• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47 
48 #include <trace/events/tcp.h>
49 
50 /* Refresh clocks of a TCP socket,
51  * ensuring monotically increasing values.
52  */
tcp_mstamp_refresh(struct tcp_sock * tp)53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 	u64 val = tcp_clock_ns();
56 
57 	tp->tcp_clock_cache = val;
58 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60 
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 			   int push_one, gfp_t gfp);
63 
64 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 	struct inet_connection_sock *icsk = inet_csk(sk);
68 	struct tcp_sock *tp = tcp_sk(sk);
69 	unsigned int prior_packets = tp->packets_out;
70 
71 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72 
73 	__skb_unlink(skb, &sk->sk_write_queue);
74 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75 
76 	if (tp->highest_sack == NULL)
77 		tp->highest_sack = skb;
78 
79 	tp->packets_out += tcp_skb_pcount(skb);
80 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 		tcp_rearm_rto(sk);
82 
83 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 		      tcp_skb_pcount(skb));
85 	tcp_check_space(sk);
86 }
87 
88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89  * window scaling factor due to loss of precision.
90  * If window has been shrunk, what should we make? It is not clear at all.
91  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93  * invalid. OK, let's make this for now:
94  */
tcp_acceptable_seq(const struct sock * sk)95 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 {
97 	const struct tcp_sock *tp = tcp_sk(sk);
98 
99 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
100 	    (tp->rx_opt.wscale_ok &&
101 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
102 		return tp->snd_nxt;
103 	else
104 		return tcp_wnd_end(tp);
105 }
106 
107 /* Calculate mss to advertise in SYN segment.
108  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109  *
110  * 1. It is independent of path mtu.
111  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113  *    attached devices, because some buggy hosts are confused by
114  *    large MSS.
115  * 4. We do not make 3, we advertise MSS, calculated from first
116  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
117  *    This may be overridden via information stored in routing table.
118  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119  *    probably even Jumbo".
120  */
tcp_advertise_mss(struct sock * sk)121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 	struct tcp_sock *tp = tcp_sk(sk);
124 	const struct dst_entry *dst = __sk_dst_get(sk);
125 	int mss = tp->advmss;
126 
127 	if (dst) {
128 		unsigned int metric = dst_metric_advmss(dst);
129 
130 		if (metric < mss) {
131 			mss = metric;
132 			tp->advmss = mss;
133 		}
134 	}
135 
136 	return (__u16)mss;
137 }
138 
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140  * This is the first part of cwnd validation mechanism.
141  */
tcp_cwnd_restart(struct sock * sk,s32 delta)142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 	struct tcp_sock *tp = tcp_sk(sk);
145 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 	u32 cwnd = tcp_snd_cwnd(tp);
147 
148 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 
150 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 	restart_cwnd = min(restart_cwnd, cwnd);
152 
153 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 		cwnd >>= 1;
155 	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
156 	tp->snd_cwnd_stamp = tcp_jiffies32;
157 	tp->snd_cwnd_used = 0;
158 }
159 
160 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 				struct sock *sk)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const u32 now = tcp_jiffies32;
166 
167 	if (tcp_packets_in_flight(tp) == 0)
168 		tcp_ca_event(sk, CA_EVENT_TX_START);
169 
170 	tp->lsndtime = now;
171 
172 	/* If it is a reply for ato after last received
173 	 * packet, enter pingpong mode.
174 	 */
175 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 		inet_csk_enter_pingpong_mode(sk);
177 }
178 
179 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,u32 rcv_nxt)180 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
181 {
182 	struct tcp_sock *tp = tcp_sk(sk);
183 
184 	if (unlikely(tp->compressed_ack)) {
185 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
186 			      tp->compressed_ack);
187 		tp->compressed_ack = 0;
188 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
189 			__sock_put(sk);
190 	}
191 
192 	if (unlikely(rcv_nxt != tp->rcv_nxt))
193 		return;  /* Special ACK sent by DCTCP to reflect ECN */
194 	tcp_dec_quickack_mode(sk);
195 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
196 }
197 
198 /* Determine a window scaling and initial window to offer.
199  * Based on the assumption that the given amount of space
200  * will be offered. Store the results in the tp structure.
201  * NOTE: for smooth operation initial space offering should
202  * be a multiple of mss if possible. We assume here that mss >= 1.
203  * This MUST be enforced by all callers.
204  */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)205 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
206 			       __u32 *rcv_wnd, __u32 *window_clamp,
207 			       int wscale_ok, __u8 *rcv_wscale,
208 			       __u32 init_rcv_wnd)
209 {
210 	unsigned int space = (__space < 0 ? 0 : __space);
211 
212 	/* If no clamp set the clamp to the max possible scaled window */
213 	if (*window_clamp == 0)
214 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
215 	space = min(*window_clamp, space);
216 
217 	/* Quantize space offering to a multiple of mss if possible. */
218 	if (space > mss)
219 		space = rounddown(space, mss);
220 
221 	/* NOTE: offering an initial window larger than 32767
222 	 * will break some buggy TCP stacks. If the admin tells us
223 	 * it is likely we could be speaking with such a buggy stack
224 	 * we will truncate our initial window offering to 32K-1
225 	 * unless the remote has sent us a window scaling option,
226 	 * which we interpret as a sign the remote TCP is not
227 	 * misinterpreting the window field as a signed quantity.
228 	 */
229 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
230 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231 	else
232 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
233 
234 	if (init_rcv_wnd)
235 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
236 
237 	*rcv_wscale = 0;
238 	if (wscale_ok) {
239 		/* Set window scaling on max possible window */
240 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
241 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
242 		space = min_t(u32, space, *window_clamp);
243 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
244 				      0, TCP_MAX_WSCALE);
245 	}
246 	/* Set the clamp no higher than max representable value */
247 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
248 }
249 EXPORT_SYMBOL(tcp_select_initial_window);
250 
251 /* Chose a new window to advertise, update state in tcp_sock for the
252  * socket, and return result with RFC1323 scaling applied.  The return
253  * value can be stuffed directly into th->window for an outgoing
254  * frame.
255  */
tcp_select_window(struct sock * sk)256 static u16 tcp_select_window(struct sock *sk)
257 {
258 	struct tcp_sock *tp = tcp_sk(sk);
259 	u32 old_win = tp->rcv_wnd;
260 	u32 cur_win = tcp_receive_window(tp);
261 	u32 new_win = __tcp_select_window(sk);
262 
263 	/* Never shrink the offered window */
264 	if (new_win < cur_win) {
265 		/* Danger Will Robinson!
266 		 * Don't update rcv_wup/rcv_wnd here or else
267 		 * we will not be able to advertise a zero
268 		 * window in time.  --DaveM
269 		 *
270 		 * Relax Will Robinson.
271 		 */
272 		if (new_win == 0)
273 			NET_INC_STATS(sock_net(sk),
274 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
275 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
276 	}
277 	tp->rcv_wnd = new_win;
278 	tp->rcv_wup = tp->rcv_nxt;
279 
280 	/* Make sure we do not exceed the maximum possible
281 	 * scaled window.
282 	 */
283 	if (!tp->rx_opt.rcv_wscale &&
284 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
285 		new_win = min(new_win, MAX_TCP_WINDOW);
286 	else
287 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
288 
289 	/* RFC1323 scaling applied */
290 	new_win >>= tp->rx_opt.rcv_wscale;
291 
292 	/* If we advertise zero window, disable fast path. */
293 	if (new_win == 0) {
294 		tp->pred_flags = 0;
295 		if (old_win)
296 			NET_INC_STATS(sock_net(sk),
297 				      LINUX_MIB_TCPTOZEROWINDOWADV);
298 	} else if (old_win == 0) {
299 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
300 	}
301 
302 	return new_win;
303 }
304 
305 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)306 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
307 {
308 	const struct tcp_sock *tp = tcp_sk(sk);
309 
310 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
311 	if (!(tp->ecn_flags & TCP_ECN_OK))
312 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
313 	else if (tcp_ca_needs_ecn(sk) ||
314 		 tcp_bpf_ca_needs_ecn(sk))
315 		INET_ECN_xmit(sk);
316 }
317 
318 /* Packet ECN state for a SYN.  */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)319 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
320 {
321 	struct tcp_sock *tp = tcp_sk(sk);
322 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
323 	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
324 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
325 
326 	if (!use_ecn) {
327 		const struct dst_entry *dst = __sk_dst_get(sk);
328 
329 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
330 			use_ecn = true;
331 	}
332 
333 	tp->ecn_flags = 0;
334 
335 	if (use_ecn) {
336 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
337 		tp->ecn_flags = TCP_ECN_OK;
338 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
339 			INET_ECN_xmit(sk);
340 	}
341 }
342 
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)343 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
344 {
345 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
346 		/* tp->ecn_flags are cleared at a later point in time when
347 		 * SYN ACK is ultimatively being received.
348 		 */
349 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
350 }
351 
352 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)353 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
354 {
355 	if (inet_rsk(req)->ecn_ok)
356 		th->ece = 1;
357 }
358 
359 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
360  * be sent.
361  */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)362 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
363 			 struct tcphdr *th, int tcp_header_len)
364 {
365 	struct tcp_sock *tp = tcp_sk(sk);
366 
367 	if (tp->ecn_flags & TCP_ECN_OK) {
368 		/* Not-retransmitted data segment: set ECT and inject CWR. */
369 		if (skb->len != tcp_header_len &&
370 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
371 			INET_ECN_xmit(sk);
372 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
373 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
374 				th->cwr = 1;
375 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
376 			}
377 		} else if (!tcp_ca_needs_ecn(sk)) {
378 			/* ACK or retransmitted segment: clear ECT|CE */
379 			INET_ECN_dontxmit(sk);
380 		}
381 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
382 			th->ece = 1;
383 	}
384 }
385 
386 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
387  * auto increment end seqno.
388  */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)389 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
390 {
391 	skb->ip_summed = CHECKSUM_PARTIAL;
392 
393 	TCP_SKB_CB(skb)->tcp_flags = flags;
394 
395 	tcp_skb_pcount_set(skb, 1);
396 
397 	TCP_SKB_CB(skb)->seq = seq;
398 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
399 		seq++;
400 	TCP_SKB_CB(skb)->end_seq = seq;
401 }
402 
tcp_urg_mode(const struct tcp_sock * tp)403 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
404 {
405 	return tp->snd_una != tp->snd_up;
406 }
407 
408 #define OPTION_SACK_ADVERTISE	BIT(0)
409 #define OPTION_TS		BIT(1)
410 #define OPTION_MD5		BIT(2)
411 #define OPTION_WSCALE		BIT(3)
412 #define OPTION_FAST_OPEN_COOKIE	BIT(8)
413 #define OPTION_SMC		BIT(9)
414 #define OPTION_MPTCP		BIT(10)
415 
smc_options_write(__be32 * ptr,u16 * options)416 static void smc_options_write(__be32 *ptr, u16 *options)
417 {
418 #if IS_ENABLED(CONFIG_SMC)
419 	if (static_branch_unlikely(&tcp_have_smc)) {
420 		if (unlikely(OPTION_SMC & *options)) {
421 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
422 				       (TCPOPT_NOP  << 16) |
423 				       (TCPOPT_EXP <<  8) |
424 				       (TCPOLEN_EXP_SMC_BASE));
425 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
426 		}
427 	}
428 #endif
429 }
430 
431 struct tcp_out_options {
432 	u16 options;		/* bit field of OPTION_* */
433 	u16 mss;		/* 0 to disable */
434 	u8 ws;			/* window scale, 0 to disable */
435 	u8 num_sack_blocks;	/* number of SACK blocks to include */
436 	u8 hash_size;		/* bytes in hash_location */
437 	u8 bpf_opt_len;		/* length of BPF hdr option */
438 	__u8 *hash_location;	/* temporary pointer, overloaded */
439 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
440 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
441 	struct mptcp_out_options mptcp;
442 };
443 
mptcp_options_write(struct tcphdr * th,__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)444 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
445 				struct tcp_sock *tp,
446 				struct tcp_out_options *opts)
447 {
448 #if IS_ENABLED(CONFIG_MPTCP)
449 	if (unlikely(OPTION_MPTCP & opts->options))
450 		mptcp_write_options(th, ptr, tp, &opts->mptcp);
451 #endif
452 }
453 
454 #ifdef CONFIG_CGROUP_BPF
bpf_skops_write_hdr_opt_arg0(struct sk_buff * skb,enum tcp_synack_type synack_type)455 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
456 					enum tcp_synack_type synack_type)
457 {
458 	if (unlikely(!skb))
459 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
460 
461 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
462 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
463 
464 	return 0;
465 }
466 
467 /* req, syn_skb and synack_type are used when writing synack */
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)468 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
469 				  struct request_sock *req,
470 				  struct sk_buff *syn_skb,
471 				  enum tcp_synack_type synack_type,
472 				  struct tcp_out_options *opts,
473 				  unsigned int *remaining)
474 {
475 	struct bpf_sock_ops_kern sock_ops;
476 	int err;
477 
478 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
479 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
480 	    !*remaining)
481 		return;
482 
483 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
484 
485 	/* init sock_ops */
486 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
487 
488 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
489 
490 	if (req) {
491 		/* The listen "sk" cannot be passed here because
492 		 * it is not locked.  It would not make too much
493 		 * sense to do bpf_setsockopt(listen_sk) based
494 		 * on individual connection request also.
495 		 *
496 		 * Thus, "req" is passed here and the cgroup-bpf-progs
497 		 * of the listen "sk" will be run.
498 		 *
499 		 * "req" is also used here for fastopen even the "sk" here is
500 		 * a fullsock "child" sk.  It is to keep the behavior
501 		 * consistent between fastopen and non-fastopen on
502 		 * the bpf programming side.
503 		 */
504 		sock_ops.sk = (struct sock *)req;
505 		sock_ops.syn_skb = syn_skb;
506 	} else {
507 		sock_owned_by_me(sk);
508 
509 		sock_ops.is_fullsock = 1;
510 		sock_ops.sk = sk;
511 	}
512 
513 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
514 	sock_ops.remaining_opt_len = *remaining;
515 	/* tcp_current_mss() does not pass a skb */
516 	if (skb)
517 		bpf_skops_init_skb(&sock_ops, skb, 0);
518 
519 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
520 
521 	if (err || sock_ops.remaining_opt_len == *remaining)
522 		return;
523 
524 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
525 	/* round up to 4 bytes */
526 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
527 
528 	*remaining -= opts->bpf_opt_len;
529 }
530 
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)531 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
532 				    struct request_sock *req,
533 				    struct sk_buff *syn_skb,
534 				    enum tcp_synack_type synack_type,
535 				    struct tcp_out_options *opts)
536 {
537 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
538 	struct bpf_sock_ops_kern sock_ops;
539 	int err;
540 
541 	if (likely(!max_opt_len))
542 		return;
543 
544 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
545 
546 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
547 
548 	if (req) {
549 		sock_ops.sk = (struct sock *)req;
550 		sock_ops.syn_skb = syn_skb;
551 	} else {
552 		sock_owned_by_me(sk);
553 
554 		sock_ops.is_fullsock = 1;
555 		sock_ops.sk = sk;
556 	}
557 
558 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
559 	sock_ops.remaining_opt_len = max_opt_len;
560 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
561 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
562 
563 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
564 
565 	if (err)
566 		nr_written = 0;
567 	else
568 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
569 
570 	if (nr_written < max_opt_len)
571 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
572 		       max_opt_len - nr_written);
573 }
574 #else
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)575 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
576 				  struct request_sock *req,
577 				  struct sk_buff *syn_skb,
578 				  enum tcp_synack_type synack_type,
579 				  struct tcp_out_options *opts,
580 				  unsigned int *remaining)
581 {
582 }
583 
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)584 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
585 				    struct request_sock *req,
586 				    struct sk_buff *syn_skb,
587 				    enum tcp_synack_type synack_type,
588 				    struct tcp_out_options *opts)
589 {
590 }
591 #endif
592 
593 /* Write previously computed TCP options to the packet.
594  *
595  * Beware: Something in the Internet is very sensitive to the ordering of
596  * TCP options, we learned this through the hard way, so be careful here.
597  * Luckily we can at least blame others for their non-compliance but from
598  * inter-operability perspective it seems that we're somewhat stuck with
599  * the ordering which we have been using if we want to keep working with
600  * those broken things (not that it currently hurts anybody as there isn't
601  * particular reason why the ordering would need to be changed).
602  *
603  * At least SACK_PERM as the first option is known to lead to a disaster
604  * (but it may well be that other scenarios fail similarly).
605  */
tcp_options_write(struct tcphdr * th,struct tcp_sock * tp,struct tcp_out_options * opts)606 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
607 			      struct tcp_out_options *opts)
608 {
609 	__be32 *ptr = (__be32 *)(th + 1);
610 	u16 options = opts->options;	/* mungable copy */
611 
612 	if (unlikely(OPTION_MD5 & options)) {
613 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
614 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
615 		/* overload cookie hash location */
616 		opts->hash_location = (__u8 *)ptr;
617 		ptr += 4;
618 	}
619 
620 	if (unlikely(opts->mss)) {
621 		*ptr++ = htonl((TCPOPT_MSS << 24) |
622 			       (TCPOLEN_MSS << 16) |
623 			       opts->mss);
624 	}
625 
626 	if (likely(OPTION_TS & options)) {
627 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
628 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
629 				       (TCPOLEN_SACK_PERM << 16) |
630 				       (TCPOPT_TIMESTAMP << 8) |
631 				       TCPOLEN_TIMESTAMP);
632 			options &= ~OPTION_SACK_ADVERTISE;
633 		} else {
634 			*ptr++ = htonl((TCPOPT_NOP << 24) |
635 				       (TCPOPT_NOP << 16) |
636 				       (TCPOPT_TIMESTAMP << 8) |
637 				       TCPOLEN_TIMESTAMP);
638 		}
639 		*ptr++ = htonl(opts->tsval);
640 		*ptr++ = htonl(opts->tsecr);
641 	}
642 
643 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
644 		*ptr++ = htonl((TCPOPT_NOP << 24) |
645 			       (TCPOPT_NOP << 16) |
646 			       (TCPOPT_SACK_PERM << 8) |
647 			       TCPOLEN_SACK_PERM);
648 	}
649 
650 	if (unlikely(OPTION_WSCALE & options)) {
651 		*ptr++ = htonl((TCPOPT_NOP << 24) |
652 			       (TCPOPT_WINDOW << 16) |
653 			       (TCPOLEN_WINDOW << 8) |
654 			       opts->ws);
655 	}
656 
657 	if (unlikely(opts->num_sack_blocks)) {
658 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
659 			tp->duplicate_sack : tp->selective_acks;
660 		int this_sack;
661 
662 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
663 			       (TCPOPT_NOP  << 16) |
664 			       (TCPOPT_SACK <<  8) |
665 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
666 						     TCPOLEN_SACK_PERBLOCK)));
667 
668 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
669 		     ++this_sack) {
670 			*ptr++ = htonl(sp[this_sack].start_seq);
671 			*ptr++ = htonl(sp[this_sack].end_seq);
672 		}
673 
674 		tp->rx_opt.dsack = 0;
675 	}
676 
677 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
678 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
679 		u8 *p = (u8 *)ptr;
680 		u32 len; /* Fast Open option length */
681 
682 		if (foc->exp) {
683 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
684 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
685 				     TCPOPT_FASTOPEN_MAGIC);
686 			p += TCPOLEN_EXP_FASTOPEN_BASE;
687 		} else {
688 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
689 			*p++ = TCPOPT_FASTOPEN;
690 			*p++ = len;
691 		}
692 
693 		memcpy(p, foc->val, foc->len);
694 		if ((len & 3) == 2) {
695 			p[foc->len] = TCPOPT_NOP;
696 			p[foc->len + 1] = TCPOPT_NOP;
697 		}
698 		ptr += (len + 3) >> 2;
699 	}
700 
701 	smc_options_write(ptr, &options);
702 
703 	mptcp_options_write(th, ptr, tp, opts);
704 }
705 
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)706 static void smc_set_option(const struct tcp_sock *tp,
707 			   struct tcp_out_options *opts,
708 			   unsigned int *remaining)
709 {
710 #if IS_ENABLED(CONFIG_SMC)
711 	if (static_branch_unlikely(&tcp_have_smc)) {
712 		if (tp->syn_smc) {
713 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
714 				opts->options |= OPTION_SMC;
715 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
716 			}
717 		}
718 	}
719 #endif
720 }
721 
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)722 static void smc_set_option_cond(const struct tcp_sock *tp,
723 				const struct inet_request_sock *ireq,
724 				struct tcp_out_options *opts,
725 				unsigned int *remaining)
726 {
727 #if IS_ENABLED(CONFIG_SMC)
728 	if (static_branch_unlikely(&tcp_have_smc)) {
729 		if (tp->syn_smc && ireq->smc_ok) {
730 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
731 				opts->options |= OPTION_SMC;
732 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
733 			}
734 		}
735 	}
736 #endif
737 }
738 
mptcp_set_option_cond(const struct request_sock * req,struct tcp_out_options * opts,unsigned int * remaining)739 static void mptcp_set_option_cond(const struct request_sock *req,
740 				  struct tcp_out_options *opts,
741 				  unsigned int *remaining)
742 {
743 	if (rsk_is_mptcp(req)) {
744 		unsigned int size;
745 
746 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
747 			if (*remaining >= size) {
748 				opts->options |= OPTION_MPTCP;
749 				*remaining -= size;
750 			}
751 		}
752 	}
753 }
754 
755 /* Compute TCP options for SYN packets. This is not the final
756  * network wire format yet.
757  */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)758 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
759 				struct tcp_out_options *opts,
760 				struct tcp_md5sig_key **md5)
761 {
762 	struct tcp_sock *tp = tcp_sk(sk);
763 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
764 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
765 
766 	*md5 = NULL;
767 #ifdef CONFIG_TCP_MD5SIG
768 	if (static_branch_unlikely(&tcp_md5_needed) &&
769 	    rcu_access_pointer(tp->md5sig_info)) {
770 		*md5 = tp->af_specific->md5_lookup(sk, sk);
771 		if (*md5) {
772 			opts->options |= OPTION_MD5;
773 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
774 		}
775 	}
776 #endif
777 
778 	/* We always get an MSS option.  The option bytes which will be seen in
779 	 * normal data packets should timestamps be used, must be in the MSS
780 	 * advertised.  But we subtract them from tp->mss_cache so that
781 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
782 	 * fact here if necessary.  If we don't do this correctly, as a
783 	 * receiver we won't recognize data packets as being full sized when we
784 	 * should, and thus we won't abide by the delayed ACK rules correctly.
785 	 * SACKs don't matter, we never delay an ACK when we have any of those
786 	 * going out.  */
787 	opts->mss = tcp_advertise_mss(sk);
788 	remaining -= TCPOLEN_MSS_ALIGNED;
789 
790 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) {
791 		opts->options |= OPTION_TS;
792 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
793 		opts->tsecr = tp->rx_opt.ts_recent;
794 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
795 	}
796 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
797 		opts->ws = tp->rx_opt.rcv_wscale;
798 		opts->options |= OPTION_WSCALE;
799 		remaining -= TCPOLEN_WSCALE_ALIGNED;
800 	}
801 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
802 		opts->options |= OPTION_SACK_ADVERTISE;
803 		if (unlikely(!(OPTION_TS & opts->options)))
804 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
805 	}
806 
807 	if (fastopen && fastopen->cookie.len >= 0) {
808 		u32 need = fastopen->cookie.len;
809 
810 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
811 					       TCPOLEN_FASTOPEN_BASE;
812 		need = (need + 3) & ~3U;  /* Align to 32 bits */
813 		if (remaining >= need) {
814 			opts->options |= OPTION_FAST_OPEN_COOKIE;
815 			opts->fastopen_cookie = &fastopen->cookie;
816 			remaining -= need;
817 			tp->syn_fastopen = 1;
818 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
819 		}
820 	}
821 
822 	smc_set_option(tp, opts, &remaining);
823 
824 	if (sk_is_mptcp(sk)) {
825 		unsigned int size;
826 
827 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
828 			opts->options |= OPTION_MPTCP;
829 			remaining -= size;
830 		}
831 	}
832 
833 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
834 
835 	return MAX_TCP_OPTION_SPACE - remaining;
836 }
837 
838 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_md5sig_key * md5,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)839 static unsigned int tcp_synack_options(const struct sock *sk,
840 				       struct request_sock *req,
841 				       unsigned int mss, struct sk_buff *skb,
842 				       struct tcp_out_options *opts,
843 				       const struct tcp_md5sig_key *md5,
844 				       struct tcp_fastopen_cookie *foc,
845 				       enum tcp_synack_type synack_type,
846 				       struct sk_buff *syn_skb)
847 {
848 	struct inet_request_sock *ireq = inet_rsk(req);
849 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
850 
851 #ifdef CONFIG_TCP_MD5SIG
852 	if (md5) {
853 		opts->options |= OPTION_MD5;
854 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
855 
856 		/* We can't fit any SACK blocks in a packet with MD5 + TS
857 		 * options. There was discussion about disabling SACK
858 		 * rather than TS in order to fit in better with old,
859 		 * buggy kernels, but that was deemed to be unnecessary.
860 		 */
861 		if (synack_type != TCP_SYNACK_COOKIE)
862 			ireq->tstamp_ok &= !ireq->sack_ok;
863 	}
864 #endif
865 
866 	/* We always send an MSS option. */
867 	opts->mss = mss;
868 	remaining -= TCPOLEN_MSS_ALIGNED;
869 
870 	if (likely(ireq->wscale_ok)) {
871 		opts->ws = ireq->rcv_wscale;
872 		opts->options |= OPTION_WSCALE;
873 		remaining -= TCPOLEN_WSCALE_ALIGNED;
874 	}
875 	if (likely(ireq->tstamp_ok)) {
876 		opts->options |= OPTION_TS;
877 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
878 		opts->tsecr = READ_ONCE(req->ts_recent);
879 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
880 	}
881 	if (likely(ireq->sack_ok)) {
882 		opts->options |= OPTION_SACK_ADVERTISE;
883 		if (unlikely(!ireq->tstamp_ok))
884 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
885 	}
886 	if (foc != NULL && foc->len >= 0) {
887 		u32 need = foc->len;
888 
889 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
890 				   TCPOLEN_FASTOPEN_BASE;
891 		need = (need + 3) & ~3U;  /* Align to 32 bits */
892 		if (remaining >= need) {
893 			opts->options |= OPTION_FAST_OPEN_COOKIE;
894 			opts->fastopen_cookie = foc;
895 			remaining -= need;
896 		}
897 	}
898 
899 	mptcp_set_option_cond(req, opts, &remaining);
900 
901 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
902 
903 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
904 			      synack_type, opts, &remaining);
905 
906 	return MAX_TCP_OPTION_SPACE - remaining;
907 }
908 
909 /* Compute TCP options for ESTABLISHED sockets. This is not the
910  * final wire format yet.
911  */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)912 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
913 					struct tcp_out_options *opts,
914 					struct tcp_md5sig_key **md5)
915 {
916 	struct tcp_sock *tp = tcp_sk(sk);
917 	unsigned int size = 0;
918 	unsigned int eff_sacks;
919 
920 	opts->options = 0;
921 
922 	*md5 = NULL;
923 #ifdef CONFIG_TCP_MD5SIG
924 	if (static_branch_unlikely(&tcp_md5_needed) &&
925 	    rcu_access_pointer(tp->md5sig_info)) {
926 		*md5 = tp->af_specific->md5_lookup(sk, sk);
927 		if (*md5) {
928 			opts->options |= OPTION_MD5;
929 			size += TCPOLEN_MD5SIG_ALIGNED;
930 		}
931 	}
932 #endif
933 
934 	if (likely(tp->rx_opt.tstamp_ok)) {
935 		opts->options |= OPTION_TS;
936 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
937 		opts->tsecr = tp->rx_opt.ts_recent;
938 		size += TCPOLEN_TSTAMP_ALIGNED;
939 	}
940 
941 	/* MPTCP options have precedence over SACK for the limited TCP
942 	 * option space because a MPTCP connection would be forced to
943 	 * fall back to regular TCP if a required multipath option is
944 	 * missing. SACK still gets a chance to use whatever space is
945 	 * left.
946 	 */
947 	if (sk_is_mptcp(sk)) {
948 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
949 		unsigned int opt_size = 0;
950 
951 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
952 					      &opts->mptcp)) {
953 			opts->options |= OPTION_MPTCP;
954 			size += opt_size;
955 		}
956 	}
957 
958 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
959 	if (unlikely(eff_sacks)) {
960 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
961 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
962 					 TCPOLEN_SACK_PERBLOCK))
963 			return size;
964 
965 		opts->num_sack_blocks =
966 			min_t(unsigned int, eff_sacks,
967 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
968 			      TCPOLEN_SACK_PERBLOCK);
969 
970 		size += TCPOLEN_SACK_BASE_ALIGNED +
971 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
972 	}
973 
974 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
975 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
976 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
977 
978 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
979 
980 		size = MAX_TCP_OPTION_SPACE - remaining;
981 	}
982 
983 	return size;
984 }
985 
986 
987 /* TCP SMALL QUEUES (TSQ)
988  *
989  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
990  * to reduce RTT and bufferbloat.
991  * We do this using a special skb destructor (tcp_wfree).
992  *
993  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
994  * needs to be reallocated in a driver.
995  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
996  *
997  * Since transmit from skb destructor is forbidden, we use a tasklet
998  * to process all sockets that eventually need to send more skbs.
999  * We use one tasklet per cpu, with its own queue of sockets.
1000  */
1001 struct tsq_tasklet {
1002 	struct tasklet_struct	tasklet;
1003 	struct list_head	head; /* queue of tcp sockets */
1004 };
1005 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1006 
tcp_tsq_write(struct sock * sk)1007 static void tcp_tsq_write(struct sock *sk)
1008 {
1009 	if ((1 << sk->sk_state) &
1010 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1011 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1012 		struct tcp_sock *tp = tcp_sk(sk);
1013 
1014 		if (tp->lost_out > tp->retrans_out &&
1015 		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1016 			tcp_mstamp_refresh(tp);
1017 			tcp_xmit_retransmit_queue(sk);
1018 		}
1019 
1020 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1021 			       0, GFP_ATOMIC);
1022 	}
1023 }
1024 
tcp_tsq_handler(struct sock * sk)1025 static void tcp_tsq_handler(struct sock *sk)
1026 {
1027 	bh_lock_sock(sk);
1028 	if (!sock_owned_by_user(sk))
1029 		tcp_tsq_write(sk);
1030 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1031 		sock_hold(sk);
1032 	bh_unlock_sock(sk);
1033 }
1034 /*
1035  * One tasklet per cpu tries to send more skbs.
1036  * We run in tasklet context but need to disable irqs when
1037  * transferring tsq->head because tcp_wfree() might
1038  * interrupt us (non NAPI drivers)
1039  */
tcp_tasklet_func(struct tasklet_struct * t)1040 static void tcp_tasklet_func(struct tasklet_struct *t)
1041 {
1042 	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1043 	LIST_HEAD(list);
1044 	unsigned long flags;
1045 	struct list_head *q, *n;
1046 	struct tcp_sock *tp;
1047 	struct sock *sk;
1048 
1049 	local_irq_save(flags);
1050 	list_splice_init(&tsq->head, &list);
1051 	local_irq_restore(flags);
1052 
1053 	list_for_each_safe(q, n, &list) {
1054 		tp = list_entry(q, struct tcp_sock, tsq_node);
1055 		list_del(&tp->tsq_node);
1056 
1057 		sk = (struct sock *)tp;
1058 		smp_mb__before_atomic();
1059 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1060 
1061 		tcp_tsq_handler(sk);
1062 		sk_free(sk);
1063 	}
1064 }
1065 
1066 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1067 			  TCPF_WRITE_TIMER_DEFERRED |	\
1068 			  TCPF_DELACK_TIMER_DEFERRED |	\
1069 			  TCPF_MTU_REDUCED_DEFERRED)
1070 /**
1071  * tcp_release_cb - tcp release_sock() callback
1072  * @sk: socket
1073  *
1074  * called from release_sock() to perform protocol dependent
1075  * actions before socket release.
1076  */
tcp_release_cb(struct sock * sk)1077 void tcp_release_cb(struct sock *sk)
1078 {
1079 	unsigned long flags, nflags;
1080 
1081 	/* perform an atomic operation only if at least one flag is set */
1082 	do {
1083 		flags = sk->sk_tsq_flags;
1084 		if (!(flags & TCP_DEFERRED_ALL))
1085 			return;
1086 		nflags = flags & ~TCP_DEFERRED_ALL;
1087 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
1088 
1089 	if (flags & TCPF_TSQ_DEFERRED) {
1090 		tcp_tsq_write(sk);
1091 		__sock_put(sk);
1092 	}
1093 	/* Here begins the tricky part :
1094 	 * We are called from release_sock() with :
1095 	 * 1) BH disabled
1096 	 * 2) sk_lock.slock spinlock held
1097 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
1098 	 *
1099 	 * But following code is meant to be called from BH handlers,
1100 	 * so we should keep BH disabled, but early release socket ownership
1101 	 */
1102 	sock_release_ownership(sk);
1103 
1104 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1105 		tcp_write_timer_handler(sk);
1106 		__sock_put(sk);
1107 	}
1108 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1109 		tcp_delack_timer_handler(sk);
1110 		__sock_put(sk);
1111 	}
1112 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1113 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1114 		__sock_put(sk);
1115 	}
1116 }
1117 EXPORT_SYMBOL(tcp_release_cb);
1118 
tcp_tasklet_init(void)1119 void __init tcp_tasklet_init(void)
1120 {
1121 	int i;
1122 
1123 	for_each_possible_cpu(i) {
1124 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1125 
1126 		INIT_LIST_HEAD(&tsq->head);
1127 		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1128 	}
1129 }
1130 
1131 /*
1132  * Write buffer destructor automatically called from kfree_skb.
1133  * We can't xmit new skbs from this context, as we might already
1134  * hold qdisc lock.
1135  */
tcp_wfree(struct sk_buff * skb)1136 void tcp_wfree(struct sk_buff *skb)
1137 {
1138 	struct sock *sk = skb->sk;
1139 	struct tcp_sock *tp = tcp_sk(sk);
1140 	unsigned long flags, nval, oval;
1141 
1142 	/* Keep one reference on sk_wmem_alloc.
1143 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1144 	 */
1145 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1146 
1147 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1148 	 * Wait until our queues (qdisc + devices) are drained.
1149 	 * This gives :
1150 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1151 	 * - chance for incoming ACK (processed by another cpu maybe)
1152 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1153 	 */
1154 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1155 		goto out;
1156 
1157 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1158 		struct tsq_tasklet *tsq;
1159 		bool empty;
1160 
1161 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1162 			goto out;
1163 
1164 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1165 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1166 		if (nval != oval)
1167 			continue;
1168 
1169 		/* queue this socket to tasklet queue */
1170 		local_irq_save(flags);
1171 		tsq = this_cpu_ptr(&tsq_tasklet);
1172 		empty = list_empty(&tsq->head);
1173 		list_add(&tp->tsq_node, &tsq->head);
1174 		if (empty)
1175 			tasklet_schedule(&tsq->tasklet);
1176 		local_irq_restore(flags);
1177 		return;
1178 	}
1179 out:
1180 	sk_free(sk);
1181 }
1182 
1183 /* Note: Called under soft irq.
1184  * We can call TCP stack right away, unless socket is owned by user.
1185  */
tcp_pace_kick(struct hrtimer * timer)1186 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1187 {
1188 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1189 	struct sock *sk = (struct sock *)tp;
1190 
1191 	tcp_tsq_handler(sk);
1192 	sock_put(sk);
1193 
1194 	return HRTIMER_NORESTART;
1195 }
1196 
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)1197 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1198 				      u64 prior_wstamp)
1199 {
1200 	struct tcp_sock *tp = tcp_sk(sk);
1201 
1202 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1203 		unsigned long rate = sk->sk_pacing_rate;
1204 
1205 		/* Original sch_fq does not pace first 10 MSS
1206 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1207 		 * this is a minor annoyance.
1208 		 */
1209 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1210 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1211 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1212 
1213 			/* take into account OS jitter */
1214 			len_ns -= min_t(u64, len_ns / 2, credit);
1215 			tp->tcp_wstamp_ns += len_ns;
1216 		}
1217 	}
1218 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1219 }
1220 
1221 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1222 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1223 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1224 
1225 /* This routine actually transmits TCP packets queued in by
1226  * tcp_do_sendmsg().  This is used by both the initial
1227  * transmission and possible later retransmissions.
1228  * All SKB's seen here are completely headerless.  It is our
1229  * job to build the TCP header, and pass the packet down to
1230  * IP so it can do the same plus pass the packet off to the
1231  * device.
1232  *
1233  * We are working here with either a clone of the original
1234  * SKB, or a fresh unique copy made by the retransmit engine.
1235  */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1236 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1237 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1238 {
1239 	const struct inet_connection_sock *icsk = inet_csk(sk);
1240 	struct inet_sock *inet;
1241 	struct tcp_sock *tp;
1242 	struct tcp_skb_cb *tcb;
1243 	struct tcp_out_options opts;
1244 	unsigned int tcp_options_size, tcp_header_size;
1245 	struct sk_buff *oskb = NULL;
1246 	struct tcp_md5sig_key *md5;
1247 	struct tcphdr *th;
1248 	u64 prior_wstamp;
1249 	int err;
1250 
1251 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1252 	tp = tcp_sk(sk);
1253 	prior_wstamp = tp->tcp_wstamp_ns;
1254 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1255 	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1256 	if (clone_it) {
1257 		oskb = skb;
1258 
1259 		tcp_skb_tsorted_save(oskb) {
1260 			if (unlikely(skb_cloned(oskb)))
1261 				skb = pskb_copy(oskb, gfp_mask);
1262 			else
1263 				skb = skb_clone(oskb, gfp_mask);
1264 		} tcp_skb_tsorted_restore(oskb);
1265 
1266 		if (unlikely(!skb))
1267 			return -ENOBUFS;
1268 		/* retransmit skbs might have a non zero value in skb->dev
1269 		 * because skb->dev is aliased with skb->rbnode.rb_left
1270 		 */
1271 		skb->dev = NULL;
1272 	}
1273 
1274 	inet = inet_sk(sk);
1275 	tcb = TCP_SKB_CB(skb);
1276 	memset(&opts, 0, sizeof(opts));
1277 
1278 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1279 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1280 	} else {
1281 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1282 							   &md5);
1283 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1284 		 * at receiver : This slightly improve GRO performance.
1285 		 * Note that we do not force the PSH flag for non GSO packets,
1286 		 * because they might be sent under high congestion events,
1287 		 * and in this case it is better to delay the delivery of 1-MSS
1288 		 * packets and thus the corresponding ACK packet that would
1289 		 * release the following packet.
1290 		 */
1291 		if (tcp_skb_pcount(skb) > 1)
1292 			tcb->tcp_flags |= TCPHDR_PSH;
1293 	}
1294 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1295 
1296 	/* if no packet is in qdisc/device queue, then allow XPS to select
1297 	 * another queue. We can be called from tcp_tsq_handler()
1298 	 * which holds one reference to sk.
1299 	 *
1300 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1301 	 * One way to get this would be to set skb->truesize = 2 on them.
1302 	 */
1303 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1304 
1305 	/* If we had to use memory reserve to allocate this skb,
1306 	 * this might cause drops if packet is looped back :
1307 	 * Other socket might not have SOCK_MEMALLOC.
1308 	 * Packets not looped back do not care about pfmemalloc.
1309 	 */
1310 	skb->pfmemalloc = 0;
1311 
1312 	skb_push(skb, tcp_header_size);
1313 	skb_reset_transport_header(skb);
1314 
1315 	skb_orphan(skb);
1316 	skb->sk = sk;
1317 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1318 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1319 
1320 	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1321 
1322 	/* Build TCP header and checksum it. */
1323 	th = (struct tcphdr *)skb->data;
1324 	th->source		= inet->inet_sport;
1325 	th->dest		= inet->inet_dport;
1326 	th->seq			= htonl(tcb->seq);
1327 	th->ack_seq		= htonl(rcv_nxt);
1328 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1329 					tcb->tcp_flags);
1330 
1331 	th->check		= 0;
1332 	th->urg_ptr		= 0;
1333 
1334 	/* The urg_mode check is necessary during a below snd_una win probe */
1335 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1336 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1337 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1338 			th->urg = 1;
1339 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1340 			th->urg_ptr = htons(0xFFFF);
1341 			th->urg = 1;
1342 		}
1343 	}
1344 
1345 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1346 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1347 		th->window      = htons(tcp_select_window(sk));
1348 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1349 	} else {
1350 		/* RFC1323: The window in SYN & SYN/ACK segments
1351 		 * is never scaled.
1352 		 */
1353 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1354 	}
1355 
1356 	tcp_options_write(th, tp, &opts);
1357 
1358 #ifdef CONFIG_TCP_MD5SIG
1359 	/* Calculate the MD5 hash, as we have all we need now */
1360 	if (md5) {
1361 		sk_gso_disable(sk);
1362 		tp->af_specific->calc_md5_hash(opts.hash_location,
1363 					       md5, sk, skb);
1364 	}
1365 #endif
1366 
1367 	/* BPF prog is the last one writing header option */
1368 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1369 
1370 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1371 			   tcp_v6_send_check, tcp_v4_send_check,
1372 			   sk, skb);
1373 
1374 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1375 		tcp_event_ack_sent(sk, rcv_nxt);
1376 
1377 	if (skb->len != tcp_header_size) {
1378 		tcp_event_data_sent(tp, sk);
1379 		tp->data_segs_out += tcp_skb_pcount(skb);
1380 		tp->bytes_sent += skb->len - tcp_header_size;
1381 	}
1382 
1383 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1384 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1385 			      tcp_skb_pcount(skb));
1386 
1387 	tp->segs_out += tcp_skb_pcount(skb);
1388 	skb_set_hash_from_sk(skb, sk);
1389 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1390 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1391 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1392 
1393 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1394 
1395 	/* Cleanup our debris for IP stacks */
1396 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1397 			       sizeof(struct inet6_skb_parm)));
1398 
1399 	tcp_add_tx_delay(skb, tp);
1400 
1401 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1402 				 inet6_csk_xmit, ip_queue_xmit,
1403 				 sk, skb, &inet->cork.fl);
1404 
1405 	if (unlikely(err > 0)) {
1406 		tcp_enter_cwr(sk);
1407 		err = net_xmit_eval(err);
1408 	}
1409 	if (!err && oskb) {
1410 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1411 		tcp_rate_skb_sent(sk, oskb);
1412 	}
1413 	return err;
1414 }
1415 
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1416 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1417 			    gfp_t gfp_mask)
1418 {
1419 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1420 				  tcp_sk(sk)->rcv_nxt);
1421 }
1422 
1423 /* This routine just queues the buffer for sending.
1424  *
1425  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1426  * otherwise socket can stall.
1427  */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1428 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1429 {
1430 	struct tcp_sock *tp = tcp_sk(sk);
1431 
1432 	/* Advance write_seq and place onto the write_queue. */
1433 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1434 	__skb_header_release(skb);
1435 	tcp_add_write_queue_tail(sk, skb);
1436 	sk_wmem_queued_add(sk, skb->truesize);
1437 	sk_mem_charge(sk, skb->truesize);
1438 }
1439 
1440 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1441 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1442 {
1443 	if (skb->len <= mss_now) {
1444 		/* Avoid the costly divide in the normal
1445 		 * non-TSO case.
1446 		 */
1447 		tcp_skb_pcount_set(skb, 1);
1448 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1449 	} else {
1450 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1451 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1452 	}
1453 }
1454 
1455 /* Pcount in the middle of the write queue got changed, we need to do various
1456  * tweaks to fix counters
1457  */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1458 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1459 {
1460 	struct tcp_sock *tp = tcp_sk(sk);
1461 
1462 	tp->packets_out -= decr;
1463 
1464 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1465 		tp->sacked_out -= decr;
1466 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1467 		tp->retrans_out -= decr;
1468 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1469 		tp->lost_out -= decr;
1470 
1471 	/* Reno case is special. Sigh... */
1472 	if (tcp_is_reno(tp) && decr > 0)
1473 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1474 
1475 	if (tp->lost_skb_hint &&
1476 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1477 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1478 		tp->lost_cnt_hint -= decr;
1479 
1480 	tcp_verify_left_out(tp);
1481 }
1482 
tcp_has_tx_tstamp(const struct sk_buff * skb)1483 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1484 {
1485 	return TCP_SKB_CB(skb)->txstamp_ack ||
1486 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1487 }
1488 
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1489 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1490 {
1491 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1492 
1493 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1494 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1495 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1496 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1497 
1498 		shinfo->tx_flags &= ~tsflags;
1499 		shinfo2->tx_flags |= tsflags;
1500 		swap(shinfo->tskey, shinfo2->tskey);
1501 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1502 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1503 	}
1504 }
1505 
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1506 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1507 {
1508 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1509 	TCP_SKB_CB(skb)->eor = 0;
1510 }
1511 
1512 /* Insert buff after skb on the write or rtx queue of sk.  */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1513 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1514 					 struct sk_buff *buff,
1515 					 struct sock *sk,
1516 					 enum tcp_queue tcp_queue)
1517 {
1518 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1519 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1520 	else
1521 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1522 }
1523 
1524 /* Function to create two new TCP segments.  Shrinks the given segment
1525  * to the specified size and appends a new segment with the rest of the
1526  * packet to the list.  This won't be called frequently, I hope.
1527  * Remember, these are still headerless SKBs at this point.
1528  */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1529 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1530 		 struct sk_buff *skb, u32 len,
1531 		 unsigned int mss_now, gfp_t gfp)
1532 {
1533 	struct tcp_sock *tp = tcp_sk(sk);
1534 	struct sk_buff *buff;
1535 	int nsize, old_factor;
1536 	long limit;
1537 	int nlen;
1538 	u8 flags;
1539 
1540 	if (WARN_ON(len > skb->len))
1541 		return -EINVAL;
1542 
1543 	nsize = skb_headlen(skb) - len;
1544 	if (nsize < 0)
1545 		nsize = 0;
1546 
1547 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1548 	 * We need some allowance to not penalize applications setting small
1549 	 * SO_SNDBUF values.
1550 	 * Also allow first and last skb in retransmit queue to be split.
1551 	 */
1552 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1553 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1554 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1555 		     skb != tcp_rtx_queue_head(sk) &&
1556 		     skb != tcp_rtx_queue_tail(sk))) {
1557 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1558 		return -ENOMEM;
1559 	}
1560 
1561 	if (skb_unclone_keeptruesize(skb, gfp))
1562 		return -ENOMEM;
1563 
1564 	/* Get a new skb... force flag on. */
1565 	buff = tcp_stream_alloc_skb(sk, nsize, gfp, true);
1566 	if (!buff)
1567 		return -ENOMEM; /* We'll just try again later. */
1568 	skb_copy_decrypted(buff, skb);
1569 	mptcp_skb_ext_copy(buff, skb);
1570 
1571 	sk_wmem_queued_add(sk, buff->truesize);
1572 	sk_mem_charge(sk, buff->truesize);
1573 	nlen = skb->len - len - nsize;
1574 	buff->truesize += nlen;
1575 	skb->truesize -= nlen;
1576 
1577 	/* Correct the sequence numbers. */
1578 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1579 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1580 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1581 
1582 	/* PSH and FIN should only be set in the second packet. */
1583 	flags = TCP_SKB_CB(skb)->tcp_flags;
1584 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1585 	TCP_SKB_CB(buff)->tcp_flags = flags;
1586 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1587 	tcp_skb_fragment_eor(skb, buff);
1588 
1589 	skb_split(skb, buff, len);
1590 
1591 	skb_set_delivery_time(buff, skb->tstamp, true);
1592 	tcp_fragment_tstamp(skb, buff);
1593 
1594 	old_factor = tcp_skb_pcount(skb);
1595 
1596 	/* Fix up tso_factor for both original and new SKB.  */
1597 	tcp_set_skb_tso_segs(skb, mss_now);
1598 	tcp_set_skb_tso_segs(buff, mss_now);
1599 
1600 	/* Update delivered info for the new segment */
1601 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1602 
1603 	/* If this packet has been sent out already, we must
1604 	 * adjust the various packet counters.
1605 	 */
1606 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1607 		int diff = old_factor - tcp_skb_pcount(skb) -
1608 			tcp_skb_pcount(buff);
1609 
1610 		if (diff)
1611 			tcp_adjust_pcount(sk, skb, diff);
1612 	}
1613 
1614 	/* Link BUFF into the send queue. */
1615 	__skb_header_release(buff);
1616 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1617 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1618 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1619 
1620 	return 0;
1621 }
1622 
1623 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1624  * data is not copied, but immediately discarded.
1625  */
__pskb_trim_head(struct sk_buff * skb,int len)1626 static int __pskb_trim_head(struct sk_buff *skb, int len)
1627 {
1628 	struct skb_shared_info *shinfo;
1629 	int i, k, eat;
1630 
1631 	eat = min_t(int, len, skb_headlen(skb));
1632 	if (eat) {
1633 		__skb_pull(skb, eat);
1634 		len -= eat;
1635 		if (!len)
1636 			return 0;
1637 	}
1638 	eat = len;
1639 	k = 0;
1640 	shinfo = skb_shinfo(skb);
1641 	for (i = 0; i < shinfo->nr_frags; i++) {
1642 		int size = skb_frag_size(&shinfo->frags[i]);
1643 
1644 		if (size <= eat) {
1645 			skb_frag_unref(skb, i);
1646 			eat -= size;
1647 		} else {
1648 			shinfo->frags[k] = shinfo->frags[i];
1649 			if (eat) {
1650 				skb_frag_off_add(&shinfo->frags[k], eat);
1651 				skb_frag_size_sub(&shinfo->frags[k], eat);
1652 				eat = 0;
1653 			}
1654 			k++;
1655 		}
1656 	}
1657 	shinfo->nr_frags = k;
1658 
1659 	skb->data_len -= len;
1660 	skb->len = skb->data_len;
1661 	return len;
1662 }
1663 
1664 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1665 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1666 {
1667 	u32 delta_truesize;
1668 
1669 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1670 		return -ENOMEM;
1671 
1672 	delta_truesize = __pskb_trim_head(skb, len);
1673 
1674 	TCP_SKB_CB(skb)->seq += len;
1675 
1676 	if (delta_truesize) {
1677 		skb->truesize	   -= delta_truesize;
1678 		sk_wmem_queued_add(sk, -delta_truesize);
1679 		if (!skb_zcopy_pure(skb))
1680 			sk_mem_uncharge(sk, delta_truesize);
1681 	}
1682 
1683 	/* Any change of skb->len requires recalculation of tso factor. */
1684 	if (tcp_skb_pcount(skb) > 1)
1685 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1686 
1687 	return 0;
1688 }
1689 
1690 /* Calculate MSS not accounting any TCP options.  */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1691 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1692 {
1693 	const struct tcp_sock *tp = tcp_sk(sk);
1694 	const struct inet_connection_sock *icsk = inet_csk(sk);
1695 	int mss_now;
1696 
1697 	/* Calculate base mss without TCP options:
1698 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1699 	 */
1700 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1701 
1702 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1703 	if (icsk->icsk_af_ops->net_frag_header_len) {
1704 		const struct dst_entry *dst = __sk_dst_get(sk);
1705 
1706 		if (dst && dst_allfrag(dst))
1707 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1708 	}
1709 
1710 	/* Clamp it (mss_clamp does not include tcp options) */
1711 	if (mss_now > tp->rx_opt.mss_clamp)
1712 		mss_now = tp->rx_opt.mss_clamp;
1713 
1714 	/* Now subtract optional transport overhead */
1715 	mss_now -= icsk->icsk_ext_hdr_len;
1716 
1717 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1718 	mss_now = max(mss_now,
1719 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1720 	return mss_now;
1721 }
1722 
1723 /* Calculate MSS. Not accounting for SACKs here.  */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1724 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1725 {
1726 	/* Subtract TCP options size, not including SACKs */
1727 	return __tcp_mtu_to_mss(sk, pmtu) -
1728 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1729 }
1730 EXPORT_SYMBOL(tcp_mtu_to_mss);
1731 
1732 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1733 int tcp_mss_to_mtu(struct sock *sk, int mss)
1734 {
1735 	const struct tcp_sock *tp = tcp_sk(sk);
1736 	const struct inet_connection_sock *icsk = inet_csk(sk);
1737 	int mtu;
1738 
1739 	mtu = mss +
1740 	      tp->tcp_header_len +
1741 	      icsk->icsk_ext_hdr_len +
1742 	      icsk->icsk_af_ops->net_header_len;
1743 
1744 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1745 	if (icsk->icsk_af_ops->net_frag_header_len) {
1746 		const struct dst_entry *dst = __sk_dst_get(sk);
1747 
1748 		if (dst && dst_allfrag(dst))
1749 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1750 	}
1751 	return mtu;
1752 }
1753 EXPORT_SYMBOL(tcp_mss_to_mtu);
1754 
1755 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1756 void tcp_mtup_init(struct sock *sk)
1757 {
1758 	struct tcp_sock *tp = tcp_sk(sk);
1759 	struct inet_connection_sock *icsk = inet_csk(sk);
1760 	struct net *net = sock_net(sk);
1761 
1762 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1763 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1764 			       icsk->icsk_af_ops->net_header_len;
1765 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1766 	icsk->icsk_mtup.probe_size = 0;
1767 	if (icsk->icsk_mtup.enabled)
1768 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1769 }
1770 EXPORT_SYMBOL(tcp_mtup_init);
1771 
1772 /* This function synchronize snd mss to current pmtu/exthdr set.
1773 
1774    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1775    for TCP options, but includes only bare TCP header.
1776 
1777    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1778    It is minimum of user_mss and mss received with SYN.
1779    It also does not include TCP options.
1780 
1781    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1782 
1783    tp->mss_cache is current effective sending mss, including
1784    all tcp options except for SACKs. It is evaluated,
1785    taking into account current pmtu, but never exceeds
1786    tp->rx_opt.mss_clamp.
1787 
1788    NOTE1. rfc1122 clearly states that advertised MSS
1789    DOES NOT include either tcp or ip options.
1790 
1791    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1792    are READ ONLY outside this function.		--ANK (980731)
1793  */
tcp_sync_mss(struct sock * sk,u32 pmtu)1794 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1795 {
1796 	struct tcp_sock *tp = tcp_sk(sk);
1797 	struct inet_connection_sock *icsk = inet_csk(sk);
1798 	int mss_now;
1799 
1800 	if (icsk->icsk_mtup.search_high > pmtu)
1801 		icsk->icsk_mtup.search_high = pmtu;
1802 
1803 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1804 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1805 
1806 	/* And store cached results */
1807 	icsk->icsk_pmtu_cookie = pmtu;
1808 	if (icsk->icsk_mtup.enabled)
1809 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1810 	tp->mss_cache = mss_now;
1811 
1812 	return mss_now;
1813 }
1814 EXPORT_SYMBOL(tcp_sync_mss);
1815 
1816 /* Compute the current effective MSS, taking SACKs and IP options,
1817  * and even PMTU discovery events into account.
1818  */
tcp_current_mss(struct sock * sk)1819 unsigned int tcp_current_mss(struct sock *sk)
1820 {
1821 	const struct tcp_sock *tp = tcp_sk(sk);
1822 	const struct dst_entry *dst = __sk_dst_get(sk);
1823 	u32 mss_now;
1824 	unsigned int header_len;
1825 	struct tcp_out_options opts;
1826 	struct tcp_md5sig_key *md5;
1827 
1828 	mss_now = tp->mss_cache;
1829 
1830 	if (dst) {
1831 		u32 mtu = dst_mtu(dst);
1832 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1833 			mss_now = tcp_sync_mss(sk, mtu);
1834 	}
1835 
1836 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1837 		     sizeof(struct tcphdr);
1838 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1839 	 * some common options. If this is an odd packet (because we have SACK
1840 	 * blocks etc) then our calculated header_len will be different, and
1841 	 * we have to adjust mss_now correspondingly */
1842 	if (header_len != tp->tcp_header_len) {
1843 		int delta = (int) header_len - tp->tcp_header_len;
1844 		mss_now -= delta;
1845 	}
1846 
1847 	return mss_now;
1848 }
1849 
1850 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1851  * As additional protections, we do not touch cwnd in retransmission phases,
1852  * and if application hit its sndbuf limit recently.
1853  */
tcp_cwnd_application_limited(struct sock * sk)1854 static void tcp_cwnd_application_limited(struct sock *sk)
1855 {
1856 	struct tcp_sock *tp = tcp_sk(sk);
1857 
1858 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1859 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1860 		/* Limited by application or receiver window. */
1861 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1862 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1863 		if (win_used < tcp_snd_cwnd(tp)) {
1864 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1865 			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1866 		}
1867 		tp->snd_cwnd_used = 0;
1868 	}
1869 	tp->snd_cwnd_stamp = tcp_jiffies32;
1870 }
1871 
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1872 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1873 {
1874 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1875 	struct tcp_sock *tp = tcp_sk(sk);
1876 
1877 	/* Track the strongest available signal of the degree to which the cwnd
1878 	 * is fully utilized. If cwnd-limited then remember that fact for the
1879 	 * current window. If not cwnd-limited then track the maximum number of
1880 	 * outstanding packets in the current window. (If cwnd-limited then we
1881 	 * chose to not update tp->max_packets_out to avoid an extra else
1882 	 * clause with no functional impact.)
1883 	 */
1884 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1885 	    is_cwnd_limited ||
1886 	    (!tp->is_cwnd_limited &&
1887 	     tp->packets_out > tp->max_packets_out)) {
1888 		tp->is_cwnd_limited = is_cwnd_limited;
1889 		tp->max_packets_out = tp->packets_out;
1890 		tp->cwnd_usage_seq = tp->snd_nxt;
1891 	}
1892 
1893 	if (tcp_is_cwnd_limited(sk)) {
1894 		/* Network is feed fully. */
1895 		tp->snd_cwnd_used = 0;
1896 		tp->snd_cwnd_stamp = tcp_jiffies32;
1897 	} else {
1898 		/* Network starves. */
1899 		if (tp->packets_out > tp->snd_cwnd_used)
1900 			tp->snd_cwnd_used = tp->packets_out;
1901 
1902 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1903 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1904 		    !ca_ops->cong_control)
1905 			tcp_cwnd_application_limited(sk);
1906 
1907 		/* The following conditions together indicate the starvation
1908 		 * is caused by insufficient sender buffer:
1909 		 * 1) just sent some data (see tcp_write_xmit)
1910 		 * 2) not cwnd limited (this else condition)
1911 		 * 3) no more data to send (tcp_write_queue_empty())
1912 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1913 		 */
1914 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1915 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1916 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1917 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1918 	}
1919 }
1920 
1921 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1922 static bool tcp_minshall_check(const struct tcp_sock *tp)
1923 {
1924 	return after(tp->snd_sml, tp->snd_una) &&
1925 		!after(tp->snd_sml, tp->snd_nxt);
1926 }
1927 
1928 /* Update snd_sml if this skb is under mss
1929  * Note that a TSO packet might end with a sub-mss segment
1930  * The test is really :
1931  * if ((skb->len % mss) != 0)
1932  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1933  * But we can avoid doing the divide again given we already have
1934  *  skb_pcount = skb->len / mss_now
1935  */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1936 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1937 				const struct sk_buff *skb)
1938 {
1939 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1940 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1941 }
1942 
1943 /* Return false, if packet can be sent now without violation Nagle's rules:
1944  * 1. It is full sized. (provided by caller in %partial bool)
1945  * 2. Or it contains FIN. (already checked by caller)
1946  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1947  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1948  *    With Minshall's modification: all sent small packets are ACKed.
1949  */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1950 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1951 			    int nonagle)
1952 {
1953 	return partial &&
1954 		((nonagle & TCP_NAGLE_CORK) ||
1955 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1956 }
1957 
1958 /* Return how many segs we'd like on a TSO packet,
1959  * depending on current pacing rate, and how close the peer is.
1960  *
1961  * Rationale is:
1962  * - For close peers, we rather send bigger packets to reduce
1963  *   cpu costs, because occasional losses will be repaired fast.
1964  * - For long distance/rtt flows, we would like to get ACK clocking
1965  *   with 1 ACK per ms.
1966  *
1967  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
1968  * in bigger TSO bursts. We we cut the RTT-based allowance in half
1969  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
1970  * is below 1500 bytes after 6 * ~500 usec = 3ms.
1971  */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)1972 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1973 			    int min_tso_segs)
1974 {
1975 	unsigned long bytes;
1976 	u32 r;
1977 
1978 	bytes = sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift);
1979 
1980 	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
1981 	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
1982 		bytes += sk->sk_gso_max_size >> r;
1983 
1984 	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
1985 
1986 	return max_t(u32, bytes / mss_now, min_tso_segs);
1987 }
1988 
1989 /* Return the number of segments we want in the skb we are transmitting.
1990  * See if congestion control module wants to decide; otherwise, autosize.
1991  */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)1992 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1993 {
1994 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1995 	u32 min_tso, tso_segs;
1996 
1997 	min_tso = ca_ops->min_tso_segs ?
1998 			ca_ops->min_tso_segs(sk) :
1999 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2000 
2001 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2002 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2003 }
2004 
2005 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)2006 static unsigned int tcp_mss_split_point(const struct sock *sk,
2007 					const struct sk_buff *skb,
2008 					unsigned int mss_now,
2009 					unsigned int max_segs,
2010 					int nonagle)
2011 {
2012 	const struct tcp_sock *tp = tcp_sk(sk);
2013 	u32 partial, needed, window, max_len;
2014 
2015 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2016 	max_len = mss_now * max_segs;
2017 
2018 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2019 		return max_len;
2020 
2021 	needed = min(skb->len, window);
2022 
2023 	if (max_len <= needed)
2024 		return max_len;
2025 
2026 	partial = needed % mss_now;
2027 	/* If last segment is not a full MSS, check if Nagle rules allow us
2028 	 * to include this last segment in this skb.
2029 	 * Otherwise, we'll split the skb at last MSS boundary
2030 	 */
2031 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2032 		return needed - partial;
2033 
2034 	return needed;
2035 }
2036 
2037 /* Can at least one segment of SKB be sent right now, according to the
2038  * congestion window rules?  If so, return how many segments are allowed.
2039  */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)2040 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2041 					 const struct sk_buff *skb)
2042 {
2043 	u32 in_flight, cwnd, halfcwnd;
2044 
2045 	/* Don't be strict about the congestion window for the final FIN.  */
2046 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2047 	    tcp_skb_pcount(skb) == 1)
2048 		return 1;
2049 
2050 	in_flight = tcp_packets_in_flight(tp);
2051 	cwnd = tcp_snd_cwnd(tp);
2052 	if (in_flight >= cwnd)
2053 		return 0;
2054 
2055 	/* For better scheduling, ensure we have at least
2056 	 * 2 GSO packets in flight.
2057 	 */
2058 	halfcwnd = max(cwnd >> 1, 1U);
2059 	return min(halfcwnd, cwnd - in_flight);
2060 }
2061 
2062 /* Initialize TSO state of a skb.
2063  * This must be invoked the first time we consider transmitting
2064  * SKB onto the wire.
2065  */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)2066 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2067 {
2068 	int tso_segs = tcp_skb_pcount(skb);
2069 
2070 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2071 		tcp_set_skb_tso_segs(skb, mss_now);
2072 		tso_segs = tcp_skb_pcount(skb);
2073 	}
2074 	return tso_segs;
2075 }
2076 
2077 
2078 /* Return true if the Nagle test allows this packet to be
2079  * sent now.
2080  */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)2081 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2082 				  unsigned int cur_mss, int nonagle)
2083 {
2084 	/* Nagle rule does not apply to frames, which sit in the middle of the
2085 	 * write_queue (they have no chances to get new data).
2086 	 *
2087 	 * This is implemented in the callers, where they modify the 'nonagle'
2088 	 * argument based upon the location of SKB in the send queue.
2089 	 */
2090 	if (nonagle & TCP_NAGLE_PUSH)
2091 		return true;
2092 
2093 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2094 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2095 		return true;
2096 
2097 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2098 		return true;
2099 
2100 	return false;
2101 }
2102 
2103 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)2104 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2105 			     const struct sk_buff *skb,
2106 			     unsigned int cur_mss)
2107 {
2108 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2109 
2110 	if (skb->len > cur_mss)
2111 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2112 
2113 	return !after(end_seq, tcp_wnd_end(tp));
2114 }
2115 
2116 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2117  * which is put after SKB on the list.  It is very much like
2118  * tcp_fragment() except that it may make several kinds of assumptions
2119  * in order to speed up the splitting operation.  In particular, we
2120  * know that all the data is in scatter-gather pages, and that the
2121  * packet has never been sent out before (and thus is not cloned).
2122  */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)2123 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2124 			unsigned int mss_now, gfp_t gfp)
2125 {
2126 	int nlen = skb->len - len;
2127 	struct sk_buff *buff;
2128 	u8 flags;
2129 
2130 	/* All of a TSO frame must be composed of paged data.  */
2131 	if (skb->len != skb->data_len)
2132 		return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2133 				    skb, len, mss_now, gfp);
2134 
2135 	buff = tcp_stream_alloc_skb(sk, 0, gfp, true);
2136 	if (unlikely(!buff))
2137 		return -ENOMEM;
2138 	skb_copy_decrypted(buff, skb);
2139 	mptcp_skb_ext_copy(buff, skb);
2140 
2141 	sk_wmem_queued_add(sk, buff->truesize);
2142 	sk_mem_charge(sk, buff->truesize);
2143 	buff->truesize += nlen;
2144 	skb->truesize -= nlen;
2145 
2146 	/* Correct the sequence numbers. */
2147 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2148 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2149 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2150 
2151 	/* PSH and FIN should only be set in the second packet. */
2152 	flags = TCP_SKB_CB(skb)->tcp_flags;
2153 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2154 	TCP_SKB_CB(buff)->tcp_flags = flags;
2155 
2156 	tcp_skb_fragment_eor(skb, buff);
2157 
2158 	skb_split(skb, buff, len);
2159 	tcp_fragment_tstamp(skb, buff);
2160 
2161 	/* Fix up tso_factor for both original and new SKB.  */
2162 	tcp_set_skb_tso_segs(skb, mss_now);
2163 	tcp_set_skb_tso_segs(buff, mss_now);
2164 
2165 	/* Link BUFF into the send queue. */
2166 	__skb_header_release(buff);
2167 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2168 
2169 	return 0;
2170 }
2171 
2172 /* Try to defer sending, if possible, in order to minimize the amount
2173  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2174  *
2175  * This algorithm is from John Heffner.
2176  */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)2177 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2178 				 bool *is_cwnd_limited,
2179 				 bool *is_rwnd_limited,
2180 				 u32 max_segs)
2181 {
2182 	const struct inet_connection_sock *icsk = inet_csk(sk);
2183 	u32 send_win, cong_win, limit, in_flight;
2184 	struct tcp_sock *tp = tcp_sk(sk);
2185 	struct sk_buff *head;
2186 	int win_divisor;
2187 	s64 delta;
2188 
2189 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2190 		goto send_now;
2191 
2192 	/* Avoid bursty behavior by allowing defer
2193 	 * only if the last write was recent (1 ms).
2194 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2195 	 * packets waiting in a qdisc or device for EDT delivery.
2196 	 */
2197 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2198 	if (delta > 0)
2199 		goto send_now;
2200 
2201 	in_flight = tcp_packets_in_flight(tp);
2202 
2203 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2204 	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2205 
2206 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2207 
2208 	/* From in_flight test above, we know that cwnd > in_flight.  */
2209 	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2210 
2211 	limit = min(send_win, cong_win);
2212 
2213 	/* If a full-sized TSO skb can be sent, do it. */
2214 	if (limit >= max_segs * tp->mss_cache)
2215 		goto send_now;
2216 
2217 	/* Middle in queue won't get any more data, full sendable already? */
2218 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2219 		goto send_now;
2220 
2221 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2222 	if (win_divisor) {
2223 		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2224 
2225 		/* If at least some fraction of a window is available,
2226 		 * just use it.
2227 		 */
2228 		chunk /= win_divisor;
2229 		if (limit >= chunk)
2230 			goto send_now;
2231 	} else {
2232 		/* Different approach, try not to defer past a single
2233 		 * ACK.  Receiver should ACK every other full sized
2234 		 * frame, so if we have space for more than 3 frames
2235 		 * then send now.
2236 		 */
2237 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2238 			goto send_now;
2239 	}
2240 
2241 	/* TODO : use tsorted_sent_queue ? */
2242 	head = tcp_rtx_queue_head(sk);
2243 	if (!head)
2244 		goto send_now;
2245 	delta = tp->tcp_clock_cache - head->tstamp;
2246 	/* If next ACK is likely to come too late (half srtt), do not defer */
2247 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2248 		goto send_now;
2249 
2250 	/* Ok, it looks like it is advisable to defer.
2251 	 * Three cases are tracked :
2252 	 * 1) We are cwnd-limited
2253 	 * 2) We are rwnd-limited
2254 	 * 3) We are application limited.
2255 	 */
2256 	if (cong_win < send_win) {
2257 		if (cong_win <= skb->len) {
2258 			*is_cwnd_limited = true;
2259 			return true;
2260 		}
2261 	} else {
2262 		if (send_win <= skb->len) {
2263 			*is_rwnd_limited = true;
2264 			return true;
2265 		}
2266 	}
2267 
2268 	/* If this packet won't get more data, do not wait. */
2269 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2270 	    TCP_SKB_CB(skb)->eor)
2271 		goto send_now;
2272 
2273 	return true;
2274 
2275 send_now:
2276 	return false;
2277 }
2278 
tcp_mtu_check_reprobe(struct sock * sk)2279 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2280 {
2281 	struct inet_connection_sock *icsk = inet_csk(sk);
2282 	struct tcp_sock *tp = tcp_sk(sk);
2283 	struct net *net = sock_net(sk);
2284 	u32 interval;
2285 	s32 delta;
2286 
2287 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2288 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2289 	if (unlikely(delta >= interval * HZ)) {
2290 		int mss = tcp_current_mss(sk);
2291 
2292 		/* Update current search range */
2293 		icsk->icsk_mtup.probe_size = 0;
2294 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2295 			sizeof(struct tcphdr) +
2296 			icsk->icsk_af_ops->net_header_len;
2297 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2298 
2299 		/* Update probe time stamp */
2300 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2301 	}
2302 }
2303 
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2304 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2305 {
2306 	struct sk_buff *skb, *next;
2307 
2308 	skb = tcp_send_head(sk);
2309 	tcp_for_write_queue_from_safe(skb, next, sk) {
2310 		if (len <= skb->len)
2311 			break;
2312 
2313 		if (unlikely(TCP_SKB_CB(skb)->eor) ||
2314 		    tcp_has_tx_tstamp(skb) ||
2315 		    !skb_pure_zcopy_same(skb, next))
2316 			return false;
2317 
2318 		len -= skb->len;
2319 	}
2320 
2321 	return true;
2322 }
2323 
2324 /* Create a new MTU probe if we are ready.
2325  * MTU probe is regularly attempting to increase the path MTU by
2326  * deliberately sending larger packets.  This discovers routing
2327  * changes resulting in larger path MTUs.
2328  *
2329  * Returns 0 if we should wait to probe (no cwnd available),
2330  *         1 if a probe was sent,
2331  *         -1 otherwise
2332  */
tcp_mtu_probe(struct sock * sk)2333 static int tcp_mtu_probe(struct sock *sk)
2334 {
2335 	struct inet_connection_sock *icsk = inet_csk(sk);
2336 	struct tcp_sock *tp = tcp_sk(sk);
2337 	struct sk_buff *skb, *nskb, *next;
2338 	struct net *net = sock_net(sk);
2339 	int probe_size;
2340 	int size_needed;
2341 	int copy, len;
2342 	int mss_now;
2343 	int interval;
2344 
2345 	/* Not currently probing/verifying,
2346 	 * not in recovery,
2347 	 * have enough cwnd, and
2348 	 * not SACKing (the variable headers throw things off)
2349 	 */
2350 	if (likely(!icsk->icsk_mtup.enabled ||
2351 		   icsk->icsk_mtup.probe_size ||
2352 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2353 		   tcp_snd_cwnd(tp) < 11 ||
2354 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2355 		return -1;
2356 
2357 	/* Use binary search for probe_size between tcp_mss_base,
2358 	 * and current mss_clamp. if (search_high - search_low)
2359 	 * smaller than a threshold, backoff from probing.
2360 	 */
2361 	mss_now = tcp_current_mss(sk);
2362 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2363 				    icsk->icsk_mtup.search_low) >> 1);
2364 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2365 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2366 	/* When misfortune happens, we are reprobing actively,
2367 	 * and then reprobe timer has expired. We stick with current
2368 	 * probing process by not resetting search range to its orignal.
2369 	 */
2370 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2371 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2372 		/* Check whether enough time has elaplased for
2373 		 * another round of probing.
2374 		 */
2375 		tcp_mtu_check_reprobe(sk);
2376 		return -1;
2377 	}
2378 
2379 	/* Have enough data in the send queue to probe? */
2380 	if (tp->write_seq - tp->snd_nxt < size_needed)
2381 		return -1;
2382 
2383 	if (tp->snd_wnd < size_needed)
2384 		return -1;
2385 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2386 		return 0;
2387 
2388 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2389 	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2390 		if (!tcp_packets_in_flight(tp))
2391 			return -1;
2392 		else
2393 			return 0;
2394 	}
2395 
2396 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2397 		return -1;
2398 
2399 	/* We're allowed to probe.  Build it now. */
2400 	nskb = tcp_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2401 	if (!nskb)
2402 		return -1;
2403 	sk_wmem_queued_add(sk, nskb->truesize);
2404 	sk_mem_charge(sk, nskb->truesize);
2405 
2406 	skb = tcp_send_head(sk);
2407 	skb_copy_decrypted(nskb, skb);
2408 	mptcp_skb_ext_copy(nskb, skb);
2409 
2410 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2411 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2412 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2413 
2414 	tcp_insert_write_queue_before(nskb, skb, sk);
2415 	tcp_highest_sack_replace(sk, skb, nskb);
2416 
2417 	len = 0;
2418 	tcp_for_write_queue_from_safe(skb, next, sk) {
2419 		copy = min_t(int, skb->len, probe_size - len);
2420 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2421 
2422 		if (skb->len <= copy) {
2423 			/* We've eaten all the data from this skb.
2424 			 * Throw it away. */
2425 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2426 			/* If this is the last SKB we copy and eor is set
2427 			 * we need to propagate it to the new skb.
2428 			 */
2429 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2430 			tcp_skb_collapse_tstamp(nskb, skb);
2431 			tcp_unlink_write_queue(skb, sk);
2432 			tcp_wmem_free_skb(sk, skb);
2433 		} else {
2434 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2435 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2436 			if (!skb_shinfo(skb)->nr_frags) {
2437 				skb_pull(skb, copy);
2438 			} else {
2439 				__pskb_trim_head(skb, copy);
2440 				tcp_set_skb_tso_segs(skb, mss_now);
2441 			}
2442 			TCP_SKB_CB(skb)->seq += copy;
2443 		}
2444 
2445 		len += copy;
2446 
2447 		if (len >= probe_size)
2448 			break;
2449 	}
2450 	tcp_init_tso_segs(nskb, nskb->len);
2451 
2452 	/* We're ready to send.  If this fails, the probe will
2453 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2454 	 */
2455 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2456 		/* Decrement cwnd here because we are sending
2457 		 * effectively two packets. */
2458 		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2459 		tcp_event_new_data_sent(sk, nskb);
2460 
2461 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2462 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2463 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2464 
2465 		return 1;
2466 	}
2467 
2468 	return -1;
2469 }
2470 
tcp_pacing_check(struct sock * sk)2471 static bool tcp_pacing_check(struct sock *sk)
2472 {
2473 	struct tcp_sock *tp = tcp_sk(sk);
2474 
2475 	if (!tcp_needs_internal_pacing(sk))
2476 		return false;
2477 
2478 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2479 		return false;
2480 
2481 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2482 		hrtimer_start(&tp->pacing_timer,
2483 			      ns_to_ktime(tp->tcp_wstamp_ns),
2484 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2485 		sock_hold(sk);
2486 	}
2487 	return true;
2488 }
2489 
tcp_rtx_queue_empty_or_single_skb(const struct sock * sk)2490 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2491 {
2492 	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2493 
2494 	/* No skb in the rtx queue. */
2495 	if (!node)
2496 		return true;
2497 
2498 	/* Only one skb in rtx queue. */
2499 	return !node->rb_left && !node->rb_right;
2500 }
2501 
2502 /* TCP Small Queues :
2503  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2504  * (These limits are doubled for retransmits)
2505  * This allows for :
2506  *  - better RTT estimation and ACK scheduling
2507  *  - faster recovery
2508  *  - high rates
2509  * Alas, some drivers / subsystems require a fair amount
2510  * of queued bytes to ensure line rate.
2511  * One example is wifi aggregation (802.11 AMPDU)
2512  */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2513 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2514 				  unsigned int factor)
2515 {
2516 	unsigned long limit;
2517 
2518 	limit = max_t(unsigned long,
2519 		      2 * skb->truesize,
2520 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2521 	if (sk->sk_pacing_status == SK_PACING_NONE)
2522 		limit = min_t(unsigned long, limit,
2523 			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2524 	limit <<= factor;
2525 
2526 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2527 	    tcp_sk(sk)->tcp_tx_delay) {
2528 		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2529 
2530 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2531 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2532 		 * USEC_PER_SEC is approximated by 2^20.
2533 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2534 		 */
2535 		extra_bytes >>= (20 - 1);
2536 		limit += extra_bytes;
2537 	}
2538 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2539 		/* Always send skb if rtx queue is empty or has one skb.
2540 		 * No need to wait for TX completion to call us back,
2541 		 * after softirq/tasklet schedule.
2542 		 * This helps when TX completions are delayed too much.
2543 		 */
2544 		if (tcp_rtx_queue_empty_or_single_skb(sk))
2545 			return false;
2546 
2547 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2548 		/* It is possible TX completion already happened
2549 		 * before we set TSQ_THROTTLED, so we must
2550 		 * test again the condition.
2551 		 */
2552 		smp_mb__after_atomic();
2553 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2554 			return true;
2555 	}
2556 	return false;
2557 }
2558 
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2559 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2560 {
2561 	const u32 now = tcp_jiffies32;
2562 	enum tcp_chrono old = tp->chrono_type;
2563 
2564 	if (old > TCP_CHRONO_UNSPEC)
2565 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2566 	tp->chrono_start = now;
2567 	tp->chrono_type = new;
2568 }
2569 
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2570 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2571 {
2572 	struct tcp_sock *tp = tcp_sk(sk);
2573 
2574 	/* If there are multiple conditions worthy of tracking in a
2575 	 * chronograph then the highest priority enum takes precedence
2576 	 * over the other conditions. So that if something "more interesting"
2577 	 * starts happening, stop the previous chrono and start a new one.
2578 	 */
2579 	if (type > tp->chrono_type)
2580 		tcp_chrono_set(tp, type);
2581 }
2582 
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2583 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2584 {
2585 	struct tcp_sock *tp = tcp_sk(sk);
2586 
2587 
2588 	/* There are multiple conditions worthy of tracking in a
2589 	 * chronograph, so that the highest priority enum takes
2590 	 * precedence over the other conditions (see tcp_chrono_start).
2591 	 * If a condition stops, we only stop chrono tracking if
2592 	 * it's the "most interesting" or current chrono we are
2593 	 * tracking and starts busy chrono if we have pending data.
2594 	 */
2595 	if (tcp_rtx_and_write_queues_empty(sk))
2596 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2597 	else if (type == tp->chrono_type)
2598 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2599 }
2600 
2601 /* This routine writes packets to the network.  It advances the
2602  * send_head.  This happens as incoming acks open up the remote
2603  * window for us.
2604  *
2605  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2606  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2607  * account rare use of URG, this is not a big flaw.
2608  *
2609  * Send at most one packet when push_one > 0. Temporarily ignore
2610  * cwnd limit to force at most one packet out when push_one == 2.
2611 
2612  * Returns true, if no segments are in flight and we have queued segments,
2613  * but cannot send anything now because of SWS or another problem.
2614  */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2615 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2616 			   int push_one, gfp_t gfp)
2617 {
2618 	struct tcp_sock *tp = tcp_sk(sk);
2619 	struct sk_buff *skb;
2620 	unsigned int tso_segs, sent_pkts;
2621 	int cwnd_quota;
2622 	int result;
2623 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2624 	u32 max_segs;
2625 
2626 	sent_pkts = 0;
2627 
2628 	tcp_mstamp_refresh(tp);
2629 	if (!push_one) {
2630 		/* Do MTU probing. */
2631 		result = tcp_mtu_probe(sk);
2632 		if (!result) {
2633 			return false;
2634 		} else if (result > 0) {
2635 			sent_pkts = 1;
2636 		}
2637 	}
2638 
2639 	max_segs = tcp_tso_segs(sk, mss_now);
2640 	while ((skb = tcp_send_head(sk))) {
2641 		unsigned int limit;
2642 
2643 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2644 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2645 			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2646 			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2647 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2648 			tcp_init_tso_segs(skb, mss_now);
2649 			goto repair; /* Skip network transmission */
2650 		}
2651 
2652 		if (tcp_pacing_check(sk))
2653 			break;
2654 
2655 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2656 		BUG_ON(!tso_segs);
2657 
2658 		cwnd_quota = tcp_cwnd_test(tp, skb);
2659 		if (!cwnd_quota) {
2660 			if (push_one == 2)
2661 				/* Force out a loss probe pkt. */
2662 				cwnd_quota = 1;
2663 			else
2664 				break;
2665 		}
2666 
2667 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2668 			is_rwnd_limited = true;
2669 			break;
2670 		}
2671 
2672 		if (tso_segs == 1) {
2673 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2674 						     (tcp_skb_is_last(sk, skb) ?
2675 						      nonagle : TCP_NAGLE_PUSH))))
2676 				break;
2677 		} else {
2678 			if (!push_one &&
2679 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2680 						 &is_rwnd_limited, max_segs))
2681 				break;
2682 		}
2683 
2684 		limit = mss_now;
2685 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2686 			limit = tcp_mss_split_point(sk, skb, mss_now,
2687 						    min_t(unsigned int,
2688 							  cwnd_quota,
2689 							  max_segs),
2690 						    nonagle);
2691 
2692 		if (skb->len > limit &&
2693 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2694 			break;
2695 
2696 		if (tcp_small_queue_check(sk, skb, 0))
2697 			break;
2698 
2699 		/* Argh, we hit an empty skb(), presumably a thread
2700 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2701 		 * We do not want to send a pure-ack packet and have
2702 		 * a strange looking rtx queue with empty packet(s).
2703 		 */
2704 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2705 			break;
2706 
2707 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2708 			break;
2709 
2710 repair:
2711 		/* Advance the send_head.  This one is sent out.
2712 		 * This call will increment packets_out.
2713 		 */
2714 		tcp_event_new_data_sent(sk, skb);
2715 
2716 		tcp_minshall_update(tp, mss_now, skb);
2717 		sent_pkts += tcp_skb_pcount(skb);
2718 
2719 		if (push_one)
2720 			break;
2721 	}
2722 
2723 	if (is_rwnd_limited)
2724 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2725 	else
2726 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2727 
2728 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2729 	if (likely(sent_pkts || is_cwnd_limited))
2730 		tcp_cwnd_validate(sk, is_cwnd_limited);
2731 
2732 	if (likely(sent_pkts)) {
2733 		if (tcp_in_cwnd_reduction(sk))
2734 			tp->prr_out += sent_pkts;
2735 
2736 		/* Send one loss probe per tail loss episode. */
2737 		if (push_one != 2)
2738 			tcp_schedule_loss_probe(sk, false);
2739 		return false;
2740 	}
2741 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2742 }
2743 
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2744 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2745 {
2746 	struct inet_connection_sock *icsk = inet_csk(sk);
2747 	struct tcp_sock *tp = tcp_sk(sk);
2748 	u32 timeout, timeout_us, rto_delta_us;
2749 	int early_retrans;
2750 
2751 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2752 	 * finishes.
2753 	 */
2754 	if (rcu_access_pointer(tp->fastopen_rsk))
2755 		return false;
2756 
2757 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2758 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2759 	 * not in loss recovery, that are either limited by cwnd or application.
2760 	 */
2761 	if ((early_retrans != 3 && early_retrans != 4) ||
2762 	    !tp->packets_out || !tcp_is_sack(tp) ||
2763 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2764 	     icsk->icsk_ca_state != TCP_CA_CWR))
2765 		return false;
2766 
2767 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2768 	 * for delayed ack when there's one outstanding packet. If no RTT
2769 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2770 	 */
2771 	if (tp->srtt_us) {
2772 		timeout_us = tp->srtt_us >> 2;
2773 		if (tp->packets_out == 1)
2774 			timeout_us += tcp_rto_min_us(sk);
2775 		else
2776 			timeout_us += TCP_TIMEOUT_MIN_US;
2777 		timeout = usecs_to_jiffies(timeout_us);
2778 	} else {
2779 		timeout = TCP_TIMEOUT_INIT;
2780 	}
2781 
2782 	/* If the RTO formula yields an earlier time, then use that time. */
2783 	rto_delta_us = advancing_rto ?
2784 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2785 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2786 	if (rto_delta_us > 0)
2787 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2788 
2789 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2790 	return true;
2791 }
2792 
2793 /* Thanks to skb fast clones, we can detect if a prior transmit of
2794  * a packet is still in a qdisc or driver queue.
2795  * In this case, there is very little point doing a retransmit !
2796  */
skb_still_in_host_queue(struct sock * sk,const struct sk_buff * skb)2797 static bool skb_still_in_host_queue(struct sock *sk,
2798 				    const struct sk_buff *skb)
2799 {
2800 	if (unlikely(skb_fclone_busy(sk, skb))) {
2801 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2802 		smp_mb__after_atomic();
2803 		if (skb_fclone_busy(sk, skb)) {
2804 			NET_INC_STATS(sock_net(sk),
2805 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2806 			return true;
2807 		}
2808 	}
2809 	return false;
2810 }
2811 
2812 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2813  * retransmit the last segment.
2814  */
tcp_send_loss_probe(struct sock * sk)2815 void tcp_send_loss_probe(struct sock *sk)
2816 {
2817 	struct tcp_sock *tp = tcp_sk(sk);
2818 	struct sk_buff *skb;
2819 	int pcount;
2820 	int mss = tcp_current_mss(sk);
2821 
2822 	/* At most one outstanding TLP */
2823 	if (tp->tlp_high_seq)
2824 		goto rearm_timer;
2825 
2826 	tp->tlp_retrans = 0;
2827 	skb = tcp_send_head(sk);
2828 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2829 		pcount = tp->packets_out;
2830 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2831 		if (tp->packets_out > pcount)
2832 			goto probe_sent;
2833 		goto rearm_timer;
2834 	}
2835 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2836 	if (unlikely(!skb)) {
2837 		WARN_ONCE(tp->packets_out,
2838 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2839 			  tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2840 		inet_csk(sk)->icsk_pending = 0;
2841 		return;
2842 	}
2843 
2844 	if (skb_still_in_host_queue(sk, skb))
2845 		goto rearm_timer;
2846 
2847 	pcount = tcp_skb_pcount(skb);
2848 	if (WARN_ON(!pcount))
2849 		goto rearm_timer;
2850 
2851 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2852 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2853 					  (pcount - 1) * mss, mss,
2854 					  GFP_ATOMIC)))
2855 			goto rearm_timer;
2856 		skb = skb_rb_next(skb);
2857 	}
2858 
2859 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2860 		goto rearm_timer;
2861 
2862 	if (__tcp_retransmit_skb(sk, skb, 1))
2863 		goto rearm_timer;
2864 
2865 	tp->tlp_retrans = 1;
2866 
2867 probe_sent:
2868 	/* Record snd_nxt for loss detection. */
2869 	tp->tlp_high_seq = tp->snd_nxt;
2870 
2871 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2872 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2873 	inet_csk(sk)->icsk_pending = 0;
2874 rearm_timer:
2875 	tcp_rearm_rto(sk);
2876 }
2877 
2878 /* Push out any pending frames which were held back due to
2879  * TCP_CORK or attempt at coalescing tiny packets.
2880  * The socket must be locked by the caller.
2881  */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2882 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2883 			       int nonagle)
2884 {
2885 	/* If we are closed, the bytes will have to remain here.
2886 	 * In time closedown will finish, we empty the write queue and
2887 	 * all will be happy.
2888 	 */
2889 	if (unlikely(sk->sk_state == TCP_CLOSE))
2890 		return;
2891 
2892 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2893 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2894 		tcp_check_probe_timer(sk);
2895 }
2896 
2897 /* Send _single_ skb sitting at the send head. This function requires
2898  * true push pending frames to setup probe timer etc.
2899  */
tcp_push_one(struct sock * sk,unsigned int mss_now)2900 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2901 {
2902 	struct sk_buff *skb = tcp_send_head(sk);
2903 
2904 	BUG_ON(!skb || skb->len < mss_now);
2905 
2906 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2907 }
2908 
2909 /* This function returns the amount that we can raise the
2910  * usable window based on the following constraints
2911  *
2912  * 1. The window can never be shrunk once it is offered (RFC 793)
2913  * 2. We limit memory per socket
2914  *
2915  * RFC 1122:
2916  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2917  *  RECV.NEXT + RCV.WIN fixed until:
2918  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2919  *
2920  * i.e. don't raise the right edge of the window until you can raise
2921  * it at least MSS bytes.
2922  *
2923  * Unfortunately, the recommended algorithm breaks header prediction,
2924  * since header prediction assumes th->window stays fixed.
2925  *
2926  * Strictly speaking, keeping th->window fixed violates the receiver
2927  * side SWS prevention criteria. The problem is that under this rule
2928  * a stream of single byte packets will cause the right side of the
2929  * window to always advance by a single byte.
2930  *
2931  * Of course, if the sender implements sender side SWS prevention
2932  * then this will not be a problem.
2933  *
2934  * BSD seems to make the following compromise:
2935  *
2936  *	If the free space is less than the 1/4 of the maximum
2937  *	space available and the free space is less than 1/2 mss,
2938  *	then set the window to 0.
2939  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2940  *	Otherwise, just prevent the window from shrinking
2941  *	and from being larger than the largest representable value.
2942  *
2943  * This prevents incremental opening of the window in the regime
2944  * where TCP is limited by the speed of the reader side taking
2945  * data out of the TCP receive queue. It does nothing about
2946  * those cases where the window is constrained on the sender side
2947  * because the pipeline is full.
2948  *
2949  * BSD also seems to "accidentally" limit itself to windows that are a
2950  * multiple of MSS, at least until the free space gets quite small.
2951  * This would appear to be a side effect of the mbuf implementation.
2952  * Combining these two algorithms results in the observed behavior
2953  * of having a fixed window size at almost all times.
2954  *
2955  * Below we obtain similar behavior by forcing the offered window to
2956  * a multiple of the mss when it is feasible to do so.
2957  *
2958  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2959  * Regular options like TIMESTAMP are taken into account.
2960  */
__tcp_select_window(struct sock * sk)2961 u32 __tcp_select_window(struct sock *sk)
2962 {
2963 	struct inet_connection_sock *icsk = inet_csk(sk);
2964 	struct tcp_sock *tp = tcp_sk(sk);
2965 	/* MSS for the peer's data.  Previous versions used mss_clamp
2966 	 * here.  I don't know if the value based on our guesses
2967 	 * of peer's MSS is better for the performance.  It's more correct
2968 	 * but may be worse for the performance because of rcv_mss
2969 	 * fluctuations.  --SAW  1998/11/1
2970 	 */
2971 	int mss = icsk->icsk_ack.rcv_mss;
2972 	int free_space = tcp_space(sk);
2973 	int allowed_space = tcp_full_space(sk);
2974 	int full_space, window;
2975 
2976 	if (sk_is_mptcp(sk))
2977 		mptcp_space(sk, &free_space, &allowed_space);
2978 
2979 	full_space = min_t(int, tp->window_clamp, allowed_space);
2980 
2981 	if (unlikely(mss > full_space)) {
2982 		mss = full_space;
2983 		if (mss <= 0)
2984 			return 0;
2985 	}
2986 	if (free_space < (full_space >> 1)) {
2987 		icsk->icsk_ack.quick = 0;
2988 
2989 		if (tcp_under_memory_pressure(sk))
2990 			tcp_adjust_rcv_ssthresh(sk);
2991 
2992 		/* free_space might become our new window, make sure we don't
2993 		 * increase it due to wscale.
2994 		 */
2995 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2996 
2997 		/* if free space is less than mss estimate, or is below 1/16th
2998 		 * of the maximum allowed, try to move to zero-window, else
2999 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3000 		 * new incoming data is dropped due to memory limits.
3001 		 * With large window, mss test triggers way too late in order
3002 		 * to announce zero window in time before rmem limit kicks in.
3003 		 */
3004 		if (free_space < (allowed_space >> 4) || free_space < mss)
3005 			return 0;
3006 	}
3007 
3008 	if (free_space > tp->rcv_ssthresh)
3009 		free_space = tp->rcv_ssthresh;
3010 
3011 	/* Don't do rounding if we are using window scaling, since the
3012 	 * scaled window will not line up with the MSS boundary anyway.
3013 	 */
3014 	if (tp->rx_opt.rcv_wscale) {
3015 		window = free_space;
3016 
3017 		/* Advertise enough space so that it won't get scaled away.
3018 		 * Import case: prevent zero window announcement if
3019 		 * 1<<rcv_wscale > mss.
3020 		 */
3021 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3022 	} else {
3023 		window = tp->rcv_wnd;
3024 		/* Get the largest window that is a nice multiple of mss.
3025 		 * Window clamp already applied above.
3026 		 * If our current window offering is within 1 mss of the
3027 		 * free space we just keep it. This prevents the divide
3028 		 * and multiply from happening most of the time.
3029 		 * We also don't do any window rounding when the free space
3030 		 * is too small.
3031 		 */
3032 		if (window <= free_space - mss || window > free_space)
3033 			window = rounddown(free_space, mss);
3034 		else if (mss == full_space &&
3035 			 free_space > window + (full_space >> 1))
3036 			window = free_space;
3037 	}
3038 
3039 	return window;
3040 }
3041 
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)3042 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3043 			     const struct sk_buff *next_skb)
3044 {
3045 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3046 		const struct skb_shared_info *next_shinfo =
3047 			skb_shinfo(next_skb);
3048 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3049 
3050 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3051 		shinfo->tskey = next_shinfo->tskey;
3052 		TCP_SKB_CB(skb)->txstamp_ack |=
3053 			TCP_SKB_CB(next_skb)->txstamp_ack;
3054 	}
3055 }
3056 
3057 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)3058 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3059 {
3060 	struct tcp_sock *tp = tcp_sk(sk);
3061 	struct sk_buff *next_skb = skb_rb_next(skb);
3062 	int next_skb_size;
3063 
3064 	next_skb_size = next_skb->len;
3065 
3066 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3067 
3068 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3069 		return false;
3070 
3071 	tcp_highest_sack_replace(sk, next_skb, skb);
3072 
3073 	/* Update sequence range on original skb. */
3074 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3075 
3076 	/* Merge over control information. This moves PSH/FIN etc. over */
3077 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3078 
3079 	/* All done, get rid of second SKB and account for it so
3080 	 * packet counting does not break.
3081 	 */
3082 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3083 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3084 
3085 	/* changed transmit queue under us so clear hints */
3086 	tcp_clear_retrans_hints_partial(tp);
3087 	if (next_skb == tp->retransmit_skb_hint)
3088 		tp->retransmit_skb_hint = skb;
3089 
3090 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3091 
3092 	tcp_skb_collapse_tstamp(skb, next_skb);
3093 
3094 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3095 	return true;
3096 }
3097 
3098 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)3099 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3100 {
3101 	if (tcp_skb_pcount(skb) > 1)
3102 		return false;
3103 	if (skb_cloned(skb))
3104 		return false;
3105 	/* Some heuristics for collapsing over SACK'd could be invented */
3106 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3107 		return false;
3108 
3109 	return true;
3110 }
3111 
3112 /* Collapse packets in the retransmit queue to make to create
3113  * less packets on the wire. This is only done on retransmission.
3114  */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)3115 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3116 				     int space)
3117 {
3118 	struct tcp_sock *tp = tcp_sk(sk);
3119 	struct sk_buff *skb = to, *tmp;
3120 	bool first = true;
3121 
3122 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3123 		return;
3124 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3125 		return;
3126 
3127 	skb_rbtree_walk_from_safe(skb, tmp) {
3128 		if (!tcp_can_collapse(sk, skb))
3129 			break;
3130 
3131 		if (!tcp_skb_can_collapse(to, skb))
3132 			break;
3133 
3134 		space -= skb->len;
3135 
3136 		if (first) {
3137 			first = false;
3138 			continue;
3139 		}
3140 
3141 		if (space < 0)
3142 			break;
3143 
3144 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3145 			break;
3146 
3147 		if (!tcp_collapse_retrans(sk, to))
3148 			break;
3149 	}
3150 }
3151 
3152 /* This retransmits one SKB.  Policy decisions and retransmit queue
3153  * state updates are done by the caller.  Returns non-zero if an
3154  * error occurred which prevented the send.
3155  */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3156 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3157 {
3158 	struct inet_connection_sock *icsk = inet_csk(sk);
3159 	struct tcp_sock *tp = tcp_sk(sk);
3160 	unsigned int cur_mss;
3161 	int diff, len, err;
3162 	int avail_wnd;
3163 
3164 	/* Inconclusive MTU probe */
3165 	if (icsk->icsk_mtup.probe_size)
3166 		icsk->icsk_mtup.probe_size = 0;
3167 
3168 	if (skb_still_in_host_queue(sk, skb))
3169 		return -EBUSY;
3170 
3171 start:
3172 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3173 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3174 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3175 			TCP_SKB_CB(skb)->seq++;
3176 			goto start;
3177 		}
3178 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3179 			WARN_ON_ONCE(1);
3180 			return -EINVAL;
3181 		}
3182 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3183 			return -ENOMEM;
3184 	}
3185 
3186 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3187 		return -EHOSTUNREACH; /* Routing failure or similar. */
3188 
3189 	cur_mss = tcp_current_mss(sk);
3190 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3191 
3192 	/* If receiver has shrunk his window, and skb is out of
3193 	 * new window, do not retransmit it. The exception is the
3194 	 * case, when window is shrunk to zero. In this case
3195 	 * our retransmit of one segment serves as a zero window probe.
3196 	 */
3197 	if (avail_wnd <= 0) {
3198 		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3199 			return -EAGAIN;
3200 		avail_wnd = cur_mss;
3201 	}
3202 
3203 	len = cur_mss * segs;
3204 	if (len > avail_wnd) {
3205 		len = rounddown(avail_wnd, cur_mss);
3206 		if (!len)
3207 			len = avail_wnd;
3208 	}
3209 	if (skb->len > len) {
3210 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3211 				 cur_mss, GFP_ATOMIC))
3212 			return -ENOMEM; /* We'll try again later. */
3213 	} else {
3214 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3215 			return -ENOMEM;
3216 
3217 		diff = tcp_skb_pcount(skb);
3218 		tcp_set_skb_tso_segs(skb, cur_mss);
3219 		diff -= tcp_skb_pcount(skb);
3220 		if (diff)
3221 			tcp_adjust_pcount(sk, skb, diff);
3222 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3223 		if (skb->len < avail_wnd)
3224 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3225 	}
3226 
3227 	/* RFC3168, section 6.1.1.1. ECN fallback */
3228 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3229 		tcp_ecn_clear_syn(sk, skb);
3230 
3231 	/* Update global and local TCP statistics. */
3232 	segs = tcp_skb_pcount(skb);
3233 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3234 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3235 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3236 	tp->total_retrans += segs;
3237 	tp->bytes_retrans += skb->len;
3238 
3239 	/* make sure skb->data is aligned on arches that require it
3240 	 * and check if ack-trimming & collapsing extended the headroom
3241 	 * beyond what csum_start can cover.
3242 	 */
3243 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3244 		     skb_headroom(skb) >= 0xFFFF)) {
3245 		struct sk_buff *nskb;
3246 
3247 		tcp_skb_tsorted_save(skb) {
3248 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3249 			if (nskb) {
3250 				nskb->dev = NULL;
3251 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3252 			} else {
3253 				err = -ENOBUFS;
3254 			}
3255 		} tcp_skb_tsorted_restore(skb);
3256 
3257 		if (!err) {
3258 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3259 			tcp_rate_skb_sent(sk, skb);
3260 		}
3261 	} else {
3262 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3263 	}
3264 
3265 	/* To avoid taking spuriously low RTT samples based on a timestamp
3266 	 * for a transmit that never happened, always mark EVER_RETRANS
3267 	 */
3268 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3269 
3270 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3271 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3272 				  TCP_SKB_CB(skb)->seq, segs, err);
3273 
3274 	if (likely(!err)) {
3275 		trace_tcp_retransmit_skb(sk, skb);
3276 	} else if (err != -EBUSY) {
3277 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3278 	}
3279 	return err;
3280 }
3281 
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3282 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3283 {
3284 	struct tcp_sock *tp = tcp_sk(sk);
3285 	int err = __tcp_retransmit_skb(sk, skb, segs);
3286 
3287 	if (err == 0) {
3288 #if FASTRETRANS_DEBUG > 0
3289 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3290 			net_dbg_ratelimited("retrans_out leaked\n");
3291 		}
3292 #endif
3293 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3294 		tp->retrans_out += tcp_skb_pcount(skb);
3295 	}
3296 
3297 	/* Save stamp of the first (attempted) retransmit. */
3298 	if (!tp->retrans_stamp)
3299 		tp->retrans_stamp = tcp_skb_timestamp(skb);
3300 
3301 	if (tp->undo_retrans < 0)
3302 		tp->undo_retrans = 0;
3303 	tp->undo_retrans += tcp_skb_pcount(skb);
3304 	return err;
3305 }
3306 
3307 /* This gets called after a retransmit timeout, and the initially
3308  * retransmitted data is acknowledged.  It tries to continue
3309  * resending the rest of the retransmit queue, until either
3310  * we've sent it all or the congestion window limit is reached.
3311  */
tcp_xmit_retransmit_queue(struct sock * sk)3312 void tcp_xmit_retransmit_queue(struct sock *sk)
3313 {
3314 	const struct inet_connection_sock *icsk = inet_csk(sk);
3315 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3316 	struct tcp_sock *tp = tcp_sk(sk);
3317 	bool rearm_timer = false;
3318 	u32 max_segs;
3319 	int mib_idx;
3320 
3321 	if (!tp->packets_out)
3322 		return;
3323 
3324 	rtx_head = tcp_rtx_queue_head(sk);
3325 	skb = tp->retransmit_skb_hint ?: rtx_head;
3326 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3327 	skb_rbtree_walk_from(skb) {
3328 		__u8 sacked;
3329 		int segs;
3330 
3331 		if (tcp_pacing_check(sk))
3332 			break;
3333 
3334 		/* we could do better than to assign each time */
3335 		if (!hole)
3336 			tp->retransmit_skb_hint = skb;
3337 
3338 		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3339 		if (segs <= 0)
3340 			break;
3341 		sacked = TCP_SKB_CB(skb)->sacked;
3342 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3343 		 * we need to make sure not sending too bigs TSO packets
3344 		 */
3345 		segs = min_t(int, segs, max_segs);
3346 
3347 		if (tp->retrans_out >= tp->lost_out) {
3348 			break;
3349 		} else if (!(sacked & TCPCB_LOST)) {
3350 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3351 				hole = skb;
3352 			continue;
3353 
3354 		} else {
3355 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3356 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3357 			else
3358 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3359 		}
3360 
3361 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3362 			continue;
3363 
3364 		if (tcp_small_queue_check(sk, skb, 1))
3365 			break;
3366 
3367 		if (tcp_retransmit_skb(sk, skb, segs))
3368 			break;
3369 
3370 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3371 
3372 		if (tcp_in_cwnd_reduction(sk))
3373 			tp->prr_out += tcp_skb_pcount(skb);
3374 
3375 		if (skb == rtx_head &&
3376 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3377 			rearm_timer = true;
3378 
3379 	}
3380 	if (rearm_timer)
3381 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3382 				     inet_csk(sk)->icsk_rto,
3383 				     TCP_RTO_MAX);
3384 }
3385 
3386 /* We allow to exceed memory limits for FIN packets to expedite
3387  * connection tear down and (memory) recovery.
3388  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3389  * or even be forced to close flow without any FIN.
3390  * In general, we want to allow one skb per socket to avoid hangs
3391  * with edge trigger epoll()
3392  */
sk_forced_mem_schedule(struct sock * sk,int size)3393 void sk_forced_mem_schedule(struct sock *sk, int size)
3394 {
3395 	int delta, amt;
3396 
3397 	delta = size - sk->sk_forward_alloc;
3398 	if (delta <= 0)
3399 		return;
3400 	amt = sk_mem_pages(delta);
3401 	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3402 	sk_memory_allocated_add(sk, amt);
3403 
3404 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3405 		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3406 					gfp_memcg_charge() | __GFP_NOFAIL);
3407 }
3408 
3409 /* Send a FIN. The caller locks the socket for us.
3410  * We should try to send a FIN packet really hard, but eventually give up.
3411  */
tcp_send_fin(struct sock * sk)3412 void tcp_send_fin(struct sock *sk)
3413 {
3414 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3415 	struct tcp_sock *tp = tcp_sk(sk);
3416 
3417 	/* Optimization, tack on the FIN if we have one skb in write queue and
3418 	 * this skb was not yet sent, or we are under memory pressure.
3419 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3420 	 * as TCP stack thinks it has already been transmitted.
3421 	 */
3422 	tskb = tail;
3423 	if (!tskb && tcp_under_memory_pressure(sk))
3424 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3425 
3426 	if (tskb) {
3427 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3428 		TCP_SKB_CB(tskb)->end_seq++;
3429 		tp->write_seq++;
3430 		if (!tail) {
3431 			/* This means tskb was already sent.
3432 			 * Pretend we included the FIN on previous transmit.
3433 			 * We need to set tp->snd_nxt to the value it would have
3434 			 * if FIN had been sent. This is because retransmit path
3435 			 * does not change tp->snd_nxt.
3436 			 */
3437 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3438 			return;
3439 		}
3440 	} else {
3441 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3442 		if (unlikely(!skb))
3443 			return;
3444 
3445 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3446 		skb_reserve(skb, MAX_TCP_HEADER);
3447 		sk_forced_mem_schedule(sk, skb->truesize);
3448 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3449 		tcp_init_nondata_skb(skb, tp->write_seq,
3450 				     TCPHDR_ACK | TCPHDR_FIN);
3451 		tcp_queue_skb(sk, skb);
3452 	}
3453 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3454 }
3455 
3456 /* We get here when a process closes a file descriptor (either due to
3457  * an explicit close() or as a byproduct of exit()'ing) and there
3458  * was unread data in the receive queue.  This behavior is recommended
3459  * by RFC 2525, section 2.17.  -DaveM
3460  */
tcp_send_active_reset(struct sock * sk,gfp_t priority)3461 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3462 {
3463 	struct sk_buff *skb;
3464 
3465 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3466 
3467 	/* NOTE: No TCP options attached and we never retransmit this. */
3468 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3469 	if (!skb) {
3470 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3471 		return;
3472 	}
3473 
3474 	/* Reserve space for headers and prepare control bits. */
3475 	skb_reserve(skb, MAX_TCP_HEADER);
3476 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3477 			     TCPHDR_ACK | TCPHDR_RST);
3478 	tcp_mstamp_refresh(tcp_sk(sk));
3479 	/* Send it off. */
3480 	if (tcp_transmit_skb(sk, skb, 0, priority))
3481 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3482 
3483 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3484 	 * skb here is different to the troublesome skb, so use NULL
3485 	 */
3486 	trace_tcp_send_reset(sk, NULL);
3487 }
3488 
3489 /* Send a crossed SYN-ACK during socket establishment.
3490  * WARNING: This routine must only be called when we have already sent
3491  * a SYN packet that crossed the incoming SYN that caused this routine
3492  * to get called. If this assumption fails then the initial rcv_wnd
3493  * and rcv_wscale values will not be correct.
3494  */
tcp_send_synack(struct sock * sk)3495 int tcp_send_synack(struct sock *sk)
3496 {
3497 	struct sk_buff *skb;
3498 
3499 	skb = tcp_rtx_queue_head(sk);
3500 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3501 		pr_err("%s: wrong queue state\n", __func__);
3502 		return -EFAULT;
3503 	}
3504 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3505 		if (skb_cloned(skb)) {
3506 			struct sk_buff *nskb;
3507 
3508 			tcp_skb_tsorted_save(skb) {
3509 				nskb = skb_copy(skb, GFP_ATOMIC);
3510 			} tcp_skb_tsorted_restore(skb);
3511 			if (!nskb)
3512 				return -ENOMEM;
3513 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3514 			tcp_highest_sack_replace(sk, skb, nskb);
3515 			tcp_rtx_queue_unlink_and_free(skb, sk);
3516 			__skb_header_release(nskb);
3517 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3518 			sk_wmem_queued_add(sk, nskb->truesize);
3519 			sk_mem_charge(sk, nskb->truesize);
3520 			skb = nskb;
3521 		}
3522 
3523 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3524 		tcp_ecn_send_synack(sk, skb);
3525 	}
3526 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3527 }
3528 
3529 /**
3530  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3531  * @sk: listener socket
3532  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3533  *       should not use it again.
3534  * @req: request_sock pointer
3535  * @foc: cookie for tcp fast open
3536  * @synack_type: Type of synack to prepare
3537  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3538  */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)3539 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3540 				struct request_sock *req,
3541 				struct tcp_fastopen_cookie *foc,
3542 				enum tcp_synack_type synack_type,
3543 				struct sk_buff *syn_skb)
3544 {
3545 	struct inet_request_sock *ireq = inet_rsk(req);
3546 	const struct tcp_sock *tp = tcp_sk(sk);
3547 	struct tcp_md5sig_key *md5 = NULL;
3548 	struct tcp_out_options opts;
3549 	struct sk_buff *skb;
3550 	int tcp_header_size;
3551 	struct tcphdr *th;
3552 	int mss;
3553 	u64 now;
3554 
3555 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3556 	if (unlikely(!skb)) {
3557 		dst_release(dst);
3558 		return NULL;
3559 	}
3560 	/* Reserve space for headers. */
3561 	skb_reserve(skb, MAX_TCP_HEADER);
3562 
3563 	switch (synack_type) {
3564 	case TCP_SYNACK_NORMAL:
3565 		skb_set_owner_w(skb, req_to_sk(req));
3566 		break;
3567 	case TCP_SYNACK_COOKIE:
3568 		/* Under synflood, we do not attach skb to a socket,
3569 		 * to avoid false sharing.
3570 		 */
3571 		break;
3572 	case TCP_SYNACK_FASTOPEN:
3573 		/* sk is a const pointer, because we want to express multiple
3574 		 * cpu might call us concurrently.
3575 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3576 		 */
3577 		skb_set_owner_w(skb, (struct sock *)sk);
3578 		break;
3579 	}
3580 	skb_dst_set(skb, dst);
3581 
3582 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3583 
3584 	memset(&opts, 0, sizeof(opts));
3585 	now = tcp_clock_ns();
3586 #ifdef CONFIG_SYN_COOKIES
3587 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3588 		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3589 				      true);
3590 	else
3591 #endif
3592 	{
3593 		skb_set_delivery_time(skb, now, true);
3594 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3595 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3596 	}
3597 
3598 #ifdef CONFIG_TCP_MD5SIG
3599 	rcu_read_lock();
3600 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3601 #endif
3602 	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3603 	/* bpf program will be interested in the tcp_flags */
3604 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3605 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3606 					     foc, synack_type,
3607 					     syn_skb) + sizeof(*th);
3608 
3609 	skb_push(skb, tcp_header_size);
3610 	skb_reset_transport_header(skb);
3611 
3612 	th = (struct tcphdr *)skb->data;
3613 	memset(th, 0, sizeof(struct tcphdr));
3614 	th->syn = 1;
3615 	th->ack = 1;
3616 	tcp_ecn_make_synack(req, th);
3617 	th->source = htons(ireq->ir_num);
3618 	th->dest = ireq->ir_rmt_port;
3619 	skb->mark = ireq->ir_mark;
3620 	skb->ip_summed = CHECKSUM_PARTIAL;
3621 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3622 	/* XXX data is queued and acked as is. No buffer/window check */
3623 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3624 
3625 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3626 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3627 	tcp_options_write(th, NULL, &opts);
3628 	th->doff = (tcp_header_size >> 2);
3629 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3630 
3631 #ifdef CONFIG_TCP_MD5SIG
3632 	/* Okay, we have all we need - do the md5 hash if needed */
3633 	if (md5)
3634 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3635 					       md5, req_to_sk(req), skb);
3636 	rcu_read_unlock();
3637 #endif
3638 
3639 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3640 				synack_type, &opts);
3641 
3642 	skb_set_delivery_time(skb, now, true);
3643 	tcp_add_tx_delay(skb, tp);
3644 
3645 	return skb;
3646 }
3647 EXPORT_SYMBOL(tcp_make_synack);
3648 
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3649 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3650 {
3651 	struct inet_connection_sock *icsk = inet_csk(sk);
3652 	const struct tcp_congestion_ops *ca;
3653 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3654 
3655 	if (ca_key == TCP_CA_UNSPEC)
3656 		return;
3657 
3658 	rcu_read_lock();
3659 	ca = tcp_ca_find_key(ca_key);
3660 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3661 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3662 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3663 		icsk->icsk_ca_ops = ca;
3664 	}
3665 	rcu_read_unlock();
3666 }
3667 
3668 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3669 static void tcp_connect_init(struct sock *sk)
3670 {
3671 	const struct dst_entry *dst = __sk_dst_get(sk);
3672 	struct tcp_sock *tp = tcp_sk(sk);
3673 	__u8 rcv_wscale;
3674 	u32 rcv_wnd;
3675 
3676 	/* We'll fix this up when we get a response from the other end.
3677 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3678 	 */
3679 	tp->tcp_header_len = sizeof(struct tcphdr);
3680 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3681 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3682 
3683 #ifdef CONFIG_TCP_MD5SIG
3684 	if (tp->af_specific->md5_lookup(sk, sk))
3685 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3686 #endif
3687 
3688 	/* If user gave his TCP_MAXSEG, record it to clamp */
3689 	if (tp->rx_opt.user_mss)
3690 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3691 	tp->max_window = 0;
3692 	tcp_mtup_init(sk);
3693 	tcp_sync_mss(sk, dst_mtu(dst));
3694 
3695 	tcp_ca_dst_init(sk, dst);
3696 
3697 	if (!tp->window_clamp)
3698 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3699 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3700 
3701 	tcp_initialize_rcv_mss(sk);
3702 
3703 	/* limit the window selection if the user enforce a smaller rx buffer */
3704 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3705 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3706 		tp->window_clamp = tcp_full_space(sk);
3707 
3708 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3709 	if (rcv_wnd == 0)
3710 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3711 
3712 	tcp_select_initial_window(sk, tcp_full_space(sk),
3713 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3714 				  &tp->rcv_wnd,
3715 				  &tp->window_clamp,
3716 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3717 				  &rcv_wscale,
3718 				  rcv_wnd);
3719 
3720 	tp->rx_opt.rcv_wscale = rcv_wscale;
3721 	tp->rcv_ssthresh = tp->rcv_wnd;
3722 
3723 	sk->sk_err = 0;
3724 	sock_reset_flag(sk, SOCK_DONE);
3725 	tp->snd_wnd = 0;
3726 	tcp_init_wl(tp, 0);
3727 	tcp_write_queue_purge(sk);
3728 	tp->snd_una = tp->write_seq;
3729 	tp->snd_sml = tp->write_seq;
3730 	tp->snd_up = tp->write_seq;
3731 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3732 
3733 	if (likely(!tp->repair))
3734 		tp->rcv_nxt = 0;
3735 	else
3736 		tp->rcv_tstamp = tcp_jiffies32;
3737 	tp->rcv_wup = tp->rcv_nxt;
3738 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3739 
3740 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3741 	inet_csk(sk)->icsk_retransmits = 0;
3742 	tcp_clear_retrans(tp);
3743 }
3744 
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3745 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3746 {
3747 	struct tcp_sock *tp = tcp_sk(sk);
3748 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3749 
3750 	tcb->end_seq += skb->len;
3751 	__skb_header_release(skb);
3752 	sk_wmem_queued_add(sk, skb->truesize);
3753 	sk_mem_charge(sk, skb->truesize);
3754 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3755 	tp->packets_out += tcp_skb_pcount(skb);
3756 }
3757 
3758 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3759  * queue a data-only packet after the regular SYN, such that regular SYNs
3760  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3761  * only the SYN sequence, the data are retransmitted in the first ACK.
3762  * If cookie is not cached or other error occurs, falls back to send a
3763  * regular SYN with Fast Open cookie request option.
3764  */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3765 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3766 {
3767 	struct inet_connection_sock *icsk = inet_csk(sk);
3768 	struct tcp_sock *tp = tcp_sk(sk);
3769 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3770 	int space, err = 0;
3771 	struct sk_buff *syn_data;
3772 
3773 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3774 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3775 		goto fallback;
3776 
3777 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3778 	 * user-MSS. Reserve maximum option space for middleboxes that add
3779 	 * private TCP options. The cost is reduced data space in SYN :(
3780 	 */
3781 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3782 	/* Sync mss_cache after updating the mss_clamp */
3783 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3784 
3785 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3786 		MAX_TCP_OPTION_SPACE;
3787 
3788 	space = min_t(size_t, space, fo->size);
3789 
3790 	/* limit to order-0 allocations */
3791 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3792 
3793 	syn_data = tcp_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3794 	if (!syn_data)
3795 		goto fallback;
3796 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3797 	if (space) {
3798 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3799 					    &fo->data->msg_iter);
3800 		if (unlikely(!copied)) {
3801 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3802 			kfree_skb(syn_data);
3803 			goto fallback;
3804 		}
3805 		if (copied != space) {
3806 			skb_trim(syn_data, copied);
3807 			space = copied;
3808 		}
3809 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3810 	}
3811 	/* No more data pending in inet_wait_for_connect() */
3812 	if (space == fo->size)
3813 		fo->data = NULL;
3814 	fo->copied = space;
3815 
3816 	tcp_connect_queue_skb(sk, syn_data);
3817 	if (syn_data->len)
3818 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3819 
3820 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3821 
3822 	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3823 
3824 	/* Now full SYN+DATA was cloned and sent (or not),
3825 	 * remove the SYN from the original skb (syn_data)
3826 	 * we keep in write queue in case of a retransmit, as we
3827 	 * also have the SYN packet (with no data) in the same queue.
3828 	 */
3829 	TCP_SKB_CB(syn_data)->seq++;
3830 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3831 	if (!err) {
3832 		tp->syn_data = (fo->copied > 0);
3833 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3834 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3835 		goto done;
3836 	}
3837 
3838 	/* data was not sent, put it in write_queue */
3839 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3840 	tp->packets_out -= tcp_skb_pcount(syn_data);
3841 
3842 fallback:
3843 	/* Send a regular SYN with Fast Open cookie request option */
3844 	if (fo->cookie.len > 0)
3845 		fo->cookie.len = 0;
3846 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3847 	if (err)
3848 		tp->syn_fastopen = 0;
3849 done:
3850 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3851 	return err;
3852 }
3853 
3854 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)3855 int tcp_connect(struct sock *sk)
3856 {
3857 	struct tcp_sock *tp = tcp_sk(sk);
3858 	struct sk_buff *buff;
3859 	int err;
3860 
3861 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3862 
3863 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3864 		return -EHOSTUNREACH; /* Routing failure or similar. */
3865 
3866 	tcp_connect_init(sk);
3867 
3868 	if (unlikely(tp->repair)) {
3869 		tcp_finish_connect(sk, NULL);
3870 		return 0;
3871 	}
3872 
3873 	buff = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3874 	if (unlikely(!buff))
3875 		return -ENOBUFS;
3876 
3877 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3878 	tcp_mstamp_refresh(tp);
3879 	tp->retrans_stamp = tcp_time_stamp(tp);
3880 	tcp_connect_queue_skb(sk, buff);
3881 	tcp_ecn_send_syn(sk, buff);
3882 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3883 
3884 	/* Send off SYN; include data in Fast Open. */
3885 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3886 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3887 	if (err == -ECONNREFUSED)
3888 		return err;
3889 
3890 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3891 	 * in order to make this packet get counted in tcpOutSegs.
3892 	 */
3893 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3894 	tp->pushed_seq = tp->write_seq;
3895 	buff = tcp_send_head(sk);
3896 	if (unlikely(buff)) {
3897 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3898 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3899 	}
3900 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3901 
3902 	/* Timer for repeating the SYN until an answer. */
3903 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3904 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3905 	return 0;
3906 }
3907 EXPORT_SYMBOL(tcp_connect);
3908 
3909 /* Send out a delayed ack, the caller does the policy checking
3910  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3911  * for details.
3912  */
tcp_send_delayed_ack(struct sock * sk)3913 void tcp_send_delayed_ack(struct sock *sk)
3914 {
3915 	struct inet_connection_sock *icsk = inet_csk(sk);
3916 	int ato = icsk->icsk_ack.ato;
3917 	unsigned long timeout;
3918 
3919 	if (ato > TCP_DELACK_MIN) {
3920 		const struct tcp_sock *tp = tcp_sk(sk);
3921 		int max_ato = HZ / 2;
3922 
3923 		if (inet_csk_in_pingpong_mode(sk) ||
3924 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3925 			max_ato = TCP_DELACK_MAX;
3926 
3927 		/* Slow path, intersegment interval is "high". */
3928 
3929 		/* If some rtt estimate is known, use it to bound delayed ack.
3930 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3931 		 * directly.
3932 		 */
3933 		if (tp->srtt_us) {
3934 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3935 					TCP_DELACK_MIN);
3936 
3937 			if (rtt < max_ato)
3938 				max_ato = rtt;
3939 		}
3940 
3941 		ato = min(ato, max_ato);
3942 	}
3943 
3944 	ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
3945 
3946 	/* Stay within the limit we were given */
3947 	timeout = jiffies + ato;
3948 
3949 	/* Use new timeout only if there wasn't a older one earlier. */
3950 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3951 		/* If delack timer is about to expire, send ACK now. */
3952 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3953 			tcp_send_ack(sk);
3954 			return;
3955 		}
3956 
3957 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3958 			timeout = icsk->icsk_ack.timeout;
3959 	}
3960 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3961 	icsk->icsk_ack.timeout = timeout;
3962 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3963 }
3964 
3965 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt)3966 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3967 {
3968 	struct sk_buff *buff;
3969 
3970 	/* If we have been reset, we may not send again. */
3971 	if (sk->sk_state == TCP_CLOSE)
3972 		return;
3973 
3974 	/* We are not putting this on the write queue, so
3975 	 * tcp_transmit_skb() will set the ownership to this
3976 	 * sock.
3977 	 */
3978 	buff = alloc_skb(MAX_TCP_HEADER,
3979 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3980 	if (unlikely(!buff)) {
3981 		struct inet_connection_sock *icsk = inet_csk(sk);
3982 		unsigned long delay;
3983 
3984 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
3985 		if (delay < TCP_RTO_MAX)
3986 			icsk->icsk_ack.retry++;
3987 		inet_csk_schedule_ack(sk);
3988 		icsk->icsk_ack.ato = TCP_ATO_MIN;
3989 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
3990 		return;
3991 	}
3992 
3993 	/* Reserve space for headers and prepare control bits. */
3994 	skb_reserve(buff, MAX_TCP_HEADER);
3995 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3996 
3997 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3998 	 * too much.
3999 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4000 	 */
4001 	skb_set_tcp_pure_ack(buff);
4002 
4003 	/* Send it off, this clears delayed acks for us. */
4004 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4005 }
4006 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4007 
tcp_send_ack(struct sock * sk)4008 void tcp_send_ack(struct sock *sk)
4009 {
4010 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4011 }
4012 
4013 /* This routine sends a packet with an out of date sequence
4014  * number. It assumes the other end will try to ack it.
4015  *
4016  * Question: what should we make while urgent mode?
4017  * 4.4BSD forces sending single byte of data. We cannot send
4018  * out of window data, because we have SND.NXT==SND.MAX...
4019  *
4020  * Current solution: to send TWO zero-length segments in urgent mode:
4021  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4022  * out-of-date with SND.UNA-1 to probe window.
4023  */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)4024 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4025 {
4026 	struct tcp_sock *tp = tcp_sk(sk);
4027 	struct sk_buff *skb;
4028 
4029 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4030 	skb = alloc_skb(MAX_TCP_HEADER,
4031 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4032 	if (!skb)
4033 		return -1;
4034 
4035 	/* Reserve space for headers and set control bits. */
4036 	skb_reserve(skb, MAX_TCP_HEADER);
4037 	/* Use a previous sequence.  This should cause the other
4038 	 * end to send an ack.  Don't queue or clone SKB, just
4039 	 * send it.
4040 	 */
4041 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4042 	NET_INC_STATS(sock_net(sk), mib);
4043 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4044 }
4045 
4046 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)4047 void tcp_send_window_probe(struct sock *sk)
4048 {
4049 	if (sk->sk_state == TCP_ESTABLISHED) {
4050 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4051 		tcp_mstamp_refresh(tcp_sk(sk));
4052 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4053 	}
4054 }
4055 
4056 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)4057 int tcp_write_wakeup(struct sock *sk, int mib)
4058 {
4059 	struct tcp_sock *tp = tcp_sk(sk);
4060 	struct sk_buff *skb;
4061 
4062 	if (sk->sk_state == TCP_CLOSE)
4063 		return -1;
4064 
4065 	skb = tcp_send_head(sk);
4066 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4067 		int err;
4068 		unsigned int mss = tcp_current_mss(sk);
4069 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4070 
4071 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4072 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4073 
4074 		/* We are probing the opening of a window
4075 		 * but the window size is != 0
4076 		 * must have been a result SWS avoidance ( sender )
4077 		 */
4078 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4079 		    skb->len > mss) {
4080 			seg_size = min(seg_size, mss);
4081 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4082 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4083 					 skb, seg_size, mss, GFP_ATOMIC))
4084 				return -1;
4085 		} else if (!tcp_skb_pcount(skb))
4086 			tcp_set_skb_tso_segs(skb, mss);
4087 
4088 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4089 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4090 		if (!err)
4091 			tcp_event_new_data_sent(sk, skb);
4092 		return err;
4093 	} else {
4094 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4095 			tcp_xmit_probe_skb(sk, 1, mib);
4096 		return tcp_xmit_probe_skb(sk, 0, mib);
4097 	}
4098 }
4099 
4100 /* A window probe timeout has occurred.  If window is not closed send
4101  * a partial packet else a zero probe.
4102  */
tcp_send_probe0(struct sock * sk)4103 void tcp_send_probe0(struct sock *sk)
4104 {
4105 	struct inet_connection_sock *icsk = inet_csk(sk);
4106 	struct tcp_sock *tp = tcp_sk(sk);
4107 	struct net *net = sock_net(sk);
4108 	unsigned long timeout;
4109 	int err;
4110 
4111 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4112 
4113 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4114 		/* Cancel probe timer, if it is not required. */
4115 		icsk->icsk_probes_out = 0;
4116 		icsk->icsk_backoff = 0;
4117 		icsk->icsk_probes_tstamp = 0;
4118 		return;
4119 	}
4120 
4121 	icsk->icsk_probes_out++;
4122 	if (err <= 0) {
4123 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4124 			icsk->icsk_backoff++;
4125 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4126 	} else {
4127 		/* If packet was not sent due to local congestion,
4128 		 * Let senders fight for local resources conservatively.
4129 		 */
4130 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4131 	}
4132 
4133 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4134 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4135 }
4136 
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)4137 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4138 {
4139 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4140 	struct flowi fl;
4141 	int res;
4142 
4143 	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4144 	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4145 		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4146 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4147 				  NULL);
4148 	if (!res) {
4149 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4150 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4151 		if (unlikely(tcp_passive_fastopen(sk)))
4152 			tcp_sk(sk)->total_retrans++;
4153 		trace_tcp_retransmit_synack(sk, req);
4154 	}
4155 	return res;
4156 }
4157 EXPORT_SYMBOL(tcp_rtx_synack);
4158