1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50
51 #include <asm/switch_to.h>
52
53 #include <linux/sched/cond_resched.h>
54
55 #include "sched.h"
56 #include "stats.h"
57 #include "autogroup.h"
58
59 #include <trace/hooks/sched.h>
60
61 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_runtime);
62
63 /*
64 * Targeted preemption latency for CPU-bound tasks:
65 *
66 * NOTE: this latency value is not the same as the concept of
67 * 'timeslice length' - timeslices in CFS are of variable length
68 * and have no persistent notion like in traditional, time-slice
69 * based scheduling concepts.
70 *
71 * (to see the precise effective timeslice length of your workload,
72 * run vmstat and monitor the context-switches (cs) field)
73 *
74 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
75 */
76 unsigned int sysctl_sched_latency = 6000000ULL;
77 EXPORT_SYMBOL_GPL(sysctl_sched_latency);
78 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
79
80 /*
81 * The initial- and re-scaling of tunables is configurable
82 *
83 * Options are:
84 *
85 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
86 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
87 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
88 *
89 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
90 */
91 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
92
93 /*
94 * Minimal preemption granularity for CPU-bound tasks:
95 *
96 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
97 */
98 unsigned int sysctl_sched_min_granularity = 750000ULL;
99 EXPORT_SYMBOL_GPL(sysctl_sched_min_granularity);
100 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
101
102 /*
103 * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
104 * Applies only when SCHED_IDLE tasks compete with normal tasks.
105 *
106 * (default: 0.75 msec)
107 */
108 unsigned int sysctl_sched_idle_min_granularity = 750000ULL;
109 EXPORT_SYMBOL_GPL(sysctl_sched_idle_min_granularity);
110
111 /*
112 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
113 */
114 static unsigned int sched_nr_latency = 8;
115
116 /*
117 * After fork, child runs first. If set to 0 (default) then
118 * parent will (try to) run first.
119 */
120 unsigned int sysctl_sched_child_runs_first __read_mostly;
121
122 /*
123 * SCHED_OTHER wake-up granularity.
124 *
125 * This option delays the preemption effects of decoupled workloads
126 * and reduces their over-scheduling. Synchronous workloads will still
127 * have immediate wakeup/sleep latencies.
128 *
129 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
130 */
131 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
132 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
133
134 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
135
136 int sched_thermal_decay_shift;
setup_sched_thermal_decay_shift(char * str)137 static int __init setup_sched_thermal_decay_shift(char *str)
138 {
139 int _shift = 0;
140
141 if (kstrtoint(str, 0, &_shift))
142 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
143
144 sched_thermal_decay_shift = clamp(_shift, 0, 10);
145 return 1;
146 }
147 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
148
149 #ifdef CONFIG_SMP
150 /*
151 * For asym packing, by default the lower numbered CPU has higher priority.
152 */
arch_asym_cpu_priority(int cpu)153 int __weak arch_asym_cpu_priority(int cpu)
154 {
155 return -cpu;
156 }
157
158 /*
159 * The margin used when comparing utilization with CPU capacity.
160 *
161 * (default: ~20%)
162 */
163 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
164
165 /*
166 * The margin used when comparing CPU capacities.
167 * is 'cap1' noticeably greater than 'cap2'
168 *
169 * (default: ~5%)
170 */
171 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
172 #endif
173
174 #ifdef CONFIG_CFS_BANDWIDTH
175 /*
176 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
177 * each time a cfs_rq requests quota.
178 *
179 * Note: in the case that the slice exceeds the runtime remaining (either due
180 * to consumption or the quota being specified to be smaller than the slice)
181 * we will always only issue the remaining available time.
182 *
183 * (default: 5 msec, units: microseconds)
184 */
185 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
186 #endif
187
188 #ifdef CONFIG_SYSCTL
189 static struct ctl_table sched_fair_sysctls[] = {
190 {
191 .procname = "sched_child_runs_first",
192 .data = &sysctl_sched_child_runs_first,
193 .maxlen = sizeof(unsigned int),
194 .mode = 0644,
195 .proc_handler = proc_dointvec,
196 },
197 #ifdef CONFIG_CFS_BANDWIDTH
198 {
199 .procname = "sched_cfs_bandwidth_slice_us",
200 .data = &sysctl_sched_cfs_bandwidth_slice,
201 .maxlen = sizeof(unsigned int),
202 .mode = 0644,
203 .proc_handler = proc_dointvec_minmax,
204 .extra1 = SYSCTL_ONE,
205 },
206 #endif
207 {}
208 };
209
sched_fair_sysctl_init(void)210 static int __init sched_fair_sysctl_init(void)
211 {
212 register_sysctl_init("kernel", sched_fair_sysctls);
213 return 0;
214 }
215 late_initcall(sched_fair_sysctl_init);
216 #endif
217
update_load_add(struct load_weight * lw,unsigned long inc)218 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
219 {
220 lw->weight += inc;
221 lw->inv_weight = 0;
222 }
223
update_load_sub(struct load_weight * lw,unsigned long dec)224 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
225 {
226 lw->weight -= dec;
227 lw->inv_weight = 0;
228 }
229
update_load_set(struct load_weight * lw,unsigned long w)230 static inline void update_load_set(struct load_weight *lw, unsigned long w)
231 {
232 lw->weight = w;
233 lw->inv_weight = 0;
234 }
235
236 /*
237 * Increase the granularity value when there are more CPUs,
238 * because with more CPUs the 'effective latency' as visible
239 * to users decreases. But the relationship is not linear,
240 * so pick a second-best guess by going with the log2 of the
241 * number of CPUs.
242 *
243 * This idea comes from the SD scheduler of Con Kolivas:
244 */
get_update_sysctl_factor(void)245 static unsigned int get_update_sysctl_factor(void)
246 {
247 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
248 unsigned int factor;
249
250 switch (sysctl_sched_tunable_scaling) {
251 case SCHED_TUNABLESCALING_NONE:
252 factor = 1;
253 break;
254 case SCHED_TUNABLESCALING_LINEAR:
255 factor = cpus;
256 break;
257 case SCHED_TUNABLESCALING_LOG:
258 default:
259 factor = 1 + ilog2(cpus);
260 break;
261 }
262
263 return factor;
264 }
265
update_sysctl(void)266 static void update_sysctl(void)
267 {
268 unsigned int factor = get_update_sysctl_factor();
269
270 #define SET_SYSCTL(name) \
271 (sysctl_##name = (factor) * normalized_sysctl_##name)
272 SET_SYSCTL(sched_min_granularity);
273 SET_SYSCTL(sched_latency);
274 SET_SYSCTL(sched_wakeup_granularity);
275 #undef SET_SYSCTL
276 }
277
sched_init_granularity(void)278 void __init sched_init_granularity(void)
279 {
280 update_sysctl();
281 }
282
283 #define WMULT_CONST (~0U)
284 #define WMULT_SHIFT 32
285
__update_inv_weight(struct load_weight * lw)286 static void __update_inv_weight(struct load_weight *lw)
287 {
288 unsigned long w;
289
290 if (likely(lw->inv_weight))
291 return;
292
293 w = scale_load_down(lw->weight);
294
295 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
296 lw->inv_weight = 1;
297 else if (unlikely(!w))
298 lw->inv_weight = WMULT_CONST;
299 else
300 lw->inv_weight = WMULT_CONST / w;
301 }
302
303 /*
304 * delta_exec * weight / lw.weight
305 * OR
306 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
307 *
308 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
309 * we're guaranteed shift stays positive because inv_weight is guaranteed to
310 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
311 *
312 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
313 * weight/lw.weight <= 1, and therefore our shift will also be positive.
314 */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)315 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
316 {
317 u64 fact = scale_load_down(weight);
318 u32 fact_hi = (u32)(fact >> 32);
319 int shift = WMULT_SHIFT;
320 int fs;
321
322 __update_inv_weight(lw);
323
324 if (unlikely(fact_hi)) {
325 fs = fls(fact_hi);
326 shift -= fs;
327 fact >>= fs;
328 }
329
330 fact = mul_u32_u32(fact, lw->inv_weight);
331
332 fact_hi = (u32)(fact >> 32);
333 if (fact_hi) {
334 fs = fls(fact_hi);
335 shift -= fs;
336 fact >>= fs;
337 }
338
339 return mul_u64_u32_shr(delta_exec, fact, shift);
340 }
341
342
343 const struct sched_class fair_sched_class;
344
345 /**************************************************************
346 * CFS operations on generic schedulable entities:
347 */
348
349 #ifdef CONFIG_FAIR_GROUP_SCHED
350
351 /* Walk up scheduling entities hierarchy */
352 #define for_each_sched_entity(se) \
353 for (; se; se = se->parent)
354
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)355 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
356 {
357 struct rq *rq = rq_of(cfs_rq);
358 int cpu = cpu_of(rq);
359
360 if (cfs_rq->on_list)
361 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
362
363 cfs_rq->on_list = 1;
364
365 /*
366 * Ensure we either appear before our parent (if already
367 * enqueued) or force our parent to appear after us when it is
368 * enqueued. The fact that we always enqueue bottom-up
369 * reduces this to two cases and a special case for the root
370 * cfs_rq. Furthermore, it also means that we will always reset
371 * tmp_alone_branch either when the branch is connected
372 * to a tree or when we reach the top of the tree
373 */
374 if (cfs_rq->tg->parent &&
375 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
376 /*
377 * If parent is already on the list, we add the child
378 * just before. Thanks to circular linked property of
379 * the list, this means to put the child at the tail
380 * of the list that starts by parent.
381 */
382 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
383 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
384 /*
385 * The branch is now connected to its tree so we can
386 * reset tmp_alone_branch to the beginning of the
387 * list.
388 */
389 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
390 return true;
391 }
392
393 if (!cfs_rq->tg->parent) {
394 /*
395 * cfs rq without parent should be put
396 * at the tail of the list.
397 */
398 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
399 &rq->leaf_cfs_rq_list);
400 /*
401 * We have reach the top of a tree so we can reset
402 * tmp_alone_branch to the beginning of the list.
403 */
404 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
405 return true;
406 }
407
408 /*
409 * The parent has not already been added so we want to
410 * make sure that it will be put after us.
411 * tmp_alone_branch points to the begin of the branch
412 * where we will add parent.
413 */
414 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
415 /*
416 * update tmp_alone_branch to points to the new begin
417 * of the branch
418 */
419 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
420 return false;
421 }
422
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)423 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
424 {
425 if (cfs_rq->on_list) {
426 struct rq *rq = rq_of(cfs_rq);
427
428 /*
429 * With cfs_rq being unthrottled/throttled during an enqueue,
430 * it can happen the tmp_alone_branch points the a leaf that
431 * we finally want to del. In this case, tmp_alone_branch moves
432 * to the prev element but it will point to rq->leaf_cfs_rq_list
433 * at the end of the enqueue.
434 */
435 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
436 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
437
438 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
439 cfs_rq->on_list = 0;
440 }
441 }
442
assert_list_leaf_cfs_rq(struct rq * rq)443 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
444 {
445 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
446 }
447
448 /* Iterate thr' all leaf cfs_rq's on a runqueue */
449 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
450 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
451 leaf_cfs_rq_list)
452
453 /* Do the two (enqueued) entities belong to the same group ? */
454 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)455 is_same_group(struct sched_entity *se, struct sched_entity *pse)
456 {
457 if (se->cfs_rq == pse->cfs_rq)
458 return se->cfs_rq;
459
460 return NULL;
461 }
462
parent_entity(struct sched_entity * se)463 static inline struct sched_entity *parent_entity(struct sched_entity *se)
464 {
465 return se->parent;
466 }
467
468 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)469 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
470 {
471 int se_depth, pse_depth;
472
473 /*
474 * preemption test can be made between sibling entities who are in the
475 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
476 * both tasks until we find their ancestors who are siblings of common
477 * parent.
478 */
479
480 /* First walk up until both entities are at same depth */
481 se_depth = (*se)->depth;
482 pse_depth = (*pse)->depth;
483
484 while (se_depth > pse_depth) {
485 se_depth--;
486 *se = parent_entity(*se);
487 }
488
489 while (pse_depth > se_depth) {
490 pse_depth--;
491 *pse = parent_entity(*pse);
492 }
493
494 while (!is_same_group(*se, *pse)) {
495 *se = parent_entity(*se);
496 *pse = parent_entity(*pse);
497 }
498 }
499
tg_is_idle(struct task_group * tg)500 static int tg_is_idle(struct task_group *tg)
501 {
502 return tg->idle > 0;
503 }
504
cfs_rq_is_idle(struct cfs_rq * cfs_rq)505 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
506 {
507 return cfs_rq->idle > 0;
508 }
509
se_is_idle(struct sched_entity * se)510 static int se_is_idle(struct sched_entity *se)
511 {
512 if (entity_is_task(se))
513 return task_has_idle_policy(task_of(se));
514 return cfs_rq_is_idle(group_cfs_rq(se));
515 }
516
517 #else /* !CONFIG_FAIR_GROUP_SCHED */
518
519 #define for_each_sched_entity(se) \
520 for (; se; se = NULL)
521
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)522 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
523 {
524 return true;
525 }
526
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)527 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
528 {
529 }
530
assert_list_leaf_cfs_rq(struct rq * rq)531 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
532 {
533 }
534
535 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
536 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
537
parent_entity(struct sched_entity * se)538 static inline struct sched_entity *parent_entity(struct sched_entity *se)
539 {
540 return NULL;
541 }
542
543 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)544 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
545 {
546 }
547
tg_is_idle(struct task_group * tg)548 static inline int tg_is_idle(struct task_group *tg)
549 {
550 return 0;
551 }
552
cfs_rq_is_idle(struct cfs_rq * cfs_rq)553 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
554 {
555 return 0;
556 }
557
se_is_idle(struct sched_entity * se)558 static int se_is_idle(struct sched_entity *se)
559 {
560 return 0;
561 }
562
563 #endif /* CONFIG_FAIR_GROUP_SCHED */
564
565 static __always_inline
566 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
567
568 /**************************************************************
569 * Scheduling class tree data structure manipulation methods:
570 */
571
max_vruntime(u64 max_vruntime,u64 vruntime)572 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
573 {
574 s64 delta = (s64)(vruntime - max_vruntime);
575 if (delta > 0)
576 max_vruntime = vruntime;
577
578 return max_vruntime;
579 }
580
min_vruntime(u64 min_vruntime,u64 vruntime)581 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
582 {
583 s64 delta = (s64)(vruntime - min_vruntime);
584 if (delta < 0)
585 min_vruntime = vruntime;
586
587 return min_vruntime;
588 }
589
entity_before(struct sched_entity * a,struct sched_entity * b)590 static inline bool entity_before(struct sched_entity *a,
591 struct sched_entity *b)
592 {
593 return (s64)(a->vruntime - b->vruntime) < 0;
594 }
595
596 #define __node_2_se(node) \
597 rb_entry((node), struct sched_entity, run_node)
598
update_min_vruntime(struct cfs_rq * cfs_rq)599 static void update_min_vruntime(struct cfs_rq *cfs_rq)
600 {
601 struct sched_entity *curr = cfs_rq->curr;
602 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
603
604 u64 vruntime = cfs_rq->min_vruntime;
605
606 if (curr) {
607 if (curr->on_rq)
608 vruntime = curr->vruntime;
609 else
610 curr = NULL;
611 }
612
613 if (leftmost) { /* non-empty tree */
614 struct sched_entity *se = __node_2_se(leftmost);
615
616 if (!curr)
617 vruntime = se->vruntime;
618 else
619 vruntime = min_vruntime(vruntime, se->vruntime);
620 }
621
622 /* ensure we never gain time by being placed backwards. */
623 u64_u32_store(cfs_rq->min_vruntime,
624 max_vruntime(cfs_rq->min_vruntime, vruntime));
625 }
626
__entity_less(struct rb_node * a,const struct rb_node * b)627 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
628 {
629 return entity_before(__node_2_se(a), __node_2_se(b));
630 }
631
632 /*
633 * Enqueue an entity into the rb-tree:
634 */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)635 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
636 {
637 trace_android_rvh_enqueue_entity(cfs_rq, se);
638 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
639 }
640
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)641 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
642 {
643 trace_android_rvh_dequeue_entity(cfs_rq, se);
644 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
645 }
646
__pick_first_entity(struct cfs_rq * cfs_rq)647 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
648 {
649 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
650
651 if (!left)
652 return NULL;
653
654 return __node_2_se(left);
655 }
656
__pick_next_entity(struct sched_entity * se)657 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
658 {
659 struct rb_node *next = rb_next(&se->run_node);
660
661 if (!next)
662 return NULL;
663
664 return __node_2_se(next);
665 }
666
667 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)668 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
669 {
670 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
671
672 if (!last)
673 return NULL;
674
675 return __node_2_se(last);
676 }
677
678 /**************************************************************
679 * Scheduling class statistics methods:
680 */
681
sched_update_scaling(void)682 int sched_update_scaling(void)
683 {
684 unsigned int factor = get_update_sysctl_factor();
685
686 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
687 sysctl_sched_min_granularity);
688
689 #define WRT_SYSCTL(name) \
690 (normalized_sysctl_##name = sysctl_##name / (factor))
691 WRT_SYSCTL(sched_min_granularity);
692 WRT_SYSCTL(sched_latency);
693 WRT_SYSCTL(sched_wakeup_granularity);
694 #undef WRT_SYSCTL
695
696 return 0;
697 }
698 #endif
699
700 /*
701 * delta /= w
702 */
calc_delta_fair(u64 delta,struct sched_entity * se)703 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
704 {
705 if (unlikely(se->load.weight != NICE_0_LOAD))
706 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
707
708 return delta;
709 }
710
711 /*
712 * The idea is to set a period in which each task runs once.
713 *
714 * When there are too many tasks (sched_nr_latency) we have to stretch
715 * this period because otherwise the slices get too small.
716 *
717 * p = (nr <= nl) ? l : l*nr/nl
718 */
__sched_period(unsigned long nr_running)719 static u64 __sched_period(unsigned long nr_running)
720 {
721 if (unlikely(nr_running > sched_nr_latency))
722 return nr_running * sysctl_sched_min_granularity;
723 else
724 return sysctl_sched_latency;
725 }
726
727 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
728
729 /*
730 * We calculate the wall-time slice from the period by taking a part
731 * proportional to the weight.
732 *
733 * s = p*P[w/rw]
734 */
sched_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)735 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
736 {
737 unsigned int nr_running = cfs_rq->nr_running;
738 struct sched_entity *init_se = se;
739 unsigned int min_gran;
740 u64 slice;
741
742 if (sched_feat(ALT_PERIOD))
743 nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
744
745 slice = __sched_period(nr_running + !se->on_rq);
746
747 for_each_sched_entity(se) {
748 struct load_weight *load;
749 struct load_weight lw;
750 struct cfs_rq *qcfs_rq;
751
752 qcfs_rq = cfs_rq_of(se);
753 load = &qcfs_rq->load;
754
755 if (unlikely(!se->on_rq)) {
756 lw = qcfs_rq->load;
757
758 update_load_add(&lw, se->load.weight);
759 load = &lw;
760 }
761 slice = __calc_delta(slice, se->load.weight, load);
762 }
763
764 if (sched_feat(BASE_SLICE)) {
765 if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
766 min_gran = sysctl_sched_idle_min_granularity;
767 else
768 min_gran = sysctl_sched_min_granularity;
769
770 slice = max_t(u64, slice, min_gran);
771 }
772
773 return slice;
774 }
775
776 /*
777 * We calculate the vruntime slice of a to-be-inserted task.
778 *
779 * vs = s/w
780 */
sched_vslice(struct cfs_rq * cfs_rq,struct sched_entity * se)781 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
782 {
783 return calc_delta_fair(sched_slice(cfs_rq, se), se);
784 }
785
786 #include "pelt.h"
787 #ifdef CONFIG_SMP
788
789 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
790 static unsigned long task_h_load(struct task_struct *p);
791 static unsigned long capacity_of(int cpu);
792
793 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)794 void init_entity_runnable_average(struct sched_entity *se)
795 {
796 struct sched_avg *sa = &se->avg;
797
798 memset(sa, 0, sizeof(*sa));
799
800 /*
801 * Tasks are initialized with full load to be seen as heavy tasks until
802 * they get a chance to stabilize to their real load level.
803 * Group entities are initialized with zero load to reflect the fact that
804 * nothing has been attached to the task group yet.
805 */
806 if (entity_is_task(se))
807 sa->load_avg = scale_load_down(se->load.weight);
808
809 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
810 }
811
812 /*
813 * With new tasks being created, their initial util_avgs are extrapolated
814 * based on the cfs_rq's current util_avg:
815 *
816 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
817 *
818 * However, in many cases, the above util_avg does not give a desired
819 * value. Moreover, the sum of the util_avgs may be divergent, such
820 * as when the series is a harmonic series.
821 *
822 * To solve this problem, we also cap the util_avg of successive tasks to
823 * only 1/2 of the left utilization budget:
824 *
825 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
826 *
827 * where n denotes the nth task and cpu_scale the CPU capacity.
828 *
829 * For example, for a CPU with 1024 of capacity, a simplest series from
830 * the beginning would be like:
831 *
832 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
833 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
834 *
835 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
836 * if util_avg > util_avg_cap.
837 */
post_init_entity_util_avg(struct task_struct * p)838 void post_init_entity_util_avg(struct task_struct *p)
839 {
840 struct sched_entity *se = &p->se;
841 struct cfs_rq *cfs_rq = cfs_rq_of(se);
842 struct sched_avg *sa = &se->avg;
843 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
844 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
845
846 if (p->sched_class != &fair_sched_class) {
847 /*
848 * For !fair tasks do:
849 *
850 update_cfs_rq_load_avg(now, cfs_rq);
851 attach_entity_load_avg(cfs_rq, se);
852 switched_from_fair(rq, p);
853 *
854 * such that the next switched_to_fair() has the
855 * expected state.
856 */
857 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
858 return;
859 }
860
861 if (cap > 0) {
862 if (cfs_rq->avg.util_avg != 0) {
863 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
864 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
865
866 if (sa->util_avg > cap)
867 sa->util_avg = cap;
868 } else {
869 sa->util_avg = cap;
870 }
871 }
872
873 sa->runnable_avg = sa->util_avg;
874
875 /* Hook before this se's util is attached to cfs_rq's util */
876 trace_android_rvh_post_init_entity_util_avg(se);
877 }
878
879 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)880 void init_entity_runnable_average(struct sched_entity *se)
881 {
882 }
post_init_entity_util_avg(struct task_struct * p)883 void post_init_entity_util_avg(struct task_struct *p)
884 {
885 }
update_tg_load_avg(struct cfs_rq * cfs_rq)886 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
887 {
888 }
889 #endif /* CONFIG_SMP */
890
891 /*
892 * Update the current task's runtime statistics.
893 */
update_curr(struct cfs_rq * cfs_rq)894 static void update_curr(struct cfs_rq *cfs_rq)
895 {
896 struct sched_entity *curr = cfs_rq->curr;
897 u64 now = rq_clock_task(rq_of(cfs_rq));
898 u64 delta_exec;
899
900 if (unlikely(!curr))
901 return;
902
903 delta_exec = now - curr->exec_start;
904 if (unlikely((s64)delta_exec <= 0))
905 return;
906
907 curr->exec_start = now;
908
909 if (schedstat_enabled()) {
910 struct sched_statistics *stats;
911
912 stats = __schedstats_from_se(curr);
913 __schedstat_set(stats->exec_max,
914 max(delta_exec, stats->exec_max));
915 }
916
917 curr->sum_exec_runtime += delta_exec;
918 schedstat_add(cfs_rq->exec_clock, delta_exec);
919
920 curr->vruntime += calc_delta_fair(delta_exec, curr);
921 update_min_vruntime(cfs_rq);
922
923 if (entity_is_task(curr)) {
924 struct task_struct *curtask = task_of(curr);
925
926 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
927 cgroup_account_cputime(curtask, delta_exec);
928 account_group_exec_runtime(curtask, delta_exec);
929 }
930
931 account_cfs_rq_runtime(cfs_rq, delta_exec);
932 }
933
update_curr_fair(struct rq * rq)934 static void update_curr_fair(struct rq *rq)
935 {
936 update_curr(cfs_rq_of(&rq->curr->se));
937 }
938
939 static inline void
update_stats_wait_start_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)940 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
941 {
942 struct sched_statistics *stats;
943 struct task_struct *p = NULL;
944
945 if (!schedstat_enabled())
946 return;
947
948 stats = __schedstats_from_se(se);
949
950 if (entity_is_task(se))
951 p = task_of(se);
952
953 __update_stats_wait_start(rq_of(cfs_rq), p, stats);
954 }
955
956 static inline void
update_stats_wait_end_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)957 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
958 {
959 struct sched_statistics *stats;
960 struct task_struct *p = NULL;
961
962 if (!schedstat_enabled())
963 return;
964
965 stats = __schedstats_from_se(se);
966
967 /*
968 * When the sched_schedstat changes from 0 to 1, some sched se
969 * maybe already in the runqueue, the se->statistics.wait_start
970 * will be 0.So it will let the delta wrong. We need to avoid this
971 * scenario.
972 */
973 if (unlikely(!schedstat_val(stats->wait_start)))
974 return;
975
976 if (entity_is_task(se))
977 p = task_of(se);
978
979 __update_stats_wait_end(rq_of(cfs_rq), p, stats);
980 }
981
982 static inline void
update_stats_enqueue_sleeper_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)983 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
984 {
985 struct sched_statistics *stats;
986 struct task_struct *tsk = NULL;
987
988 if (!schedstat_enabled())
989 return;
990
991 stats = __schedstats_from_se(se);
992
993 if (entity_is_task(se))
994 tsk = task_of(se);
995
996 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
997 }
998
999 /*
1000 * Task is being enqueued - update stats:
1001 */
1002 static inline void
update_stats_enqueue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1003 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1004 {
1005 if (!schedstat_enabled())
1006 return;
1007
1008 /*
1009 * Are we enqueueing a waiting task? (for current tasks
1010 * a dequeue/enqueue event is a NOP)
1011 */
1012 if (se != cfs_rq->curr)
1013 update_stats_wait_start_fair(cfs_rq, se);
1014
1015 if (flags & ENQUEUE_WAKEUP)
1016 update_stats_enqueue_sleeper_fair(cfs_rq, se);
1017 }
1018
1019 static inline void
update_stats_dequeue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1020 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1021 {
1022
1023 if (!schedstat_enabled())
1024 return;
1025
1026 /*
1027 * Mark the end of the wait period if dequeueing a
1028 * waiting task:
1029 */
1030 if (se != cfs_rq->curr)
1031 update_stats_wait_end_fair(cfs_rq, se);
1032
1033 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1034 struct task_struct *tsk = task_of(se);
1035 unsigned int state;
1036
1037 /* XXX racy against TTWU */
1038 state = READ_ONCE(tsk->__state);
1039 if (state & TASK_INTERRUPTIBLE)
1040 __schedstat_set(tsk->stats.sleep_start,
1041 rq_clock(rq_of(cfs_rq)));
1042 if (state & TASK_UNINTERRUPTIBLE)
1043 __schedstat_set(tsk->stats.block_start,
1044 rq_clock(rq_of(cfs_rq)));
1045 }
1046 }
1047
1048 /*
1049 * We are picking a new current task - update its stats:
1050 */
1051 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1052 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1053 {
1054 /*
1055 * We are starting a new run period:
1056 */
1057 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1058 }
1059
1060 /**************************************************
1061 * Scheduling class queueing methods:
1062 */
1063
1064 #ifdef CONFIG_NUMA
1065 #define NUMA_IMBALANCE_MIN 2
1066
1067 static inline long
adjust_numa_imbalance(int imbalance,int dst_running,int imb_numa_nr)1068 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1069 {
1070 /*
1071 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1072 * threshold. Above this threshold, individual tasks may be contending
1073 * for both memory bandwidth and any shared HT resources. This is an
1074 * approximation as the number of running tasks may not be related to
1075 * the number of busy CPUs due to sched_setaffinity.
1076 */
1077 if (dst_running > imb_numa_nr)
1078 return imbalance;
1079
1080 /*
1081 * Allow a small imbalance based on a simple pair of communicating
1082 * tasks that remain local when the destination is lightly loaded.
1083 */
1084 if (imbalance <= NUMA_IMBALANCE_MIN)
1085 return 0;
1086
1087 return imbalance;
1088 }
1089 #endif /* CONFIG_NUMA */
1090
1091 #ifdef CONFIG_NUMA_BALANCING
1092 /*
1093 * Approximate time to scan a full NUMA task in ms. The task scan period is
1094 * calculated based on the tasks virtual memory size and
1095 * numa_balancing_scan_size.
1096 */
1097 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1098 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1099
1100 /* Portion of address space to scan in MB */
1101 unsigned int sysctl_numa_balancing_scan_size = 256;
1102
1103 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1104 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1105
1106 /* The page with hint page fault latency < threshold in ms is considered hot */
1107 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1108
1109 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
1110 unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
1111
1112 struct numa_group {
1113 refcount_t refcount;
1114
1115 spinlock_t lock; /* nr_tasks, tasks */
1116 int nr_tasks;
1117 pid_t gid;
1118 int active_nodes;
1119
1120 struct rcu_head rcu;
1121 unsigned long total_faults;
1122 unsigned long max_faults_cpu;
1123 /*
1124 * faults[] array is split into two regions: faults_mem and faults_cpu.
1125 *
1126 * Faults_cpu is used to decide whether memory should move
1127 * towards the CPU. As a consequence, these stats are weighted
1128 * more by CPU use than by memory faults.
1129 */
1130 unsigned long faults[];
1131 };
1132
1133 /*
1134 * For functions that can be called in multiple contexts that permit reading
1135 * ->numa_group (see struct task_struct for locking rules).
1136 */
deref_task_numa_group(struct task_struct * p)1137 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1138 {
1139 return rcu_dereference_check(p->numa_group, p == current ||
1140 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1141 }
1142
deref_curr_numa_group(struct task_struct * p)1143 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1144 {
1145 return rcu_dereference_protected(p->numa_group, p == current);
1146 }
1147
1148 static inline unsigned long group_faults_priv(struct numa_group *ng);
1149 static inline unsigned long group_faults_shared(struct numa_group *ng);
1150
task_nr_scan_windows(struct task_struct * p)1151 static unsigned int task_nr_scan_windows(struct task_struct *p)
1152 {
1153 unsigned long rss = 0;
1154 unsigned long nr_scan_pages;
1155
1156 /*
1157 * Calculations based on RSS as non-present and empty pages are skipped
1158 * by the PTE scanner and NUMA hinting faults should be trapped based
1159 * on resident pages
1160 */
1161 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1162 rss = get_mm_rss(p->mm);
1163 if (!rss)
1164 rss = nr_scan_pages;
1165
1166 rss = round_up(rss, nr_scan_pages);
1167 return rss / nr_scan_pages;
1168 }
1169
1170 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1171 #define MAX_SCAN_WINDOW 2560
1172
task_scan_min(struct task_struct * p)1173 static unsigned int task_scan_min(struct task_struct *p)
1174 {
1175 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1176 unsigned int scan, floor;
1177 unsigned int windows = 1;
1178
1179 if (scan_size < MAX_SCAN_WINDOW)
1180 windows = MAX_SCAN_WINDOW / scan_size;
1181 floor = 1000 / windows;
1182
1183 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1184 return max_t(unsigned int, floor, scan);
1185 }
1186
task_scan_start(struct task_struct * p)1187 static unsigned int task_scan_start(struct task_struct *p)
1188 {
1189 unsigned long smin = task_scan_min(p);
1190 unsigned long period = smin;
1191 struct numa_group *ng;
1192
1193 /* Scale the maximum scan period with the amount of shared memory. */
1194 rcu_read_lock();
1195 ng = rcu_dereference(p->numa_group);
1196 if (ng) {
1197 unsigned long shared = group_faults_shared(ng);
1198 unsigned long private = group_faults_priv(ng);
1199
1200 period *= refcount_read(&ng->refcount);
1201 period *= shared + 1;
1202 period /= private + shared + 1;
1203 }
1204 rcu_read_unlock();
1205
1206 return max(smin, period);
1207 }
1208
task_scan_max(struct task_struct * p)1209 static unsigned int task_scan_max(struct task_struct *p)
1210 {
1211 unsigned long smin = task_scan_min(p);
1212 unsigned long smax;
1213 struct numa_group *ng;
1214
1215 /* Watch for min being lower than max due to floor calculations */
1216 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1217
1218 /* Scale the maximum scan period with the amount of shared memory. */
1219 ng = deref_curr_numa_group(p);
1220 if (ng) {
1221 unsigned long shared = group_faults_shared(ng);
1222 unsigned long private = group_faults_priv(ng);
1223 unsigned long period = smax;
1224
1225 period *= refcount_read(&ng->refcount);
1226 period *= shared + 1;
1227 period /= private + shared + 1;
1228
1229 smax = max(smax, period);
1230 }
1231
1232 return max(smin, smax);
1233 }
1234
account_numa_enqueue(struct rq * rq,struct task_struct * p)1235 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1236 {
1237 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1238 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1239 }
1240
account_numa_dequeue(struct rq * rq,struct task_struct * p)1241 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1242 {
1243 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1244 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1245 }
1246
1247 /* Shared or private faults. */
1248 #define NR_NUMA_HINT_FAULT_TYPES 2
1249
1250 /* Memory and CPU locality */
1251 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1252
1253 /* Averaged statistics, and temporary buffers. */
1254 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1255
task_numa_group_id(struct task_struct * p)1256 pid_t task_numa_group_id(struct task_struct *p)
1257 {
1258 struct numa_group *ng;
1259 pid_t gid = 0;
1260
1261 rcu_read_lock();
1262 ng = rcu_dereference(p->numa_group);
1263 if (ng)
1264 gid = ng->gid;
1265 rcu_read_unlock();
1266
1267 return gid;
1268 }
1269
1270 /*
1271 * The averaged statistics, shared & private, memory & CPU,
1272 * occupy the first half of the array. The second half of the
1273 * array is for current counters, which are averaged into the
1274 * first set by task_numa_placement.
1275 */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1276 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1277 {
1278 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1279 }
1280
task_faults(struct task_struct * p,int nid)1281 static inline unsigned long task_faults(struct task_struct *p, int nid)
1282 {
1283 if (!p->numa_faults)
1284 return 0;
1285
1286 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1287 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1288 }
1289
group_faults(struct task_struct * p,int nid)1290 static inline unsigned long group_faults(struct task_struct *p, int nid)
1291 {
1292 struct numa_group *ng = deref_task_numa_group(p);
1293
1294 if (!ng)
1295 return 0;
1296
1297 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1298 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1299 }
1300
group_faults_cpu(struct numa_group * group,int nid)1301 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1302 {
1303 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1304 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1305 }
1306
group_faults_priv(struct numa_group * ng)1307 static inline unsigned long group_faults_priv(struct numa_group *ng)
1308 {
1309 unsigned long faults = 0;
1310 int node;
1311
1312 for_each_online_node(node) {
1313 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1314 }
1315
1316 return faults;
1317 }
1318
group_faults_shared(struct numa_group * ng)1319 static inline unsigned long group_faults_shared(struct numa_group *ng)
1320 {
1321 unsigned long faults = 0;
1322 int node;
1323
1324 for_each_online_node(node) {
1325 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1326 }
1327
1328 return faults;
1329 }
1330
1331 /*
1332 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1333 * considered part of a numa group's pseudo-interleaving set. Migrations
1334 * between these nodes are slowed down, to allow things to settle down.
1335 */
1336 #define ACTIVE_NODE_FRACTION 3
1337
numa_is_active_node(int nid,struct numa_group * ng)1338 static bool numa_is_active_node(int nid, struct numa_group *ng)
1339 {
1340 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1341 }
1342
1343 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int lim_dist,bool task)1344 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1345 int lim_dist, bool task)
1346 {
1347 unsigned long score = 0;
1348 int node, max_dist;
1349
1350 /*
1351 * All nodes are directly connected, and the same distance
1352 * from each other. No need for fancy placement algorithms.
1353 */
1354 if (sched_numa_topology_type == NUMA_DIRECT)
1355 return 0;
1356
1357 /* sched_max_numa_distance may be changed in parallel. */
1358 max_dist = READ_ONCE(sched_max_numa_distance);
1359 /*
1360 * This code is called for each node, introducing N^2 complexity,
1361 * which should be ok given the number of nodes rarely exceeds 8.
1362 */
1363 for_each_online_node(node) {
1364 unsigned long faults;
1365 int dist = node_distance(nid, node);
1366
1367 /*
1368 * The furthest away nodes in the system are not interesting
1369 * for placement; nid was already counted.
1370 */
1371 if (dist >= max_dist || node == nid)
1372 continue;
1373
1374 /*
1375 * On systems with a backplane NUMA topology, compare groups
1376 * of nodes, and move tasks towards the group with the most
1377 * memory accesses. When comparing two nodes at distance
1378 * "hoplimit", only nodes closer by than "hoplimit" are part
1379 * of each group. Skip other nodes.
1380 */
1381 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1382 continue;
1383
1384 /* Add up the faults from nearby nodes. */
1385 if (task)
1386 faults = task_faults(p, node);
1387 else
1388 faults = group_faults(p, node);
1389
1390 /*
1391 * On systems with a glueless mesh NUMA topology, there are
1392 * no fixed "groups of nodes". Instead, nodes that are not
1393 * directly connected bounce traffic through intermediate
1394 * nodes; a numa_group can occupy any set of nodes.
1395 * The further away a node is, the less the faults count.
1396 * This seems to result in good task placement.
1397 */
1398 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1399 faults *= (max_dist - dist);
1400 faults /= (max_dist - LOCAL_DISTANCE);
1401 }
1402
1403 score += faults;
1404 }
1405
1406 return score;
1407 }
1408
1409 /*
1410 * These return the fraction of accesses done by a particular task, or
1411 * task group, on a particular numa node. The group weight is given a
1412 * larger multiplier, in order to group tasks together that are almost
1413 * evenly spread out between numa nodes.
1414 */
task_weight(struct task_struct * p,int nid,int dist)1415 static inline unsigned long task_weight(struct task_struct *p, int nid,
1416 int dist)
1417 {
1418 unsigned long faults, total_faults;
1419
1420 if (!p->numa_faults)
1421 return 0;
1422
1423 total_faults = p->total_numa_faults;
1424
1425 if (!total_faults)
1426 return 0;
1427
1428 faults = task_faults(p, nid);
1429 faults += score_nearby_nodes(p, nid, dist, true);
1430
1431 return 1000 * faults / total_faults;
1432 }
1433
group_weight(struct task_struct * p,int nid,int dist)1434 static inline unsigned long group_weight(struct task_struct *p, int nid,
1435 int dist)
1436 {
1437 struct numa_group *ng = deref_task_numa_group(p);
1438 unsigned long faults, total_faults;
1439
1440 if (!ng)
1441 return 0;
1442
1443 total_faults = ng->total_faults;
1444
1445 if (!total_faults)
1446 return 0;
1447
1448 faults = group_faults(p, nid);
1449 faults += score_nearby_nodes(p, nid, dist, false);
1450
1451 return 1000 * faults / total_faults;
1452 }
1453
1454 /*
1455 * If memory tiering mode is enabled, cpupid of slow memory page is
1456 * used to record scan time instead of CPU and PID. When tiering mode
1457 * is disabled at run time, the scan time (in cpupid) will be
1458 * interpreted as CPU and PID. So CPU needs to be checked to avoid to
1459 * access out of array bound.
1460 */
cpupid_valid(int cpupid)1461 static inline bool cpupid_valid(int cpupid)
1462 {
1463 return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1464 }
1465
1466 /*
1467 * For memory tiering mode, if there are enough free pages (more than
1468 * enough watermark defined here) in fast memory node, to take full
1469 * advantage of fast memory capacity, all recently accessed slow
1470 * memory pages will be migrated to fast memory node without
1471 * considering hot threshold.
1472 */
pgdat_free_space_enough(struct pglist_data * pgdat)1473 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1474 {
1475 int z;
1476 unsigned long enough_wmark;
1477
1478 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1479 pgdat->node_present_pages >> 4);
1480 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1481 struct zone *zone = pgdat->node_zones + z;
1482
1483 if (!populated_zone(zone))
1484 continue;
1485
1486 if (zone_watermark_ok(zone, 0,
1487 wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1488 ZONE_MOVABLE, 0))
1489 return true;
1490 }
1491 return false;
1492 }
1493
1494 /*
1495 * For memory tiering mode, when page tables are scanned, the scan
1496 * time will be recorded in struct page in addition to make page
1497 * PROT_NONE for slow memory page. So when the page is accessed, in
1498 * hint page fault handler, the hint page fault latency is calculated
1499 * via,
1500 *
1501 * hint page fault latency = hint page fault time - scan time
1502 *
1503 * The smaller the hint page fault latency, the higher the possibility
1504 * for the page to be hot.
1505 */
numa_hint_fault_latency(struct page * page)1506 static int numa_hint_fault_latency(struct page *page)
1507 {
1508 int last_time, time;
1509
1510 time = jiffies_to_msecs(jiffies);
1511 last_time = xchg_page_access_time(page, time);
1512
1513 return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1514 }
1515
1516 /*
1517 * For memory tiering mode, too high promotion/demotion throughput may
1518 * hurt application latency. So we provide a mechanism to rate limit
1519 * the number of pages that are tried to be promoted.
1520 */
numa_promotion_rate_limit(struct pglist_data * pgdat,unsigned long rate_limit,int nr)1521 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1522 unsigned long rate_limit, int nr)
1523 {
1524 unsigned long nr_cand;
1525 unsigned int now, start;
1526
1527 now = jiffies_to_msecs(jiffies);
1528 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1529 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1530 start = pgdat->nbp_rl_start;
1531 if (now - start > MSEC_PER_SEC &&
1532 cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1533 pgdat->nbp_rl_nr_cand = nr_cand;
1534 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1535 return true;
1536 return false;
1537 }
1538
1539 #define NUMA_MIGRATION_ADJUST_STEPS 16
1540
numa_promotion_adjust_threshold(struct pglist_data * pgdat,unsigned long rate_limit,unsigned int ref_th)1541 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1542 unsigned long rate_limit,
1543 unsigned int ref_th)
1544 {
1545 unsigned int now, start, th_period, unit_th, th;
1546 unsigned long nr_cand, ref_cand, diff_cand;
1547
1548 now = jiffies_to_msecs(jiffies);
1549 th_period = sysctl_numa_balancing_scan_period_max;
1550 start = pgdat->nbp_th_start;
1551 if (now - start > th_period &&
1552 cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1553 ref_cand = rate_limit *
1554 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1555 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1556 diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1557 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1558 th = pgdat->nbp_threshold ? : ref_th;
1559 if (diff_cand > ref_cand * 11 / 10)
1560 th = max(th - unit_th, unit_th);
1561 else if (diff_cand < ref_cand * 9 / 10)
1562 th = min(th + unit_th, ref_th * 2);
1563 pgdat->nbp_th_nr_cand = nr_cand;
1564 pgdat->nbp_threshold = th;
1565 }
1566 }
1567
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)1568 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1569 int src_nid, int dst_cpu)
1570 {
1571 struct numa_group *ng = deref_curr_numa_group(p);
1572 int dst_nid = cpu_to_node(dst_cpu);
1573 int last_cpupid, this_cpupid;
1574
1575 /*
1576 * The pages in slow memory node should be migrated according
1577 * to hot/cold instead of private/shared.
1578 */
1579 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1580 !node_is_toptier(src_nid)) {
1581 struct pglist_data *pgdat;
1582 unsigned long rate_limit;
1583 unsigned int latency, th, def_th;
1584
1585 pgdat = NODE_DATA(dst_nid);
1586 if (pgdat_free_space_enough(pgdat)) {
1587 /* workload changed, reset hot threshold */
1588 pgdat->nbp_threshold = 0;
1589 return true;
1590 }
1591
1592 def_th = sysctl_numa_balancing_hot_threshold;
1593 rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1594 (20 - PAGE_SHIFT);
1595 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1596
1597 th = pgdat->nbp_threshold ? : def_th;
1598 latency = numa_hint_fault_latency(page);
1599 if (latency >= th)
1600 return false;
1601
1602 return !numa_promotion_rate_limit(pgdat, rate_limit,
1603 thp_nr_pages(page));
1604 }
1605
1606 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1607 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1608
1609 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1610 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1611 return false;
1612
1613 /*
1614 * Allow first faults or private faults to migrate immediately early in
1615 * the lifetime of a task. The magic number 4 is based on waiting for
1616 * two full passes of the "multi-stage node selection" test that is
1617 * executed below.
1618 */
1619 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1620 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1621 return true;
1622
1623 /*
1624 * Multi-stage node selection is used in conjunction with a periodic
1625 * migration fault to build a temporal task<->page relation. By using
1626 * a two-stage filter we remove short/unlikely relations.
1627 *
1628 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1629 * a task's usage of a particular page (n_p) per total usage of this
1630 * page (n_t) (in a given time-span) to a probability.
1631 *
1632 * Our periodic faults will sample this probability and getting the
1633 * same result twice in a row, given these samples are fully
1634 * independent, is then given by P(n)^2, provided our sample period
1635 * is sufficiently short compared to the usage pattern.
1636 *
1637 * This quadric squishes small probabilities, making it less likely we
1638 * act on an unlikely task<->page relation.
1639 */
1640 if (!cpupid_pid_unset(last_cpupid) &&
1641 cpupid_to_nid(last_cpupid) != dst_nid)
1642 return false;
1643
1644 /* Always allow migrate on private faults */
1645 if (cpupid_match_pid(p, last_cpupid))
1646 return true;
1647
1648 /* A shared fault, but p->numa_group has not been set up yet. */
1649 if (!ng)
1650 return true;
1651
1652 /*
1653 * Destination node is much more heavily used than the source
1654 * node? Allow migration.
1655 */
1656 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1657 ACTIVE_NODE_FRACTION)
1658 return true;
1659
1660 /*
1661 * Distribute memory according to CPU & memory use on each node,
1662 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1663 *
1664 * faults_cpu(dst) 3 faults_cpu(src)
1665 * --------------- * - > ---------------
1666 * faults_mem(dst) 4 faults_mem(src)
1667 */
1668 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1669 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1670 }
1671
1672 /*
1673 * 'numa_type' describes the node at the moment of load balancing.
1674 */
1675 enum numa_type {
1676 /* The node has spare capacity that can be used to run more tasks. */
1677 node_has_spare = 0,
1678 /*
1679 * The node is fully used and the tasks don't compete for more CPU
1680 * cycles. Nevertheless, some tasks might wait before running.
1681 */
1682 node_fully_busy,
1683 /*
1684 * The node is overloaded and can't provide expected CPU cycles to all
1685 * tasks.
1686 */
1687 node_overloaded
1688 };
1689
1690 /* Cached statistics for all CPUs within a node */
1691 struct numa_stats {
1692 unsigned long load;
1693 unsigned long runnable;
1694 unsigned long util;
1695 /* Total compute capacity of CPUs on a node */
1696 unsigned long compute_capacity;
1697 unsigned int nr_running;
1698 unsigned int weight;
1699 enum numa_type node_type;
1700 int idle_cpu;
1701 };
1702
is_core_idle(int cpu)1703 static inline bool is_core_idle(int cpu)
1704 {
1705 #ifdef CONFIG_SCHED_SMT
1706 int sibling;
1707
1708 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1709 if (cpu == sibling)
1710 continue;
1711
1712 if (!idle_cpu(sibling))
1713 return false;
1714 }
1715 #endif
1716
1717 return true;
1718 }
1719
1720 struct task_numa_env {
1721 struct task_struct *p;
1722
1723 int src_cpu, src_nid;
1724 int dst_cpu, dst_nid;
1725 int imb_numa_nr;
1726
1727 struct numa_stats src_stats, dst_stats;
1728
1729 int imbalance_pct;
1730 int dist;
1731
1732 struct task_struct *best_task;
1733 long best_imp;
1734 int best_cpu;
1735 };
1736
1737 static unsigned long cpu_load(struct rq *rq);
1738 static unsigned long cpu_runnable(struct rq *rq);
1739
1740 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)1741 numa_type numa_classify(unsigned int imbalance_pct,
1742 struct numa_stats *ns)
1743 {
1744 if ((ns->nr_running > ns->weight) &&
1745 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1746 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1747 return node_overloaded;
1748
1749 if ((ns->nr_running < ns->weight) ||
1750 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1751 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1752 return node_has_spare;
1753
1754 return node_fully_busy;
1755 }
1756
1757 #ifdef CONFIG_SCHED_SMT
1758 /* Forward declarations of select_idle_sibling helpers */
1759 static inline bool test_idle_cores(int cpu);
numa_idle_core(int idle_core,int cpu)1760 static inline int numa_idle_core(int idle_core, int cpu)
1761 {
1762 if (!static_branch_likely(&sched_smt_present) ||
1763 idle_core >= 0 || !test_idle_cores(cpu))
1764 return idle_core;
1765
1766 /*
1767 * Prefer cores instead of packing HT siblings
1768 * and triggering future load balancing.
1769 */
1770 if (is_core_idle(cpu))
1771 idle_core = cpu;
1772
1773 return idle_core;
1774 }
1775 #else
numa_idle_core(int idle_core,int cpu)1776 static inline int numa_idle_core(int idle_core, int cpu)
1777 {
1778 return idle_core;
1779 }
1780 #endif
1781
1782 /*
1783 * Gather all necessary information to make NUMA balancing placement
1784 * decisions that are compatible with standard load balancer. This
1785 * borrows code and logic from update_sg_lb_stats but sharing a
1786 * common implementation is impractical.
1787 */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)1788 static void update_numa_stats(struct task_numa_env *env,
1789 struct numa_stats *ns, int nid,
1790 bool find_idle)
1791 {
1792 int cpu, idle_core = -1;
1793
1794 memset(ns, 0, sizeof(*ns));
1795 ns->idle_cpu = -1;
1796
1797 rcu_read_lock();
1798 for_each_cpu(cpu, cpumask_of_node(nid)) {
1799 struct rq *rq = cpu_rq(cpu);
1800
1801 ns->load += cpu_load(rq);
1802 ns->runnable += cpu_runnable(rq);
1803 ns->util += cpu_util_cfs(cpu);
1804 ns->nr_running += rq->cfs.h_nr_running;
1805 ns->compute_capacity += capacity_of(cpu);
1806
1807 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1808 if (READ_ONCE(rq->numa_migrate_on) ||
1809 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1810 continue;
1811
1812 if (ns->idle_cpu == -1)
1813 ns->idle_cpu = cpu;
1814
1815 idle_core = numa_idle_core(idle_core, cpu);
1816 }
1817 }
1818 rcu_read_unlock();
1819
1820 ns->weight = cpumask_weight(cpumask_of_node(nid));
1821
1822 ns->node_type = numa_classify(env->imbalance_pct, ns);
1823
1824 if (idle_core >= 0)
1825 ns->idle_cpu = idle_core;
1826 }
1827
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)1828 static void task_numa_assign(struct task_numa_env *env,
1829 struct task_struct *p, long imp)
1830 {
1831 struct rq *rq = cpu_rq(env->dst_cpu);
1832
1833 /* Check if run-queue part of active NUMA balance. */
1834 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1835 int cpu;
1836 int start = env->dst_cpu;
1837
1838 /* Find alternative idle CPU. */
1839 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1840 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1841 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1842 continue;
1843 }
1844
1845 env->dst_cpu = cpu;
1846 rq = cpu_rq(env->dst_cpu);
1847 if (!xchg(&rq->numa_migrate_on, 1))
1848 goto assign;
1849 }
1850
1851 /* Failed to find an alternative idle CPU */
1852 return;
1853 }
1854
1855 assign:
1856 /*
1857 * Clear previous best_cpu/rq numa-migrate flag, since task now
1858 * found a better CPU to move/swap.
1859 */
1860 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1861 rq = cpu_rq(env->best_cpu);
1862 WRITE_ONCE(rq->numa_migrate_on, 0);
1863 }
1864
1865 if (env->best_task)
1866 put_task_struct(env->best_task);
1867 if (p)
1868 get_task_struct(p);
1869
1870 env->best_task = p;
1871 env->best_imp = imp;
1872 env->best_cpu = env->dst_cpu;
1873 }
1874
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)1875 static bool load_too_imbalanced(long src_load, long dst_load,
1876 struct task_numa_env *env)
1877 {
1878 long imb, old_imb;
1879 long orig_src_load, orig_dst_load;
1880 long src_capacity, dst_capacity;
1881
1882 /*
1883 * The load is corrected for the CPU capacity available on each node.
1884 *
1885 * src_load dst_load
1886 * ------------ vs ---------
1887 * src_capacity dst_capacity
1888 */
1889 src_capacity = env->src_stats.compute_capacity;
1890 dst_capacity = env->dst_stats.compute_capacity;
1891
1892 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1893
1894 orig_src_load = env->src_stats.load;
1895 orig_dst_load = env->dst_stats.load;
1896
1897 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1898
1899 /* Would this change make things worse? */
1900 return (imb > old_imb);
1901 }
1902
1903 /*
1904 * Maximum NUMA importance can be 1998 (2*999);
1905 * SMALLIMP @ 30 would be close to 1998/64.
1906 * Used to deter task migration.
1907 */
1908 #define SMALLIMP 30
1909
1910 /*
1911 * This checks if the overall compute and NUMA accesses of the system would
1912 * be improved if the source tasks was migrated to the target dst_cpu taking
1913 * into account that it might be best if task running on the dst_cpu should
1914 * be exchanged with the source task
1915 */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)1916 static bool task_numa_compare(struct task_numa_env *env,
1917 long taskimp, long groupimp, bool maymove)
1918 {
1919 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1920 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1921 long imp = p_ng ? groupimp : taskimp;
1922 struct task_struct *cur;
1923 long src_load, dst_load;
1924 int dist = env->dist;
1925 long moveimp = imp;
1926 long load;
1927 bool stopsearch = false;
1928
1929 if (READ_ONCE(dst_rq->numa_migrate_on))
1930 return false;
1931
1932 rcu_read_lock();
1933 cur = rcu_dereference(dst_rq->curr);
1934 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1935 cur = NULL;
1936
1937 /*
1938 * Because we have preemption enabled we can get migrated around and
1939 * end try selecting ourselves (current == env->p) as a swap candidate.
1940 */
1941 if (cur == env->p) {
1942 stopsearch = true;
1943 goto unlock;
1944 }
1945
1946 if (!cur) {
1947 if (maymove && moveimp >= env->best_imp)
1948 goto assign;
1949 else
1950 goto unlock;
1951 }
1952
1953 /* Skip this swap candidate if cannot move to the source cpu. */
1954 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1955 goto unlock;
1956
1957 /*
1958 * Skip this swap candidate if it is not moving to its preferred
1959 * node and the best task is.
1960 */
1961 if (env->best_task &&
1962 env->best_task->numa_preferred_nid == env->src_nid &&
1963 cur->numa_preferred_nid != env->src_nid) {
1964 goto unlock;
1965 }
1966
1967 /*
1968 * "imp" is the fault differential for the source task between the
1969 * source and destination node. Calculate the total differential for
1970 * the source task and potential destination task. The more negative
1971 * the value is, the more remote accesses that would be expected to
1972 * be incurred if the tasks were swapped.
1973 *
1974 * If dst and source tasks are in the same NUMA group, or not
1975 * in any group then look only at task weights.
1976 */
1977 cur_ng = rcu_dereference(cur->numa_group);
1978 if (cur_ng == p_ng) {
1979 /*
1980 * Do not swap within a group or between tasks that have
1981 * no group if there is spare capacity. Swapping does
1982 * not address the load imbalance and helps one task at
1983 * the cost of punishing another.
1984 */
1985 if (env->dst_stats.node_type == node_has_spare)
1986 goto unlock;
1987
1988 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1989 task_weight(cur, env->dst_nid, dist);
1990 /*
1991 * Add some hysteresis to prevent swapping the
1992 * tasks within a group over tiny differences.
1993 */
1994 if (cur_ng)
1995 imp -= imp / 16;
1996 } else {
1997 /*
1998 * Compare the group weights. If a task is all by itself
1999 * (not part of a group), use the task weight instead.
2000 */
2001 if (cur_ng && p_ng)
2002 imp += group_weight(cur, env->src_nid, dist) -
2003 group_weight(cur, env->dst_nid, dist);
2004 else
2005 imp += task_weight(cur, env->src_nid, dist) -
2006 task_weight(cur, env->dst_nid, dist);
2007 }
2008
2009 /* Discourage picking a task already on its preferred node */
2010 if (cur->numa_preferred_nid == env->dst_nid)
2011 imp -= imp / 16;
2012
2013 /*
2014 * Encourage picking a task that moves to its preferred node.
2015 * This potentially makes imp larger than it's maximum of
2016 * 1998 (see SMALLIMP and task_weight for why) but in this
2017 * case, it does not matter.
2018 */
2019 if (cur->numa_preferred_nid == env->src_nid)
2020 imp += imp / 8;
2021
2022 if (maymove && moveimp > imp && moveimp > env->best_imp) {
2023 imp = moveimp;
2024 cur = NULL;
2025 goto assign;
2026 }
2027
2028 /*
2029 * Prefer swapping with a task moving to its preferred node over a
2030 * task that is not.
2031 */
2032 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2033 env->best_task->numa_preferred_nid != env->src_nid) {
2034 goto assign;
2035 }
2036
2037 /*
2038 * If the NUMA importance is less than SMALLIMP,
2039 * task migration might only result in ping pong
2040 * of tasks and also hurt performance due to cache
2041 * misses.
2042 */
2043 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2044 goto unlock;
2045
2046 /*
2047 * In the overloaded case, try and keep the load balanced.
2048 */
2049 load = task_h_load(env->p) - task_h_load(cur);
2050 if (!load)
2051 goto assign;
2052
2053 dst_load = env->dst_stats.load + load;
2054 src_load = env->src_stats.load - load;
2055
2056 if (load_too_imbalanced(src_load, dst_load, env))
2057 goto unlock;
2058
2059 assign:
2060 /* Evaluate an idle CPU for a task numa move. */
2061 if (!cur) {
2062 int cpu = env->dst_stats.idle_cpu;
2063
2064 /* Nothing cached so current CPU went idle since the search. */
2065 if (cpu < 0)
2066 cpu = env->dst_cpu;
2067
2068 /*
2069 * If the CPU is no longer truly idle and the previous best CPU
2070 * is, keep using it.
2071 */
2072 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2073 idle_cpu(env->best_cpu)) {
2074 cpu = env->best_cpu;
2075 }
2076
2077 env->dst_cpu = cpu;
2078 }
2079
2080 task_numa_assign(env, cur, imp);
2081
2082 /*
2083 * If a move to idle is allowed because there is capacity or load
2084 * balance improves then stop the search. While a better swap
2085 * candidate may exist, a search is not free.
2086 */
2087 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2088 stopsearch = true;
2089
2090 /*
2091 * If a swap candidate must be identified and the current best task
2092 * moves its preferred node then stop the search.
2093 */
2094 if (!maymove && env->best_task &&
2095 env->best_task->numa_preferred_nid == env->src_nid) {
2096 stopsearch = true;
2097 }
2098 unlock:
2099 rcu_read_unlock();
2100
2101 return stopsearch;
2102 }
2103
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)2104 static void task_numa_find_cpu(struct task_numa_env *env,
2105 long taskimp, long groupimp)
2106 {
2107 bool maymove = false;
2108 int cpu;
2109
2110 /*
2111 * If dst node has spare capacity, then check if there is an
2112 * imbalance that would be overruled by the load balancer.
2113 */
2114 if (env->dst_stats.node_type == node_has_spare) {
2115 unsigned int imbalance;
2116 int src_running, dst_running;
2117
2118 /*
2119 * Would movement cause an imbalance? Note that if src has
2120 * more running tasks that the imbalance is ignored as the
2121 * move improves the imbalance from the perspective of the
2122 * CPU load balancer.
2123 * */
2124 src_running = env->src_stats.nr_running - 1;
2125 dst_running = env->dst_stats.nr_running + 1;
2126 imbalance = max(0, dst_running - src_running);
2127 imbalance = adjust_numa_imbalance(imbalance, dst_running,
2128 env->imb_numa_nr);
2129
2130 /* Use idle CPU if there is no imbalance */
2131 if (!imbalance) {
2132 maymove = true;
2133 if (env->dst_stats.idle_cpu >= 0) {
2134 env->dst_cpu = env->dst_stats.idle_cpu;
2135 task_numa_assign(env, NULL, 0);
2136 return;
2137 }
2138 }
2139 } else {
2140 long src_load, dst_load, load;
2141 /*
2142 * If the improvement from just moving env->p direction is better
2143 * than swapping tasks around, check if a move is possible.
2144 */
2145 load = task_h_load(env->p);
2146 dst_load = env->dst_stats.load + load;
2147 src_load = env->src_stats.load - load;
2148 maymove = !load_too_imbalanced(src_load, dst_load, env);
2149 }
2150
2151 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2152 /* Skip this CPU if the source task cannot migrate */
2153 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2154 continue;
2155
2156 env->dst_cpu = cpu;
2157 if (task_numa_compare(env, taskimp, groupimp, maymove))
2158 break;
2159 }
2160 }
2161
task_numa_migrate(struct task_struct * p)2162 static int task_numa_migrate(struct task_struct *p)
2163 {
2164 struct task_numa_env env = {
2165 .p = p,
2166
2167 .src_cpu = task_cpu(p),
2168 .src_nid = task_node(p),
2169
2170 .imbalance_pct = 112,
2171
2172 .best_task = NULL,
2173 .best_imp = 0,
2174 .best_cpu = -1,
2175 };
2176 unsigned long taskweight, groupweight;
2177 struct sched_domain *sd;
2178 long taskimp, groupimp;
2179 struct numa_group *ng;
2180 struct rq *best_rq;
2181 int nid, ret, dist;
2182
2183 /*
2184 * Pick the lowest SD_NUMA domain, as that would have the smallest
2185 * imbalance and would be the first to start moving tasks about.
2186 *
2187 * And we want to avoid any moving of tasks about, as that would create
2188 * random movement of tasks -- counter the numa conditions we're trying
2189 * to satisfy here.
2190 */
2191 rcu_read_lock();
2192 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2193 if (sd) {
2194 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2195 env.imb_numa_nr = sd->imb_numa_nr;
2196 }
2197 rcu_read_unlock();
2198
2199 /*
2200 * Cpusets can break the scheduler domain tree into smaller
2201 * balance domains, some of which do not cross NUMA boundaries.
2202 * Tasks that are "trapped" in such domains cannot be migrated
2203 * elsewhere, so there is no point in (re)trying.
2204 */
2205 if (unlikely(!sd)) {
2206 sched_setnuma(p, task_node(p));
2207 return -EINVAL;
2208 }
2209
2210 env.dst_nid = p->numa_preferred_nid;
2211 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2212 taskweight = task_weight(p, env.src_nid, dist);
2213 groupweight = group_weight(p, env.src_nid, dist);
2214 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2215 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2216 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2217 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2218
2219 /* Try to find a spot on the preferred nid. */
2220 task_numa_find_cpu(&env, taskimp, groupimp);
2221
2222 /*
2223 * Look at other nodes in these cases:
2224 * - there is no space available on the preferred_nid
2225 * - the task is part of a numa_group that is interleaved across
2226 * multiple NUMA nodes; in order to better consolidate the group,
2227 * we need to check other locations.
2228 */
2229 ng = deref_curr_numa_group(p);
2230 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2231 for_each_node_state(nid, N_CPU) {
2232 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2233 continue;
2234
2235 dist = node_distance(env.src_nid, env.dst_nid);
2236 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2237 dist != env.dist) {
2238 taskweight = task_weight(p, env.src_nid, dist);
2239 groupweight = group_weight(p, env.src_nid, dist);
2240 }
2241
2242 /* Only consider nodes where both task and groups benefit */
2243 taskimp = task_weight(p, nid, dist) - taskweight;
2244 groupimp = group_weight(p, nid, dist) - groupweight;
2245 if (taskimp < 0 && groupimp < 0)
2246 continue;
2247
2248 env.dist = dist;
2249 env.dst_nid = nid;
2250 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2251 task_numa_find_cpu(&env, taskimp, groupimp);
2252 }
2253 }
2254
2255 /*
2256 * If the task is part of a workload that spans multiple NUMA nodes,
2257 * and is migrating into one of the workload's active nodes, remember
2258 * this node as the task's preferred numa node, so the workload can
2259 * settle down.
2260 * A task that migrated to a second choice node will be better off
2261 * trying for a better one later. Do not set the preferred node here.
2262 */
2263 if (ng) {
2264 if (env.best_cpu == -1)
2265 nid = env.src_nid;
2266 else
2267 nid = cpu_to_node(env.best_cpu);
2268
2269 if (nid != p->numa_preferred_nid)
2270 sched_setnuma(p, nid);
2271 }
2272
2273 /* No better CPU than the current one was found. */
2274 if (env.best_cpu == -1) {
2275 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2276 return -EAGAIN;
2277 }
2278
2279 best_rq = cpu_rq(env.best_cpu);
2280 if (env.best_task == NULL) {
2281 ret = migrate_task_to(p, env.best_cpu);
2282 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2283 if (ret != 0)
2284 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2285 return ret;
2286 }
2287
2288 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2289 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2290
2291 if (ret != 0)
2292 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2293 put_task_struct(env.best_task);
2294 return ret;
2295 }
2296
2297 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2298 static void numa_migrate_preferred(struct task_struct *p)
2299 {
2300 unsigned long interval = HZ;
2301
2302 /* This task has no NUMA fault statistics yet */
2303 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2304 return;
2305
2306 /* Periodically retry migrating the task to the preferred node */
2307 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2308 p->numa_migrate_retry = jiffies + interval;
2309
2310 /* Success if task is already running on preferred CPU */
2311 if (task_node(p) == p->numa_preferred_nid)
2312 return;
2313
2314 /* Otherwise, try migrate to a CPU on the preferred node */
2315 task_numa_migrate(p);
2316 }
2317
2318 /*
2319 * Find out how many nodes the workload is actively running on. Do this by
2320 * tracking the nodes from which NUMA hinting faults are triggered. This can
2321 * be different from the set of nodes where the workload's memory is currently
2322 * located.
2323 */
numa_group_count_active_nodes(struct numa_group * numa_group)2324 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2325 {
2326 unsigned long faults, max_faults = 0;
2327 int nid, active_nodes = 0;
2328
2329 for_each_node_state(nid, N_CPU) {
2330 faults = group_faults_cpu(numa_group, nid);
2331 if (faults > max_faults)
2332 max_faults = faults;
2333 }
2334
2335 for_each_node_state(nid, N_CPU) {
2336 faults = group_faults_cpu(numa_group, nid);
2337 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2338 active_nodes++;
2339 }
2340
2341 numa_group->max_faults_cpu = max_faults;
2342 numa_group->active_nodes = active_nodes;
2343 }
2344
2345 /*
2346 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2347 * increments. The more local the fault statistics are, the higher the scan
2348 * period will be for the next scan window. If local/(local+remote) ratio is
2349 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2350 * the scan period will decrease. Aim for 70% local accesses.
2351 */
2352 #define NUMA_PERIOD_SLOTS 10
2353 #define NUMA_PERIOD_THRESHOLD 7
2354
2355 /*
2356 * Increase the scan period (slow down scanning) if the majority of
2357 * our memory is already on our local node, or if the majority of
2358 * the page accesses are shared with other processes.
2359 * Otherwise, decrease the scan period.
2360 */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2361 static void update_task_scan_period(struct task_struct *p,
2362 unsigned long shared, unsigned long private)
2363 {
2364 unsigned int period_slot;
2365 int lr_ratio, ps_ratio;
2366 int diff;
2367
2368 unsigned long remote = p->numa_faults_locality[0];
2369 unsigned long local = p->numa_faults_locality[1];
2370
2371 /*
2372 * If there were no record hinting faults then either the task is
2373 * completely idle or all activity is in areas that are not of interest
2374 * to automatic numa balancing. Related to that, if there were failed
2375 * migration then it implies we are migrating too quickly or the local
2376 * node is overloaded. In either case, scan slower
2377 */
2378 if (local + shared == 0 || p->numa_faults_locality[2]) {
2379 p->numa_scan_period = min(p->numa_scan_period_max,
2380 p->numa_scan_period << 1);
2381
2382 p->mm->numa_next_scan = jiffies +
2383 msecs_to_jiffies(p->numa_scan_period);
2384
2385 return;
2386 }
2387
2388 /*
2389 * Prepare to scale scan period relative to the current period.
2390 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2391 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2392 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2393 */
2394 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2395 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2396 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2397
2398 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2399 /*
2400 * Most memory accesses are local. There is no need to
2401 * do fast NUMA scanning, since memory is already local.
2402 */
2403 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2404 if (!slot)
2405 slot = 1;
2406 diff = slot * period_slot;
2407 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2408 /*
2409 * Most memory accesses are shared with other tasks.
2410 * There is no point in continuing fast NUMA scanning,
2411 * since other tasks may just move the memory elsewhere.
2412 */
2413 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2414 if (!slot)
2415 slot = 1;
2416 diff = slot * period_slot;
2417 } else {
2418 /*
2419 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2420 * yet they are not on the local NUMA node. Speed up
2421 * NUMA scanning to get the memory moved over.
2422 */
2423 int ratio = max(lr_ratio, ps_ratio);
2424 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2425 }
2426
2427 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2428 task_scan_min(p), task_scan_max(p));
2429 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2430 }
2431
2432 /*
2433 * Get the fraction of time the task has been running since the last
2434 * NUMA placement cycle. The scheduler keeps similar statistics, but
2435 * decays those on a 32ms period, which is orders of magnitude off
2436 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2437 * stats only if the task is so new there are no NUMA statistics yet.
2438 */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2439 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2440 {
2441 u64 runtime, delta, now;
2442 /* Use the start of this time slice to avoid calculations. */
2443 now = p->se.exec_start;
2444 runtime = p->se.sum_exec_runtime;
2445
2446 if (p->last_task_numa_placement) {
2447 delta = runtime - p->last_sum_exec_runtime;
2448 *period = now - p->last_task_numa_placement;
2449
2450 /* Avoid time going backwards, prevent potential divide error: */
2451 if (unlikely((s64)*period < 0))
2452 *period = 0;
2453 } else {
2454 delta = p->se.avg.load_sum;
2455 *period = LOAD_AVG_MAX;
2456 }
2457
2458 p->last_sum_exec_runtime = runtime;
2459 p->last_task_numa_placement = now;
2460
2461 return delta;
2462 }
2463
2464 /*
2465 * Determine the preferred nid for a task in a numa_group. This needs to
2466 * be done in a way that produces consistent results with group_weight,
2467 * otherwise workloads might not converge.
2468 */
preferred_group_nid(struct task_struct * p,int nid)2469 static int preferred_group_nid(struct task_struct *p, int nid)
2470 {
2471 nodemask_t nodes;
2472 int dist;
2473
2474 /* Direct connections between all NUMA nodes. */
2475 if (sched_numa_topology_type == NUMA_DIRECT)
2476 return nid;
2477
2478 /*
2479 * On a system with glueless mesh NUMA topology, group_weight
2480 * scores nodes according to the number of NUMA hinting faults on
2481 * both the node itself, and on nearby nodes.
2482 */
2483 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2484 unsigned long score, max_score = 0;
2485 int node, max_node = nid;
2486
2487 dist = sched_max_numa_distance;
2488
2489 for_each_node_state(node, N_CPU) {
2490 score = group_weight(p, node, dist);
2491 if (score > max_score) {
2492 max_score = score;
2493 max_node = node;
2494 }
2495 }
2496 return max_node;
2497 }
2498
2499 /*
2500 * Finding the preferred nid in a system with NUMA backplane
2501 * interconnect topology is more involved. The goal is to locate
2502 * tasks from numa_groups near each other in the system, and
2503 * untangle workloads from different sides of the system. This requires
2504 * searching down the hierarchy of node groups, recursively searching
2505 * inside the highest scoring group of nodes. The nodemask tricks
2506 * keep the complexity of the search down.
2507 */
2508 nodes = node_states[N_CPU];
2509 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2510 unsigned long max_faults = 0;
2511 nodemask_t max_group = NODE_MASK_NONE;
2512 int a, b;
2513
2514 /* Are there nodes at this distance from each other? */
2515 if (!find_numa_distance(dist))
2516 continue;
2517
2518 for_each_node_mask(a, nodes) {
2519 unsigned long faults = 0;
2520 nodemask_t this_group;
2521 nodes_clear(this_group);
2522
2523 /* Sum group's NUMA faults; includes a==b case. */
2524 for_each_node_mask(b, nodes) {
2525 if (node_distance(a, b) < dist) {
2526 faults += group_faults(p, b);
2527 node_set(b, this_group);
2528 node_clear(b, nodes);
2529 }
2530 }
2531
2532 /* Remember the top group. */
2533 if (faults > max_faults) {
2534 max_faults = faults;
2535 max_group = this_group;
2536 /*
2537 * subtle: at the smallest distance there is
2538 * just one node left in each "group", the
2539 * winner is the preferred nid.
2540 */
2541 nid = a;
2542 }
2543 }
2544 /* Next round, evaluate the nodes within max_group. */
2545 if (!max_faults)
2546 break;
2547 nodes = max_group;
2548 }
2549 return nid;
2550 }
2551
task_numa_placement(struct task_struct * p)2552 static void task_numa_placement(struct task_struct *p)
2553 {
2554 int seq, nid, max_nid = NUMA_NO_NODE;
2555 unsigned long max_faults = 0;
2556 unsigned long fault_types[2] = { 0, 0 };
2557 unsigned long total_faults;
2558 u64 runtime, period;
2559 spinlock_t *group_lock = NULL;
2560 struct numa_group *ng;
2561
2562 /*
2563 * The p->mm->numa_scan_seq field gets updated without
2564 * exclusive access. Use READ_ONCE() here to ensure
2565 * that the field is read in a single access:
2566 */
2567 seq = READ_ONCE(p->mm->numa_scan_seq);
2568 if (p->numa_scan_seq == seq)
2569 return;
2570 p->numa_scan_seq = seq;
2571 p->numa_scan_period_max = task_scan_max(p);
2572
2573 total_faults = p->numa_faults_locality[0] +
2574 p->numa_faults_locality[1];
2575 runtime = numa_get_avg_runtime(p, &period);
2576
2577 /* If the task is part of a group prevent parallel updates to group stats */
2578 ng = deref_curr_numa_group(p);
2579 if (ng) {
2580 group_lock = &ng->lock;
2581 spin_lock_irq(group_lock);
2582 }
2583
2584 /* Find the node with the highest number of faults */
2585 for_each_online_node(nid) {
2586 /* Keep track of the offsets in numa_faults array */
2587 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2588 unsigned long faults = 0, group_faults = 0;
2589 int priv;
2590
2591 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2592 long diff, f_diff, f_weight;
2593
2594 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2595 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2596 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2597 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2598
2599 /* Decay existing window, copy faults since last scan */
2600 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2601 fault_types[priv] += p->numa_faults[membuf_idx];
2602 p->numa_faults[membuf_idx] = 0;
2603
2604 /*
2605 * Normalize the faults_from, so all tasks in a group
2606 * count according to CPU use, instead of by the raw
2607 * number of faults. Tasks with little runtime have
2608 * little over-all impact on throughput, and thus their
2609 * faults are less important.
2610 */
2611 f_weight = div64_u64(runtime << 16, period + 1);
2612 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2613 (total_faults + 1);
2614 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2615 p->numa_faults[cpubuf_idx] = 0;
2616
2617 p->numa_faults[mem_idx] += diff;
2618 p->numa_faults[cpu_idx] += f_diff;
2619 faults += p->numa_faults[mem_idx];
2620 p->total_numa_faults += diff;
2621 if (ng) {
2622 /*
2623 * safe because we can only change our own group
2624 *
2625 * mem_idx represents the offset for a given
2626 * nid and priv in a specific region because it
2627 * is at the beginning of the numa_faults array.
2628 */
2629 ng->faults[mem_idx] += diff;
2630 ng->faults[cpu_idx] += f_diff;
2631 ng->total_faults += diff;
2632 group_faults += ng->faults[mem_idx];
2633 }
2634 }
2635
2636 if (!ng) {
2637 if (faults > max_faults) {
2638 max_faults = faults;
2639 max_nid = nid;
2640 }
2641 } else if (group_faults > max_faults) {
2642 max_faults = group_faults;
2643 max_nid = nid;
2644 }
2645 }
2646
2647 /* Cannot migrate task to CPU-less node */
2648 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2649 int near_nid = max_nid;
2650 int distance, near_distance = INT_MAX;
2651
2652 for_each_node_state(nid, N_CPU) {
2653 distance = node_distance(max_nid, nid);
2654 if (distance < near_distance) {
2655 near_nid = nid;
2656 near_distance = distance;
2657 }
2658 }
2659 max_nid = near_nid;
2660 }
2661
2662 if (ng) {
2663 numa_group_count_active_nodes(ng);
2664 spin_unlock_irq(group_lock);
2665 max_nid = preferred_group_nid(p, max_nid);
2666 }
2667
2668 if (max_faults) {
2669 /* Set the new preferred node */
2670 if (max_nid != p->numa_preferred_nid)
2671 sched_setnuma(p, max_nid);
2672 }
2673
2674 update_task_scan_period(p, fault_types[0], fault_types[1]);
2675 }
2676
get_numa_group(struct numa_group * grp)2677 static inline int get_numa_group(struct numa_group *grp)
2678 {
2679 return refcount_inc_not_zero(&grp->refcount);
2680 }
2681
put_numa_group(struct numa_group * grp)2682 static inline void put_numa_group(struct numa_group *grp)
2683 {
2684 if (refcount_dec_and_test(&grp->refcount))
2685 kfree_rcu(grp, rcu);
2686 }
2687
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)2688 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2689 int *priv)
2690 {
2691 struct numa_group *grp, *my_grp;
2692 struct task_struct *tsk;
2693 bool join = false;
2694 int cpu = cpupid_to_cpu(cpupid);
2695 int i;
2696
2697 if (unlikely(!deref_curr_numa_group(p))) {
2698 unsigned int size = sizeof(struct numa_group) +
2699 NR_NUMA_HINT_FAULT_STATS *
2700 nr_node_ids * sizeof(unsigned long);
2701
2702 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2703 if (!grp)
2704 return;
2705
2706 refcount_set(&grp->refcount, 1);
2707 grp->active_nodes = 1;
2708 grp->max_faults_cpu = 0;
2709 spin_lock_init(&grp->lock);
2710 grp->gid = p->pid;
2711
2712 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2713 grp->faults[i] = p->numa_faults[i];
2714
2715 grp->total_faults = p->total_numa_faults;
2716
2717 grp->nr_tasks++;
2718 rcu_assign_pointer(p->numa_group, grp);
2719 }
2720
2721 rcu_read_lock();
2722 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2723
2724 if (!cpupid_match_pid(tsk, cpupid))
2725 goto no_join;
2726
2727 grp = rcu_dereference(tsk->numa_group);
2728 if (!grp)
2729 goto no_join;
2730
2731 my_grp = deref_curr_numa_group(p);
2732 if (grp == my_grp)
2733 goto no_join;
2734
2735 /*
2736 * Only join the other group if its bigger; if we're the bigger group,
2737 * the other task will join us.
2738 */
2739 if (my_grp->nr_tasks > grp->nr_tasks)
2740 goto no_join;
2741
2742 /*
2743 * Tie-break on the grp address.
2744 */
2745 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2746 goto no_join;
2747
2748 /* Always join threads in the same process. */
2749 if (tsk->mm == current->mm)
2750 join = true;
2751
2752 /* Simple filter to avoid false positives due to PID collisions */
2753 if (flags & TNF_SHARED)
2754 join = true;
2755
2756 /* Update priv based on whether false sharing was detected */
2757 *priv = !join;
2758
2759 if (join && !get_numa_group(grp))
2760 goto no_join;
2761
2762 rcu_read_unlock();
2763
2764 if (!join)
2765 return;
2766
2767 WARN_ON_ONCE(irqs_disabled());
2768 double_lock_irq(&my_grp->lock, &grp->lock);
2769
2770 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2771 my_grp->faults[i] -= p->numa_faults[i];
2772 grp->faults[i] += p->numa_faults[i];
2773 }
2774 my_grp->total_faults -= p->total_numa_faults;
2775 grp->total_faults += p->total_numa_faults;
2776
2777 my_grp->nr_tasks--;
2778 grp->nr_tasks++;
2779
2780 spin_unlock(&my_grp->lock);
2781 spin_unlock_irq(&grp->lock);
2782
2783 rcu_assign_pointer(p->numa_group, grp);
2784
2785 put_numa_group(my_grp);
2786 return;
2787
2788 no_join:
2789 rcu_read_unlock();
2790 return;
2791 }
2792
2793 /*
2794 * Get rid of NUMA statistics associated with a task (either current or dead).
2795 * If @final is set, the task is dead and has reached refcount zero, so we can
2796 * safely free all relevant data structures. Otherwise, there might be
2797 * concurrent reads from places like load balancing and procfs, and we should
2798 * reset the data back to default state without freeing ->numa_faults.
2799 */
task_numa_free(struct task_struct * p,bool final)2800 void task_numa_free(struct task_struct *p, bool final)
2801 {
2802 /* safe: p either is current or is being freed by current */
2803 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2804 unsigned long *numa_faults = p->numa_faults;
2805 unsigned long flags;
2806 int i;
2807
2808 if (!numa_faults)
2809 return;
2810
2811 if (grp) {
2812 spin_lock_irqsave(&grp->lock, flags);
2813 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2814 grp->faults[i] -= p->numa_faults[i];
2815 grp->total_faults -= p->total_numa_faults;
2816
2817 grp->nr_tasks--;
2818 spin_unlock_irqrestore(&grp->lock, flags);
2819 RCU_INIT_POINTER(p->numa_group, NULL);
2820 put_numa_group(grp);
2821 }
2822
2823 if (final) {
2824 p->numa_faults = NULL;
2825 kfree(numa_faults);
2826 } else {
2827 p->total_numa_faults = 0;
2828 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2829 numa_faults[i] = 0;
2830 }
2831 }
2832
2833 /*
2834 * Got a PROT_NONE fault for a page on @node.
2835 */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)2836 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2837 {
2838 struct task_struct *p = current;
2839 bool migrated = flags & TNF_MIGRATED;
2840 int cpu_node = task_node(current);
2841 int local = !!(flags & TNF_FAULT_LOCAL);
2842 struct numa_group *ng;
2843 int priv;
2844
2845 if (!static_branch_likely(&sched_numa_balancing))
2846 return;
2847
2848 /* for example, ksmd faulting in a user's mm */
2849 if (!p->mm)
2850 return;
2851
2852 /*
2853 * NUMA faults statistics are unnecessary for the slow memory
2854 * node for memory tiering mode.
2855 */
2856 if (!node_is_toptier(mem_node) &&
2857 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
2858 !cpupid_valid(last_cpupid)))
2859 return;
2860
2861 /* Allocate buffer to track faults on a per-node basis */
2862 if (unlikely(!p->numa_faults)) {
2863 int size = sizeof(*p->numa_faults) *
2864 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2865
2866 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2867 if (!p->numa_faults)
2868 return;
2869
2870 p->total_numa_faults = 0;
2871 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2872 }
2873
2874 /*
2875 * First accesses are treated as private, otherwise consider accesses
2876 * to be private if the accessing pid has not changed
2877 */
2878 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2879 priv = 1;
2880 } else {
2881 priv = cpupid_match_pid(p, last_cpupid);
2882 if (!priv && !(flags & TNF_NO_GROUP))
2883 task_numa_group(p, last_cpupid, flags, &priv);
2884 }
2885
2886 /*
2887 * If a workload spans multiple NUMA nodes, a shared fault that
2888 * occurs wholly within the set of nodes that the workload is
2889 * actively using should be counted as local. This allows the
2890 * scan rate to slow down when a workload has settled down.
2891 */
2892 ng = deref_curr_numa_group(p);
2893 if (!priv && !local && ng && ng->active_nodes > 1 &&
2894 numa_is_active_node(cpu_node, ng) &&
2895 numa_is_active_node(mem_node, ng))
2896 local = 1;
2897
2898 /*
2899 * Retry to migrate task to preferred node periodically, in case it
2900 * previously failed, or the scheduler moved us.
2901 */
2902 if (time_after(jiffies, p->numa_migrate_retry)) {
2903 task_numa_placement(p);
2904 numa_migrate_preferred(p);
2905 }
2906
2907 if (migrated)
2908 p->numa_pages_migrated += pages;
2909 if (flags & TNF_MIGRATE_FAIL)
2910 p->numa_faults_locality[2] += pages;
2911
2912 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2913 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2914 p->numa_faults_locality[local] += pages;
2915 }
2916
reset_ptenuma_scan(struct task_struct * p)2917 static void reset_ptenuma_scan(struct task_struct *p)
2918 {
2919 /*
2920 * We only did a read acquisition of the mmap sem, so
2921 * p->mm->numa_scan_seq is written to without exclusive access
2922 * and the update is not guaranteed to be atomic. That's not
2923 * much of an issue though, since this is just used for
2924 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2925 * expensive, to avoid any form of compiler optimizations:
2926 */
2927 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2928 p->mm->numa_scan_offset = 0;
2929 }
2930
2931 /*
2932 * The expensive part of numa migration is done from task_work context.
2933 * Triggered from task_tick_numa().
2934 */
task_numa_work(struct callback_head * work)2935 static void task_numa_work(struct callback_head *work)
2936 {
2937 unsigned long migrate, next_scan, now = jiffies;
2938 struct task_struct *p = current;
2939 struct mm_struct *mm = p->mm;
2940 u64 runtime = p->se.sum_exec_runtime;
2941 MA_STATE(mas, &mm->mm_mt, 0, 0);
2942 struct vm_area_struct *vma;
2943 unsigned long start, end;
2944 unsigned long nr_pte_updates = 0;
2945 long pages, virtpages;
2946
2947 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2948
2949 work->next = work;
2950 /*
2951 * Who cares about NUMA placement when they're dying.
2952 *
2953 * NOTE: make sure not to dereference p->mm before this check,
2954 * exit_task_work() happens _after_ exit_mm() so we could be called
2955 * without p->mm even though we still had it when we enqueued this
2956 * work.
2957 */
2958 if (p->flags & PF_EXITING)
2959 return;
2960
2961 if (!mm->numa_next_scan) {
2962 mm->numa_next_scan = now +
2963 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2964 }
2965
2966 /*
2967 * Enforce maximal scan/migration frequency..
2968 */
2969 migrate = mm->numa_next_scan;
2970 if (time_before(now, migrate))
2971 return;
2972
2973 if (p->numa_scan_period == 0) {
2974 p->numa_scan_period_max = task_scan_max(p);
2975 p->numa_scan_period = task_scan_start(p);
2976 }
2977
2978 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2979 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2980 return;
2981
2982 /*
2983 * Delay this task enough that another task of this mm will likely win
2984 * the next time around.
2985 */
2986 p->node_stamp += 2 * TICK_NSEC;
2987
2988 start = mm->numa_scan_offset;
2989 pages = sysctl_numa_balancing_scan_size;
2990 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2991 virtpages = pages * 8; /* Scan up to this much virtual space */
2992 if (!pages)
2993 return;
2994
2995
2996 if (!mmap_read_trylock(mm))
2997 return;
2998 mas_set(&mas, start);
2999 vma = mas_find(&mas, ULONG_MAX);
3000 if (!vma) {
3001 reset_ptenuma_scan(p);
3002 start = 0;
3003 mas_set(&mas, start);
3004 vma = mas_find(&mas, ULONG_MAX);
3005 }
3006
3007 for (; vma; vma = mas_find(&mas, ULONG_MAX)) {
3008 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3009 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3010 continue;
3011 }
3012
3013 /*
3014 * Shared library pages mapped by multiple processes are not
3015 * migrated as it is expected they are cache replicated. Avoid
3016 * hinting faults in read-only file-backed mappings or the vdso
3017 * as migrating the pages will be of marginal benefit.
3018 */
3019 if (!vma->vm_mm ||
3020 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
3021 continue;
3022
3023 /*
3024 * Skip inaccessible VMAs to avoid any confusion between
3025 * PROT_NONE and NUMA hinting ptes
3026 */
3027 if (!vma_is_accessible(vma))
3028 continue;
3029
3030 do {
3031 start = max(start, vma->vm_start);
3032 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3033 end = min(end, vma->vm_end);
3034 nr_pte_updates = change_prot_numa(vma, start, end);
3035
3036 /*
3037 * Try to scan sysctl_numa_balancing_size worth of
3038 * hpages that have at least one present PTE that
3039 * is not already pte-numa. If the VMA contains
3040 * areas that are unused or already full of prot_numa
3041 * PTEs, scan up to virtpages, to skip through those
3042 * areas faster.
3043 */
3044 if (nr_pte_updates)
3045 pages -= (end - start) >> PAGE_SHIFT;
3046 virtpages -= (end - start) >> PAGE_SHIFT;
3047
3048 start = end;
3049 if (pages <= 0 || virtpages <= 0)
3050 goto out;
3051
3052 cond_resched();
3053 } while (end != vma->vm_end);
3054 }
3055
3056 out:
3057 /*
3058 * It is possible to reach the end of the VMA list but the last few
3059 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3060 * would find the !migratable VMA on the next scan but not reset the
3061 * scanner to the start so check it now.
3062 */
3063 if (vma)
3064 mm->numa_scan_offset = start;
3065 else
3066 reset_ptenuma_scan(p);
3067 mmap_read_unlock(mm);
3068
3069 /*
3070 * Make sure tasks use at least 32x as much time to run other code
3071 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3072 * Usually update_task_scan_period slows down scanning enough; on an
3073 * overloaded system we need to limit overhead on a per task basis.
3074 */
3075 if (unlikely(p->se.sum_exec_runtime != runtime)) {
3076 u64 diff = p->se.sum_exec_runtime - runtime;
3077 p->node_stamp += 32 * diff;
3078 }
3079 }
3080
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)3081 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3082 {
3083 int mm_users = 0;
3084 struct mm_struct *mm = p->mm;
3085
3086 if (mm) {
3087 mm_users = atomic_read(&mm->mm_users);
3088 if (mm_users == 1) {
3089 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3090 mm->numa_scan_seq = 0;
3091 }
3092 }
3093 p->node_stamp = 0;
3094 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
3095 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
3096 p->numa_migrate_retry = 0;
3097 /* Protect against double add, see task_tick_numa and task_numa_work */
3098 p->numa_work.next = &p->numa_work;
3099 p->numa_faults = NULL;
3100 p->numa_pages_migrated = 0;
3101 p->total_numa_faults = 0;
3102 RCU_INIT_POINTER(p->numa_group, NULL);
3103 p->last_task_numa_placement = 0;
3104 p->last_sum_exec_runtime = 0;
3105
3106 init_task_work(&p->numa_work, task_numa_work);
3107
3108 /* New address space, reset the preferred nid */
3109 if (!(clone_flags & CLONE_VM)) {
3110 p->numa_preferred_nid = NUMA_NO_NODE;
3111 return;
3112 }
3113
3114 /*
3115 * New thread, keep existing numa_preferred_nid which should be copied
3116 * already by arch_dup_task_struct but stagger when scans start.
3117 */
3118 if (mm) {
3119 unsigned int delay;
3120
3121 delay = min_t(unsigned int, task_scan_max(current),
3122 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3123 delay += 2 * TICK_NSEC;
3124 p->node_stamp = delay;
3125 }
3126 }
3127
3128 /*
3129 * Drive the periodic memory faults..
3130 */
task_tick_numa(struct rq * rq,struct task_struct * curr)3131 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3132 {
3133 struct callback_head *work = &curr->numa_work;
3134 u64 period, now;
3135
3136 /*
3137 * We don't care about NUMA placement if we don't have memory.
3138 */
3139 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3140 return;
3141
3142 /*
3143 * Using runtime rather than walltime has the dual advantage that
3144 * we (mostly) drive the selection from busy threads and that the
3145 * task needs to have done some actual work before we bother with
3146 * NUMA placement.
3147 */
3148 now = curr->se.sum_exec_runtime;
3149 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3150
3151 if (now > curr->node_stamp + period) {
3152 if (!curr->node_stamp)
3153 curr->numa_scan_period = task_scan_start(curr);
3154 curr->node_stamp += period;
3155
3156 if (!time_before(jiffies, curr->mm->numa_next_scan))
3157 task_work_add(curr, work, TWA_RESUME);
3158 }
3159 }
3160
update_scan_period(struct task_struct * p,int new_cpu)3161 static void update_scan_period(struct task_struct *p, int new_cpu)
3162 {
3163 int src_nid = cpu_to_node(task_cpu(p));
3164 int dst_nid = cpu_to_node(new_cpu);
3165
3166 if (!static_branch_likely(&sched_numa_balancing))
3167 return;
3168
3169 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3170 return;
3171
3172 if (src_nid == dst_nid)
3173 return;
3174
3175 /*
3176 * Allow resets if faults have been trapped before one scan
3177 * has completed. This is most likely due to a new task that
3178 * is pulled cross-node due to wakeups or load balancing.
3179 */
3180 if (p->numa_scan_seq) {
3181 /*
3182 * Avoid scan adjustments if moving to the preferred
3183 * node or if the task was not previously running on
3184 * the preferred node.
3185 */
3186 if (dst_nid == p->numa_preferred_nid ||
3187 (p->numa_preferred_nid != NUMA_NO_NODE &&
3188 src_nid != p->numa_preferred_nid))
3189 return;
3190 }
3191
3192 p->numa_scan_period = task_scan_start(p);
3193 }
3194
3195 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)3196 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3197 {
3198 }
3199
account_numa_enqueue(struct rq * rq,struct task_struct * p)3200 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3201 {
3202 }
3203
account_numa_dequeue(struct rq * rq,struct task_struct * p)3204 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3205 {
3206 }
3207
update_scan_period(struct task_struct * p,int new_cpu)3208 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3209 {
3210 }
3211
3212 #endif /* CONFIG_NUMA_BALANCING */
3213
3214 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3215 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3216 {
3217 update_load_add(&cfs_rq->load, se->load.weight);
3218 #ifdef CONFIG_SMP
3219 if (entity_is_task(se)) {
3220 struct rq *rq = rq_of(cfs_rq);
3221
3222 account_numa_enqueue(rq, task_of(se));
3223 list_add(&se->group_node, &rq->cfs_tasks);
3224 }
3225 #endif
3226 cfs_rq->nr_running++;
3227 if (se_is_idle(se))
3228 cfs_rq->idle_nr_running++;
3229 }
3230
3231 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3232 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3233 {
3234 update_load_sub(&cfs_rq->load, se->load.weight);
3235 #ifdef CONFIG_SMP
3236 if (entity_is_task(se)) {
3237 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3238 list_del_init(&se->group_node);
3239 }
3240 #endif
3241 cfs_rq->nr_running--;
3242 if (se_is_idle(se))
3243 cfs_rq->idle_nr_running--;
3244 }
3245
3246 /*
3247 * Signed add and clamp on underflow.
3248 *
3249 * Explicitly do a load-store to ensure the intermediate value never hits
3250 * memory. This allows lockless observations without ever seeing the negative
3251 * values.
3252 */
3253 #define add_positive(_ptr, _val) do { \
3254 typeof(_ptr) ptr = (_ptr); \
3255 typeof(_val) val = (_val); \
3256 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3257 \
3258 res = var + val; \
3259 \
3260 if (val < 0 && res > var) \
3261 res = 0; \
3262 \
3263 WRITE_ONCE(*ptr, res); \
3264 } while (0)
3265
3266 /*
3267 * Unsigned subtract and clamp on underflow.
3268 *
3269 * Explicitly do a load-store to ensure the intermediate value never hits
3270 * memory. This allows lockless observations without ever seeing the negative
3271 * values.
3272 */
3273 #define sub_positive(_ptr, _val) do { \
3274 typeof(_ptr) ptr = (_ptr); \
3275 typeof(*ptr) val = (_val); \
3276 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3277 res = var - val; \
3278 if (res > var) \
3279 res = 0; \
3280 WRITE_ONCE(*ptr, res); \
3281 } while (0)
3282
3283 /*
3284 * Remove and clamp on negative, from a local variable.
3285 *
3286 * A variant of sub_positive(), which does not use explicit load-store
3287 * and is thus optimized for local variable updates.
3288 */
3289 #define lsub_positive(_ptr, _val) do { \
3290 typeof(_ptr) ptr = (_ptr); \
3291 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3292 } while (0)
3293
3294 #ifdef CONFIG_SMP
3295 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3296 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3297 {
3298 cfs_rq->avg.load_avg += se->avg.load_avg;
3299 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3300 }
3301
3302 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3303 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3304 {
3305 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3306 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3307 /* See update_cfs_rq_load_avg() */
3308 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3309 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3310 }
3311 #else
3312 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3313 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3314 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3315 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3316 #endif
3317
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3318 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3319 unsigned long weight)
3320 {
3321 if (se->on_rq) {
3322 /* commit outstanding execution time */
3323 if (cfs_rq->curr == se)
3324 update_curr(cfs_rq);
3325 update_load_sub(&cfs_rq->load, se->load.weight);
3326 }
3327 dequeue_load_avg(cfs_rq, se);
3328
3329 update_load_set(&se->load, weight);
3330
3331 #ifdef CONFIG_SMP
3332 do {
3333 u32 divider = get_pelt_divider(&se->avg);
3334
3335 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3336 } while (0);
3337 #endif
3338
3339 enqueue_load_avg(cfs_rq, se);
3340 if (se->on_rq)
3341 update_load_add(&cfs_rq->load, se->load.weight);
3342
3343 }
3344
reweight_task(struct task_struct * p,int prio)3345 void reweight_task(struct task_struct *p, int prio)
3346 {
3347 struct sched_entity *se = &p->se;
3348 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3349 struct load_weight *load = &se->load;
3350 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3351
3352 reweight_entity(cfs_rq, se, weight);
3353 load->inv_weight = sched_prio_to_wmult[prio];
3354 }
3355 EXPORT_SYMBOL_GPL(reweight_task);
3356
3357 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3358
3359 #ifdef CONFIG_FAIR_GROUP_SCHED
3360 #ifdef CONFIG_SMP
3361 /*
3362 * All this does is approximate the hierarchical proportion which includes that
3363 * global sum we all love to hate.
3364 *
3365 * That is, the weight of a group entity, is the proportional share of the
3366 * group weight based on the group runqueue weights. That is:
3367 *
3368 * tg->weight * grq->load.weight
3369 * ge->load.weight = ----------------------------- (1)
3370 * \Sum grq->load.weight
3371 *
3372 * Now, because computing that sum is prohibitively expensive to compute (been
3373 * there, done that) we approximate it with this average stuff. The average
3374 * moves slower and therefore the approximation is cheaper and more stable.
3375 *
3376 * So instead of the above, we substitute:
3377 *
3378 * grq->load.weight -> grq->avg.load_avg (2)
3379 *
3380 * which yields the following:
3381 *
3382 * tg->weight * grq->avg.load_avg
3383 * ge->load.weight = ------------------------------ (3)
3384 * tg->load_avg
3385 *
3386 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3387 *
3388 * That is shares_avg, and it is right (given the approximation (2)).
3389 *
3390 * The problem with it is that because the average is slow -- it was designed
3391 * to be exactly that of course -- this leads to transients in boundary
3392 * conditions. In specific, the case where the group was idle and we start the
3393 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3394 * yielding bad latency etc..
3395 *
3396 * Now, in that special case (1) reduces to:
3397 *
3398 * tg->weight * grq->load.weight
3399 * ge->load.weight = ----------------------------- = tg->weight (4)
3400 * grp->load.weight
3401 *
3402 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3403 *
3404 * So what we do is modify our approximation (3) to approach (4) in the (near)
3405 * UP case, like:
3406 *
3407 * ge->load.weight =
3408 *
3409 * tg->weight * grq->load.weight
3410 * --------------------------------------------------- (5)
3411 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3412 *
3413 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3414 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3415 *
3416 *
3417 * tg->weight * grq->load.weight
3418 * ge->load.weight = ----------------------------- (6)
3419 * tg_load_avg'
3420 *
3421 * Where:
3422 *
3423 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3424 * max(grq->load.weight, grq->avg.load_avg)
3425 *
3426 * And that is shares_weight and is icky. In the (near) UP case it approaches
3427 * (4) while in the normal case it approaches (3). It consistently
3428 * overestimates the ge->load.weight and therefore:
3429 *
3430 * \Sum ge->load.weight >= tg->weight
3431 *
3432 * hence icky!
3433 */
calc_group_shares(struct cfs_rq * cfs_rq)3434 static long calc_group_shares(struct cfs_rq *cfs_rq)
3435 {
3436 long tg_weight, tg_shares, load, shares;
3437 struct task_group *tg = cfs_rq->tg;
3438
3439 tg_shares = READ_ONCE(tg->shares);
3440
3441 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3442
3443 tg_weight = atomic_long_read(&tg->load_avg);
3444
3445 /* Ensure tg_weight >= load */
3446 tg_weight -= cfs_rq->tg_load_avg_contrib;
3447 tg_weight += load;
3448
3449 shares = (tg_shares * load);
3450 if (tg_weight)
3451 shares /= tg_weight;
3452
3453 /*
3454 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3455 * of a group with small tg->shares value. It is a floor value which is
3456 * assigned as a minimum load.weight to the sched_entity representing
3457 * the group on a CPU.
3458 *
3459 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3460 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3461 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3462 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3463 * instead of 0.
3464 */
3465 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3466 }
3467 #endif /* CONFIG_SMP */
3468
3469 /*
3470 * Recomputes the group entity based on the current state of its group
3471 * runqueue.
3472 */
update_cfs_group(struct sched_entity * se)3473 static void update_cfs_group(struct sched_entity *se)
3474 {
3475 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3476 long shares;
3477
3478 if (!gcfs_rq)
3479 return;
3480
3481 if (throttled_hierarchy(gcfs_rq))
3482 return;
3483
3484 #ifndef CONFIG_SMP
3485 shares = READ_ONCE(gcfs_rq->tg->shares);
3486
3487 if (likely(se->load.weight == shares))
3488 return;
3489 #else
3490 shares = calc_group_shares(gcfs_rq);
3491 #endif
3492
3493 reweight_entity(cfs_rq_of(se), se, shares);
3494 }
3495
3496 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)3497 static inline void update_cfs_group(struct sched_entity *se)
3498 {
3499 }
3500 #endif /* CONFIG_FAIR_GROUP_SCHED */
3501
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)3502 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3503 {
3504 struct rq *rq = rq_of(cfs_rq);
3505
3506 if (&rq->cfs == cfs_rq) {
3507 /*
3508 * There are a few boundary cases this might miss but it should
3509 * get called often enough that that should (hopefully) not be
3510 * a real problem.
3511 *
3512 * It will not get called when we go idle, because the idle
3513 * thread is a different class (!fair), nor will the utilization
3514 * number include things like RT tasks.
3515 *
3516 * As is, the util number is not freq-invariant (we'd have to
3517 * implement arch_scale_freq_capacity() for that).
3518 *
3519 * See cpu_util_cfs().
3520 */
3521 cpufreq_update_util(rq, flags);
3522 }
3523 }
3524
3525 #ifdef CONFIG_SMP
load_avg_is_decayed(struct sched_avg * sa)3526 static inline bool load_avg_is_decayed(struct sched_avg *sa)
3527 {
3528 if (sa->load_sum)
3529 return false;
3530
3531 if (sa->util_sum)
3532 return false;
3533
3534 if (sa->runnable_sum)
3535 return false;
3536
3537 /*
3538 * _avg must be null when _sum are null because _avg = _sum / divider
3539 * Make sure that rounding and/or propagation of PELT values never
3540 * break this.
3541 */
3542 SCHED_WARN_ON(sa->load_avg ||
3543 sa->util_avg ||
3544 sa->runnable_avg);
3545
3546 return true;
3547 }
3548
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3549 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3550 {
3551 return u64_u32_load_copy(cfs_rq->avg.last_update_time,
3552 cfs_rq->last_update_time_copy);
3553 }
3554 #ifdef CONFIG_FAIR_GROUP_SCHED
3555 /*
3556 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3557 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3558 * bottom-up, we only have to test whether the cfs_rq before us on the list
3559 * is our child.
3560 * If cfs_rq is not on the list, test whether a child needs its to be added to
3561 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
3562 */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)3563 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3564 {
3565 struct cfs_rq *prev_cfs_rq;
3566 struct list_head *prev;
3567
3568 if (cfs_rq->on_list) {
3569 prev = cfs_rq->leaf_cfs_rq_list.prev;
3570 } else {
3571 struct rq *rq = rq_of(cfs_rq);
3572
3573 prev = rq->tmp_alone_branch;
3574 }
3575
3576 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3577
3578 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3579 }
3580
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)3581 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3582 {
3583 if (cfs_rq->load.weight)
3584 return false;
3585
3586 if (!load_avg_is_decayed(&cfs_rq->avg))
3587 return false;
3588
3589 if (child_cfs_rq_on_list(cfs_rq))
3590 return false;
3591
3592 return true;
3593 }
3594
3595 /**
3596 * update_tg_load_avg - update the tg's load avg
3597 * @cfs_rq: the cfs_rq whose avg changed
3598 *
3599 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3600 * However, because tg->load_avg is a global value there are performance
3601 * considerations.
3602 *
3603 * In order to avoid having to look at the other cfs_rq's, we use a
3604 * differential update where we store the last value we propagated. This in
3605 * turn allows skipping updates if the differential is 'small'.
3606 *
3607 * Updating tg's load_avg is necessary before update_cfs_share().
3608 */
update_tg_load_avg(struct cfs_rq * cfs_rq)3609 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3610 {
3611 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3612
3613 /*
3614 * No need to update load_avg for root_task_group as it is not used.
3615 */
3616 if (cfs_rq->tg == &root_task_group)
3617 return;
3618
3619 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3620 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3621 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3622 }
3623 }
3624
3625 /*
3626 * Called within set_task_rq() right before setting a task's CPU. The
3627 * caller only guarantees p->pi_lock is held; no other assumptions,
3628 * including the state of rq->lock, should be made.
3629 */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)3630 void set_task_rq_fair(struct sched_entity *se,
3631 struct cfs_rq *prev, struct cfs_rq *next)
3632 {
3633 u64 p_last_update_time;
3634 u64 n_last_update_time;
3635
3636 if (!sched_feat(ATTACH_AGE_LOAD))
3637 return;
3638
3639 /*
3640 * We are supposed to update the task to "current" time, then its up to
3641 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3642 * getting what current time is, so simply throw away the out-of-date
3643 * time. This will result in the wakee task is less decayed, but giving
3644 * the wakee more load sounds not bad.
3645 */
3646 if (!(se->avg.last_update_time && prev))
3647 return;
3648
3649 p_last_update_time = cfs_rq_last_update_time(prev);
3650 n_last_update_time = cfs_rq_last_update_time(next);
3651
3652 __update_load_avg_blocked_se(p_last_update_time, se);
3653 se->avg.last_update_time = n_last_update_time;
3654 }
3655
3656 /*
3657 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3658 * propagate its contribution. The key to this propagation is the invariant
3659 * that for each group:
3660 *
3661 * ge->avg == grq->avg (1)
3662 *
3663 * _IFF_ we look at the pure running and runnable sums. Because they
3664 * represent the very same entity, just at different points in the hierarchy.
3665 *
3666 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3667 * and simply copies the running/runnable sum over (but still wrong, because
3668 * the group entity and group rq do not have their PELT windows aligned).
3669 *
3670 * However, update_tg_cfs_load() is more complex. So we have:
3671 *
3672 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3673 *
3674 * And since, like util, the runnable part should be directly transferable,
3675 * the following would _appear_ to be the straight forward approach:
3676 *
3677 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3678 *
3679 * And per (1) we have:
3680 *
3681 * ge->avg.runnable_avg == grq->avg.runnable_avg
3682 *
3683 * Which gives:
3684 *
3685 * ge->load.weight * grq->avg.load_avg
3686 * ge->avg.load_avg = ----------------------------------- (4)
3687 * grq->load.weight
3688 *
3689 * Except that is wrong!
3690 *
3691 * Because while for entities historical weight is not important and we
3692 * really only care about our future and therefore can consider a pure
3693 * runnable sum, runqueues can NOT do this.
3694 *
3695 * We specifically want runqueues to have a load_avg that includes
3696 * historical weights. Those represent the blocked load, the load we expect
3697 * to (shortly) return to us. This only works by keeping the weights as
3698 * integral part of the sum. We therefore cannot decompose as per (3).
3699 *
3700 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3701 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3702 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3703 * runnable section of these tasks overlap (or not). If they were to perfectly
3704 * align the rq as a whole would be runnable 2/3 of the time. If however we
3705 * always have at least 1 runnable task, the rq as a whole is always runnable.
3706 *
3707 * So we'll have to approximate.. :/
3708 *
3709 * Given the constraint:
3710 *
3711 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3712 *
3713 * We can construct a rule that adds runnable to a rq by assuming minimal
3714 * overlap.
3715 *
3716 * On removal, we'll assume each task is equally runnable; which yields:
3717 *
3718 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3719 *
3720 * XXX: only do this for the part of runnable > running ?
3721 *
3722 */
3723 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3724 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3725 {
3726 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
3727 u32 new_sum, divider;
3728
3729 /* Nothing to update */
3730 if (!delta_avg)
3731 return;
3732
3733 /*
3734 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3735 * See ___update_load_avg() for details.
3736 */
3737 divider = get_pelt_divider(&cfs_rq->avg);
3738
3739
3740 /* Set new sched_entity's utilization */
3741 se->avg.util_avg = gcfs_rq->avg.util_avg;
3742 new_sum = se->avg.util_avg * divider;
3743 delta_sum = (long)new_sum - (long)se->avg.util_sum;
3744 se->avg.util_sum = new_sum;
3745
3746 /* Update parent cfs_rq utilization */
3747 add_positive(&cfs_rq->avg.util_avg, delta_avg);
3748 add_positive(&cfs_rq->avg.util_sum, delta_sum);
3749
3750 /* See update_cfs_rq_load_avg() */
3751 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
3752 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
3753 }
3754
3755 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3756 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3757 {
3758 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3759 u32 new_sum, divider;
3760
3761 /* Nothing to update */
3762 if (!delta_avg)
3763 return;
3764
3765 /*
3766 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3767 * See ___update_load_avg() for details.
3768 */
3769 divider = get_pelt_divider(&cfs_rq->avg);
3770
3771 /* Set new sched_entity's runnable */
3772 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3773 new_sum = se->avg.runnable_avg * divider;
3774 delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
3775 se->avg.runnable_sum = new_sum;
3776
3777 /* Update parent cfs_rq runnable */
3778 add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
3779 add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
3780 /* See update_cfs_rq_load_avg() */
3781 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
3782 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
3783 }
3784
3785 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3786 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3787 {
3788 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3789 unsigned long load_avg;
3790 u64 load_sum = 0;
3791 s64 delta_sum;
3792 u32 divider;
3793
3794 if (!runnable_sum)
3795 return;
3796
3797 gcfs_rq->prop_runnable_sum = 0;
3798
3799 /*
3800 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3801 * See ___update_load_avg() for details.
3802 */
3803 divider = get_pelt_divider(&cfs_rq->avg);
3804
3805 if (runnable_sum >= 0) {
3806 /*
3807 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3808 * the CPU is saturated running == runnable.
3809 */
3810 runnable_sum += se->avg.load_sum;
3811 runnable_sum = min_t(long, runnable_sum, divider);
3812 } else {
3813 /*
3814 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3815 * assuming all tasks are equally runnable.
3816 */
3817 if (scale_load_down(gcfs_rq->load.weight)) {
3818 load_sum = div_u64(gcfs_rq->avg.load_sum,
3819 scale_load_down(gcfs_rq->load.weight));
3820 }
3821
3822 /* But make sure to not inflate se's runnable */
3823 runnable_sum = min(se->avg.load_sum, load_sum);
3824 }
3825
3826 /*
3827 * runnable_sum can't be lower than running_sum
3828 * Rescale running sum to be in the same range as runnable sum
3829 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3830 * runnable_sum is in [0 : LOAD_AVG_MAX]
3831 */
3832 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3833 runnable_sum = max(runnable_sum, running_sum);
3834
3835 load_sum = se_weight(se) * runnable_sum;
3836 load_avg = div_u64(load_sum, divider);
3837
3838 delta_avg = load_avg - se->avg.load_avg;
3839 if (!delta_avg)
3840 return;
3841
3842 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3843
3844 se->avg.load_sum = runnable_sum;
3845 se->avg.load_avg = load_avg;
3846 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3847 add_positive(&cfs_rq->avg.load_sum, delta_sum);
3848 /* See update_cfs_rq_load_avg() */
3849 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3850 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3851 }
3852
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)3853 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3854 {
3855 cfs_rq->propagate = 1;
3856 cfs_rq->prop_runnable_sum += runnable_sum;
3857 }
3858
3859 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)3860 static inline int propagate_entity_load_avg(struct sched_entity *se)
3861 {
3862 struct cfs_rq *cfs_rq, *gcfs_rq;
3863
3864 if (entity_is_task(se))
3865 return 0;
3866
3867 gcfs_rq = group_cfs_rq(se);
3868 if (!gcfs_rq->propagate)
3869 return 0;
3870
3871 gcfs_rq->propagate = 0;
3872
3873 cfs_rq = cfs_rq_of(se);
3874
3875 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3876
3877 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3878 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3879 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3880
3881 trace_pelt_cfs_tp(cfs_rq);
3882 trace_pelt_se_tp(se);
3883
3884 return 1;
3885 }
3886
3887 /*
3888 * Check if we need to update the load and the utilization of a blocked
3889 * group_entity:
3890 */
skip_blocked_update(struct sched_entity * se)3891 static inline bool skip_blocked_update(struct sched_entity *se)
3892 {
3893 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3894
3895 /*
3896 * If sched_entity still have not zero load or utilization, we have to
3897 * decay it:
3898 */
3899 if (se->avg.load_avg || se->avg.util_avg)
3900 return false;
3901
3902 /*
3903 * If there is a pending propagation, we have to update the load and
3904 * the utilization of the sched_entity:
3905 */
3906 if (gcfs_rq->propagate)
3907 return false;
3908
3909 /*
3910 * Otherwise, the load and the utilization of the sched_entity is
3911 * already zero and there is no pending propagation, so it will be a
3912 * waste of time to try to decay it:
3913 */
3914 return true;
3915 }
3916
3917 #else /* CONFIG_FAIR_GROUP_SCHED */
3918
update_tg_load_avg(struct cfs_rq * cfs_rq)3919 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3920
propagate_entity_load_avg(struct sched_entity * se)3921 static inline int propagate_entity_load_avg(struct sched_entity *se)
3922 {
3923 return 0;
3924 }
3925
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)3926 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3927
3928 #endif /* CONFIG_FAIR_GROUP_SCHED */
3929
3930 #ifdef CONFIG_NO_HZ_COMMON
migrate_se_pelt_lag(struct sched_entity * se)3931 static inline void migrate_se_pelt_lag(struct sched_entity *se)
3932 {
3933 u64 throttled = 0, now, lut;
3934 struct cfs_rq *cfs_rq;
3935 struct rq *rq;
3936 bool is_idle;
3937
3938 if (load_avg_is_decayed(&se->avg))
3939 return;
3940
3941 cfs_rq = cfs_rq_of(se);
3942 rq = rq_of(cfs_rq);
3943
3944 rcu_read_lock();
3945 is_idle = is_idle_task(rcu_dereference(rq->curr));
3946 rcu_read_unlock();
3947
3948 /*
3949 * The lag estimation comes with a cost we don't want to pay all the
3950 * time. Hence, limiting to the case where the source CPU is idle and
3951 * we know we are at the greatest risk to have an outdated clock.
3952 */
3953 if (!is_idle)
3954 return;
3955
3956 /*
3957 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
3958 *
3959 * last_update_time (the cfs_rq's last_update_time)
3960 * = cfs_rq_clock_pelt()@cfs_rq_idle
3961 * = rq_clock_pelt()@cfs_rq_idle
3962 * - cfs->throttled_clock_pelt_time@cfs_rq_idle
3963 *
3964 * cfs_idle_lag (delta between rq's update and cfs_rq's update)
3965 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
3966 *
3967 * rq_idle_lag (delta between now and rq's update)
3968 * = sched_clock_cpu() - rq_clock()@rq_idle
3969 *
3970 * We can then write:
3971 *
3972 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
3973 * sched_clock_cpu() - rq_clock()@rq_idle
3974 * Where:
3975 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
3976 * rq_clock()@rq_idle is rq->clock_idle
3977 * cfs->throttled_clock_pelt_time@cfs_rq_idle
3978 * is cfs_rq->throttled_pelt_idle
3979 */
3980
3981 #ifdef CONFIG_CFS_BANDWIDTH
3982 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
3983 /* The clock has been stopped for throttling */
3984 if (throttled == U64_MAX)
3985 return;
3986 #endif
3987 now = u64_u32_load(rq->clock_pelt_idle);
3988 /*
3989 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
3990 * is observed the old clock_pelt_idle value and the new clock_idle,
3991 * which lead to an underestimation. The opposite would lead to an
3992 * overestimation.
3993 */
3994 smp_rmb();
3995 lut = cfs_rq_last_update_time(cfs_rq);
3996
3997 now -= throttled;
3998 if (now < lut)
3999 /*
4000 * cfs_rq->avg.last_update_time is more recent than our
4001 * estimation, let's use it.
4002 */
4003 now = lut;
4004 else
4005 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4006
4007 __update_load_avg_blocked_se(now, se);
4008 }
4009 #else
migrate_se_pelt_lag(struct sched_entity * se)4010 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4011 #endif
4012
4013 /**
4014 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4015 * @now: current time, as per cfs_rq_clock_pelt()
4016 * @cfs_rq: cfs_rq to update
4017 *
4018 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4019 * avg. The immediate corollary is that all (fair) tasks must be attached.
4020 *
4021 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4022 *
4023 * Return: true if the load decayed or we removed load.
4024 *
4025 * Since both these conditions indicate a changed cfs_rq->avg.load we should
4026 * call update_tg_load_avg() when this function returns true.
4027 */
4028 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)4029 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4030 {
4031 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4032 struct sched_avg *sa = &cfs_rq->avg;
4033 int decayed = 0;
4034
4035 if (cfs_rq->removed.nr) {
4036 unsigned long r;
4037 u32 divider = get_pelt_divider(&cfs_rq->avg);
4038
4039 raw_spin_lock(&cfs_rq->removed.lock);
4040 swap(cfs_rq->removed.util_avg, removed_util);
4041 swap(cfs_rq->removed.load_avg, removed_load);
4042 swap(cfs_rq->removed.runnable_avg, removed_runnable);
4043 cfs_rq->removed.nr = 0;
4044 raw_spin_unlock(&cfs_rq->removed.lock);
4045
4046 r = removed_load;
4047 sub_positive(&sa->load_avg, r);
4048 sub_positive(&sa->load_sum, r * divider);
4049 /* See sa->util_sum below */
4050 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4051
4052 r = removed_util;
4053 sub_positive(&sa->util_avg, r);
4054 sub_positive(&sa->util_sum, r * divider);
4055 /*
4056 * Because of rounding, se->util_sum might ends up being +1 more than
4057 * cfs->util_sum. Although this is not a problem by itself, detaching
4058 * a lot of tasks with the rounding problem between 2 updates of
4059 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4060 * cfs_util_avg is not.
4061 * Check that util_sum is still above its lower bound for the new
4062 * util_avg. Given that period_contrib might have moved since the last
4063 * sync, we are only sure that util_sum must be above or equal to
4064 * util_avg * minimum possible divider
4065 */
4066 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4067
4068 r = removed_runnable;
4069 sub_positive(&sa->runnable_avg, r);
4070 sub_positive(&sa->runnable_sum, r * divider);
4071 /* See sa->util_sum above */
4072 sa->runnable_sum = max_t(u32, sa->runnable_sum,
4073 sa->runnable_avg * PELT_MIN_DIVIDER);
4074
4075 /*
4076 * removed_runnable is the unweighted version of removed_load so we
4077 * can use it to estimate removed_load_sum.
4078 */
4079 add_tg_cfs_propagate(cfs_rq,
4080 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4081
4082 decayed = 1;
4083 }
4084
4085 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4086 u64_u32_store_copy(sa->last_update_time,
4087 cfs_rq->last_update_time_copy,
4088 sa->last_update_time);
4089 return decayed;
4090 }
4091
4092 /**
4093 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4094 * @cfs_rq: cfs_rq to attach to
4095 * @se: sched_entity to attach
4096 *
4097 * Must call update_cfs_rq_load_avg() before this, since we rely on
4098 * cfs_rq->avg.last_update_time being current.
4099 */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4100 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4101 {
4102 /*
4103 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4104 * See ___update_load_avg() for details.
4105 */
4106 u32 divider = get_pelt_divider(&cfs_rq->avg);
4107
4108 /*
4109 * When we attach the @se to the @cfs_rq, we must align the decay
4110 * window because without that, really weird and wonderful things can
4111 * happen.
4112 *
4113 * XXX illustrate
4114 */
4115 se->avg.last_update_time = cfs_rq->avg.last_update_time;
4116 se->avg.period_contrib = cfs_rq->avg.period_contrib;
4117
4118 /*
4119 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4120 * period_contrib. This isn't strictly correct, but since we're
4121 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4122 * _sum a little.
4123 */
4124 se->avg.util_sum = se->avg.util_avg * divider;
4125
4126 se->avg.runnable_sum = se->avg.runnable_avg * divider;
4127
4128 se->avg.load_sum = se->avg.load_avg * divider;
4129 if (se_weight(se) < se->avg.load_sum)
4130 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4131 else
4132 se->avg.load_sum = 1;
4133
4134 trace_android_rvh_attach_entity_load_avg(cfs_rq, se);
4135
4136 enqueue_load_avg(cfs_rq, se);
4137 cfs_rq->avg.util_avg += se->avg.util_avg;
4138 cfs_rq->avg.util_sum += se->avg.util_sum;
4139 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4140 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4141
4142 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4143
4144 cfs_rq_util_change(cfs_rq, 0);
4145
4146 trace_pelt_cfs_tp(cfs_rq);
4147 }
4148
4149 /**
4150 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4151 * @cfs_rq: cfs_rq to detach from
4152 * @se: sched_entity to detach
4153 *
4154 * Must call update_cfs_rq_load_avg() before this, since we rely on
4155 * cfs_rq->avg.last_update_time being current.
4156 */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4157 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4158 {
4159 trace_android_rvh_detach_entity_load_avg(cfs_rq, se);
4160
4161 dequeue_load_avg(cfs_rq, se);
4162 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4163 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4164 /* See update_cfs_rq_load_avg() */
4165 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4166 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4167
4168 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4169 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4170 /* See update_cfs_rq_load_avg() */
4171 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4172 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4173
4174 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4175
4176 cfs_rq_util_change(cfs_rq, 0);
4177
4178 trace_pelt_cfs_tp(cfs_rq);
4179 }
4180
4181 /*
4182 * Optional action to be done while updating the load average
4183 */
4184 #define UPDATE_TG 0x1
4185 #define SKIP_AGE_LOAD 0x2
4186 #define DO_ATTACH 0x4
4187 #define DO_DETACH 0x8
4188
4189 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4190 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4191 {
4192 u64 now = cfs_rq_clock_pelt(cfs_rq);
4193 int decayed;
4194
4195 /*
4196 * Track task load average for carrying it to new CPU after migrated, and
4197 * track group sched_entity load average for task_h_load calc in migration
4198 */
4199 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4200 __update_load_avg_se(now, cfs_rq, se);
4201
4202 decayed = update_cfs_rq_load_avg(now, cfs_rq);
4203 decayed |= propagate_entity_load_avg(se);
4204
4205 trace_android_rvh_update_load_avg(now, cfs_rq, se);
4206
4207 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4208
4209 /*
4210 * DO_ATTACH means we're here from enqueue_entity().
4211 * !last_update_time means we've passed through
4212 * migrate_task_rq_fair() indicating we migrated.
4213 *
4214 * IOW we're enqueueing a task on a new CPU.
4215 */
4216 attach_entity_load_avg(cfs_rq, se);
4217 update_tg_load_avg(cfs_rq);
4218
4219 } else if (flags & DO_DETACH) {
4220 /*
4221 * DO_DETACH means we're here from dequeue_entity()
4222 * and we are migrating task out of the CPU.
4223 */
4224 detach_entity_load_avg(cfs_rq, se);
4225 update_tg_load_avg(cfs_rq);
4226 } else if (decayed) {
4227 cfs_rq_util_change(cfs_rq, 0);
4228
4229 if (flags & UPDATE_TG)
4230 update_tg_load_avg(cfs_rq);
4231 }
4232 }
4233
4234 /*
4235 * Synchronize entity load avg of dequeued entity without locking
4236 * the previous rq.
4237 */
sync_entity_load_avg(struct sched_entity * se)4238 static void sync_entity_load_avg(struct sched_entity *se)
4239 {
4240 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4241 u64 last_update_time;
4242
4243 last_update_time = cfs_rq_last_update_time(cfs_rq);
4244 __update_load_avg_blocked_se(last_update_time, se);
4245 }
4246
4247 /*
4248 * Task first catches up with cfs_rq, and then subtract
4249 * itself from the cfs_rq (task must be off the queue now).
4250 */
remove_entity_load_avg(struct sched_entity * se)4251 static void remove_entity_load_avg(struct sched_entity *se)
4252 {
4253 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4254 unsigned long flags;
4255
4256 /*
4257 * tasks cannot exit without having gone through wake_up_new_task() ->
4258 * enqueue_task_fair() which will have added things to the cfs_rq,
4259 * so we can remove unconditionally.
4260 */
4261
4262 sync_entity_load_avg(se);
4263
4264 trace_android_rvh_remove_entity_load_avg(cfs_rq, se);
4265
4266 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4267 ++cfs_rq->removed.nr;
4268 cfs_rq->removed.util_avg += se->avg.util_avg;
4269 cfs_rq->removed.load_avg += se->avg.load_avg;
4270 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
4271 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4272 }
4273
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)4274 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4275 {
4276 return cfs_rq->avg.runnable_avg;
4277 }
4278
cfs_rq_load_avg(struct cfs_rq * cfs_rq)4279 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4280 {
4281 return cfs_rq->avg.load_avg;
4282 }
4283
4284 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4285
task_util(struct task_struct * p)4286 static inline unsigned long task_util(struct task_struct *p)
4287 {
4288 return READ_ONCE(p->se.avg.util_avg);
4289 }
4290
_task_util_est(struct task_struct * p)4291 static inline unsigned long _task_util_est(struct task_struct *p)
4292 {
4293 struct util_est ue = READ_ONCE(p->se.avg.util_est);
4294
4295 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4296 }
4297
task_util_est(struct task_struct * p)4298 static inline unsigned long task_util_est(struct task_struct *p)
4299 {
4300 return max(task_util(p), _task_util_est(p));
4301 }
4302
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4303 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4304 struct task_struct *p)
4305 {
4306 unsigned int enqueued;
4307
4308 if (!sched_feat(UTIL_EST))
4309 return;
4310
4311 /* Update root cfs_rq's estimated utilization */
4312 enqueued = cfs_rq->avg.util_est.enqueued;
4313 enqueued += _task_util_est(p);
4314 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4315
4316 trace_sched_util_est_cfs_tp(cfs_rq);
4317 }
4318
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4319 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4320 struct task_struct *p)
4321 {
4322 unsigned int enqueued;
4323
4324 if (!sched_feat(UTIL_EST))
4325 return;
4326
4327 /* Update root cfs_rq's estimated utilization */
4328 enqueued = cfs_rq->avg.util_est.enqueued;
4329 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4330 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4331
4332 trace_sched_util_est_cfs_tp(cfs_rq);
4333 }
4334
4335 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4336
4337 /*
4338 * Check if a (signed) value is within a specified (unsigned) margin,
4339 * based on the observation that:
4340 *
4341 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4342 *
4343 * NOTE: this only works when value + margin < INT_MAX.
4344 */
within_margin(int value,int margin)4345 static inline bool within_margin(int value, int margin)
4346 {
4347 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4348 }
4349
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4350 static inline void util_est_update(struct cfs_rq *cfs_rq,
4351 struct task_struct *p,
4352 bool task_sleep)
4353 {
4354 long last_ewma_diff, last_enqueued_diff;
4355 struct util_est ue;
4356 int ret = 0;
4357
4358 trace_android_rvh_util_est_update(cfs_rq, p, task_sleep, &ret);
4359 if (ret)
4360 return;
4361
4362 if (!sched_feat(UTIL_EST))
4363 return;
4364
4365 /*
4366 * Skip update of task's estimated utilization when the task has not
4367 * yet completed an activation, e.g. being migrated.
4368 */
4369 if (!task_sleep)
4370 return;
4371
4372 /*
4373 * If the PELT values haven't changed since enqueue time,
4374 * skip the util_est update.
4375 */
4376 ue = p->se.avg.util_est;
4377 if (ue.enqueued & UTIL_AVG_UNCHANGED)
4378 return;
4379
4380 last_enqueued_diff = ue.enqueued;
4381
4382 /*
4383 * Reset EWMA on utilization increases, the moving average is used only
4384 * to smooth utilization decreases.
4385 */
4386 ue.enqueued = task_util(p);
4387 if (sched_feat(UTIL_EST_FASTUP)) {
4388 if (ue.ewma < ue.enqueued) {
4389 ue.ewma = ue.enqueued;
4390 goto done;
4391 }
4392 }
4393
4394 /*
4395 * Skip update of task's estimated utilization when its members are
4396 * already ~1% close to its last activation value.
4397 */
4398 last_ewma_diff = ue.enqueued - ue.ewma;
4399 last_enqueued_diff -= ue.enqueued;
4400 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4401 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4402 goto done;
4403
4404 return;
4405 }
4406
4407 /*
4408 * To avoid overestimation of actual task utilization, skip updates if
4409 * we cannot grant there is idle time in this CPU.
4410 */
4411 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4412 return;
4413
4414 /*
4415 * Update Task's estimated utilization
4416 *
4417 * When *p completes an activation we can consolidate another sample
4418 * of the task size. This is done by storing the current PELT value
4419 * as ue.enqueued and by using this value to update the Exponential
4420 * Weighted Moving Average (EWMA):
4421 *
4422 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4423 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4424 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4425 * = w * ( last_ewma_diff ) + ewma(t-1)
4426 * = w * (last_ewma_diff + ewma(t-1) / w)
4427 *
4428 * Where 'w' is the weight of new samples, which is configured to be
4429 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4430 */
4431 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4432 ue.ewma += last_ewma_diff;
4433 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4434 done:
4435 ue.enqueued |= UTIL_AVG_UNCHANGED;
4436 WRITE_ONCE(p->se.avg.util_est, ue);
4437
4438 trace_sched_util_est_se_tp(&p->se);
4439 }
4440
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)4441 static inline int util_fits_cpu(unsigned long util,
4442 unsigned long uclamp_min,
4443 unsigned long uclamp_max,
4444 int cpu)
4445 {
4446 unsigned long capacity_orig, capacity_orig_thermal;
4447 unsigned long capacity = capacity_of(cpu);
4448 bool fits, uclamp_max_fits, done = false;
4449
4450 trace_android_rvh_util_fits_cpu(util, uclamp_min, uclamp_max, cpu, &fits, &done);
4451
4452 if (done)
4453 return fits;
4454
4455 /*
4456 * Check if the real util fits without any uclamp boost/cap applied.
4457 */
4458 fits = fits_capacity(util, capacity);
4459
4460 if (!uclamp_is_used())
4461 return fits;
4462
4463 /*
4464 * We must use capacity_orig_of() for comparing against uclamp_min and
4465 * uclamp_max. We only care about capacity pressure (by using
4466 * capacity_of()) for comparing against the real util.
4467 *
4468 * If a task is boosted to 1024 for example, we don't want a tiny
4469 * pressure to skew the check whether it fits a CPU or not.
4470 *
4471 * Similarly if a task is capped to capacity_orig_of(little_cpu), it
4472 * should fit a little cpu even if there's some pressure.
4473 *
4474 * Only exception is for thermal pressure since it has a direct impact
4475 * on available OPP of the system.
4476 *
4477 * We honour it for uclamp_min only as a drop in performance level
4478 * could result in not getting the requested minimum performance level.
4479 *
4480 * For uclamp_max, we can tolerate a drop in performance level as the
4481 * goal is to cap the task. So it's okay if it's getting less.
4482 */
4483 capacity_orig = capacity_orig_of(cpu);
4484 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
4485
4486 /*
4487 * We want to force a task to fit a cpu as implied by uclamp_max.
4488 * But we do have some corner cases to cater for..
4489 *
4490 *
4491 * C=z
4492 * | ___
4493 * | C=y | |
4494 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
4495 * | C=x | | | |
4496 * | ___ | | | |
4497 * | | | | | | | (util somewhere in this region)
4498 * | | | | | | |
4499 * | | | | | | |
4500 * +----------------------------------------
4501 * cpu0 cpu1 cpu2
4502 *
4503 * In the above example if a task is capped to a specific performance
4504 * point, y, then when:
4505 *
4506 * * util = 80% of x then it does not fit on cpu0 and should migrate
4507 * to cpu1
4508 * * util = 80% of y then it is forced to fit on cpu1 to honour
4509 * uclamp_max request.
4510 *
4511 * which is what we're enforcing here. A task always fits if
4512 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
4513 * the normal upmigration rules should withhold still.
4514 *
4515 * Only exception is when we are on max capacity, then we need to be
4516 * careful not to block overutilized state. This is so because:
4517 *
4518 * 1. There's no concept of capping at max_capacity! We can't go
4519 * beyond this performance level anyway.
4520 * 2. The system is being saturated when we're operating near
4521 * max capacity, it doesn't make sense to block overutilized.
4522 */
4523 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
4524 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
4525 fits = fits || uclamp_max_fits;
4526
4527 /*
4528 *
4529 * C=z
4530 * | ___ (region a, capped, util >= uclamp_max)
4531 * | C=y | |
4532 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
4533 * | C=x | | | |
4534 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max)
4535 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
4536 * | | | | | | |
4537 * | | | | | | | (region c, boosted, util < uclamp_min)
4538 * +----------------------------------------
4539 * cpu0 cpu1 cpu2
4540 *
4541 * a) If util > uclamp_max, then we're capped, we don't care about
4542 * actual fitness value here. We only care if uclamp_max fits
4543 * capacity without taking margin/pressure into account.
4544 * See comment above.
4545 *
4546 * b) If uclamp_min <= util <= uclamp_max, then the normal
4547 * fits_capacity() rules apply. Except we need to ensure that we
4548 * enforce we remain within uclamp_max, see comment above.
4549 *
4550 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
4551 * need to take into account the boosted value fits the CPU without
4552 * taking margin/pressure into account.
4553 *
4554 * Cases (a) and (b) are handled in the 'fits' variable already. We
4555 * just need to consider an extra check for case (c) after ensuring we
4556 * handle the case uclamp_min > uclamp_max.
4557 */
4558 uclamp_min = min(uclamp_min, uclamp_max);
4559 if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
4560 return -1;
4561
4562 return fits;
4563 }
4564
task_fits_cpu(struct task_struct * p,int cpu)4565 static inline int task_fits_cpu(struct task_struct *p, int cpu)
4566 {
4567 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
4568 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
4569 unsigned long util = task_util_est(p);
4570 /*
4571 * Return true only if the cpu fully fits the task requirements, which
4572 * include the utilization but also the performance hints.
4573 */
4574 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
4575 }
4576
update_misfit_status(struct task_struct * p,struct rq * rq)4577 inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4578 {
4579 bool need_update = true;
4580
4581 trace_android_rvh_update_misfit_status(p, rq, &need_update);
4582 if (!sched_asym_cpucap_active() || !need_update)
4583 return;
4584
4585 if (!p || p->nr_cpus_allowed == 1) {
4586 rq->misfit_task_load = 0;
4587 return;
4588 }
4589
4590 if (task_fits_cpu(p, cpu_of(rq))) {
4591 rq->misfit_task_load = 0;
4592 return;
4593 }
4594
4595 /*
4596 * Make sure that misfit_task_load will not be null even if
4597 * task_h_load() returns 0.
4598 */
4599 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4600 }
4601 EXPORT_SYMBOL_GPL(update_misfit_status);
4602
4603 #else /* CONFIG_SMP */
4604
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4605 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4606 {
4607 return !cfs_rq->nr_running;
4608 }
4609
4610 #define UPDATE_TG 0x0
4611 #define SKIP_AGE_LOAD 0x0
4612 #define DO_ATTACH 0x0
4613 #define DO_DETACH 0x0
4614
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)4615 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4616 {
4617 cfs_rq_util_change(cfs_rq, 0);
4618 }
4619
remove_entity_load_avg(struct sched_entity * se)4620 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4621
4622 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4623 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4624 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4625 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4626
newidle_balance(struct rq * rq,struct rq_flags * rf)4627 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4628 {
4629 return 0;
4630 }
4631
4632 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4633 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4634
4635 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4636 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4637
4638 static inline void
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4639 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4640 bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)4641 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4642
4643 #endif /* CONFIG_SMP */
4644
check_spread(struct cfs_rq * cfs_rq,struct sched_entity * se)4645 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4646 {
4647 #ifdef CONFIG_SCHED_DEBUG
4648 s64 d = se->vruntime - cfs_rq->min_vruntime;
4649
4650 if (d < 0)
4651 d = -d;
4652
4653 if (d > 3*sysctl_sched_latency)
4654 schedstat_inc(cfs_rq->nr_spread_over);
4655 #endif
4656 }
4657
entity_is_long_sleeper(struct sched_entity * se)4658 static inline bool entity_is_long_sleeper(struct sched_entity *se)
4659 {
4660 struct cfs_rq *cfs_rq;
4661 u64 sleep_time;
4662
4663 if (se->exec_start == 0)
4664 return false;
4665
4666 cfs_rq = cfs_rq_of(se);
4667
4668 sleep_time = rq_clock_task(rq_of(cfs_rq));
4669
4670 /* Happen while migrating because of clock task divergence */
4671 if (sleep_time <= se->exec_start)
4672 return false;
4673
4674 sleep_time -= se->exec_start;
4675 if (sleep_time > ((1ULL << 63) / scale_load_down(NICE_0_LOAD)))
4676 return true;
4677
4678 return false;
4679 }
4680
4681 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int initial)4682 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4683 {
4684 u64 vruntime = cfs_rq->min_vruntime;
4685
4686 /*
4687 * The 'current' period is already promised to the current tasks,
4688 * however the extra weight of the new task will slow them down a
4689 * little, place the new task so that it fits in the slot that
4690 * stays open at the end.
4691 */
4692 if (initial && sched_feat(START_DEBIT))
4693 vruntime += sched_vslice(cfs_rq, se);
4694
4695 /* sleeps up to a single latency don't count. */
4696 if (!initial) {
4697 unsigned long thresh;
4698
4699 if (se_is_idle(se))
4700 thresh = sysctl_sched_min_granularity;
4701 else
4702 thresh = sysctl_sched_latency;
4703
4704 /*
4705 * Halve their sleep time's effect, to allow
4706 * for a gentler effect of sleepers:
4707 */
4708 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4709 thresh >>= 1;
4710
4711 vruntime -= thresh;
4712 }
4713
4714 trace_android_rvh_place_entity(cfs_rq, se, initial, &vruntime);
4715 /*
4716 * Pull vruntime of the entity being placed to the base level of
4717 * cfs_rq, to prevent boosting it if placed backwards.
4718 * However, min_vruntime can advance much faster than real time, with
4719 * the extreme being when an entity with the minimal weight always runs
4720 * on the cfs_rq. If the waking entity slept for a long time, its
4721 * vruntime difference from min_vruntime may overflow s64 and their
4722 * comparison may get inversed, so ignore the entity's original
4723 * vruntime in that case.
4724 * The maximal vruntime speedup is given by the ratio of normal to
4725 * minimal weight: scale_load_down(NICE_0_LOAD) / MIN_SHARES.
4726 * When placing a migrated waking entity, its exec_start has been set
4727 * from a different rq. In order to take into account a possible
4728 * divergence between new and prev rq's clocks task because of irq and
4729 * stolen time, we take an additional margin.
4730 * So, cutting off on the sleep time of
4731 * 2^63 / scale_load_down(NICE_0_LOAD) ~ 104 days
4732 * should be safe.
4733 */
4734 if (entity_is_long_sleeper(se))
4735 se->vruntime = vruntime;
4736 else
4737 se->vruntime = max_vruntime(se->vruntime, vruntime);
4738 }
4739
4740 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4741
4742 static inline bool cfs_bandwidth_used(void);
4743
4744 /*
4745 * MIGRATION
4746 *
4747 * dequeue
4748 * update_curr()
4749 * update_min_vruntime()
4750 * vruntime -= min_vruntime
4751 *
4752 * enqueue
4753 * update_curr()
4754 * update_min_vruntime()
4755 * vruntime += min_vruntime
4756 *
4757 * this way the vruntime transition between RQs is done when both
4758 * min_vruntime are up-to-date.
4759 *
4760 * WAKEUP (remote)
4761 *
4762 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4763 * vruntime -= min_vruntime
4764 *
4765 * enqueue
4766 * update_curr()
4767 * update_min_vruntime()
4768 * vruntime += min_vruntime
4769 *
4770 * this way we don't have the most up-to-date min_vruntime on the originating
4771 * CPU and an up-to-date min_vruntime on the destination CPU.
4772 */
4773
4774 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4775 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4776 {
4777 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4778 bool curr = cfs_rq->curr == se;
4779
4780 /*
4781 * If we're the current task, we must renormalise before calling
4782 * update_curr().
4783 */
4784 if (renorm && curr)
4785 se->vruntime += cfs_rq->min_vruntime;
4786
4787 update_curr(cfs_rq);
4788
4789 /*
4790 * Otherwise, renormalise after, such that we're placed at the current
4791 * moment in time, instead of some random moment in the past. Being
4792 * placed in the past could significantly boost this task to the
4793 * fairness detriment of existing tasks.
4794 */
4795 if (renorm && !curr)
4796 se->vruntime += cfs_rq->min_vruntime;
4797
4798 /*
4799 * When enqueuing a sched_entity, we must:
4800 * - Update loads to have both entity and cfs_rq synced with now.
4801 * - For group_entity, update its runnable_weight to reflect the new
4802 * h_nr_running of its group cfs_rq.
4803 * - For group_entity, update its weight to reflect the new share of
4804 * its group cfs_rq
4805 * - Add its new weight to cfs_rq->load.weight
4806 */
4807 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4808 se_update_runnable(se);
4809 update_cfs_group(se);
4810 account_entity_enqueue(cfs_rq, se);
4811
4812 if (flags & ENQUEUE_WAKEUP)
4813 place_entity(cfs_rq, se, 0);
4814 /* Entity has migrated, no longer consider this task hot */
4815 if (flags & ENQUEUE_MIGRATED)
4816 se->exec_start = 0;
4817
4818 check_schedstat_required();
4819 update_stats_enqueue_fair(cfs_rq, se, flags);
4820 check_spread(cfs_rq, se);
4821 if (!curr)
4822 __enqueue_entity(cfs_rq, se);
4823 se->on_rq = 1;
4824
4825 if (cfs_rq->nr_running == 1) {
4826 check_enqueue_throttle(cfs_rq);
4827 if (!throttled_hierarchy(cfs_rq))
4828 list_add_leaf_cfs_rq(cfs_rq);
4829 }
4830 }
4831
__clear_buddies_last(struct sched_entity * se)4832 static void __clear_buddies_last(struct sched_entity *se)
4833 {
4834 for_each_sched_entity(se) {
4835 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4836 if (cfs_rq->last != se)
4837 break;
4838
4839 cfs_rq->last = NULL;
4840 }
4841 }
4842
__clear_buddies_next(struct sched_entity * se)4843 static void __clear_buddies_next(struct sched_entity *se)
4844 {
4845 for_each_sched_entity(se) {
4846 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4847 if (cfs_rq->next != se)
4848 break;
4849
4850 cfs_rq->next = NULL;
4851 }
4852 }
4853
__clear_buddies_skip(struct sched_entity * se)4854 static void __clear_buddies_skip(struct sched_entity *se)
4855 {
4856 for_each_sched_entity(se) {
4857 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4858 if (cfs_rq->skip != se)
4859 break;
4860
4861 cfs_rq->skip = NULL;
4862 }
4863 }
4864
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)4865 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4866 {
4867 if (cfs_rq->last == se)
4868 __clear_buddies_last(se);
4869
4870 if (cfs_rq->next == se)
4871 __clear_buddies_next(se);
4872
4873 if (cfs_rq->skip == se)
4874 __clear_buddies_skip(se);
4875 }
4876
4877 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4878
4879 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4880 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4881 {
4882 int action = UPDATE_TG;
4883
4884 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
4885 action |= DO_DETACH;
4886
4887 /*
4888 * Update run-time statistics of the 'current'.
4889 */
4890 update_curr(cfs_rq);
4891
4892 /*
4893 * When dequeuing a sched_entity, we must:
4894 * - Update loads to have both entity and cfs_rq synced with now.
4895 * - For group_entity, update its runnable_weight to reflect the new
4896 * h_nr_running of its group cfs_rq.
4897 * - Subtract its previous weight from cfs_rq->load.weight.
4898 * - For group entity, update its weight to reflect the new share
4899 * of its group cfs_rq.
4900 */
4901 update_load_avg(cfs_rq, se, action);
4902 se_update_runnable(se);
4903
4904 update_stats_dequeue_fair(cfs_rq, se, flags);
4905
4906 clear_buddies(cfs_rq, se);
4907
4908 if (se != cfs_rq->curr)
4909 __dequeue_entity(cfs_rq, se);
4910 se->on_rq = 0;
4911 account_entity_dequeue(cfs_rq, se);
4912
4913 /*
4914 * Normalize after update_curr(); which will also have moved
4915 * min_vruntime if @se is the one holding it back. But before doing
4916 * update_min_vruntime() again, which will discount @se's position and
4917 * can move min_vruntime forward still more.
4918 */
4919 if (!(flags & DEQUEUE_SLEEP))
4920 se->vruntime -= cfs_rq->min_vruntime;
4921
4922 /* return excess runtime on last dequeue */
4923 return_cfs_rq_runtime(cfs_rq);
4924
4925 update_cfs_group(se);
4926
4927 /*
4928 * Now advance min_vruntime if @se was the entity holding it back,
4929 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4930 * put back on, and if we advance min_vruntime, we'll be placed back
4931 * further than we started -- ie. we'll be penalized.
4932 */
4933 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4934 update_min_vruntime(cfs_rq);
4935
4936 if (cfs_rq->nr_running == 0)
4937 update_idle_cfs_rq_clock_pelt(cfs_rq);
4938 }
4939
4940 /*
4941 * Preempt the current task with a newly woken task if needed:
4942 */
4943 static void
check_preempt_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr)4944 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4945 {
4946 unsigned long ideal_runtime, delta_exec;
4947 struct sched_entity *se;
4948 s64 delta;
4949 bool skip_preempt = false;
4950
4951 /*
4952 * When many tasks blow up the sched_period; it is possible that
4953 * sched_slice() reports unusually large results (when many tasks are
4954 * very light for example). Therefore impose a maximum.
4955 */
4956 ideal_runtime = min_t(u64, sched_slice(cfs_rq, curr), sysctl_sched_latency);
4957
4958 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4959 trace_android_rvh_check_preempt_tick(current, &ideal_runtime, &skip_preempt,
4960 delta_exec, cfs_rq, curr, sysctl_sched_min_granularity);
4961 if (skip_preempt)
4962 return;
4963 if (delta_exec > ideal_runtime) {
4964 resched_curr(rq_of(cfs_rq));
4965 /*
4966 * The current task ran long enough, ensure it doesn't get
4967 * re-elected due to buddy favours.
4968 */
4969 clear_buddies(cfs_rq, curr);
4970 return;
4971 }
4972
4973 /*
4974 * Ensure that a task that missed wakeup preemption by a
4975 * narrow margin doesn't have to wait for a full slice.
4976 * This also mitigates buddy induced latencies under load.
4977 */
4978 if (delta_exec < sysctl_sched_min_granularity)
4979 return;
4980
4981 se = __pick_first_entity(cfs_rq);
4982 delta = curr->vruntime - se->vruntime;
4983
4984 if (delta < 0)
4985 return;
4986
4987 if (delta > ideal_runtime)
4988 resched_curr(rq_of(cfs_rq));
4989 }
4990
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)4991 void set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4992 {
4993 clear_buddies(cfs_rq, se);
4994
4995 /* 'current' is not kept within the tree. */
4996 if (se->on_rq) {
4997 /*
4998 * Any task has to be enqueued before it get to execute on
4999 * a CPU. So account for the time it spent waiting on the
5000 * runqueue.
5001 */
5002 update_stats_wait_end_fair(cfs_rq, se);
5003 __dequeue_entity(cfs_rq, se);
5004 update_load_avg(cfs_rq, se, UPDATE_TG);
5005 }
5006
5007 update_stats_curr_start(cfs_rq, se);
5008 cfs_rq->curr = se;
5009
5010 /*
5011 * Track our maximum slice length, if the CPU's load is at
5012 * least twice that of our own weight (i.e. dont track it
5013 * when there are only lesser-weight tasks around):
5014 */
5015 if (schedstat_enabled() &&
5016 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5017 struct sched_statistics *stats;
5018
5019 stats = __schedstats_from_se(se);
5020 __schedstat_set(stats->slice_max,
5021 max((u64)stats->slice_max,
5022 se->sum_exec_runtime - se->prev_sum_exec_runtime));
5023 }
5024
5025 se->prev_sum_exec_runtime = se->sum_exec_runtime;
5026 }
5027 EXPORT_SYMBOL_GPL(set_next_entity);
5028
5029 static int
5030 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
5031
5032 /*
5033 * Pick the next process, keeping these things in mind, in this order:
5034 * 1) keep things fair between processes/task groups
5035 * 2) pick the "next" process, since someone really wants that to run
5036 * 3) pick the "last" process, for cache locality
5037 * 4) do not run the "skip" process, if something else is available
5038 */
5039 static struct sched_entity *
pick_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * curr)5040 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
5041 {
5042 struct sched_entity *left = __pick_first_entity(cfs_rq);
5043 struct sched_entity *se = NULL;
5044
5045 trace_android_rvh_pick_next_entity(cfs_rq, curr, &se);
5046 if (se)
5047 goto done;
5048
5049 /*
5050 * If curr is set we have to see if its left of the leftmost entity
5051 * still in the tree, provided there was anything in the tree at all.
5052 */
5053 if (!left || (curr && entity_before(curr, left)))
5054 left = curr;
5055
5056 se = left; /* ideally we run the leftmost entity */
5057
5058 /*
5059 * Avoid running the skip buddy, if running something else can
5060 * be done without getting too unfair.
5061 */
5062 if (cfs_rq->skip && cfs_rq->skip == se) {
5063 struct sched_entity *second;
5064
5065 if (se == curr) {
5066 second = __pick_first_entity(cfs_rq);
5067 } else {
5068 second = __pick_next_entity(se);
5069 if (!second || (curr && entity_before(curr, second)))
5070 second = curr;
5071 }
5072
5073 if (second && wakeup_preempt_entity(second, left) < 1)
5074 se = second;
5075 }
5076
5077 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
5078 /*
5079 * Someone really wants this to run. If it's not unfair, run it.
5080 */
5081 se = cfs_rq->next;
5082 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
5083 /*
5084 * Prefer last buddy, try to return the CPU to a preempted task.
5085 */
5086 se = cfs_rq->last;
5087 }
5088
5089 done:
5090 return se;
5091 }
5092
5093 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5094
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)5095 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5096 {
5097 /*
5098 * If still on the runqueue then deactivate_task()
5099 * was not called and update_curr() has to be done:
5100 */
5101 if (prev->on_rq)
5102 update_curr(cfs_rq);
5103
5104 /* throttle cfs_rqs exceeding runtime */
5105 check_cfs_rq_runtime(cfs_rq);
5106
5107 check_spread(cfs_rq, prev);
5108
5109 if (prev->on_rq) {
5110 update_stats_wait_start_fair(cfs_rq, prev);
5111 /* Put 'current' back into the tree. */
5112 __enqueue_entity(cfs_rq, prev);
5113 /* in !on_rq case, update occurred at dequeue */
5114 update_load_avg(cfs_rq, prev, 0);
5115 }
5116 cfs_rq->curr = NULL;
5117 }
5118
5119 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)5120 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5121 {
5122 /*
5123 * Update run-time statistics of the 'current'.
5124 */
5125 update_curr(cfs_rq);
5126
5127 /*
5128 * Ensure that runnable average is periodically updated.
5129 */
5130 update_load_avg(cfs_rq, curr, UPDATE_TG);
5131 update_cfs_group(curr);
5132
5133 #ifdef CONFIG_SCHED_HRTICK
5134 /*
5135 * queued ticks are scheduled to match the slice, so don't bother
5136 * validating it and just reschedule.
5137 */
5138 if (queued) {
5139 resched_curr(rq_of(cfs_rq));
5140 return;
5141 }
5142 /*
5143 * don't let the period tick interfere with the hrtick preemption
5144 */
5145 if (!sched_feat(DOUBLE_TICK) &&
5146 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5147 return;
5148 #endif
5149
5150 if (cfs_rq->nr_running > 1)
5151 check_preempt_tick(cfs_rq, curr);
5152 trace_android_rvh_entity_tick(cfs_rq, curr);
5153 }
5154
5155
5156 /**************************************************
5157 * CFS bandwidth control machinery
5158 */
5159
5160 #ifdef CONFIG_CFS_BANDWIDTH
5161
5162 #ifdef CONFIG_JUMP_LABEL
5163 static struct static_key __cfs_bandwidth_used;
5164
cfs_bandwidth_used(void)5165 static inline bool cfs_bandwidth_used(void)
5166 {
5167 return static_key_false(&__cfs_bandwidth_used);
5168 }
5169
cfs_bandwidth_usage_inc(void)5170 void cfs_bandwidth_usage_inc(void)
5171 {
5172 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5173 }
5174
cfs_bandwidth_usage_dec(void)5175 void cfs_bandwidth_usage_dec(void)
5176 {
5177 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5178 }
5179 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)5180 static bool cfs_bandwidth_used(void)
5181 {
5182 return true;
5183 }
5184
cfs_bandwidth_usage_inc(void)5185 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)5186 void cfs_bandwidth_usage_dec(void) {}
5187 #endif /* CONFIG_JUMP_LABEL */
5188
5189 /*
5190 * default period for cfs group bandwidth.
5191 * default: 0.1s, units: nanoseconds
5192 */
default_cfs_period(void)5193 static inline u64 default_cfs_period(void)
5194 {
5195 return 100000000ULL;
5196 }
5197
sched_cfs_bandwidth_slice(void)5198 static inline u64 sched_cfs_bandwidth_slice(void)
5199 {
5200 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5201 }
5202
5203 /*
5204 * Replenish runtime according to assigned quota. We use sched_clock_cpu
5205 * directly instead of rq->clock to avoid adding additional synchronization
5206 * around rq->lock.
5207 *
5208 * requires cfs_b->lock
5209 */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)5210 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5211 {
5212 s64 runtime;
5213
5214 if (unlikely(cfs_b->quota == RUNTIME_INF))
5215 return;
5216
5217 cfs_b->runtime += cfs_b->quota;
5218 runtime = cfs_b->runtime_snap - cfs_b->runtime;
5219 if (runtime > 0) {
5220 cfs_b->burst_time += runtime;
5221 cfs_b->nr_burst++;
5222 }
5223
5224 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5225 cfs_b->runtime_snap = cfs_b->runtime;
5226 }
5227
tg_cfs_bandwidth(struct task_group * tg)5228 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5229 {
5230 return &tg->cfs_bandwidth;
5231 }
5232
5233 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)5234 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5235 struct cfs_rq *cfs_rq, u64 target_runtime)
5236 {
5237 u64 min_amount, amount = 0;
5238
5239 lockdep_assert_held(&cfs_b->lock);
5240
5241 /* note: this is a positive sum as runtime_remaining <= 0 */
5242 min_amount = target_runtime - cfs_rq->runtime_remaining;
5243
5244 if (cfs_b->quota == RUNTIME_INF)
5245 amount = min_amount;
5246 else {
5247 start_cfs_bandwidth(cfs_b);
5248
5249 if (cfs_b->runtime > 0) {
5250 amount = min(cfs_b->runtime, min_amount);
5251 cfs_b->runtime -= amount;
5252 cfs_b->idle = 0;
5253 }
5254 }
5255
5256 cfs_rq->runtime_remaining += amount;
5257
5258 return cfs_rq->runtime_remaining > 0;
5259 }
5260
5261 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)5262 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5263 {
5264 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5265 int ret;
5266
5267 raw_spin_lock(&cfs_b->lock);
5268 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5269 raw_spin_unlock(&cfs_b->lock);
5270
5271 return ret;
5272 }
5273
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5274 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5275 {
5276 /* dock delta_exec before expiring quota (as it could span periods) */
5277 cfs_rq->runtime_remaining -= delta_exec;
5278
5279 if (likely(cfs_rq->runtime_remaining > 0))
5280 return;
5281
5282 if (cfs_rq->throttled)
5283 return;
5284 /*
5285 * if we're unable to extend our runtime we resched so that the active
5286 * hierarchy can be throttled
5287 */
5288 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5289 resched_curr(rq_of(cfs_rq));
5290 }
5291
5292 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5293 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5294 {
5295 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5296 return;
5297
5298 __account_cfs_rq_runtime(cfs_rq, delta_exec);
5299 }
5300
cfs_rq_throttled(struct cfs_rq * cfs_rq)5301 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5302 {
5303 return cfs_bandwidth_used() && cfs_rq->throttled;
5304 }
5305
5306 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)5307 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5308 {
5309 return cfs_bandwidth_used() && cfs_rq->throttle_count;
5310 }
5311
5312 /*
5313 * Ensure that neither of the group entities corresponding to src_cpu or
5314 * dest_cpu are members of a throttled hierarchy when performing group
5315 * load-balance operations.
5316 */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5317 static inline int throttled_lb_pair(struct task_group *tg,
5318 int src_cpu, int dest_cpu)
5319 {
5320 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5321
5322 src_cfs_rq = tg->cfs_rq[src_cpu];
5323 dest_cfs_rq = tg->cfs_rq[dest_cpu];
5324
5325 return throttled_hierarchy(src_cfs_rq) ||
5326 throttled_hierarchy(dest_cfs_rq);
5327 }
5328
tg_unthrottle_up(struct task_group * tg,void * data)5329 static int tg_unthrottle_up(struct task_group *tg, void *data)
5330 {
5331 struct rq *rq = data;
5332 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5333
5334 cfs_rq->throttle_count--;
5335 if (!cfs_rq->throttle_count) {
5336 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5337 cfs_rq->throttled_clock_pelt;
5338
5339 /* Add cfs_rq with load or one or more already running entities to the list */
5340 if (!cfs_rq_is_decayed(cfs_rq))
5341 list_add_leaf_cfs_rq(cfs_rq);
5342 }
5343
5344 return 0;
5345 }
5346
tg_throttle_down(struct task_group * tg,void * data)5347 static int tg_throttle_down(struct task_group *tg, void *data)
5348 {
5349 struct rq *rq = data;
5350 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5351
5352 /* group is entering throttled state, stop time */
5353 if (!cfs_rq->throttle_count) {
5354 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5355 list_del_leaf_cfs_rq(cfs_rq);
5356 }
5357 cfs_rq->throttle_count++;
5358
5359 return 0;
5360 }
5361
throttle_cfs_rq(struct cfs_rq * cfs_rq)5362 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5363 {
5364 struct rq *rq = rq_of(cfs_rq);
5365 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5366 struct sched_entity *se;
5367 long task_delta, idle_task_delta, dequeue = 1;
5368
5369 raw_spin_lock(&cfs_b->lock);
5370 /* This will start the period timer if necessary */
5371 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5372 /*
5373 * We have raced with bandwidth becoming available, and if we
5374 * actually throttled the timer might not unthrottle us for an
5375 * entire period. We additionally needed to make sure that any
5376 * subsequent check_cfs_rq_runtime calls agree not to throttle
5377 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5378 * for 1ns of runtime rather than just check cfs_b.
5379 */
5380 dequeue = 0;
5381 } else {
5382 list_add_tail_rcu(&cfs_rq->throttled_list,
5383 &cfs_b->throttled_cfs_rq);
5384 }
5385 raw_spin_unlock(&cfs_b->lock);
5386
5387 if (!dequeue)
5388 return false; /* Throttle no longer required. */
5389
5390 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5391
5392 /* freeze hierarchy runnable averages while throttled */
5393 rcu_read_lock();
5394 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5395 rcu_read_unlock();
5396
5397 task_delta = cfs_rq->h_nr_running;
5398 idle_task_delta = cfs_rq->idle_h_nr_running;
5399 for_each_sched_entity(se) {
5400 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5401 /* throttled entity or throttle-on-deactivate */
5402 if (!se->on_rq)
5403 goto done;
5404
5405 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5406
5407 if (cfs_rq_is_idle(group_cfs_rq(se)))
5408 idle_task_delta = cfs_rq->h_nr_running;
5409
5410 qcfs_rq->h_nr_running -= task_delta;
5411 qcfs_rq->idle_h_nr_running -= idle_task_delta;
5412
5413 if (qcfs_rq->load.weight) {
5414 /* Avoid re-evaluating load for this entity: */
5415 se = parent_entity(se);
5416 break;
5417 }
5418 }
5419
5420 for_each_sched_entity(se) {
5421 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5422 /* throttled entity or throttle-on-deactivate */
5423 if (!se->on_rq)
5424 goto done;
5425
5426 update_load_avg(qcfs_rq, se, 0);
5427 se_update_runnable(se);
5428
5429 if (cfs_rq_is_idle(group_cfs_rq(se)))
5430 idle_task_delta = cfs_rq->h_nr_running;
5431
5432 qcfs_rq->h_nr_running -= task_delta;
5433 qcfs_rq->idle_h_nr_running -= idle_task_delta;
5434 }
5435
5436 /* At this point se is NULL and we are at root level*/
5437 sub_nr_running(rq, task_delta);
5438
5439 done:
5440 /*
5441 * Note: distribution will already see us throttled via the
5442 * throttled-list. rq->lock protects completion.
5443 */
5444 cfs_rq->throttled = 1;
5445 cfs_rq->throttled_clock = rq_clock(rq);
5446 return true;
5447 }
5448
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)5449 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5450 {
5451 struct rq *rq = rq_of(cfs_rq);
5452 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5453 struct sched_entity *se;
5454 long task_delta, idle_task_delta;
5455
5456 se = cfs_rq->tg->se[cpu_of(rq)];
5457
5458 cfs_rq->throttled = 0;
5459
5460 update_rq_clock(rq);
5461
5462 raw_spin_lock(&cfs_b->lock);
5463 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5464 list_del_rcu(&cfs_rq->throttled_list);
5465 raw_spin_unlock(&cfs_b->lock);
5466
5467 /* update hierarchical throttle state */
5468 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5469
5470 if (!cfs_rq->load.weight) {
5471 if (!cfs_rq->on_list)
5472 return;
5473 /*
5474 * Nothing to run but something to decay (on_list)?
5475 * Complete the branch.
5476 */
5477 for_each_sched_entity(se) {
5478 if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5479 break;
5480 }
5481 goto unthrottle_throttle;
5482 }
5483
5484 task_delta = cfs_rq->h_nr_running;
5485 idle_task_delta = cfs_rq->idle_h_nr_running;
5486 for_each_sched_entity(se) {
5487 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5488
5489 if (se->on_rq)
5490 break;
5491 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5492
5493 if (cfs_rq_is_idle(group_cfs_rq(se)))
5494 idle_task_delta = cfs_rq->h_nr_running;
5495
5496 qcfs_rq->h_nr_running += task_delta;
5497 qcfs_rq->idle_h_nr_running += idle_task_delta;
5498
5499 /* end evaluation on encountering a throttled cfs_rq */
5500 if (cfs_rq_throttled(qcfs_rq))
5501 goto unthrottle_throttle;
5502 }
5503
5504 for_each_sched_entity(se) {
5505 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5506
5507 update_load_avg(qcfs_rq, se, UPDATE_TG);
5508 se_update_runnable(se);
5509
5510 if (cfs_rq_is_idle(group_cfs_rq(se)))
5511 idle_task_delta = cfs_rq->h_nr_running;
5512
5513 qcfs_rq->h_nr_running += task_delta;
5514 qcfs_rq->idle_h_nr_running += idle_task_delta;
5515
5516 /* end evaluation on encountering a throttled cfs_rq */
5517 if (cfs_rq_throttled(qcfs_rq))
5518 goto unthrottle_throttle;
5519 }
5520
5521 /* At this point se is NULL and we are at root level*/
5522 add_nr_running(rq, task_delta);
5523
5524 unthrottle_throttle:
5525 assert_list_leaf_cfs_rq(rq);
5526
5527 /* Determine whether we need to wake up potentially idle CPU: */
5528 if (rq->curr == rq->idle && rq->cfs.nr_running)
5529 resched_curr(rq);
5530 }
5531
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)5532 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5533 {
5534 struct cfs_rq *cfs_rq;
5535 u64 runtime, remaining = 1;
5536
5537 rcu_read_lock();
5538 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5539 throttled_list) {
5540 struct rq *rq = rq_of(cfs_rq);
5541 struct rq_flags rf;
5542
5543 rq_lock_irqsave(rq, &rf);
5544 if (!cfs_rq_throttled(cfs_rq))
5545 goto next;
5546
5547 /* By the above check, this should never be true */
5548 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5549
5550 raw_spin_lock(&cfs_b->lock);
5551 runtime = -cfs_rq->runtime_remaining + 1;
5552 if (runtime > cfs_b->runtime)
5553 runtime = cfs_b->runtime;
5554 cfs_b->runtime -= runtime;
5555 remaining = cfs_b->runtime;
5556 raw_spin_unlock(&cfs_b->lock);
5557
5558 cfs_rq->runtime_remaining += runtime;
5559
5560 /* we check whether we're throttled above */
5561 if (cfs_rq->runtime_remaining > 0)
5562 unthrottle_cfs_rq(cfs_rq);
5563
5564 next:
5565 rq_unlock_irqrestore(rq, &rf);
5566
5567 if (!remaining)
5568 break;
5569 }
5570 rcu_read_unlock();
5571 }
5572
5573 /*
5574 * Responsible for refilling a task_group's bandwidth and unthrottling its
5575 * cfs_rqs as appropriate. If there has been no activity within the last
5576 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5577 * used to track this state.
5578 */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)5579 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5580 {
5581 int throttled;
5582
5583 /* no need to continue the timer with no bandwidth constraint */
5584 if (cfs_b->quota == RUNTIME_INF)
5585 goto out_deactivate;
5586
5587 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5588 cfs_b->nr_periods += overrun;
5589
5590 /* Refill extra burst quota even if cfs_b->idle */
5591 __refill_cfs_bandwidth_runtime(cfs_b);
5592
5593 /*
5594 * idle depends on !throttled (for the case of a large deficit), and if
5595 * we're going inactive then everything else can be deferred
5596 */
5597 if (cfs_b->idle && !throttled)
5598 goto out_deactivate;
5599
5600 if (!throttled) {
5601 /* mark as potentially idle for the upcoming period */
5602 cfs_b->idle = 1;
5603 return 0;
5604 }
5605
5606 /* account preceding periods in which throttling occurred */
5607 cfs_b->nr_throttled += overrun;
5608
5609 /*
5610 * This check is repeated as we release cfs_b->lock while we unthrottle.
5611 */
5612 while (throttled && cfs_b->runtime > 0) {
5613 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5614 /* we can't nest cfs_b->lock while distributing bandwidth */
5615 distribute_cfs_runtime(cfs_b);
5616 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5617
5618 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5619 }
5620
5621 /*
5622 * While we are ensured activity in the period following an
5623 * unthrottle, this also covers the case in which the new bandwidth is
5624 * insufficient to cover the existing bandwidth deficit. (Forcing the
5625 * timer to remain active while there are any throttled entities.)
5626 */
5627 cfs_b->idle = 0;
5628
5629 return 0;
5630
5631 out_deactivate:
5632 return 1;
5633 }
5634
5635 /* a cfs_rq won't donate quota below this amount */
5636 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5637 /* minimum remaining period time to redistribute slack quota */
5638 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5639 /* how long we wait to gather additional slack before distributing */
5640 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5641
5642 /*
5643 * Are we near the end of the current quota period?
5644 *
5645 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5646 * hrtimer base being cleared by hrtimer_start. In the case of
5647 * migrate_hrtimers, base is never cleared, so we are fine.
5648 */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)5649 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5650 {
5651 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5652 s64 remaining;
5653
5654 /* if the call-back is running a quota refresh is already occurring */
5655 if (hrtimer_callback_running(refresh_timer))
5656 return 1;
5657
5658 /* is a quota refresh about to occur? */
5659 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5660 if (remaining < (s64)min_expire)
5661 return 1;
5662
5663 return 0;
5664 }
5665
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)5666 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5667 {
5668 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5669
5670 /* if there's a quota refresh soon don't bother with slack */
5671 if (runtime_refresh_within(cfs_b, min_left))
5672 return;
5673
5674 /* don't push forwards an existing deferred unthrottle */
5675 if (cfs_b->slack_started)
5676 return;
5677 cfs_b->slack_started = true;
5678
5679 hrtimer_start(&cfs_b->slack_timer,
5680 ns_to_ktime(cfs_bandwidth_slack_period),
5681 HRTIMER_MODE_REL);
5682 }
5683
5684 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5685 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5686 {
5687 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5688 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5689
5690 if (slack_runtime <= 0)
5691 return;
5692
5693 raw_spin_lock(&cfs_b->lock);
5694 if (cfs_b->quota != RUNTIME_INF) {
5695 cfs_b->runtime += slack_runtime;
5696
5697 /* we are under rq->lock, defer unthrottling using a timer */
5698 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5699 !list_empty(&cfs_b->throttled_cfs_rq))
5700 start_cfs_slack_bandwidth(cfs_b);
5701 }
5702 raw_spin_unlock(&cfs_b->lock);
5703
5704 /* even if it's not valid for return we don't want to try again */
5705 cfs_rq->runtime_remaining -= slack_runtime;
5706 }
5707
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5708 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5709 {
5710 if (!cfs_bandwidth_used())
5711 return;
5712
5713 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5714 return;
5715
5716 __return_cfs_rq_runtime(cfs_rq);
5717 }
5718
5719 /*
5720 * This is done with a timer (instead of inline with bandwidth return) since
5721 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5722 */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)5723 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5724 {
5725 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5726 unsigned long flags;
5727
5728 /* confirm we're still not at a refresh boundary */
5729 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5730 cfs_b->slack_started = false;
5731
5732 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5733 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5734 return;
5735 }
5736
5737 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5738 runtime = cfs_b->runtime;
5739
5740 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5741
5742 if (!runtime)
5743 return;
5744
5745 distribute_cfs_runtime(cfs_b);
5746 }
5747
5748 /*
5749 * When a group wakes up we want to make sure that its quota is not already
5750 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5751 * runtime as update_curr() throttling can not trigger until it's on-rq.
5752 */
check_enqueue_throttle(struct cfs_rq * cfs_rq)5753 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5754 {
5755 if (!cfs_bandwidth_used())
5756 return;
5757
5758 /* an active group must be handled by the update_curr()->put() path */
5759 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5760 return;
5761
5762 /* ensure the group is not already throttled */
5763 if (cfs_rq_throttled(cfs_rq))
5764 return;
5765
5766 /* update runtime allocation */
5767 account_cfs_rq_runtime(cfs_rq, 0);
5768 if (cfs_rq->runtime_remaining <= 0)
5769 throttle_cfs_rq(cfs_rq);
5770 }
5771
sync_throttle(struct task_group * tg,int cpu)5772 static void sync_throttle(struct task_group *tg, int cpu)
5773 {
5774 struct cfs_rq *pcfs_rq, *cfs_rq;
5775
5776 if (!cfs_bandwidth_used())
5777 return;
5778
5779 if (!tg->parent)
5780 return;
5781
5782 cfs_rq = tg->cfs_rq[cpu];
5783 pcfs_rq = tg->parent->cfs_rq[cpu];
5784
5785 cfs_rq->throttle_count = pcfs_rq->throttle_count;
5786 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
5787 }
5788
5789 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)5790 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5791 {
5792 if (!cfs_bandwidth_used())
5793 return false;
5794
5795 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5796 return false;
5797
5798 /*
5799 * it's possible for a throttled entity to be forced into a running
5800 * state (e.g. set_curr_task), in this case we're finished.
5801 */
5802 if (cfs_rq_throttled(cfs_rq))
5803 return true;
5804
5805 return throttle_cfs_rq(cfs_rq);
5806 }
5807
sched_cfs_slack_timer(struct hrtimer * timer)5808 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5809 {
5810 struct cfs_bandwidth *cfs_b =
5811 container_of(timer, struct cfs_bandwidth, slack_timer);
5812
5813 do_sched_cfs_slack_timer(cfs_b);
5814
5815 return HRTIMER_NORESTART;
5816 }
5817
5818 extern const u64 max_cfs_quota_period;
5819
sched_cfs_period_timer(struct hrtimer * timer)5820 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5821 {
5822 struct cfs_bandwidth *cfs_b =
5823 container_of(timer, struct cfs_bandwidth, period_timer);
5824 unsigned long flags;
5825 int overrun;
5826 int idle = 0;
5827 int count = 0;
5828
5829 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5830 for (;;) {
5831 overrun = hrtimer_forward_now(timer, cfs_b->period);
5832 if (!overrun)
5833 break;
5834
5835 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5836
5837 if (++count > 3) {
5838 u64 new, old = ktime_to_ns(cfs_b->period);
5839
5840 /*
5841 * Grow period by a factor of 2 to avoid losing precision.
5842 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5843 * to fail.
5844 */
5845 new = old * 2;
5846 if (new < max_cfs_quota_period) {
5847 cfs_b->period = ns_to_ktime(new);
5848 cfs_b->quota *= 2;
5849 cfs_b->burst *= 2;
5850
5851 pr_warn_ratelimited(
5852 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5853 smp_processor_id(),
5854 div_u64(new, NSEC_PER_USEC),
5855 div_u64(cfs_b->quota, NSEC_PER_USEC));
5856 } else {
5857 pr_warn_ratelimited(
5858 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5859 smp_processor_id(),
5860 div_u64(old, NSEC_PER_USEC),
5861 div_u64(cfs_b->quota, NSEC_PER_USEC));
5862 }
5863
5864 /* reset count so we don't come right back in here */
5865 count = 0;
5866 }
5867 }
5868 if (idle)
5869 cfs_b->period_active = 0;
5870 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5871
5872 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5873 }
5874
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5875 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5876 {
5877 raw_spin_lock_init(&cfs_b->lock);
5878 cfs_b->runtime = 0;
5879 cfs_b->quota = RUNTIME_INF;
5880 cfs_b->period = ns_to_ktime(default_cfs_period());
5881 cfs_b->burst = 0;
5882
5883 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5884 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5885 cfs_b->period_timer.function = sched_cfs_period_timer;
5886 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5887 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5888 cfs_b->slack_started = false;
5889 }
5890
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)5891 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5892 {
5893 cfs_rq->runtime_enabled = 0;
5894 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5895 }
5896
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5897 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5898 {
5899 lockdep_assert_held(&cfs_b->lock);
5900
5901 if (cfs_b->period_active)
5902 return;
5903
5904 cfs_b->period_active = 1;
5905 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5906 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5907 }
5908
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5909 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5910 {
5911 /* init_cfs_bandwidth() was not called */
5912 if (!cfs_b->throttled_cfs_rq.next)
5913 return;
5914
5915 hrtimer_cancel(&cfs_b->period_timer);
5916 hrtimer_cancel(&cfs_b->slack_timer);
5917 }
5918
5919 /*
5920 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5921 *
5922 * The race is harmless, since modifying bandwidth settings of unhooked group
5923 * bits doesn't do much.
5924 */
5925
5926 /* cpu online callback */
update_runtime_enabled(struct rq * rq)5927 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5928 {
5929 struct task_group *tg;
5930
5931 lockdep_assert_rq_held(rq);
5932
5933 rcu_read_lock();
5934 list_for_each_entry_rcu(tg, &task_groups, list) {
5935 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5936 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5937
5938 raw_spin_lock(&cfs_b->lock);
5939 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5940 raw_spin_unlock(&cfs_b->lock);
5941 }
5942 rcu_read_unlock();
5943 }
5944
5945 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)5946 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5947 {
5948 struct task_group *tg;
5949
5950 lockdep_assert_rq_held(rq);
5951
5952 rcu_read_lock();
5953 list_for_each_entry_rcu(tg, &task_groups, list) {
5954 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5955
5956 if (!cfs_rq->runtime_enabled)
5957 continue;
5958
5959 /*
5960 * clock_task is not advancing so we just need to make sure
5961 * there's some valid quota amount
5962 */
5963 cfs_rq->runtime_remaining = 1;
5964 /*
5965 * Offline rq is schedulable till CPU is completely disabled
5966 * in take_cpu_down(), so we prevent new cfs throttling here.
5967 */
5968 cfs_rq->runtime_enabled = 0;
5969
5970 if (cfs_rq_throttled(cfs_rq))
5971 unthrottle_cfs_rq(cfs_rq);
5972 }
5973 rcu_read_unlock();
5974 }
5975
5976 #else /* CONFIG_CFS_BANDWIDTH */
5977
cfs_bandwidth_used(void)5978 static inline bool cfs_bandwidth_used(void)
5979 {
5980 return false;
5981 }
5982
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5983 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)5984 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)5985 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)5986 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5987 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5988
cfs_rq_throttled(struct cfs_rq * cfs_rq)5989 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5990 {
5991 return 0;
5992 }
5993
throttled_hierarchy(struct cfs_rq * cfs_rq)5994 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5995 {
5996 return 0;
5997 }
5998
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5999 static inline int throttled_lb_pair(struct task_group *tg,
6000 int src_cpu, int dest_cpu)
6001 {
6002 return 0;
6003 }
6004
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6005 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6006
6007 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6008 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6009 #endif
6010
tg_cfs_bandwidth(struct task_group * tg)6011 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6012 {
6013 return NULL;
6014 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6015 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)6016 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)6017 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6018
6019 #endif /* CONFIG_CFS_BANDWIDTH */
6020
6021 /**************************************************
6022 * CFS operations on tasks:
6023 */
6024
6025 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)6026 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6027 {
6028 struct sched_entity *se = &p->se;
6029 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6030
6031 SCHED_WARN_ON(task_rq(p) != rq);
6032
6033 if (rq->cfs.h_nr_running > 1) {
6034 u64 slice = sched_slice(cfs_rq, se);
6035 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6036 s64 delta = slice - ran;
6037
6038 if (delta < 0) {
6039 if (task_current(rq, p))
6040 resched_curr(rq);
6041 return;
6042 }
6043 hrtick_start(rq, delta);
6044 }
6045 }
6046
6047 /*
6048 * called from enqueue/dequeue and updates the hrtick when the
6049 * current task is from our class and nr_running is low enough
6050 * to matter.
6051 */
hrtick_update(struct rq * rq)6052 static void hrtick_update(struct rq *rq)
6053 {
6054 struct task_struct *curr = rq->curr;
6055
6056 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6057 return;
6058
6059 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
6060 hrtick_start_fair(rq, curr);
6061 }
6062 #else /* !CONFIG_SCHED_HRTICK */
6063 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)6064 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6065 {
6066 }
6067
hrtick_update(struct rq * rq)6068 static inline void hrtick_update(struct rq *rq)
6069 {
6070 }
6071 #endif
6072
6073 #ifdef CONFIG_SMP
cpu_overutilized(int cpu)6074 static inline bool cpu_overutilized(int cpu)
6075 {
6076 unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6077 unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6078 int overutilized = -1;
6079
6080 trace_android_rvh_cpu_overutilized(cpu, &overutilized);
6081 if (overutilized != -1)
6082 return overutilized;
6083
6084 /* Return true only if the utilization doesn't fit CPU's capacity */
6085 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6086 }
6087
update_overutilized_status(struct rq * rq)6088 static inline void update_overutilized_status(struct rq *rq)
6089 {
6090 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
6091 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
6092 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
6093 }
6094 }
6095 #else
update_overutilized_status(struct rq * rq)6096 static inline void update_overutilized_status(struct rq *rq) { }
6097 #endif
6098
6099 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)6100 static int sched_idle_rq(struct rq *rq)
6101 {
6102 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6103 rq->nr_running);
6104 }
6105
6106 /*
6107 * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
6108 * of idle_nr_running, which does not consider idle descendants of normal
6109 * entities.
6110 */
sched_idle_cfs_rq(struct cfs_rq * cfs_rq)6111 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
6112 {
6113 return cfs_rq->nr_running &&
6114 cfs_rq->nr_running == cfs_rq->idle_nr_running;
6115 }
6116
6117 #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)6118 static int sched_idle_cpu(int cpu)
6119 {
6120 return sched_idle_rq(cpu_rq(cpu));
6121 }
6122 #endif
6123
6124 /*
6125 * The enqueue_task method is called before nr_running is
6126 * increased. Here we update the fair scheduling stats and
6127 * then put the task into the rbtree:
6128 */
6129 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)6130 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6131 {
6132 struct cfs_rq *cfs_rq;
6133 struct sched_entity *se = &p->se;
6134 int idle_h_nr_running = task_has_idle_policy(p);
6135 int task_new = !(flags & ENQUEUE_WAKEUP);
6136 int should_iowait_boost;
6137
6138 /*
6139 * The code below (indirectly) updates schedutil which looks at
6140 * the cfs_rq utilization to select a frequency.
6141 * Let's add the task's estimated utilization to the cfs_rq's
6142 * estimated utilization, before we update schedutil.
6143 */
6144 util_est_enqueue(&rq->cfs, p);
6145
6146 /*
6147 * If in_iowait is set, the code below may not trigger any cpufreq
6148 * utilization updates, so do it here explicitly with the IOWAIT flag
6149 * passed.
6150 */
6151 should_iowait_boost = p->in_iowait;
6152 trace_android_rvh_set_iowait(p, rq, &should_iowait_boost);
6153 if (should_iowait_boost)
6154 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6155
6156 for_each_sched_entity(se) {
6157 if (se->on_rq)
6158 break;
6159 cfs_rq = cfs_rq_of(se);
6160 enqueue_entity(cfs_rq, se, flags);
6161
6162 cfs_rq->h_nr_running++;
6163 cfs_rq->idle_h_nr_running += idle_h_nr_running;
6164
6165 if (cfs_rq_is_idle(cfs_rq))
6166 idle_h_nr_running = 1;
6167
6168 /* end evaluation on encountering a throttled cfs_rq */
6169 if (cfs_rq_throttled(cfs_rq))
6170 goto enqueue_throttle;
6171
6172 flags = ENQUEUE_WAKEUP;
6173 }
6174
6175 trace_android_rvh_enqueue_task_fair(rq, p, flags);
6176 for_each_sched_entity(se) {
6177 cfs_rq = cfs_rq_of(se);
6178
6179 update_load_avg(cfs_rq, se, UPDATE_TG);
6180 se_update_runnable(se);
6181 update_cfs_group(se);
6182
6183 cfs_rq->h_nr_running++;
6184 cfs_rq->idle_h_nr_running += idle_h_nr_running;
6185
6186 if (cfs_rq_is_idle(cfs_rq))
6187 idle_h_nr_running = 1;
6188
6189 /* end evaluation on encountering a throttled cfs_rq */
6190 if (cfs_rq_throttled(cfs_rq))
6191 goto enqueue_throttle;
6192 }
6193
6194 /* At this point se is NULL and we are at root level*/
6195 add_nr_running(rq, 1);
6196
6197 /*
6198 * Since new tasks are assigned an initial util_avg equal to
6199 * half of the spare capacity of their CPU, tiny tasks have the
6200 * ability to cross the overutilized threshold, which will
6201 * result in the load balancer ruining all the task placement
6202 * done by EAS. As a way to mitigate that effect, do not account
6203 * for the first enqueue operation of new tasks during the
6204 * overutilized flag detection.
6205 *
6206 * A better way of solving this problem would be to wait for
6207 * the PELT signals of tasks to converge before taking them
6208 * into account, but that is not straightforward to implement,
6209 * and the following generally works well enough in practice.
6210 */
6211 if (!task_new)
6212 update_overutilized_status(rq);
6213
6214 enqueue_throttle:
6215 assert_list_leaf_cfs_rq(rq);
6216
6217 hrtick_update(rq);
6218 }
6219
6220 static void set_next_buddy(struct sched_entity *se);
6221
6222 /*
6223 * The dequeue_task method is called before nr_running is
6224 * decreased. We remove the task from the rbtree and
6225 * update the fair scheduling stats:
6226 */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)6227 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6228 {
6229 struct cfs_rq *cfs_rq;
6230 struct sched_entity *se = &p->se;
6231 int task_sleep = flags & DEQUEUE_SLEEP;
6232 int idle_h_nr_running = task_has_idle_policy(p);
6233 bool was_sched_idle = sched_idle_rq(rq);
6234
6235 util_est_dequeue(&rq->cfs, p);
6236
6237 for_each_sched_entity(se) {
6238 cfs_rq = cfs_rq_of(se);
6239 dequeue_entity(cfs_rq, se, flags);
6240
6241 cfs_rq->h_nr_running--;
6242 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6243
6244 if (cfs_rq_is_idle(cfs_rq))
6245 idle_h_nr_running = 1;
6246
6247 /* end evaluation on encountering a throttled cfs_rq */
6248 if (cfs_rq_throttled(cfs_rq))
6249 goto dequeue_throttle;
6250
6251 /* Don't dequeue parent if it has other entities besides us */
6252 if (cfs_rq->load.weight) {
6253 /* Avoid re-evaluating load for this entity: */
6254 se = parent_entity(se);
6255 /*
6256 * Bias pick_next to pick a task from this cfs_rq, as
6257 * p is sleeping when it is within its sched_slice.
6258 */
6259 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6260 set_next_buddy(se);
6261 break;
6262 }
6263 flags |= DEQUEUE_SLEEP;
6264 }
6265
6266 trace_android_rvh_dequeue_task_fair(rq, p, flags);
6267 for_each_sched_entity(se) {
6268 cfs_rq = cfs_rq_of(se);
6269
6270 update_load_avg(cfs_rq, se, UPDATE_TG);
6271 se_update_runnable(se);
6272 update_cfs_group(se);
6273
6274 cfs_rq->h_nr_running--;
6275 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6276
6277 if (cfs_rq_is_idle(cfs_rq))
6278 idle_h_nr_running = 1;
6279
6280 /* end evaluation on encountering a throttled cfs_rq */
6281 if (cfs_rq_throttled(cfs_rq))
6282 goto dequeue_throttle;
6283
6284 }
6285
6286 /* At this point se is NULL and we are at root level*/
6287 sub_nr_running(rq, 1);
6288
6289 /* balance early to pull high priority tasks */
6290 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6291 rq->next_balance = jiffies;
6292
6293 dequeue_throttle:
6294 util_est_update(&rq->cfs, p, task_sleep);
6295 hrtick_update(rq);
6296 }
6297
6298 #ifdef CONFIG_SMP
6299
6300 /* Working cpumask for: load_balance, load_balance_newidle. */
6301 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6302 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6303
6304 #ifdef CONFIG_NO_HZ_COMMON
6305
6306 static struct {
6307 cpumask_var_t idle_cpus_mask;
6308 atomic_t nr_cpus;
6309 int has_blocked; /* Idle CPUS has blocked load */
6310 int needs_update; /* Newly idle CPUs need their next_balance collated */
6311 unsigned long next_balance; /* in jiffy units */
6312 unsigned long next_blocked; /* Next update of blocked load in jiffies */
6313 } nohz ____cacheline_aligned;
6314
6315 #endif /* CONFIG_NO_HZ_COMMON */
6316
cpu_load(struct rq * rq)6317 static unsigned long cpu_load(struct rq *rq)
6318 {
6319 return cfs_rq_load_avg(&rq->cfs);
6320 }
6321
6322 /*
6323 * cpu_load_without - compute CPU load without any contributions from *p
6324 * @cpu: the CPU which load is requested
6325 * @p: the task which load should be discounted
6326 *
6327 * The load of a CPU is defined by the load of tasks currently enqueued on that
6328 * CPU as well as tasks which are currently sleeping after an execution on that
6329 * CPU.
6330 *
6331 * This method returns the load of the specified CPU by discounting the load of
6332 * the specified task, whenever the task is currently contributing to the CPU
6333 * load.
6334 */
cpu_load_without(struct rq * rq,struct task_struct * p)6335 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6336 {
6337 struct cfs_rq *cfs_rq;
6338 unsigned int load;
6339
6340 /* Task has no contribution or is new */
6341 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6342 return cpu_load(rq);
6343
6344 cfs_rq = &rq->cfs;
6345 load = READ_ONCE(cfs_rq->avg.load_avg);
6346
6347 /* Discount task's util from CPU's util */
6348 lsub_positive(&load, task_h_load(p));
6349
6350 return load;
6351 }
6352
cpu_runnable(struct rq * rq)6353 static unsigned long cpu_runnable(struct rq *rq)
6354 {
6355 return cfs_rq_runnable_avg(&rq->cfs);
6356 }
6357
cpu_runnable_without(struct rq * rq,struct task_struct * p)6358 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6359 {
6360 struct cfs_rq *cfs_rq;
6361 unsigned int runnable;
6362
6363 /* Task has no contribution or is new */
6364 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6365 return cpu_runnable(rq);
6366
6367 cfs_rq = &rq->cfs;
6368 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6369
6370 /* Discount task's runnable from CPU's runnable */
6371 lsub_positive(&runnable, p->se.avg.runnable_avg);
6372
6373 return runnable;
6374 }
6375
capacity_of(int cpu)6376 static unsigned long capacity_of(int cpu)
6377 {
6378 return cpu_rq(cpu)->cpu_capacity;
6379 }
6380
record_wakee(struct task_struct * p)6381 static void record_wakee(struct task_struct *p)
6382 {
6383 /*
6384 * Only decay a single time; tasks that have less then 1 wakeup per
6385 * jiffy will not have built up many flips.
6386 */
6387 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6388 current->wakee_flips >>= 1;
6389 current->wakee_flip_decay_ts = jiffies;
6390 }
6391
6392 if (current->last_wakee != p) {
6393 current->last_wakee = p;
6394 current->wakee_flips++;
6395 }
6396 }
6397
6398 /*
6399 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6400 *
6401 * A waker of many should wake a different task than the one last awakened
6402 * at a frequency roughly N times higher than one of its wakees.
6403 *
6404 * In order to determine whether we should let the load spread vs consolidating
6405 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6406 * partner, and a factor of lls_size higher frequency in the other.
6407 *
6408 * With both conditions met, we can be relatively sure that the relationship is
6409 * non-monogamous, with partner count exceeding socket size.
6410 *
6411 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6412 * whatever is irrelevant, spread criteria is apparent partner count exceeds
6413 * socket size.
6414 */
wake_wide(struct task_struct * p)6415 static int wake_wide(struct task_struct *p)
6416 {
6417 unsigned int master = current->wakee_flips;
6418 unsigned int slave = p->wakee_flips;
6419 int factor = __this_cpu_read(sd_llc_size);
6420
6421 if (master < slave)
6422 swap(master, slave);
6423 if (slave < factor || master < slave * factor)
6424 return 0;
6425 return 1;
6426 }
6427
6428 /*
6429 * The purpose of wake_affine() is to quickly determine on which CPU we can run
6430 * soonest. For the purpose of speed we only consider the waking and previous
6431 * CPU.
6432 *
6433 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
6434 * cache-affine and is (or will be) idle.
6435 *
6436 * wake_affine_weight() - considers the weight to reflect the average
6437 * scheduling latency of the CPUs. This seems to work
6438 * for the overloaded case.
6439 */
6440 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)6441 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
6442 {
6443 /*
6444 * If this_cpu is idle, it implies the wakeup is from interrupt
6445 * context. Only allow the move if cache is shared. Otherwise an
6446 * interrupt intensive workload could force all tasks onto one
6447 * node depending on the IO topology or IRQ affinity settings.
6448 *
6449 * If the prev_cpu is idle and cache affine then avoid a migration.
6450 * There is no guarantee that the cache hot data from an interrupt
6451 * is more important than cache hot data on the prev_cpu and from
6452 * a cpufreq perspective, it's better to have higher utilisation
6453 * on one CPU.
6454 */
6455 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
6456 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
6457
6458 if (sync && cpu_rq(this_cpu)->nr_running == 1)
6459 return this_cpu;
6460
6461 if (available_idle_cpu(prev_cpu))
6462 return prev_cpu;
6463
6464 return nr_cpumask_bits;
6465 }
6466
6467 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)6468 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6469 int this_cpu, int prev_cpu, int sync)
6470 {
6471 s64 this_eff_load, prev_eff_load;
6472 unsigned long task_load;
6473
6474 this_eff_load = cpu_load(cpu_rq(this_cpu));
6475
6476 if (sync) {
6477 unsigned long current_load = task_h_load(current);
6478
6479 if (current_load > this_eff_load)
6480 return this_cpu;
6481
6482 this_eff_load -= current_load;
6483 }
6484
6485 task_load = task_h_load(p);
6486
6487 this_eff_load += task_load;
6488 if (sched_feat(WA_BIAS))
6489 this_eff_load *= 100;
6490 this_eff_load *= capacity_of(prev_cpu);
6491
6492 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
6493 prev_eff_load -= task_load;
6494 if (sched_feat(WA_BIAS))
6495 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6496 prev_eff_load *= capacity_of(this_cpu);
6497
6498 /*
6499 * If sync, adjust the weight of prev_eff_load such that if
6500 * prev_eff == this_eff that select_idle_sibling() will consider
6501 * stacking the wakee on top of the waker if no other CPU is
6502 * idle.
6503 */
6504 if (sync)
6505 prev_eff_load += 1;
6506
6507 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6508 }
6509
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)6510 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
6511 int this_cpu, int prev_cpu, int sync)
6512 {
6513 int target = nr_cpumask_bits;
6514
6515 if (sched_feat(WA_IDLE))
6516 target = wake_affine_idle(this_cpu, prev_cpu, sync);
6517
6518 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6519 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6520
6521 schedstat_inc(p->stats.nr_wakeups_affine_attempts);
6522 if (target != this_cpu)
6523 return prev_cpu;
6524
6525 schedstat_inc(sd->ttwu_move_affine);
6526 schedstat_inc(p->stats.nr_wakeups_affine);
6527 return target;
6528 }
6529
6530 static struct sched_group *
6531 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6532
6533 /*
6534 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6535 */
6536 static int
find_idlest_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)6537 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6538 {
6539 unsigned long load, min_load = ULONG_MAX;
6540 unsigned int min_exit_latency = UINT_MAX;
6541 u64 latest_idle_timestamp = 0;
6542 int least_loaded_cpu = this_cpu;
6543 int shallowest_idle_cpu = -1;
6544 int i;
6545
6546 /* Check if we have any choice: */
6547 if (group->group_weight == 1)
6548 return cpumask_first(sched_group_span(group));
6549
6550 /* Traverse only the allowed CPUs */
6551 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6552 struct rq *rq = cpu_rq(i);
6553
6554 if (!sched_core_cookie_match(rq, p))
6555 continue;
6556
6557 if (sched_idle_cpu(i))
6558 return i;
6559
6560 if (available_idle_cpu(i)) {
6561 struct cpuidle_state *idle = idle_get_state(rq);
6562 if (idle && idle->exit_latency < min_exit_latency) {
6563 /*
6564 * We give priority to a CPU whose idle state
6565 * has the smallest exit latency irrespective
6566 * of any idle timestamp.
6567 */
6568 min_exit_latency = idle->exit_latency;
6569 latest_idle_timestamp = rq->idle_stamp;
6570 shallowest_idle_cpu = i;
6571 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
6572 rq->idle_stamp > latest_idle_timestamp) {
6573 /*
6574 * If equal or no active idle state, then
6575 * the most recently idled CPU might have
6576 * a warmer cache.
6577 */
6578 latest_idle_timestamp = rq->idle_stamp;
6579 shallowest_idle_cpu = i;
6580 }
6581 } else if (shallowest_idle_cpu == -1) {
6582 load = cpu_load(cpu_rq(i));
6583 if (load < min_load) {
6584 min_load = load;
6585 least_loaded_cpu = i;
6586 }
6587 }
6588 }
6589
6590 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6591 }
6592
find_idlest_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)6593 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6594 int cpu, int prev_cpu, int sd_flag)
6595 {
6596 int new_cpu = cpu;
6597
6598 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6599 return prev_cpu;
6600
6601 /*
6602 * We need task's util for cpu_util_without, sync it up to
6603 * prev_cpu's last_update_time.
6604 */
6605 if (!(sd_flag & SD_BALANCE_FORK))
6606 sync_entity_load_avg(&p->se);
6607
6608 while (sd) {
6609 struct sched_group *group;
6610 struct sched_domain *tmp;
6611 int weight;
6612
6613 if (!(sd->flags & sd_flag)) {
6614 sd = sd->child;
6615 continue;
6616 }
6617
6618 group = find_idlest_group(sd, p, cpu);
6619 if (!group) {
6620 sd = sd->child;
6621 continue;
6622 }
6623
6624 new_cpu = find_idlest_group_cpu(group, p, cpu);
6625 if (new_cpu == cpu) {
6626 /* Now try balancing at a lower domain level of 'cpu': */
6627 sd = sd->child;
6628 continue;
6629 }
6630
6631 /* Now try balancing at a lower domain level of 'new_cpu': */
6632 cpu = new_cpu;
6633 weight = sd->span_weight;
6634 sd = NULL;
6635 for_each_domain(cpu, tmp) {
6636 if (weight <= tmp->span_weight)
6637 break;
6638 if (tmp->flags & sd_flag)
6639 sd = tmp;
6640 }
6641 }
6642
6643 return new_cpu;
6644 }
6645
__select_idle_cpu(int cpu,struct task_struct * p)6646 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6647 {
6648 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6649 sched_cpu_cookie_match(cpu_rq(cpu), p))
6650 return cpu;
6651
6652 return -1;
6653 }
6654
6655 #ifdef CONFIG_SCHED_SMT
6656 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6657 EXPORT_SYMBOL_GPL(sched_smt_present);
6658
set_idle_cores(int cpu,int val)6659 static inline void set_idle_cores(int cpu, int val)
6660 {
6661 struct sched_domain_shared *sds;
6662
6663 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6664 if (sds)
6665 WRITE_ONCE(sds->has_idle_cores, val);
6666 }
6667
test_idle_cores(int cpu)6668 static inline bool test_idle_cores(int cpu)
6669 {
6670 struct sched_domain_shared *sds;
6671
6672 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6673 if (sds)
6674 return READ_ONCE(sds->has_idle_cores);
6675
6676 return false;
6677 }
6678
6679 /*
6680 * Scans the local SMT mask to see if the entire core is idle, and records this
6681 * information in sd_llc_shared->has_idle_cores.
6682 *
6683 * Since SMT siblings share all cache levels, inspecting this limited remote
6684 * state should be fairly cheap.
6685 */
__update_idle_core(struct rq * rq)6686 void __update_idle_core(struct rq *rq)
6687 {
6688 int core = cpu_of(rq);
6689 int cpu;
6690
6691 rcu_read_lock();
6692 if (test_idle_cores(core))
6693 goto unlock;
6694
6695 for_each_cpu(cpu, cpu_smt_mask(core)) {
6696 if (cpu == core)
6697 continue;
6698
6699 if (!available_idle_cpu(cpu))
6700 goto unlock;
6701 }
6702
6703 set_idle_cores(core, 1);
6704 unlock:
6705 rcu_read_unlock();
6706 }
6707
6708 /*
6709 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6710 * there are no idle cores left in the system; tracked through
6711 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6712 */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)6713 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6714 {
6715 bool idle = true;
6716 int cpu;
6717
6718 for_each_cpu(cpu, cpu_smt_mask(core)) {
6719 if (!available_idle_cpu(cpu)) {
6720 idle = false;
6721 if (*idle_cpu == -1) {
6722 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6723 *idle_cpu = cpu;
6724 break;
6725 }
6726 continue;
6727 }
6728 break;
6729 }
6730 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6731 *idle_cpu = cpu;
6732 }
6733
6734 if (idle)
6735 return core;
6736
6737 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6738 return -1;
6739 }
6740
6741 /*
6742 * Scan the local SMT mask for idle CPUs.
6743 */
select_idle_smt(struct task_struct * p,int target)6744 static int select_idle_smt(struct task_struct *p, int target)
6745 {
6746 int cpu;
6747
6748 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
6749 if (cpu == target)
6750 continue;
6751 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6752 return cpu;
6753 }
6754
6755 return -1;
6756 }
6757
6758 #else /* CONFIG_SCHED_SMT */
6759
set_idle_cores(int cpu,int val)6760 static inline void set_idle_cores(int cpu, int val)
6761 {
6762 }
6763
test_idle_cores(int cpu)6764 static inline bool test_idle_cores(int cpu)
6765 {
6766 return false;
6767 }
6768
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)6769 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6770 {
6771 return __select_idle_cpu(core, p);
6772 }
6773
select_idle_smt(struct task_struct * p,int target)6774 static inline int select_idle_smt(struct task_struct *p, int target)
6775 {
6776 return -1;
6777 }
6778
6779 #endif /* CONFIG_SCHED_SMT */
6780
6781 /*
6782 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6783 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6784 * average idle time for this rq (as found in rq->avg_idle).
6785 */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)6786 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6787 {
6788 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
6789 int i, cpu, idle_cpu = -1, nr = INT_MAX;
6790 struct sched_domain_shared *sd_share;
6791 struct rq *this_rq = this_rq();
6792 int this = smp_processor_id();
6793 struct sched_domain *this_sd = NULL;
6794 u64 time = 0;
6795
6796 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6797
6798 if (sched_feat(SIS_PROP) && !has_idle_core) {
6799 u64 avg_cost, avg_idle, span_avg;
6800 unsigned long now = jiffies;
6801
6802 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6803 if (!this_sd)
6804 return -1;
6805
6806 /*
6807 * If we're busy, the assumption that the last idle period
6808 * predicts the future is flawed; age away the remaining
6809 * predicted idle time.
6810 */
6811 if (unlikely(this_rq->wake_stamp < now)) {
6812 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6813 this_rq->wake_stamp++;
6814 this_rq->wake_avg_idle >>= 1;
6815 }
6816 }
6817
6818 avg_idle = this_rq->wake_avg_idle;
6819 avg_cost = this_sd->avg_scan_cost + 1;
6820
6821 span_avg = sd->span_weight * avg_idle;
6822 if (span_avg > 4*avg_cost)
6823 nr = div_u64(span_avg, avg_cost);
6824 else
6825 nr = 4;
6826
6827 time = cpu_clock(this);
6828 }
6829
6830 if (sched_feat(SIS_UTIL)) {
6831 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
6832 if (sd_share) {
6833 /* because !--nr is the condition to stop scan */
6834 nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
6835 /* overloaded LLC is unlikely to have idle cpu/core */
6836 if (nr == 1)
6837 return -1;
6838 }
6839 }
6840
6841 for_each_cpu_wrap(cpu, cpus, target + 1) {
6842 if (has_idle_core) {
6843 i = select_idle_core(p, cpu, cpus, &idle_cpu);
6844 if ((unsigned int)i < nr_cpumask_bits)
6845 return i;
6846
6847 } else {
6848 if (!--nr)
6849 return -1;
6850 idle_cpu = __select_idle_cpu(cpu, p);
6851 if ((unsigned int)idle_cpu < nr_cpumask_bits)
6852 break;
6853 }
6854 }
6855
6856 if (has_idle_core)
6857 set_idle_cores(target, false);
6858
6859 if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) {
6860 time = cpu_clock(this) - time;
6861
6862 /*
6863 * Account for the scan cost of wakeups against the average
6864 * idle time.
6865 */
6866 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6867
6868 update_avg(&this_sd->avg_scan_cost, time);
6869 }
6870
6871 return idle_cpu;
6872 }
6873
6874 /*
6875 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6876 * the task fits. If no CPU is big enough, but there are idle ones, try to
6877 * maximize capacity.
6878 */
6879 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)6880 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6881 {
6882 unsigned long task_util, util_min, util_max, best_cap = 0;
6883 int fits, best_fits = 0;
6884 int cpu, best_cpu = -1;
6885 struct cpumask *cpus;
6886
6887 cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
6888 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6889
6890 task_util = task_util_est(p);
6891 util_min = uclamp_eff_value(p, UCLAMP_MIN);
6892 util_max = uclamp_eff_value(p, UCLAMP_MAX);
6893
6894 for_each_cpu_wrap(cpu, cpus, target) {
6895 unsigned long cpu_cap = capacity_of(cpu);
6896
6897 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6898 continue;
6899
6900 fits = util_fits_cpu(task_util, util_min, util_max, cpu);
6901
6902 /* This CPU fits with all requirements */
6903 if (fits > 0)
6904 return cpu;
6905 /*
6906 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
6907 * Look for the CPU with best capacity.
6908 */
6909 else if (fits < 0)
6910 cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu));
6911
6912 /*
6913 * First, select CPU which fits better (-1 being better than 0).
6914 * Then, select the one with best capacity at same level.
6915 */
6916 if ((fits < best_fits) ||
6917 ((fits == best_fits) && (cpu_cap > best_cap))) {
6918 best_cap = cpu_cap;
6919 best_cpu = cpu;
6920 best_fits = fits;
6921 }
6922 }
6923
6924 return best_cpu;
6925 }
6926
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)6927 static inline bool asym_fits_cpu(unsigned long util,
6928 unsigned long util_min,
6929 unsigned long util_max,
6930 int cpu)
6931 {
6932 if (sched_asym_cpucap_active())
6933 /*
6934 * Return true only if the cpu fully fits the task requirements
6935 * which include the utilization and the performance hints.
6936 */
6937 return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
6938
6939 return true;
6940 }
6941
6942 /*
6943 * Try and locate an idle core/thread in the LLC cache domain.
6944 */
select_idle_sibling(struct task_struct * p,int prev,int target)6945 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6946 {
6947 bool has_idle_core = false;
6948 struct sched_domain *sd;
6949 unsigned long task_util, util_min, util_max;
6950 int i, recent_used_cpu;
6951
6952 /*
6953 * On asymmetric system, update task utilization because we will check
6954 * that the task fits with cpu's capacity.
6955 */
6956 if (sched_asym_cpucap_active()) {
6957 sync_entity_load_avg(&p->se);
6958 task_util = task_util_est(p);
6959 util_min = uclamp_eff_value(p, UCLAMP_MIN);
6960 util_max = uclamp_eff_value(p, UCLAMP_MAX);
6961 }
6962
6963 /*
6964 * per-cpu select_rq_mask usage
6965 */
6966 lockdep_assert_irqs_disabled();
6967
6968 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6969 asym_fits_cpu(task_util, util_min, util_max, target))
6970 return target;
6971
6972 /*
6973 * If the previous CPU is cache affine and idle, don't be stupid:
6974 */
6975 if (prev != target && cpus_share_cache(prev, target) &&
6976 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6977 asym_fits_cpu(task_util, util_min, util_max, prev))
6978 return prev;
6979
6980 /*
6981 * Allow a per-cpu kthread to stack with the wakee if the
6982 * kworker thread and the tasks previous CPUs are the same.
6983 * The assumption is that the wakee queued work for the
6984 * per-cpu kthread that is now complete and the wakeup is
6985 * essentially a sync wakeup. An obvious example of this
6986 * pattern is IO completions.
6987 */
6988 if (is_per_cpu_kthread(current) &&
6989 in_task() &&
6990 prev == smp_processor_id() &&
6991 this_rq()->nr_running <= 1 &&
6992 asym_fits_cpu(task_util, util_min, util_max, prev)) {
6993 return prev;
6994 }
6995
6996 /* Check a recently used CPU as a potential idle candidate: */
6997 recent_used_cpu = p->recent_used_cpu;
6998 p->recent_used_cpu = prev;
6999 if (recent_used_cpu != prev &&
7000 recent_used_cpu != target &&
7001 cpus_share_cache(recent_used_cpu, target) &&
7002 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7003 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7004 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7005 return recent_used_cpu;
7006 }
7007
7008 /*
7009 * For asymmetric CPU capacity systems, our domain of interest is
7010 * sd_asym_cpucapacity rather than sd_llc.
7011 */
7012 if (sched_asym_cpucap_active()) {
7013 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7014 /*
7015 * On an asymmetric CPU capacity system where an exclusive
7016 * cpuset defines a symmetric island (i.e. one unique
7017 * capacity_orig value through the cpuset), the key will be set
7018 * but the CPUs within that cpuset will not have a domain with
7019 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7020 * capacity path.
7021 */
7022 if (sd) {
7023 i = select_idle_capacity(p, sd, target);
7024 return ((unsigned)i < nr_cpumask_bits) ? i : target;
7025 }
7026 }
7027
7028 sd = rcu_dereference(per_cpu(sd_llc, target));
7029 if (!sd)
7030 return target;
7031
7032 if (sched_smt_active()) {
7033 has_idle_core = test_idle_cores(target);
7034
7035 if (!has_idle_core && cpus_share_cache(prev, target)) {
7036 i = select_idle_smt(p, prev);
7037 if ((unsigned int)i < nr_cpumask_bits)
7038 return i;
7039 }
7040 }
7041
7042 i = select_idle_cpu(p, sd, has_idle_core, target);
7043 if ((unsigned)i < nr_cpumask_bits)
7044 return i;
7045
7046 return target;
7047 }
7048
7049 /*
7050 * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu
7051 * (@dst_cpu = -1) or migrated to @dst_cpu.
7052 */
cpu_util_next(int cpu,struct task_struct * p,int dst_cpu)7053 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
7054 {
7055 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7056 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7057
7058 /*
7059 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7060 * contribution. If @p migrates from another CPU to @cpu add its
7061 * contribution. In all the other cases @cpu is not impacted by the
7062 * migration so its util_avg is already correct.
7063 */
7064 if (task_cpu(p) == cpu && dst_cpu != cpu)
7065 lsub_positive(&util, task_util(p));
7066 else if (task_cpu(p) != cpu && dst_cpu == cpu)
7067 util += task_util(p);
7068
7069 if (sched_feat(UTIL_EST)) {
7070 unsigned long util_est;
7071
7072 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
7073
7074 /*
7075 * During wake-up @p isn't enqueued yet and doesn't contribute
7076 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
7077 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7078 * has been enqueued.
7079 *
7080 * During exec (@dst_cpu = -1) @p is enqueued and does
7081 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
7082 * Remove it to "simulate" cpu_util without @p's contribution.
7083 *
7084 * Despite the task_on_rq_queued(@p) check there is still a
7085 * small window for a possible race when an exec
7086 * select_task_rq_fair() races with LB's detach_task().
7087 *
7088 * detach_task()
7089 * deactivate_task()
7090 * p->on_rq = TASK_ON_RQ_MIGRATING;
7091 * -------------------------------- A
7092 * dequeue_task() \
7093 * dequeue_task_fair() + Race Time
7094 * util_est_dequeue() /
7095 * -------------------------------- B
7096 *
7097 * The additional check "current == p" is required to further
7098 * reduce the race window.
7099 */
7100 if (dst_cpu == cpu)
7101 util_est += _task_util_est(p);
7102 else if (unlikely(task_on_rq_queued(p) || current == p))
7103 lsub_positive(&util_est, _task_util_est(p));
7104
7105 util = max(util, util_est);
7106 }
7107
7108 return min(util, capacity_orig_of(cpu));
7109 }
7110
7111 /*
7112 * cpu_util_without: compute cpu utilization without any contributions from *p
7113 * @cpu: the CPU which utilization is requested
7114 * @p: the task which utilization should be discounted
7115 *
7116 * The utilization of a CPU is defined by the utilization of tasks currently
7117 * enqueued on that CPU as well as tasks which are currently sleeping after an
7118 * execution on that CPU.
7119 *
7120 * This method returns the utilization of the specified CPU by discounting the
7121 * utilization of the specified task, whenever the task is currently
7122 * contributing to the CPU utilization.
7123 */
cpu_util_without(int cpu,struct task_struct * p)7124 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7125 {
7126 /* Task has no contribution or is new */
7127 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7128 return cpu_util_cfs(cpu);
7129
7130 return cpu_util_next(cpu, p, -1);
7131 }
7132
7133 /*
7134 * energy_env - Utilization landscape for energy estimation.
7135 * @task_busy_time: Utilization contribution by the task for which we test the
7136 * placement. Given by eenv_task_busy_time().
7137 * @pd_busy_time: Utilization of the whole perf domain without the task
7138 * contribution. Given by eenv_pd_busy_time().
7139 * @cpu_cap: Maximum CPU capacity for the perf domain.
7140 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7141 */
7142 struct energy_env {
7143 unsigned long task_busy_time;
7144 unsigned long pd_busy_time;
7145 unsigned long cpu_cap;
7146 unsigned long pd_cap;
7147 };
7148
7149 /*
7150 * Compute the task busy time for compute_energy(). This time cannot be
7151 * injected directly into effective_cpu_util() because of the IRQ scaling.
7152 * The latter only makes sense with the most recent CPUs where the task has
7153 * run.
7154 */
eenv_task_busy_time(struct energy_env * eenv,struct task_struct * p,int prev_cpu)7155 static inline void eenv_task_busy_time(struct energy_env *eenv,
7156 struct task_struct *p, int prev_cpu)
7157 {
7158 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7159 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7160
7161 if (unlikely(irq >= max_cap))
7162 busy_time = max_cap;
7163 else
7164 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7165
7166 eenv->task_busy_time = busy_time;
7167 }
7168
7169 /*
7170 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7171 * utilization for each @pd_cpus, it however doesn't take into account
7172 * clamping since the ratio (utilization / cpu_capacity) is already enough to
7173 * scale the EM reported power consumption at the (eventually clamped)
7174 * cpu_capacity.
7175 *
7176 * The contribution of the task @p for which we want to estimate the
7177 * energy cost is removed (by cpu_util_next()) and must be calculated
7178 * separately (see eenv_task_busy_time). This ensures:
7179 *
7180 * - A stable PD utilization, no matter which CPU of that PD we want to place
7181 * the task on.
7182 *
7183 * - A fair comparison between CPUs as the task contribution (task_util())
7184 * will always be the same no matter which CPU utilization we rely on
7185 * (util_avg or util_est).
7186 *
7187 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7188 * exceed @eenv->pd_cap.
7189 */
eenv_pd_busy_time(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p)7190 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7191 struct cpumask *pd_cpus,
7192 struct task_struct *p)
7193 {
7194 unsigned long busy_time = 0;
7195 int cpu;
7196
7197 for_each_cpu(cpu, pd_cpus) {
7198 unsigned long util = cpu_util_next(cpu, p, -1);
7199
7200 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
7201 }
7202
7203 eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7204 }
7205
7206 /*
7207 * Compute the maximum utilization for compute_energy() when the task @p
7208 * is placed on the cpu @dst_cpu.
7209 *
7210 * Returns the maximum utilization among @eenv->cpus. This utilization can't
7211 * exceed @eenv->cpu_cap.
7212 */
7213 static inline unsigned long
eenv_pd_max_util(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)7214 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7215 struct task_struct *p, int dst_cpu)
7216 {
7217 unsigned long max_util = 0;
7218 int cpu;
7219
7220 for_each_cpu(cpu, pd_cpus) {
7221 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7222 unsigned long util = cpu_util_next(cpu, p, dst_cpu);
7223 unsigned long cpu_util;
7224
7225 /*
7226 * Performance domain frequency: utilization clamping
7227 * must be considered since it affects the selection
7228 * of the performance domain frequency.
7229 * NOTE: in case RT tasks are running, by default the
7230 * FREQUENCY_UTIL's utilization can be max OPP.
7231 */
7232 cpu_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
7233 max_util = max(max_util, cpu_util);
7234 }
7235
7236 return min(max_util, eenv->cpu_cap);
7237 }
7238
7239 /*
7240 * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7241 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7242 * contribution is ignored.
7243 */
7244 static inline unsigned long
compute_energy(struct energy_env * eenv,struct perf_domain * pd,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)7245 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7246 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7247 {
7248 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7249 unsigned long busy_time = eenv->pd_busy_time;
7250
7251 if (dst_cpu >= 0)
7252 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7253
7254 return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7255 }
7256
7257 /*
7258 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7259 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7260 * spare capacity in each performance domain and uses it as a potential
7261 * candidate to execute the task. Then, it uses the Energy Model to figure
7262 * out which of the CPU candidates is the most energy-efficient.
7263 *
7264 * The rationale for this heuristic is as follows. In a performance domain,
7265 * all the most energy efficient CPU candidates (according to the Energy
7266 * Model) are those for which we'll request a low frequency. When there are
7267 * several CPUs for which the frequency request will be the same, we don't
7268 * have enough data to break the tie between them, because the Energy Model
7269 * only includes active power costs. With this model, if we assume that
7270 * frequency requests follow utilization (e.g. using schedutil), the CPU with
7271 * the maximum spare capacity in a performance domain is guaranteed to be among
7272 * the best candidates of the performance domain.
7273 *
7274 * In practice, it could be preferable from an energy standpoint to pack
7275 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7276 * but that could also hurt our chances to go cluster idle, and we have no
7277 * ways to tell with the current Energy Model if this is actually a good
7278 * idea or not. So, find_energy_efficient_cpu() basically favors
7279 * cluster-packing, and spreading inside a cluster. That should at least be
7280 * a good thing for latency, and this is consistent with the idea that most
7281 * of the energy savings of EAS come from the asymmetry of the system, and
7282 * not so much from breaking the tie between identical CPUs. That's also the
7283 * reason why EAS is enabled in the topology code only for systems where
7284 * SD_ASYM_CPUCAPACITY is set.
7285 *
7286 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7287 * they don't have any useful utilization data yet and it's not possible to
7288 * forecast their impact on energy consumption. Consequently, they will be
7289 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7290 * to be energy-inefficient in some use-cases. The alternative would be to
7291 * bias new tasks towards specific types of CPUs first, or to try to infer
7292 * their util_avg from the parent task, but those heuristics could hurt
7293 * other use-cases too. So, until someone finds a better way to solve this,
7294 * let's keep things simple by re-using the existing slow path.
7295 */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu,int sync)7296 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu, int sync)
7297 {
7298 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7299 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7300 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7301 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7302 struct root_domain *rd = this_rq()->rd;
7303 int cpu, best_energy_cpu, target = -1;
7304 int prev_fits = -1, best_fits = -1;
7305 unsigned long best_thermal_cap = 0;
7306 unsigned long prev_thermal_cap = 0;
7307 struct sched_domain *sd;
7308 struct perf_domain *pd;
7309 struct energy_env eenv;
7310 int new_cpu = INT_MAX;
7311
7312 trace_android_rvh_find_energy_efficient_cpu(p, prev_cpu, sync, &new_cpu);
7313 if (new_cpu != INT_MAX)
7314 return new_cpu;
7315
7316 sync_entity_load_avg(&p->se);
7317
7318 rcu_read_lock();
7319 pd = rcu_dereference(rd->pd);
7320 if (!pd || READ_ONCE(rd->overutilized))
7321 goto unlock;
7322
7323 cpu = smp_processor_id();
7324 if (sync && cpu_rq(cpu)->nr_running == 1 &&
7325 cpumask_test_cpu(cpu, p->cpus_ptr) &&
7326 task_fits_cpu(p, cpu)) {
7327 rcu_read_unlock();
7328 return cpu;
7329 }
7330
7331 /*
7332 * Energy-aware wake-up happens on the lowest sched_domain starting
7333 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7334 */
7335 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7336 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7337 sd = sd->parent;
7338 if (!sd)
7339 goto unlock;
7340
7341 target = prev_cpu;
7342
7343 if (!task_util_est(p) && p_util_min == 0)
7344 goto unlock;
7345
7346 eenv_task_busy_time(&eenv, p, prev_cpu);
7347
7348 for (; pd; pd = pd->next) {
7349 unsigned long util_min = p_util_min, util_max = p_util_max;
7350 unsigned long cpu_cap, cpu_thermal_cap, util;
7351 long prev_spare_cap = -1, max_spare_cap = -1;
7352 unsigned long rq_util_min, rq_util_max;
7353 unsigned long cur_delta, base_energy;
7354 int max_spare_cap_cpu = -1;
7355 int fits, max_fits = -1;
7356
7357 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
7358
7359 if (cpumask_empty(cpus))
7360 continue;
7361
7362 /* Account thermal pressure for the energy estimation */
7363 cpu = cpumask_first(cpus);
7364 cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
7365 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
7366
7367 eenv.cpu_cap = cpu_thermal_cap;
7368 eenv.pd_cap = 0;
7369
7370 for_each_cpu(cpu, cpus) {
7371 struct rq *rq = cpu_rq(cpu);
7372
7373 eenv.pd_cap += cpu_thermal_cap;
7374
7375 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7376 continue;
7377
7378 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
7379 continue;
7380
7381 util = cpu_util_next(cpu, p, cpu);
7382 cpu_cap = capacity_of(cpu);
7383
7384 /*
7385 * Skip CPUs that cannot satisfy the capacity request.
7386 * IOW, placing the task there would make the CPU
7387 * overutilized. Take uclamp into account to see how
7388 * much capacity we can get out of the CPU; this is
7389 * aligned with sched_cpu_util().
7390 */
7391 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
7392 /*
7393 * Open code uclamp_rq_util_with() except for
7394 * the clamp() part. Ie: apply max aggregation
7395 * only. util_fits_cpu() logic requires to
7396 * operate on non clamped util but must use the
7397 * max-aggregated uclamp_{min, max}.
7398 */
7399 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
7400 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
7401
7402 util_min = max(rq_util_min, p_util_min);
7403 util_max = max(rq_util_max, p_util_max);
7404 }
7405
7406 fits = util_fits_cpu(util, util_min, util_max, cpu);
7407 if (!fits)
7408 continue;
7409
7410 lsub_positive(&cpu_cap, util);
7411
7412 if (cpu == prev_cpu) {
7413 /* Always use prev_cpu as a candidate. */
7414 prev_spare_cap = cpu_cap;
7415 prev_fits = fits;
7416 } else if ((fits > max_fits) ||
7417 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
7418 /*
7419 * Find the CPU with the maximum spare capacity
7420 * among the remaining CPUs in the performance
7421 * domain.
7422 */
7423 max_spare_cap = cpu_cap;
7424 max_spare_cap_cpu = cpu;
7425 max_fits = fits;
7426 }
7427 }
7428
7429 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
7430 continue;
7431
7432 eenv_pd_busy_time(&eenv, cpus, p);
7433 /* Compute the 'base' energy of the pd, without @p */
7434 base_energy = compute_energy(&eenv, pd, cpus, p, -1);
7435
7436 /* Evaluate the energy impact of using prev_cpu. */
7437 if (prev_spare_cap > -1) {
7438 prev_delta = compute_energy(&eenv, pd, cpus, p,
7439 prev_cpu);
7440 /* CPU utilization has changed */
7441 if (prev_delta < base_energy)
7442 goto unlock;
7443 prev_delta -= base_energy;
7444 prev_thermal_cap = cpu_thermal_cap;
7445 best_delta = min(best_delta, prev_delta);
7446 }
7447
7448 /* Evaluate the energy impact of using max_spare_cap_cpu. */
7449 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
7450 /* Current best energy cpu fits better */
7451 if (max_fits < best_fits)
7452 continue;
7453
7454 /*
7455 * Both don't fit performance hint (i.e. uclamp_min)
7456 * but best energy cpu has better capacity.
7457 */
7458 if ((max_fits < 0) &&
7459 (cpu_thermal_cap <= best_thermal_cap))
7460 continue;
7461
7462 cur_delta = compute_energy(&eenv, pd, cpus, p,
7463 max_spare_cap_cpu);
7464 /* CPU utilization has changed */
7465 if (cur_delta < base_energy)
7466 goto unlock;
7467 cur_delta -= base_energy;
7468
7469 /*
7470 * Both fit for the task but best energy cpu has lower
7471 * energy impact.
7472 */
7473 if ((max_fits > 0) && (best_fits > 0) &&
7474 (cur_delta >= best_delta))
7475 continue;
7476
7477 best_delta = cur_delta;
7478 best_energy_cpu = max_spare_cap_cpu;
7479 best_fits = max_fits;
7480 best_thermal_cap = cpu_thermal_cap;
7481 }
7482 }
7483 rcu_read_unlock();
7484
7485 if ((best_fits > prev_fits) ||
7486 ((best_fits > 0) && (best_delta < prev_delta)) ||
7487 ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
7488 target = best_energy_cpu;
7489
7490 return target;
7491
7492 unlock:
7493 rcu_read_unlock();
7494
7495 return target;
7496 }
7497
7498 /*
7499 * select_task_rq_fair: Select target runqueue for the waking task in domains
7500 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
7501 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
7502 *
7503 * Balances load by selecting the idlest CPU in the idlest group, or under
7504 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
7505 *
7506 * Returns the target CPU number.
7507 */
7508 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)7509 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
7510 {
7511 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
7512 struct sched_domain *tmp, *sd = NULL;
7513 int cpu = smp_processor_id();
7514 int new_cpu = prev_cpu;
7515 int want_affine = 0;
7516 int target_cpu = -1;
7517 /* SD_flags and WF_flags share the first nibble */
7518 int sd_flag = wake_flags & 0xF;
7519
7520 if (trace_android_rvh_select_task_rq_fair_enabled() &&
7521 !(sd_flag & SD_BALANCE_FORK))
7522 sync_entity_load_avg(&p->se);
7523 trace_android_rvh_select_task_rq_fair(p, prev_cpu, sd_flag,
7524 wake_flags, &target_cpu);
7525 if (target_cpu >= 0)
7526 return target_cpu;
7527
7528 /*
7529 * required for stable ->cpus_allowed
7530 */
7531 lockdep_assert_held(&p->pi_lock);
7532 if (wake_flags & WF_TTWU) {
7533 record_wakee(p);
7534
7535 if (sched_energy_enabled()) {
7536 new_cpu = find_energy_efficient_cpu(p, prev_cpu, sync);
7537 if (new_cpu >= 0)
7538 return new_cpu;
7539 new_cpu = prev_cpu;
7540 }
7541
7542 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
7543 }
7544
7545 rcu_read_lock();
7546 for_each_domain(cpu, tmp) {
7547 /*
7548 * If both 'cpu' and 'prev_cpu' are part of this domain,
7549 * cpu is a valid SD_WAKE_AFFINE target.
7550 */
7551 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
7552 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
7553 if (cpu != prev_cpu)
7554 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
7555
7556 sd = NULL; /* Prefer wake_affine over balance flags */
7557 break;
7558 }
7559
7560 /*
7561 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
7562 * usually do not have SD_BALANCE_WAKE set. That means wakeup
7563 * will usually go to the fast path.
7564 */
7565 if (tmp->flags & sd_flag)
7566 sd = tmp;
7567 else if (!want_affine)
7568 break;
7569 }
7570
7571 if (unlikely(sd)) {
7572 /* Slow path */
7573 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
7574 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
7575 /* Fast path */
7576 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
7577 }
7578 rcu_read_unlock();
7579
7580 return new_cpu;
7581 }
7582
7583 /*
7584 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
7585 * cfs_rq_of(p) references at time of call are still valid and identify the
7586 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
7587 */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)7588 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
7589 {
7590 struct sched_entity *se = &p->se;
7591
7592 /*
7593 * As blocked tasks retain absolute vruntime the migration needs to
7594 * deal with this by subtracting the old and adding the new
7595 * min_vruntime -- the latter is done by enqueue_entity() when placing
7596 * the task on the new runqueue.
7597 */
7598 if (READ_ONCE(p->__state) == TASK_WAKING) {
7599 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7600
7601 se->vruntime -= u64_u32_load(cfs_rq->min_vruntime);
7602 }
7603
7604 if (!task_on_rq_migrating(p)) {
7605 remove_entity_load_avg(se);
7606
7607 /*
7608 * Here, the task's PELT values have been updated according to
7609 * the current rq's clock. But if that clock hasn't been
7610 * updated in a while, a substantial idle time will be missed,
7611 * leading to an inflation after wake-up on the new rq.
7612 *
7613 * Estimate the missing time from the cfs_rq last_update_time
7614 * and update sched_avg to improve the PELT continuity after
7615 * migration.
7616 */
7617 migrate_se_pelt_lag(se);
7618 }
7619
7620 /* Tell new CPU we are migrated */
7621 se->avg.last_update_time = 0;
7622
7623 update_scan_period(p, new_cpu);
7624 }
7625
task_dead_fair(struct task_struct * p)7626 static void task_dead_fair(struct task_struct *p)
7627 {
7628 remove_entity_load_avg(&p->se);
7629 }
7630
7631 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)7632 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7633 {
7634 if (rq->nr_running)
7635 return 1;
7636
7637 return newidle_balance(rq, rf) != 0;
7638 }
7639 #endif /* CONFIG_SMP */
7640
wakeup_gran(struct sched_entity * se)7641 static unsigned long wakeup_gran(struct sched_entity *se)
7642 {
7643 unsigned long gran = sysctl_sched_wakeup_granularity;
7644
7645 /*
7646 * Since its curr running now, convert the gran from real-time
7647 * to virtual-time in his units.
7648 *
7649 * By using 'se' instead of 'curr' we penalize light tasks, so
7650 * they get preempted easier. That is, if 'se' < 'curr' then
7651 * the resulting gran will be larger, therefore penalizing the
7652 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7653 * be smaller, again penalizing the lighter task.
7654 *
7655 * This is especially important for buddies when the leftmost
7656 * task is higher priority than the buddy.
7657 */
7658 return calc_delta_fair(gran, se);
7659 }
7660
7661 /*
7662 * Should 'se' preempt 'curr'.
7663 *
7664 * |s1
7665 * |s2
7666 * |s3
7667 * g
7668 * |<--->|c
7669 *
7670 * w(c, s1) = -1
7671 * w(c, s2) = 0
7672 * w(c, s3) = 1
7673 *
7674 */
7675 static int
wakeup_preempt_entity(struct sched_entity * curr,struct sched_entity * se)7676 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7677 {
7678 s64 gran, vdiff = curr->vruntime - se->vruntime;
7679
7680 if (vdiff <= 0)
7681 return -1;
7682
7683 gran = wakeup_gran(se);
7684 if (vdiff > gran)
7685 return 1;
7686
7687 return 0;
7688 }
7689
set_last_buddy(struct sched_entity * se)7690 static void set_last_buddy(struct sched_entity *se)
7691 {
7692 for_each_sched_entity(se) {
7693 if (SCHED_WARN_ON(!se->on_rq))
7694 return;
7695 if (se_is_idle(se))
7696 return;
7697 cfs_rq_of(se)->last = se;
7698 }
7699 }
7700
set_next_buddy(struct sched_entity * se)7701 static void set_next_buddy(struct sched_entity *se)
7702 {
7703 for_each_sched_entity(se) {
7704 if (SCHED_WARN_ON(!se->on_rq))
7705 return;
7706 if (se_is_idle(se))
7707 return;
7708 cfs_rq_of(se)->next = se;
7709 }
7710 }
7711
set_skip_buddy(struct sched_entity * se)7712 static void set_skip_buddy(struct sched_entity *se)
7713 {
7714 for_each_sched_entity(se)
7715 cfs_rq_of(se)->skip = se;
7716 }
7717
7718 /*
7719 * Preempt the current task with a newly woken task if needed:
7720 */
check_preempt_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)7721 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7722 {
7723 struct task_struct *curr = rq->curr;
7724 struct sched_entity *se = &curr->se, *pse = &p->se;
7725 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7726 int scale = cfs_rq->nr_running >= sched_nr_latency;
7727 int next_buddy_marked = 0;
7728 int cse_is_idle, pse_is_idle;
7729 bool ignore = false;
7730 bool preempt = false;
7731
7732 if (unlikely(se == pse))
7733 return;
7734 trace_android_rvh_check_preempt_wakeup_ignore(curr, &ignore);
7735 if (ignore)
7736 return;
7737
7738 /*
7739 * This is possible from callers such as attach_tasks(), in which we
7740 * unconditionally check_preempt_curr() after an enqueue (which may have
7741 * lead to a throttle). This both saves work and prevents false
7742 * next-buddy nomination below.
7743 */
7744 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7745 return;
7746
7747 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7748 set_next_buddy(pse);
7749 next_buddy_marked = 1;
7750 }
7751
7752 /*
7753 * We can come here with TIF_NEED_RESCHED already set from new task
7754 * wake up path.
7755 *
7756 * Note: this also catches the edge-case of curr being in a throttled
7757 * group (e.g. via set_curr_task), since update_curr() (in the
7758 * enqueue of curr) will have resulted in resched being set. This
7759 * prevents us from potentially nominating it as a false LAST_BUDDY
7760 * below.
7761 */
7762 if (test_tsk_need_resched(curr))
7763 return;
7764
7765 /* Idle tasks are by definition preempted by non-idle tasks. */
7766 if (unlikely(task_has_idle_policy(curr)) &&
7767 likely(!task_has_idle_policy(p)))
7768 goto preempt;
7769
7770 /*
7771 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7772 * is driven by the tick):
7773 */
7774 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7775 return;
7776
7777 find_matching_se(&se, &pse);
7778 WARN_ON_ONCE(!pse);
7779
7780 cse_is_idle = se_is_idle(se);
7781 pse_is_idle = se_is_idle(pse);
7782
7783 /*
7784 * Preempt an idle group in favor of a non-idle group (and don't preempt
7785 * in the inverse case).
7786 */
7787 if (cse_is_idle && !pse_is_idle)
7788 goto preempt;
7789 if (cse_is_idle != pse_is_idle)
7790 return;
7791
7792 update_curr(cfs_rq_of(se));
7793 trace_android_rvh_check_preempt_wakeup(rq, p, &preempt, &ignore,
7794 wake_flags, se, pse, next_buddy_marked, sysctl_sched_wakeup_granularity);
7795 if (preempt)
7796 goto preempt;
7797 if (ignore)
7798 return;
7799
7800 if (wakeup_preempt_entity(se, pse) == 1) {
7801 /*
7802 * Bias pick_next to pick the sched entity that is
7803 * triggering this preemption.
7804 */
7805 if (!next_buddy_marked)
7806 set_next_buddy(pse);
7807 goto preempt;
7808 }
7809
7810 return;
7811
7812 preempt:
7813 resched_curr(rq);
7814 /*
7815 * Only set the backward buddy when the current task is still
7816 * on the rq. This can happen when a wakeup gets interleaved
7817 * with schedule on the ->pre_schedule() or idle_balance()
7818 * point, either of which can * drop the rq lock.
7819 *
7820 * Also, during early boot the idle thread is in the fair class,
7821 * for obvious reasons its a bad idea to schedule back to it.
7822 */
7823 if (unlikely(!se->on_rq || curr == rq->idle))
7824 return;
7825
7826 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7827 set_last_buddy(se);
7828 }
7829
7830 #ifdef CONFIG_SMP
pick_task_fair(struct rq * rq)7831 static struct task_struct *pick_task_fair(struct rq *rq)
7832 {
7833 struct sched_entity *se;
7834 struct cfs_rq *cfs_rq;
7835
7836 again:
7837 cfs_rq = &rq->cfs;
7838 if (!cfs_rq->nr_running)
7839 return NULL;
7840
7841 do {
7842 struct sched_entity *curr = cfs_rq->curr;
7843
7844 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7845 if (curr) {
7846 if (curr->on_rq)
7847 update_curr(cfs_rq);
7848 else
7849 curr = NULL;
7850
7851 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7852 goto again;
7853 }
7854
7855 se = pick_next_entity(cfs_rq, curr);
7856 cfs_rq = group_cfs_rq(se);
7857 } while (cfs_rq);
7858
7859 return task_of(se);
7860 }
7861 #endif
7862
7863 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)7864 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7865 {
7866 struct cfs_rq *cfs_rq = &rq->cfs;
7867 struct sched_entity *se = NULL;
7868 struct task_struct *p = NULL;
7869 int new_tasks;
7870 bool repick = false;
7871
7872 again:
7873 if (!sched_fair_runnable(rq))
7874 goto idle;
7875
7876 #ifdef CONFIG_FAIR_GROUP_SCHED
7877 if (!prev || prev->sched_class != &fair_sched_class)
7878 goto simple;
7879
7880 /*
7881 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7882 * likely that a next task is from the same cgroup as the current.
7883 *
7884 * Therefore attempt to avoid putting and setting the entire cgroup
7885 * hierarchy, only change the part that actually changes.
7886 */
7887
7888 do {
7889 struct sched_entity *curr = cfs_rq->curr;
7890
7891 /*
7892 * Since we got here without doing put_prev_entity() we also
7893 * have to consider cfs_rq->curr. If it is still a runnable
7894 * entity, update_curr() will update its vruntime, otherwise
7895 * forget we've ever seen it.
7896 */
7897 if (curr) {
7898 if (curr->on_rq)
7899 update_curr(cfs_rq);
7900 else
7901 curr = NULL;
7902
7903 /*
7904 * This call to check_cfs_rq_runtime() will do the
7905 * throttle and dequeue its entity in the parent(s).
7906 * Therefore the nr_running test will indeed
7907 * be correct.
7908 */
7909 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7910 cfs_rq = &rq->cfs;
7911
7912 if (!cfs_rq->nr_running)
7913 goto idle;
7914
7915 goto simple;
7916 }
7917 }
7918
7919 se = pick_next_entity(cfs_rq, curr);
7920 cfs_rq = group_cfs_rq(se);
7921 } while (cfs_rq);
7922
7923 p = task_of(se);
7924 trace_android_rvh_replace_next_task_fair(rq, &p, &se, &repick, false, prev);
7925 /*
7926 * Since we haven't yet done put_prev_entity and if the selected task
7927 * is a different task than we started out with, try and touch the
7928 * least amount of cfs_rqs.
7929 */
7930 if (prev != p) {
7931 struct sched_entity *pse = &prev->se;
7932
7933 while (!(cfs_rq = is_same_group(se, pse))) {
7934 int se_depth = se->depth;
7935 int pse_depth = pse->depth;
7936
7937 if (se_depth <= pse_depth) {
7938 put_prev_entity(cfs_rq_of(pse), pse);
7939 pse = parent_entity(pse);
7940 }
7941 if (se_depth >= pse_depth) {
7942 set_next_entity(cfs_rq_of(se), se);
7943 se = parent_entity(se);
7944 }
7945 }
7946
7947 put_prev_entity(cfs_rq, pse);
7948 set_next_entity(cfs_rq, se);
7949 }
7950
7951 goto done;
7952 simple:
7953 #endif
7954 if (prev)
7955 put_prev_task(rq, prev);
7956
7957 trace_android_rvh_replace_next_task_fair(rq, &p, &se, &repick, true, prev);
7958 if (repick)
7959 goto done;
7960
7961 do {
7962 se = pick_next_entity(cfs_rq, NULL);
7963 set_next_entity(cfs_rq, se);
7964 cfs_rq = group_cfs_rq(se);
7965 } while (cfs_rq);
7966
7967 p = task_of(se);
7968
7969 done: __maybe_unused;
7970 #ifdef CONFIG_SMP
7971 /*
7972 * Move the next running task to the front of
7973 * the list, so our cfs_tasks list becomes MRU
7974 * one.
7975 */
7976 list_move(&p->se.group_node, &rq->cfs_tasks);
7977 #endif
7978
7979 if (hrtick_enabled_fair(rq))
7980 hrtick_start_fair(rq, p);
7981
7982 update_misfit_status(p, rq);
7983
7984 return p;
7985
7986 idle:
7987 if (!rf)
7988 return NULL;
7989
7990 new_tasks = newidle_balance(rq, rf);
7991
7992 /*
7993 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7994 * possible for any higher priority task to appear. In that case we
7995 * must re-start the pick_next_entity() loop.
7996 */
7997 if (new_tasks < 0)
7998 return RETRY_TASK;
7999
8000 if (new_tasks > 0)
8001 goto again;
8002
8003 /*
8004 * rq is about to be idle, check if we need to update the
8005 * lost_idle_time of clock_pelt
8006 */
8007 update_idle_rq_clock_pelt(rq);
8008
8009 return NULL;
8010 }
8011
__pick_next_task_fair(struct rq * rq)8012 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8013 {
8014 return pick_next_task_fair(rq, NULL, NULL);
8015 }
8016
8017 /*
8018 * Account for a descheduled task:
8019 */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)8020 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8021 {
8022 struct sched_entity *se = &prev->se;
8023 struct cfs_rq *cfs_rq;
8024
8025 for_each_sched_entity(se) {
8026 cfs_rq = cfs_rq_of(se);
8027 put_prev_entity(cfs_rq, se);
8028 }
8029 }
8030
8031 /*
8032 * sched_yield() is very simple
8033 *
8034 * The magic of dealing with the ->skip buddy is in pick_next_entity.
8035 */
yield_task_fair(struct rq * rq)8036 static void yield_task_fair(struct rq *rq)
8037 {
8038 struct task_struct *curr = rq->curr;
8039 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8040 struct sched_entity *se = &curr->se;
8041
8042 /*
8043 * Are we the only task in the tree?
8044 */
8045 if (unlikely(rq->nr_running == 1))
8046 return;
8047
8048 clear_buddies(cfs_rq, se);
8049
8050 if (curr->policy != SCHED_BATCH) {
8051 update_rq_clock(rq);
8052 /*
8053 * Update run-time statistics of the 'current'.
8054 */
8055 update_curr(cfs_rq);
8056 /*
8057 * Tell update_rq_clock() that we've just updated,
8058 * so we don't do microscopic update in schedule()
8059 * and double the fastpath cost.
8060 */
8061 rq_clock_skip_update(rq);
8062 }
8063
8064 set_skip_buddy(se);
8065 }
8066
yield_to_task_fair(struct rq * rq,struct task_struct * p)8067 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8068 {
8069 struct sched_entity *se = &p->se;
8070
8071 /* throttled hierarchies are not runnable */
8072 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8073 return false;
8074
8075 /* Tell the scheduler that we'd really like pse to run next. */
8076 set_next_buddy(se);
8077
8078 yield_task_fair(rq);
8079
8080 return true;
8081 }
8082
8083 #ifdef CONFIG_SMP
8084 /**************************************************
8085 * Fair scheduling class load-balancing methods.
8086 *
8087 * BASICS
8088 *
8089 * The purpose of load-balancing is to achieve the same basic fairness the
8090 * per-CPU scheduler provides, namely provide a proportional amount of compute
8091 * time to each task. This is expressed in the following equation:
8092 *
8093 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
8094 *
8095 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8096 * W_i,0 is defined as:
8097 *
8098 * W_i,0 = \Sum_j w_i,j (2)
8099 *
8100 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8101 * is derived from the nice value as per sched_prio_to_weight[].
8102 *
8103 * The weight average is an exponential decay average of the instantaneous
8104 * weight:
8105 *
8106 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
8107 *
8108 * C_i is the compute capacity of CPU i, typically it is the
8109 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8110 * can also include other factors [XXX].
8111 *
8112 * To achieve this balance we define a measure of imbalance which follows
8113 * directly from (1):
8114 *
8115 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
8116 *
8117 * We them move tasks around to minimize the imbalance. In the continuous
8118 * function space it is obvious this converges, in the discrete case we get
8119 * a few fun cases generally called infeasible weight scenarios.
8120 *
8121 * [XXX expand on:
8122 * - infeasible weights;
8123 * - local vs global optima in the discrete case. ]
8124 *
8125 *
8126 * SCHED DOMAINS
8127 *
8128 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8129 * for all i,j solution, we create a tree of CPUs that follows the hardware
8130 * topology where each level pairs two lower groups (or better). This results
8131 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8132 * tree to only the first of the previous level and we decrease the frequency
8133 * of load-balance at each level inv. proportional to the number of CPUs in
8134 * the groups.
8135 *
8136 * This yields:
8137 *
8138 * log_2 n 1 n
8139 * \Sum { --- * --- * 2^i } = O(n) (5)
8140 * i = 0 2^i 2^i
8141 * `- size of each group
8142 * | | `- number of CPUs doing load-balance
8143 * | `- freq
8144 * `- sum over all levels
8145 *
8146 * Coupled with a limit on how many tasks we can migrate every balance pass,
8147 * this makes (5) the runtime complexity of the balancer.
8148 *
8149 * An important property here is that each CPU is still (indirectly) connected
8150 * to every other CPU in at most O(log n) steps:
8151 *
8152 * The adjacency matrix of the resulting graph is given by:
8153 *
8154 * log_2 n
8155 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
8156 * k = 0
8157 *
8158 * And you'll find that:
8159 *
8160 * A^(log_2 n)_i,j != 0 for all i,j (7)
8161 *
8162 * Showing there's indeed a path between every CPU in at most O(log n) steps.
8163 * The task movement gives a factor of O(m), giving a convergence complexity
8164 * of:
8165 *
8166 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
8167 *
8168 *
8169 * WORK CONSERVING
8170 *
8171 * In order to avoid CPUs going idle while there's still work to do, new idle
8172 * balancing is more aggressive and has the newly idle CPU iterate up the domain
8173 * tree itself instead of relying on other CPUs to bring it work.
8174 *
8175 * This adds some complexity to both (5) and (8) but it reduces the total idle
8176 * time.
8177 *
8178 * [XXX more?]
8179 *
8180 *
8181 * CGROUPS
8182 *
8183 * Cgroups make a horror show out of (2), instead of a simple sum we get:
8184 *
8185 * s_k,i
8186 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
8187 * S_k
8188 *
8189 * Where
8190 *
8191 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
8192 *
8193 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8194 *
8195 * The big problem is S_k, its a global sum needed to compute a local (W_i)
8196 * property.
8197 *
8198 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8199 * rewrite all of this once again.]
8200 */
8201
8202 unsigned long __read_mostly max_load_balance_interval = HZ/10;
8203 EXPORT_SYMBOL_GPL(max_load_balance_interval);
8204
8205 enum fbq_type { regular, remote, all };
8206
8207 /*
8208 * 'group_type' describes the group of CPUs at the moment of load balancing.
8209 *
8210 * The enum is ordered by pulling priority, with the group with lowest priority
8211 * first so the group_type can simply be compared when selecting the busiest
8212 * group. See update_sd_pick_busiest().
8213 */
8214 enum group_type {
8215 /* The group has spare capacity that can be used to run more tasks. */
8216 group_has_spare = 0,
8217 /*
8218 * The group is fully used and the tasks don't compete for more CPU
8219 * cycles. Nevertheless, some tasks might wait before running.
8220 */
8221 group_fully_busy,
8222 /*
8223 * One task doesn't fit with CPU's capacity and must be migrated to a
8224 * more powerful CPU.
8225 */
8226 group_misfit_task,
8227 /*
8228 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8229 * and the task should be migrated to it instead of running on the
8230 * current CPU.
8231 */
8232 group_asym_packing,
8233 /*
8234 * The tasks' affinity constraints previously prevented the scheduler
8235 * from balancing the load across the system.
8236 */
8237 group_imbalanced,
8238 /*
8239 * The CPU is overloaded and can't provide expected CPU cycles to all
8240 * tasks.
8241 */
8242 group_overloaded
8243 };
8244
8245 enum migration_type {
8246 migrate_load = 0,
8247 migrate_util,
8248 migrate_task,
8249 migrate_misfit
8250 };
8251
8252 #define LBF_ALL_PINNED 0x01
8253 #define LBF_NEED_BREAK 0x02
8254 #define LBF_DST_PINNED 0x04
8255 #define LBF_SOME_PINNED 0x08
8256 #define LBF_ACTIVE_LB 0x10
8257
8258 struct lb_env {
8259 struct sched_domain *sd;
8260
8261 struct rq *src_rq;
8262 int src_cpu;
8263
8264 int dst_cpu;
8265 struct rq *dst_rq;
8266
8267 struct cpumask *dst_grpmask;
8268 int new_dst_cpu;
8269 enum cpu_idle_type idle;
8270 long imbalance;
8271 /* The set of CPUs under consideration for load-balancing */
8272 struct cpumask *cpus;
8273
8274 unsigned int flags;
8275
8276 unsigned int loop;
8277 unsigned int loop_break;
8278 unsigned int loop_max;
8279
8280 enum fbq_type fbq_type;
8281 enum migration_type migration_type;
8282 struct list_head tasks;
8283 struct rq_flags *src_rq_rf;
8284 };
8285
8286 /*
8287 * Is this task likely cache-hot:
8288 */
task_hot(struct task_struct * p,struct lb_env * env)8289 static int task_hot(struct task_struct *p, struct lb_env *env)
8290 {
8291 s64 delta;
8292
8293 lockdep_assert_rq_held(env->src_rq);
8294
8295 if (p->sched_class != &fair_sched_class)
8296 return 0;
8297
8298 if (unlikely(task_has_idle_policy(p)))
8299 return 0;
8300
8301 /* SMT siblings share cache */
8302 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8303 return 0;
8304
8305 /*
8306 * Buddy candidates are cache hot:
8307 */
8308 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8309 (&p->se == cfs_rq_of(&p->se)->next ||
8310 &p->se == cfs_rq_of(&p->se)->last))
8311 return 1;
8312
8313 if (sysctl_sched_migration_cost == -1)
8314 return 1;
8315
8316 /*
8317 * Don't migrate task if the task's cookie does not match
8318 * with the destination CPU's core cookie.
8319 */
8320 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8321 return 1;
8322
8323 if (sysctl_sched_migration_cost == 0)
8324 return 0;
8325
8326 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8327
8328 return delta < (s64)sysctl_sched_migration_cost;
8329 }
8330
8331 #ifdef CONFIG_NUMA_BALANCING
8332 /*
8333 * Returns 1, if task migration degrades locality
8334 * Returns 0, if task migration improves locality i.e migration preferred.
8335 * Returns -1, if task migration is not affected by locality.
8336 */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8337 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8338 {
8339 struct numa_group *numa_group = rcu_dereference(p->numa_group);
8340 unsigned long src_weight, dst_weight;
8341 int src_nid, dst_nid, dist;
8342
8343 if (!static_branch_likely(&sched_numa_balancing))
8344 return -1;
8345
8346 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8347 return -1;
8348
8349 src_nid = cpu_to_node(env->src_cpu);
8350 dst_nid = cpu_to_node(env->dst_cpu);
8351
8352 if (src_nid == dst_nid)
8353 return -1;
8354
8355 /* Migrating away from the preferred node is always bad. */
8356 if (src_nid == p->numa_preferred_nid) {
8357 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8358 return 1;
8359 else
8360 return -1;
8361 }
8362
8363 /* Encourage migration to the preferred node. */
8364 if (dst_nid == p->numa_preferred_nid)
8365 return 0;
8366
8367 /* Leaving a core idle is often worse than degrading locality. */
8368 if (env->idle == CPU_IDLE)
8369 return -1;
8370
8371 dist = node_distance(src_nid, dst_nid);
8372 if (numa_group) {
8373 src_weight = group_weight(p, src_nid, dist);
8374 dst_weight = group_weight(p, dst_nid, dist);
8375 } else {
8376 src_weight = task_weight(p, src_nid, dist);
8377 dst_weight = task_weight(p, dst_nid, dist);
8378 }
8379
8380 return dst_weight < src_weight;
8381 }
8382
8383 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8384 static inline int migrate_degrades_locality(struct task_struct *p,
8385 struct lb_env *env)
8386 {
8387 return -1;
8388 }
8389 #endif
8390
8391 /*
8392 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8393 */
8394 static
can_migrate_task(struct task_struct * p,struct lb_env * env)8395 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8396 {
8397 int tsk_cache_hot;
8398 int can_migrate = 1;
8399
8400 lockdep_assert_rq_held(env->src_rq);
8401
8402 trace_android_rvh_can_migrate_task(p, env->dst_cpu, &can_migrate);
8403 if (!can_migrate)
8404 return 0;
8405
8406 /*
8407 * We do not migrate tasks that are:
8408 * 1) throttled_lb_pair, or
8409 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8410 * 3) running (obviously), or
8411 * 4) are cache-hot on their current CPU.
8412 */
8413 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8414 return 0;
8415
8416 /* Disregard pcpu kthreads; they are where they need to be. */
8417 if (kthread_is_per_cpu(p))
8418 return 0;
8419
8420 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8421 int cpu;
8422
8423 schedstat_inc(p->stats.nr_failed_migrations_affine);
8424
8425 env->flags |= LBF_SOME_PINNED;
8426
8427 /*
8428 * Remember if this task can be migrated to any other CPU in
8429 * our sched_group. We may want to revisit it if we couldn't
8430 * meet load balance goals by pulling other tasks on src_cpu.
8431 *
8432 * Avoid computing new_dst_cpu
8433 * - for NEWLY_IDLE
8434 * - if we have already computed one in current iteration
8435 * - if it's an active balance
8436 */
8437 if (env->idle == CPU_NEWLY_IDLE ||
8438 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8439 return 0;
8440
8441 /* Prevent to re-select dst_cpu via env's CPUs: */
8442 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8443 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8444 env->flags |= LBF_DST_PINNED;
8445 env->new_dst_cpu = cpu;
8446 break;
8447 }
8448 }
8449
8450 return 0;
8451 }
8452
8453 /* Record that we found at least one task that could run on dst_cpu */
8454 env->flags &= ~LBF_ALL_PINNED;
8455
8456 if (task_on_cpu(env->src_rq, p)) {
8457 schedstat_inc(p->stats.nr_failed_migrations_running);
8458 return 0;
8459 }
8460
8461 /*
8462 * Aggressive migration if:
8463 * 1) active balance
8464 * 2) destination numa is preferred
8465 * 3) task is cache cold, or
8466 * 4) too many balance attempts have failed.
8467 */
8468 if (env->flags & LBF_ACTIVE_LB)
8469 return 1;
8470
8471 tsk_cache_hot = migrate_degrades_locality(p, env);
8472 if (tsk_cache_hot == -1)
8473 tsk_cache_hot = task_hot(p, env);
8474
8475 if (tsk_cache_hot <= 0 ||
8476 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8477 if (tsk_cache_hot == 1) {
8478 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8479 schedstat_inc(p->stats.nr_forced_migrations);
8480 }
8481 return 1;
8482 }
8483
8484 schedstat_inc(p->stats.nr_failed_migrations_hot);
8485 return 0;
8486 }
8487
8488 /*
8489 * detach_task() -- detach the task for the migration specified in env
8490 */
detach_task(struct task_struct * p,struct lb_env * env)8491 static void detach_task(struct task_struct *p, struct lb_env *env)
8492 {
8493 int detached = 0;
8494
8495 lockdep_assert_rq_held(env->src_rq);
8496
8497 /*
8498 * The vendor hook may drop the lock temporarily, so
8499 * pass the rq flags to unpin lock. We expect the
8500 * rq lock to be held after return.
8501 */
8502 trace_android_rvh_migrate_queued_task(env->src_rq, env->src_rq_rf, p,
8503 env->dst_cpu, &detached);
8504 if (detached)
8505 return;
8506
8507 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
8508 set_task_cpu(p, env->dst_cpu);
8509 }
8510
8511 /*
8512 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
8513 * part of active balancing operations within "domain".
8514 *
8515 * Returns a task if successful and NULL otherwise.
8516 */
detach_one_task(struct lb_env * env)8517 static struct task_struct *detach_one_task(struct lb_env *env)
8518 {
8519 struct task_struct *p;
8520
8521 lockdep_assert_rq_held(env->src_rq);
8522
8523 list_for_each_entry_reverse(p,
8524 &env->src_rq->cfs_tasks, se.group_node) {
8525 if (!can_migrate_task(p, env))
8526 continue;
8527
8528 detach_task(p, env);
8529
8530 /*
8531 * Right now, this is only the second place where
8532 * lb_gained[env->idle] is updated (other is detach_tasks)
8533 * so we can safely collect stats here rather than
8534 * inside detach_tasks().
8535 */
8536 schedstat_inc(env->sd->lb_gained[env->idle]);
8537 return p;
8538 }
8539 return NULL;
8540 }
8541
8542 /*
8543 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
8544 * busiest_rq, as part of a balancing operation within domain "sd".
8545 *
8546 * Returns number of detached tasks if successful and 0 otherwise.
8547 */
detach_tasks(struct lb_env * env)8548 static int detach_tasks(struct lb_env *env)
8549 {
8550 struct list_head *tasks = &env->src_rq->cfs_tasks;
8551 unsigned long util, load;
8552 struct task_struct *p;
8553 int detached = 0;
8554
8555 lockdep_assert_rq_held(env->src_rq);
8556
8557 /*
8558 * Source run queue has been emptied by another CPU, clear
8559 * LBF_ALL_PINNED flag as we will not test any task.
8560 */
8561 if (env->src_rq->nr_running <= 1) {
8562 env->flags &= ~LBF_ALL_PINNED;
8563 return 0;
8564 }
8565
8566 if (env->imbalance <= 0)
8567 return 0;
8568
8569 while (!list_empty(tasks)) {
8570 /*
8571 * We don't want to steal all, otherwise we may be treated likewise,
8572 * which could at worst lead to a livelock crash.
8573 */
8574 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
8575 break;
8576
8577 env->loop++;
8578 /*
8579 * We've more or less seen every task there is, call it quits
8580 * unless we haven't found any movable task yet.
8581 */
8582 if (env->loop > env->loop_max &&
8583 !(env->flags & LBF_ALL_PINNED))
8584 break;
8585
8586 /* take a breather every nr_migrate tasks */
8587 if (env->loop > env->loop_break) {
8588 env->loop_break += SCHED_NR_MIGRATE_BREAK;
8589 env->flags |= LBF_NEED_BREAK;
8590 break;
8591 }
8592
8593 p = list_last_entry(tasks, struct task_struct, se.group_node);
8594
8595 if (!can_migrate_task(p, env))
8596 goto next;
8597
8598 switch (env->migration_type) {
8599 case migrate_load:
8600 /*
8601 * Depending of the number of CPUs and tasks and the
8602 * cgroup hierarchy, task_h_load() can return a null
8603 * value. Make sure that env->imbalance decreases
8604 * otherwise detach_tasks() will stop only after
8605 * detaching up to loop_max tasks.
8606 */
8607 load = max_t(unsigned long, task_h_load(p), 1);
8608
8609 if (sched_feat(LB_MIN) &&
8610 load < 16 && !env->sd->nr_balance_failed)
8611 goto next;
8612
8613 /*
8614 * Make sure that we don't migrate too much load.
8615 * Nevertheless, let relax the constraint if
8616 * scheduler fails to find a good waiting task to
8617 * migrate.
8618 */
8619 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
8620 goto next;
8621
8622 env->imbalance -= load;
8623 break;
8624
8625 case migrate_util:
8626 util = task_util_est(p);
8627
8628 if (util > env->imbalance)
8629 goto next;
8630
8631 env->imbalance -= util;
8632 break;
8633
8634 case migrate_task:
8635 env->imbalance--;
8636 break;
8637
8638 case migrate_misfit:
8639 /* This is not a misfit task */
8640 if (task_fits_cpu(p, env->src_cpu))
8641 goto next;
8642
8643 env->imbalance = 0;
8644 break;
8645 }
8646
8647 detach_task(p, env);
8648 list_add(&p->se.group_node, &env->tasks);
8649
8650 detached++;
8651
8652 #ifdef CONFIG_PREEMPTION
8653 /*
8654 * NEWIDLE balancing is a source of latency, so preemptible
8655 * kernels will stop after the first task is detached to minimize
8656 * the critical section.
8657 */
8658 if (env->idle == CPU_NEWLY_IDLE)
8659 break;
8660 #endif
8661
8662 /*
8663 * We only want to steal up to the prescribed amount of
8664 * load/util/tasks.
8665 */
8666 if (env->imbalance <= 0)
8667 break;
8668
8669 continue;
8670 next:
8671 list_move(&p->se.group_node, tasks);
8672 }
8673
8674 /*
8675 * Right now, this is one of only two places we collect this stat
8676 * so we can safely collect detach_one_task() stats here rather
8677 * than inside detach_one_task().
8678 */
8679 schedstat_add(env->sd->lb_gained[env->idle], detached);
8680
8681 return detached;
8682 }
8683
8684 /*
8685 * attach_task() -- attach the task detached by detach_task() to its new rq.
8686 */
attach_task(struct rq * rq,struct task_struct * p)8687 static void attach_task(struct rq *rq, struct task_struct *p)
8688 {
8689 lockdep_assert_rq_held(rq);
8690
8691 WARN_ON_ONCE(task_rq(p) != rq);
8692 activate_task(rq, p, ENQUEUE_NOCLOCK);
8693 check_preempt_curr(rq, p, 0);
8694 }
8695
8696 /*
8697 * attach_one_task() -- attaches the task returned from detach_one_task() to
8698 * its new rq.
8699 */
attach_one_task(struct rq * rq,struct task_struct * p)8700 static void attach_one_task(struct rq *rq, struct task_struct *p)
8701 {
8702 struct rq_flags rf;
8703
8704 rq_lock(rq, &rf);
8705 update_rq_clock(rq);
8706 attach_task(rq, p);
8707 rq_unlock(rq, &rf);
8708 }
8709
8710 /*
8711 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8712 * new rq.
8713 */
attach_tasks(struct lb_env * env)8714 static void attach_tasks(struct lb_env *env)
8715 {
8716 struct list_head *tasks = &env->tasks;
8717 struct task_struct *p;
8718 struct rq_flags rf;
8719
8720 rq_lock(env->dst_rq, &rf);
8721 update_rq_clock(env->dst_rq);
8722
8723 while (!list_empty(tasks)) {
8724 p = list_first_entry(tasks, struct task_struct, se.group_node);
8725 list_del_init(&p->se.group_node);
8726
8727 attach_task(env->dst_rq, p);
8728 }
8729
8730 rq_unlock(env->dst_rq, &rf);
8731 }
8732
8733 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)8734 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8735 {
8736 if (cfs_rq->avg.load_avg)
8737 return true;
8738
8739 if (cfs_rq->avg.util_avg)
8740 return true;
8741
8742 return false;
8743 }
8744
others_have_blocked(struct rq * rq)8745 static inline bool others_have_blocked(struct rq *rq)
8746 {
8747 if (READ_ONCE(rq->avg_rt.util_avg))
8748 return true;
8749
8750 if (READ_ONCE(rq->avg_dl.util_avg))
8751 return true;
8752
8753 if (thermal_load_avg(rq))
8754 return true;
8755
8756 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8757 if (READ_ONCE(rq->avg_irq.util_avg))
8758 return true;
8759 #endif
8760
8761 return false;
8762 }
8763
update_blocked_load_tick(struct rq * rq)8764 static inline void update_blocked_load_tick(struct rq *rq)
8765 {
8766 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8767 }
8768
update_blocked_load_status(struct rq * rq,bool has_blocked)8769 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8770 {
8771 if (!has_blocked)
8772 rq->has_blocked_load = 0;
8773 }
8774 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)8775 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)8776 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)8777 static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)8778 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8779 #endif
8780
__update_blocked_others(struct rq * rq,bool * done)8781 static bool __update_blocked_others(struct rq *rq, bool *done)
8782 {
8783 const struct sched_class *curr_class;
8784 u64 now = rq_clock_pelt(rq);
8785 unsigned long thermal_pressure;
8786 bool decayed;
8787
8788 /*
8789 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8790 * DL and IRQ signals have been updated before updating CFS.
8791 */
8792 curr_class = rq->curr->sched_class;
8793
8794 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8795
8796 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8797 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8798 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8799 update_irq_load_avg(rq, 0);
8800
8801 if (others_have_blocked(rq))
8802 *done = false;
8803
8804 return decayed;
8805 }
8806
8807 #ifdef CONFIG_FAIR_GROUP_SCHED
8808
__update_blocked_fair(struct rq * rq,bool * done)8809 static bool __update_blocked_fair(struct rq *rq, bool *done)
8810 {
8811 struct cfs_rq *cfs_rq, *pos;
8812 bool decayed = false;
8813 int cpu = cpu_of(rq);
8814
8815 trace_android_rvh_update_blocked_fair(rq);
8816
8817 /*
8818 * Iterates the task_group tree in a bottom up fashion, see
8819 * list_add_leaf_cfs_rq() for details.
8820 */
8821 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8822 struct sched_entity *se;
8823
8824 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8825 update_tg_load_avg(cfs_rq);
8826
8827 if (cfs_rq->nr_running == 0)
8828 update_idle_cfs_rq_clock_pelt(cfs_rq);
8829
8830 if (cfs_rq == &rq->cfs)
8831 decayed = true;
8832 }
8833
8834 /* Propagate pending load changes to the parent, if any: */
8835 se = cfs_rq->tg->se[cpu];
8836 if (se && !skip_blocked_update(se))
8837 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8838
8839 /*
8840 * There can be a lot of idle CPU cgroups. Don't let fully
8841 * decayed cfs_rqs linger on the list.
8842 */
8843 if (cfs_rq_is_decayed(cfs_rq))
8844 list_del_leaf_cfs_rq(cfs_rq);
8845
8846 /* Don't need periodic decay once load/util_avg are null */
8847 if (cfs_rq_has_blocked(cfs_rq))
8848 *done = false;
8849 }
8850
8851 return decayed;
8852 }
8853
8854 /*
8855 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8856 * This needs to be done in a top-down fashion because the load of a child
8857 * group is a fraction of its parents load.
8858 */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)8859 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8860 {
8861 struct rq *rq = rq_of(cfs_rq);
8862 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8863 unsigned long now = jiffies;
8864 unsigned long load;
8865
8866 if (cfs_rq->last_h_load_update == now)
8867 return;
8868
8869 WRITE_ONCE(cfs_rq->h_load_next, NULL);
8870 for_each_sched_entity(se) {
8871 cfs_rq = cfs_rq_of(se);
8872 WRITE_ONCE(cfs_rq->h_load_next, se);
8873 if (cfs_rq->last_h_load_update == now)
8874 break;
8875 }
8876
8877 if (!se) {
8878 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8879 cfs_rq->last_h_load_update = now;
8880 }
8881
8882 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8883 load = cfs_rq->h_load;
8884 load = div64_ul(load * se->avg.load_avg,
8885 cfs_rq_load_avg(cfs_rq) + 1);
8886 cfs_rq = group_cfs_rq(se);
8887 cfs_rq->h_load = load;
8888 cfs_rq->last_h_load_update = now;
8889 }
8890 }
8891
task_h_load(struct task_struct * p)8892 static unsigned long task_h_load(struct task_struct *p)
8893 {
8894 struct cfs_rq *cfs_rq = task_cfs_rq(p);
8895
8896 update_cfs_rq_h_load(cfs_rq);
8897 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8898 cfs_rq_load_avg(cfs_rq) + 1);
8899 }
8900 #else
__update_blocked_fair(struct rq * rq,bool * done)8901 static bool __update_blocked_fair(struct rq *rq, bool *done)
8902 {
8903 struct cfs_rq *cfs_rq = &rq->cfs;
8904 bool decayed;
8905
8906 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8907 if (cfs_rq_has_blocked(cfs_rq))
8908 *done = false;
8909
8910 return decayed;
8911 }
8912
task_h_load(struct task_struct * p)8913 static unsigned long task_h_load(struct task_struct *p)
8914 {
8915 return p->se.avg.load_avg;
8916 }
8917 #endif
8918
update_blocked_averages(int cpu)8919 static void update_blocked_averages(int cpu)
8920 {
8921 bool decayed = false, done = true;
8922 struct rq *rq = cpu_rq(cpu);
8923 struct rq_flags rf;
8924
8925 rq_lock_irqsave(rq, &rf);
8926 update_blocked_load_tick(rq);
8927 update_rq_clock(rq);
8928
8929 decayed |= __update_blocked_others(rq, &done);
8930 decayed |= __update_blocked_fair(rq, &done);
8931
8932 update_blocked_load_status(rq, !done);
8933 if (decayed)
8934 cpufreq_update_util(rq, 0);
8935 rq_unlock_irqrestore(rq, &rf);
8936 }
8937
8938 /********** Helpers for find_busiest_group ************************/
8939
8940 /*
8941 * sg_lb_stats - stats of a sched_group required for load_balancing
8942 */
8943 struct sg_lb_stats {
8944 unsigned long avg_load; /*Avg load across the CPUs of the group */
8945 unsigned long group_load; /* Total load over the CPUs of the group */
8946 unsigned long group_capacity;
8947 unsigned long group_util; /* Total utilization over the CPUs of the group */
8948 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8949 unsigned int sum_nr_running; /* Nr of tasks running in the group */
8950 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8951 unsigned int idle_cpus;
8952 unsigned int group_weight;
8953 enum group_type group_type;
8954 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8955 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8956 #ifdef CONFIG_NUMA_BALANCING
8957 unsigned int nr_numa_running;
8958 unsigned int nr_preferred_running;
8959 #endif
8960 };
8961
8962 /*
8963 * sd_lb_stats - Structure to store the statistics of a sched_domain
8964 * during load balancing.
8965 */
8966 struct sd_lb_stats {
8967 struct sched_group *busiest; /* Busiest group in this sd */
8968 struct sched_group *local; /* Local group in this sd */
8969 unsigned long total_load; /* Total load of all groups in sd */
8970 unsigned long total_capacity; /* Total capacity of all groups in sd */
8971 unsigned long avg_load; /* Average load across all groups in sd */
8972 unsigned int prefer_sibling; /* tasks should go to sibling first */
8973
8974 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8975 struct sg_lb_stats local_stat; /* Statistics of the local group */
8976 };
8977
init_sd_lb_stats(struct sd_lb_stats * sds)8978 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8979 {
8980 /*
8981 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8982 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8983 * We must however set busiest_stat::group_type and
8984 * busiest_stat::idle_cpus to the worst busiest group because
8985 * update_sd_pick_busiest() reads these before assignment.
8986 */
8987 *sds = (struct sd_lb_stats){
8988 .busiest = NULL,
8989 .local = NULL,
8990 .total_load = 0UL,
8991 .total_capacity = 0UL,
8992 .busiest_stat = {
8993 .idle_cpus = UINT_MAX,
8994 .group_type = group_has_spare,
8995 },
8996 };
8997 }
8998
scale_rt_capacity(int cpu)8999 static unsigned long scale_rt_capacity(int cpu)
9000 {
9001 struct rq *rq = cpu_rq(cpu);
9002 unsigned long max = arch_scale_cpu_capacity(cpu);
9003 unsigned long used, free;
9004 unsigned long irq;
9005
9006 irq = cpu_util_irq(rq);
9007
9008 if (unlikely(irq >= max))
9009 return 1;
9010
9011 /*
9012 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9013 * (running and not running) with weights 0 and 1024 respectively.
9014 * avg_thermal.load_avg tracks thermal pressure and the weighted
9015 * average uses the actual delta max capacity(load).
9016 */
9017 used = READ_ONCE(rq->avg_rt.util_avg);
9018 used += READ_ONCE(rq->avg_dl.util_avg);
9019 used += thermal_load_avg(rq);
9020
9021 if (unlikely(used >= max))
9022 return 1;
9023
9024 free = max - used;
9025
9026 return scale_irq_capacity(free, irq, max);
9027 }
9028
update_cpu_capacity(struct sched_domain * sd,int cpu)9029 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9030 {
9031 unsigned long capacity = scale_rt_capacity(cpu);
9032 struct sched_group *sdg = sd->groups;
9033
9034 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
9035
9036 if (!capacity)
9037 capacity = 1;
9038
9039 trace_android_rvh_update_cpu_capacity(cpu, &capacity);
9040 cpu_rq(cpu)->cpu_capacity = capacity;
9041 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9042
9043 sdg->sgc->capacity = capacity;
9044 sdg->sgc->min_capacity = capacity;
9045 sdg->sgc->max_capacity = capacity;
9046 }
9047
update_group_capacity(struct sched_domain * sd,int cpu)9048 void update_group_capacity(struct sched_domain *sd, int cpu)
9049 {
9050 struct sched_domain *child = sd->child;
9051 struct sched_group *group, *sdg = sd->groups;
9052 unsigned long capacity, min_capacity, max_capacity;
9053 unsigned long interval;
9054
9055 interval = msecs_to_jiffies(sd->balance_interval);
9056 interval = clamp(interval, 1UL, max_load_balance_interval);
9057 sdg->sgc->next_update = jiffies + interval;
9058
9059 if (!child) {
9060 update_cpu_capacity(sd, cpu);
9061 return;
9062 }
9063
9064 capacity = 0;
9065 min_capacity = ULONG_MAX;
9066 max_capacity = 0;
9067
9068 if (child->flags & SD_OVERLAP) {
9069 /*
9070 * SD_OVERLAP domains cannot assume that child groups
9071 * span the current group.
9072 */
9073
9074 for_each_cpu(cpu, sched_group_span(sdg)) {
9075 unsigned long cpu_cap = capacity_of(cpu);
9076
9077 capacity += cpu_cap;
9078 min_capacity = min(cpu_cap, min_capacity);
9079 max_capacity = max(cpu_cap, max_capacity);
9080 }
9081 } else {
9082 /*
9083 * !SD_OVERLAP domains can assume that child groups
9084 * span the current group.
9085 */
9086
9087 group = child->groups;
9088 do {
9089 struct sched_group_capacity *sgc = group->sgc;
9090
9091 capacity += sgc->capacity;
9092 min_capacity = min(sgc->min_capacity, min_capacity);
9093 max_capacity = max(sgc->max_capacity, max_capacity);
9094 group = group->next;
9095 } while (group != child->groups);
9096 }
9097
9098 sdg->sgc->capacity = capacity;
9099 sdg->sgc->min_capacity = min_capacity;
9100 sdg->sgc->max_capacity = max_capacity;
9101 }
9102
9103 /*
9104 * Check whether the capacity of the rq has been noticeably reduced by side
9105 * activity. The imbalance_pct is used for the threshold.
9106 * Return true is the capacity is reduced
9107 */
9108 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)9109 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9110 {
9111 return ((rq->cpu_capacity * sd->imbalance_pct) <
9112 (rq->cpu_capacity_orig * 100));
9113 }
9114
9115 /*
9116 * Check whether a rq has a misfit task and if it looks like we can actually
9117 * help that task: we can migrate the task to a CPU of higher capacity, or
9118 * the task's current CPU is heavily pressured.
9119 */
check_misfit_status(struct rq * rq,struct sched_domain * sd)9120 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
9121 {
9122 return rq->misfit_task_load &&
9123 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
9124 check_cpu_capacity(rq, sd));
9125 }
9126
9127 /*
9128 * Group imbalance indicates (and tries to solve) the problem where balancing
9129 * groups is inadequate due to ->cpus_ptr constraints.
9130 *
9131 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9132 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9133 * Something like:
9134 *
9135 * { 0 1 2 3 } { 4 5 6 7 }
9136 * * * * *
9137 *
9138 * If we were to balance group-wise we'd place two tasks in the first group and
9139 * two tasks in the second group. Clearly this is undesired as it will overload
9140 * cpu 3 and leave one of the CPUs in the second group unused.
9141 *
9142 * The current solution to this issue is detecting the skew in the first group
9143 * by noticing the lower domain failed to reach balance and had difficulty
9144 * moving tasks due to affinity constraints.
9145 *
9146 * When this is so detected; this group becomes a candidate for busiest; see
9147 * update_sd_pick_busiest(). And calculate_imbalance() and
9148 * find_busiest_group() avoid some of the usual balance conditions to allow it
9149 * to create an effective group imbalance.
9150 *
9151 * This is a somewhat tricky proposition since the next run might not find the
9152 * group imbalance and decide the groups need to be balanced again. A most
9153 * subtle and fragile situation.
9154 */
9155
sg_imbalanced(struct sched_group * group)9156 static inline int sg_imbalanced(struct sched_group *group)
9157 {
9158 return group->sgc->imbalance;
9159 }
9160
9161 /*
9162 * group_has_capacity returns true if the group has spare capacity that could
9163 * be used by some tasks.
9164 * We consider that a group has spare capacity if the number of task is
9165 * smaller than the number of CPUs or if the utilization is lower than the
9166 * available capacity for CFS tasks.
9167 * For the latter, we use a threshold to stabilize the state, to take into
9168 * account the variance of the tasks' load and to return true if the available
9169 * capacity in meaningful for the load balancer.
9170 * As an example, an available capacity of 1% can appear but it doesn't make
9171 * any benefit for the load balance.
9172 */
9173 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)9174 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9175 {
9176 if (sgs->sum_nr_running < sgs->group_weight)
9177 return true;
9178
9179 if ((sgs->group_capacity * imbalance_pct) <
9180 (sgs->group_runnable * 100))
9181 return false;
9182
9183 if ((sgs->group_capacity * 100) >
9184 (sgs->group_util * imbalance_pct))
9185 return true;
9186
9187 return false;
9188 }
9189
9190 /*
9191 * group_is_overloaded returns true if the group has more tasks than it can
9192 * handle.
9193 * group_is_overloaded is not equals to !group_has_capacity because a group
9194 * with the exact right number of tasks, has no more spare capacity but is not
9195 * overloaded so both group_has_capacity and group_is_overloaded return
9196 * false.
9197 */
9198 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)9199 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9200 {
9201 if (sgs->sum_nr_running <= sgs->group_weight)
9202 return false;
9203
9204 if ((sgs->group_capacity * 100) <
9205 (sgs->group_util * imbalance_pct))
9206 return true;
9207
9208 if ((sgs->group_capacity * imbalance_pct) <
9209 (sgs->group_runnable * 100))
9210 return true;
9211
9212 return false;
9213 }
9214
9215 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)9216 group_type group_classify(unsigned int imbalance_pct,
9217 struct sched_group *group,
9218 struct sg_lb_stats *sgs)
9219 {
9220 if (group_is_overloaded(imbalance_pct, sgs))
9221 return group_overloaded;
9222
9223 if (sg_imbalanced(group))
9224 return group_imbalanced;
9225
9226 if (sgs->group_asym_packing)
9227 return group_asym_packing;
9228
9229 if (sgs->group_misfit_task_load)
9230 return group_misfit_task;
9231
9232 if (!group_has_capacity(imbalance_pct, sgs))
9233 return group_fully_busy;
9234
9235 return group_has_spare;
9236 }
9237
9238 /**
9239 * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks
9240 * @dst_cpu: Destination CPU of the load balancing
9241 * @sds: Load-balancing data with statistics of the local group
9242 * @sgs: Load-balancing statistics of the candidate busiest group
9243 * @sg: The candidate busiest group
9244 *
9245 * Check the state of the SMT siblings of both @sds::local and @sg and decide
9246 * if @dst_cpu can pull tasks.
9247 *
9248 * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of
9249 * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks
9250 * only if @dst_cpu has higher priority.
9251 *
9252 * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more
9253 * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority.
9254 * Bigger imbalances in the number of busy CPUs will be dealt with in
9255 * update_sd_pick_busiest().
9256 *
9257 * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings
9258 * of @dst_cpu are idle and @sg has lower priority.
9259 *
9260 * Return: true if @dst_cpu can pull tasks, false otherwise.
9261 */
asym_smt_can_pull_tasks(int dst_cpu,struct sd_lb_stats * sds,struct sg_lb_stats * sgs,struct sched_group * sg)9262 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds,
9263 struct sg_lb_stats *sgs,
9264 struct sched_group *sg)
9265 {
9266 #ifdef CONFIG_SCHED_SMT
9267 bool local_is_smt, sg_is_smt;
9268 int sg_busy_cpus;
9269
9270 local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY;
9271 sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY;
9272
9273 sg_busy_cpus = sgs->group_weight - sgs->idle_cpus;
9274
9275 if (!local_is_smt) {
9276 /*
9277 * If we are here, @dst_cpu is idle and does not have SMT
9278 * siblings. Pull tasks if candidate group has two or more
9279 * busy CPUs.
9280 */
9281 if (sg_busy_cpus >= 2) /* implies sg_is_smt */
9282 return true;
9283
9284 /*
9285 * @dst_cpu does not have SMT siblings. @sg may have SMT
9286 * siblings and only one is busy. In such case, @dst_cpu
9287 * can help if it has higher priority and is idle (i.e.,
9288 * it has no running tasks).
9289 */
9290 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
9291 }
9292
9293 /* @dst_cpu has SMT siblings. */
9294
9295 if (sg_is_smt) {
9296 int local_busy_cpus = sds->local->group_weight -
9297 sds->local_stat.idle_cpus;
9298 int busy_cpus_delta = sg_busy_cpus - local_busy_cpus;
9299
9300 if (busy_cpus_delta == 1)
9301 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
9302
9303 return false;
9304 }
9305
9306 /*
9307 * @sg does not have SMT siblings. Ensure that @sds::local does not end
9308 * up with more than one busy SMT sibling and only pull tasks if there
9309 * are not busy CPUs (i.e., no CPU has running tasks).
9310 */
9311 if (!sds->local_stat.sum_nr_running)
9312 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
9313
9314 return false;
9315 #else
9316 /* Always return false so that callers deal with non-SMT cases. */
9317 return false;
9318 #endif
9319 }
9320
9321 static inline bool
sched_asym(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * sgs,struct sched_group * group)9322 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs,
9323 struct sched_group *group)
9324 {
9325 /* Only do SMT checks if either local or candidate have SMT siblings */
9326 if ((sds->local->flags & SD_SHARE_CPUCAPACITY) ||
9327 (group->flags & SD_SHARE_CPUCAPACITY))
9328 return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group);
9329
9330 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
9331 }
9332
9333 static inline bool
sched_reduced_capacity(struct rq * rq,struct sched_domain * sd)9334 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9335 {
9336 /*
9337 * When there is more than 1 task, the group_overloaded case already
9338 * takes care of cpu with reduced capacity
9339 */
9340 if (rq->cfs.h_nr_running != 1)
9341 return false;
9342
9343 return check_cpu_capacity(rq, sd);
9344 }
9345
9346 /**
9347 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9348 * @env: The load balancing environment.
9349 * @sds: Load-balancing data with statistics of the local group.
9350 * @group: sched_group whose statistics are to be updated.
9351 * @sgs: variable to hold the statistics for this group.
9352 * @sg_status: Holds flag indicating the status of the sched_group
9353 */
update_sg_lb_stats(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * group,struct sg_lb_stats * sgs,int * sg_status)9354 static inline void update_sg_lb_stats(struct lb_env *env,
9355 struct sd_lb_stats *sds,
9356 struct sched_group *group,
9357 struct sg_lb_stats *sgs,
9358 int *sg_status)
9359 {
9360 int i, nr_running, local_group;
9361
9362 memset(sgs, 0, sizeof(*sgs));
9363
9364 local_group = group == sds->local;
9365
9366 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9367 struct rq *rq = cpu_rq(i);
9368 unsigned long load = cpu_load(rq);
9369
9370 sgs->group_load += load;
9371 sgs->group_util += cpu_util_cfs(i);
9372 sgs->group_runnable += cpu_runnable(rq);
9373 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9374
9375 nr_running = rq->nr_running;
9376 sgs->sum_nr_running += nr_running;
9377
9378 if (nr_running > 1)
9379 *sg_status |= SG_OVERLOAD;
9380
9381 if (cpu_overutilized(i))
9382 *sg_status |= SG_OVERUTILIZED;
9383
9384 #ifdef CONFIG_NUMA_BALANCING
9385 sgs->nr_numa_running += rq->nr_numa_running;
9386 sgs->nr_preferred_running += rq->nr_preferred_running;
9387 #endif
9388 /*
9389 * No need to call idle_cpu() if nr_running is not 0
9390 */
9391 if (!nr_running && idle_cpu(i)) {
9392 sgs->idle_cpus++;
9393 /* Idle cpu can't have misfit task */
9394 continue;
9395 }
9396
9397 if (local_group)
9398 continue;
9399
9400 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9401 /* Check for a misfit task on the cpu */
9402 if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9403 sgs->group_misfit_task_load = rq->misfit_task_load;
9404 *sg_status |= SG_OVERLOAD;
9405 }
9406 } else if ((env->idle != CPU_NOT_IDLE) &&
9407 sched_reduced_capacity(rq, env->sd)) {
9408 /* Check for a task running on a CPU with reduced capacity */
9409 if (sgs->group_misfit_task_load < load)
9410 sgs->group_misfit_task_load = load;
9411 }
9412 }
9413
9414 sgs->group_capacity = group->sgc->capacity;
9415
9416 sgs->group_weight = group->group_weight;
9417
9418 /* Check if dst CPU is idle and preferred to this group */
9419 if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
9420 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9421 sched_asym(env, sds, sgs, group)) {
9422 sgs->group_asym_packing = 1;
9423 }
9424
9425 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9426
9427 /* Computing avg_load makes sense only when group is overloaded */
9428 if (sgs->group_type == group_overloaded)
9429 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9430 sgs->group_capacity;
9431 }
9432
9433 /**
9434 * update_sd_pick_busiest - return 1 on busiest group
9435 * @env: The load balancing environment.
9436 * @sds: sched_domain statistics
9437 * @sg: sched_group candidate to be checked for being the busiest
9438 * @sgs: sched_group statistics
9439 *
9440 * Determine if @sg is a busier group than the previously selected
9441 * busiest group.
9442 *
9443 * Return: %true if @sg is a busier group than the previously selected
9444 * busiest group. %false otherwise.
9445 */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)9446 static bool update_sd_pick_busiest(struct lb_env *env,
9447 struct sd_lb_stats *sds,
9448 struct sched_group *sg,
9449 struct sg_lb_stats *sgs)
9450 {
9451 struct sg_lb_stats *busiest = &sds->busiest_stat;
9452
9453 /* Make sure that there is at least one task to pull */
9454 if (!sgs->sum_h_nr_running)
9455 return false;
9456
9457 /*
9458 * Don't try to pull misfit tasks we can't help.
9459 * We can use max_capacity here as reduction in capacity on some
9460 * CPUs in the group should either be possible to resolve
9461 * internally or be covered by avg_load imbalance (eventually).
9462 */
9463 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9464 (sgs->group_type == group_misfit_task) &&
9465 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
9466 sds->local_stat.group_type != group_has_spare))
9467 return false;
9468
9469 if (sgs->group_type > busiest->group_type)
9470 return true;
9471
9472 if (sgs->group_type < busiest->group_type)
9473 return false;
9474
9475 /*
9476 * The candidate and the current busiest group are the same type of
9477 * group. Let check which one is the busiest according to the type.
9478 */
9479
9480 switch (sgs->group_type) {
9481 case group_overloaded:
9482 /* Select the overloaded group with highest avg_load. */
9483 if (sgs->avg_load <= busiest->avg_load)
9484 return false;
9485 break;
9486
9487 case group_imbalanced:
9488 /*
9489 * Select the 1st imbalanced group as we don't have any way to
9490 * choose one more than another.
9491 */
9492 return false;
9493
9494 case group_asym_packing:
9495 /* Prefer to move from lowest priority CPU's work */
9496 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
9497 return false;
9498 break;
9499
9500 case group_misfit_task:
9501 /*
9502 * If we have more than one misfit sg go with the biggest
9503 * misfit.
9504 */
9505 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9506 return false;
9507 break;
9508
9509 case group_fully_busy:
9510 /*
9511 * Select the fully busy group with highest avg_load. In
9512 * theory, there is no need to pull task from such kind of
9513 * group because tasks have all compute capacity that they need
9514 * but we can still improve the overall throughput by reducing
9515 * contention when accessing shared HW resources.
9516 *
9517 * XXX for now avg_load is not computed and always 0 so we
9518 * select the 1st one.
9519 */
9520 if (sgs->avg_load <= busiest->avg_load)
9521 return false;
9522 break;
9523
9524 case group_has_spare:
9525 /*
9526 * Select not overloaded group with lowest number of idle cpus
9527 * and highest number of running tasks. We could also compare
9528 * the spare capacity which is more stable but it can end up
9529 * that the group has less spare capacity but finally more idle
9530 * CPUs which means less opportunity to pull tasks.
9531 */
9532 if (sgs->idle_cpus > busiest->idle_cpus)
9533 return false;
9534 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
9535 (sgs->sum_nr_running <= busiest->sum_nr_running))
9536 return false;
9537
9538 break;
9539 }
9540
9541 /*
9542 * Candidate sg has no more than one task per CPU and has higher
9543 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
9544 * throughput. Maximize throughput, power/energy consequences are not
9545 * considered.
9546 */
9547 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9548 (sgs->group_type <= group_fully_busy) &&
9549 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
9550 return false;
9551
9552 return true;
9553 }
9554
9555 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)9556 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9557 {
9558 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
9559 return regular;
9560 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
9561 return remote;
9562 return all;
9563 }
9564
fbq_classify_rq(struct rq * rq)9565 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9566 {
9567 if (rq->nr_running > rq->nr_numa_running)
9568 return regular;
9569 if (rq->nr_running > rq->nr_preferred_running)
9570 return remote;
9571 return all;
9572 }
9573 #else
fbq_classify_group(struct sg_lb_stats * sgs)9574 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9575 {
9576 return all;
9577 }
9578
fbq_classify_rq(struct rq * rq)9579 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9580 {
9581 return regular;
9582 }
9583 #endif /* CONFIG_NUMA_BALANCING */
9584
9585
9586 struct sg_lb_stats;
9587
9588 /*
9589 * task_running_on_cpu - return 1 if @p is running on @cpu.
9590 */
9591
task_running_on_cpu(int cpu,struct task_struct * p)9592 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
9593 {
9594 /* Task has no contribution or is new */
9595 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
9596 return 0;
9597
9598 if (task_on_rq_queued(p))
9599 return 1;
9600
9601 return 0;
9602 }
9603
9604 /**
9605 * idle_cpu_without - would a given CPU be idle without p ?
9606 * @cpu: the processor on which idleness is tested.
9607 * @p: task which should be ignored.
9608 *
9609 * Return: 1 if the CPU would be idle. 0 otherwise.
9610 */
idle_cpu_without(int cpu,struct task_struct * p)9611 static int idle_cpu_without(int cpu, struct task_struct *p)
9612 {
9613 struct rq *rq = cpu_rq(cpu);
9614
9615 if (rq->curr != rq->idle && rq->curr != p)
9616 return 0;
9617
9618 /*
9619 * rq->nr_running can't be used but an updated version without the
9620 * impact of p on cpu must be used instead. The updated nr_running
9621 * be computed and tested before calling idle_cpu_without().
9622 */
9623
9624 #ifdef CONFIG_SMP
9625 if (rq->ttwu_pending)
9626 return 0;
9627 #endif
9628
9629 return 1;
9630 }
9631
9632 /*
9633 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
9634 * @sd: The sched_domain level to look for idlest group.
9635 * @group: sched_group whose statistics are to be updated.
9636 * @sgs: variable to hold the statistics for this group.
9637 * @p: The task for which we look for the idlest group/CPU.
9638 */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)9639 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
9640 struct sched_group *group,
9641 struct sg_lb_stats *sgs,
9642 struct task_struct *p)
9643 {
9644 int i, nr_running;
9645
9646 memset(sgs, 0, sizeof(*sgs));
9647
9648 /* Assume that task can't fit any CPU of the group */
9649 if (sd->flags & SD_ASYM_CPUCAPACITY)
9650 sgs->group_misfit_task_load = 1;
9651
9652 for_each_cpu(i, sched_group_span(group)) {
9653 struct rq *rq = cpu_rq(i);
9654 unsigned int local;
9655
9656 sgs->group_load += cpu_load_without(rq, p);
9657 sgs->group_util += cpu_util_without(i, p);
9658 sgs->group_runnable += cpu_runnable_without(rq, p);
9659 local = task_running_on_cpu(i, p);
9660 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
9661
9662 nr_running = rq->nr_running - local;
9663 sgs->sum_nr_running += nr_running;
9664
9665 /*
9666 * No need to call idle_cpu_without() if nr_running is not 0
9667 */
9668 if (!nr_running && idle_cpu_without(i, p))
9669 sgs->idle_cpus++;
9670
9671 /* Check if task fits in the CPU */
9672 if (sd->flags & SD_ASYM_CPUCAPACITY &&
9673 sgs->group_misfit_task_load &&
9674 task_fits_cpu(p, i))
9675 sgs->group_misfit_task_load = 0;
9676
9677 }
9678
9679 sgs->group_capacity = group->sgc->capacity;
9680
9681 sgs->group_weight = group->group_weight;
9682
9683 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
9684
9685 /*
9686 * Computing avg_load makes sense only when group is fully busy or
9687 * overloaded
9688 */
9689 if (sgs->group_type == group_fully_busy ||
9690 sgs->group_type == group_overloaded)
9691 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9692 sgs->group_capacity;
9693 }
9694
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)9695 static bool update_pick_idlest(struct sched_group *idlest,
9696 struct sg_lb_stats *idlest_sgs,
9697 struct sched_group *group,
9698 struct sg_lb_stats *sgs)
9699 {
9700 if (sgs->group_type < idlest_sgs->group_type)
9701 return true;
9702
9703 if (sgs->group_type > idlest_sgs->group_type)
9704 return false;
9705
9706 /*
9707 * The candidate and the current idlest group are the same type of
9708 * group. Let check which one is the idlest according to the type.
9709 */
9710
9711 switch (sgs->group_type) {
9712 case group_overloaded:
9713 case group_fully_busy:
9714 /* Select the group with lowest avg_load. */
9715 if (idlest_sgs->avg_load <= sgs->avg_load)
9716 return false;
9717 break;
9718
9719 case group_imbalanced:
9720 case group_asym_packing:
9721 /* Those types are not used in the slow wakeup path */
9722 return false;
9723
9724 case group_misfit_task:
9725 /* Select group with the highest max capacity */
9726 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
9727 return false;
9728 break;
9729
9730 case group_has_spare:
9731 /* Select group with most idle CPUs */
9732 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
9733 return false;
9734
9735 /* Select group with lowest group_util */
9736 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
9737 idlest_sgs->group_util <= sgs->group_util)
9738 return false;
9739
9740 break;
9741 }
9742
9743 return true;
9744 }
9745
9746 /*
9747 * find_idlest_group() finds and returns the least busy CPU group within the
9748 * domain.
9749 *
9750 * Assumes p is allowed on at least one CPU in sd.
9751 */
9752 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)9753 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9754 {
9755 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9756 struct sg_lb_stats local_sgs, tmp_sgs;
9757 struct sg_lb_stats *sgs;
9758 unsigned long imbalance;
9759 struct sg_lb_stats idlest_sgs = {
9760 .avg_load = UINT_MAX,
9761 .group_type = group_overloaded,
9762 };
9763
9764 do {
9765 int local_group;
9766
9767 /* Skip over this group if it has no CPUs allowed */
9768 if (!cpumask_intersects(sched_group_span(group),
9769 p->cpus_ptr))
9770 continue;
9771
9772 /* Skip over this group if no cookie matched */
9773 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9774 continue;
9775
9776 local_group = cpumask_test_cpu(this_cpu,
9777 sched_group_span(group));
9778
9779 if (local_group) {
9780 sgs = &local_sgs;
9781 local = group;
9782 } else {
9783 sgs = &tmp_sgs;
9784 }
9785
9786 update_sg_wakeup_stats(sd, group, sgs, p);
9787
9788 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9789 idlest = group;
9790 idlest_sgs = *sgs;
9791 }
9792
9793 } while (group = group->next, group != sd->groups);
9794
9795
9796 /* There is no idlest group to push tasks to */
9797 if (!idlest)
9798 return NULL;
9799
9800 /* The local group has been skipped because of CPU affinity */
9801 if (!local)
9802 return idlest;
9803
9804 /*
9805 * If the local group is idler than the selected idlest group
9806 * don't try and push the task.
9807 */
9808 if (local_sgs.group_type < idlest_sgs.group_type)
9809 return NULL;
9810
9811 /*
9812 * If the local group is busier than the selected idlest group
9813 * try and push the task.
9814 */
9815 if (local_sgs.group_type > idlest_sgs.group_type)
9816 return idlest;
9817
9818 switch (local_sgs.group_type) {
9819 case group_overloaded:
9820 case group_fully_busy:
9821
9822 /* Calculate allowed imbalance based on load */
9823 imbalance = scale_load_down(NICE_0_LOAD) *
9824 (sd->imbalance_pct-100) / 100;
9825
9826 /*
9827 * When comparing groups across NUMA domains, it's possible for
9828 * the local domain to be very lightly loaded relative to the
9829 * remote domains but "imbalance" skews the comparison making
9830 * remote CPUs look much more favourable. When considering
9831 * cross-domain, add imbalance to the load on the remote node
9832 * and consider staying local.
9833 */
9834
9835 if ((sd->flags & SD_NUMA) &&
9836 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9837 return NULL;
9838
9839 /*
9840 * If the local group is less loaded than the selected
9841 * idlest group don't try and push any tasks.
9842 */
9843 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9844 return NULL;
9845
9846 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9847 return NULL;
9848 break;
9849
9850 case group_imbalanced:
9851 case group_asym_packing:
9852 /* Those type are not used in the slow wakeup path */
9853 return NULL;
9854
9855 case group_misfit_task:
9856 /* Select group with the highest max capacity */
9857 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9858 return NULL;
9859 break;
9860
9861 case group_has_spare:
9862 #ifdef CONFIG_NUMA
9863 if (sd->flags & SD_NUMA) {
9864 int imb_numa_nr = sd->imb_numa_nr;
9865 #ifdef CONFIG_NUMA_BALANCING
9866 int idlest_cpu;
9867 /*
9868 * If there is spare capacity at NUMA, try to select
9869 * the preferred node
9870 */
9871 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9872 return NULL;
9873
9874 idlest_cpu = cpumask_first(sched_group_span(idlest));
9875 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9876 return idlest;
9877 #endif /* CONFIG_NUMA_BALANCING */
9878 /*
9879 * Otherwise, keep the task close to the wakeup source
9880 * and improve locality if the number of running tasks
9881 * would remain below threshold where an imbalance is
9882 * allowed while accounting for the possibility the
9883 * task is pinned to a subset of CPUs. If there is a
9884 * real need of migration, periodic load balance will
9885 * take care of it.
9886 */
9887 if (p->nr_cpus_allowed != NR_CPUS) {
9888 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
9889
9890 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
9891 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
9892 }
9893
9894 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
9895 if (!adjust_numa_imbalance(imbalance,
9896 local_sgs.sum_nr_running + 1,
9897 imb_numa_nr)) {
9898 return NULL;
9899 }
9900 }
9901 #endif /* CONFIG_NUMA */
9902
9903 /*
9904 * Select group with highest number of idle CPUs. We could also
9905 * compare the utilization which is more stable but it can end
9906 * up that the group has less spare capacity but finally more
9907 * idle CPUs which means more opportunity to run task.
9908 */
9909 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9910 return NULL;
9911 break;
9912 }
9913
9914 return idlest;
9915 }
9916
update_idle_cpu_scan(struct lb_env * env,unsigned long sum_util)9917 static void update_idle_cpu_scan(struct lb_env *env,
9918 unsigned long sum_util)
9919 {
9920 struct sched_domain_shared *sd_share;
9921 int llc_weight, pct;
9922 u64 x, y, tmp;
9923 /*
9924 * Update the number of CPUs to scan in LLC domain, which could
9925 * be used as a hint in select_idle_cpu(). The update of sd_share
9926 * could be expensive because it is within a shared cache line.
9927 * So the write of this hint only occurs during periodic load
9928 * balancing, rather than CPU_NEWLY_IDLE, because the latter
9929 * can fire way more frequently than the former.
9930 */
9931 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
9932 return;
9933
9934 llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
9935 if (env->sd->span_weight != llc_weight)
9936 return;
9937
9938 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
9939 if (!sd_share)
9940 return;
9941
9942 /*
9943 * The number of CPUs to search drops as sum_util increases, when
9944 * sum_util hits 85% or above, the scan stops.
9945 * The reason to choose 85% as the threshold is because this is the
9946 * imbalance_pct(117) when a LLC sched group is overloaded.
9947 *
9948 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
9949 * and y'= y / SCHED_CAPACITY_SCALE
9950 *
9951 * x is the ratio of sum_util compared to the CPU capacity:
9952 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
9953 * y' is the ratio of CPUs to be scanned in the LLC domain,
9954 * and the number of CPUs to scan is calculated by:
9955 *
9956 * nr_scan = llc_weight * y' [2]
9957 *
9958 * When x hits the threshold of overloaded, AKA, when
9959 * x = 100 / pct, y drops to 0. According to [1],
9960 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
9961 *
9962 * Scale x by SCHED_CAPACITY_SCALE:
9963 * x' = sum_util / llc_weight; [3]
9964 *
9965 * and finally [1] becomes:
9966 * y = SCHED_CAPACITY_SCALE -
9967 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
9968 *
9969 */
9970 /* equation [3] */
9971 x = sum_util;
9972 do_div(x, llc_weight);
9973
9974 /* equation [4] */
9975 pct = env->sd->imbalance_pct;
9976 tmp = x * x * pct * pct;
9977 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
9978 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
9979 y = SCHED_CAPACITY_SCALE - tmp;
9980
9981 /* equation [2] */
9982 y *= llc_weight;
9983 do_div(y, SCHED_CAPACITY_SCALE);
9984 if ((int)y != sd_share->nr_idle_scan)
9985 WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
9986 }
9987
9988 /**
9989 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9990 * @env: The load balancing environment.
9991 * @sds: variable to hold the statistics for this sched_domain.
9992 */
9993
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)9994 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9995 {
9996 struct sched_domain *child = env->sd->child;
9997 struct sched_group *sg = env->sd->groups;
9998 struct sg_lb_stats *local = &sds->local_stat;
9999 struct sg_lb_stats tmp_sgs;
10000 unsigned long sum_util = 0;
10001 int sg_status = 0;
10002
10003 do {
10004 struct sg_lb_stats *sgs = &tmp_sgs;
10005 int local_group;
10006
10007 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10008 if (local_group) {
10009 sds->local = sg;
10010 sgs = local;
10011
10012 if (env->idle != CPU_NEWLY_IDLE ||
10013 time_after_eq(jiffies, sg->sgc->next_update))
10014 update_group_capacity(env->sd, env->dst_cpu);
10015 }
10016
10017 update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
10018
10019 if (local_group)
10020 goto next_group;
10021
10022
10023 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
10024 sds->busiest = sg;
10025 sds->busiest_stat = *sgs;
10026 }
10027
10028 next_group:
10029 /* Now, start updating sd_lb_stats */
10030 sds->total_load += sgs->group_load;
10031 sds->total_capacity += sgs->group_capacity;
10032
10033 sum_util += sgs->group_util;
10034 sg = sg->next;
10035 } while (sg != env->sd->groups);
10036
10037 /* Tag domain that child domain prefers tasks go to siblings first */
10038 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
10039
10040
10041 if (env->sd->flags & SD_NUMA)
10042 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10043
10044 if (!env->sd->parent) {
10045 struct root_domain *rd = env->dst_rq->rd;
10046
10047 /* update overload indicator if we are at root domain */
10048 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
10049
10050 /* Update over-utilization (tipping point, U >= 0) indicator */
10051 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
10052 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
10053 } else if (sg_status & SG_OVERUTILIZED) {
10054 struct root_domain *rd = env->dst_rq->rd;
10055
10056 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
10057 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
10058 }
10059
10060 update_idle_cpu_scan(env, sum_util);
10061 }
10062
10063 /**
10064 * calculate_imbalance - Calculate the amount of imbalance present within the
10065 * groups of a given sched_domain during load balance.
10066 * @env: load balance environment
10067 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10068 */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)10069 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10070 {
10071 struct sg_lb_stats *local, *busiest;
10072
10073 local = &sds->local_stat;
10074 busiest = &sds->busiest_stat;
10075
10076 if (busiest->group_type == group_misfit_task) {
10077 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10078 /* Set imbalance to allow misfit tasks to be balanced. */
10079 env->migration_type = migrate_misfit;
10080 env->imbalance = 1;
10081 } else {
10082 /*
10083 * Set load imbalance to allow moving task from cpu
10084 * with reduced capacity.
10085 */
10086 env->migration_type = migrate_load;
10087 env->imbalance = busiest->group_misfit_task_load;
10088 }
10089 return;
10090 }
10091
10092 if (busiest->group_type == group_asym_packing) {
10093 /*
10094 * In case of asym capacity, we will try to migrate all load to
10095 * the preferred CPU.
10096 */
10097 env->migration_type = migrate_task;
10098 env->imbalance = busiest->sum_h_nr_running;
10099 return;
10100 }
10101
10102 if (busiest->group_type == group_imbalanced) {
10103 /*
10104 * In the group_imb case we cannot rely on group-wide averages
10105 * to ensure CPU-load equilibrium, try to move any task to fix
10106 * the imbalance. The next load balance will take care of
10107 * balancing back the system.
10108 */
10109 env->migration_type = migrate_task;
10110 env->imbalance = 1;
10111 return;
10112 }
10113
10114 /*
10115 * Try to use spare capacity of local group without overloading it or
10116 * emptying busiest.
10117 */
10118 if (local->group_type == group_has_spare) {
10119 if ((busiest->group_type > group_fully_busy) &&
10120 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
10121 /*
10122 * If busiest is overloaded, try to fill spare
10123 * capacity. This might end up creating spare capacity
10124 * in busiest or busiest still being overloaded but
10125 * there is no simple way to directly compute the
10126 * amount of load to migrate in order to balance the
10127 * system.
10128 */
10129 env->migration_type = migrate_util;
10130 env->imbalance = max(local->group_capacity, local->group_util) -
10131 local->group_util;
10132
10133 /*
10134 * In some cases, the group's utilization is max or even
10135 * higher than capacity because of migrations but the
10136 * local CPU is (newly) idle. There is at least one
10137 * waiting task in this overloaded busiest group. Let's
10138 * try to pull it.
10139 */
10140 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
10141 env->migration_type = migrate_task;
10142 env->imbalance = 1;
10143 }
10144
10145 return;
10146 }
10147
10148 if (busiest->group_weight == 1 || sds->prefer_sibling) {
10149 unsigned int nr_diff = busiest->sum_nr_running;
10150 /*
10151 * When prefer sibling, evenly spread running tasks on
10152 * groups.
10153 */
10154 env->migration_type = migrate_task;
10155 lsub_positive(&nr_diff, local->sum_nr_running);
10156 env->imbalance = nr_diff;
10157 } else {
10158
10159 /*
10160 * If there is no overload, we just want to even the number of
10161 * idle cpus.
10162 */
10163 env->migration_type = migrate_task;
10164 env->imbalance = max_t(long, 0,
10165 (local->idle_cpus - busiest->idle_cpus));
10166 }
10167
10168 #ifdef CONFIG_NUMA
10169 /* Consider allowing a small imbalance between NUMA groups */
10170 if (env->sd->flags & SD_NUMA) {
10171 env->imbalance = adjust_numa_imbalance(env->imbalance,
10172 local->sum_nr_running + 1,
10173 env->sd->imb_numa_nr);
10174 }
10175 #endif
10176
10177 /* Number of tasks to move to restore balance */
10178 env->imbalance >>= 1;
10179
10180 return;
10181 }
10182
10183 /*
10184 * Local is fully busy but has to take more load to relieve the
10185 * busiest group
10186 */
10187 if (local->group_type < group_overloaded) {
10188 /*
10189 * Local will become overloaded so the avg_load metrics are
10190 * finally needed.
10191 */
10192
10193 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10194 local->group_capacity;
10195
10196 /*
10197 * If the local group is more loaded than the selected
10198 * busiest group don't try to pull any tasks.
10199 */
10200 if (local->avg_load >= busiest->avg_load) {
10201 env->imbalance = 0;
10202 return;
10203 }
10204
10205 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10206 sds->total_capacity;
10207
10208 /*
10209 * If the local group is more loaded than the average system
10210 * load, don't try to pull any tasks.
10211 */
10212 if (local->avg_load >= sds->avg_load) {
10213 env->imbalance = 0;
10214 return;
10215 }
10216
10217 }
10218
10219 /*
10220 * Both group are or will become overloaded and we're trying to get all
10221 * the CPUs to the average_load, so we don't want to push ourselves
10222 * above the average load, nor do we wish to reduce the max loaded CPU
10223 * below the average load. At the same time, we also don't want to
10224 * reduce the group load below the group capacity. Thus we look for
10225 * the minimum possible imbalance.
10226 */
10227 env->migration_type = migrate_load;
10228 env->imbalance = min(
10229 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10230 (sds->avg_load - local->avg_load) * local->group_capacity
10231 ) / SCHED_CAPACITY_SCALE;
10232 }
10233
10234 /******* find_busiest_group() helpers end here *********************/
10235
10236 /*
10237 * Decision matrix according to the local and busiest group type:
10238 *
10239 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10240 * has_spare nr_idle balanced N/A N/A balanced balanced
10241 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
10242 * misfit_task force N/A N/A N/A N/A N/A
10243 * asym_packing force force N/A N/A force force
10244 * imbalanced force force N/A N/A force force
10245 * overloaded force force N/A N/A force avg_load
10246 *
10247 * N/A : Not Applicable because already filtered while updating
10248 * statistics.
10249 * balanced : The system is balanced for these 2 groups.
10250 * force : Calculate the imbalance as load migration is probably needed.
10251 * avg_load : Only if imbalance is significant enough.
10252 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
10253 * different in groups.
10254 */
10255
10256 /**
10257 * find_busiest_group - Returns the busiest group within the sched_domain
10258 * if there is an imbalance.
10259 * @env: The load balancing environment.
10260 *
10261 * Also calculates the amount of runnable load which should be moved
10262 * to restore balance.
10263 *
10264 * Return: - The busiest group if imbalance exists.
10265 */
find_busiest_group(struct lb_env * env)10266 static struct sched_group *find_busiest_group(struct lb_env *env)
10267 {
10268 struct sg_lb_stats *local, *busiest;
10269 struct sd_lb_stats sds;
10270
10271 init_sd_lb_stats(&sds);
10272
10273 /*
10274 * Compute the various statistics relevant for load balancing at
10275 * this level.
10276 */
10277 update_sd_lb_stats(env, &sds);
10278
10279 /* There is no busy sibling group to pull tasks from */
10280 if (!sds.busiest)
10281 goto out_balanced;
10282
10283 busiest = &sds.busiest_stat;
10284
10285 /* Misfit tasks should be dealt with regardless of the avg load */
10286 if (busiest->group_type == group_misfit_task)
10287 goto force_balance;
10288
10289 if (sched_energy_enabled()) {
10290 struct root_domain *rd = env->dst_rq->rd;
10291 int out_balance = 1;
10292
10293 trace_android_rvh_find_busiest_group(sds.busiest, env->dst_rq,
10294 &out_balance);
10295 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)
10296 && out_balance)
10297 goto out_balanced;
10298 }
10299
10300 /* ASYM feature bypasses nice load balance check */
10301 if (busiest->group_type == group_asym_packing)
10302 goto force_balance;
10303
10304 /*
10305 * If the busiest group is imbalanced the below checks don't
10306 * work because they assume all things are equal, which typically
10307 * isn't true due to cpus_ptr constraints and the like.
10308 */
10309 if (busiest->group_type == group_imbalanced)
10310 goto force_balance;
10311
10312 local = &sds.local_stat;
10313 /*
10314 * If the local group is busier than the selected busiest group
10315 * don't try and pull any tasks.
10316 */
10317 if (local->group_type > busiest->group_type)
10318 goto out_balanced;
10319
10320 /*
10321 * When groups are overloaded, use the avg_load to ensure fairness
10322 * between tasks.
10323 */
10324 if (local->group_type == group_overloaded) {
10325 /*
10326 * If the local group is more loaded than the selected
10327 * busiest group don't try to pull any tasks.
10328 */
10329 if (local->avg_load >= busiest->avg_load)
10330 goto out_balanced;
10331
10332 /* XXX broken for overlapping NUMA groups */
10333 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10334 sds.total_capacity;
10335
10336 /*
10337 * Don't pull any tasks if this group is already above the
10338 * domain average load.
10339 */
10340 if (local->avg_load >= sds.avg_load)
10341 goto out_balanced;
10342
10343 /*
10344 * If the busiest group is more loaded, use imbalance_pct to be
10345 * conservative.
10346 */
10347 if (100 * busiest->avg_load <=
10348 env->sd->imbalance_pct * local->avg_load)
10349 goto out_balanced;
10350 }
10351
10352 /* Try to move all excess tasks to child's sibling domain */
10353 if (sds.prefer_sibling && local->group_type == group_has_spare &&
10354 busiest->sum_nr_running > local->sum_nr_running + 1)
10355 goto force_balance;
10356
10357 if (busiest->group_type != group_overloaded) {
10358 if (env->idle == CPU_NOT_IDLE)
10359 /*
10360 * If the busiest group is not overloaded (and as a
10361 * result the local one too) but this CPU is already
10362 * busy, let another idle CPU try to pull task.
10363 */
10364 goto out_balanced;
10365
10366 if (busiest->group_weight > 1 &&
10367 local->idle_cpus <= (busiest->idle_cpus + 1))
10368 /*
10369 * If the busiest group is not overloaded
10370 * and there is no imbalance between this and busiest
10371 * group wrt idle CPUs, it is balanced. The imbalance
10372 * becomes significant if the diff is greater than 1
10373 * otherwise we might end up to just move the imbalance
10374 * on another group. Of course this applies only if
10375 * there is more than 1 CPU per group.
10376 */
10377 goto out_balanced;
10378
10379 if (busiest->sum_h_nr_running == 1)
10380 /*
10381 * busiest doesn't have any tasks waiting to run
10382 */
10383 goto out_balanced;
10384 }
10385
10386 force_balance:
10387 /* Looks like there is an imbalance. Compute it */
10388 calculate_imbalance(env, &sds);
10389 return env->imbalance ? sds.busiest : NULL;
10390
10391 out_balanced:
10392 env->imbalance = 0;
10393 return NULL;
10394 }
10395
10396 /*
10397 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10398 */
find_busiest_queue(struct lb_env * env,struct sched_group * group)10399 static struct rq *find_busiest_queue(struct lb_env *env,
10400 struct sched_group *group)
10401 {
10402 struct rq *busiest = NULL, *rq;
10403 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10404 unsigned int busiest_nr = 0;
10405 int i, done = 0;
10406
10407 trace_android_rvh_find_busiest_queue(env->dst_cpu, group, env->cpus,
10408 &busiest, &done);
10409 if (done)
10410 return busiest;
10411
10412 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10413 unsigned long capacity, load, util;
10414 unsigned int nr_running;
10415 enum fbq_type rt;
10416
10417 rq = cpu_rq(i);
10418 rt = fbq_classify_rq(rq);
10419
10420 /*
10421 * We classify groups/runqueues into three groups:
10422 * - regular: there are !numa tasks
10423 * - remote: there are numa tasks that run on the 'wrong' node
10424 * - all: there is no distinction
10425 *
10426 * In order to avoid migrating ideally placed numa tasks,
10427 * ignore those when there's better options.
10428 *
10429 * If we ignore the actual busiest queue to migrate another
10430 * task, the next balance pass can still reduce the busiest
10431 * queue by moving tasks around inside the node.
10432 *
10433 * If we cannot move enough load due to this classification
10434 * the next pass will adjust the group classification and
10435 * allow migration of more tasks.
10436 *
10437 * Both cases only affect the total convergence complexity.
10438 */
10439 if (rt > env->fbq_type)
10440 continue;
10441
10442 nr_running = rq->cfs.h_nr_running;
10443 if (!nr_running)
10444 continue;
10445
10446 capacity = capacity_of(i);
10447
10448 /*
10449 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
10450 * eventually lead to active_balancing high->low capacity.
10451 * Higher per-CPU capacity is considered better than balancing
10452 * average load.
10453 */
10454 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
10455 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
10456 nr_running == 1)
10457 continue;
10458
10459 /* Make sure we only pull tasks from a CPU of lower priority */
10460 if ((env->sd->flags & SD_ASYM_PACKING) &&
10461 sched_asym_prefer(i, env->dst_cpu) &&
10462 nr_running == 1)
10463 continue;
10464
10465 switch (env->migration_type) {
10466 case migrate_load:
10467 /*
10468 * When comparing with load imbalance, use cpu_load()
10469 * which is not scaled with the CPU capacity.
10470 */
10471 load = cpu_load(rq);
10472
10473 if (nr_running == 1 && load > env->imbalance &&
10474 !check_cpu_capacity(rq, env->sd))
10475 break;
10476
10477 /*
10478 * For the load comparisons with the other CPUs,
10479 * consider the cpu_load() scaled with the CPU
10480 * capacity, so that the load can be moved away
10481 * from the CPU that is potentially running at a
10482 * lower capacity.
10483 *
10484 * Thus we're looking for max(load_i / capacity_i),
10485 * crosswise multiplication to rid ourselves of the
10486 * division works out to:
10487 * load_i * capacity_j > load_j * capacity_i;
10488 * where j is our previous maximum.
10489 */
10490 if (load * busiest_capacity > busiest_load * capacity) {
10491 busiest_load = load;
10492 busiest_capacity = capacity;
10493 busiest = rq;
10494 }
10495 break;
10496
10497 case migrate_util:
10498 util = cpu_util_cfs(i);
10499
10500 /*
10501 * Don't try to pull utilization from a CPU with one
10502 * running task. Whatever its utilization, we will fail
10503 * detach the task.
10504 */
10505 if (nr_running <= 1)
10506 continue;
10507
10508 if (busiest_util < util) {
10509 busiest_util = util;
10510 busiest = rq;
10511 }
10512 break;
10513
10514 case migrate_task:
10515 if (busiest_nr < nr_running) {
10516 busiest_nr = nr_running;
10517 busiest = rq;
10518 }
10519 break;
10520
10521 case migrate_misfit:
10522 /*
10523 * For ASYM_CPUCAPACITY domains with misfit tasks we
10524 * simply seek the "biggest" misfit task.
10525 */
10526 if (rq->misfit_task_load > busiest_load) {
10527 busiest_load = rq->misfit_task_load;
10528 busiest = rq;
10529 }
10530
10531 break;
10532
10533 }
10534 }
10535
10536 return busiest;
10537 }
10538
10539 /*
10540 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
10541 * so long as it is large enough.
10542 */
10543 #define MAX_PINNED_INTERVAL 512
10544
10545 static inline bool
asym_active_balance(struct lb_env * env)10546 asym_active_balance(struct lb_env *env)
10547 {
10548 /*
10549 * ASYM_PACKING needs to force migrate tasks from busy but
10550 * lower priority CPUs in order to pack all tasks in the
10551 * highest priority CPUs.
10552 */
10553 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
10554 sched_asym_prefer(env->dst_cpu, env->src_cpu);
10555 }
10556
10557 static inline bool
imbalanced_active_balance(struct lb_env * env)10558 imbalanced_active_balance(struct lb_env *env)
10559 {
10560 struct sched_domain *sd = env->sd;
10561
10562 /*
10563 * The imbalanced case includes the case of pinned tasks preventing a fair
10564 * distribution of the load on the system but also the even distribution of the
10565 * threads on a system with spare capacity
10566 */
10567 if ((env->migration_type == migrate_task) &&
10568 (sd->nr_balance_failed > sd->cache_nice_tries+2))
10569 return 1;
10570
10571 return 0;
10572 }
10573
need_active_balance(struct lb_env * env)10574 static int need_active_balance(struct lb_env *env)
10575 {
10576 struct sched_domain *sd = env->sd;
10577
10578 if (asym_active_balance(env))
10579 return 1;
10580
10581 if (imbalanced_active_balance(env))
10582 return 1;
10583
10584 /*
10585 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
10586 * It's worth migrating the task if the src_cpu's capacity is reduced
10587 * because of other sched_class or IRQs if more capacity stays
10588 * available on dst_cpu.
10589 */
10590 if ((env->idle != CPU_NOT_IDLE) &&
10591 (env->src_rq->cfs.h_nr_running == 1)) {
10592 if ((check_cpu_capacity(env->src_rq, sd)) &&
10593 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
10594 return 1;
10595 }
10596
10597 if (env->migration_type == migrate_misfit)
10598 return 1;
10599
10600 return 0;
10601 }
10602
10603 static int active_load_balance_cpu_stop(void *data);
10604
should_we_balance(struct lb_env * env)10605 static int should_we_balance(struct lb_env *env)
10606 {
10607 struct sched_group *sg = env->sd->groups;
10608 int cpu;
10609
10610 /*
10611 * Ensure the balancing environment is consistent; can happen
10612 * when the softirq triggers 'during' hotplug.
10613 */
10614 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
10615 return 0;
10616
10617 /*
10618 * In the newly idle case, we will allow all the CPUs
10619 * to do the newly idle load balance.
10620 *
10621 * However, we bail out if we already have tasks or a wakeup pending,
10622 * to optimize wakeup latency.
10623 */
10624 if (env->idle == CPU_NEWLY_IDLE) {
10625 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
10626 return 0;
10627 return 1;
10628 }
10629
10630 /* Try to find first idle CPU */
10631 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
10632 if (!idle_cpu(cpu))
10633 continue;
10634
10635 /* Are we the first idle CPU? */
10636 return cpu == env->dst_cpu;
10637 }
10638
10639 /* Are we the first CPU of this group ? */
10640 return group_balance_cpu(sg) == env->dst_cpu;
10641 }
10642
10643 /*
10644 * Check this_cpu to ensure it is balanced within domain. Attempt to move
10645 * tasks if there is an imbalance.
10646 */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)10647 static int load_balance(int this_cpu, struct rq *this_rq,
10648 struct sched_domain *sd, enum cpu_idle_type idle,
10649 int *continue_balancing)
10650 {
10651 int ld_moved, cur_ld_moved, active_balance = 0;
10652 struct sched_domain *sd_parent = sd->parent;
10653 struct sched_group *group;
10654 struct rq *busiest;
10655 struct rq_flags rf;
10656 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
10657 struct lb_env env = {
10658 .sd = sd,
10659 .dst_cpu = this_cpu,
10660 .dst_rq = this_rq,
10661 .dst_grpmask = group_balance_mask(sd->groups),
10662 .idle = idle,
10663 .loop_break = SCHED_NR_MIGRATE_BREAK,
10664 .cpus = cpus,
10665 .fbq_type = all,
10666 .tasks = LIST_HEAD_INIT(env.tasks),
10667 };
10668
10669 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
10670
10671 schedstat_inc(sd->lb_count[idle]);
10672
10673 redo:
10674 if (!should_we_balance(&env)) {
10675 *continue_balancing = 0;
10676 goto out_balanced;
10677 }
10678
10679 group = find_busiest_group(&env);
10680 if (!group) {
10681 schedstat_inc(sd->lb_nobusyg[idle]);
10682 goto out_balanced;
10683 }
10684
10685 busiest = find_busiest_queue(&env, group);
10686 if (!busiest) {
10687 schedstat_inc(sd->lb_nobusyq[idle]);
10688 goto out_balanced;
10689 }
10690
10691 WARN_ON_ONCE(busiest == env.dst_rq);
10692
10693 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
10694
10695 env.src_cpu = busiest->cpu;
10696 env.src_rq = busiest;
10697
10698 ld_moved = 0;
10699 /* Clear this flag as soon as we find a pullable task */
10700 env.flags |= LBF_ALL_PINNED;
10701 if (busiest->nr_running > 1) {
10702 /*
10703 * Attempt to move tasks. If find_busiest_group has found
10704 * an imbalance but busiest->nr_running <= 1, the group is
10705 * still unbalanced. ld_moved simply stays zero, so it is
10706 * correctly treated as an imbalance.
10707 */
10708 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
10709
10710 more_balance:
10711 rq_lock_irqsave(busiest, &rf);
10712 env.src_rq_rf = &rf;
10713 update_rq_clock(busiest);
10714
10715 /*
10716 * cur_ld_moved - load moved in current iteration
10717 * ld_moved - cumulative load moved across iterations
10718 */
10719 cur_ld_moved = detach_tasks(&env);
10720
10721 /*
10722 * We've detached some tasks from busiest_rq. Every
10723 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
10724 * unlock busiest->lock, and we are able to be sure
10725 * that nobody can manipulate the tasks in parallel.
10726 * See task_rq_lock() family for the details.
10727 */
10728
10729 rq_unlock(busiest, &rf);
10730
10731 if (cur_ld_moved) {
10732 attach_tasks(&env);
10733 ld_moved += cur_ld_moved;
10734 }
10735
10736 local_irq_restore(rf.flags);
10737
10738 if (env.flags & LBF_NEED_BREAK) {
10739 env.flags &= ~LBF_NEED_BREAK;
10740 /* Stop if we tried all running tasks */
10741 if (env.loop < busiest->nr_running)
10742 goto more_balance;
10743 }
10744
10745 /*
10746 * Revisit (affine) tasks on src_cpu that couldn't be moved to
10747 * us and move them to an alternate dst_cpu in our sched_group
10748 * where they can run. The upper limit on how many times we
10749 * iterate on same src_cpu is dependent on number of CPUs in our
10750 * sched_group.
10751 *
10752 * This changes load balance semantics a bit on who can move
10753 * load to a given_cpu. In addition to the given_cpu itself
10754 * (or a ilb_cpu acting on its behalf where given_cpu is
10755 * nohz-idle), we now have balance_cpu in a position to move
10756 * load to given_cpu. In rare situations, this may cause
10757 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
10758 * _independently_ and at _same_ time to move some load to
10759 * given_cpu) causing excess load to be moved to given_cpu.
10760 * This however should not happen so much in practice and
10761 * moreover subsequent load balance cycles should correct the
10762 * excess load moved.
10763 */
10764 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
10765
10766 /* Prevent to re-select dst_cpu via env's CPUs */
10767 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
10768
10769 env.dst_rq = cpu_rq(env.new_dst_cpu);
10770 env.dst_cpu = env.new_dst_cpu;
10771 env.flags &= ~LBF_DST_PINNED;
10772 env.loop = 0;
10773 env.loop_break = SCHED_NR_MIGRATE_BREAK;
10774
10775 /*
10776 * Go back to "more_balance" rather than "redo" since we
10777 * need to continue with same src_cpu.
10778 */
10779 goto more_balance;
10780 }
10781
10782 /*
10783 * We failed to reach balance because of affinity.
10784 */
10785 if (sd_parent) {
10786 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10787
10788 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
10789 *group_imbalance = 1;
10790 }
10791
10792 /* All tasks on this runqueue were pinned by CPU affinity */
10793 if (unlikely(env.flags & LBF_ALL_PINNED)) {
10794 __cpumask_clear_cpu(cpu_of(busiest), cpus);
10795 /*
10796 * Attempting to continue load balancing at the current
10797 * sched_domain level only makes sense if there are
10798 * active CPUs remaining as possible busiest CPUs to
10799 * pull load from which are not contained within the
10800 * destination group that is receiving any migrated
10801 * load.
10802 */
10803 if (!cpumask_subset(cpus, env.dst_grpmask)) {
10804 env.loop = 0;
10805 env.loop_break = SCHED_NR_MIGRATE_BREAK;
10806 goto redo;
10807 }
10808 goto out_all_pinned;
10809 }
10810 }
10811
10812 if (!ld_moved) {
10813 schedstat_inc(sd->lb_failed[idle]);
10814 /*
10815 * Increment the failure counter only on periodic balance.
10816 * We do not want newidle balance, which can be very
10817 * frequent, pollute the failure counter causing
10818 * excessive cache_hot migrations and active balances.
10819 */
10820 if (idle != CPU_NEWLY_IDLE)
10821 sd->nr_balance_failed++;
10822
10823 if (need_active_balance(&env)) {
10824 unsigned long flags;
10825
10826 raw_spin_rq_lock_irqsave(busiest, flags);
10827
10828 /*
10829 * Don't kick the active_load_balance_cpu_stop,
10830 * if the curr task on busiest CPU can't be
10831 * moved to this_cpu:
10832 */
10833 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
10834 raw_spin_rq_unlock_irqrestore(busiest, flags);
10835 goto out_one_pinned;
10836 }
10837
10838 /* Record that we found at least one task that could run on this_cpu */
10839 env.flags &= ~LBF_ALL_PINNED;
10840
10841 /*
10842 * ->active_balance synchronizes accesses to
10843 * ->active_balance_work. Once set, it's cleared
10844 * only after active load balance is finished.
10845 */
10846 if (!busiest->active_balance) {
10847 busiest->active_balance = 1;
10848 busiest->push_cpu = this_cpu;
10849 active_balance = 1;
10850 }
10851
10852 preempt_disable();
10853 raw_spin_rq_unlock_irqrestore(busiest, flags);
10854 if (active_balance) {
10855 stop_one_cpu_nowait(cpu_of(busiest),
10856 active_load_balance_cpu_stop, busiest,
10857 &busiest->active_balance_work);
10858 }
10859 preempt_enable();
10860 }
10861 } else {
10862 sd->nr_balance_failed = 0;
10863 }
10864
10865 if (likely(!active_balance) || need_active_balance(&env)) {
10866 /* We were unbalanced, so reset the balancing interval */
10867 sd->balance_interval = sd->min_interval;
10868 }
10869
10870 goto out;
10871
10872 out_balanced:
10873 /*
10874 * We reach balance although we may have faced some affinity
10875 * constraints. Clear the imbalance flag only if other tasks got
10876 * a chance to move and fix the imbalance.
10877 */
10878 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10879 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10880
10881 if (*group_imbalance)
10882 *group_imbalance = 0;
10883 }
10884
10885 out_all_pinned:
10886 /*
10887 * We reach balance because all tasks are pinned at this level so
10888 * we can't migrate them. Let the imbalance flag set so parent level
10889 * can try to migrate them.
10890 */
10891 schedstat_inc(sd->lb_balanced[idle]);
10892
10893 sd->nr_balance_failed = 0;
10894
10895 out_one_pinned:
10896 ld_moved = 0;
10897
10898 /*
10899 * newidle_balance() disregards balance intervals, so we could
10900 * repeatedly reach this code, which would lead to balance_interval
10901 * skyrocketing in a short amount of time. Skip the balance_interval
10902 * increase logic to avoid that.
10903 */
10904 if (env.idle == CPU_NEWLY_IDLE)
10905 goto out;
10906
10907 /* tune up the balancing interval */
10908 if ((env.flags & LBF_ALL_PINNED &&
10909 sd->balance_interval < MAX_PINNED_INTERVAL) ||
10910 sd->balance_interval < sd->max_interval)
10911 sd->balance_interval *= 2;
10912 out:
10913 return ld_moved;
10914 }
10915
10916 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)10917 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10918 {
10919 unsigned long interval = sd->balance_interval;
10920
10921 if (cpu_busy)
10922 interval *= sd->busy_factor;
10923
10924 /* scale ms to jiffies */
10925 interval = msecs_to_jiffies(interval);
10926
10927 /*
10928 * Reduce likelihood of busy balancing at higher domains racing with
10929 * balancing at lower domains by preventing their balancing periods
10930 * from being multiples of each other.
10931 */
10932 if (cpu_busy)
10933 interval -= 1;
10934
10935 interval = clamp(interval, 1UL, max_load_balance_interval);
10936
10937 return interval;
10938 }
10939
10940 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)10941 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10942 {
10943 unsigned long interval, next;
10944
10945 /* used by idle balance, so cpu_busy = 0 */
10946 interval = get_sd_balance_interval(sd, 0);
10947 next = sd->last_balance + interval;
10948
10949 if (time_after(*next_balance, next))
10950 *next_balance = next;
10951 }
10952
10953 /*
10954 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10955 * running tasks off the busiest CPU onto idle CPUs. It requires at
10956 * least 1 task to be running on each physical CPU where possible, and
10957 * avoids physical / logical imbalances.
10958 */
active_load_balance_cpu_stop(void * data)10959 static int active_load_balance_cpu_stop(void *data)
10960 {
10961 struct rq *busiest_rq = data;
10962 int busiest_cpu = cpu_of(busiest_rq);
10963 int target_cpu = busiest_rq->push_cpu;
10964 struct rq *target_rq = cpu_rq(target_cpu);
10965 struct sched_domain *sd;
10966 struct task_struct *p = NULL;
10967 struct rq_flags rf;
10968
10969 rq_lock_irq(busiest_rq, &rf);
10970 /*
10971 * Between queueing the stop-work and running it is a hole in which
10972 * CPUs can become inactive. We should not move tasks from or to
10973 * inactive CPUs.
10974 */
10975 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10976 goto out_unlock;
10977
10978 /* Make sure the requested CPU hasn't gone down in the meantime: */
10979 if (unlikely(busiest_cpu != smp_processor_id() ||
10980 !busiest_rq->active_balance))
10981 goto out_unlock;
10982
10983 /* Is there any task to move? */
10984 if (busiest_rq->nr_running <= 1)
10985 goto out_unlock;
10986
10987 /*
10988 * This condition is "impossible", if it occurs
10989 * we need to fix it. Originally reported by
10990 * Bjorn Helgaas on a 128-CPU setup.
10991 */
10992 WARN_ON_ONCE(busiest_rq == target_rq);
10993
10994 /* Search for an sd spanning us and the target CPU. */
10995 rcu_read_lock();
10996 for_each_domain(target_cpu, sd) {
10997 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10998 break;
10999 }
11000
11001 if (likely(sd)) {
11002 struct lb_env env = {
11003 .sd = sd,
11004 .dst_cpu = target_cpu,
11005 .dst_rq = target_rq,
11006 .src_cpu = busiest_rq->cpu,
11007 .src_rq = busiest_rq,
11008 .idle = CPU_IDLE,
11009 .flags = LBF_ACTIVE_LB,
11010 .src_rq_rf = &rf,
11011 };
11012
11013 schedstat_inc(sd->alb_count);
11014 update_rq_clock(busiest_rq);
11015
11016 p = detach_one_task(&env);
11017 if (p) {
11018 schedstat_inc(sd->alb_pushed);
11019 /* Active balancing done, reset the failure counter. */
11020 sd->nr_balance_failed = 0;
11021 } else {
11022 schedstat_inc(sd->alb_failed);
11023 }
11024 }
11025 rcu_read_unlock();
11026 out_unlock:
11027 busiest_rq->active_balance = 0;
11028 rq_unlock(busiest_rq, &rf);
11029
11030 if (p)
11031 attach_one_task(target_rq, p);
11032
11033 local_irq_enable();
11034
11035 return 0;
11036 }
11037
11038 static DEFINE_SPINLOCK(balancing);
11039
11040 /*
11041 * Scale the max load_balance interval with the number of CPUs in the system.
11042 * This trades load-balance latency on larger machines for less cross talk.
11043 */
update_max_interval(void)11044 void update_max_interval(void)
11045 {
11046 max_load_balance_interval = HZ*num_online_cpus()/10;
11047 }
11048
update_newidle_cost(struct sched_domain * sd,u64 cost)11049 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11050 {
11051 if (cost > sd->max_newidle_lb_cost) {
11052 /*
11053 * Track max cost of a domain to make sure to not delay the
11054 * next wakeup on the CPU.
11055 */
11056 sd->max_newidle_lb_cost = cost;
11057 sd->last_decay_max_lb_cost = jiffies;
11058 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11059 /*
11060 * Decay the newidle max times by ~1% per second to ensure that
11061 * it is not outdated and the current max cost is actually
11062 * shorter.
11063 */
11064 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11065 sd->last_decay_max_lb_cost = jiffies;
11066
11067 return true;
11068 }
11069
11070 return false;
11071 }
11072
11073 /*
11074 * It checks each scheduling domain to see if it is due to be balanced,
11075 * and initiates a balancing operation if so.
11076 *
11077 * Balancing parameters are set up in init_sched_domains.
11078 */
rebalance_domains(struct rq * rq,enum cpu_idle_type idle)11079 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
11080 {
11081 int continue_balancing = 1;
11082 int cpu = rq->cpu;
11083 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11084 unsigned long interval;
11085 struct sched_domain *sd;
11086 /* Earliest time when we have to do rebalance again */
11087 unsigned long next_balance = jiffies + 60*HZ;
11088 int update_next_balance = 0;
11089 int need_serialize, need_decay = 0;
11090 u64 max_cost = 0;
11091
11092 trace_android_rvh_sched_rebalance_domains(rq, &continue_balancing);
11093 if (!continue_balancing)
11094 return;
11095
11096 rcu_read_lock();
11097 for_each_domain(cpu, sd) {
11098 /*
11099 * Decay the newidle max times here because this is a regular
11100 * visit to all the domains.
11101 */
11102 need_decay = update_newidle_cost(sd, 0);
11103 max_cost += sd->max_newidle_lb_cost;
11104
11105 /*
11106 * Stop the load balance at this level. There is another
11107 * CPU in our sched group which is doing load balancing more
11108 * actively.
11109 */
11110 if (!continue_balancing) {
11111 if (need_decay)
11112 continue;
11113 break;
11114 }
11115
11116 interval = get_sd_balance_interval(sd, busy);
11117
11118 need_serialize = sd->flags & SD_SERIALIZE;
11119 if (need_serialize) {
11120 if (!spin_trylock(&balancing))
11121 goto out;
11122 }
11123
11124 if (time_after_eq(jiffies, sd->last_balance + interval)) {
11125 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
11126 /*
11127 * The LBF_DST_PINNED logic could have changed
11128 * env->dst_cpu, so we can't know our idle
11129 * state even if we migrated tasks. Update it.
11130 */
11131 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
11132 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11133 }
11134 sd->last_balance = jiffies;
11135 interval = get_sd_balance_interval(sd, busy);
11136 }
11137 if (need_serialize)
11138 spin_unlock(&balancing);
11139 out:
11140 if (time_after(next_balance, sd->last_balance + interval)) {
11141 next_balance = sd->last_balance + interval;
11142 update_next_balance = 1;
11143 }
11144 }
11145 if (need_decay) {
11146 /*
11147 * Ensure the rq-wide value also decays but keep it at a
11148 * reasonable floor to avoid funnies with rq->avg_idle.
11149 */
11150 rq->max_idle_balance_cost =
11151 max((u64)sysctl_sched_migration_cost, max_cost);
11152 }
11153 rcu_read_unlock();
11154
11155 /*
11156 * next_balance will be updated only when there is a need.
11157 * When the cpu is attached to null domain for ex, it will not be
11158 * updated.
11159 */
11160 if (likely(update_next_balance))
11161 rq->next_balance = next_balance;
11162
11163 }
11164
on_null_domain(struct rq * rq)11165 static inline int on_null_domain(struct rq *rq)
11166 {
11167 return unlikely(!rcu_dereference_sched(rq->sd));
11168 }
11169
11170 #ifdef CONFIG_NO_HZ_COMMON
11171 /*
11172 * idle load balancing details
11173 * - When one of the busy CPUs notice that there may be an idle rebalancing
11174 * needed, they will kick the idle load balancer, which then does idle
11175 * load balancing for all the idle CPUs.
11176 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
11177 * anywhere yet.
11178 */
11179
find_new_ilb(void)11180 static inline int find_new_ilb(void)
11181 {
11182 int ilb = -1;
11183 const struct cpumask *hk_mask;
11184
11185 trace_android_rvh_find_new_ilb(nohz.idle_cpus_mask, &ilb);
11186 if (ilb >= 0)
11187 return ilb;
11188
11189 hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11190
11191 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
11192
11193 if (ilb == smp_processor_id())
11194 continue;
11195
11196 if (idle_cpu(ilb))
11197 return ilb;
11198 }
11199
11200 return nr_cpu_ids;
11201 }
11202
11203 /*
11204 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
11205 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11206 */
kick_ilb(unsigned int flags)11207 static void kick_ilb(unsigned int flags)
11208 {
11209 int ilb_cpu;
11210
11211 /*
11212 * Increase nohz.next_balance only when if full ilb is triggered but
11213 * not if we only update stats.
11214 */
11215 if (flags & NOHZ_BALANCE_KICK)
11216 nohz.next_balance = jiffies+1;
11217
11218 ilb_cpu = find_new_ilb();
11219
11220 if (ilb_cpu >= nr_cpu_ids)
11221 return;
11222
11223 /*
11224 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11225 * the first flag owns it; cleared by nohz_csd_func().
11226 */
11227 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11228 if (flags & NOHZ_KICK_MASK)
11229 return;
11230
11231 /*
11232 * This way we generate an IPI on the target CPU which
11233 * is idle. And the softirq performing nohz idle load balance
11234 * will be run before returning from the IPI.
11235 */
11236 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11237 }
11238
11239 /*
11240 * Current decision point for kicking the idle load balancer in the presence
11241 * of idle CPUs in the system.
11242 */
nohz_balancer_kick(struct rq * rq)11243 static void nohz_balancer_kick(struct rq *rq)
11244 {
11245 unsigned long now = jiffies;
11246 struct sched_domain_shared *sds;
11247 struct sched_domain *sd;
11248 int nr_busy, i, cpu = rq->cpu;
11249 unsigned int flags = 0;
11250 int done = 0;
11251
11252 if (unlikely(rq->idle_balance))
11253 return;
11254
11255 /*
11256 * We may be recently in ticked or tickless idle mode. At the first
11257 * busy tick after returning from idle, we will update the busy stats.
11258 */
11259 nohz_balance_exit_idle(rq);
11260
11261 /*
11262 * None are in tickless mode and hence no need for NOHZ idle load
11263 * balancing.
11264 */
11265 if (likely(!atomic_read(&nohz.nr_cpus)))
11266 return;
11267
11268 if (READ_ONCE(nohz.has_blocked) &&
11269 time_after(now, READ_ONCE(nohz.next_blocked)))
11270 flags = NOHZ_STATS_KICK;
11271
11272 if (time_before(now, nohz.next_balance))
11273 goto out;
11274
11275 trace_android_rvh_sched_nohz_balancer_kick(rq, &flags, &done);
11276 if (done)
11277 goto out;
11278
11279 if (rq->nr_running >= 2) {
11280 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11281 goto out;
11282 }
11283
11284 rcu_read_lock();
11285
11286 sd = rcu_dereference(rq->sd);
11287 if (sd) {
11288 /*
11289 * If there's a CFS task and the current CPU has reduced
11290 * capacity; kick the ILB to see if there's a better CPU to run
11291 * on.
11292 */
11293 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11294 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11295 goto unlock;
11296 }
11297 }
11298
11299 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11300 if (sd) {
11301 /*
11302 * When ASYM_PACKING; see if there's a more preferred CPU
11303 * currently idle; in which case, kick the ILB to move tasks
11304 * around.
11305 */
11306 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11307 if (sched_asym_prefer(i, cpu)) {
11308 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11309 goto unlock;
11310 }
11311 }
11312 }
11313
11314 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11315 if (sd) {
11316 /*
11317 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11318 * to run the misfit task on.
11319 */
11320 if (check_misfit_status(rq, sd)) {
11321 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11322 goto unlock;
11323 }
11324
11325 /*
11326 * For asymmetric systems, we do not want to nicely balance
11327 * cache use, instead we want to embrace asymmetry and only
11328 * ensure tasks have enough CPU capacity.
11329 *
11330 * Skip the LLC logic because it's not relevant in that case.
11331 */
11332 goto unlock;
11333 }
11334
11335 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11336 if (sds) {
11337 /*
11338 * If there is an imbalance between LLC domains (IOW we could
11339 * increase the overall cache use), we need some less-loaded LLC
11340 * domain to pull some load. Likewise, we may need to spread
11341 * load within the current LLC domain (e.g. packed SMT cores but
11342 * other CPUs are idle). We can't really know from here how busy
11343 * the others are - so just get a nohz balance going if it looks
11344 * like this LLC domain has tasks we could move.
11345 */
11346 nr_busy = atomic_read(&sds->nr_busy_cpus);
11347 if (nr_busy > 1) {
11348 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11349 goto unlock;
11350 }
11351 }
11352 unlock:
11353 rcu_read_unlock();
11354 out:
11355 if (READ_ONCE(nohz.needs_update))
11356 flags |= NOHZ_NEXT_KICK;
11357
11358 if (flags)
11359 kick_ilb(flags);
11360 }
11361
set_cpu_sd_state_busy(int cpu)11362 static void set_cpu_sd_state_busy(int cpu)
11363 {
11364 struct sched_domain *sd;
11365
11366 rcu_read_lock();
11367 sd = rcu_dereference(per_cpu(sd_llc, cpu));
11368
11369 if (!sd || !sd->nohz_idle)
11370 goto unlock;
11371 sd->nohz_idle = 0;
11372
11373 atomic_inc(&sd->shared->nr_busy_cpus);
11374 unlock:
11375 rcu_read_unlock();
11376 }
11377
nohz_balance_exit_idle(struct rq * rq)11378 void nohz_balance_exit_idle(struct rq *rq)
11379 {
11380 SCHED_WARN_ON(rq != this_rq());
11381
11382 if (likely(!rq->nohz_tick_stopped))
11383 return;
11384
11385 rq->nohz_tick_stopped = 0;
11386 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
11387 atomic_dec(&nohz.nr_cpus);
11388
11389 set_cpu_sd_state_busy(rq->cpu);
11390 }
11391
set_cpu_sd_state_idle(int cpu)11392 static void set_cpu_sd_state_idle(int cpu)
11393 {
11394 struct sched_domain *sd;
11395
11396 rcu_read_lock();
11397 sd = rcu_dereference(per_cpu(sd_llc, cpu));
11398
11399 if (!sd || sd->nohz_idle)
11400 goto unlock;
11401 sd->nohz_idle = 1;
11402
11403 atomic_dec(&sd->shared->nr_busy_cpus);
11404 unlock:
11405 rcu_read_unlock();
11406 }
11407
11408 /*
11409 * This routine will record that the CPU is going idle with tick stopped.
11410 * This info will be used in performing idle load balancing in the future.
11411 */
nohz_balance_enter_idle(int cpu)11412 void nohz_balance_enter_idle(int cpu)
11413 {
11414 struct rq *rq = cpu_rq(cpu);
11415
11416 SCHED_WARN_ON(cpu != smp_processor_id());
11417
11418 /* If this CPU is going down, then nothing needs to be done: */
11419 if (!cpu_active(cpu))
11420 return;
11421
11422 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
11423 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
11424 return;
11425
11426 /*
11427 * Can be set safely without rq->lock held
11428 * If a clear happens, it will have evaluated last additions because
11429 * rq->lock is held during the check and the clear
11430 */
11431 rq->has_blocked_load = 1;
11432
11433 /*
11434 * The tick is still stopped but load could have been added in the
11435 * meantime. We set the nohz.has_blocked flag to trig a check of the
11436 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
11437 * of nohz.has_blocked can only happen after checking the new load
11438 */
11439 if (rq->nohz_tick_stopped)
11440 goto out;
11441
11442 /* If we're a completely isolated CPU, we don't play: */
11443 if (on_null_domain(rq))
11444 return;
11445
11446 rq->nohz_tick_stopped = 1;
11447
11448 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
11449 atomic_inc(&nohz.nr_cpus);
11450
11451 /*
11452 * Ensures that if nohz_idle_balance() fails to observe our
11453 * @idle_cpus_mask store, it must observe the @has_blocked
11454 * and @needs_update stores.
11455 */
11456 smp_mb__after_atomic();
11457
11458 set_cpu_sd_state_idle(cpu);
11459
11460 WRITE_ONCE(nohz.needs_update, 1);
11461 out:
11462 /*
11463 * Each time a cpu enter idle, we assume that it has blocked load and
11464 * enable the periodic update of the load of idle cpus
11465 */
11466 WRITE_ONCE(nohz.has_blocked, 1);
11467 }
11468
update_nohz_stats(struct rq * rq)11469 static bool update_nohz_stats(struct rq *rq)
11470 {
11471 unsigned int cpu = rq->cpu;
11472
11473 if (!rq->has_blocked_load)
11474 return false;
11475
11476 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
11477 return false;
11478
11479 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
11480 return true;
11481
11482 update_blocked_averages(cpu);
11483
11484 return rq->has_blocked_load;
11485 }
11486
11487 /*
11488 * Internal function that runs load balance for all idle cpus. The load balance
11489 * can be a simple update of blocked load or a complete load balance with
11490 * tasks movement depending of flags.
11491 */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags)11492 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
11493 {
11494 /* Earliest time when we have to do rebalance again */
11495 unsigned long now = jiffies;
11496 unsigned long next_balance = now + 60*HZ;
11497 bool has_blocked_load = false;
11498 int update_next_balance = 0;
11499 int this_cpu = this_rq->cpu;
11500 int balance_cpu;
11501 struct rq *rq;
11502
11503 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
11504
11505 /*
11506 * We assume there will be no idle load after this update and clear
11507 * the has_blocked flag. If a cpu enters idle in the mean time, it will
11508 * set the has_blocked flag and trigger another update of idle load.
11509 * Because a cpu that becomes idle, is added to idle_cpus_mask before
11510 * setting the flag, we are sure to not clear the state and not
11511 * check the load of an idle cpu.
11512 *
11513 * Same applies to idle_cpus_mask vs needs_update.
11514 */
11515 if (flags & NOHZ_STATS_KICK)
11516 WRITE_ONCE(nohz.has_blocked, 0);
11517 if (flags & NOHZ_NEXT_KICK)
11518 WRITE_ONCE(nohz.needs_update, 0);
11519
11520 /*
11521 * Ensures that if we miss the CPU, we must see the has_blocked
11522 * store from nohz_balance_enter_idle().
11523 */
11524 smp_mb();
11525
11526 /*
11527 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
11528 * chance for other idle cpu to pull load.
11529 */
11530 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
11531 if (!idle_cpu(balance_cpu))
11532 continue;
11533
11534 /*
11535 * If this CPU gets work to do, stop the load balancing
11536 * work being done for other CPUs. Next load
11537 * balancing owner will pick it up.
11538 */
11539 if (need_resched()) {
11540 if (flags & NOHZ_STATS_KICK)
11541 has_blocked_load = true;
11542 if (flags & NOHZ_NEXT_KICK)
11543 WRITE_ONCE(nohz.needs_update, 1);
11544 goto abort;
11545 }
11546
11547 rq = cpu_rq(balance_cpu);
11548
11549 if (flags & NOHZ_STATS_KICK)
11550 has_blocked_load |= update_nohz_stats(rq);
11551
11552 /*
11553 * If time for next balance is due,
11554 * do the balance.
11555 */
11556 if (time_after_eq(jiffies, rq->next_balance)) {
11557 struct rq_flags rf;
11558
11559 rq_lock_irqsave(rq, &rf);
11560 update_rq_clock(rq);
11561 rq_unlock_irqrestore(rq, &rf);
11562
11563 if (flags & NOHZ_BALANCE_KICK)
11564 rebalance_domains(rq, CPU_IDLE);
11565 }
11566
11567 if (time_after(next_balance, rq->next_balance)) {
11568 next_balance = rq->next_balance;
11569 update_next_balance = 1;
11570 }
11571 }
11572
11573 /*
11574 * next_balance will be updated only when there is a need.
11575 * When the CPU is attached to null domain for ex, it will not be
11576 * updated.
11577 */
11578 if (likely(update_next_balance))
11579 nohz.next_balance = next_balance;
11580
11581 if (flags & NOHZ_STATS_KICK)
11582 WRITE_ONCE(nohz.next_blocked,
11583 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
11584
11585 abort:
11586 /* There is still blocked load, enable periodic update */
11587 if (has_blocked_load)
11588 WRITE_ONCE(nohz.has_blocked, 1);
11589 }
11590
11591 /*
11592 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
11593 * rebalancing for all the cpus for whom scheduler ticks are stopped.
11594 */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)11595 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11596 {
11597 unsigned int flags = this_rq->nohz_idle_balance;
11598
11599 if (!flags)
11600 return false;
11601
11602 this_rq->nohz_idle_balance = 0;
11603
11604 if (idle != CPU_IDLE)
11605 return false;
11606
11607 _nohz_idle_balance(this_rq, flags);
11608
11609 return true;
11610 }
11611
11612 /*
11613 * Check if we need to run the ILB for updating blocked load before entering
11614 * idle state.
11615 */
nohz_run_idle_balance(int cpu)11616 void nohz_run_idle_balance(int cpu)
11617 {
11618 unsigned int flags;
11619
11620 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
11621
11622 /*
11623 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
11624 * (ie NOHZ_STATS_KICK set) and will do the same.
11625 */
11626 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
11627 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
11628 }
11629
nohz_newidle_balance(struct rq * this_rq)11630 static void nohz_newidle_balance(struct rq *this_rq)
11631 {
11632 int this_cpu = this_rq->cpu;
11633
11634 /*
11635 * This CPU doesn't want to be disturbed by scheduler
11636 * housekeeping
11637 */
11638 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
11639 return;
11640
11641 /* Will wake up very soon. No time for doing anything else*/
11642 if (this_rq->avg_idle < sysctl_sched_migration_cost)
11643 return;
11644
11645 /* Don't need to update blocked load of idle CPUs*/
11646 if (!READ_ONCE(nohz.has_blocked) ||
11647 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
11648 return;
11649
11650 /*
11651 * Set the need to trigger ILB in order to update blocked load
11652 * before entering idle state.
11653 */
11654 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
11655 }
11656
11657 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)11658 static inline void nohz_balancer_kick(struct rq *rq) { }
11659
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)11660 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11661 {
11662 return false;
11663 }
11664
nohz_newidle_balance(struct rq * this_rq)11665 static inline void nohz_newidle_balance(struct rq *this_rq) { }
11666 #endif /* CONFIG_NO_HZ_COMMON */
11667
11668 /*
11669 * newidle_balance is called by schedule() if this_cpu is about to become
11670 * idle. Attempts to pull tasks from other CPUs.
11671 *
11672 * Returns:
11673 * < 0 - we released the lock and there are !fair tasks present
11674 * 0 - failed, no new tasks
11675 * > 0 - success, new (fair) tasks present
11676 */
newidle_balance(struct rq * this_rq,struct rq_flags * rf)11677 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
11678 {
11679 unsigned long next_balance = jiffies + HZ;
11680 int this_cpu = this_rq->cpu;
11681 u64 t0, t1, curr_cost = 0;
11682 struct sched_domain *sd;
11683 int pulled_task = 0;
11684 int done = 0;
11685
11686 trace_android_rvh_sched_newidle_balance(this_rq, rf, &pulled_task, &done);
11687 if (done)
11688 return pulled_task;
11689
11690 update_misfit_status(NULL, this_rq);
11691
11692 /*
11693 * There is a task waiting to run. No need to search for one.
11694 * Return 0; the task will be enqueued when switching to idle.
11695 */
11696 if (this_rq->ttwu_pending)
11697 return 0;
11698
11699 /*
11700 * We must set idle_stamp _before_ calling idle_balance(), such that we
11701 * measure the duration of idle_balance() as idle time.
11702 */
11703 this_rq->idle_stamp = rq_clock(this_rq);
11704
11705 /*
11706 * Do not pull tasks towards !active CPUs...
11707 */
11708 if (!cpu_active(this_cpu))
11709 return 0;
11710
11711 /*
11712 * This is OK, because current is on_cpu, which avoids it being picked
11713 * for load-balance and preemption/IRQs are still disabled avoiding
11714 * further scheduler activity on it and we're being very careful to
11715 * re-start the picking loop.
11716 */
11717 rq_unpin_lock(this_rq, rf);
11718
11719 rcu_read_lock();
11720 sd = rcu_dereference_check_sched_domain(this_rq->sd);
11721
11722 if (!READ_ONCE(this_rq->rd->overload) ||
11723 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
11724
11725 if (sd)
11726 update_next_balance(sd, &next_balance);
11727 rcu_read_unlock();
11728
11729 goto out;
11730 }
11731 rcu_read_unlock();
11732
11733 raw_spin_rq_unlock(this_rq);
11734
11735 t0 = sched_clock_cpu(this_cpu);
11736 update_blocked_averages(this_cpu);
11737
11738 rcu_read_lock();
11739 for_each_domain(this_cpu, sd) {
11740 int continue_balancing = 1;
11741 u64 domain_cost;
11742
11743 update_next_balance(sd, &next_balance);
11744
11745 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
11746 break;
11747
11748 if (sd->flags & SD_BALANCE_NEWIDLE) {
11749
11750 pulled_task = load_balance(this_cpu, this_rq,
11751 sd, CPU_NEWLY_IDLE,
11752 &continue_balancing);
11753
11754 t1 = sched_clock_cpu(this_cpu);
11755 domain_cost = t1 - t0;
11756 update_newidle_cost(sd, domain_cost);
11757
11758 curr_cost += domain_cost;
11759 t0 = t1;
11760 }
11761
11762 /*
11763 * Stop searching for tasks to pull if there are
11764 * now runnable tasks on this rq.
11765 */
11766 if (pulled_task || this_rq->nr_running > 0 ||
11767 this_rq->ttwu_pending)
11768 break;
11769 }
11770 rcu_read_unlock();
11771
11772 raw_spin_rq_lock(this_rq);
11773
11774 if (curr_cost > this_rq->max_idle_balance_cost)
11775 this_rq->max_idle_balance_cost = curr_cost;
11776
11777 /*
11778 * While browsing the domains, we released the rq lock, a task could
11779 * have been enqueued in the meantime. Since we're not going idle,
11780 * pretend we pulled a task.
11781 */
11782 if (this_rq->cfs.h_nr_running && !pulled_task)
11783 pulled_task = 1;
11784
11785 /* Is there a task of a high priority class? */
11786 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
11787 pulled_task = -1;
11788
11789 out:
11790 /* Move the next balance forward */
11791 if (time_after(this_rq->next_balance, next_balance))
11792 this_rq->next_balance = next_balance;
11793
11794 if (pulled_task)
11795 this_rq->idle_stamp = 0;
11796 else
11797 nohz_newidle_balance(this_rq);
11798
11799 rq_repin_lock(this_rq, rf);
11800
11801 return pulled_task;
11802 }
11803
11804 /*
11805 * run_rebalance_domains is triggered when needed from the scheduler tick.
11806 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
11807 */
run_rebalance_domains(struct softirq_action * h)11808 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
11809 {
11810 struct rq *this_rq = this_rq();
11811 enum cpu_idle_type idle = this_rq->idle_balance ?
11812 CPU_IDLE : CPU_NOT_IDLE;
11813
11814 /*
11815 * If this CPU has a pending nohz_balance_kick, then do the
11816 * balancing on behalf of the other idle CPUs whose ticks are
11817 * stopped. Do nohz_idle_balance *before* rebalance_domains to
11818 * give the idle CPUs a chance to load balance. Else we may
11819 * load balance only within the local sched_domain hierarchy
11820 * and abort nohz_idle_balance altogether if we pull some load.
11821 */
11822 if (nohz_idle_balance(this_rq, idle))
11823 return;
11824
11825 /* normal load balance */
11826 update_blocked_averages(this_rq->cpu);
11827 rebalance_domains(this_rq, idle);
11828 }
11829
11830 /*
11831 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
11832 */
trigger_load_balance(struct rq * rq)11833 void trigger_load_balance(struct rq *rq)
11834 {
11835 /*
11836 * Don't need to rebalance while attached to NULL domain or
11837 * runqueue CPU is not active
11838 */
11839 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
11840 return;
11841
11842 if (time_after_eq(jiffies, rq->next_balance))
11843 raise_softirq(SCHED_SOFTIRQ);
11844
11845 nohz_balancer_kick(rq);
11846 }
11847
rq_online_fair(struct rq * rq)11848 static void rq_online_fair(struct rq *rq)
11849 {
11850 update_sysctl();
11851
11852 update_runtime_enabled(rq);
11853 }
11854
rq_offline_fair(struct rq * rq)11855 static void rq_offline_fair(struct rq *rq)
11856 {
11857 update_sysctl();
11858
11859 /* Ensure any throttled groups are reachable by pick_next_task */
11860 unthrottle_offline_cfs_rqs(rq);
11861 }
11862
11863 #endif /* CONFIG_SMP */
11864
11865 #ifdef CONFIG_SCHED_CORE
11866 static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)11867 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
11868 {
11869 u64 slice = sched_slice(cfs_rq_of(se), se);
11870 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
11871
11872 return (rtime * min_nr_tasks > slice);
11873 }
11874
11875 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
task_tick_core(struct rq * rq,struct task_struct * curr)11876 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
11877 {
11878 if (!sched_core_enabled(rq))
11879 return;
11880
11881 /*
11882 * If runqueue has only one task which used up its slice and
11883 * if the sibling is forced idle, then trigger schedule to
11884 * give forced idle task a chance.
11885 *
11886 * sched_slice() considers only this active rq and it gets the
11887 * whole slice. But during force idle, we have siblings acting
11888 * like a single runqueue and hence we need to consider runnable
11889 * tasks on this CPU and the forced idle CPU. Ideally, we should
11890 * go through the forced idle rq, but that would be a perf hit.
11891 * We can assume that the forced idle CPU has at least
11892 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
11893 * if we need to give up the CPU.
11894 */
11895 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
11896 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
11897 resched_curr(rq);
11898 }
11899
11900 /*
11901 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
11902 */
se_fi_update(struct sched_entity * se,unsigned int fi_seq,bool forceidle)11903 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
11904 {
11905 for_each_sched_entity(se) {
11906 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11907
11908 if (forceidle) {
11909 if (cfs_rq->forceidle_seq == fi_seq)
11910 break;
11911 cfs_rq->forceidle_seq = fi_seq;
11912 }
11913
11914 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
11915 }
11916 }
11917
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)11918 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
11919 {
11920 struct sched_entity *se = &p->se;
11921
11922 if (p->sched_class != &fair_sched_class)
11923 return;
11924
11925 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11926 }
11927
cfs_prio_less(struct task_struct * a,struct task_struct * b,bool in_fi)11928 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11929 {
11930 struct rq *rq = task_rq(a);
11931 struct sched_entity *sea = &a->se;
11932 struct sched_entity *seb = &b->se;
11933 struct cfs_rq *cfs_rqa;
11934 struct cfs_rq *cfs_rqb;
11935 s64 delta;
11936
11937 SCHED_WARN_ON(task_rq(b)->core != rq->core);
11938
11939 #ifdef CONFIG_FAIR_GROUP_SCHED
11940 /*
11941 * Find an se in the hierarchy for tasks a and b, such that the se's
11942 * are immediate siblings.
11943 */
11944 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11945 int sea_depth = sea->depth;
11946 int seb_depth = seb->depth;
11947
11948 if (sea_depth >= seb_depth)
11949 sea = parent_entity(sea);
11950 if (sea_depth <= seb_depth)
11951 seb = parent_entity(seb);
11952 }
11953
11954 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11955 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11956
11957 cfs_rqa = sea->cfs_rq;
11958 cfs_rqb = seb->cfs_rq;
11959 #else
11960 cfs_rqa = &task_rq(a)->cfs;
11961 cfs_rqb = &task_rq(b)->cfs;
11962 #endif
11963
11964 /*
11965 * Find delta after normalizing se's vruntime with its cfs_rq's
11966 * min_vruntime_fi, which would have been updated in prior calls
11967 * to se_fi_update().
11968 */
11969 delta = (s64)(sea->vruntime - seb->vruntime) +
11970 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11971
11972 return delta > 0;
11973 }
11974 #else
task_tick_core(struct rq * rq,struct task_struct * curr)11975 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11976 #endif
11977
11978 /*
11979 * scheduler tick hitting a task of our scheduling class.
11980 *
11981 * NOTE: This function can be called remotely by the tick offload that
11982 * goes along full dynticks. Therefore no local assumption can be made
11983 * and everything must be accessed through the @rq and @curr passed in
11984 * parameters.
11985 */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)11986 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11987 {
11988 struct cfs_rq *cfs_rq;
11989 struct sched_entity *se = &curr->se;
11990
11991 for_each_sched_entity(se) {
11992 cfs_rq = cfs_rq_of(se);
11993 entity_tick(cfs_rq, se, queued);
11994 }
11995
11996 if (static_branch_unlikely(&sched_numa_balancing))
11997 task_tick_numa(rq, curr);
11998
11999 update_misfit_status(curr, rq);
12000 update_overutilized_status(task_rq(curr));
12001
12002 task_tick_core(rq, curr);
12003 }
12004
12005 /*
12006 * called on fork with the child task as argument from the parent's context
12007 * - child not yet on the tasklist
12008 * - preemption disabled
12009 */
task_fork_fair(struct task_struct * p)12010 static void task_fork_fair(struct task_struct *p)
12011 {
12012 struct cfs_rq *cfs_rq;
12013 struct sched_entity *se = &p->se, *curr;
12014 struct rq *rq = this_rq();
12015 struct rq_flags rf;
12016
12017 rq_lock(rq, &rf);
12018 update_rq_clock(rq);
12019
12020 cfs_rq = task_cfs_rq(current);
12021 curr = cfs_rq->curr;
12022 if (curr) {
12023 update_curr(cfs_rq);
12024 se->vruntime = curr->vruntime;
12025 }
12026 place_entity(cfs_rq, se, 1);
12027
12028 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
12029 /*
12030 * Upon rescheduling, sched_class::put_prev_task() will place
12031 * 'current' within the tree based on its new key value.
12032 */
12033 swap(curr->vruntime, se->vruntime);
12034 resched_curr(rq);
12035 }
12036
12037 se->vruntime -= cfs_rq->min_vruntime;
12038 rq_unlock(rq, &rf);
12039 }
12040
12041 /*
12042 * Priority of the task has changed. Check to see if we preempt
12043 * the current task.
12044 */
12045 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)12046 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12047 {
12048 if (!task_on_rq_queued(p))
12049 return;
12050
12051 if (rq->cfs.nr_running == 1)
12052 return;
12053
12054 /*
12055 * Reschedule if we are currently running on this runqueue and
12056 * our priority decreased, or if we are not currently running on
12057 * this runqueue and our priority is higher than the current's
12058 */
12059 if (task_current(rq, p)) {
12060 if (p->prio > oldprio)
12061 resched_curr(rq);
12062 } else
12063 check_preempt_curr(rq, p, 0);
12064 }
12065
vruntime_normalized(struct task_struct * p)12066 static inline bool vruntime_normalized(struct task_struct *p)
12067 {
12068 struct sched_entity *se = &p->se;
12069
12070 /*
12071 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
12072 * the dequeue_entity(.flags=0) will already have normalized the
12073 * vruntime.
12074 */
12075 if (p->on_rq)
12076 return true;
12077
12078 /*
12079 * When !on_rq, vruntime of the task has usually NOT been normalized.
12080 * But there are some cases where it has already been normalized:
12081 *
12082 * - A forked child which is waiting for being woken up by
12083 * wake_up_new_task().
12084 * - A task which has been woken up by try_to_wake_up() and
12085 * waiting for actually being woken up by sched_ttwu_pending().
12086 */
12087 if (!se->sum_exec_runtime ||
12088 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
12089 return true;
12090
12091 return false;
12092 }
12093
12094 #ifdef CONFIG_FAIR_GROUP_SCHED
12095 /*
12096 * Propagate the changes of the sched_entity across the tg tree to make it
12097 * visible to the root
12098 */
propagate_entity_cfs_rq(struct sched_entity * se)12099 static void propagate_entity_cfs_rq(struct sched_entity *se)
12100 {
12101 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12102
12103 if (cfs_rq_throttled(cfs_rq))
12104 return;
12105
12106 if (!throttled_hierarchy(cfs_rq))
12107 list_add_leaf_cfs_rq(cfs_rq);
12108
12109 /* Start to propagate at parent */
12110 se = se->parent;
12111
12112 for_each_sched_entity(se) {
12113 cfs_rq = cfs_rq_of(se);
12114
12115 update_load_avg(cfs_rq, se, UPDATE_TG);
12116
12117 if (cfs_rq_throttled(cfs_rq))
12118 break;
12119
12120 if (!throttled_hierarchy(cfs_rq))
12121 list_add_leaf_cfs_rq(cfs_rq);
12122 }
12123 }
12124 #else
propagate_entity_cfs_rq(struct sched_entity * se)12125 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12126 #endif
12127
detach_entity_cfs_rq(struct sched_entity * se)12128 static void detach_entity_cfs_rq(struct sched_entity *se)
12129 {
12130 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12131
12132 #ifdef CONFIG_SMP
12133 /*
12134 * In case the task sched_avg hasn't been attached:
12135 * - A forked task which hasn't been woken up by wake_up_new_task().
12136 * - A task which has been woken up by try_to_wake_up() but is
12137 * waiting for actually being woken up by sched_ttwu_pending().
12138 */
12139 if (!se->avg.last_update_time)
12140 return;
12141 #endif
12142
12143 /* Catch up with the cfs_rq and remove our load when we leave */
12144 update_load_avg(cfs_rq, se, 0);
12145 detach_entity_load_avg(cfs_rq, se);
12146 update_tg_load_avg(cfs_rq);
12147 propagate_entity_cfs_rq(se);
12148 }
12149
attach_entity_cfs_rq(struct sched_entity * se)12150 static void attach_entity_cfs_rq(struct sched_entity *se)
12151 {
12152 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12153
12154 /* Synchronize entity with its cfs_rq */
12155 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12156 attach_entity_load_avg(cfs_rq, se);
12157 update_tg_load_avg(cfs_rq);
12158 propagate_entity_cfs_rq(se);
12159 }
12160
detach_task_cfs_rq(struct task_struct * p)12161 static void detach_task_cfs_rq(struct task_struct *p)
12162 {
12163 struct sched_entity *se = &p->se;
12164 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12165
12166 if (!vruntime_normalized(p)) {
12167 /*
12168 * Fix up our vruntime so that the current sleep doesn't
12169 * cause 'unlimited' sleep bonus.
12170 */
12171 place_entity(cfs_rq, se, 0);
12172 se->vruntime -= cfs_rq->min_vruntime;
12173 }
12174
12175 detach_entity_cfs_rq(se);
12176 }
12177
attach_task_cfs_rq(struct task_struct * p)12178 static void attach_task_cfs_rq(struct task_struct *p)
12179 {
12180 struct sched_entity *se = &p->se;
12181 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12182
12183 attach_entity_cfs_rq(se);
12184
12185 if (!vruntime_normalized(p))
12186 se->vruntime += cfs_rq->min_vruntime;
12187 }
12188
switched_from_fair(struct rq * rq,struct task_struct * p)12189 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12190 {
12191 detach_task_cfs_rq(p);
12192 }
12193
switched_to_fair(struct rq * rq,struct task_struct * p)12194 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12195 {
12196 attach_task_cfs_rq(p);
12197
12198 if (task_on_rq_queued(p)) {
12199 /*
12200 * We were most likely switched from sched_rt, so
12201 * kick off the schedule if running, otherwise just see
12202 * if we can still preempt the current task.
12203 */
12204 if (task_current(rq, p))
12205 resched_curr(rq);
12206 else
12207 check_preempt_curr(rq, p, 0);
12208 }
12209 }
12210
12211 /* Account for a task changing its policy or group.
12212 *
12213 * This routine is mostly called to set cfs_rq->curr field when a task
12214 * migrates between groups/classes.
12215 */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)12216 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12217 {
12218 struct sched_entity *se = &p->se;
12219
12220 #ifdef CONFIG_SMP
12221 if (task_on_rq_queued(p)) {
12222 /*
12223 * Move the next running task to the front of the list, so our
12224 * cfs_tasks list becomes MRU one.
12225 */
12226 list_move(&se->group_node, &rq->cfs_tasks);
12227 }
12228 #endif
12229
12230 for_each_sched_entity(se) {
12231 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12232
12233 set_next_entity(cfs_rq, se);
12234 /* ensure bandwidth has been allocated on our new cfs_rq */
12235 account_cfs_rq_runtime(cfs_rq, 0);
12236 }
12237 }
12238
init_cfs_rq(struct cfs_rq * cfs_rq)12239 void init_cfs_rq(struct cfs_rq *cfs_rq)
12240 {
12241 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12242 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12243 #ifdef CONFIG_SMP
12244 raw_spin_lock_init(&cfs_rq->removed.lock);
12245 #endif
12246 }
12247
12248 #ifdef CONFIG_FAIR_GROUP_SCHED
task_change_group_fair(struct task_struct * p)12249 static void task_change_group_fair(struct task_struct *p)
12250 {
12251 /*
12252 * We couldn't detach or attach a forked task which
12253 * hasn't been woken up by wake_up_new_task().
12254 */
12255 if (READ_ONCE(p->__state) == TASK_NEW)
12256 return;
12257
12258 detach_task_cfs_rq(p);
12259
12260 #ifdef CONFIG_SMP
12261 /* Tell se's cfs_rq has been changed -- migrated */
12262 p->se.avg.last_update_time = 0;
12263 #endif
12264 set_task_rq(p, task_cpu(p));
12265 attach_task_cfs_rq(p);
12266 }
12267
free_fair_sched_group(struct task_group * tg)12268 void free_fair_sched_group(struct task_group *tg)
12269 {
12270 int i;
12271
12272 for_each_possible_cpu(i) {
12273 if (tg->cfs_rq)
12274 kfree(tg->cfs_rq[i]);
12275 if (tg->se)
12276 kfree(tg->se[i]);
12277 }
12278
12279 kfree(tg->cfs_rq);
12280 kfree(tg->se);
12281 }
12282
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)12283 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12284 {
12285 struct sched_entity *se;
12286 struct cfs_rq *cfs_rq;
12287 int i;
12288
12289 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12290 if (!tg->cfs_rq)
12291 goto err;
12292 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12293 if (!tg->se)
12294 goto err;
12295
12296 tg->shares = NICE_0_LOAD;
12297
12298 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
12299
12300 for_each_possible_cpu(i) {
12301 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12302 GFP_KERNEL, cpu_to_node(i));
12303 if (!cfs_rq)
12304 goto err;
12305
12306 se = kzalloc_node(sizeof(struct sched_entity_stats),
12307 GFP_KERNEL, cpu_to_node(i));
12308 if (!se)
12309 goto err_free_rq;
12310
12311 init_cfs_rq(cfs_rq);
12312 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12313 init_entity_runnable_average(se);
12314 }
12315
12316 return 1;
12317
12318 err_free_rq:
12319 kfree(cfs_rq);
12320 err:
12321 return 0;
12322 }
12323
online_fair_sched_group(struct task_group * tg)12324 void online_fair_sched_group(struct task_group *tg)
12325 {
12326 struct sched_entity *se;
12327 struct rq_flags rf;
12328 struct rq *rq;
12329 int i;
12330
12331 for_each_possible_cpu(i) {
12332 rq = cpu_rq(i);
12333 se = tg->se[i];
12334 rq_lock_irq(rq, &rf);
12335 update_rq_clock(rq);
12336 attach_entity_cfs_rq(se);
12337 sync_throttle(tg, i);
12338 rq_unlock_irq(rq, &rf);
12339 }
12340 }
12341
unregister_fair_sched_group(struct task_group * tg)12342 void unregister_fair_sched_group(struct task_group *tg)
12343 {
12344 unsigned long flags;
12345 struct rq *rq;
12346 int cpu;
12347
12348 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12349
12350 for_each_possible_cpu(cpu) {
12351 if (tg->se[cpu])
12352 remove_entity_load_avg(tg->se[cpu]);
12353
12354 /*
12355 * Only empty task groups can be destroyed; so we can speculatively
12356 * check on_list without danger of it being re-added.
12357 */
12358 if (!tg->cfs_rq[cpu]->on_list)
12359 continue;
12360
12361 rq = cpu_rq(cpu);
12362
12363 raw_spin_rq_lock_irqsave(rq, flags);
12364 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12365 raw_spin_rq_unlock_irqrestore(rq, flags);
12366 }
12367 }
12368
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)12369 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12370 struct sched_entity *se, int cpu,
12371 struct sched_entity *parent)
12372 {
12373 struct rq *rq = cpu_rq(cpu);
12374
12375 cfs_rq->tg = tg;
12376 cfs_rq->rq = rq;
12377 init_cfs_rq_runtime(cfs_rq);
12378
12379 tg->cfs_rq[cpu] = cfs_rq;
12380 tg->se[cpu] = se;
12381
12382 /* se could be NULL for root_task_group */
12383 if (!se)
12384 return;
12385
12386 if (!parent) {
12387 se->cfs_rq = &rq->cfs;
12388 se->depth = 0;
12389 } else {
12390 se->cfs_rq = parent->my_q;
12391 se->depth = parent->depth + 1;
12392 }
12393
12394 se->my_q = cfs_rq;
12395 /* guarantee group entities always have weight */
12396 update_load_set(&se->load, NICE_0_LOAD);
12397 se->parent = parent;
12398 }
12399
12400 static DEFINE_MUTEX(shares_mutex);
12401
__sched_group_set_shares(struct task_group * tg,unsigned long shares)12402 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12403 {
12404 int i;
12405
12406 lockdep_assert_held(&shares_mutex);
12407
12408 /*
12409 * We can't change the weight of the root cgroup.
12410 */
12411 if (!tg->se[0])
12412 return -EINVAL;
12413
12414 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12415
12416 if (tg->shares == shares)
12417 return 0;
12418
12419 tg->shares = shares;
12420 for_each_possible_cpu(i) {
12421 struct rq *rq = cpu_rq(i);
12422 struct sched_entity *se = tg->se[i];
12423 struct rq_flags rf;
12424
12425 /* Propagate contribution to hierarchy */
12426 rq_lock_irqsave(rq, &rf);
12427 update_rq_clock(rq);
12428 for_each_sched_entity(se) {
12429 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
12430 update_cfs_group(se);
12431 }
12432 rq_unlock_irqrestore(rq, &rf);
12433 }
12434
12435 return 0;
12436 }
12437
sched_group_set_shares(struct task_group * tg,unsigned long shares)12438 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
12439 {
12440 int ret;
12441
12442 mutex_lock(&shares_mutex);
12443 if (tg_is_idle(tg))
12444 ret = -EINVAL;
12445 else
12446 ret = __sched_group_set_shares(tg, shares);
12447 mutex_unlock(&shares_mutex);
12448
12449 return ret;
12450 }
12451
sched_group_set_idle(struct task_group * tg,long idle)12452 int sched_group_set_idle(struct task_group *tg, long idle)
12453 {
12454 int i;
12455
12456 if (tg == &root_task_group)
12457 return -EINVAL;
12458
12459 if (idle < 0 || idle > 1)
12460 return -EINVAL;
12461
12462 mutex_lock(&shares_mutex);
12463
12464 if (tg->idle == idle) {
12465 mutex_unlock(&shares_mutex);
12466 return 0;
12467 }
12468
12469 tg->idle = idle;
12470
12471 for_each_possible_cpu(i) {
12472 struct rq *rq = cpu_rq(i);
12473 struct sched_entity *se = tg->se[i];
12474 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
12475 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
12476 long idle_task_delta;
12477 struct rq_flags rf;
12478
12479 rq_lock_irqsave(rq, &rf);
12480
12481 grp_cfs_rq->idle = idle;
12482 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
12483 goto next_cpu;
12484
12485 if (se->on_rq) {
12486 parent_cfs_rq = cfs_rq_of(se);
12487 if (cfs_rq_is_idle(grp_cfs_rq))
12488 parent_cfs_rq->idle_nr_running++;
12489 else
12490 parent_cfs_rq->idle_nr_running--;
12491 }
12492
12493 idle_task_delta = grp_cfs_rq->h_nr_running -
12494 grp_cfs_rq->idle_h_nr_running;
12495 if (!cfs_rq_is_idle(grp_cfs_rq))
12496 idle_task_delta *= -1;
12497
12498 for_each_sched_entity(se) {
12499 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12500
12501 if (!se->on_rq)
12502 break;
12503
12504 cfs_rq->idle_h_nr_running += idle_task_delta;
12505
12506 /* Already accounted at parent level and above. */
12507 if (cfs_rq_is_idle(cfs_rq))
12508 break;
12509 }
12510
12511 next_cpu:
12512 rq_unlock_irqrestore(rq, &rf);
12513 }
12514
12515 /* Idle groups have minimum weight. */
12516 if (tg_is_idle(tg))
12517 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
12518 else
12519 __sched_group_set_shares(tg, NICE_0_LOAD);
12520
12521 mutex_unlock(&shares_mutex);
12522 return 0;
12523 }
12524
12525 #else /* CONFIG_FAIR_GROUP_SCHED */
12526
free_fair_sched_group(struct task_group * tg)12527 void free_fair_sched_group(struct task_group *tg) { }
12528
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)12529 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12530 {
12531 return 1;
12532 }
12533
online_fair_sched_group(struct task_group * tg)12534 void online_fair_sched_group(struct task_group *tg) { }
12535
unregister_fair_sched_group(struct task_group * tg)12536 void unregister_fair_sched_group(struct task_group *tg) { }
12537
12538 #endif /* CONFIG_FAIR_GROUP_SCHED */
12539
12540
get_rr_interval_fair(struct rq * rq,struct task_struct * task)12541 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
12542 {
12543 struct sched_entity *se = &task->se;
12544 unsigned int rr_interval = 0;
12545
12546 /*
12547 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
12548 * idle runqueue:
12549 */
12550 if (rq->cfs.load.weight)
12551 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
12552
12553 return rr_interval;
12554 }
12555
12556 /*
12557 * All the scheduling class methods:
12558 */
12559 DEFINE_SCHED_CLASS(fair) = {
12560
12561 .enqueue_task = enqueue_task_fair,
12562 .dequeue_task = dequeue_task_fair,
12563 .yield_task = yield_task_fair,
12564 .yield_to_task = yield_to_task_fair,
12565
12566 .check_preempt_curr = check_preempt_wakeup,
12567
12568 .pick_next_task = __pick_next_task_fair,
12569 .put_prev_task = put_prev_task_fair,
12570 .set_next_task = set_next_task_fair,
12571
12572 #ifdef CONFIG_SMP
12573 .balance = balance_fair,
12574 .pick_task = pick_task_fair,
12575 .select_task_rq = select_task_rq_fair,
12576 .migrate_task_rq = migrate_task_rq_fair,
12577
12578 .rq_online = rq_online_fair,
12579 .rq_offline = rq_offline_fair,
12580
12581 .task_dead = task_dead_fair,
12582 .set_cpus_allowed = set_cpus_allowed_common,
12583 #endif
12584
12585 .task_tick = task_tick_fair,
12586 .task_fork = task_fork_fair,
12587
12588 .prio_changed = prio_changed_fair,
12589 .switched_from = switched_from_fair,
12590 .switched_to = switched_to_fair,
12591
12592 .get_rr_interval = get_rr_interval_fair,
12593
12594 .update_curr = update_curr_fair,
12595
12596 #ifdef CONFIG_FAIR_GROUP_SCHED
12597 .task_change_group = task_change_group_fair,
12598 #endif
12599
12600 #ifdef CONFIG_UCLAMP_TASK
12601 .uclamp_enabled = 1,
12602 #endif
12603 };
12604
12605 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)12606 void print_cfs_stats(struct seq_file *m, int cpu)
12607 {
12608 struct cfs_rq *cfs_rq, *pos;
12609
12610 rcu_read_lock();
12611 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
12612 print_cfs_rq(m, cpu, cfs_rq);
12613 rcu_read_unlock();
12614 }
12615
12616 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)12617 void show_numa_stats(struct task_struct *p, struct seq_file *m)
12618 {
12619 int node;
12620 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
12621 struct numa_group *ng;
12622
12623 rcu_read_lock();
12624 ng = rcu_dereference(p->numa_group);
12625 for_each_online_node(node) {
12626 if (p->numa_faults) {
12627 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
12628 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
12629 }
12630 if (ng) {
12631 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
12632 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
12633 }
12634 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
12635 }
12636 rcu_read_unlock();
12637 }
12638 #endif /* CONFIG_NUMA_BALANCING */
12639 #endif /* CONFIG_SCHED_DEBUG */
12640
init_sched_fair_class(void)12641 __init void init_sched_fair_class(void)
12642 {
12643 #ifdef CONFIG_SMP
12644 int i;
12645
12646 for_each_possible_cpu(i) {
12647 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
12648 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i));
12649 }
12650
12651 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
12652
12653 #ifdef CONFIG_NO_HZ_COMMON
12654 nohz.next_balance = jiffies;
12655 nohz.next_blocked = jiffies;
12656 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
12657 #endif
12658 #endif /* SMP */
12659
12660 }
12661