	unsigned long next_balance;     /* in jiffy units */
6312 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
6313 } nohz ____cacheline_aligned;
6314 
6315 #endif /* CONFIG_NO_HZ_COMMON */
6316 
cpu_load(struct rq * rq)6317 static unsigned long cpu_load(struct rq *rq)
6318 {
6319 	return cfs_rq_load_avg(&rq->cfs);
6320 }
6321 
6322 /*
6323  * cpu_load_without - compute CPU load without any contributions from *p
6324  * @cpu: the CPU which load is requested
6325  * @p: the task which load should be discounted
6326  *
6327  * The load of a CPU is defined by the load of tasks currently enqueued on that
6328  * CPU as well as tasks which are currently sleeping after an execution on that
6329  * CPU.
6330  *
6331  * This method returns the load of the specified CPU by discounting the load of
6332  * the specified task, whenever the task is currently contributing to the CPU
6333  * load.
6334  */
cpu_load_without(struct rq * rq,struct task_struct * p)6335 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6336 {
6337 	struct cfs_rq *cfs_rq;
6338 	unsigned int load;
6339 
6340 	/* Task has no contribution or is new */
6341 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6342 		return cpu_load(rq);
6343 
6344 	cfs_rq = &rq->cfs;
6345 	load = READ_ONCE(cfs_rq->avg.load_avg);
6346 
6347 	/* Discount task's util from CPU's util */
6348 	lsub_positive(&load, task_h_load(p));
6349 
6350 	return load;
6351 }
6352 
cpu_runnable(struct rq * rq)6353 static unsigned long cpu_runnable(struct rq *rq)
6354 {
6355 	return cfs_rq_runnable_avg(&rq->cfs);
6356 }
6357 
cpu_runnable_without(struct rq * rq,struct task_struct * p)6358 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6359 {
6360 	struct cfs_rq *cfs_rq;
6361 	unsigned int runnable;
6362 
6363 	/* Task has no contribution or is new */
6364 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6365 		return cpu_runnable(rq);
6366 
6367 	cfs_rq = &rq->cfs;
6368 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6369 
6370 	/* Discount task's runnable from CPU's runnable */
6371 	lsub_positive(&runnable, p->se.avg.runnable_avg);
6372 
6373 	return runnable;
6374 }
6375 
capacity_of(int cpu)6376 static unsigned long capacity_of(int cpu)
6377 {
6378 	return cpu_rq(cpu)->cpu_capacity;
6379 }
6380 
record_wakee(struct task_struct * p)6381 static void record_wakee(struct task_struct *p)
6382 {
6383 	/*
6384 	 * Only decay a single time; tasks that have less then 1 wakeup per
6385 	 * jiffy will not have built up many flips.
6386 	 */
6387 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6388 		current->wakee_flips >>= 1;
6389 		current->wakee_flip_decay_ts = jiffies;
6390 	}
6391 
6392 	if (current->last_wakee != p) {
6393 		current->last_wakee = p;
6394 		current->wakee_flips++;
6395 	}
6396 }
6397 
6398 /*
6399  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6400  *
6401  * A waker of many should wake a different task than the one last awakened
6402  * at a frequency roughly N times higher than one of its wakees.
6403  *
6404  * In order to determine whether we should let the load spread vs consolidating
6405  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6406  * partner, and a factor of lls_size higher frequency in the other.
6407  *
6408  * With both conditions met, we can be relatively sure that the relationship is
6409  * non-monogamous, with partner count exceeding socket size.
6410  *
6411  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6412  * whatever is irrelevant, spread criteria is apparent partner count exceeds
6413  * socket size.
6414  */
wake_wide(struct task_struct * p)6415 static int wake_wide(struct task_struct *p)
6416 {
6417 	unsigned int master = current->wakee_flips;
6418 	unsigned int slave = p->wakee_flips;
6419 	int factor = __this_cpu_read(sd_llc_size);
6420 
6421 	if (master < slave)
6422 		swap(master, slave);
6423 	if (slave < factor || master < slave * factor)
6424 		return 0;
6425 	return 1;
6426 }
6427 
6428 /*
6429  * The purpose of wake_affine() is to quickly determine on which CPU we can run
6430  * soonest. For the purpose of speed we only consider the waking and previous
6431  * CPU.
6432  *
6433  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
6434  *			cache-affine and is (or	will be) idle.
6435  *
6436  * wake_affine_weight() - considers the weight to reflect the average
6437  *			  scheduling latency of the CPUs. This seems to work
6438  *			  for the overloaded case.
6439  */
6440 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)6441 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
6442 {
6443 	/*
6444 	 * If this_cpu is idle, it implies the wakeup is from interrupt
6445 	 * context. Only allow the move if cache is shared. Otherwise an
6446 	 * interrupt intensive workload could force all tasks onto one
6447 	 * node depending on the IO topology or IRQ affinity settings.
6448 	 *
6449 	 * If the prev_cpu is idle and cache affine then avoid a migration.
6450 	 * There is no guarantee that the cache hot data from an interrupt
6451 	 * is more important than cache hot data on the prev_cpu and from
6452 	 * a cpufreq perspective, it's better to have higher utilisation
6453 	 * on one CPU.
6454 	 */
6455 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
6456 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
6457 
6458 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
6459 		return this_cpu;
6460 
6461 	if (available_idle_cpu(prev_cpu))
6462 		return prev_cpu;
6463 
6464 	return nr_cpumask_bits;
6465 }
6466 
6467 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)6468 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6469 		   int this_cpu, int prev_cpu, int sync)
6470 {
6471 	s64 this_eff_load, prev_eff_load;
6472 	unsigned long task_load;
6473 
6474 	this_eff_load = cpu_load(cpu_rq(this_cpu));
6475 
6476 	if (sync) {
6477 		unsigned long current_load = task_h_load(current);
6478 
6479 		if (current_load > this_eff_load)
6480 			return this_cpu;
6481 
6482 		this_eff_load -= current_load;
6483 	}
6484 
6485 	task_load = task_h_load(p);
6486 
6487 	this_eff_load += task_load;
6488 	if (sched_feat(WA_BIAS))
6489 		this_eff_load *= 100;
6490 	this_eff_load *= capacity_of(prev_cpu);
6491 
6492 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
6493 	prev_eff_load -= task_load;
6494 	if (sched_feat(WA_BIAS))
6495 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6496 	prev_eff_load *= capacity_of(this_cpu);
6497 
6498 	/*
6499 	 * If sync, adjust the weight of prev_eff_load such that if
6500 	 * prev_eff == this_eff that select_idle_sibling() will consider
6501 	 * stacking the wakee on top of the waker if no other CPU is
6502 	 * idle.
6503 	 */
6504 	if (sync)
6505 		prev_eff_load += 1;
6506 
6507 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6508 }
6509 
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)6510 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
6511 		       int this_cpu, int prev_cpu, int sync)
6512 {
6513 	int target = nr_cpumask_bits;
6514 
6515 	if (sched_feat(WA_IDLE))
6516 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
6517 
6518 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6519 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6520 
6521 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
6522 	if (target != this_cpu)
6523 		return prev_cpu;
6524 
6525 	schedstat_inc(sd->ttwu_move_affine);
6526 	schedstat_inc(p->stats.nr_wakeups_affine);
6527 	return target;
6528 }
6529 
6530 static struct sched_group *
6531 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6532 
6533 /*
6534  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6535  */
6536 static int
find_idlest_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)6537 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6538 {
6539 	unsigned long load, min_load = ULONG_MAX;
6540 	unsigned int min_exit_latency = UINT_MAX;
6541 	u64 latest_idle_timestamp = 0;
6542 	int least_loaded_cpu = this_cpu;
6543 	int shallowest_idle_cpu = -1;
6544 	int i;
6545 
6546 	/* Check if we have any choice: */
6547 	if (group->group_weight == 1)
6548 		return cpumask_first(sched_group_span(group));
6549 
6550 	/* Traverse only the allowed CPUs */
6551 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6552 		struct rq *rq = cpu_rq(i);
6553 
6554 		if (!sched_core_cookie_match(rq, p))
6555 			continue;
6556 
6557 		if (sched_idle_cpu(i))
6558 			return i;
6559 
6560 		if (available_idle_cpu(i)) {
6561 			struct cpuidle_state *idle = idle_get_state(rq);
6562 			if (idle && idle->exit_latency < min_exit_latency) {
6563 				/*
6564 				 * We give priority to a CPU whose idle state
6565 				 * has the smallest exit latency irrespective
6566 				 * of any idle timestamp.
6567 				 */
6568 				min_exit_latency = idle->exit_latency;
6569 				latest_idle_timestamp = rq->idle_stamp;
6570 				shallowest_idle_cpu = i;
6571 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
6572 				   rq->idle_stamp > latest_idle_timestamp) {
6573 				/*
6574 				 * If equal or no active idle state, then
6575 				 * the most recently idled CPU might have
6576 				 * a warmer cache.
6577 				 */
6578 				latest_idle_timestamp = rq->idle_stamp;
6579 				shallowest_idle_cpu = i;
6580 			}
6581 		} else if (shallowest_idle_cpu == -1) {
6582 			load = cpu_load(cpu_rq(i));
6583 			if (load < min_load) {
6584 				min_load = load;
6585 				least_loaded_cpu = i;
6586 			}
6587 		}
6588 	}
6589 
6590 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6591 }
6592 
find_idlest_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)6593 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6594 				  int cpu, int prev_cpu, int sd_flag)
6595 {
6596 	int new_cpu = cpu;
6597 
6598 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6599 		return prev_cpu;
6600 
6601 	/*
6602 	 * We need task's util for cpu_util_without, sync it up to
6603 	 * prev_cpu's last_update_time.
6604 	 */
6605 	if (!(sd_flag & SD_BALANCE_FORK))
6606 		sync_entity_load_avg(&p->se);
6607 
6608 	while (sd) {
6609 		struct sched_group *group;
6610 		struct sched_domain *tmp;
6611 		int weight;
6612 
6613 		if (!(sd->flags & sd_flag)) {
6614 			sd = sd->child;
6615 			continue;
6616 		}
6617 
6618 		group = find_idlest_group(sd, p, cpu);
6619 		if (!group) {
6620 			sd = sd->child;
6621 			continue;
6622 		}
6623 
6624 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6625 		if (new_cpu == cpu) {
6626 			/* Now try balancing at a lower domain level of 'cpu': */
6627 			sd = sd->child;
6628 			continue;
6629 		}
6630 
6631 		/* Now try balancing at a lower domain level of 'new_cpu': */
6632 		cpu = new_cpu;
6633 		weight = sd->span_weight;
6634 		sd = NULL;
6635 		for_each_domain(cpu, tmp) {
6636 			if (weight <= tmp->span_weight)
6637 				break;
6638 			if (tmp->flags & sd_flag)
6639 				sd = tmp;
6640 		}
6641 	}
6642 
6643 	return new_cpu;
6644 }
6645 
__select_idle_cpu(int cpu,struct task_struct * p)6646 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6647 {
6648 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6649 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
6650 		return cpu;
6651 
6652 	return -1;
6653 }
6654 
6655 #ifdef CONFIG_SCHED_SMT
6656 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6657 EXPORT_SYMBOL_GPL(sched_smt_present);
6658 
set_idle_cores(int cpu,int val)6659 static inline void set_idle_cores(int cpu, int val)
6660 {
6661 	struct sched_domain_shared *sds;
6662 
6663 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6664 	if (sds)
6665 		WRITE_ONCE(sds->has_idle_cores, val);
6666 }
6667 
test_idle_cores(int cpu)6668 static inline bool test_idle_cores(int cpu)
6669 {
6670 	struct sched_domain_shared *sds;
6671 
6672 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6673 	if (sds)
6674 		return READ_ONCE(sds->has_idle_cores);
6675 
6676 	return false;
6677 }
6678 
6679 /*
6680  * Scans the local SMT mask to see if the entire core is idle, and records this
6681  * information in sd_llc_shared->has_idle_cores.
6682  *
6683  * Since SMT siblings share all cache levels, inspecting this limited remote
6684  * state should be fairly cheap.
6685  */
__update_idle_core(struct rq * rq)6686 void __update_idle_core(struct rq *rq)
6687 {
6688 	int core = cpu_of(rq);
6689 	int cpu;
6690 
6691 	rcu_read_lock();
6692 	if (test_idle_cores(core))
6693 		goto unlock;
6694 
6695 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6696 		if (cpu == core)
6697 			continue;
6698 
6699 		if (!available_idle_cpu(cpu))
6700 			goto unlock;
6701 	}
6702 
6703 	set_idle_cores(core, 1);
6704 unlock:
6705 	rcu_read_unlock();
6706 }
6707 
6708 /*
6709  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6710  * there are no idle cores left in the system; tracked through
6711  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6712  */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)6713 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6714 {
6715 	bool idle = true;
6716 	int cpu;
6717 
6718 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6719 		if (!available_idle_cpu(cpu)) {
6720 			idle = false;
6721 			if (*idle_cpu == -1) {
6722 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6723 					*idle_cpu = cpu;
6724 					break;
6725 				}
6726 				continue;
6727 			}
6728 			break;
6729 		}
6730 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6731 			*idle_cpu = cpu;
6732 	}
6733 
6734 	if (idle)
6735 		return core;
6736 
6737 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6738 	return -1;
6739 }
6740 
6741 /*
6742  * Scan the local SMT mask for idle CPUs.
6743  */
select_idle_smt(struct task_struct * p,int target)6744 static int select_idle_smt(struct task_struct *p, int target)
6745 {
6746 	int cpu;
6747 
6748 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
6749 		if (cpu == target)
6750 			continue;
6751 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6752 			return cpu;
6753 	}
6754 
6755 	return -1;
6756 }
6757 
6758 #else /* CONFIG_SCHED_SMT */
6759 
set_idle_cores(int cpu,int val)6760 static inline void set_idle_cores(int cpu, int val)
6761 {
6762 }
6763 
test_idle_cores(int cpu)6764 static inline bool test_idle_cores(int cpu)
6765 {
6766 	return false;
6767 }
6768 
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)6769 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6770 {
6771 	return __select_idle_cpu(core, p);
6772 }
6773 
select_idle_smt(struct task_struct * p,int target)6774 static inline int select_idle_smt(struct task_struct *p, int target)
6775 {
6776 	return -1;
6777 }
6778 
6779 #endif /* CONFIG_SCHED_SMT */
6780 
6781 /*
6782  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6783  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6784  * average idle time for this rq (as found in rq->avg_idle).
6785  */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)6786 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6787 {
6788 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
6789 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
6790 	struct sched_domain_shared *sd_share;
6791 	struct rq *this_rq = this_rq();
6792 	int this = smp_processor_id();
6793 	struct sched_domain *this_sd = NULL;
6794 	u64 time = 0;
6795 
6796 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6797 
6798 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6799 		u64 avg_cost, avg_idle, span_avg;
6800 		unsigned long now = jiffies;
6801 
6802 		this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6803 		if (!this_sd)
6804 			return -1;
6805 
6806 		/*
6807 		 * If we're busy, the assumption that the last idle period
6808 		 * predicts the future is flawed; age away the remaining
6809 		 * predicted idle time.
6810 		 */
6811 		if (unlikely(this_rq->wake_stamp < now)) {
6812 			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6813 				this_rq->wake_stamp++;
6814 				this_rq->wake_avg_idle >>= 1;
6815 			}
6816 		}
6817 
6818 		avg_idle = this_rq->wake_avg_idle;
6819 		avg_cost = this_sd->avg_scan_cost + 1;
6820 
6821 		span_avg = sd->span_weight * avg_idle;
6822 		if (span_avg > 4*avg_cost)
6823 			nr = div_u64(span_avg, avg_cost);
6824 		else
6825 			nr = 4;
6826 
6827 		time = cpu_clock(this);
6828 	}
6829 
6830 	if (sched_feat(SIS_UTIL)) {
6831 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
6832 		if (sd_share) {
6833 			/* because !--nr is the condition to stop scan */
6834 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
6835 			/* overloaded LLC is unlikely to have idle cpu/core */
6836 			if (nr == 1)
6837 				return -1;
6838 		}
6839 	}
6840 
6841 	for_each_cpu_wrap(cpu, cpus, target + 1) {
6842 		if (has_idle_core) {
6843 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
6844 			if ((unsigned int)i < nr_cpumask_bits)
6845 				return i;
6846 
6847 		} else {
6848 			if (!--nr)
6849 				return -1;
6850 			idle_cpu = __select_idle_cpu(cpu, p);
6851 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
6852 				break;
6853 		}
6854 	}
6855 
6856 	if (has_idle_core)
6857 		set_idle_cores(target, false);
6858 
6859 	if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) {
6860 		time = cpu_clock(this) - time;
6861 
6862 		/*
6863 		 * Account for the scan cost of wakeups against the average
6864 		 * idle time.
6865 		 */
6866 		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6867 
6868 		update_avg(&this_sd->avg_scan_cost, time);
6869 	}
6870 
6871 	return idle_cpu;
6872 }
6873 
6874 /*
6875  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6876  * the task fits. If no CPU is big enough, but there are idle ones, try to
6877  * maximize capacity.
6878  */
6879 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)6880 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6881 {
6882 	unsigned long task_util, util_min, util_max, best_cap = 0;
6883 	int fits, best_fits = 0;
6884 	int cpu, best_cpu = -1;
6885 	struct cpumask *cpus;
6886 
6887 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
6888 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6889 
6890 	task_util = task_util_est(p);
6891 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
6892 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
6893 
6894 	for_each_cpu_wrap(cpu, cpus, target) {
6895 		unsigned long cpu_cap = capacity_of(cpu);
6896 
6897 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6898 			continue;
6899 
6900 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
6901 
6902 		/* This CPU fits with all requirements */
6903 		if (fits > 0)
6904 			return cpu;
6905 		/*
6906 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
6907 		 * Look for the CPU with best capacity.
6908 		 */
6909 		else if (fits < 0)
6910 			cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu));
6911 
6912 		/*
6913 		 * First, select CPU which fits better (-1 being better than 0).
6914 		 * Then, select the one with best capacity at same level.
6915 		 */
6916 		if ((fits < best_fits) ||
6917 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
6918 			best_cap = cpu_cap;
6919 			best_cpu = cpu;
6920 			best_fits = fits;
6921 		}
6922 	}
6923 
6924 	return best_cpu;
6925 }
6926 
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)6927 static inline bool asym_fits_cpu(unsigned long util,
6928 				 unsigned long util_min,
6929 				 unsigned long util_max,
6930 				 int cpu)
6931 {
6932 	if (sched_asym_cpucap_active())
6933 		/*
6934 		 * Return true only if the cpu fully fits the task requirements
6935 		 * which include the utilization and the performance hints.
6936 		 */
6937 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
6938 
6939 	return true;
6940 }
6941 
6942 /*
6943  * Try and locate an idle core/thread in the LLC cache domain.
6944  */
select_idle_sibling(struct task_struct * p,int prev,int target)6945 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6946 {
6947 	bool has_idle_core = false;
6948 	struct sched_domain *sd;
6949 	unsigned long task_util, util_min, util_max;
6950 	int i, recent_used_cpu;
6951 
6952 	/*
6953 	 * On asymmetric system, update task utilization because we will check
6954 	 * that the task fits with cpu's capacity.
6955 	 */
6956 	if (sched_asym_cpucap_active()) {
6957 		sync_entity_load_avg(&p->se);
6958 		task_util = task_util_est(p);
6959 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
6960 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
6961 	}
6962 
6963 	/*
6964 	 * per-cpu select_rq_mask usage
6965 	 */
6966 	lockdep_assert_irqs_disabled();
6967 
6968 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6969 	    asym_fits_cpu(task_util, util_min, util_max, target))
6970 		return target;
6971 
6972 	/*
6973 	 * If the previous CPU is cache affine and idle, don't be stupid:
6974 	 */
6975 	if (prev != target && cpus_share_cache(prev, target) &&
6976 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6977 	    asym_fits_cpu(task_util, util_min, util_max, prev))
6978 		return prev;
6979 
6980 	/*
6981 	 * Allow a per-cpu kthread to stack with the wakee if the
6982 	 * kworker thread and the tasks previous CPUs are the same.
6983 	 * The assumption is that the wakee queued work for the
6984 	 * per-cpu kthread that is now complete and the wakeup is
6985 	 * essentially a sync wakeup. An obvious example of this
6986 	 * pattern is IO completions.
6987 	 */
6988 	if (is_per_cpu_kthread(current) &&
6989 	    in_task() &&
6990 	    prev == smp_processor_id() &&
6991 	    this_rq()->nr_running <= 1 &&
6992 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
6993 		return prev;
6994 	}
6995 
6996 	/* Check a recently used CPU as a potential idle candidate: */
6997 	recent_used_cpu = p->recent_used_cpu;
6998 	p->recent_used_cpu = prev;
6999 	if (recent_used_cpu != prev &&
7000 	    recent_used_cpu != target &&
7001 	    cpus_share_cache(recent_used_cpu, target) &&
7002 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7003 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7004 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7005 		return recent_used_cpu;
7006 	}
7007 
7008 	/*
7009 	 * For asymmetric CPU capacity systems, our domain of interest is
7010 	 * sd_asym_cpucapacity rather than sd_llc.
7011 	 */
7012 	if (sched_asym_cpucap_active()) {
7013 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7014 		/*
7015 		 * On an asymmetric CPU capacity system where an exclusive
7016 		 * cpuset defines a symmetric island (i.e. one unique
7017 		 * capacity_orig value through the cpuset), the key will be set
7018 		 * but the CPUs within that cpuset will not have a domain with
7019 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7020 		 * capacity path.
7021 		 */
7022 		if (sd) {
7023 			i = select_idle_capacity(p, sd, target);
7024 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7025 		}
7026 	}
7027 
7028 	sd = rcu_dereference(per_cpu(sd_llc, target));
7029 	if (!sd)
7030 		return target;
7031 
7032 	if (sched_smt_active()) {
7033 		has_idle_core = test_idle_cores(target);
7034 
7035 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7036 			i = select_idle_smt(p, prev);
7037 			if ((unsigned int)i < nr_cpumask_bits)
7038 				return i;
7039 		}
7040 	}
7041 
7042 	i = select_idle_cpu(p, sd, has_idle_core, target);
7043 	if ((unsigned)i < nr_cpumask_bits)
7044 		return i;
7045 
7046 	return target;
7047 }
7048 
7049 /*
7050  * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu
7051  * (@dst_cpu = -1) or migrated to @dst_cpu.
7052  */
cpu_util_next(int cpu,struct task_struct * p,int dst_cpu)7053 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
7054 {
7055 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7056 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7057 
7058 	/*
7059 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7060 	 * contribution. If @p migrates from another CPU to @cpu add its
7061 	 * contribution. In all the other cases @cpu is not impacted by the
7062 	 * migration so its util_avg is already correct.
7063 	 */
7064 	if (task_cpu(p) == cpu && dst_cpu != cpu)
7065 		lsub_positive(&util, task_util(p));
7066 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
7067 		util += task_util(p);
7068 
7069 	if (sched_feat(UTIL_EST)) {
7070 		unsigned long util_est;
7071 
7072 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
7073 
7074 		/*
7075 		 * During wake-up @p isn't enqueued yet and doesn't contribute
7076 		 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
7077 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7078 		 * has been enqueued.
7079 		 *
7080 		 * During exec (@dst_cpu = -1) @p is enqueued and does
7081 		 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
7082 		 * Remove it to "simulate" cpu_util without @p's contribution.
7083 		 *
7084 		 * Despite the task_on_rq_queued(@p) check there is still a
7085 		 * small window for a possible race when an exec
7086 		 * select_task_rq_fair() races with LB's detach_task().
7087 		 *
7088 		 *   detach_task()
7089 		 *     deactivate_task()
7090 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
7091 		 *       -------------------------------- A
7092 		 *       dequeue_task()                    \
7093 		 *         dequeue_task_fair()              + Race Time
7094 		 *           util_est_dequeue()            /
7095 		 *       -------------------------------- B
7096 		 *
7097 		 * The additional check "current == p" is required to further
7098 		 * reduce the race window.
7099 		 */
7100 		if (dst_cpu == cpu)
7101 			util_est += _task_util_est(p);
7102 		else if (unlikely(task_on_rq_queued(p) || current == p))
7103 			lsub_positive(&util_est, _task_util_est(p));
7104 
7105 		util = max(util, util_est);
7106 	}
7107 
7108 	return min(util, capacity_orig_of(cpu));
7109 }
7110 
7111 /*
7112  * cpu_util_without: compute cpu utilization without any contributions from *p
7113  * @cpu: the CPU which utilization is requested
7114  * @p: the task which utilization should be discounted
7115  *
7116  * The utilization of a CPU is defined by the utilization of tasks currently
7117  * enqueued on that CPU as well as tasks which are currently sleeping after an
7118  * execution on that CPU.
7119  *
7120  * This method returns the utilization of the specified CPU by discounting the
7121  * utilization of the specified task, whenever the task is currently
7122  * contributing to the CPU utilization.
7123  */
cpu_util_without(int cpu,struct task_struct * p)7124 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7125 {
7126 	/* Task has no contribution or is new */
7127 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7128 		return cpu_util_cfs(cpu);
7129 
7130 	return cpu_util_next(cpu, p, -1);
7131 }
7132 
7133 /*
7134  * energy_env - Utilization landscape for energy estimation.
7135  * @task_busy_time: Utilization contribution by the task for which we test the
7136  *                  placement. Given by eenv_task_busy_time().
7137  * @pd_busy_time:   Utilization of the whole perf domain without the task
7138  *                  contribution. Given by eenv_pd_busy_time().
7139  * @cpu_cap:        Maximum CPU capacity for the perf domain.
7140  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7141  */
7142 struct energy_env {
7143 	unsigned long task_busy_time;
7144 	unsigned long pd_busy_time;
7145 	unsigned long cpu_cap;
7146 	unsigned long pd_cap;
7147 };
7148 
7149 /*
7150  * Compute the task busy time for compute_energy(). This time cannot be
7151  * injected directly into effective_cpu_util() because of the IRQ scaling.
7152  * The latter only makes sense with the most recent CPUs where the task has
7153  * run.
7154  */
eenv_task_busy_time(struct energy_env * eenv,struct task_struct * p,int prev_cpu)7155 static inline void eenv_task_busy_time(struct energy_env *eenv,
7156 				       struct task_struct *p, int prev_cpu)
7157 {
7158 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7159 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7160 
7161 	if (unlikely(irq >= max_cap))
7162 		busy_time = max_cap;
7163 	else
7164 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7165 
7166 	eenv->task_busy_time = busy_time;
7167 }
7168 
7169 /*
7170  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7171  * utilization for each @pd_cpus, it however doesn't take into account
7172  * clamping since the ratio (utilization / cpu_capacity) is already enough to
7173  * scale the EM reported power consumption at the (eventually clamped)
7174  * cpu_capacity.
7175  *
7176  * The contribution of the task @p for which we want to estimate the
7177  * energy cost is removed (by cpu_util_next()) and must be calculated
7178  * separately (see eenv_task_busy_time). This ensures:
7179  *
7180  *   - A stable PD utilization, no matter which CPU of that PD we want to place
7181  *     the task on.
7182  *
7183  *   - A fair comparison between CPUs as the task contribution (task_util())
7184  *     will always be the same no matter which CPU utilization we rely on
7185  *     (util_avg or util_est).
7186  *
7187  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7188  * exceed @eenv->pd_cap.
7189  */
eenv_pd_busy_time(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p)7190 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7191 				     struct cpumask *pd_cpus,
7192 				     struct task_struct *p)
7193 {
7194 	unsigned long busy_time = 0;
7195 	int cpu;
7196 
7197 	for_each_cpu(cpu, pd_cpus) {
7198 		unsigned long util = cpu_util_next(cpu, p, -1);
7199 
7200 		busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
7201 	}
7202 
7203 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7204 }
7205 
7206 /*
7207  * Compute the maximum utilization for compute_energy() when the task @p
7208  * is placed on the cpu @dst_cpu.
7209  *
7210  * Returns the maximum utilization among @eenv->cpus. This utilization can't
7211  * exceed @eenv->cpu_cap.
7212  */
7213 static inline unsigned long
eenv_pd_max_util(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)7214 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7215 		 struct task_struct *p, int dst_cpu)
7216 {
7217 	unsigned long max_util = 0;
7218 	int cpu;
7219 
7220 	for_each_cpu(cpu, pd_cpus) {
7221 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7222 		unsigned long util = cpu_util_next(cpu, p, dst_cpu);
7223 		unsigned long cpu_util;
7224 
7225 		/*
7226 		 * Performance domain frequency: utilization clamping
7227 		 * must be considered since it affects the selection
7228 		 * of the performance domain frequency.
7229 		 * NOTE: in case RT tasks are running, by default the
7230 		 * FREQUENCY_UTIL's utilization can be max OPP.
7231 		 */
7232 		cpu_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
7233 		max_util = max(max_util, cpu_util);
7234 	}
7235 
7236 	return min(max_util, eenv->cpu_cap);
7237 }
7238 
7239 /*
7240  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7241  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7242  * contribution is ignored.
7243  */
7244 static inline unsigned long
compute_energy(struct energy_env * eenv,struct perf_domain * pd,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)7245 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7246 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7247 {
7248 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7249 	unsigned long busy_time = eenv->pd_busy_time;
7250 
7251 	if (dst_cpu >= 0)
7252 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7253 
7254 	return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7255 }
7256 
7257 /*
7258  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7259  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7260  * spare capacity in each performance domain and uses it as a potential
7261  * candidate to execute the task. Then, it uses the Energy Model to figure
7262  * out which of the CPU candidates is the most energy-efficient.
7263  *
7264  * The rationale for this heuristic is as follows. In a performance domain,
7265  * all the most energy efficient CPU candidates (according to the Energy
7266  * Model) are those for which we'll request a low frequency. When there are
7267  * several CPUs for which the frequency request will be the same, we don't
7268  * have enough data to break the tie between them, because the Energy Model
7269  * only includes active power costs. With this model, if we assume that
7270  * frequency requests follow utilization (e.g. using schedutil), the CPU with
7271  * the maximum spare capacity in a performance domain is guaranteed to be among
7272  * the best candidates of the performance domain.
7273  *
7274  * In practice, it could be preferable from an energy standpoint to pack
7275  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7276  * but that could also hurt our chances to go cluster idle, and we have no
7277  * ways to tell with the current Energy Model if this is actually a good
7278  * idea or not. So, find_energy_efficient_cpu() basically favors
7279  * cluster-packing, and spreading inside a cluster. That should at least be
7280  * a good thing for latency, and this is consistent with the idea that most
7281  * of the energy savings of EAS come from the asymmetry of the system, and
7282  * not so much from breaking the tie between identical CPUs. That's also the
7283  * reason why EAS is enabled in the topology code only for systems where
7284  * SD_ASYM_CPUCAPACITY is set.
7285  *
7286  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7287  * they don't have any useful utilization data yet and it's not possible to
7288  * forecast their impact on energy consumption. Consequently, they will be
7289  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7290  * to be energy-inefficient in some use-cases. The alternative would be to
7291  * bias new tasks towards specific types of CPUs first, or to try to infer
7292  * their util_avg from the parent task, but those heuristics could hurt
7293  * other use-cases too. So, until someone finds a better way to solve this,
7294  * let's keep things simple by re-using the existing slow path.
7295  */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu,int sync)7296 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu, int sync)
7297 {
7298 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7299 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7300 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7301 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7302 	struct root_domain *rd = this_rq()->rd;
7303 	int cpu, best_energy_cpu, target = -1;
7304 	int prev_fits = -1, best_fits = -1;
7305 	unsigned long best_thermal_cap = 0;
7306 	unsigned long prev_thermal_cap = 0;
7307 	struct sched_domain *sd;
7308 	struct perf_domain *pd;
7309 	struct energy_env eenv;
7310 	int new_cpu = INT_MAX;
7311 
7312 	trace_android_rvh_find_energy_efficient_cpu(p, prev_cpu, sync, &new_cpu);
7313 	if (new_cpu != INT_MAX)
7314 		return new_cpu;
7315 
7316 	sync_entity_load_avg(&p->se);
7317 
7318 	rcu_read_lock();
7319 	pd = rcu_dereference(rd->pd);
7320 	if (!pd || READ_ONCE(rd->overutilized))
7321 		goto unlock;
7322 
7323 	cpu = smp_processor_id();
7324 	if (sync && cpu_rq(cpu)->nr_running == 1 &&
7325 	    cpumask_test_cpu(cpu, p->cpus_ptr) &&
7326 	    task_fits_cpu(p, cpu)) {
7327 		rcu_read_unlock();
7328 		return cpu;
7329 	}
7330 
7331 	/*
7332 	 * Energy-aware wake-up happens on the lowest sched_domain starting
7333 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7334 	 */
7335 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7336 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7337 		sd = sd->parent;
7338 	if (!sd)
7339 		goto unlock;
7340 
7341 	target = prev_cpu;
7342 
7343 	if (!task_util_est(p) && p_util_min == 0)
7344 		goto unlock;
7345 
7346 	eenv_task_busy_time(&eenv, p, prev_cpu);
7347 
7348 	for (; pd; pd = pd->next) {
7349 		unsigned long util_min = p_util_min, util_max = p_util_max;
7350 		unsigned long cpu_cap, cpu_thermal_cap, util;
7351 		long prev_spare_cap = -1, max_spare_cap = -1;
7352 		unsigned long rq_util_min, rq_util_max;
7353 		unsigned long cur_delta, base_energy;
7354 		int max_spare_cap_cpu = -1;
7355 		int fits, max_fits = -1;
7356 
7357 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
7358 
7359 		if (cpumask_empty(cpus))
7360 			continue;
7361 
7362 		/* Account thermal pressure for the energy estimation */
7363 		cpu = cpumask_first(cpus);
7364 		cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
7365 		cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
7366 
7367 		eenv.cpu_cap = cpu_thermal_cap;
7368 		eenv.pd_cap = 0;
7369 
7370 		for_each_cpu(cpu, cpus) {
7371 			struct rq *rq = cpu_rq(cpu);
7372 
7373 			eenv.pd_cap += cpu_thermal_cap;
7374 
7375 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7376 				continue;
7377 
7378 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
7379 				continue;
7380 
7381 			util = cpu_util_next(cpu, p, cpu);
7382 			cpu_cap = capacity_of(cpu);
7383 
7384 			/*
7385 			 * Skip CPUs that cannot satisfy the capacity request.
7386 			 * IOW, placing the task there would make the CPU
7387 			 * overutilized. Take uclamp into account to see how
7388 			 * much capacity we can get out of the CPU; this is
7389 			 * aligned with sched_cpu_util().
7390 			 */
7391 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
7392 				/*
7393 				 * Open code uclamp_rq_util_with() except for
7394 				 * the clamp() part. Ie: apply max aggregation
7395 				 * only. util_fits_cpu() logic requires to
7396 				 * operate on non clamped util but must use the
7397 				 * max-aggregated uclamp_{min, max}.
7398 				 */
7399 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
7400 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
7401 
7402 				util_min = max(rq_util_min, p_util_min);
7403 				util_max = max(rq_util_max, p_util_max);
7404 			}
7405 
7406 			fits = util_fits_cpu(util, util_min, util_max, cpu);
7407 			if (!fits)
7408 				continue;
7409 
7410 			lsub_positive(&cpu_cap, util);
7411 
7412 			if (cpu == prev_cpu) {
7413 				/* Always use prev_cpu as a candidate. */
7414 				prev_spare_cap = cpu_cap;
7415 				prev_fits = fits;
7416 			} else if ((fits > max_fits) ||
7417 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
7418 				/*
7419 				 * Find the CPU with the maximum spare capacity
7420 				 * among the remaining CPUs in the performance
7421 				 * domain.
7422 				 */
7423 				max_spare_cap = cpu_cap;
7424 				max_spare_cap_cpu = cpu;
7425 				max_fits = fits;
7426 			}
7427 		}
7428 
7429 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
7430 			continue;
7431 
7432 		eenv_pd_busy_time(&eenv, cpus, p);
7433 		/* Compute the 'base' energy of the pd, without @p */
7434 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
7435 
7436 		/* Evaluate the energy impact of using prev_cpu. */
7437 		if (prev_spare_cap > -1) {
7438 			prev_delta = compute_energy(&eenv, pd, cpus, p,
7439 						    prev_cpu);
7440 			/* CPU utilization has changed */
7441 			if (prev_delta < base_energy)
7442 				goto unlock;
7443 			prev_delta -= base_energy;
7444 			prev_thermal_cap = cpu_thermal_cap;
7445 			best_delta = min(best_delta, prev_delta);
7446 		}
7447 
7448 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
7449 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
7450 			/* Current best energy cpu fits better */
7451 			if (max_fits < best_fits)
7452 				continue;
7453 
7454 			/*
7455 			 * Both don't fit performance hint (i.e. uclamp_min)
7456 			 * but best energy cpu has better capacity.
7457 			 */
7458 			if ((max_fits < 0) &&
7459 			    (cpu_thermal_cap <= best_thermal_cap))
7460 				continue;
7461 
7462 			cur_delta = compute_energy(&eenv, pd, cpus, p,
7463 						   max_spare_cap_cpu);
7464 			/* CPU utilization has changed */
7465 			if (cur_delta < base_energy)
7466 				goto unlock;
7467 			cur_delta -= base_energy;
7468 
7469 			/*
7470 			 * Both fit for the task but best energy cpu has lower
7471 			 * energy impact.
7472 			 */
7473 			if ((max_fits > 0) && (best_fits > 0) &&
7474 			    (cur_delta >= best_delta))
7475 				continue;
7476 
7477 			best_delta = cur_delta;
7478 			best_energy_cpu = max_spare_cap_cpu;
7479 			best_fits = max_fits;
7480 			best_thermal_cap = cpu_thermal_cap;
7481 		}
7482 	}
7483 	rcu_read_unlock();
7484 
7485 	if ((best_fits > prev_fits) ||
7486 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
7487 	    ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
7488 		target = best_energy_cpu;
7489 
7490 	return target;
7491 
7492 unlock:
7493 	rcu_read_unlock();
7494 
7495 	return target;
7496 }
7497 
7498 /*
7499  * select_task_rq_fair: Select target runqueue for the waking task in domains
7500  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
7501  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
7502  *
7503  * Balances load by selecting the idlest CPU in the idlest group, or under
7504  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
7505  *
7506  * Returns the target CPU number.
7507  */
7508 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)7509 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
7510 {
7511 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
7512 	struct sched_domain *tmp, *sd = NULL;
7513 	int cpu = smp_processor_id();
7514 	int new_cpu = prev_cpu;
7515 	int want_affine = 0;
7516 	int target_cpu = -1;
7517 	/* SD_flags and WF_flags share the first nibble */
7518 	int sd_flag = wake_flags & 0xF;
7519 
7520 	if (trace_android_rvh_select_task_rq_fair_enabled() &&
7521 	    !(sd_flag & SD_BALANCE_FORK))
7522 		sync_entity_load_avg(&p->se);
7523 	trace_android_rvh_select_task_rq_fair(p, prev_cpu, sd_flag,
7524 			wake_flags, &target_cpu);
7525 	if (target_cpu >= 0)
7526 		return target_cpu;
7527 
7528 	/*
7529 	 * required for stable ->cpus_allowed
7530 	 */
7531 	lockdep_assert_held(&p->pi_lock);
7532 	if (wake_flags & WF_TTWU) {
7533 		record_wakee(p);
7534 
7535 		if (sched_energy_enabled()) {
7536 			new_cpu = find_energy_efficient_cpu(p, prev_cpu, sync);
7537 			if (new_cpu >= 0)
7538 				return new_cpu;
7539 			new_cpu = prev_cpu;
7540 		}
7541 
7542 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
7543 	}
7544 
7545 	rcu_read_lock();
7546 	for_each_domain(cpu, tmp) {
7547 		/*
7548 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
7549 		 * cpu is a valid SD_WAKE_AFFINE target.
7550 		 */
7551 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
7552 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
7553 			if (cpu != prev_cpu)
7554 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
7555 
7556 			sd = NULL; /* Prefer wake_affine over balance flags */
7557 			break;
7558 		}
7559 
7560 		/*
7561 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
7562 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
7563 		 * will usually go to the fast path.
7564 		 */
7565 		if (tmp->flags & sd_flag)
7566 			sd = tmp;
7567 		else if (!want_affine)
7568 			break;
7569 	}
7570 
7571 	if (unlikely(sd)) {
7572 		/* Slow path */
7573 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
7574 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
7575 		/* Fast path */
7576 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
7577 	}
7578 	rcu_read_unlock();
7579 
7580 	return new_cpu;
7581 }
7582 
7583 /*
7584  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
7585  * cfs_rq_of(p) references at time of call are still valid and identify the
7586  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
7587  */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)7588 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
7589 {
7590 	struct sched_entity *se = &p->se;
7591 
7592 	/*
7593 	 * As blocked tasks retain absolute vruntime the migration needs to
7594 	 * deal with this by subtracting the old and adding the new
7595 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
7596 	 * the task on the new runqueue.
7597 	 */
7598 	if (READ_ONCE(p->__state) == TASK_WAKING) {
7599 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7600 
7601 		se->vruntime -= u64_u32_load(cfs_rq->min_vruntime);
7602 	}
7603 
7604 	if (!task_on_rq_migrating(p)) {
7605 		remove_entity_load_avg(se);
7606 
7607 		/*
7608 		 * Here, the task's PELT values have been updated according to
7609 		 * the current rq's clock. But if that clock hasn't been
7610 		 * updated in a while, a substantial idle time will be missed,
7611 		 * leading to an inflation after wake-up on the new rq.
7612 		 *
7613 		 * Estimate the missing time from the cfs_rq last_update_time
7614 		 * and update sched_avg to improve the PELT continuity after
7615 		 * migration.
7616 		 */
7617 		migrate_se_pelt_lag(se);
7618 	}
7619 
7620 	/* Tell new CPU we are migrated */
7621 	se->avg.last_update_time = 0;
7622 
7623 	update_scan_period(p, new_cpu);
7624 }
7625 
task_dead_fair(struct task_struct * p)7626 static void task_dead_fair(struct task_struct *p)
7627 {
7628 	remove_entity_load_avg(&p->se);
7629 }
7630 
7631 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)7632 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7633 {
7634 	if (rq->nr_running)
7635 		return 1;
7636 
7637 	return newidle_balance(rq, rf) != 0;
7638 }
7639 #endif /* CONFIG_SMP */
7640 
wakeup_gran(struct sched_entity * se)7641 static unsigned long wakeup_gran(struct sched_entity *se)
7642 {
7643 	unsigned long gran = sysctl_sched_wakeup_granularity;
7644 
7645 	/*
7646 	 * Since its curr running now, convert the gran from real-time
7647 	 * to virtual-time in his units.
7648 	 *
7649 	 * By using 'se' instead of 'curr' we penalize light tasks, so
7650 	 * they get preempted easier. That is, if 'se' < 'curr' then
7651 	 * the resulting gran will be larger, therefore penalizing the
7652 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7653 	 * be smaller, again penalizing the lighter task.
7654 	 *
7655 	 * This is especially important for buddies when the leftmost
7656 	 * task is higher priority than the buddy.
7657 	 */
7658 	return calc_delta_fair(gran, se);
7659 }
7660 
7661 /*
7662  * Should 'se' preempt 'curr'.
7663  *
7664  *             |s1
7665  *        |s2
7666  *   |s3
7667  *         g
7668  *      |<--->|c
7669  *
7670  *  w(c, s1) = -1
7671  *  w(c, s2) =  0
7672  *  w(c, s3) =  1
7673  *
7674  */
7675 static int
wakeup_preempt_entity(struct sched_entity * curr,struct sched_entity * se)7676 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7677 {
7678 	s64 gran, vdiff = curr->vruntime - se->vruntime;
7679 
7680 	if (vdiff <= 0)
7681 		return -1;
7682 
7683 	gran = wakeup_gran(se);
7684 	if (vdiff > gran)
7685 		return 1;
7686 
7687 	return 0;
7688 }
7689 
set_last_buddy(struct sched_entity * se)7690 static void set_last_buddy(struct sched_entity *se)
7691 {
7692 	for_each_sched_entity(se) {
7693 		if (SCHED_WARN_ON(!se->on_rq))
7694 			return;
7695 		if (se_is_idle(se))
7696 			return;
7697 		cfs_rq_of(se)->last = se;
7698 	}
7699 }
7700 
set_next_buddy(struct sched_entity * se)7701 static void set_next_buddy(struct sched_entity *se)
7702 {
7703 	for_each_sched_entity(se) {
7704 		if (SCHED_WARN_ON(!se->on_rq))
7705 			return;
7706 		if (se_is_idle(se))
7707 			return;
7708 		cfs_rq_of(se)->next = se;
7709 	}
7710 }
7711 
set_skip_buddy(struct sched_entity * se)7712 static void set_skip_buddy(struct sched_entity *se)
7713 {
7714 	for_each_sched_entity(se)
7715 		cfs_rq_of(se)->skip = se;
7716 }
7717 
7718 /*
7719  * Preempt the current task with a newly woken task if needed:
7720  */
check_preempt_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)7721 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7722 {
7723 	struct task_struct *curr = rq->curr;
7724 	struct sched_entity *se = &curr->se, *pse = &p->se;
7725 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7726 	int scale = cfs_rq->nr_running >= sched_nr_latency;
7727 	int next_buddy_marked = 0;
7728 	int cse_is_idle, pse_is_idle;
7729 	bool ignore = false;
7730 	bool preempt = false;
7731 
7732 	if (unlikely(se == pse))
7733 		return;
7734 	trace_android_rvh_check_preempt_wakeup_ignore(curr, &ignore);
7735 	if (ignore)
7736 		return;
7737 
7738 	/*
7739 	 * This is possible from callers such as attach_tasks(), in which we
7740 	 * unconditionally check_preempt_curr() after an enqueue (which may have
7741 	 * lead to a throttle).  This both saves work and prevents false
7742 	 * next-buddy nomination below.
7743 	 */
7744 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7745 		return;
7746 
7747 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7748 		set_next_buddy(pse);
7749 		next_buddy_marked = 1;
7750 	}
7751 
7752 	/*
7753 	 * We can come here with TIF_NEED_RESCHED already set from new task
7754 	 * wake up path.
7755 	 *
7756 	 * Note: this also catches the edge-case of curr being in a throttled
7757 	 * group (e.g. via set_curr_task), since update_curr() (in the
7758 	 * enqueue of curr) will have resulted in resched being set.  This
7759 	 * prevents us from potentially nominating it as a false LAST_BUDDY
7760 	 * below.
7761 	 */
7762 	if (test_tsk_need_resched(curr))
7763 		return;
7764 
7765 	/* Idle tasks are by definition preempted by non-idle tasks. */
7766 	if (unlikely(task_has_idle_policy(curr)) &&
7767 	    likely(!task_has_idle_policy(p)))
7768 		goto preempt;
7769 
7770 	/*
7771 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7772 	 * is driven by the tick):
7773 	 */
7774 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7775 		return;
7776 
7777 	find_matching_se(&se, &pse);
7778 	WARN_ON_ONCE(!pse);
7779 
7780 	cse_is_idle = se_is_idle(se);
7781 	pse_is_idle = se_is_idle(pse);
7782 
7783 	/*
7784 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
7785 	 * in the inverse case).
7786 	 */
7787 	if (cse_is_idle && !pse_is_idle)
7788 		goto preempt;
7789 	if (cse_is_idle != pse_is_idle)
7790 		return;
7791 
7792 	update_curr(cfs_rq_of(se));
7793 	trace_android_rvh_check_preempt_wakeup(rq, p, &preempt, &ignore,
7794 			wake_flags, se, pse, next_buddy_marked, sysctl_sched_wakeup_granularity);
7795 	if (preempt)
7796 		goto preempt;
7797 	if (ignore)
7798 		return;
7799 
7800 	if (wakeup_preempt_entity(se, pse) == 1) {
7801 		/*
7802 		 * Bias pick_next to pick the sched entity that is
7803 		 * triggering this preemption.
7804 		 */
7805 		if (!next_buddy_marked)
7806 			set_next_buddy(pse);
7807 		goto preempt;
7808 	}
7809 
7810 	return;
7811 
7812 preempt:
7813 	resched_curr(rq);
7814 	/*
7815 	 * Only set the backward buddy when the current task is still
7816 	 * on the rq. This can happen when a wakeup gets interleaved
7817 	 * with schedule on the ->pre_schedule() or idle_balance()
7818 	 * point, either of which can * drop the rq lock.
7819 	 *
7820 	 * Also, during early boot the idle thread is in the fair class,
7821 	 * for obvious reasons its a bad idea to schedule back to it.
7822 	 */
7823 	if (unlikely(!se->on_rq || curr == rq->idle))
7824 		return;
7825 
7826 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7827 		set_last_buddy(se);
7828 }
7829 
7830 #ifdef CONFIG_SMP
pick_task_fair(struct rq * rq)7831 static struct task_struct *pick_task_fair(struct rq *rq)
7832 {
7833 	struct sched_entity *se;
7834 	struct cfs_rq *cfs_rq;
7835 
7836 again:
7837 	cfs_rq = &rq->cfs;
7838 	if (!cfs_rq->nr_running)
7839 		return NULL;
7840 
7841 	do {
7842 		struct sched_entity *curr = cfs_rq->curr;
7843 
7844 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7845 		if (curr) {
7846 			if (curr->on_rq)
7847 				update_curr(cfs_rq);
7848 			else
7849 				curr = NULL;
7850 
7851 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7852 				goto again;
7853 		}
7854 
7855 		se = pick_next_entity(cfs_rq, curr);
7856 		cfs_rq = group_cfs_rq(se);
7857 	} while (cfs_rq);
7858 
7859 	return task_of(se);
7860 }
7861 #endif
7862 
7863 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)7864 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7865 {
7866 	struct cfs_rq *cfs_rq = &rq->cfs;
7867 	struct sched_entity *se = NULL;
7868 	struct task_struct *p = NULL;
7869 	int new_tasks;
7870 	bool repick = false;
7871 
7872 again:
7873 	if (!sched_fair_runnable(rq))
7874 		goto idle;
7875 
7876 #ifdef CONFIG_FAIR_GROUP_SCHED
7877 	if (!prev || prev->sched_class != &fair_sched_class)
7878 		goto simple;
7879 
7880 	/*
7881 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7882 	 * likely that a next task is from the same cgroup as the current.
7883 	 *
7884 	 * Therefore attempt to avoid putting and setting the entire cgroup
7885 	 * hierarchy, only change the part that actually changes.
7886 	 */
7887 
7888 	do {
7889 		struct sched_entity *curr = cfs_rq->curr;
7890 
7891 		/*
7892 		 * Since we got here without doing put_prev_entity() we also
7893 		 * have to consider cfs_rq->curr. If it is still a runnable
7894 		 * entity, update_curr() will update its vruntime, otherwise
7895 		 * forget we've ever seen it.
7896 		 */
7897 		if (curr) {
7898 			if (curr->on_rq)
7899 				update_curr(cfs_rq);
7900 			else
7901 				curr = NULL;
7902 
7903 			/*
7904 			 * This call to check_cfs_rq_runtime() will do the
7905 			 * throttle and dequeue its entity in the parent(s).
7906 			 * Therefore the nr_running test will indeed
7907 			 * be correct.
7908 			 */
7909 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7910 				cfs_rq = &rq->cfs;
7911 
7912 				if (!cfs_rq->nr_running)
7913 					goto idle;
7914 
7915 				goto simple;
7916 			}
7917 		}
7918 
7919 		se = pick_next_entity(cfs_rq, curr);
7920 		cfs_rq = group_cfs_rq(se);
7921 	} while (cfs_rq);
7922 
7923 	p = task_of(se);
7924 	trace_android_rvh_replace_next_task_fair(rq, &p, &se, &repick, false, prev);
7925 	/*
7926 	 * Since we haven't yet done put_prev_entity and if the selected task
7927 	 * is a different task than we started out with, try and touch the
7928 	 * least amount of cfs_rqs.
7929 	 */
7930 	if (prev != p) {
7931 		struct sched_entity *pse = &prev->se;
7932 
7933 		while (!(cfs_rq = is_same_group(se, pse))) {
7934 			int se_depth = se->depth;
7935 			int pse_depth = pse->depth;
7936 
7937 			if (se_depth <= pse_depth) {
7938 				put_prev_entity(cfs_rq_of(pse), pse);
7939 				pse = parent_entity(pse);
7940 			}
7941 			if (se_depth >= pse_depth) {
7942 				set_next_entity(cfs_rq_of(se), se);
7943 				se = parent_entity(se);
7944 			}
7945 		}
7946 
7947 		put_prev_entity(cfs_rq, pse);
7948 		set_next_entity(cfs_rq, se);
7949 	}
7950 
7951 	goto done;
7952 simple:
7953 #endif
7954 	if (prev)
7955 		put_prev_task(rq, prev);
7956 
7957 	trace_android_rvh_replace_next_task_fair(rq, &p, &se, &repick, true, prev);
7958 	if (repick)
7959 		goto done;
7960 
7961 	do {
7962 		se = pick_next_entity(cfs_rq, NULL);
7963 		set_next_entity(cfs_rq, se);
7964 		cfs_rq = group_cfs_rq(se);
7965 	} while (cfs_rq);
7966 
7967 	p = task_of(se);
7968 
7969 done: __maybe_unused;
7970 #ifdef CONFIG_SMP
7971 	/*
7972 	 * Move the next running task to the front of
7973 	 * the list, so our cfs_tasks list becomes MRU
7974 	 * one.
7975 	 */
7976 	list_move(&p->se.group_node, &rq->cfs_tasks);
7977 #endif
7978 
7979 	if (hrtick_enabled_fair(rq))
7980 		hrtick_start_fair(rq, p);
7981 
7982 	update_misfit_status(p, rq);
7983 
7984 	return p;
7985 
7986 idle:
7987 	if (!rf)
7988 		return NULL;
7989 
7990 	new_tasks = newidle_balance(rq, rf);
7991 
7992 	/*
7993 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7994 	 * possible for any higher priority task to appear. In that case we
7995 	 * must re-start the pick_next_entity() loop.
7996 	 */
7997 	if (new_tasks < 0)
7998 		return RETRY_TASK;
7999 
8000 	if (new_tasks > 0)
8001 		goto again;
8002 
8003 	/*
8004 	 * rq is about to be idle, check if we need to update the
8005 	 * lost_idle_time of clock_pelt
8006 	 */
8007 	update_idle_rq_clock_pelt(rq);
8008 
8009 	return NULL;
8010 }
8011 
__pick_next_task_fair(struct rq * rq)8012 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8013 {
8014 	return pick_next_task_fair(rq, NULL, NULL);
8015 }
8016 
8017 /*
8018  * Account for a descheduled task:
8019  */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)8020 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8021 {
8022 	struct sched_entity *se = &prev->se;
8023 	struct cfs_rq *cfs_rq;
8024 
8025 	for_each_sched_entity(se) {
8026 		cfs_rq = cfs_rq_of(se);
8027 		put_prev_entity(cfs_rq, se);
8028 	}
8029 }
8030 
8031 /*
8032  * sched_yield() is very simple
8033  *
8034  * The magic of dealing with the ->skip buddy is in pick_next_entity.
8035  */
yield_task_fair(struct rq * rq)8036 static void yield_task_fair(struct rq *rq)
8037 {
8038 	struct task_struct *curr = rq->curr;
8039 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8040 	struct sched_entity *se = &curr->se;
8041 
8042 	/*
8043 	 * Are we the only task in the tree?
8044 	 */
8045 	if (unlikely(rq->nr_running == 1))
8046 		return;
8047 
8048 	clear_buddies(cfs_rq, se);
8049 
8050 	if (curr->policy != SCHED_BATCH) {
8051 		update_rq_clock(rq);
8052 		/*
8053 		 * Update run-time statistics of the 'current'.
8054 		 */
8055 		update_curr(cfs_rq);
8056 		/*
8057 		 * Tell update_rq_clock() that we've just updated,
8058 		 * so we don't do microscopic update in schedule()
8059 		 * and double the fastpath cost.
8060 		 */
8061 		rq_clock_skip_update(rq);
8062 	}
8063 
8064 	set_skip_buddy(se);
8065 }
8066 
yield_to_task_fair(struct rq * rq,struct task_struct * p)8067 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8068 {
8069 	struct sched_entity *se = &p->se;
8070 
8071 	/* throttled hierarchies are not runnable */
8072 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8073 		return false;
8074 
8075 	/* Tell the scheduler that we'd really like pse to run next. */
8076 	set_next_buddy(se);
8077 
8078 	yield_task_fair(rq);
8079 
8080 	return true;
8081 }
8082 
8083 #ifdef CONFIG_SMP
8084 /**************************************************
8085  * Fair scheduling class load-balancing methods.
8086  *
8087  * BASICS
8088  *
8089  * The purpose of load-balancing is to achieve the same basic fairness the
8090  * per-CPU scheduler provides, namely provide a proportional amount of compute
8091  * time to each task. This is expressed in the following equation:
8092  *
8093  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
8094  *
8095  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8096  * W_i,0 is defined as:
8097  *
8098  *   W_i,0 = \Sum_j w_i,j                                             (2)
8099  *
8100  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8101  * is derived from the nice value as per sched_prio_to_weight[].
8102  *
8103  * The weight average is an exponential decay average of the instantaneous
8104  * weight:
8105  *
8106  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
8107  *
8108  * C_i is the compute capacity of CPU i, typically it is the
8109  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8110  * can also include other factors [XXX].
8111  *
8112  * To achieve this balance we define a measure of imbalance which follows
8113  * directly from (1):
8114  *
8115  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
8116  *
8117  * We them move tasks around to minimize the imbalance. In the continuous
8118  * function space it is obvious this converges, in the discrete case we get
8119  * a few fun cases generally called infeasible weight scenarios.
8120  *
8121  * [XXX expand on:
8122  *     - infeasible weights;
8123  *     - local vs global optima in the discrete case. ]
8124  *
8125  *
8126  * SCHED DOMAINS
8127  *
8128  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8129  * for all i,j solution, we create a tree of CPUs that follows the hardware
8130  * topology where each level pairs two lower groups (or better). This results
8131  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8132  * tree to only the first of the previous level and we decrease the frequency
8133  * of load-balance at each level inv. proportional to the number of CPUs in
8134  * the groups.
8135  *
8136  * This yields:
8137  *
8138  *     log_2 n     1     n
8139  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
8140  *     i = 0      2^i   2^i
8141  *                               `- size of each group
8142  *         |         |     `- number of CPUs doing load-balance
8143  *         |         `- freq
8144  *         `- sum over all levels
8145  *
8146  * Coupled with a limit on how many tasks we can migrate every balance pass,
8147  * this makes (5) the runtime complexity of the balancer.
8148  *
8149  * An important property here is that each CPU is still (indirectly) connected
8150  * to every other CPU in at most O(log n) steps:
8151  *
8152  * The adjacency matrix of the resulting graph is given by:
8153  *
8154  *             log_2 n
8155  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
8156  *             k = 0
8157  *
8158  * And you'll find that:
8159  *
8160  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
8161  *
8162  * Showing there's indeed a path between every CPU in at most O(log n) steps.
8163  * The task movement gives a factor of O(m), giving a convergence complexity
8164  * of:
8165  *
8166  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
8167  *
8168  *
8169  * WORK CONSERVING
8170  *
8171  * In order to avoid CPUs going idle while there's still work to do, new idle
8172  * balancing is more aggressive and has the newly idle CPU iterate up the domain
8173  * tree itself instead of relying on other CPUs to bring it work.
8174  *
8175  * This adds some complexity to both (5) and (8) but it reduces the total idle
8176  * time.
8177  *
8178  * [XXX more?]
8179  *
8180  *
8181  * CGROUPS
8182  *
8183  * Cgroups make a horror show out of (2), instead of a simple sum we get:
8184  *
8185  *                                s_k,i
8186  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
8187  *                                 S_k
8188  *
8189  * Where
8190  *
8191  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
8192  *
8193  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8194  *
8195  * The big problem is S_k, its a global sum needed to compute a local (W_i)
8196  * property.
8197  *
8198  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8199  *      rewrite all of this once again.]
8200  */
8201 
8202 unsigned long __read_mostly max_load_balance_interval = HZ/10;
8203 EXPORT_SYMBOL_GPL(max_load_balance_interval);
8204 
8205 enum fbq_type { regular, remote, all };
8206 
8207 /*
8208  * 'group_type' describes the group of CPUs at the moment of load balancing.
8209  *
8210  * The enum is ordered by pulling priority, with the group with lowest priority
8211  * first so the group_type can simply be compared when selecting the busiest
8212  * group. See update_sd_pick_busiest().
8213  */
8214 enum group_type {
8215 	/* The group has spare capacity that can be used to run more tasks.  */
8216 	group_has_spare = 0,
8217 	/*
8218 	 * The group is fully used and the tasks don't compete for more CPU
8219 	 * cycles. Nevertheless, some tasks might wait before running.
8220 	 */
8221 	group_fully_busy,
8222 	/*
8223 	 * One task doesn't fit with CPU's capacity and must be migrated to a
8224 	 * more powerful CPU.
8225 	 */
8226 	group_misfit_task,
8227 	/*
8228 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8229 	 * and the task should be migrated to it instead of running on the
8230 	 * current CPU.
8231 	 */
8232 	group_asym_packing,
8233 	/*
8234 	 * The tasks' affinity constraints previously prevented the scheduler
8235 	 * from balancing the load across the system.
8236 	 */
8237 	group_imbalanced,
8238 	/*
8239 	 * The CPU is overloaded and can't provide expected CPU cycles to all
8240 	 * tasks.
8241 	 */
8242 	group_overloaded
8243 };
8244 
8245 enum migration_type {
8246 	migrate_load = 0,
8247 	migrate_util,
8248 	migrate_task,
8249 	migrate_misfit
8250 };
8251 
8252 #define LBF_ALL_PINNED	0x01
8253 #define LBF_NEED_BREAK	0x02
8254 #define LBF_DST_PINNED  0x04
8255 #define LBF_SOME_PINNED	0x08
8256 #define LBF_ACTIVE_LB	0x10
8257 
8258 struct lb_env {
8259 	struct sched_domain	*sd;
8260 
8261 	struct rq		*src_rq;
8262 	int			src_cpu;
8263 
8264 	int			dst_cpu;
8265 	struct rq		*dst_rq;
8266 
8267 	struct cpumask		*dst_grpmask;
8268 	int			new_dst_cpu;
8269 	enum cpu_idle_type	idle;
8270 	long			imbalance;
8271 	/* The set of CPUs under consideration for load-balancing */
8272 	struct cpumask		*cpus;
8273 
8274 	unsigned int		flags;
8275 
8276 	unsigned int		loop;
8277 	unsigned int		loop_break;
8278 	unsigned int		loop_max;
8279 
8280 	enum fbq_type		fbq_type;
8281 	enum migration_type	migration_type;
8282 	struct list_head	tasks;
8283 	struct rq_flags		*src_rq_rf;
8284 };
8285 
8286 /*
8287  * Is this task likely cache-hot:
8288  */
task_hot(struct task_struct * p,struct lb_env * env)8289 static int task_hot(struct task_struct *p, struct lb_env *env)
8290 {
8291 	s64 delta;
8292 
8293 	lockdep_assert_rq_held(env->src_rq);
8294 
8295 	if (p->sched_class != &fair_sched_class)
8296 		return 0;
8297 
8298 	if (unlikely(task_has_idle_policy(p)))
8299 		return 0;
8300 
8301 	/* SMT siblings share cache */
8302 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8303 		return 0;
8304 
8305 	/*
8306 	 * Buddy candidates are cache hot:
8307 	 */
8308 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8309 			(&p->se == cfs_rq_of(&p->se)->next ||
8310 			 &p->se == cfs_rq_of(&p->se)->last))
8311 		return 1;
8312 
8313 	if (sysctl_sched_migration_cost == -1)
8314 		return 1;
8315 
8316 	/*
8317 	 * Don't migrate task if the task's cookie does not match
8318 	 * with the destination CPU's core cookie.
8319 	 */
8320 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8321 		return 1;
8322 
8323 	if (sysctl_sched_migration_cost == 0)
8324 		return 0;
8325 
8326 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8327 
8328 	return delta < (s64)sysctl_sched_migration_cost;
8329 }
8330 
8331 #ifdef CONFIG_NUMA_BALANCING
8332 /*
8333  * Returns 1, if task migration degrades locality
8334  * Returns 0, if task migration improves locality i.e migration preferred.
8335  * Returns -1, if task migration is not affected by locality.
8336  */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8337 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8338 {
8339 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
8340 	unsigned long src_weight, dst_weight;
8341 	int src_nid, dst_nid, dist;
8342 
8343 	if (!static_branch_likely(&sched_numa_balancing))
8344 		return -1;
8345 
8346 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8347 		return -1;
8348 
8349 	src_nid = cpu_to_node(env->src_cpu);
8350 	dst_nid = cpu_to_node(env->dst_cpu);
8351 
8352 	if (src_nid == dst_nid)
8353 		return -1;
8354 
8355 	/* Migrating away from the preferred node is always bad. */
8356 	if (src_nid == p->numa_preferred_nid) {
8357 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8358 			return 1;
8359 		else
8360 			return -1;
8361 	}
8362 
8363 	/* Encourage migration to the preferred node. */
8364 	if (dst_nid == p->numa_preferred_nid)
8365 		return 0;
8366 
8367 	/* Leaving a core idle is often worse than degrading locality. */
8368 	if (env->idle == CPU_IDLE)
8369 		return -1;
8370 
8371 	dist = node_distance(src_nid, dst_nid);
8372 	if (numa_group) {
8373 		src_weight = group_weight(p, src_nid, dist);
8374 		dst_weight = group_weight(p, dst_nid, dist);
8375 	} else {
8376 		src_weight = task_weight(p, src_nid, dist);
8377 		dst_weight = task_weight(p, dst_nid, dist);
8378 	}
8379 
8380 	return dst_weight < src_weight;
8381 }
8382 
8383 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8384 static inline int migrate_degrades_locality(struct task_struct *p,
8385 					     struct lb_env *env)
8386 {
8387 	return -1;
8388 }
8389 #endif
8390 
8391 /*
8392  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8393  */
8394 static
can_migrate_task(struct task_struct * p,struct lb_env * env)8395 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8396 {
8397 	int tsk_cache_hot;
8398 	int can_migrate = 1;
8399 
8400 	lockdep_assert_rq_held(env->src_rq);
8401 
8402 	trace_android_rvh_can_migrate_task(p, env->dst_cpu, &can_migrate);
8403 	if (!can_migrate)
8404 		return 0;
8405 
8406 	/*
8407 	 * We do not migrate tasks that are:
8408 	 * 1) throttled_lb_pair, or
8409 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8410 	 * 3) running (obviously), or
8411 	 * 4) are cache-hot on their current CPU.
8412 	 */
8413 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8414 		return 0;
8415 
8416 	/* Disregard pcpu kthreads; they are where they need to be. */
8417 	if (kthread_is_per_cpu(p))
8418 		return 0;
8419 
8420 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8421 		int cpu;
8422 
8423 		schedstat_inc(p->stats.nr_failed_migrations_affine);
8424 
8425 		env->flags |= LBF_SOME_PINNED;
8426 
8427 		/*
8428 		 * Remember if this task can be migrated to any other CPU in
8429 		 * our sched_group. We may want to revisit it if we couldn't
8430 		 * meet load balance goals by pulling other tasks on src_cpu.
8431 		 *
8432 		 * Avoid computing new_dst_cpu
8433 		 * - for NEWLY_IDLE
8434 		 * - if we have already computed one in current iteration
8435 		 * - if it's an active balance
8436 		 */
8437 		if (env->idle == CPU_NEWLY_IDLE ||
8438 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8439 			return 0;
8440 
8441 		/* Prevent to re-select dst_cpu via env's CPUs: */
8442 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8443 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8444 				env->flags |= LBF_DST_PINNED;
8445 				env->new_dst_cpu = cpu;
8446 				break;
8447 			}
8448 		}
8449 
8450 		return 0;
8451 	}
8452 
8453 	/* Record that we found at least one task that could run on dst_cpu */
8454 	env->flags &= ~LBF_ALL_PINNED;
8455 
8456 	if (task_on_cpu(env->src_rq, p)) {
8457 		schedstat_inc(p->stats.nr_failed_migrations_running);
8458 		return 0;
8459 	}
8460 
8461 	/*
8462 	 * Aggressive migration if:
8463 	 * 1) active balance
8464 	 * 2) destination numa is preferred
8465 	 * 3) task is cache cold, or
8466 	 * 4) too many balance attempts have failed.
8467 	 */
8468 	if (env->flags & LBF_ACTIVE_LB)
8469 		return 1;
8470 
8471 	tsk_cache_hot = migrate_degrades_locality(p, env);
8472 	if (tsk_cache_hot == -1)
8473 		tsk_cache_hot = task_hot(p, env);
8474 
8475 	if (tsk_cache_hot <= 0 ||
8476 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8477 		if (tsk_cache_hot == 1) {
8478 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8479 			schedstat_inc(p->stats.nr_forced_migrations);
8480 		}
8481 		return 1;
8482 	}
8483 
8484 	schedstat_inc(p->stats.nr_failed_migrations_hot);
8485 	return 0;
8486 }
8487 
8488 /*
8489  * detach_task() -- detach the task for the migration specified in env
8490  */
detach_task(struct task_struct * p,struct lb_env * env)8491 static void detach_task(struct task_struct *p, struct lb_env *env)
8492 {
8493 	int detached = 0;
8494 
8495 	lockdep_assert_rq_held(env->src_rq);
8496 
8497 	/*
8498 	 * The vendor hook may drop the lock temporarily, so
8499 	 * pass the rq flags to unpin lock. We expect the
8500 	 * rq lock to be held after return.
8501 	 */
8502 	trace_android_rvh_migrate_queued_task(env->src_rq, env->src_rq_rf, p,
8503 					      env->dst_cpu, &detached);
8504 	if (detached)
8505 		return;
8506 
8507 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
8508 	set_task_cpu(p, env->dst_cpu);
8509 }
8510 
8511 /*
8512  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
8513  * part of active balancing operations within "domain".
8514  *
8515  * Returns a task if successful and NULL otherwise.
8516  */
detach_one_task(struct lb_env * env)8517 static struct task_struct *detach_one_task(struct lb_env *env)
8518 {
8519 	struct task_struct *p;
8520 
8521 	lockdep_assert_rq_held(env->src_rq);
8522 
8523 	list_for_each_entry_reverse(p,
8524 			&env->src_rq->cfs_tasks, se.group_node) {
8525 		if (!can_migrate_task(p, env))
8526 			continue;
8527 
8528 		detach_task(p, env);
8529 
8530 		/*
8531 		 * Right now, this is only the second place where
8532 		 * lb_gained[env->idle] is updated (other is detach_tasks)
8533 		 * so we can safely collect stats here rather than
8534 		 * inside detach_tasks().
8535 		 */
8536 		schedstat_inc(env->sd->lb_gained[env->idle]);
8537 		return p;
8538 	}
8539 	return NULL;
8540 }
8541 
8542 /*
8543  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
8544  * busiest_rq, as part of a balancing operation within domain "sd".
8545  *
8546  * Returns number of detached tasks if successful and 0 otherwise.
8547  */
detach_tasks(struct lb_env * env)8548 static int detach_tasks(struct lb_env *env)
8549 {
8550 	struct list_head *tasks = &env->src_rq->cfs_tasks;
8551 	unsigned long util, load;
8552 	struct task_struct *p;
8553 	int detached = 0;
8554 
8555 	lockdep_assert_rq_held(env->src_rq);
8556 
8557 	/*
8558 	 * Source run queue has been emptied by another CPU, clear
8559 	 * LBF_ALL_PINNED flag as we will not test any task.
8560 	 */
8561 	if (env->src_rq->nr_running <= 1) {
8562 		env->flags &= ~LBF_ALL_PINNED;
8563 		return 0;
8564 	}
8565 
8566 	if (env->imbalance <= 0)
8567 		return 0;
8568 
8569 	while (!list_empty(tasks)) {
8570 		/*
8571 		 * We don't want to steal all, otherwise we may be treated likewise,
8572 		 * which could at worst lead to a livelock crash.
8573 		 */
8574 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
8575 			break;
8576 
8577 		env->loop++;
8578 		/*
8579 		 * We've more or less seen every task there is, call it quits
8580 		 * unless we haven't found any movable task yet.
8581 		 */
8582 		if (env->loop > env->loop_max &&
8583 		    !(env->flags & LBF_ALL_PINNED))
8584 			break;
8585 
8586 		/* take a breather every nr_migrate tasks */
8587 		if (env->loop > env->loop_break) {
8588 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
8589 			env->flags |= LBF_NEED_BREAK;
8590 			break;
8591 		}
8592 
8593 		p = list_last_entry(tasks, struct task_struct, se.group_node);
8594 
8595 		if (!can_migrate_task(p, env))
8596 			goto next;
8597 
8598 		switch (env->migration_type) {
8599 		case migrate_load:
8600 			/*
8601 			 * Depending of the number of CPUs and tasks and the
8602 			 * cgroup hierarchy, task_h_load() can return a null
8603 			 * value. Make sure that env->imbalance decreases
8604 			 * otherwise detach_tasks() will stop only after
8605 			 * detaching up to loop_max tasks.
8606 			 */
8607 			load = max_t(unsigned long, task_h_load(p), 1);
8608 
8609 			if (sched_feat(LB_MIN) &&
8610 			    load < 16 && !env->sd->nr_balance_failed)
8611 				goto next;
8612 
8613 			/*
8614 			 * Make sure that we don't migrate too much load.
8615 			 * Nevertheless, let relax the constraint if
8616 			 * scheduler fails to find a good waiting task to
8617 			 * migrate.
8618 			 */
8619 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
8620 				goto next;
8621 
8622 			env->imbalance -= load;
8623 			break;
8624 
8625 		case migrate_util:
8626 			util = task_util_est(p);
8627 
8628 			if (util > env->imbalance)
8629 				goto next;
8630 
8631 			env->imbalance -= util;
8632 			break;
8633 
8634 		case migrate_task:
8635 			env->imbalance--;
8636 			break;
8637 
8638 		case migrate_misfit:
8639 			/* This is not a misfit task */
8640 			if (task_fits_cpu(p, env->src_cpu))
8641 				goto next;
8642 
8643 			env->imbalance = 0;
8644 			break;
8645 		}
8646 
8647 		detach_task(p, env);
8648 		list_add(&p->se.group_node, &env->tasks);
8649 
8650 		detached++;
8651 
8652 #ifdef CONFIG_PREEMPTION
8653 		/*
8654 		 * NEWIDLE balancing is a source of latency, so preemptible
8655 		 * kernels will stop after the first task is detached to minimize
8656 		 * the critical section.
8657 		 */
8658 		if (env->idle == CPU_NEWLY_IDLE)
8659 			break;
8660 #endif
8661 
8662 		/*
8663 		 * We only want to steal up to the prescribed amount of
8664 		 * load/util/tasks.
8665 		 */
8666 		if (env->imbalance <= 0)
8667 			break;
8668 
8669 		continue;
8670 next:
8671 		list_move(&p->se.group_node, tasks);
8672 	}
8673 
8674 	/*
8675 	 * Right now, this is one of only two places we collect this stat
8676 	 * so we can safely collect detach_one_task() stats here rather
8677 	 * than inside detach_one_task().
8678 	 */
8679 	schedstat_add(env->sd->lb_gained[env->idle], detached);
8680 
8681 	return detached;
8682 }
8683 
8684 /*
8685  * attach_task() -- attach the task detached by detach_task() to its new rq.
8686  */
attach_task(struct rq * rq,struct task_struct * p)8687 static void attach_task(struct rq *rq, struct task_struct *p)
8688 {
8689 	lockdep_assert_rq_held(rq);
8690 
8691 	WARN_ON_ONCE(task_rq(p) != rq);
8692 	activate_task(rq, p, ENQUEUE_NOCLOCK);
8693 	check_preempt_curr(rq, p, 0);
8694 }
8695 
8696 /*
8697  * attach_one_task() -- attaches the task returned from detach_one_task() to
8698  * its new rq.
8699  */
attach_one_task(struct rq * rq,struct task_struct * p)8700 static void attach_one_task(struct rq *rq, struct task_struct *p)
8701 {
8702 	struct rq_flags rf;
8703 
8704 	rq_lock(rq, &rf);
8705 	update_rq_clock(rq);
8706 	attach_task(rq, p);
8707 	rq_unlock(rq, &rf);
8708 }
8709 
8710 /*
8711  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8712  * new rq.
8713  */
attach_tasks(struct lb_env * env)8714 static void attach_tasks(struct lb_env *env)
8715 {
8716 	struct list_head *tasks = &env->tasks;
8717 	struct task_struct *p;
8718 	struct rq_flags rf;
8719 
8720 	rq_lock(env->dst_rq, &rf);
8721 	update_rq_clock(env->dst_rq);
8722 
8723 	while (!list_empty(tasks)) {
8724 		p = list_first_entry(tasks, struct task_struct, se.group_node);
8725 		list_del_init(&p->se.group_node);
8726 
8727 		attach_task(env->dst_rq, p);
8728 	}
8729 
8730 	rq_unlock(env->dst_rq, &rf);
8731 }
8732 
8733 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)8734 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8735 {
8736 	if (cfs_rq->avg.load_avg)
8737 		return true;
8738 
8739 	if (cfs_rq->avg.util_avg)
8740 		return true;
8741 
8742 	return false;
8743 }
8744 
others_have_blocked(struct rq * rq)8745 static inline bool others_have_blocked(struct rq *rq)
8746 {
8747 	if (READ_ONCE(rq->avg_rt.util_avg))
8748 		return true;
8749 
8750 	if (READ_ONCE(rq->avg_dl.util_avg))
8751 		return true;
8752 
8753 	if (thermal_load_avg(rq))
8754 		return true;
8755 
8756 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8757 	if (READ_ONCE(rq->avg_irq.util_avg))
8758 		return true;
8759 #endif
8760 
8761 	return false;
8762 }
8763 
update_blocked_load_tick(struct rq * rq)8764 static inline void update_blocked_load_tick(struct rq *rq)
8765 {
8766 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8767 }
8768 
update_blocked_load_status(struct rq * rq,bool has_blocked)8769 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8770 {
8771 	if (!has_blocked)
8772 		rq->has_blocked_load = 0;
8773 }
8774 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)8775 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)8776 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)8777 static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)8778 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8779 #endif
8780 
__update_blocked_others(struct rq * rq,bool * done)8781 static bool __update_blocked_others(struct rq *rq, bool *done)
8782 {
8783 	const struct sched_class *curr_class;
8784 	u64 now = rq_clock_pelt(rq);
8785 	unsigned long thermal_pressure;
8786 	bool decayed;
8787 
8788 	/*
8789 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8790 	 * DL and IRQ signals have been updated before updating CFS.
8791 	 */
8792 	curr_class = rq->curr->sched_class;
8793 
8794 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8795 
8796 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8797 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8798 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8799 		  update_irq_load_avg(rq, 0);
8800 
8801 	if (others_have_blocked(rq))
8802 		*done = false;
8803 
8804 	return decayed;
8805 }
8806 
8807 #ifdef CONFIG_FAIR_GROUP_SCHED
8808 
__update_blocked_fair(struct rq * rq,bool * done)8809 static bool __update_blocked_fair(struct rq *rq, bool *done)
8810 {
8811 	struct cfs_rq *cfs_rq, *pos;
8812 	bool decayed = false;
8813 	int cpu = cpu_of(rq);
8814 
8815 	trace_android_rvh_update_blocked_fair(rq);
8816 
8817 	/*
8818 	 * Iterates the task_group tree in a bottom up fashion, see
8819 	 * list_add_leaf_cfs_rq() for details.
8820 	 */
8821 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8822 		struct sched_entity *se;
8823 
8824 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8825 			update_tg_load_avg(cfs_rq);
8826 
8827 			if (cfs_rq->nr_running == 0)
8828 				update_idle_cfs_rq_clock_pelt(cfs_rq);
8829 
8830 			if (cfs_rq == &rq->cfs)
8831 				decayed = true;
8832 		}
8833 
8834 		/* Propagate pending load changes to the parent, if any: */
8835 		se = cfs_rq->tg->se[cpu];
8836 		if (se && !skip_blocked_update(se))
8837 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8838 
8839 		/*
8840 		 * There can be a lot of idle CPU cgroups.  Don't let fully
8841 		 * decayed cfs_rqs linger on the list.
8842 		 */
8843 		if (cfs_rq_is_decayed(cfs_rq))
8844 			list_del_leaf_cfs_rq(cfs_rq);
8845 
8846 		/* Don't need periodic decay once load/util_avg are null */
8847 		if (cfs_rq_has_blocked(cfs_rq))
8848 			*done = false;
8849 	}
8850 
8851 	return decayed;
8852 }
8853 
8854 /*
8855  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8856  * This needs to be done in a top-down fashion because the load of a child
8857  * group is a fraction of its parents load.
8858  */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)8859 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8860 {
8861 	struct rq *rq = rq_of(cfs_rq);
8862 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8863 	unsigned long now = jiffies;
8864 	unsigned long load;
8865 
8866 	if (cfs_rq->last_h_load_update == now)
8867 		return;
8868 
8869 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
8870 	for_each_sched_entity(se) {
8871 		cfs_rq = cfs_rq_of(se);
8872 		WRITE_ONCE(cfs_rq->h_load_next, se);
8873 		if (cfs_rq->last_h_load_update == now)
8874 			break;
8875 	}
8876 
8877 	if (!se) {
8878 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8879 		cfs_rq->last_h_load_update = now;
8880 	}
8881 
8882 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8883 		load = cfs_rq->h_load;
8884 		load = div64_ul(load * se->avg.load_avg,
8885 			cfs_rq_load_avg(cfs_rq) + 1);
8886 		cfs_rq = group_cfs_rq(se);
8887 		cfs_rq->h_load = load;
8888 		cfs_rq->last_h_load_update = now;
8889 	}
8890 }
8891 
task_h_load(struct task_struct * p)8892 static unsigned long task_h_load(struct task_struct *p)
8893 {
8894 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
8895 
8896 	update_cfs_rq_h_load(cfs_rq);
8897 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8898 			cfs_rq_load_avg(cfs_rq) + 1);
8899 }
8900 #else
__update_blocked_fair(struct rq * rq,bool * done)8901 static bool __update_blocked_fair(struct rq *rq, bool *done)
8902 {
8903 	struct cfs_rq *cfs_rq = &rq->cfs;
8904 	bool decayed;
8905 
8906 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8907 	if (cfs_rq_has_blocked(cfs_rq))
8908 		*done = false;
8909 
8910 	return decayed;
8911 }
8912 
task_h_load(struct task_struct * p)8913 static unsigned long task_h_load(struct task_struct *p)
8914 {
8915 	return p->se.avg.load_avg;
8916 }
8917 #endif
8918 
update_blocked_averages(int cpu)8919 static void update_blocked_averages(int cpu)
8920 {
8921 	bool decayed = false, done = true;
8922 	struct rq *rq = cpu_rq(cpu);
8923 	struct rq_flags rf;
8924 
8925 	rq_lock_irqsave(rq, &rf);
8926 	update_blocked_load_tick(rq);
8927 	update_rq_clock(rq);
8928 
8929 	decayed |= __update_blocked_others(rq, &done);
8930 	decayed |= __update_blocked_fair(rq, &done);
8931 
8932 	update_blocked_load_status(rq, !done);
8933 	if (decayed)
8934 		cpufreq_update_util(rq, 0);
8935 	rq_unlock_irqrestore(rq, &rf);
8936 }
8937 
8938 /********** Helpers for find_busiest_group ************************/
8939 
8940 /*
8941  * sg_lb_stats - stats of a sched_group required for load_balancing
8942  */
8943 struct sg_lb_stats {
8944 	unsigned long avg_load; /*Avg load across the CPUs of the group */
8945 	unsigned long group_load; /* Total load over the CPUs of the group */
8946 	unsigned long group_capacity;
8947 	unsigned long group_util; /* Total utilization over the CPUs of the group */
8948 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8949 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
8950 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8951 	unsigned int idle_cpus;
8952 	unsigned int group_weight;
8953 	enum group_type group_type;
8954 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8955 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8956 #ifdef CONFIG_NUMA_BALANCING
8957 	unsigned int nr_numa_running;
8958 	unsigned int nr_preferred_running;
8959 #endif
8960 };
8961 
8962 /*
8963  * sd_lb_stats - Structure to store the statistics of a sched_domain
8964  *		 during load balancing.
8965  */
8966 struct sd_lb_stats {
8967 	struct sched_group *busiest;	/* Busiest group in this sd */
8968 	struct sched_group *local;	/* Local group in this sd */
8969 	unsigned long total_load;	/* Total load of all groups in sd */
8970 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
8971 	unsigned long avg_load;	/* Average load across all groups in sd */
8972 	unsigned int prefer_sibling; /* tasks should go to sibling first */
8973 
8974 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8975 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
8976 };
8977 
init_sd_lb_stats(struct sd_lb_stats * sds)8978 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8979 {
8980 	/*
8981 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8982 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8983 	 * We must however set busiest_stat::group_type and
8984 	 * busiest_stat::idle_cpus to the worst busiest group because
8985 	 * update_sd_pick_busiest() reads these before assignment.
8986 	 */
8987 	*sds = (struct sd_lb_stats){
8988 		.busiest = NULL,
8989 		.local = NULL,
8990 		.total_load = 0UL,
8991 		.total_capacity = 0UL,
8992 		.busiest_stat = {
8993 			.idle_cpus = UINT_MAX,
8994 			.group_type = group_has_spare,
8995 		},
8996 	};
8997 }
8998 
scale_rt_capacity(int cpu)8999 static unsigned long scale_rt_capacity(int cpu)
9000 {
9001 	struct rq *rq = cpu_rq(cpu);
9002 	unsigned long max = arch_scale_cpu_capacity(cpu);
9003 	unsigned long used, free;
9004 	unsigned long irq;
9005 
9006 	irq = cpu_util_irq(rq);
9007 
9008 	if (unlikely(irq >= max))
9009 		return 1;
9010 
9011 	/*
9012 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9013 	 * (running and not running) with weights 0 and 1024 respectively.
9014 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
9015 	 * average uses the actual delta max capacity(load).
9016 	 */
9017 	used = READ_ONCE(rq->avg_rt.util_avg);
9018 	used += READ_ONCE(rq->avg_dl.util_avg);
9019 	used += thermal_load_avg(rq);
9020 
9021 	if (unlikely(used >= max))
9022 		return 1;
9023 
9024 	free = max - used;
9025 
9026 	return scale_irq_capacity(free, irq, max);
9027 }
9028 
update_cpu_capacity(struct sched_domain * sd,int cpu)9029 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9030 {
9031 	unsigned long capacity = scale_rt_capacity(cpu);
9032 	struct sched_group *sdg = sd->groups;
9033 
9034 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
9035 
9036 	if (!capacity)
9037 		capacity = 1;
9038 
9039 	trace_android_rvh_update_cpu_capacity(cpu, &capacity);
9040 	cpu_rq(cpu)->cpu_capacity = capacity;
9041 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9042 
9043 	sdg->sgc->capacity = capacity;
9044 	sdg->sgc->min_capacity = capacity;
9045 	sdg->sgc->max_capacity = capacity;
9046 }
9047 
update_group_capacity(struct sched_domain * sd,int cpu)9048 void update_group_capacity(struct sched_domain *sd, int cpu)
9049 {
9050 	struct sched_domain *child = sd->child;
9051 	struct sched_group *group, *sdg = sd->groups;
9052 	unsigned long capacity, min_capacity, max_capacity;
9053 	unsigned long interval;
9054 
9055 	interval = msecs_to_jiffies(sd->balance_interval);
9056 	interval = clamp(interval, 1UL, max_load_balance_interval);
9057 	sdg->sgc->next_update = jiffies + interval;
9058 
9059 	if (!child) {
9060 		update_cpu_capacity(sd, cpu);
9061 		return;
9062 	}
9063 
9064 	capacity = 0;
9065 	min_capacity = ULONG_MAX;
9066 	max_capacity = 0;
9067 
9068 	if (child->flags & SD_OVERLAP) {
9069 		/*
9070 		 * SD_OVERLAP domains cannot assume that child groups
9071 		 * span the current group.
9072 		 */
9073 
9074 		for_each_cpu(cpu, sched_group_span(sdg)) {
9075 			unsigned long cpu_cap = capacity_of(cpu);
9076 
9077 			capacity += cpu_cap;
9078 			min_capacity = min(cpu_cap, min_capacity);
9079 			max_capacity = max(cpu_cap, max_capacity);
9080 		}
9081 	} else  {
9082 		/*
9083 		 * !SD_OVERLAP domains can assume that child groups
9084 		 * span the current group.
9085 		 */
9086 
9087 		group = child->groups;
9088 		do {
9089 			struct sched_group_capacity *sgc = group->sgc;
9090 
9091 			capacity += sgc->capacity;
9092 			min_capacity = min(sgc->min_capacity, min_capacity);
9093 			max_capacity = max(sgc->max_capacity, max_capacity);
9094 			group = group->next;
9095 		} while (group != child->groups);
9096 	}
9097 
9098 	sdg->sgc->capacity = capacity;
9099 	sdg->sgc->min_capacity = min_capacity;
9100 	sdg->sgc->max_capacity = max_capacity;
9101 }
9102 
9103 /*
9104  * Check whether the capacity of the rq has been noticeably reduced by side
9105  * activity. The imbalance_pct is used for the threshold.
9106  * Return true is the capacity is reduced
9107  */
9108 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)9109 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9110 {
9111 	return ((rq->cpu_capacity * sd->imbalance_pct) <
9112 				(rq->cpu_capacity_orig * 100));
9113 }
9114 
9115 /*
9116  * Check whether a rq has a misfit task and if it looks like we can actually
9117  * help that task: we can migrate the task to a CPU of higher capacity, or
9118  * the task's current CPU is heavily pressured.
9119  */
check_misfit_status(struct rq * rq,struct sched_domain * sd)9120 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
9121 {
9122 	return rq->misfit_task_load &&
9123 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
9124 		 check_cpu_capacity(rq, sd));
9125 }
9126 
9127 /*
9128  * Group imbalance indicates (and tries to solve) the problem where balancing
9129  * groups is inadequate due to ->cpus_ptr constraints.
9130  *
9131  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9132  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9133  * Something like:
9134  *
9135  *	{ 0 1 2 3 } { 4 5 6 7 }
9136  *	        *     * * *
9137  *
9138  * If we were to balance group-wise we'd place two tasks in the first group and
9139  * two tasks in the second group. Clearly this is undesired as it will overload
9140  * cpu 3 and leave one of the CPUs in the second group unused.
9141  *
9142  * The current solution to this issue is detecting the skew in the first group
9143  * by noticing the lower domain failed to reach balance and had difficulty
9144  * moving tasks due to affinity constraints.
9145  *
9146  * When this is so detected; this group becomes a candidate for busiest; see
9147  * update_sd_pick_busiest(). And calculate_imbalance() and
9148  * find_busiest_group() avoid some of the usual balance conditions to allow it
9149  * to create an effective group imbalance.
9150  *
9151  * This is a somewhat tricky proposition since the next run might not find the
9152  * group imbalance and decide the groups need to be balanced again. A most
9153  * subtle and fragile situation.
9154  */
9155 
sg_imbalanced(struct sched_group * group)9156 static inline int sg_imbalanced(struct sched_group *group)
9157 {
9158 	return group->sgc->imbalance;
9159 }
9160 
9161 /*
9162  * group_has_capacity returns true if the group has spare capacity that could
9163  * be used by some tasks.
9164  * We consider that a group has spare capacity if the number of task is
9165  * smaller than the number of CPUs or if the utilization is lower than the
9166  * available capacity for CFS tasks.
9167  * For the latter, we use a threshold to stabilize the state, to take into
9168  * account the variance of the tasks' load and to return true if the available
9169  * capacity in meaningful for the load balancer.
9170  * As an example, an available capacity of 1% can appear but it doesn't make
9171  * any benefit for the load balance.
9172  */
9173 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)9174 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9175 {
9176 	if (sgs->sum_nr_running < sgs->group_weight)
9177 		return true;
9178 
9179 	if ((sgs->group_capacity * imbalance_pct) <
9180 			(sgs->group_runnable * 100))
9181 		return false;
9182 
9183 	if ((sgs->group_capacity * 100) >
9184 			(sgs->group_util * imbalance_pct))
9185 		return true;
9186 
9187 	return false;
9188 }
9189 
9190 /*
9191  *  group_is_overloaded returns true if the group has more tasks than it can
9192  *  handle.
9193  *  group_is_overloaded is not equals to !group_has_capacity because a group
9194  *  with the exact right number of tasks, has no more spare capacity but is not
9195  *  overloaded so both group_has_capacity and group_is_overloaded return
9196  *  false.
9197  */
9198 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)9199 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9200 {
9201 	if (sgs->sum_nr_running <= sgs->group_weight)
9202 		return false;
9203 
9204 	if ((sgs->group_capacity * 100) <
9205 			(sgs->group_util * imbalance_pct))
9206 		return true;
9207 
9208 	if ((sgs->group_capacity * imbalance_pct) <
9209 			(sgs->group_runnable * 100))
9210 		return true;
9211 
9212 	return false;
9213 }
9214 
9215 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)9216 group_type group_classify(unsigned int imbalance_pct,
9217 			  struct sched_group *group,
9218 			  struct sg_lb_stats *sgs)
9219 {
9220 	if (group_is_overloaded(imbalance_pct, sgs))
9221 		return group_overloaded;
9222 
9223 	if (sg_imbalanced(group))
9224 		return group_imbalanced;
9225 
9226 	if (sgs->group_asym_packing)
9227 		return group_asym_packing;
9228 
9229 	if (sgs->group_misfit_task_load)
9230 		return group_misfit_task;
9231 
9232 	if (!group_has_capacity(imbalance_pct, sgs))
9233 		return group_fully_busy;
9234 
9235 	return group_has_spare;
9236 }
9237 
9238 /**
9239  * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks
9240  * @dst_cpu:	Destination CPU of the load balancing
9241  * @sds:	Load-balancing data with statistics of the local group
9242  * @sgs:	Load-balancing statistics of the candidate busiest group
9243  * @sg:		The candidate busiest group
9244  *
9245  * Check the state of the SMT siblings of both @sds::local and @sg and decide
9246  * if @dst_cpu can pull tasks.
9247  *
9248  * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of
9249  * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks
9250  * only if @dst_cpu has higher priority.
9251  *
9252  * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more
9253  * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority.
9254  * Bigger imbalances in the number of busy CPUs will be dealt with in
9255  * update_sd_pick_busiest().
9256  *
9257  * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings
9258  * of @dst_cpu are idle and @sg has lower priority.
9259  *
9260  * Return: true if @dst_cpu can pull tasks, false otherwise.
9261  */
asym_smt_can_pull_tasks(int dst_cpu,struct sd_lb_stats * sds,struct sg_lb_stats * sgs,struct sched_group * sg)9262 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds,
9263 				    struct sg_lb_stats *sgs,
9264 				    struct sched_group *sg)
9265 {
9266 #ifdef CONFIG_SCHED_SMT
9267 	bool local_is_smt, sg_is_smt;
9268 	int sg_busy_cpus;
9269 
9270 	local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY;
9271 	sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY;
9272 
9273 	sg_busy_cpus = sgs->group_weight - sgs->idle_cpus;
9274 
9275 	if (!local_is_smt) {
9276 		/*
9277 		 * If we are here, @dst_cpu is idle and does not have SMT
9278 		 * siblings. Pull tasks if candidate group has two or more
9279 		 * busy CPUs.
9280 		 */
9281 		if (sg_busy_cpus >= 2) /* implies sg_is_smt */
9282 			return true;
9283 
9284 		/*
9285 		 * @dst_cpu does not have SMT siblings. @sg may have SMT
9286 		 * siblings and only one is busy. In such case, @dst_cpu
9287 		 * can help if it has higher priority and is idle (i.e.,
9288 		 * it has no running tasks).
9289 		 */
9290 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
9291 	}
9292 
9293 	/* @dst_cpu has SMT siblings. */
9294 
9295 	if (sg_is_smt) {
9296 		int local_busy_cpus = sds->local->group_weight -
9297 				      sds->local_stat.idle_cpus;
9298 		int busy_cpus_delta = sg_busy_cpus - local_busy_cpus;
9299 
9300 		if (busy_cpus_delta == 1)
9301 			return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
9302 
9303 		return false;
9304 	}
9305 
9306 	/*
9307 	 * @sg does not have SMT siblings. Ensure that @sds::local does not end
9308 	 * up with more than one busy SMT sibling and only pull tasks if there
9309 	 * are not busy CPUs (i.e., no CPU has running tasks).
9310 	 */
9311 	if (!sds->local_stat.sum_nr_running)
9312 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
9313 
9314 	return false;
9315 #else
9316 	/* Always return false so that callers deal with non-SMT cases. */
9317 	return false;
9318 #endif
9319 }
9320 
9321 static inline bool
sched_asym(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * sgs,struct sched_group * group)9322 sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
9323 	   struct sched_group *group)
9324 {
9325 	/* Only do SMT checks if either local or candidate have SMT siblings */
9326 	if ((sds->local->flags & SD_SHARE_CPUCAPACITY) ||
9327 	    (group->flags & SD_SHARE_CPUCAPACITY))
9328 		return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group);
9329 
9330 	return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
9331 }
9332 
9333 static inline bool
sched_reduced_capacity(struct rq * rq,struct sched_domain * sd)9334 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9335 {
9336 	/*
9337 	 * When there is more than 1 task, the group_overloaded case already
9338 	 * takes care of cpu with reduced capacity
9339 	 */
9340 	if (rq->cfs.h_nr_running != 1)
9341 		return false;
9342 
9343 	return check_cpu_capacity(rq, sd);
9344 }
9345 
9346 /**
9347  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9348  * @env: The load balancing environment.
9349  * @sds: Load-balancing data with statistics of the local group.
9350  * @group: sched_group whose statistics are to be updated.
9351  * @sgs: variable to hold the statistics for this group.
9352  * @sg_status: Holds flag indicating the status of the sched_group
9353  */
update_sg_lb_stats(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * group,struct sg_lb_stats * sgs,int * sg_status)9354 static inline void update_sg_lb_stats(struct lb_env *env,
9355 				      struct sd_lb_stats *sds,
9356 				      struct sched_group *group,
9357 				      struct sg_lb_stats *sgs,
9358 				      int *sg_status)
9359 {
9360 	int i, nr_running, local_group;
9361 
9362 	memset(sgs, 0, sizeof(*sgs));
9363 
9364 	local_group = group == sds->local;
9365 
9366 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9367 		struct rq *rq = cpu_rq(i);
9368 		unsigned long load = cpu_load(rq);
9369 
9370 		sgs->group_load += load;
9371 		sgs->group_util += cpu_util_cfs(i);
9372 		sgs->group_runnable += cpu_runnable(rq);
9373 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9374 
9375 		nr_running = rq->nr_running;
9376 		sgs->sum_nr_running += nr_running;
9377 
9378 		if (nr_running > 1)
9379 			*sg_status |= SG_OVERLOAD;
9380 
9381 		if (cpu_overutilized(i))
9382 			*sg_status |= SG_OVERUTILIZED;
9383 
9384 #ifdef CONFIG_NUMA_BALANCING
9385 		sgs->nr_numa_running += rq->nr_numa_running;
9386 		sgs->nr_preferred_running += rq->nr_preferred_running;
9387 #endif
9388 		/*
9389 		 * No need to call idle_cpu() if nr_running is not 0
9390 		 */
9391 		if (!nr_running && idle_cpu(i)) {
9392 			sgs->idle_cpus++;
9393 			/* Idle cpu can't have misfit task */
9394 			continue;
9395 		}
9396 
9397 		if (local_group)
9398 			continue;
9399 
9400 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9401 			/* Check for a misfit task on the cpu */
9402 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9403 				sgs->group_misfit_task_load = rq->misfit_task_load;
9404 				*sg_status |= SG_OVERLOAD;
9405 			}
9406 		} else if ((env->idle != CPU_NOT_IDLE) &&
9407 			   sched_reduced_capacity(rq, env->sd)) {
9408 			/* Check for a task running on a CPU with reduced capacity */
9409 			if (sgs->group_misfit_task_load < load)
9410 				sgs->group_misfit_task_load = load;
9411 		}
9412 	}
9413 
9414 	sgs->group_capacity = group->sgc->capacity;
9415 
9416 	sgs->group_weight = group->group_weight;
9417 
9418 	/* Check if dst CPU is idle and preferred to this group */
9419 	if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
9420 	    env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9421 	    sched_asym(env, sds, sgs, group)) {
9422 		sgs->group_asym_packing = 1;
9423 	}
9424 
9425 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9426 
9427 	/* Computing avg_load makes sense only when group is overloaded */
9428 	if (sgs->group_type == group_overloaded)
9429 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9430 				sgs->group_capacity;
9431 }
9432 
9433 /**
9434  * update_sd_pick_busiest - return 1 on busiest group
9435  * @env: The load balancing environment.
9436  * @sds: sched_domain statistics
9437  * @sg: sched_group candidate to be checked for being the busiest
9438  * @sgs: sched_group statistics
9439  *
9440  * Determine if @sg is a busier group than the previously selected
9441  * busiest group.
9442  *
9443  * Return: %true if @sg is a busier group than the previously selected
9444  * busiest group. %false otherwise.
9445  */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)9446 static bool update_sd_pick_busiest(struct lb_env *env,
9447 				   struct sd_lb_stats *sds,
9448 				   struct sched_group *sg,
9449 				   struct sg_lb_stats *sgs)
9450 {
9451 	struct sg_lb_stats *busiest = &sds->busiest_stat;
9452 
9453 	/* Make sure that there is at least one task to pull */
9454 	if (!sgs->sum_h_nr_running)
9455 		return false;
9456 
9457 	/*
9458 	 * Don't try to pull misfit tasks we can't help.
9459 	 * We can use max_capacity here as reduction in capacity on some
9460 	 * CPUs in the group should either be possible to resolve
9461 	 * internally or be covered by avg_load imbalance (eventually).
9462 	 */
9463 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9464 	    (sgs->group_type == group_misfit_task) &&
9465 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
9466 	     sds->local_stat.group_type != group_has_spare))
9467 		return false;
9468 
9469 	if (sgs->group_type > busiest->group_type)
9470 		return true;
9471 
9472 	if (sgs->group_type < busiest->group_type)
9473 		return false;
9474 
9475 	/*
9476 	 * The candidate and the current busiest group are the same type of
9477 	 * group. Let check which one is the busiest according to the type.
9478 	 */
9479 
9480 	switch (sgs->group_type) {
9481 	case group_overloaded:
9482 		/* Select the overloaded group with highest avg_load. */
9483 		if (sgs->avg_load <= busiest->avg_load)
9484 			return false;
9485 		break;
9486 
9487 	case group_imbalanced:
9488 		/*
9489 		 * Select the 1st imbalanced group as we don't have any way to
9490 		 * choose one more than another.
9491 		 */
9492 		return false;
9493 
9494 	case group_asym_packing:
9495 		/* Prefer to move from lowest priority CPU's work */
9496 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
9497 			return false;
9498 		break;
9499 
9500 	case group_misfit_task:
9501 		/*
9502 		 * If we have more than one misfit sg go with the biggest
9503 		 * misfit.
9504 		 */
9505 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9506 			return false;
9507 		break;
9508 
9509 	case group_fully_busy:
9510 		/*
9511 		 * Select the fully busy group with highest avg_load. In
9512 		 * theory, there is no need to pull task from such kind of
9513 		 * group because tasks have all compute capacity that they need
9514 		 * but we can still improve the overall throughput by reducing
9515 		 * contention when accessing shared HW resources.
9516 		 *
9517 		 * XXX for now avg_load is not computed and always 0 so we
9518 		 * select the 1st one.
9519 		 */
9520 		if (sgs->avg_load <= busiest->avg_load)
9521 			return false;
9522 		break;
9523 
9524 	case group_has_spare:
9525 		/*
9526 		 * Select not overloaded group with lowest number of idle cpus
9527 		 * and highest number of running tasks. We could also compare
9528 		 * the spare capacity which is more stable but it can end up
9529 		 * that the group has less spare capacity but finally more idle
9530 		 * CPUs which means less opportunity to pull tasks.
9531 		 */
9532 		if (sgs->idle_cpus > busiest->idle_cpus)
9533 			return false;
9534 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
9535 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
9536 			return false;
9537 
9538 		break;
9539 	}
9540 
9541 	/*
9542 	 * Candidate sg has no more than one task per CPU and has higher
9543 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
9544 	 * throughput. Maximize throughput, power/energy consequences are not
9545 	 * considered.
9546 	 */
9547 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9548 	    (sgs->group_type <= group_fully_busy) &&
9549 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
9550 		return false;
9551 
9552 	return true;
9553 }
9554 
9555 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)9556 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9557 {
9558 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
9559 		return regular;
9560 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
9561 		return remote;
9562 	return all;
9563 }
9564 
fbq_classify_rq(struct rq * rq)9565 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9566 {
9567 	if (rq->nr_running > rq->nr_numa_running)
9568 		return regular;
9569 	if (rq->nr_running > rq->nr_preferred_running)
9570 		return remote;
9571 	return all;
9572 }
9573 #else
fbq_classify_group(struct sg_lb_stats * sgs)9574 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9575 {
9576 	return all;
9577 }
9578 
fbq_classify_rq(struct rq * rq)9579 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9580 {
9581 	return regular;
9582 }
9583 #endif /* CONFIG_NUMA_BALANCING */
9584 
9585 
9586 struct sg_lb_stats;
9587 
9588 /*
9589  * task_running_on_cpu - return 1 if @p is running on @cpu.
9590  */
9591 
task_running_on_cpu(int cpu,struct task_struct * p)9592 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
9593 {
9594 	/* Task has no contribution or is new */
9595 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
9596 		return 0;
9597 
9598 	if (task_on_rq_queued(p))
9599 		return 1;
9600 
9601 	return 0;
9602 }
9603 
9604 /**
9605  * idle_cpu_without - would a given CPU be idle without p ?
9606  * @cpu: the processor on which idleness is tested.
9607  * @p: task which should be ignored.
9608  *
9609  * Return: 1 if the CPU would be idle. 0 otherwise.
9610  */
idle_cpu_without(int cpu,struct task_struct * p)9611 static int idle_cpu_without(int cpu, struct task_struct *p)
9612 {
9613 	struct rq *rq = cpu_rq(cpu);
9614 
9615 	if (rq->curr != rq->idle && rq->curr != p)
9616 		return 0;
9617 
9618 	/*
9619 	 * rq->nr_running can't be used but an updated version without the
9620 	 * impact of p on cpu must be used instead. The updated nr_running
9621 	 * be computed and tested before calling idle_cpu_without().
9622 	 */
9623 
9624 #ifdef CONFIG_SMP
9625 	if (rq->ttwu_pending)
9626 		return 0;
9627 #endif
9628 
9629 	return 1;
9630 }
9631 
9632 /*
9633  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
9634  * @sd: The sched_domain level to look for idlest group.
9635  * @group: sched_group whose statistics are to be updated.
9636  * @sgs: variable to hold the statistics for this group.
9637  * @p: The task for which we look for the idlest group/CPU.
9638  */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)9639 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
9640 					  struct sched_group *group,
9641 					  struct sg_lb_stats *sgs,
9642 					  struct task_struct *p)
9643 {
9644 	int i, nr_running;
9645 
9646 	memset(sgs, 0, sizeof(*sgs));
9647 
9648 	/* Assume that task can't fit any CPU of the group */
9649 	if (sd->flags & SD_ASYM_CPUCAPACITY)
9650 		sgs->group_misfit_task_load = 1;
9651 
9652 	for_each_cpu(i, sched_group_span(group)) {
9653 		struct rq *rq = cpu_rq(i);
9654 		unsigned int local;
9655 
9656 		sgs->group_load += cpu_load_without(rq, p);
9657 		sgs->group_util += cpu_util_without(i, p);
9658 		sgs->group_runnable += cpu_runnable_without(rq, p);
9659 		local = task_running_on_cpu(i, p);
9660 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
9661 
9662 		nr_running = rq->nr_running - local;
9663 		sgs->sum_nr_running += nr_running;
9664 
9665 		/*
9666 		 * No need to call idle_cpu_without() if nr_running is not 0
9667 		 */
9668 		if (!nr_running && idle_cpu_without(i, p))
9669 			sgs->idle_cpus++;
9670 
9671 		/* Check if task fits in the CPU */
9672 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
9673 		    sgs->group_misfit_task_load &&
9674 		    task_fits_cpu(p, i))
9675 			sgs->group_misfit_task_load = 0;
9676 
9677 	}
9678 
9679 	sgs->group_capacity = group->sgc->capacity;
9680 
9681 	sgs->group_weight = group->group_weight;
9682 
9683 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
9684 
9685 	/*
9686 	 * Computing avg_load makes sense only when group is fully busy or
9687 	 * overloaded
9688 	 */
9689 	if (sgs->group_type == group_fully_busy ||
9690 		sgs->group_type == group_overloaded)
9691 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9692 				sgs->group_capacity;
9693 }
9694 
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)9695 static bool update_pick_idlest(struct sched_group *idlest,
9696 			       struct sg_lb_stats *idlest_sgs,
9697 			       struct sched_group *group,
9698 			       struct sg_lb_stats *sgs)
9699 {
9700 	if (sgs->group_type < idlest_sgs->group_type)
9701 		return true;
9702 
9703 	if (sgs->group_type > idlest_sgs->group_type)
9704 		return false;
9705 
9706 	/*
9707 	 * The candidate and the current idlest group are the same type of
9708 	 * group. Let check which one is the idlest according to the type.
9709 	 */
9710 
9711 	switch (sgs->group_type) {
9712 	case group_overloaded:
9713 	case group_fully_busy:
9714 		/* Select the group with lowest avg_load. */
9715 		if (idlest_sgs->avg_load <= sgs->avg_load)
9716 			return false;
9717 		break;
9718 
9719 	case group_imbalanced:
9720 	case group_asym_packing:
9721 		/* Those types are not used in the slow wakeup path */
9722 		return false;
9723 
9724 	case group_misfit_task:
9725 		/* Select group with the highest max capacity */
9726 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
9727 			return false;
9728 		break;
9729 
9730 	case group_has_spare:
9731 		/* Select group with most idle CPUs */
9732 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
9733 			return false;
9734 
9735 		/* Select group with lowest group_util */
9736 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
9737 			idlest_sgs->group_util <= sgs->group_util)
9738 			return false;
9739 
9740 		break;
9741 	}
9742 
9743 	return true;
9744 }
9745 
9746 /*
9747  * find_idlest_group() finds and returns the least busy CPU group within the
9748  * domain.
9749  *
9750  * Assumes p is allowed on at least one CPU in sd.
9751  */
9752 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)9753 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9754 {
9755 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9756 	struct sg_lb_stats local_sgs, tmp_sgs;
9757 	struct sg_lb_stats *sgs;
9758 	unsigned long imbalance;
9759 	struct sg_lb_stats idlest_sgs = {
9760 			.avg_load = UINT_MAX,
9761 			.group_type = group_overloaded,
9762 	};
9763 
9764 	do {
9765 		int local_group;
9766 
9767 		/* Skip over this group if it has no CPUs allowed */
9768 		if (!cpumask_intersects(sched_group_span(group),
9769 					p->cpus_ptr))
9770 			continue;
9771 
9772 		/* Skip over this group if no cookie matched */
9773 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9774 			continue;
9775 
9776 		local_group = cpumask_test_cpu(this_cpu,
9777 					       sched_group_span(group));
9778 
9779 		if (local_group) {
9780 			sgs = &local_sgs;
9781 			local = group;
9782 		} else {
9783 			sgs = &tmp_sgs;
9784 		}
9785 
9786 		update_sg_wakeup_stats(sd, group, sgs, p);
9787 
9788 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9789 			idlest = group;
9790 			idlest_sgs = *sgs;
9791 		}
9792 
9793 	} while (group = group->next, group != sd->groups);
9794 
9795 
9796 	/* There is no idlest group to push tasks to */
9797 	if (!idlest)
9798 		return NULL;
9799 
9800 	/* The local group has been skipped because of CPU affinity */
9801 	if (!local)
9802 		return idlest;
9803 
9804 	/*
9805 	 * If the local group is idler than the selected idlest group
9806 	 * don't try and push the task.
9807 	 */
9808 	if (local_sgs.group_type < idlest_sgs.group_type)
9809 		return NULL;
9810 
9811 	/*
9812 	 * If the local group is busier than the selected idlest group
9813 	 * try and push the task.
9814 	 */
9815 	if (local_sgs.group_type > idlest_sgs.group_type)
9816 		return idlest;
9817 
9818 	switch (local_sgs.group_type) {
9819 	case group_overloaded:
9820 	case group_fully_busy:
9821 
9822 		/* Calculate allowed imbalance based on load */
9823 		imbalance = scale_load_down(NICE_0_LOAD) *
9824 				(sd->imbalance_pct-100) / 100;
9825 
9826 		/*
9827 		 * When comparing groups across NUMA domains, it's possible for
9828 		 * the local domain to be very lightly loaded relative to the
9829 		 * remote domains but "imbalance" skews the comparison making
9830 		 * remote CPUs look much more favourable. When considering
9831 		 * cross-domain, add imbalance to the load on the remote node
9832 		 * and consider staying local.
9833 		 */
9834 
9835 		if ((sd->flags & SD_NUMA) &&
9836 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9837 			return NULL;
9838 
9839 		/*
9840 		 * If the local group is less loaded than the selected
9841 		 * idlest group don't try and push any tasks.
9842 		 */
9843 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9844 			return NULL;
9845 
9846 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9847 			return NULL;
9848 		break;
9849 
9850 	case group_imbalanced:
9851 	case group_asym_packing:
9852 		/* Those type are not used in the slow wakeup path */
9853 		return NULL;
9854 
9855 	case group_misfit_task:
9856 		/* Select group with the highest max capacity */
9857 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9858 			return NULL;
9859 		break;
9860 
9861 	case group_has_spare:
9862 #ifdef CONFIG_NUMA
9863 		if (sd->flags & SD_NUMA) {
9864 			int imb_numa_nr = sd->imb_numa_nr;
9865 #ifdef CONFIG_NUMA_BALANCING
9866 			int idlest_cpu;
9867 			/*
9868 			 * If there is spare capacity at NUMA, try to select
9869 			 * the preferred node
9870 			 */
9871 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9872 				return NULL;
9873 
9874 			idlest_cpu = cpumask_first(sched_group_span(idlest));
9875 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9876 				return idlest;
9877 #endif /* CONFIG_NUMA_BALANCING */
9878 			/*
9879 			 * Otherwise, keep the task close to the wakeup source
9880 			 * and improve locality if the number of running tasks
9881 			 * would remain below threshold where an imbalance is
9882 			 * allowed while accounting for the possibility the
9883 			 * task is pinned to a subset of CPUs. If there is a
9884 			 * real need of migration, periodic load balance will
9885 			 * take care of it.
9886 			 */
9887 			if (p->nr_cpus_allowed != NR_CPUS) {
9888 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
9889 
9890 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
9891 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
9892 			}
9893 
9894 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
9895 			if (!adjust_numa_imbalance(imbalance,
9896 						   local_sgs.sum_nr_running + 1,
9897 						   imb_numa_nr)) {
9898 				return NULL;
9899 			}
9900 		}
9901 #endif /* CONFIG_NUMA */
9902 
9903 		/*
9904 		 * Select group with highest number of idle CPUs. We could also
9905 		 * compare the utilization which is more stable but it can end
9906 		 * up that the group has less spare capacity but finally more
9907 		 * idle CPUs which means more opportunity to run task.
9908 		 */
9909 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9910 			return NULL;
9911 		break;
9912 	}
9913 
9914 	return idlest;
9915 }
9916 
update_idle_cpu_scan(struct lb_env * env,unsigned long sum_util)9917 static void update_idle_cpu_scan(struct lb_env *env,
9918 				 unsigned long sum_util)
9919 {
9920 	struct sched_domain_shared *sd_share;
9921 	int llc_weight, pct;
9922 	u64 x, y, tmp;
9923 	/*
9924 	 * Update the number of CPUs to scan in LLC domain, which could
9925 	 * be used as a hint in select_idle_cpu(). The update of sd_share
9926 	 * could be expensive because it is within a shared cache line.
9927 	 * So the write of this hint only occurs during periodic load
9928 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
9929 	 * can fire way more frequently than the former.
9930 	 */
9931 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
9932 		return;
9933 
9934 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
9935 	if (env->sd->span_weight != llc_weight)
9936 		return;
9937 
9938 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
9939 	if (!sd_share)
9940 		return;
9941 
9942 	/*
9943 	 * The number of CPUs to search drops as sum_util increases, when
9944 	 * sum_util hits 85% or above, the scan stops.
9945 	 * The reason to choose 85% as the threshold is because this is the
9946 	 * imbalance_pct(117) when a LLC sched group is overloaded.
9947 	 *
9948 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
9949 	 * and y'= y / SCHED_CAPACITY_SCALE
9950 	 *
9951 	 * x is the ratio of sum_util compared to the CPU capacity:
9952 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
9953 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
9954 	 * and the number of CPUs to scan is calculated by:
9955 	 *
9956 	 * nr_scan = llc_weight * y'                                    [2]
9957 	 *
9958 	 * When x hits the threshold of overloaded, AKA, when
9959 	 * x = 100 / pct, y drops to 0. According to [1],
9960 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
9961 	 *
9962 	 * Scale x by SCHED_CAPACITY_SCALE:
9963 	 * x' = sum_util / llc_weight;                                  [3]
9964 	 *
9965 	 * and finally [1] becomes:
9966 	 * y = SCHED_CAPACITY_SCALE -
9967 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
9968 	 *
9969 	 */
9970 	/* equation [3] */
9971 	x = sum_util;
9972 	do_div(x, llc_weight);
9973 
9974 	/* equation [4] */
9975 	pct = env->sd->imbalance_pct;
9976 	tmp = x * x * pct * pct;
9977 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
9978 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
9979 	y = SCHED_CAPACITY_SCALE - tmp;
9980 
9981 	/* equation [2] */
9982 	y *= llc_weight;
9983 	do_div(y, SCHED_CAPACITY_SCALE);
9984 	if ((int)y != sd_share->nr_idle_scan)
9985 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
9986 }
9987 
9988 /**
9989  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9990  * @env: The load balancing environment.
9991  * @sds: variable to hold the statistics for this sched_domain.
9992  */
9993 
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)9994 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9995 {
9996 	struct sched_domain *child = env->sd->child;
9997 	struct sched_group *sg = env->sd->groups;
9998 	struct sg_lb_stats *local = &sds->local_stat;
9999 	struct sg_lb_stats tmp_sgs;
10000 	unsigned long sum_util = 0;
10001 	int sg_status = 0;
10002 
10003 	do {
10004 		struct sg_lb_stats *sgs = &tmp_sgs;
10005 		int local_group;
10006 
10007 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10008 		if (local_group) {
10009 			sds->local = sg;
10010 			sgs = local;
10011 
10012 			if (env->idle != CPU_NEWLY_IDLE ||
10013 			    time_after_eq(jiffies, sg->sgc->next_update))
10014 				update_group_capacity(env->sd, env->dst_cpu);
10015 		}
10016 
10017 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
10018 
10019 		if (local_group)
10020 			goto next_group;
10021 
10022 
10023 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
10024 			sds->busiest = sg;
10025 			sds->busiest_stat = *sgs;
10026 		}
10027 
10028 next_group:
10029 		/* Now, start updating sd_lb_stats */
10030 		sds->total_load += sgs->group_load;
10031 		sds->total_capacity += sgs->group_capacity;
10032 
10033 		sum_util += sgs->group_util;
10034 		sg = sg->next;
10035 	} while (sg != env->sd->groups);
10036 
10037 	/* Tag domain that child domain prefers tasks go to siblings first */
10038 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
10039 
10040 
10041 	if (env->sd->flags & SD_NUMA)
10042 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10043 
10044 	if (!env->sd->parent) {
10045 		struct root_domain *rd = env->dst_rq->rd;
10046 
10047 		/* update overload indicator if we are at root domain */
10048 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
10049 
10050 		/* Update over-utilization (tipping point, U >= 0) indicator */
10051 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
10052 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
10053 	} else if (sg_status & SG_OVERUTILIZED) {
10054 		struct root_domain *rd = env->dst_rq->rd;
10055 
10056 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
10057 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
10058 	}
10059 
10060 	update_idle_cpu_scan(env, sum_util);
10061 }
10062 
10063 /**
10064  * calculate_imbalance - Calculate the amount of imbalance present within the
10065  *			 groups of a given sched_domain during load balance.
10066  * @env: load balance environment
10067  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10068  */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)10069 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10070 {
10071 	struct sg_lb_stats *local, *busiest;
10072 
10073 	local = &sds->local_stat;
10074 	busiest = &sds->busiest_stat;
10075 
10076 	if (busiest->group_type == group_misfit_task) {
10077 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10078 			/* Set imbalance to allow misfit tasks to be balanced. */
10079 			env->migration_type = migrate_misfit;
10080 			env->imbalance = 1;
10081 		} else {
10082 			/*
10083 			 * Set load imbalance to allow moving task from cpu
10084 			 * with reduced capacity.
10085 			 */
10086 			env->migration_type = migrate_load;
10087 			env->imbalance = busiest->group_misfit_task_load;
10088 		}
10089 		return;
10090 	}
10091 
10092 	if (busiest->group_type == group_asym_packing) {
10093 		/*
10094 		 * In case of asym capacity, we will try to migrate all load to
10095 		 * the preferred CPU.
10096 		 */
10097 		env->migration_type = migrate_task;
10098 		env->imbalance = busiest->sum_h_nr_running;
10099 		return;
10100 	}
10101 
10102 	if (busiest->group_type == group_imbalanced) {
10103 		/*
10104 		 * In the group_imb case we cannot rely on group-wide averages
10105 		 * to ensure CPU-load equilibrium, try to move any task to fix
10106 		 * the imbalance. The next load balance will take care of
10107 		 * balancing back the system.
10108 		 */
10109 		env->migration_type = migrate_task;
10110 		env->imbalance = 1;
10111 		return;
10112 	}
10113 
10114 	/*
10115 	 * Try to use spare capacity of local group without overloading it or
10116 	 * emptying busiest.
10117 	 */
10118 	if (local->group_type == group_has_spare) {
10119 		if ((busiest->group_type > group_fully_busy) &&
10120 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
10121 			/*
10122 			 * If busiest is overloaded, try to fill spare
10123 			 * capacity. This might end up creating spare capacity
10124 			 * in busiest or busiest still being overloaded but
10125 			 * there is no simple way to directly compute the
10126 			 * amount of load to migrate in order to balance the
10127 			 * system.
10128 			 */
10129 			env->migration_type = migrate_util;
10130 			env->imbalance = max(local->group_capacity, local->group_util) -
10131 					 local->group_util;
10132 
10133 			/*
10134 			 * In some cases, the group's utilization is max or even
10135 			 * higher than capacity because of migrations but the
10136 			 * local CPU is (newly) idle. There is at least one
10137 			 * waiting task in this overloaded busiest group. Let's
10138 			 * try to pull it.
10139 			 */
10140 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
10141 				env->migration_type = migrate_task;
10142 				env->imbalance = 1;
10143 			}
10144 
10145 			return;
10146 		}
10147 
10148 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
10149 			unsigned int nr_diff = busiest->sum_nr_running;
10150 			/*
10151 			 * When prefer sibling, evenly spread running tasks on
10152 			 * groups.
10153 			 */
10154 			env->migration_type = migrate_task;
10155 			lsub_positive(&nr_diff, local->sum_nr_running);
10156 			env->imbalance = nr_diff;
10157 		} else {
10158 
10159 			/*
10160 			 * If there is no overload, we just want to even the number of
10161 			 * idle cpus.
10162 			 */
10163 			env->migration_type = migrate_task;
10164 			env->imbalance = max_t(long, 0,
10165 					       (local->idle_cpus - busiest->idle_cpus));
10166 		}
10167 
10168 #ifdef CONFIG_NUMA
10169 		/* Consider allowing a small imbalance between NUMA groups */
10170 		if (env->sd->flags & SD_NUMA) {
10171 			env->imbalance = adjust_numa_imbalance(env->imbalance,
10172 							       local->sum_nr_running + 1,
10173 							       env->sd->imb_numa_nr);
10174 		}
10175 #endif
10176 
10177 		/* Number of tasks to move to restore balance */
10178 		env->imbalance >>= 1;
10179 
10180 		return;
10181 	}
10182 
10183 	/*
10184 	 * Local is fully busy but has to take more load to relieve the
10185 	 * busiest group
10186 	 */
10187 	if (local->group_type < group_overloaded) {
10188 		/*
10189 		 * Local will become overloaded so the avg_load metrics are
10190 		 * finally needed.
10191 		 */
10192 
10193 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10194 				  local->group_capacity;
10195 
10196 		/*
10197 		 * If the local group is more loaded than the selected
10198 		 * busiest group don't try to pull any tasks.
10199 		 */
10200 		if (local->avg_load >= busiest->avg_load) {
10201 			env->imbalance = 0;
10202 			return;
10203 		}
10204 
10205 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10206 				sds->total_capacity;
10207 
10208 		/*
10209 		 * If the local group is more loaded than the average system
10210 		 * load, don't try to pull any tasks.
10211 		 */
10212 		if (local->avg_load >= sds->avg_load) {
10213 			env->imbalance = 0;
10214 			return;
10215 		}
10216 
10217 	}
10218 
10219 	/*
10220 	 * Both group are or will become overloaded and we're trying to get all
10221 	 * the CPUs to the average_load, so we don't want to push ourselves
10222 	 * above the average load, nor do we wish to reduce the max loaded CPU
10223 	 * below the average load. At the same time, we also don't want to
10224 	 * reduce the group load below the group capacity. Thus we look for
10225 	 * the minimum possible imbalance.
10226 	 */
10227 	env->migration_type = migrate_load;
10228 	env->imbalance = min(
10229 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10230 		(sds->avg_load - local->avg_load) * local->group_capacity
10231 	) / SCHED_CAPACITY_SCALE;
10232 }
10233 
10234 /******* find_busiest_group() helpers end here *********************/
10235 
10236 /*
10237  * Decision matrix according to the local and busiest group type:
10238  *
10239  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10240  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
10241  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
10242  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
10243  * asym_packing     force     force      N/A    N/A  force      force
10244  * imbalanced       force     force      N/A    N/A  force      force
10245  * overloaded       force     force      N/A    N/A  force      avg_load
10246  *
10247  * N/A :      Not Applicable because already filtered while updating
10248  *            statistics.
10249  * balanced : The system is balanced for these 2 groups.
10250  * force :    Calculate the imbalance as load migration is probably needed.
10251  * avg_load : Only if imbalance is significant enough.
10252  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
10253  *            different in groups.
10254  */
10255 
10256 /**
10257  * find_busiest_group - Returns the busiest group within the sched_domain
10258  * if there is an imbalance.
10259  * @env: The load balancing environment.
10260  *
10261  * Also calculates the amount of runnable load which should be moved
10262  * to restore balance.
10263  *
10264  * Return:	- The busiest group if imbalance exists.
10265  */
find_busiest_group(struct lb_env * env)10266 static struct sched_group *find_busiest_group(struct lb_env *env)
10267 {
10268 	struct sg_lb_stats *local, *busiest;
10269 	struct sd_lb_stats sds;
10270 
10271 	init_sd_lb_stats(&sds);
10272 
10273 	/*
10274 	 * Compute the various statistics relevant for load balancing at
10275 	 * this level.
10276 	 */
10277 	update_sd_lb_stats(env, &sds);
10278 
10279 	/* There is no busy sibling group to pull tasks from */
10280 	if (!sds.busiest)
10281 		goto out_balanced;
10282 
10283 	busiest = &sds.busiest_stat;
10284 
10285 	/* Misfit tasks should be dealt with regardless of the avg load */
10286 	if (busiest->group_type == group_misfit_task)
10287 		goto force_balance;
10288 
10289 	if (sched_energy_enabled()) {
10290 		struct root_domain *rd = env->dst_rq->rd;
10291 		int out_balance = 1;
10292 
10293 		trace_android_rvh_find_busiest_group(sds.busiest, env->dst_rq,
10294 					&out_balance);
10295 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)
10296 					&& out_balance)
10297 			goto out_balanced;
10298 	}
10299 
10300 	/* ASYM feature bypasses nice load balance check */
10301 	if (busiest->group_type == group_asym_packing)
10302 		goto force_balance;
10303 
10304 	/*
10305 	 * If the busiest group is imbalanced the below checks don't
10306 	 * work because they assume all things are equal, which typically
10307 	 * isn't true due to cpus_ptr constraints and the like.
10308 	 */
10309 	if (busiest->group_type == group_imbalanced)
10310 		goto force_balance;
10311 
10312 	local = &sds.local_stat;
10313 	/*
10314 	 * If the local group is busier than the selected busiest group
10315 	 * don't try and pull any tasks.
10316 	 */
10317 	if (local->group_type > busiest->group_type)
10318 		goto out_balanced;
10319 
10320 	/*
10321 	 * When groups are overloaded, use the avg_load to ensure fairness
10322 	 * between tasks.
10323 	 */
10324 	if (local->group_type == group_overloaded) {
10325 		/*
10326 		 * If the local group is more loaded than the selected
10327 		 * busiest group don't try to pull any tasks.
10328 		 */
10329 		if (local->avg_load >= busiest->avg_load)
10330 			goto out_balanced;
10331 
10332 		/* XXX broken for overlapping NUMA groups */
10333 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10334 				sds.total_capacity;
10335 
10336 		/*
10337 		 * Don't pull any tasks if this group is already above the
10338 		 * domain average load.
10339 		 */
10340 		if (local->avg_load >= sds.avg_load)
10341 			goto out_balanced;
10342 
10343 		/*
10344 		 * If the busiest group is more loaded, use imbalance_pct to be
10345 		 * conservative.
10346 		 */
10347 		if (100 * busiest->avg_load <=
10348 				env->sd->imbalance_pct * local->avg_load)
10349 			goto out_balanced;
10350 	}
10351 
10352 	/* Try to move all excess tasks to child's sibling domain */
10353 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
10354 	    busiest->sum_nr_running > local->sum_nr_running + 1)
10355 		goto force_balance;
10356 
10357 	if (busiest->group_type != group_overloaded) {
10358 		if (env->idle == CPU_NOT_IDLE)
10359 			/*
10360 			 * If the busiest group is not overloaded (and as a
10361 			 * result the local one too) but this CPU is already
10362 			 * busy, let another idle CPU try to pull task.
10363 			 */
10364 			goto out_balanced;
10365 
10366 		if (busiest->group_weight > 1 &&
10367 		    local->idle_cpus <= (busiest->idle_cpus + 1))
10368 			/*
10369 			 * If the busiest group is not overloaded
10370 			 * and there is no imbalance between this and busiest
10371 			 * group wrt idle CPUs, it is balanced. The imbalance
10372 			 * becomes significant if the diff is greater than 1
10373 			 * otherwise we might end up to just move the imbalance
10374 			 * on another group. Of course this applies only if
10375 			 * there is more than 1 CPU per group.
10376 			 */
10377 			goto out_balanced;
10378 
10379 		if (busiest->sum_h_nr_running == 1)
10380 			/*
10381 			 * busiest doesn't have any tasks waiting to run
10382 			 */
10383 			goto out_balanced;
10384 	}
10385 
10386 force_balance:
10387 	/* Looks like there is an imbalance. Compute it */
10388 	calculate_imbalance(env, &sds);
10389 	return env->imbalance ? sds.busiest : NULL;
10390 
10391 out_balanced:
10392 	env->imbalance = 0;
10393 	return NULL;
10394 }
10395 
10396 /*
10397  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10398  */
find_busiest_queue(struct lb_env * env,struct sched_group * group)10399 static struct rq *find_busiest_queue(struct lb_env *env,
10400 				     struct sched_group *group)
10401 {
10402 	struct rq *busiest = NULL, *rq;
10403 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10404 	unsigned int busiest_nr = 0;
10405 	int i, done = 0;
10406 
10407 	trace_android_rvh_find_busiest_queue(env->dst_cpu, group, env->cpus,
10408 					     &busiest, &done);
10409 	if (done)
10410 		return busiest;
10411 
10412 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10413 		unsigned long capacity, load, util;
10414 		unsigned int nr_running;
10415 		enum fbq_type rt;
10416 
10417 		rq = cpu_rq(i);
10418 		rt = fbq_classify_rq(rq);
10419 
10420 		/*
10421 		 * We classify groups/runqueues into three groups:
10422 		 *  - regular: there are !numa tasks
10423 		 *  - remote:  there are numa tasks that run on the 'wrong' node
10424 		 *  - all:     there is no distinction
10425 		 *
10426 		 * In order to avoid migrating ideally placed numa tasks,
10427 		 * ignore those when there's better options.
10428 		 *
10429 		 * If we ignore the actual busiest queue to migrate another
10430 		 * task, the next balance pass can still reduce the busiest
10431 		 * queue by moving tasks around inside the node.
10432 		 *
10433 		 * If we cannot move enough load due to this classification
10434 		 * the next pass will adjust the group classification and
10435 		 * allow migration of more tasks.
10436 		 *
10437 		 * Both cases only affect the total convergence complexity.
10438 		 */
10439 		if (rt > env->fbq_type)
10440 			continue;
10441 
10442 		nr_running = rq->cfs.h_nr_running;
10443 		if (!nr_running)
10444 			continue;
10445 
10446 		capacity = capacity_of(i);
10447 
10448 		/*
10449 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
10450 		 * eventually lead to active_balancing high->low capacity.
10451 		 * Higher per-CPU capacity is considered better than balancing
10452 		 * average load.
10453 		 */
10454 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
10455 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
10456 		    nr_running == 1)
10457 			continue;
10458 
10459 		/* Make sure we only pull tasks from a CPU of lower priority */
10460 		if ((env->sd->flags & SD_ASYM_PACKING) &&
10461 		    sched_asym_prefer(i, env->dst_cpu) &&
10462 		    nr_running == 1)
10463 			continue;
10464 
10465 		switch (env->migration_type) {
10466 		case migrate_load:
10467 			/*
10468 			 * When comparing with load imbalance, use cpu_load()
10469 			 * which is not scaled with the CPU capacity.
10470 			 */
10471 			load = cpu_load(rq);
10472 
10473 			if (nr_running == 1 && load > env->imbalance &&
10474 			    !check_cpu_capacity(rq, env->sd))
10475 				break;
10476 
10477 			/*
10478 			 * For the load comparisons with the other CPUs,
10479 			 * consider the cpu_load() scaled with the CPU
10480 			 * capacity, so that the load can be moved away
10481 			 * from the CPU that is potentially running at a
10482 			 * lower capacity.
10483 			 *
10484 			 * Thus we're looking for max(load_i / capacity_i),
10485 			 * crosswise multiplication to rid ourselves of the
10486 			 * division works out to:
10487 			 * load_i * capacity_j > load_j * capacity_i;
10488 			 * where j is our previous maximum.
10489 			 */
10490 			if (load * busiest_capacity > busiest_load * capacity) {
10491 				busiest_load = load;
10492 				busiest_capacity = capacity;
10493 				busiest = rq;
10494 			}
10495 			break;
10496 
10497 		case migrate_util:
10498 			util = cpu_util_cfs(i);
10499 
10500 			/*
10501 			 * Don't try to pull utilization from a CPU with one
10502 			 * running task. Whatever its utilization, we will fail
10503 			 * detach the task.
10504 			 */
10505 			if (nr_running <= 1)
10506 				continue;
10507 
10508 			if (busiest_util < util) {
10509 				busiest_util = util;
10510 				busiest = rq;
10511 			}
10512 			break;
10513 
10514 		case migrate_task:
10515 			if (busiest_nr < nr_running) {
10516 				busiest_nr = nr_running;
10517 				busiest = rq;
10518 			}
10519 			break;
10520 
10521 		case migrate_misfit:
10522 			/*
10523 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
10524 			 * simply seek the "biggest" misfit task.
10525 			 */
10526 			if (rq->misfit_task_load > busiest_load) {
10527 				busiest_load = rq->misfit_task_load;
10528 				busiest = rq;
10529 			}
10530 
10531 			break;
10532 
10533 		}
10534 	}
10535 
10536 	return busiest;
10537 }
10538 
10539 /*
10540  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
10541  * so long as it is large enough.
10542  */
10543 #define MAX_PINNED_INTERVAL	512
10544 
10545 static inline bool
asym_active_balance(struct lb_env * env)10546 asym_active_balance(struct lb_env *env)
10547 {
10548 	/*
10549 	 * ASYM_PACKING needs to force migrate tasks from busy but
10550 	 * lower priority CPUs in order to pack all tasks in the
10551 	 * highest priority CPUs.
10552 	 */
10553 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
10554 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
10555 }
10556 
10557 static inline bool
imbalanced_active_balance(struct lb_env * env)10558 imbalanced_active_balance(struct lb_env *env)
10559 {
10560 	struct sched_domain *sd = env->sd;
10561 
10562 	/*
10563 	 * The imbalanced case includes the case of pinned tasks preventing a fair
10564 	 * distribution of the load on the system but also the even distribution of the
10565 	 * threads on a system with spare capacity
10566 	 */
10567 	if ((env->migration_type == migrate_task) &&
10568 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
10569 		return 1;
10570 
10571 	return 0;
10572 }
10573 
need_active_balance(struct lb_env * env)10574 static int need_active_balance(struct lb_env *env)
10575 {
10576 	struct sched_domain *sd = env->sd;
10577 
10578 	if (asym_active_balance(env))
10579 		return 1;
10580 
10581 	if (imbalanced_active_balance(env))
10582 		return 1;
10583 
10584 	/*
10585 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
10586 	 * It's worth migrating the task if the src_cpu's capacity is reduced
10587 	 * because of other sched_class or IRQs if more capacity stays
10588 	 * available on dst_cpu.
10589 	 */
10590 	if ((env->idle != CPU_NOT_IDLE) &&
10591 	    (env->src_rq->cfs.h_nr_running == 1)) {
10592 		if ((check_cpu_capacity(env->src_rq, sd)) &&
10593 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
10594 			return 1;
10595 	}
10596 
10597 	if (env->migration_type == migrate_misfit)
10598 		return 1;
10599 
10600 	return 0;
10601 }
10602 
10603 static int active_load_balance_cpu_stop(void *data);
10604 
should_we_balance(struct lb_env * env)10605 static int should_we_balance(struct lb_env *env)
10606 {
10607 	struct sched_group *sg = env->sd->groups;
10608 	int cpu;
10609 
10610 	/*
10611 	 * Ensure the balancing environment is consistent; can happen
10612 	 * when the softirq triggers 'during' hotplug.
10613 	 */
10614 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
10615 		return 0;
10616 
10617 	/*
10618 	 * In the newly idle case, we will allow all the CPUs
10619 	 * to do the newly idle load balance.
10620 	 *
10621 	 * However, we bail out if we already have tasks or a wakeup pending,
10622 	 * to optimize wakeup latency.
10623 	 */
10624 	if (env->idle == CPU_NEWLY_IDLE) {
10625 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
10626 			return 0;
10627 		return 1;
10628 	}
10629 
10630 	/* Try to find first idle CPU */
10631 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
10632 		if (!idle_cpu(cpu))
10633 			continue;
10634 
10635 		/* Are we the first idle CPU? */
10636 		return cpu == env->dst_cpu;
10637 	}
10638 
10639 	/* Are we the first CPU of this group ? */
10640 	return group_balance_cpu(sg) == env->dst_cpu;
10641 }
10642 
10643 /*
10644  * Check this_cpu to ensure it is balanced within domain. Attempt to move
10645  * tasks if there is an imbalance.
10646  */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)10647 static int load_balance(int this_cpu, struct rq *this_rq,
10648 			struct sched_domain *sd, enum cpu_idle_type idle,
10649 			int *continue_balancing)
10650 {
10651 	int ld_moved, cur_ld_moved, active_balance = 0;
10652 	struct sched_domain *sd_parent = sd->parent;
10653 	struct sched_group *group;
10654 	struct rq *busiest;
10655 	struct rq_flags rf;
10656 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
10657 	struct lb_env env = {
10658 		.sd		= sd,
10659 		.dst_cpu	= this_cpu,
10660 		.dst_rq		= this_rq,
10661 		.dst_grpmask    = group_balance_mask(sd->groups),
10662 		.idle		= idle,
10663 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
10664 		.cpus		= cpus,
10665 		.fbq_type	= all,
10666 		.tasks		= LIST_HEAD_INIT(env.tasks),
10667 	};
10668 
10669 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
10670 
10671 	schedstat_inc(sd->lb_count[idle]);
10672 
10673 redo:
10674 	if (!should_we_balance(&env)) {
10675 		*continue_balancing = 0;
10676 		goto out_balanced;
10677 	}
10678 
10679 	group = find_busiest_group(&env);
10680 	if (!group) {
10681 		schedstat_inc(sd->lb_nobusyg[idle]);
10682 		goto out_balanced;
10683 	}
10684 
10685 	busiest = find_busiest_queue(&env, group);
10686 	if (!busiest) {
10687 		schedstat_inc(sd->lb_nobusyq[idle]);
10688 		goto out_balanced;
10689 	}
10690 
10691 	WARN_ON_ONCE(busiest == env.dst_rq);
10692 
10693 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
10694 
10695 	env.src_cpu = busiest->cpu;
10696 	env.src_rq = busiest;
10697 
10698 	ld_moved = 0;
10699 	/* Clear this flag as soon as we find a pullable task */
10700 	env.flags |= LBF_ALL_PINNED;
10701 	if (busiest->nr_running > 1) {
10702 		/*
10703 		 * Attempt to move tasks. If find_busiest_group has found
10704 		 * an imbalance but busiest->nr_running <= 1, the group is
10705 		 * still unbalanced. ld_moved simply stays zero, so it is
10706 		 * correctly treated as an imbalance.
10707 		 */
10708 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
10709 
10710 more_balance:
10711 		rq_lock_irqsave(busiest, &rf);
10712 		env.src_rq_rf = &rf;
10713 		update_rq_clock(busiest);
10714 
10715 		/*
10716 		 * cur_ld_moved - load moved in current iteration
10717 		 * ld_moved     - cumulative load moved across iterations
10718 		 */
10719 		cur_ld_moved = detach_tasks(&env);
10720 
10721 		/*
10722 		 * We've detached some tasks from busiest_rq. Every
10723 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
10724 		 * unlock busiest->lock, and we are able to be sure
10725 		 * that nobody can manipulate the tasks in parallel.
10726 		 * See task_rq_lock() family for the details.
10727 		 */
10728 
10729 		rq_unlock(busiest, &rf);
10730 
10731 		if (cur_ld_moved) {
10732 			attach_tasks(&env);
10733 			ld_moved += cur_ld_moved;
10734 		}
10735 
10736 		local_irq_restore(rf.flags);
10737 
10738 		if (env.flags & LBF_NEED_BREAK) {
10739 			env.flags &= ~LBF_NEED_BREAK;
10740 			/* Stop if we tried all running tasks */
10741 			if (env.loop < busiest->nr_running)
10742 				goto more_balance;
10743 		}
10744 
10745 		/*
10746 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
10747 		 * us and move them to an alternate dst_cpu in our sched_group
10748 		 * where they can run. The upper limit on how many times we
10749 		 * iterate on same src_cpu is dependent on number of CPUs in our
10750 		 * sched_group.
10751 		 *
10752 		 * This changes load balance semantics a bit on who can move
10753 		 * load to a given_cpu. In addition to the given_cpu itself
10754 		 * (or a ilb_cpu acting on its behalf where given_cpu is
10755 		 * nohz-idle), we now have balance_cpu in a position to move
10756 		 * load to given_cpu. In rare situations, this may cause
10757 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
10758 		 * _independently_ and at _same_ time to move some load to
10759 		 * given_cpu) causing excess load to be moved to given_cpu.
10760 		 * This however should not happen so much in practice and
10761 		 * moreover subsequent load balance cycles should correct the
10762 		 * excess load moved.
10763 		 */
10764 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
10765 
10766 			/* Prevent to re-select dst_cpu via env's CPUs */
10767 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
10768 
10769 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
10770 			env.dst_cpu	 = env.new_dst_cpu;
10771 			env.flags	&= ~LBF_DST_PINNED;
10772 			env.loop	 = 0;
10773 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
10774 
10775 			/*
10776 			 * Go back to "more_balance" rather than "redo" since we
10777 			 * need to continue with same src_cpu.
10778 			 */
10779 			goto more_balance;
10780 		}
10781 
10782 		/*
10783 		 * We failed to reach balance because of affinity.
10784 		 */
10785 		if (sd_parent) {
10786 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10787 
10788 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
10789 				*group_imbalance = 1;
10790 		}
10791 
10792 		/* All tasks on this runqueue were pinned by CPU affinity */
10793 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
10794 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
10795 			/*
10796 			 * Attempting to continue load balancing at the current
10797 			 * sched_domain level only makes sense if there are
10798 			 * active CPUs remaining as possible busiest CPUs to
10799 			 * pull load from which are not contained within the
10800 			 * destination group that is receiving any migrated
10801 			 * load.
10802 			 */
10803 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
10804 				env.loop = 0;
10805 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
10806 				goto redo;
10807 			}
10808 			goto out_all_pinned;
10809 		}
10810 	}
10811 
10812 	if (!ld_moved) {
10813 		schedstat_inc(sd->lb_failed[idle]);
10814 		/*
10815 		 * Increment the failure counter only on periodic balance.
10816 		 * We do not want newidle balance, which can be very
10817 		 * frequent, pollute the failure counter causing
10818 		 * excessive cache_hot migrations and active balances.
10819 		 */
10820 		if (idle != CPU_NEWLY_IDLE)
10821 			sd->nr_balance_failed++;
10822 
10823 		if (need_active_balance(&env)) {
10824 			unsigned long flags;
10825 
10826 			raw_spin_rq_lock_irqsave(busiest, flags);
10827 
10828 			/*
10829 			 * Don't kick the active_load_balance_cpu_stop,
10830 			 * if the curr task on busiest CPU can't be
10831 			 * moved to this_cpu:
10832 			 */
10833 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
10834 				raw_spin_rq_unlock_irqrestore(busiest, flags);
10835 				goto out_one_pinned;
10836 			}
10837 
10838 			/* Record that we found at least one task that could run on this_cpu */
10839 			env.flags &= ~LBF_ALL_PINNED;
10840 
10841 			/*
10842 			 * ->active_balance synchronizes accesses to
10843 			 * ->active_balance_work.  Once set, it's cleared
10844 			 * only after active load balance is finished.
10845 			 */
10846 			if (!busiest->active_balance) {
10847 				busiest->active_balance = 1;
10848 				busiest->push_cpu = this_cpu;
10849 				active_balance = 1;
10850 			}
10851 
10852 			preempt_disable();
10853 			raw_spin_rq_unlock_irqrestore(busiest, flags);
10854 			if (active_balance) {
10855 				stop_one_cpu_nowait(cpu_of(busiest),
10856 					active_load_balance_cpu_stop, busiest,
10857 					&busiest->active_balance_work);
10858 			}
10859 			preempt_enable();
10860 		}
10861 	} else {
10862 		sd->nr_balance_failed = 0;
10863 	}
10864 
10865 	if (likely(!active_balance) || need_active_balance(&env)) {
10866 		/* We were unbalanced, so reset the balancing interval */
10867 		sd->balance_interval = sd->min_interval;
10868 	}
10869 
10870 	goto out;
10871 
10872 out_balanced:
10873 	/*
10874 	 * We reach balance although we may have faced some affinity
10875 	 * constraints. Clear the imbalance flag only if other tasks got
10876 	 * a chance to move and fix the imbalance.
10877 	 */
10878 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10879 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10880 
10881 		if (*group_imbalance)
10882 			*group_imbalance = 0;
10883 	}
10884 
10885 out_all_pinned:
10886 	/*
10887 	 * We reach balance because all tasks are pinned at this level so
10888 	 * we can't migrate them. Let the imbalance flag set so parent level
10889 	 * can try to migrate them.
10890 	 */
10891 	schedstat_inc(sd->lb_balanced[idle]);
10892 
10893 	sd->nr_balance_failed = 0;
10894 
10895 out_one_pinned:
10896 	ld_moved = 0;
10897 
10898 	/*
10899 	 * newidle_balance() disregards balance intervals, so we could
10900 	 * repeatedly reach this code, which would lead to balance_interval
10901 	 * skyrocketing in a short amount of time. Skip the balance_interval
10902 	 * increase logic to avoid that.
10903 	 */
10904 	if (env.idle == CPU_NEWLY_IDLE)
10905 		goto out;
10906 
10907 	/* tune up the balancing interval */
10908 	if ((env.flags & LBF_ALL_PINNED &&
10909 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
10910 	    sd->balance_interval < sd->max_interval)
10911 		sd->balance_interval *= 2;
10912 out:
10913 	return ld_moved;
10914 }
10915 
10916 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)10917 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10918 {
10919 	unsigned long interval = sd->balance_interval;
10920 
10921 	if (cpu_busy)
10922 		interval *= sd->busy_factor;
10923 
10924 	/* scale ms to jiffies */
10925 	interval = msecs_to_jiffies(interval);
10926 
10927 	/*
10928 	 * Reduce likelihood of busy balancing at higher domains racing with
10929 	 * balancing at lower domains by preventing their balancing periods
10930 	 * from being multiples of each other.
10931 	 */
10932 	if (cpu_busy)
10933 		interval -= 1;
10934 
10935 	interval = clamp(interval, 1UL, max_load_balance_interval);
10936 
10937 	return interval;
10938 }
10939 
10940 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)10941 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10942 {
10943 	unsigned long interval, next;
10944 
10945 	/* used by idle balance, so cpu_busy = 0 */
10946 	interval = get_sd_balance_interval(sd, 0);
10947 	next = sd->last_balance + interval;
10948 
10949 	if (time_after(*next_balance, next))
10950 		*next_balance = next;
10951 }
10952 
10953 /*
10954  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10955  * running tasks off the busiest CPU onto idle CPUs. It requires at
10956  * least 1 task to be running on each physical CPU where possible, and
10957  * avoids physical / logical imbalances.
10958  */
active_load_balance_cpu_stop(void * data)10959 static int active_load_balance_cpu_stop(void *data)
10960 {
10961 	struct rq *busiest_rq = data;
10962 	int busiest_cpu = cpu_of(busiest_rq);
10963 	int target_cpu = busiest_rq->push_cpu;
10964 	struct rq *target_rq = cpu_rq(target_cpu);
10965 	struct sched_domain *sd;
10966 	struct task_struct *p = NULL;
10967 	struct rq_flags rf;
10968 
10969 	rq_lock_irq(busiest_rq, &rf);
10970 	/*
10971 	 * Between queueing the stop-work and running it is a hole in which
10972 	 * CPUs can become inactive. We should not move tasks from or to
10973 	 * inactive CPUs.
10974 	 */
10975 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10976 		goto out_unlock;
10977 
10978 	/* Make sure the requested CPU hasn't gone down in the meantime: */
10979 	if (unlikely(busiest_cpu != smp_processor_id() ||
10980 		     !busiest_rq->active_balance))
10981 		goto out_unlock;
10982 
10983 	/* Is there any task to move? */
10984 	if (busiest_rq->nr_running <= 1)
10985 		goto out_unlock;
10986 
10987 	/*
10988 	 * This condition is "impossible", if it occurs
10989 	 * we need to fix it. Originally reported by
10990 	 * Bjorn Helgaas on a 128-CPU setup.
10991 	 */
10992 	WARN_ON_ONCE(busiest_rq == target_rq);
10993 
10994 	/* Search for an sd spanning us and the target CPU. */
10995 	rcu_read_lock();
10996 	for_each_domain(target_cpu, sd) {
10997 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10998 			break;
10999 	}
11000 
11001 	if (likely(sd)) {
11002 		struct lb_env env = {
11003 			.sd		= sd,
11004 			.dst_cpu	= target_cpu,
11005 			.dst_rq		= target_rq,
11006 			.src_cpu	= busiest_rq->cpu,
11007 			.src_rq		= busiest_rq,
11008 			.idle		= CPU_IDLE,
11009 			.flags		= LBF_ACTIVE_LB,
11010 			.src_rq_rf	= &rf,
11011 		};
11012 
11013 		schedstat_inc(sd->alb_count);
11014 		update_rq_clock(busiest_rq);
11015 
11016 		p = detach_one_task(&env);
11017 		if (p) {
11018 			schedstat_inc(sd->alb_pushed);
11019 			/* Active balancing done, reset the failure counter. */
11020 			sd->nr_balance_failed = 0;
11021 		} else {
11022 			schedstat_inc(sd->alb_failed);
11023 		}
11024 	}
11025 	rcu_read_unlock();
11026 out_unlock:
11027 	busiest_rq->active_balance = 0;
11028 	rq_unlock(busiest_rq, &rf);
11029 
11030 	if (p)
11031 		attach_one_task(target_rq, p);
11032 
11033 	local_irq_enable();
11034 
11035 	return 0;
11036 }
11037 
11038 static DEFINE_SPINLOCK(balancing);
11039 
11040 /*
11041  * Scale the max load_balance interval with the number of CPUs in the system.
11042  * This trades load-balance latency on larger machines for less cross talk.
11043  */
update_max_interval(void)11044 void update_max_interval(void)
11045 {
11046 	max_load_balance_interval = HZ*num_online_cpus()/10;
11047 }
11048 
update_newidle_cost(struct sched_domain * sd,u64 cost)11049 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11050 {
11051 	if (cost > sd->max_newidle_lb_cost) {
11052 		/*
11053 		 * Track max cost of a domain to make sure to not delay the
11054 		 * next wakeup on the CPU.
11055 		 */
11056 		sd->max_newidle_lb_cost = cost;
11057 		sd->last_decay_max_lb_cost = jiffies;
11058 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11059 		/*
11060 		 * Decay the newidle max times by ~1% per second to ensure that
11061 		 * it is not outdated and the current max cost is actually
11062 		 * shorter.
11063 		 */
11064 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11065 		sd->last_decay_max_lb_cost = jiffies;
11066 
11067 		return true;
11068 	}
11069 
11070 	return false;
11071 }
11072 
11073 /*
11074  * It checks each scheduling domain to see if it is due to be balanced,
11075  * and initiates a balancing operation if so.
11076  *
11077  * Balancing parameters are set up in init_sched_domains.
11078  */
rebalance_domains(struct rq * rq,enum cpu_idle_type idle)11079 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
11080 {
11081 	int continue_balancing = 1;
11082 	int cpu = rq->cpu;
11083 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11084 	unsigned long interval;
11085 	struct sched_domain *sd;
11086 	/* Earliest time when we have to do rebalance again */
11087 	unsigned long next_balance = jiffies + 60*HZ;
11088 	int update_next_balance = 0;
11089 	int need_serialize, need_decay = 0;
11090 	u64 max_cost = 0;
11091 
11092 	trace_android_rvh_sched_rebalance_domains(rq, &continue_balancing);
11093 	if (!continue_balancing)
11094 		return;
11095 
11096 	rcu_read_lock();
11097 	for_each_domain(cpu, sd) {
11098 		/*
11099 		 * Decay the newidle max times here because this is a regular
11100 		 * visit to all the domains.
11101 		 */
11102 		need_decay = update_newidle_cost(sd, 0);
11103 		max_cost += sd->max_newidle_lb_cost;
11104 
11105 		/*
11106 		 * Stop the load balance at this level. There is another
11107 		 * CPU in our sched group which is doing load balancing more
11108 		 * actively.
11109 		 */
11110 		if (!continue_balancing) {
11111 			if (need_decay)
11112 				continue;
11113 			break;
11114 		}
11115 
11116 		interval = get_sd_balance_interval(sd, busy);
11117 
11118 		need_serialize = sd->flags & SD_SERIALIZE;
11119 		if (need_serialize) {
11120 			if (!spin_trylock(&balancing))
11121 				goto out;
11122 		}
11123 
11124 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
11125 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
11126 				/*
11127 				 * The LBF_DST_PINNED logic could have changed
11128 				 * env->dst_cpu, so we can't know our idle
11129 				 * state even if we migrated tasks. Update it.
11130 				 */
11131 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
11132 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11133 			}
11134 			sd->last_balance = jiffies;
11135 			interval = get_sd_balance_interval(sd, busy);
11136 		}
11137 		if (need_serialize)
11138 			spin_unlock(&balancing);
11139 out:
11140 		if (time_after(next_balance, sd->last_balance + interval)) {
11141 			next_balance = sd->last_balance + interval;
11142 			update_next_balance = 1;
11143 		}
11144 	}
11145 	if (need_decay) {
11146 		/*
11147 		 * Ensure the rq-wide value also decays but keep it at a
11148 		 * reasonable floor to avoid funnies with rq->avg_idle.
11149 		 */
11150 		rq->max_idle_balance_cost =
11151 			max((u64)sysctl_sched_migration_cost, max_cost);
11152 	}
11153 	rcu_read_unlock();
11154 
11155 	/*
11156 	 * next_balance will be updated only when there is a need.
11157 	 * When the cpu is attached to null domain for ex, it will not be
11158 	 * updated.
11159 	 */
11160 	if (likely(update_next_balance))
11161 		rq->next_balance = next_balance;
11162 
11163 }
11164 
on_null_domain(struct rq * rq)11165 static inline int on_null_domain(struct rq *rq)
11166 {
11167 	return unlikely(!rcu_dereference_sched(rq->sd));
11168 }
11169 
11170 #ifdef CONFIG_NO_HZ_COMMON
11171 /*
11172  * idle load balancing details
11173  * - When one of the busy CPUs notice that there may be an idle rebalancing
11174  *   needed, they will kick the idle load balancer, which then does idle
11175  *   load balancing for all the idle CPUs.
11176  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
11177  *   anywhere yet.
11178  */
11179 
find_new_ilb(void)11180 static inline int find_new_ilb(void)
11181 {
11182 	int ilb = -1;
11183 	const struct cpumask *hk_mask;
11184 
11185 	trace_android_rvh_find_new_ilb(nohz.idle_cpus_mask, &ilb);
11186 	if (ilb >= 0)
11187 		return ilb;
11188 
11189 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11190 
11191 	for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
11192 
11193 		if (ilb == smp_processor_id())
11194 			continue;
11195 
11196 		if (idle_cpu(ilb))
11197 			return ilb;
11198 	}
11199 
11200 	return nr_cpu_ids;
11201 }
11202 
11203 /*
11204  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
11205  * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11206  */
kick_ilb(unsigned int flags)11207 static void kick_ilb(unsigned int flags)
11208 {
11209 	int ilb_cpu;
11210 
11211 	/*
11212 	 * Increase nohz.next_balance only when if full ilb is triggered but
11213 	 * not if we only update stats.
11214 	 */
11215 	if (flags & NOHZ_BALANCE_KICK)
11216 		nohz.next_balance = jiffies+1;
11217 
11218 	ilb_cpu = find_new_ilb();
11219 
11220 	if (ilb_cpu >= nr_cpu_ids)
11221 		return;
11222 
11223 	/*
11224 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11225 	 * the first flag owns it; cleared by nohz_csd_func().
11226 	 */
11227 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11228 	if (flags & NOHZ_KICK_MASK)
11229 		return;
11230 
11231 	/*
11232 	 * This way we generate an IPI on the target CPU which
11233 	 * is idle. And the softirq performing nohz idle load balance
11234 	 * will be run before returning from the IPI.
11235 	 */
11236 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11237 }
11238 
11239 /*
11240  * Current decision point for kicking the idle load balancer in the presence
11241  * of idle CPUs in the system.
11242  */
nohz_balancer_kick(struct rq * rq)11243 static void nohz_balancer_kick(struct rq *rq)
11244 {
11245 	unsigned long now = jiffies;
11246 	struct sched_domain_shared *sds;
11247 	struct sched_domain *sd;
11248 	int nr_busy, i, cpu = rq->cpu;
11249 	unsigned int flags = 0;
11250 	int done = 0;
11251 
11252 	if (unlikely(rq->idle_balance))
11253 		return;
11254 
11255 	/*
11256 	 * We may be recently in ticked or tickless idle mode. At the first
11257 	 * busy tick after returning from idle, we will update the busy stats.
11258 	 */
11259 	nohz_balance_exit_idle(rq);
11260 
11261 	/*
11262 	 * None are in tickless mode and hence no need for NOHZ idle load
11263 	 * balancing.
11264 	 */
11265 	if (likely(!atomic_read(&nohz.nr_cpus)))
11266 		return;
11267 
11268 	if (READ_ONCE(nohz.has_blocked) &&
11269 	    time_after(now, READ_ONCE(nohz.next_blocked)))
11270 		flags = NOHZ_STATS_KICK;
11271 
11272 	if (time_before(now, nohz.next_balance))
11273 		goto out;
11274 
11275 	trace_android_rvh_sched_nohz_balancer_kick(rq, &flags, &done);
11276 	if (done)
11277 		goto out;
11278 
11279 	if (rq->nr_running >= 2) {
11280 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11281 		goto out;
11282 	}
11283 
11284 	rcu_read_lock();
11285 
11286 	sd = rcu_dereference(rq->sd);
11287 	if (sd) {
11288 		/*
11289 		 * If there's a CFS task and the current CPU has reduced
11290 		 * capacity; kick the ILB to see if there's a better CPU to run
11291 		 * on.
11292 		 */
11293 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11294 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11295 			goto unlock;
11296 		}
11297 	}
11298 
11299 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11300 	if (sd) {
11301 		/*
11302 		 * When ASYM_PACKING; see if there's a more preferred CPU
11303 		 * currently idle; in which case, kick the ILB to move tasks
11304 		 * around.
11305 		 */
11306 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11307 			if (sched_asym_prefer(i, cpu)) {
11308 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11309 				goto unlock;
11310 			}
11311 		}
11312 	}
11313 
11314 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11315 	if (sd) {
11316 		/*
11317 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11318 		 * to run the misfit task on.
11319 		 */
11320 		if (check_misfit_status(rq, sd)) {
11321 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11322 			goto unlock;
11323 		}
11324 
11325 		/*
11326 		 * For asymmetric systems, we do not want to nicely balance
11327 		 * cache use, instead we want to embrace asymmetry and only
11328 		 * ensure tasks have enough CPU capacity.
11329 		 *
11330 		 * Skip the LLC logic because it's not relevant in that case.
11331 		 */
11332 		goto unlock;
11333 	}
11334 
11335 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11336 	if (sds) {
11337 		/*
11338 		 * If there is an imbalance between LLC domains (IOW we could
11339 		 * increase the overall cache use), we need some less-loaded LLC
11340 		 * domain to pull some load. Likewise, we may need to spread
11341 		 * load within the current LLC domain (e.g. packed SMT cores but
11342 		 * other CPUs are idle). We can't really know from here how busy
11343 		 * the others are - so just get a nohz balance going if it looks
11344 		 * like this LLC domain has tasks we could move.
11345 		 */
11346 		nr_busy = atomic_read(&sds->nr_busy_cpus);
11347 		if (nr_busy > 1) {
11348 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11349 			goto unlock;
11350 		}
11351 	}
11352 unlock:
11353 	rcu_read_unlock();
11354 out:
11355 	if (READ_ONCE(nohz.needs_update))
11356 		flags |= NOHZ_NEXT_KICK;
11357 
11358 	if (flags)
11359 		kick_ilb(flags);
11360 }
11361 
set_cpu_sd_state_busy(int cpu)11362 static void set_cpu_sd_state_busy(int cpu)
11363 {
11364 	struct sched_domain *sd;
11365 
11366 	rcu_read_lock();
11367 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11368 
11369 	if (!sd || !sd->nohz_idle)
11370 		goto unlock;
11371 	sd->nohz_idle = 0;
11372 
11373 	atomic_inc(&sd->shared->nr_busy_cpus);
11374 unlock:
11375 	rcu_read_unlock();
11376 }
11377 
nohz_balance_exit_idle(struct rq * rq)11378 void nohz_balance_exit_idle(struct rq *rq)
11379 {
11380 	SCHED_WARN_ON(rq != this_rq());
11381 
11382 	if (likely(!rq->nohz_tick_stopped))
11383 		return;
11384 
11385 	rq->nohz_tick_stopped = 0;
11386 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
11387 	atomic_dec(&nohz.nr_cpus);
11388 
11389 	set_cpu_sd_state_busy(rq->cpu);
11390 }
11391 
set_cpu_sd_state_idle(int cpu)11392 static void set_cpu_sd_state_idle(int cpu)
11393 {
11394 	struct sched_domain *sd;
11395 
11396 	rcu_read_lock();
11397 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11398 
11399 	if (!sd || sd->nohz_idle)
11400 		goto unlock;
11401 	sd->nohz_idle = 1;
11402 
11403 	atomic_dec(&sd->shared->nr_busy_cpus);
11404 unlock:
11405 	rcu_read_unlock();
11406 }
11407 
11408 /*
11409  * This routine will record that the CPU is going idle with tick stopped.
11410  * This info will be used in performing idle load balancing in the future.
11411  */
nohz_balance_enter_idle(int cpu)11412 void nohz_balance_enter_idle(int cpu)
11413 {
11414 	struct rq *rq = cpu_rq(cpu);
11415 
11416 	SCHED_WARN_ON(cpu != smp_processor_id());
11417 
11418 	/* If this CPU is going down, then nothing needs to be done: */
11419 	if (!cpu_active(cpu))
11420 		return;
11421 
11422 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
11423 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
11424 		return;
11425 
11426 	/*
11427 	 * Can be set safely without rq->lock held
11428 	 * If a clear happens, it will have evaluated last additions because
11429 	 * rq->lock is held during the check and the clear
11430 	 */
11431 	rq->has_blocked_load = 1;
11432 
11433 	/*
11434 	 * The tick is still stopped but load could have been added in the
11435 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
11436 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
11437 	 * of nohz.has_blocked can only happen after checking the new load
11438 	 */
11439 	if (rq->nohz_tick_stopped)
11440 		goto out;
11441 
11442 	/* If we're a completely isolated CPU, we don't play: */
11443 	if (on_null_domain(rq))
11444 		return;
11445 
11446 	rq->nohz_tick_stopped = 1;
11447 
11448 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
11449 	atomic_inc(&nohz.nr_cpus);
11450 
11451 	/*
11452 	 * Ensures that if nohz_idle_balance() fails to observe our
11453 	 * @idle_cpus_mask store, it must observe the @has_blocked
11454 	 * and @needs_update stores.
11455 	 */
11456 	smp_mb__after_atomic();
11457 
11458 	set_cpu_sd_state_idle(cpu);
11459 
11460 	WRITE_ONCE(nohz.needs_update, 1);
11461 out:
11462 	/*
11463 	 * Each time a cpu enter idle, we assume that it has blocked load and
11464 	 * enable the periodic update of the load of idle cpus
11465 	 */
11466 	WRITE_ONCE(nohz.has_blocked, 1);
11467 }
11468 
update_nohz_stats(struct rq * rq)11469 static bool update_nohz_stats(struct rq *rq)
11470 {
11471 	unsigned int cpu = rq->cpu;
11472 
11473 	if (!rq->has_blocked_load)
11474 		return false;
11475 
11476 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
11477 		return false;
11478 
11479 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
11480 		return true;
11481 
11482 	update_blocked_averages(cpu);
11483 
11484 	return rq->has_blocked_load;
11485 }
11486 
11487 /*
11488  * Internal function that runs load balance for all idle cpus. The load balance
11489  * can be a simple update of blocked load or a complete load balance with
11490  * tasks movement depending of flags.
11491  */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags)11492 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
11493 {
11494 	/* Earliest time when we have to do rebalance again */
11495 	unsigned long now = jiffies;
11496 	unsigned long next_balance = now + 60*HZ;
11497 	bool has_blocked_load = false;
11498 	int update_next_balance = 0;
11499 	int this_cpu = this_rq->cpu;
11500 	int balance_cpu;
11501 	struct rq *rq;
11502 
11503 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
11504 
11505 	/*
11506 	 * We assume there will be no idle load after this update and clear
11507 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
11508 	 * set the has_blocked flag and trigger another update of idle load.
11509 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
11510 	 * setting the flag, we are sure to not clear the state and not
11511 	 * check the load of an idle cpu.
11512 	 *
11513 	 * Same applies to idle_cpus_mask vs needs_update.
11514 	 */
11515 	if (flags & NOHZ_STATS_KICK)
11516 		WRITE_ONCE(nohz.has_blocked, 0);
11517 	if (flags & NOHZ_NEXT_KICK)
11518 		WRITE_ONCE(nohz.needs_update, 0);
11519 
11520 	/*
11521 	 * Ensures that if we miss the CPU, we must see the has_blocked
11522 	 * store from nohz_balance_enter_idle().
11523 	 */
11524 	smp_mb();
11525 
11526 	/*
11527 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
11528 	 * chance for other idle cpu to pull load.
11529 	 */
11530 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
11531 		if (!idle_cpu(balance_cpu))
11532 			continue;
11533 
11534 		/*
11535 		 * If this CPU gets work to do, stop the load balancing
11536 		 * work being done for other CPUs. Next load
11537 		 * balancing owner will pick it up.
11538 		 */
11539 		if (need_resched()) {
11540 			if (flags & NOHZ_STATS_KICK)
11541 				has_blocked_load = true;
11542 			if (flags & NOHZ_NEXT_KICK)
11543 				WRITE_ONCE(nohz.needs_update, 1);
11544 			goto abort;
11545 		}
11546 
11547 		rq = cpu_rq(balance_cpu);
11548 
11549 		if (flags & NOHZ_STATS_KICK)
11550 			has_blocked_load |= update_nohz_stats(rq);
11551 
11552 		/*
11553 		 * If time for next balance is due,
11554 		 * do the balance.
11555 		 */
11556 		if (time_after_eq(jiffies, rq->next_balance)) {
11557 			struct rq_flags rf;
11558 
11559 			rq_lock_irqsave(rq, &rf);
11560 			update_rq_clock(rq);
11561 			rq_unlock_irqrestore(rq, &rf);
11562 
11563 			if (flags & NOHZ_BALANCE_KICK)
11564 				rebalance_domains(rq, CPU_IDLE);
11565 		}
11566 
11567 		if (time_after(next_balance, rq->next_balance)) {
11568 			next_balance = rq->next_balance;
11569 			update_next_balance = 1;
11570 		}
11571 	}
11572 
11573 	/*
11574 	 * next_balance will be updated only when there is a need.
11575 	 * When the CPU is attached to null domain for ex, it will not be
11576 	 * updated.
11577 	 */
11578 	if (likely(update_next_balance))
11579 		nohz.next_balance = next_balance;
11580 
11581 	if (flags & NOHZ_STATS_KICK)
11582 		WRITE_ONCE(nohz.next_blocked,
11583 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
11584 
11585 abort:
11586 	/* There is still blocked load, enable periodic update */
11587 	if (has_blocked_load)
11588 		WRITE_ONCE(nohz.has_blocked, 1);
11589 }
11590 
11591 /*
11592  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
11593  * rebalancing for all the cpus for whom scheduler ticks are stopped.
11594  */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)11595 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11596 {
11597 	unsigned int flags = this_rq->nohz_idle_balance;
11598 
11599 	if (!flags)
11600 		return false;
11601 
11602 	this_rq->nohz_idle_balance = 0;
11603 
11604 	if (idle != CPU_IDLE)
11605 		return false;
11606 
11607 	_nohz_idle_balance(this_rq, flags);
11608 
11609 	return true;
11610 }
11611 
11612 /*
11613  * Check if we need to run the ILB for updating blocked load before entering
11614  * idle state.
11615  */
nohz_run_idle_balance(int cpu)11616 void nohz_run_idle_balance(int cpu)
11617 {
11618 	unsigned int flags;
11619 
11620 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
11621 
11622 	/*
11623 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
11624 	 * (ie NOHZ_STATS_KICK set) and will do the same.
11625 	 */
11626 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
11627 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
11628 }
11629 
nohz_newidle_balance(struct rq * this_rq)11630 static void nohz_newidle_balance(struct rq *this_rq)
11631 {
11632 	int this_cpu = this_rq->cpu;
11633 
11634 	/*
11635 	 * This CPU doesn't want to be disturbed by scheduler
11636 	 * housekeeping
11637 	 */
11638 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
11639 		return;
11640 
11641 	/* Will wake up very soon. No time for doing anything else*/
11642 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
11643 		return;
11644 
11645 	/* Don't need to update blocked load of idle CPUs*/
11646 	if (!READ_ONCE(nohz.has_blocked) ||
11647 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
11648 		return;
11649 
11650 	/*
11651 	 * Set the need to trigger ILB in order to update blocked load
11652 	 * before entering idle state.
11653 	 */
11654 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
11655 }
11656 
11657 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)11658 static inline void nohz_balancer_kick(struct rq *rq) { }
11659 
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)11660 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11661 {
11662 	return false;
11663 }
11664 
nohz_newidle_balance(struct rq * this_rq)11665 static inline void nohz_newidle_balance(struct rq *this_rq) { }
11666 #endif /* CONFIG_NO_HZ_COMMON */
11667 
11668 /*
11669  * newidle_balance is called by schedule() if this_cpu is about to become
11670  * idle. Attempts to pull tasks from other CPUs.
11671  *
11672  * Returns:
11673  *   < 0 - we released the lock and there are !fair tasks present
11674  *     0 - failed, no new tasks
11675  *   > 0 - success, new (fair) tasks present
11676  */
newidle_balance(struct rq * this_rq,struct rq_flags * rf)11677 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
11678 {
11679 	unsigned long next_balance = jiffies + HZ;
11680 	int this_cpu = this_rq->cpu;
11681 	u64 t0, t1, curr_cost = 0;
11682 	struct sched_domain *sd;
11683 	int pulled_task = 0;
11684 	int done = 0;
11685 
11686 	trace_android_rvh_sched_newidle_balance(this_rq, rf, &pulled_task, &done);
11687 	if (done)
11688 		return pulled_task;
11689 
11690 	update_misfit_status(NULL, this_rq);
11691 
11692 	/*
11693 	 * There is a task waiting to run. No need to search for one.
11694 	 * Return 0; the task will be enqueued when switching to idle.
11695 	 */
11696 	if (this_rq->ttwu_pending)
11697 		return 0;
11698 
11699 	/*
11700 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
11701 	 * measure the duration of idle_balance() as idle time.
11702 	 */
11703 	this_rq->idle_stamp = rq_clock(this_rq);
11704 
11705 	/*
11706 	 * Do not pull tasks towards !active CPUs...
11707 	 */
11708 	if (!cpu_active(this_cpu))
11709 		return 0;
11710 
11711 	/*
11712 	 * This is OK, because current is on_cpu, which avoids it being picked
11713 	 * for load-balance and preemption/IRQs are still disabled avoiding
11714 	 * further scheduler activity on it and we're being very careful to
11715 	 * re-start the picking loop.
11716 	 */
11717 	rq_unpin_lock(this_rq, rf);
11718 
11719 	rcu_read_lock();
11720 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
11721 
11722 	if (!READ_ONCE(this_rq->rd->overload) ||
11723 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
11724 
11725 		if (sd)
11726 			update_next_balance(sd, &next_balance);
11727 		rcu_read_unlock();
11728 
11729 		goto out;
11730 	}
11731 	rcu_read_unlock();
11732 
11733 	raw_spin_rq_unlock(this_rq);
11734 
11735 	t0 = sched_clock_cpu(this_cpu);
11736 	update_blocked_averages(this_cpu);
11737 
11738 	rcu_read_lock();
11739 	for_each_domain(this_cpu, sd) {
11740 		int continue_balancing = 1;
11741 		u64 domain_cost;
11742 
11743 		update_next_balance(sd, &next_balance);
11744 
11745 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
11746 			break;
11747 
11748 		if (sd->flags & SD_BALANCE_NEWIDLE) {
11749 
11750 			pulled_task = load_balance(this_cpu, this_rq,
11751 						   sd, CPU_NEWLY_IDLE,
11752 						   &continue_balancing);
11753 
11754 			t1 = sched_clock_cpu(this_cpu);
11755 			domain_cost = t1 - t0;
11756 			update_newidle_cost(sd, domain_cost);
11757 
11758 			curr_cost += domain_cost;
11759 			t0 = t1;
11760 		}
11761 
11762 		/*
11763 		 * Stop searching for tasks to pull if there are
11764 		 * now runnable tasks on this rq.
11765 		 */
11766 		if (pulled_task || this_rq->nr_running > 0 ||
11767 		    this_rq->ttwu_pending)
11768 			break;
11769 	}
11770 	rcu_read_unlock();
11771 
11772 	raw_spin_rq_lock(this_rq);
11773 
11774 	if (curr_cost > this_rq->max_idle_balance_cost)
11775 		this_rq->max_idle_balance_cost = curr_cost;
11776 
11777 	/*
11778 	 * While browsing the domains, we released the rq lock, a task could
11779 	 * have been enqueued in the meantime. Since we're not going idle,
11780 	 * pretend we pulled a task.
11781 	 */
11782 	if (this_rq->cfs.h_nr_running && !pulled_task)
11783 		pulled_task = 1;
11784 
11785 	/* Is there a task of a high priority class? */
11786 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
11787 		pulled_task = -1;
11788 
11789 out:
11790 	/* Move the next balance forward */
11791 	if (time_after(this_rq->next_balance, next_balance))
11792 		this_rq->next_balance = next_balance;
11793 
11794 	if (pulled_task)
11795 		this_rq->idle_stamp = 0;
11796 	else
11797 		nohz_newidle_balance(this_rq);
11798 
11799 	rq_repin_lock(this_rq, rf);
11800 
11801 	return pulled_task;
11802 }
11803 
11804 /*
11805  * run_rebalance_domains is triggered when needed from the scheduler tick.
11806  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
11807  */
run_rebalance_domains(struct softirq_action * h)11808 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
11809 {
11810 	struct rq *this_rq = this_rq();
11811 	enum cpu_idle_type idle = this_rq->idle_balance ?
11812 						CPU_IDLE : CPU_NOT_IDLE;
11813 
11814 	/*
11815 	 * If this CPU has a pending nohz_balance_kick, then do the
11816 	 * balancing on behalf of the other idle CPUs whose ticks are
11817 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
11818 	 * give the idle CPUs a chance to load balance. Else we may
11819 	 * load balance only within the local sched_domain hierarchy
11820 	 * and abort nohz_idle_balance altogether if we pull some load.
11821 	 */
11822 	if (nohz_idle_balance(this_rq, idle))
11823 		return;
11824 
11825 	/* normal load balance */
11826 	update_blocked_averages(this_rq->cpu);
11827 	rebalance_domains(this_rq, idle);
11828 }
11829 
11830 /*
11831  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
11832  */
trigger_load_balance(struct rq * rq)11833 void trigger_load_balance(struct rq *rq)
11834 {
11835 	/*
11836 	 * Don't need to rebalance while attached to NULL domain or
11837 	 * runqueue CPU is not active
11838 	 */
11839 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
11840 		return;
11841 
11842 	if (time_after_eq(jiffies, rq->next_balance))
11843 		raise_softirq(SCHED_SOFTIRQ);
11844 
11845 	nohz_balancer_kick(rq);
11846 }
11847 
rq_online_fair(struct rq * rq)11848 static void rq_online_fair(struct rq *rq)
11849 {
11850 	update_sysctl();
11851 
11852 	update_runtime_enabled(rq);
11853 }
11854 
rq_offline_fair(struct rq * rq)11855 static void rq_offline_fair(struct rq *rq)
11856 {
11857 	update_sysctl();
11858 
11859 	/* Ensure any throttled groups are reachable by pick_next_task */
11860 	unthrottle_offline_cfs_rqs(rq);
11861 }
11862 
11863 #endif /* CONFIG_SMP */
11864 
11865 #ifdef CONFIG_SCHED_CORE
11866 static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)11867 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
11868 {
11869 	u64 slice = sched_slice(cfs_rq_of(se), se);
11870 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
11871 
11872 	return (rtime * min_nr_tasks > slice);
11873 }
11874 
11875 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
task_tick_core(struct rq * rq,struct task_struct * curr)11876 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
11877 {
11878 	if (!sched_core_enabled(rq))
11879 		return;
11880 
11881 	/*
11882 	 * If runqueue has only one task which used up its slice and
11883 	 * if the sibling is forced idle, then trigger schedule to
11884 	 * give forced idle task a chance.
11885 	 *
11886 	 * sched_slice() considers only this active rq and it gets the
11887 	 * whole slice. But during force idle, we have siblings acting
11888 	 * like a single runqueue and hence we need to consider runnable
11889 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
11890 	 * go through the forced idle rq, but that would be a perf hit.
11891 	 * We can assume that the forced idle CPU has at least
11892 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
11893 	 * if we need to give up the CPU.
11894 	 */
11895 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
11896 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
11897 		resched_curr(rq);
11898 }
11899 
11900 /*
11901  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
11902  */
se_fi_update(struct sched_entity * se,unsigned int fi_seq,bool forceidle)11903 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
11904 {
11905 	for_each_sched_entity(se) {
11906 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11907 
11908 		if (forceidle) {
11909 			if (cfs_rq->forceidle_seq == fi_seq)
11910 				break;
11911 			cfs_rq->forceidle_seq = fi_seq;
11912 		}
11913 
11914 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
11915 	}
11916 }
11917 
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)11918 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
11919 {
11920 	struct sched_entity *se = &p->se;
11921 
11922 	if (p->sched_class != &fair_sched_class)
11923 		return;
11924 
11925 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11926 }
11927 
cfs_prio_less(struct task_struct * a,struct task_struct * b,bool in_fi)11928 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11929 {
11930 	struct rq *rq = task_rq(a);
11931 	struct sched_entity *sea = &a->se;
11932 	struct sched_entity *seb = &b->se;
11933 	struct cfs_rq *cfs_rqa;
11934 	struct cfs_rq *cfs_rqb;
11935 	s64 delta;
11936 
11937 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
11938 
11939 #ifdef CONFIG_FAIR_GROUP_SCHED
11940 	/*
11941 	 * Find an se in the hierarchy for tasks a and b, such that the se's
11942 	 * are immediate siblings.
11943 	 */
11944 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11945 		int sea_depth = sea->depth;
11946 		int seb_depth = seb->depth;
11947 
11948 		if (sea_depth >= seb_depth)
11949 			sea = parent_entity(sea);
11950 		if (sea_depth <= seb_depth)
11951 			seb = parent_entity(seb);
11952 	}
11953 
11954 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11955 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11956 
11957 	cfs_rqa = sea->cfs_rq;
11958 	cfs_rqb = seb->cfs_rq;
11959 #else
11960 	cfs_rqa = &task_rq(a)->cfs;
11961 	cfs_rqb = &task_rq(b)->cfs;
11962 #endif
11963 
11964 	/*
11965 	 * Find delta after normalizing se's vruntime with its cfs_rq's
11966 	 * min_vruntime_fi, which would have been updated in prior calls
11967 	 * to se_fi_update().
11968 	 */
11969 	delta = (s64)(sea->vruntime - seb->vruntime) +
11970 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11971 
11972 	return delta > 0;
11973 }
11974 #else
task_tick_core(struct rq * rq,struct task_struct * curr)11975 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11976 #endif
11977 
11978 /*
11979  * scheduler tick hitting a task of our scheduling class.
11980  *
11981  * NOTE: This function can be called remotely by the tick offload that
11982  * goes along full dynticks. Therefore no local assumption can be made
11983  * and everything must be accessed through the @rq and @curr passed in
11984  * parameters.
11985  */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)11986 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11987 {
11988 	struct cfs_rq *cfs_rq;
11989 	struct sched_entity *se = &curr->se;
11990 
11991 	for_each_sched_entity(se) {
11992 		cfs_rq = cfs_rq_of(se);
11993 		entity_tick(cfs_rq, se, queued);
11994 	}
11995 
11996 	if (static_branch_unlikely(&sched_numa_balancing))
11997 		task_tick_numa(rq, curr);
11998 
11999 	update_misfit_status(curr, rq);
12000 	update_overutilized_status(task_rq(curr));
12001 
12002 	task_tick_core(rq, curr);
12003 }
12004 
12005 /*
12006  * called on fork with the child task as argument from the parent's context
12007  *  - child not yet on the tasklist
12008  *  - preemption disabled
12009  */
task_fork_fair(struct task_struct * p)12010 static void task_fork_fair(struct task_struct *p)
12011 {
12012 	struct cfs_rq *cfs_rq;
12013 	struct sched_entity *se = &p->se, *curr;
12014 	struct rq *rq = this_rq();
12015 	struct rq_flags rf;
12016 
12017 	rq_lock(rq, &rf);
12018 	update_rq_clock(rq);
12019 
12020 	cfs_rq = task_cfs_rq(current);
12021 	curr = cfs_rq->curr;
12022 	if (curr) {
12023 		update_curr(cfs_rq);
12024 		se->vruntime = curr->vruntime;
12025 	}
12026 	place_entity(cfs_rq, se, 1);
12027 
12028 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
12029 		/*
12030 		 * Upon rescheduling, sched_class::put_prev_task() will place
12031 		 * 'current' within the tree based on its new key value.
12032 		 */
12033 		swap(curr->vruntime, se->vruntime);
12034 		resched_curr(rq);
12035 	}
12036 
12037 	se->vruntime -= cfs_rq->min_vruntime;
12038 	rq_unlock(rq, &rf);
12039 }
12040 
12041 /*
12042  * Priority of the task has changed. Check to see if we preempt
12043  * the current task.
12044  */
12045 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)12046 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12047 {
12048 	if (!task_on_rq_queued(p))
12049 		return;
12050 
12051 	if (rq->cfs.nr_running == 1)
12052 		return;
12053 
12054 	/*
12055 	 * Reschedule if we are currently running on this runqueue and
12056 	 * our priority decreased, or if we are not currently running on
12057 	 * this runqueue and our priority is higher than the current's
12058 	 */
12059 	if (task_current(rq, p)) {
12060 		if (p->prio > oldprio)
12061 			resched_curr(rq);
12062 	} else
12063 		check_preempt_curr(rq, p, 0);
12064 }
12065 
vruntime_normalized(struct task_struct * p)12066 static inline bool vruntime_normalized(struct task_struct *p)
12067 {
12068 	struct sched_entity *se = &p->se;
12069 
12070 	/*
12071 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
12072 	 * the dequeue_entity(.flags=0) will already have normalized the
12073 	 * vruntime.
12074 	 */
12075 	if (p->on_rq)
12076 		return true;
12077 
12078 	/*
12079 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
12080 	 * But there are some cases where it has already been normalized:
12081 	 *
12082 	 * - A forked child which is waiting for being woken up by
12083 	 *   wake_up_new_task().
12084 	 * - A task which has been woken up by try_to_wake_up() and
12085 	 *   waiting for actually being woken up by sched_ttwu_pending().
12086 	 */
12087 	if (!se->sum_exec_runtime ||
12088 	    (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
12089 		return true;
12090 
12091 	return false;
12092 }
12093 
12094 #ifdef CONFIG_FAIR_GROUP_SCHED
12095 /*
12096  * Propagate the changes of the sched_entity across the tg tree to make it
12097  * visible to the root
12098  */
propagate_entity_cfs_rq(struct sched_entity * se)12099 static void propagate_entity_cfs_rq(struct sched_entity *se)
12100 {
12101 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12102 
12103 	if (cfs_rq_throttled(cfs_rq))
12104 		return;
12105 
12106 	if (!throttled_hierarchy(cfs_rq))
12107 		list_add_leaf_cfs_rq(cfs_rq);
12108 
12109 	/* Start to propagate at parent */
12110 	se = se->parent;
12111 
12112 	for_each_sched_entity(se) {
12113 		cfs_rq = cfs_rq_of(se);
12114 
12115 		update_load_avg(cfs_rq, se, UPDATE_TG);
12116 
12117 		if (cfs_rq_throttled(cfs_rq))
12118 			break;
12119 
12120 		if (!throttled_hierarchy(cfs_rq))
12121 			list_add_leaf_cfs_rq(cfs_rq);
12122 	}
12123 }
12124 #else
propagate_entity_cfs_rq(struct sched_entity * se)12125 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12126 #endif
12127 
detach_entity_cfs_rq(struct sched_entity * se)12128 static void detach_entity_cfs_rq(struct sched_entity *se)
12129 {
12130 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12131 
12132 #ifdef CONFIG_SMP
12133 	/*
12134 	 * In case the task sched_avg hasn't been attached:
12135 	 * - A forked task which hasn't been woken up by wake_up_new_task().
12136 	 * - A task which has been woken up by try_to_wake_up() but is
12137 	 *   waiting for actually being woken up by sched_ttwu_pending().
12138 	 */
12139 	if (!se->avg.last_update_time)
12140 		return;
12141 #endif
12142 
12143 	/* Catch up with the cfs_rq and remove our load when we leave */
12144 	update_load_avg(cfs_rq, se, 0);
12145 	detach_entity_load_avg(cfs_rq, se);
12146 	update_tg_load_avg(cfs_rq);
12147 	propagate_entity_cfs_rq(se);
12148 }
12149 
attach_entity_cfs_rq(struct sched_entity * se)12150 static void attach_entity_cfs_rq(struct sched_entity *se)
12151 {
12152 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12153 
12154 	/* Synchronize entity with its cfs_rq */
12155 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12156 	attach_entity_load_avg(cfs_rq, se);
12157 	update_tg_load_avg(cfs_rq);
12158 	propagate_entity_cfs_rq(se);
12159 }
12160 
detach_task_cfs_rq(struct task_struct * p)12161 static void detach_task_cfs_rq(struct task_struct *p)
12162 {
12163 	struct sched_entity *se = &p->se;
12164 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12165 
12166 	if (!vruntime_normalized(p)) {
12167 		/*
12168 		 * Fix up our vruntime so that the current sleep doesn't
12169 		 * cause 'unlimited' sleep bonus.
12170 		 */
12171 		place_entity(cfs_rq, se, 0);
12172 		se->vruntime -= cfs_rq->min_vruntime;
12173 	}
12174 
12175 	detach_entity_cfs_rq(se);
12176 }
12177 
attach_task_cfs_rq(struct task_struct * p)12178 static void attach_task_cfs_rq(struct task_struct *p)
12179 {
12180 	struct sched_entity *se = &p->se;
12181 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12182 
12183 	attach_entity_cfs_rq(se);
12184 
12185 	if (!vruntime_normalized(p))
12186 		se->vruntime += cfs_rq->min_vruntime;
12187 }
12188 
switched_from_fair(struct rq * rq,struct task_struct * p)12189 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12190 {
12191 	detach_task_cfs_rq(p);
12192 }
12193 
switched_to_fair(struct rq * rq,struct task_struct * p)12194 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12195 {
12196 	attach_task_cfs_rq(p);
12197 
12198 	if (task_on_rq_queued(p)) {
12199 		/*
12200 		 * We were most likely switched from sched_rt, so
12201 		 * kick off the schedule if running, otherwise just see
12202 		 * if we can still preempt the current task.
12203 		 */
12204 		if (task_current(rq, p))
12205 			resched_curr(rq);
12206 		else
12207 			check_preempt_curr(rq, p, 0);
12208 	}
12209 }
12210 
12211 /* Account for a task changing its policy or group.
12212  *
12213  * This routine is mostly called to set cfs_rq->curr field when a task
12214  * migrates between groups/classes.
12215  */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)12216 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12217 {
12218 	struct sched_entity *se = &p->se;
12219 
12220 #ifdef CONFIG_SMP
12221 	if (task_on_rq_queued(p)) {
12222 		/*
12223 		 * Move the next running task to the front of the list, so our
12224 		 * cfs_tasks list becomes MRU one.
12225 		 */
12226 		list_move(&se->group_node, &rq->cfs_tasks);
12227 	}
12228 #endif
12229 
12230 	for_each_sched_entity(se) {
12231 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12232 
12233 		set_next_entity(cfs_rq, se);
12234 		/* ensure bandwidth has been allocated on our new cfs_rq */
12235 		account_cfs_rq_runtime(cfs_rq, 0);
12236 	}
12237 }
12238 
init_cfs_rq(struct cfs_rq * cfs_rq)12239 void init_cfs_rq(struct cfs_rq *cfs_rq)
12240 {
12241 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12242 	u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12243 #ifdef CONFIG_SMP
12244 	raw_spin_lock_init(&cfs_rq->removed.lock);
12245 #endif
12246 }
12247 
12248 #ifdef CONFIG_FAIR_GROUP_SCHED
task_change_group_fair(struct task_struct * p)12249 static void task_change_group_fair(struct task_struct *p)
12250 {
12251 	/*
12252 	 * We couldn't detach or attach a forked task which
12253 	 * hasn't been woken up by wake_up_new_task().
12254 	 */
12255 	if (READ_ONCE(p->__state) == TASK_NEW)
12256 		return;
12257 
12258 	detach_task_cfs_rq(p);
12259 
12260 #ifdef CONFIG_SMP
12261 	/* Tell se's cfs_rq has been changed -- migrated */
12262 	p->se.avg.last_update_time = 0;
12263 #endif
12264 	set_task_rq(p, task_cpu(p));
12265 	attach_task_cfs_rq(p);
12266 }
12267 
free_fair_sched_group(struct task_group * tg)12268 void free_fair_sched_group(struct task_group *tg)
12269 {
12270 	int i;
12271 
12272 	for_each_possible_cpu(i) {
12273 		if (tg->cfs_rq)
12274 			kfree(tg->cfs_rq[i]);
12275 		if (tg->se)
12276 			kfree(tg->se[i]);
12277 	}
12278 
12279 	kfree(tg->cfs_rq);
12280 	kfree(tg->se);
12281 }
12282 
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)12283 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12284 {
12285 	struct sched_entity *se;
12286 	struct cfs_rq *cfs_rq;
12287 	int i;
12288 
12289 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12290 	if (!tg->cfs_rq)
12291 		goto err;
12292 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12293 	if (!tg->se)
12294 		goto err;
12295 
12296 	tg->shares = NICE_0_LOAD;
12297 
12298 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
12299 
12300 	for_each_possible_cpu(i) {
12301 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12302 				      GFP_KERNEL, cpu_to_node(i));
12303 		if (!cfs_rq)
12304 			goto err;
12305 
12306 		se = kzalloc_node(sizeof(struct sched_entity_stats),
12307 				  GFP_KERNEL, cpu_to_node(i));
12308 		if (!se)
12309 			goto err_free_rq;
12310 
12311 		init_cfs_rq(cfs_rq);
12312 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12313 		init_entity_runnable_average(se);
12314 	}
12315 
12316 	return 1;
12317 
12318 err_free_rq:
12319 	kfree(cfs_rq);
12320 err:
12321 	return 0;
12322 }
12323 
online_fair_sched_group(struct task_group * tg)12324 void online_fair_sched_group(struct task_group *tg)
12325 {
12326 	struct sched_entity *se;
12327 	struct rq_flags rf;
12328 	struct rq *rq;
12329 	int i;
12330 
12331 	for_each_possible_cpu(i) {
12332 		rq = cpu_rq(i);
12333 		se = tg->se[i];
12334 		rq_lock_irq(rq, &rf);
12335 		update_rq_clock(rq);
12336 		attach_entity_cfs_rq(se);
12337 		sync_throttle(tg, i);
12338 		rq_unlock_irq(rq, &rf);
12339 	}
12340 }
12341 
unregister_fair_sched_group(struct task_group * tg)12342 void unregister_fair_sched_group(struct task_group *tg)
12343 {
12344 	unsigned long flags;
12345 	struct rq *rq;
12346 	int cpu;
12347 
12348 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12349 
12350 	for_each_possible_cpu(cpu) {
12351 		if (tg->se[cpu])
12352 			remove_entity_load_avg(tg->se[cpu]);
12353 
12354 		/*
12355 		 * Only empty task groups can be destroyed; so we can speculatively
12356 		 * check on_list without danger of it being re-added.
12357 		 */
12358 		if (!tg->cfs_rq[cpu]->on_list)
12359 			continue;
12360 
12361 		rq = cpu_rq(cpu);
12362 
12363 		raw_spin_rq_lock_irqsave(rq, flags);
12364 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12365 		raw_spin_rq_unlock_irqrestore(rq, flags);
12366 	}
12367 }
12368 
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)12369 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12370 			struct sched_entity *se, int cpu,
12371 			struct sched_entity *parent)
12372 {
12373 	struct rq *rq = cpu_rq(cpu);
12374 
12375 	cfs_rq->tg = tg;
12376 	cfs_rq->rq = rq;
12377 	init_cfs_rq_runtime(cfs_rq);
12378 
12379 	tg->cfs_rq[cpu] = cfs_rq;
12380 	tg->se[cpu] = se;
12381 
12382 	/* se could be NULL for root_task_group */
12383 	if (!se)
12384 		return;
12385 
12386 	if (!parent) {
12387 		se->cfs_rq = &rq->cfs;
12388 		se->depth = 0;
12389 	} else {
12390 		se->cfs_rq = parent->my_q;
12391 		se->depth = parent->depth + 1;
12392 	}
12393 
12394 	se->my_q = cfs_rq;
12395 	/* guarantee group entities always have weight */
12396 	update_load_set(&se->load, NICE_0_LOAD);
12397 	se->parent = parent;
12398 }
12399 
12400 static DEFINE_MUTEX(shares_mutex);
12401 
__sched_group_set_shares(struct task_group * tg,unsigned long shares)12402 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12403 {
12404 	int i;
12405 
12406 	lockdep_assert_held(&shares_mutex);
12407 
12408 	/*
12409 	 * We can't change the weight of the root cgroup.
12410 	 */
12411 	if (!tg->se[0])
12412 		return -EINVAL;
12413 
12414 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12415 
12416 	if (tg->shares == shares)
12417 		return 0;
12418 
12419 	tg->shares = shares;
12420 	for_each_possible_cpu(i) {
12421 		struct rq *rq = cpu_rq(i);
12422 		struct sched_entity *se = tg->se[i];
12423 		struct rq_flags rf;
12424 
12425 		/* Propagate contribution to hierarchy */
12426 		rq_lock_irqsave(rq, &rf);
12427 		update_rq_clock(rq);
12428 		for_each_sched_entity(se) {
12429 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
12430 			update_cfs_group(se);
12431 		}
12432 		rq_unlock_irqrestore(rq, &rf);
12433 	}
12434 
12435 	return 0;
12436 }
12437 
sched_group_set_shares(struct task_group * tg,unsigned long shares)12438 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
12439 {
12440 	int ret;
12441 
12442 	mutex_lock(&shares_mutex);
12443 	if (tg_is_idle(tg))
12444 		ret = -EINVAL;
12445 	else
12446 		ret = __sched_group_set_shares(tg, shares);
12447 	mutex_unlock(&shares_mutex);
12448 
12449 	return ret;
12450 }
12451 
sched_group_set_idle(struct task_group * tg,long idle)12452 int sched_group_set_idle(struct task_group *tg, long idle)
12453 {
12454 	int i;
12455 
12456 	if (tg == &root_task_group)
12457 		return -EINVAL;
12458 
12459 	if (idle < 0 || idle > 1)
12460 		return -EINVAL;
12461 
12462 	mutex_lock(&shares_mutex);
12463 
12464 	if (tg->idle == idle) {
12465 		mutex_unlock(&shares_mutex);
12466 		return 0;
12467 	}
12468 
12469 	tg->idle = idle;
12470 
12471 	for_each_possible_cpu(i) {
12472 		struct rq *rq = cpu_rq(i);
12473 		struct sched_entity *se = tg->se[i];
12474 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
12475 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
12476 		long idle_task_delta;
12477 		struct rq_flags rf;
12478 
12479 		rq_lock_irqsave(rq, &rf);
12480 
12481 		grp_cfs_rq->idle = idle;
12482 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
12483 			goto next_cpu;
12484 
12485 		if (se->on_rq) {
12486 			parent_cfs_rq = cfs_rq_of(se);
12487 			if (cfs_rq_is_idle(grp_cfs_rq))
12488 				parent_cfs_rq->idle_nr_running++;
12489 			else
12490 				parent_cfs_rq->idle_nr_running--;
12491 		}
12492 
12493 		idle_task_delta = grp_cfs_rq->h_nr_running -
12494 				  grp_cfs_rq->idle_h_nr_running;
12495 		if (!cfs_rq_is_idle(grp_cfs_rq))
12496 			idle_task_delta *= -1;
12497 
12498 		for_each_sched_entity(se) {
12499 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
12500 
12501 			if (!se->on_rq)
12502 				break;
12503 
12504 			cfs_rq->idle_h_nr_running += idle_task_delta;
12505 
12506 			/* Already accounted at parent level and above. */
12507 			if (cfs_rq_is_idle(cfs_rq))
12508 				break;
12509 		}
12510 
12511 next_cpu:
12512 		rq_unlock_irqrestore(rq, &rf);
12513 	}
12514 
12515 	/* Idle groups have minimum weight. */
12516 	if (tg_is_idle(tg))
12517 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
12518 	else
12519 		__sched_group_set_shares(tg, NICE_0_LOAD);
12520 
12521 	mutex_unlock(&shares_mutex);
12522 	return 0;
12523 }
12524 
12525 #else /* CONFIG_FAIR_GROUP_SCHED */
12526 
free_fair_sched_group(struct task_group * tg)12527 void free_fair_sched_group(struct task_group *tg) { }
12528 
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)12529 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12530 {
12531 	return 1;
12532 }
12533 
online_fair_sched_group(struct task_group * tg)12534 void online_fair_sched_group(struct task_group *tg) { }
12535 
unregister_fair_sched_group(struct task_group * tg)12536 void unregister_fair_sched_group(struct task_group *tg) { }
12537 
12538 #endif /* CONFIG_FAIR_GROUP_SCHED */
12539 
12540 
get_rr_interval_fair(struct rq * rq,struct task_struct * task)12541 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
12542 {
12543 	struct sched_entity *se = &task->se;
12544 	unsigned int rr_interval = 0;
12545 
12546 	/*
12547 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
12548 	 * idle runqueue:
12549 	 */
12550 	if (rq->cfs.load.weight)
12551 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
12552 
12553 	return rr_interval;
12554 }
12555 
12556 /*
12557  * All the scheduling class methods:
12558  */
12559 DEFINE_SCHED_CLASS(fair) = {
12560 
12561 	.enqueue_task		= enqueue_task_fair,
12562 	.dequeue_task		= dequeue_task_fair,
12563 	.yield_task		= yield_task_fair,
12564 	.yield_to_task		= yield_to_task_fair,
12565 
12566 	.check_preempt_curr	= check_preempt_wakeup,
12567 
12568 	.pick_next_task		= __pick_next_task_fair,
12569 	.put_prev_task		= put_prev_task_fair,
12570 	.set_next_task          = set_next_task_fair,
12571 
12572 #ifdef CONFIG_SMP
12573 	.balance		= balance_fair,
12574 	.pick_task		= pick_task_fair,
12575 	.select_task_rq		= select_task_rq_fair,
12576 	.migrate_task_rq	= migrate_task_rq_fair,
12577 
12578 	.rq_online		= rq_online_fair,
12579 	.rq_offline		= rq_offline_fair,
12580 
12581 	.task_dead		= task_dead_fair,
12582 	.set_cpus_allowed	= set_cpus_allowed_common,
12583 #endif
12584 
12585 	.task_tick		= task_tick_fair,
12586 	.task_fork		= task_fork_fair,
12587 
12588 	.prio_changed		= prio_changed_fair,
12589 	.switched_from		= switched_from_fair,
12590 	.switched_to		= switched_to_fair,
12591 
12592 	.get_rr_interval	= get_rr_interval_fair,
12593 
12594 	.update_curr		= update_curr_fair,
12595 
12596 #ifdef CONFIG_FAIR_GROUP_SCHED
12597 	.task_change_group	= task_change_group_fair,
12598 #endif
12599 
12600 #ifdef CONFIG_UCLAMP_TASK
12601 	.uclamp_enabled		= 1,
12602 #endif
12603 };
12604 
12605 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)12606 void print_cfs_stats(struct seq_file *m, int cpu)
12607 {
12608 	struct cfs_rq *cfs_rq, *pos;
12609 
12610 	rcu_read_lock();
12611 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
12612 		print_cfs_rq(m, cpu, cfs_rq);
12613 	rcu_read_unlock();
12614 }
12615 
12616 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)12617 void show_numa_stats(struct task_struct *p, struct seq_file *m)
12618 {
12619 	int node;
12620 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
12621 	struct numa_group *ng;
12622 
12623 	rcu_read_lock();
12624 	ng = rcu_dereference(p->numa_group);
12625 	for_each_online_node(node) {
12626 		if (p->numa_faults) {
12627 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
12628 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
12629 		}
12630 		if (ng) {
12631 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
12632 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
12633 		}
12634 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
12635 	}
12636 	rcu_read_unlock();
12637 }
12638 #endif /* CONFIG_NUMA_BALANCING */
12639 #endif /* CONFIG_SCHED_DEBUG */
12640 
init_sched_fair_class(void)12641 __init void init_sched_fair_class(void)
12642 {
12643 #ifdef CONFIG_SMP
12644 	int i;
12645 
12646 	for_each_possible_cpu(i) {
12647 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
12648 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
12649 	}
12650 
12651 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
12652 
12653 #ifdef CONFIG_NO_HZ_COMMON
12654 	nohz.next_balance = jiffies;
12655 	nohz.next_blocked = jiffies;
12656 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
12657 #endif
12658 #endif /* SMP */
12659 
12660 }
12661