1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes: Pedro Roque : Retransmit queue handled by TCP.
24 * : Fragmentation on mtu decrease
25 * : Segment collapse on retransmit
26 * : AF independence
27 *
28 * Linus Torvalds : send_delayed_ack
29 * David S. Miller : Charge memory using the right skb
30 * during syn/ack processing.
31 * David S. Miller : Output engine completely rewritten.
32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
33 * Cacophonix Gaul : draft-minshall-nagle-01
34 * J Hadi Salim : ECN support
35 *
36 */
37
38 #define pr_fmt(fmt) "TCP: " fmt
39
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47
48 #include <trace/events/tcp.h>
49
50 /* Refresh clocks of a TCP socket,
51 * ensuring monotically increasing values.
52 */
tcp_mstamp_refresh(struct tcp_sock * tp)53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 u64 val = tcp_clock_ns();
56
57 tp->tcp_clock_cache = val;
58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 int push_one, gfp_t gfp);
63
64 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 struct inet_connection_sock *icsk = inet_csk(sk);
68 struct tcp_sock *tp = tcp_sk(sk);
69 unsigned int prior_packets = tp->packets_out;
70
71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72
73 __skb_unlink(skb, &sk->sk_write_queue);
74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75
76 if (tp->highest_sack == NULL)
77 tp->highest_sack = skb;
78
79 tp->packets_out += tcp_skb_pcount(skb);
80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 tcp_rearm_rto(sk);
82
83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 tcp_skb_pcount(skb));
85 tcp_check_space(sk);
86 }
87
88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89 * window scaling factor due to loss of precision.
90 * If window has been shrunk, what should we make? It is not clear at all.
91 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93 * invalid. OK, let's make this for now:
94 */
tcp_acceptable_seq(const struct sock * sk)95 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 {
97 const struct tcp_sock *tp = tcp_sk(sk);
98
99 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
100 (tp->rx_opt.wscale_ok &&
101 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
102 return tp->snd_nxt;
103 else
104 return tcp_wnd_end(tp);
105 }
106
107 /* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109 *
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 * attached devices, because some buggy hosts are confused by
114 * large MSS.
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 * This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 * probably even Jumbo".
120 */
tcp_advertise_mss(struct sock * sk)121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 struct tcp_sock *tp = tcp_sk(sk);
124 const struct dst_entry *dst = __sk_dst_get(sk);
125 int mss = tp->advmss;
126
127 if (dst) {
128 unsigned int metric = dst_metric_advmss(dst);
129
130 if (metric < mss) {
131 mss = metric;
132 tp->advmss = mss;
133 }
134 }
135
136 return (__u16)mss;
137 }
138
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism.
141 */
tcp_cwnd_restart(struct sock * sk,s32 delta)142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 struct tcp_sock *tp = tcp_sk(sk);
145 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 u32 cwnd = tcp_snd_cwnd(tp);
147
148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149
150 tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 restart_cwnd = min(restart_cwnd, cwnd);
152
153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 cwnd >>= 1;
155 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
156 tp->snd_cwnd_stamp = tcp_jiffies32;
157 tp->snd_cwnd_used = 0;
158 }
159
160 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 struct sock *sk)
163 {
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 const u32 now = tcp_jiffies32;
166
167 if (tcp_packets_in_flight(tp) == 0)
168 tcp_ca_event(sk, CA_EVENT_TX_START);
169
170 tp->lsndtime = now;
171
172 /* If it is a reply for ato after last received
173 * packet, enter pingpong mode.
174 */
175 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 inet_csk_enter_pingpong_mode(sk);
177 }
178
179 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,u32 rcv_nxt)180 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
181 {
182 struct tcp_sock *tp = tcp_sk(sk);
183
184 if (unlikely(tp->compressed_ack)) {
185 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
186 tp->compressed_ack);
187 tp->compressed_ack = 0;
188 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
189 __sock_put(sk);
190 }
191
192 if (unlikely(rcv_nxt != tp->rcv_nxt))
193 return; /* Special ACK sent by DCTCP to reflect ECN */
194 tcp_dec_quickack_mode(sk);
195 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
196 }
197
198 /* Determine a window scaling and initial window to offer.
199 * Based on the assumption that the given amount of space
200 * will be offered. Store the results in the tp structure.
201 * NOTE: for smooth operation initial space offering should
202 * be a multiple of mss if possible. We assume here that mss >= 1.
203 * This MUST be enforced by all callers.
204 */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)205 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
206 __u32 *rcv_wnd, __u32 *window_clamp,
207 int wscale_ok, __u8 *rcv_wscale,
208 __u32 init_rcv_wnd)
209 {
210 unsigned int space = (__space < 0 ? 0 : __space);
211
212 /* If no clamp set the clamp to the max possible scaled window */
213 if (*window_clamp == 0)
214 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
215 space = min(*window_clamp, space);
216
217 /* Quantize space offering to a multiple of mss if possible. */
218 if (space > mss)
219 space = rounddown(space, mss);
220
221 /* NOTE: offering an initial window larger than 32767
222 * will break some buggy TCP stacks. If the admin tells us
223 * it is likely we could be speaking with such a buggy stack
224 * we will truncate our initial window offering to 32K-1
225 * unless the remote has sent us a window scaling option,
226 * which we interpret as a sign the remote TCP is not
227 * misinterpreting the window field as a signed quantity.
228 */
229 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
230 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231 else
232 (*rcv_wnd) = min_t(u32, space, U16_MAX);
233
234 if (init_rcv_wnd)
235 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
236
237 *rcv_wscale = 0;
238 if (wscale_ok) {
239 /* Set window scaling on max possible window */
240 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
241 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
242 space = min_t(u32, space, *window_clamp);
243 *rcv_wscale = clamp_t(int, ilog2(space) - 15,
244 0, TCP_MAX_WSCALE);
245 }
246 /* Set the clamp no higher than max representable value */
247 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
248 }
249 EXPORT_SYMBOL(tcp_select_initial_window);
250
251 /* Chose a new window to advertise, update state in tcp_sock for the
252 * socket, and return result with RFC1323 scaling applied. The return
253 * value can be stuffed directly into th->window for an outgoing
254 * frame.
255 */
tcp_select_window(struct sock * sk)256 static u16 tcp_select_window(struct sock *sk)
257 {
258 struct tcp_sock *tp = tcp_sk(sk);
259 u32 old_win = tp->rcv_wnd;
260 u32 cur_win = tcp_receive_window(tp);
261 u32 new_win = __tcp_select_window(sk);
262
263 /* Never shrink the offered window */
264 if (new_win < cur_win) {
265 /* Danger Will Robinson!
266 * Don't update rcv_wup/rcv_wnd here or else
267 * we will not be able to advertise a zero
268 * window in time. --DaveM
269 *
270 * Relax Will Robinson.
271 */
272 if (new_win == 0)
273 NET_INC_STATS(sock_net(sk),
274 LINUX_MIB_TCPWANTZEROWINDOWADV);
275 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
276 }
277 tp->rcv_wnd = new_win;
278 tp->rcv_wup = tp->rcv_nxt;
279
280 /* Make sure we do not exceed the maximum possible
281 * scaled window.
282 */
283 if (!tp->rx_opt.rcv_wscale &&
284 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
285 new_win = min(new_win, MAX_TCP_WINDOW);
286 else
287 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
288
289 /* RFC1323 scaling applied */
290 new_win >>= tp->rx_opt.rcv_wscale;
291
292 /* If we advertise zero window, disable fast path. */
293 if (new_win == 0) {
294 tp->pred_flags = 0;
295 if (old_win)
296 NET_INC_STATS(sock_net(sk),
297 LINUX_MIB_TCPTOZEROWINDOWADV);
298 } else if (old_win == 0) {
299 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
300 }
301
302 return new_win;
303 }
304
305 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)306 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
307 {
308 const struct tcp_sock *tp = tcp_sk(sk);
309
310 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
311 if (!(tp->ecn_flags & TCP_ECN_OK))
312 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
313 else if (tcp_ca_needs_ecn(sk) ||
314 tcp_bpf_ca_needs_ecn(sk))
315 INET_ECN_xmit(sk);
316 }
317
318 /* Packet ECN state for a SYN. */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)319 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
320 {
321 struct tcp_sock *tp = tcp_sk(sk);
322 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
323 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
324 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
325
326 if (!use_ecn) {
327 const struct dst_entry *dst = __sk_dst_get(sk);
328
329 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
330 use_ecn = true;
331 }
332
333 tp->ecn_flags = 0;
334
335 if (use_ecn) {
336 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
337 tp->ecn_flags = TCP_ECN_OK;
338 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
339 INET_ECN_xmit(sk);
340 }
341 }
342
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)343 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
344 {
345 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
346 /* tp->ecn_flags are cleared at a later point in time when
347 * SYN ACK is ultimatively being received.
348 */
349 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
350 }
351
352 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)353 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
354 {
355 if (inet_rsk(req)->ecn_ok)
356 th->ece = 1;
357 }
358
359 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
360 * be sent.
361 */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)362 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
363 struct tcphdr *th, int tcp_header_len)
364 {
365 struct tcp_sock *tp = tcp_sk(sk);
366
367 if (tp->ecn_flags & TCP_ECN_OK) {
368 /* Not-retransmitted data segment: set ECT and inject CWR. */
369 if (skb->len != tcp_header_len &&
370 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
371 INET_ECN_xmit(sk);
372 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
373 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
374 th->cwr = 1;
375 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
376 }
377 } else if (!tcp_ca_needs_ecn(sk)) {
378 /* ACK or retransmitted segment: clear ECT|CE */
379 INET_ECN_dontxmit(sk);
380 }
381 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
382 th->ece = 1;
383 }
384 }
385
386 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
387 * auto increment end seqno.
388 */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)389 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
390 {
391 skb->ip_summed = CHECKSUM_PARTIAL;
392
393 TCP_SKB_CB(skb)->tcp_flags = flags;
394
395 tcp_skb_pcount_set(skb, 1);
396
397 TCP_SKB_CB(skb)->seq = seq;
398 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
399 seq++;
400 TCP_SKB_CB(skb)->end_seq = seq;
401 }
402
tcp_urg_mode(const struct tcp_sock * tp)403 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
404 {
405 return tp->snd_una != tp->snd_up;
406 }
407
408 #define OPTION_SACK_ADVERTISE BIT(0)
409 #define OPTION_TS BIT(1)
410 #define OPTION_MD5 BIT(2)
411 #define OPTION_WSCALE BIT(3)
412 #define OPTION_FAST_OPEN_COOKIE BIT(8)
413 #define OPTION_SMC BIT(9)
414 #define OPTION_MPTCP BIT(10)
415
smc_options_write(__be32 * ptr,u16 * options)416 static void smc_options_write(__be32 *ptr, u16 *options)
417 {
418 #if IS_ENABLED(CONFIG_SMC)
419 if (static_branch_unlikely(&tcp_have_smc)) {
420 if (unlikely(OPTION_SMC & *options)) {
421 *ptr++ = htonl((TCPOPT_NOP << 24) |
422 (TCPOPT_NOP << 16) |
423 (TCPOPT_EXP << 8) |
424 (TCPOLEN_EXP_SMC_BASE));
425 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
426 }
427 }
428 #endif
429 }
430
431 struct tcp_out_options {
432 u16 options; /* bit field of OPTION_* */
433 u16 mss; /* 0 to disable */
434 u8 ws; /* window scale, 0 to disable */
435 u8 num_sack_blocks; /* number of SACK blocks to include */
436 u8 hash_size; /* bytes in hash_location */
437 u8 bpf_opt_len; /* length of BPF hdr option */
438 __u8 *hash_location; /* temporary pointer, overloaded */
439 __u32 tsval, tsecr; /* need to include OPTION_TS */
440 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
441 struct mptcp_out_options mptcp;
442 };
443
mptcp_options_write(struct tcphdr * th,__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)444 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
445 struct tcp_sock *tp,
446 struct tcp_out_options *opts)
447 {
448 #if IS_ENABLED(CONFIG_MPTCP)
449 if (unlikely(OPTION_MPTCP & opts->options))
450 mptcp_write_options(th, ptr, tp, &opts->mptcp);
451 #endif
452 }
453
454 #ifdef CONFIG_CGROUP_BPF
bpf_skops_write_hdr_opt_arg0(struct sk_buff * skb,enum tcp_synack_type synack_type)455 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
456 enum tcp_synack_type synack_type)
457 {
458 if (unlikely(!skb))
459 return BPF_WRITE_HDR_TCP_CURRENT_MSS;
460
461 if (unlikely(synack_type == TCP_SYNACK_COOKIE))
462 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
463
464 return 0;
465 }
466
467 /* req, syn_skb and synack_type are used when writing synack */
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)468 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
469 struct request_sock *req,
470 struct sk_buff *syn_skb,
471 enum tcp_synack_type synack_type,
472 struct tcp_out_options *opts,
473 unsigned int *remaining)
474 {
475 struct bpf_sock_ops_kern sock_ops;
476 int err;
477
478 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
479 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
480 !*remaining)
481 return;
482
483 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
484
485 /* init sock_ops */
486 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
487
488 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
489
490 if (req) {
491 /* The listen "sk" cannot be passed here because
492 * it is not locked. It would not make too much
493 * sense to do bpf_setsockopt(listen_sk) based
494 * on individual connection request also.
495 *
496 * Thus, "req" is passed here and the cgroup-bpf-progs
497 * of the listen "sk" will be run.
498 *
499 * "req" is also used here for fastopen even the "sk" here is
500 * a fullsock "child" sk. It is to keep the behavior
501 * consistent between fastopen and non-fastopen on
502 * the bpf programming side.
503 */
504 sock_ops.sk = (struct sock *)req;
505 sock_ops.syn_skb = syn_skb;
506 } else {
507 sock_owned_by_me(sk);
508
509 sock_ops.is_fullsock = 1;
510 sock_ops.sk = sk;
511 }
512
513 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
514 sock_ops.remaining_opt_len = *remaining;
515 /* tcp_current_mss() does not pass a skb */
516 if (skb)
517 bpf_skops_init_skb(&sock_ops, skb, 0);
518
519 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
520
521 if (err || sock_ops.remaining_opt_len == *remaining)
522 return;
523
524 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
525 /* round up to 4 bytes */
526 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
527
528 *remaining -= opts->bpf_opt_len;
529 }
530
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)531 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
532 struct request_sock *req,
533 struct sk_buff *syn_skb,
534 enum tcp_synack_type synack_type,
535 struct tcp_out_options *opts)
536 {
537 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
538 struct bpf_sock_ops_kern sock_ops;
539 int err;
540
541 if (likely(!max_opt_len))
542 return;
543
544 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
545
546 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
547
548 if (req) {
549 sock_ops.sk = (struct sock *)req;
550 sock_ops.syn_skb = syn_skb;
551 } else {
552 sock_owned_by_me(sk);
553
554 sock_ops.is_fullsock = 1;
555 sock_ops.sk = sk;
556 }
557
558 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
559 sock_ops.remaining_opt_len = max_opt_len;
560 first_opt_off = tcp_hdrlen(skb) - max_opt_len;
561 bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
562
563 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
564
565 if (err)
566 nr_written = 0;
567 else
568 nr_written = max_opt_len - sock_ops.remaining_opt_len;
569
570 if (nr_written < max_opt_len)
571 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
572 max_opt_len - nr_written);
573 }
574 #else
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)575 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
576 struct request_sock *req,
577 struct sk_buff *syn_skb,
578 enum tcp_synack_type synack_type,
579 struct tcp_out_options *opts,
580 unsigned int *remaining)
581 {
582 }
583
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)584 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
585 struct request_sock *req,
586 struct sk_buff *syn_skb,
587 enum tcp_synack_type synack_type,
588 struct tcp_out_options *opts)
589 {
590 }
591 #endif
592
593 /* Write previously computed TCP options to the packet.
594 *
595 * Beware: Something in the Internet is very sensitive to the ordering of
596 * TCP options, we learned this through the hard way, so be careful here.
597 * Luckily we can at least blame others for their non-compliance but from
598 * inter-operability perspective it seems that we're somewhat stuck with
599 * the ordering which we have been using if we want to keep working with
600 * those broken things (not that it currently hurts anybody as there isn't
601 * particular reason why the ordering would need to be changed).
602 *
603 * At least SACK_PERM as the first option is known to lead to a disaster
604 * (but it may well be that other scenarios fail similarly).
605 */
tcp_options_write(struct tcphdr * th,struct tcp_sock * tp,struct tcp_out_options * opts)606 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
607 struct tcp_out_options *opts)
608 {
609 __be32 *ptr = (__be32 *)(th + 1);
610 u16 options = opts->options; /* mungable copy */
611
612 if (unlikely(OPTION_MD5 & options)) {
613 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
614 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
615 /* overload cookie hash location */
616 opts->hash_location = (__u8 *)ptr;
617 ptr += 4;
618 }
619
620 if (unlikely(opts->mss)) {
621 *ptr++ = htonl((TCPOPT_MSS << 24) |
622 (TCPOLEN_MSS << 16) |
623 opts->mss);
624 }
625
626 if (likely(OPTION_TS & options)) {
627 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
628 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
629 (TCPOLEN_SACK_PERM << 16) |
630 (TCPOPT_TIMESTAMP << 8) |
631 TCPOLEN_TIMESTAMP);
632 options &= ~OPTION_SACK_ADVERTISE;
633 } else {
634 *ptr++ = htonl((TCPOPT_NOP << 24) |
635 (TCPOPT_NOP << 16) |
636 (TCPOPT_TIMESTAMP << 8) |
637 TCPOLEN_TIMESTAMP);
638 }
639 *ptr++ = htonl(opts->tsval);
640 *ptr++ = htonl(opts->tsecr);
641 }
642
643 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
644 *ptr++ = htonl((TCPOPT_NOP << 24) |
645 (TCPOPT_NOP << 16) |
646 (TCPOPT_SACK_PERM << 8) |
647 TCPOLEN_SACK_PERM);
648 }
649
650 if (unlikely(OPTION_WSCALE & options)) {
651 *ptr++ = htonl((TCPOPT_NOP << 24) |
652 (TCPOPT_WINDOW << 16) |
653 (TCPOLEN_WINDOW << 8) |
654 opts->ws);
655 }
656
657 if (unlikely(opts->num_sack_blocks)) {
658 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
659 tp->duplicate_sack : tp->selective_acks;
660 int this_sack;
661
662 *ptr++ = htonl((TCPOPT_NOP << 24) |
663 (TCPOPT_NOP << 16) |
664 (TCPOPT_SACK << 8) |
665 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
666 TCPOLEN_SACK_PERBLOCK)));
667
668 for (this_sack = 0; this_sack < opts->num_sack_blocks;
669 ++this_sack) {
670 *ptr++ = htonl(sp[this_sack].start_seq);
671 *ptr++ = htonl(sp[this_sack].end_seq);
672 }
673
674 tp->rx_opt.dsack = 0;
675 }
676
677 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
678 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
679 u8 *p = (u8 *)ptr;
680 u32 len; /* Fast Open option length */
681
682 if (foc->exp) {
683 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
684 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
685 TCPOPT_FASTOPEN_MAGIC);
686 p += TCPOLEN_EXP_FASTOPEN_BASE;
687 } else {
688 len = TCPOLEN_FASTOPEN_BASE + foc->len;
689 *p++ = TCPOPT_FASTOPEN;
690 *p++ = len;
691 }
692
693 memcpy(p, foc->val, foc->len);
694 if ((len & 3) == 2) {
695 p[foc->len] = TCPOPT_NOP;
696 p[foc->len + 1] = TCPOPT_NOP;
697 }
698 ptr += (len + 3) >> 2;
699 }
700
701 smc_options_write(ptr, &options);
702
703 mptcp_options_write(th, ptr, tp, opts);
704 }
705
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)706 static void smc_set_option(const struct tcp_sock *tp,
707 struct tcp_out_options *opts,
708 unsigned int *remaining)
709 {
710 #if IS_ENABLED(CONFIG_SMC)
711 if (static_branch_unlikely(&tcp_have_smc)) {
712 if (tp->syn_smc) {
713 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
714 opts->options |= OPTION_SMC;
715 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
716 }
717 }
718 }
719 #endif
720 }
721
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)722 static void smc_set_option_cond(const struct tcp_sock *tp,
723 const struct inet_request_sock *ireq,
724 struct tcp_out_options *opts,
725 unsigned int *remaining)
726 {
727 #if IS_ENABLED(CONFIG_SMC)
728 if (static_branch_unlikely(&tcp_have_smc)) {
729 if (tp->syn_smc && ireq->smc_ok) {
730 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
731 opts->options |= OPTION_SMC;
732 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
733 }
734 }
735 }
736 #endif
737 }
738
mptcp_set_option_cond(const struct request_sock * req,struct tcp_out_options * opts,unsigned int * remaining)739 static void mptcp_set_option_cond(const struct request_sock *req,
740 struct tcp_out_options *opts,
741 unsigned int *remaining)
742 {
743 if (rsk_is_mptcp(req)) {
744 unsigned int size;
745
746 if (mptcp_synack_options(req, &size, &opts->mptcp)) {
747 if (*remaining >= size) {
748 opts->options |= OPTION_MPTCP;
749 *remaining -= size;
750 }
751 }
752 }
753 }
754
755 /* Compute TCP options for SYN packets. This is not the final
756 * network wire format yet.
757 */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)758 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
759 struct tcp_out_options *opts,
760 struct tcp_md5sig_key **md5)
761 {
762 struct tcp_sock *tp = tcp_sk(sk);
763 unsigned int remaining = MAX_TCP_OPTION_SPACE;
764 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
765
766 *md5 = NULL;
767 #ifdef CONFIG_TCP_MD5SIG
768 if (static_branch_unlikely(&tcp_md5_needed) &&
769 rcu_access_pointer(tp->md5sig_info)) {
770 *md5 = tp->af_specific->md5_lookup(sk, sk);
771 if (*md5) {
772 opts->options |= OPTION_MD5;
773 remaining -= TCPOLEN_MD5SIG_ALIGNED;
774 }
775 }
776 #endif
777
778 /* We always get an MSS option. The option bytes which will be seen in
779 * normal data packets should timestamps be used, must be in the MSS
780 * advertised. But we subtract them from tp->mss_cache so that
781 * calculations in tcp_sendmsg are simpler etc. So account for this
782 * fact here if necessary. If we don't do this correctly, as a
783 * receiver we won't recognize data packets as being full sized when we
784 * should, and thus we won't abide by the delayed ACK rules correctly.
785 * SACKs don't matter, we never delay an ACK when we have any of those
786 * going out. */
787 opts->mss = tcp_advertise_mss(sk);
788 remaining -= TCPOLEN_MSS_ALIGNED;
789
790 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) {
791 opts->options |= OPTION_TS;
792 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
793 opts->tsecr = tp->rx_opt.ts_recent;
794 remaining -= TCPOLEN_TSTAMP_ALIGNED;
795 }
796 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
797 opts->ws = tp->rx_opt.rcv_wscale;
798 opts->options |= OPTION_WSCALE;
799 remaining -= TCPOLEN_WSCALE_ALIGNED;
800 }
801 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
802 opts->options |= OPTION_SACK_ADVERTISE;
803 if (unlikely(!(OPTION_TS & opts->options)))
804 remaining -= TCPOLEN_SACKPERM_ALIGNED;
805 }
806
807 if (fastopen && fastopen->cookie.len >= 0) {
808 u32 need = fastopen->cookie.len;
809
810 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
811 TCPOLEN_FASTOPEN_BASE;
812 need = (need + 3) & ~3U; /* Align to 32 bits */
813 if (remaining >= need) {
814 opts->options |= OPTION_FAST_OPEN_COOKIE;
815 opts->fastopen_cookie = &fastopen->cookie;
816 remaining -= need;
817 tp->syn_fastopen = 1;
818 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
819 }
820 }
821
822 smc_set_option(tp, opts, &remaining);
823
824 if (sk_is_mptcp(sk)) {
825 unsigned int size;
826
827 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
828 opts->options |= OPTION_MPTCP;
829 remaining -= size;
830 }
831 }
832
833 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
834
835 return MAX_TCP_OPTION_SPACE - remaining;
836 }
837
838 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_md5sig_key * md5,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)839 static unsigned int tcp_synack_options(const struct sock *sk,
840 struct request_sock *req,
841 unsigned int mss, struct sk_buff *skb,
842 struct tcp_out_options *opts,
843 const struct tcp_md5sig_key *md5,
844 struct tcp_fastopen_cookie *foc,
845 enum tcp_synack_type synack_type,
846 struct sk_buff *syn_skb)
847 {
848 struct inet_request_sock *ireq = inet_rsk(req);
849 unsigned int remaining = MAX_TCP_OPTION_SPACE;
850
851 #ifdef CONFIG_TCP_MD5SIG
852 if (md5) {
853 opts->options |= OPTION_MD5;
854 remaining -= TCPOLEN_MD5SIG_ALIGNED;
855
856 /* We can't fit any SACK blocks in a packet with MD5 + TS
857 * options. There was discussion about disabling SACK
858 * rather than TS in order to fit in better with old,
859 * buggy kernels, but that was deemed to be unnecessary.
860 */
861 if (synack_type != TCP_SYNACK_COOKIE)
862 ireq->tstamp_ok &= !ireq->sack_ok;
863 }
864 #endif
865
866 /* We always send an MSS option. */
867 opts->mss = mss;
868 remaining -= TCPOLEN_MSS_ALIGNED;
869
870 if (likely(ireq->wscale_ok)) {
871 opts->ws = ireq->rcv_wscale;
872 opts->options |= OPTION_WSCALE;
873 remaining -= TCPOLEN_WSCALE_ALIGNED;
874 }
875 if (likely(ireq->tstamp_ok)) {
876 opts->options |= OPTION_TS;
877 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
878 opts->tsecr = READ_ONCE(req->ts_recent);
879 remaining -= TCPOLEN_TSTAMP_ALIGNED;
880 }
881 if (likely(ireq->sack_ok)) {
882 opts->options |= OPTION_SACK_ADVERTISE;
883 if (unlikely(!ireq->tstamp_ok))
884 remaining -= TCPOLEN_SACKPERM_ALIGNED;
885 }
886 if (foc != NULL && foc->len >= 0) {
887 u32 need = foc->len;
888
889 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
890 TCPOLEN_FASTOPEN_BASE;
891 need = (need + 3) & ~3U; /* Align to 32 bits */
892 if (remaining >= need) {
893 opts->options |= OPTION_FAST_OPEN_COOKIE;
894 opts->fastopen_cookie = foc;
895 remaining -= need;
896 }
897 }
898
899 mptcp_set_option_cond(req, opts, &remaining);
900
901 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
902
903 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
904 synack_type, opts, &remaining);
905
906 return MAX_TCP_OPTION_SPACE - remaining;
907 }
908
909 /* Compute TCP options for ESTABLISHED sockets. This is not the
910 * final wire format yet.
911 */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)912 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
913 struct tcp_out_options *opts,
914 struct tcp_md5sig_key **md5)
915 {
916 struct tcp_sock *tp = tcp_sk(sk);
917 unsigned int size = 0;
918 unsigned int eff_sacks;
919
920 opts->options = 0;
921
922 *md5 = NULL;
923 #ifdef CONFIG_TCP_MD5SIG
924 if (static_branch_unlikely(&tcp_md5_needed) &&
925 rcu_access_pointer(tp->md5sig_info)) {
926 *md5 = tp->af_specific->md5_lookup(sk, sk);
927 if (*md5) {
928 opts->options |= OPTION_MD5;
929 size += TCPOLEN_MD5SIG_ALIGNED;
930 }
931 }
932 #endif
933
934 if (likely(tp->rx_opt.tstamp_ok)) {
935 opts->options |= OPTION_TS;
936 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
937 opts->tsecr = tp->rx_opt.ts_recent;
938 size += TCPOLEN_TSTAMP_ALIGNED;
939 }
940
941 /* MPTCP options have precedence over SACK for the limited TCP
942 * option space because a MPTCP connection would be forced to
943 * fall back to regular TCP if a required multipath option is
944 * missing. SACK still gets a chance to use whatever space is
945 * left.
946 */
947 if (sk_is_mptcp(sk)) {
948 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
949 unsigned int opt_size = 0;
950
951 if (mptcp_established_options(sk, skb, &opt_size, remaining,
952 &opts->mptcp)) {
953 opts->options |= OPTION_MPTCP;
954 size += opt_size;
955 }
956 }
957
958 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
959 if (unlikely(eff_sacks)) {
960 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
961 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
962 TCPOLEN_SACK_PERBLOCK))
963 return size;
964
965 opts->num_sack_blocks =
966 min_t(unsigned int, eff_sacks,
967 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
968 TCPOLEN_SACK_PERBLOCK);
969
970 size += TCPOLEN_SACK_BASE_ALIGNED +
971 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
972 }
973
974 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
975 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
976 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
977
978 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
979
980 size = MAX_TCP_OPTION_SPACE - remaining;
981 }
982
983 return size;
984 }
985
986
987 /* TCP SMALL QUEUES (TSQ)
988 *
989 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
990 * to reduce RTT and bufferbloat.
991 * We do this using a special skb destructor (tcp_wfree).
992 *
993 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
994 * needs to be reallocated in a driver.
995 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
996 *
997 * Since transmit from skb destructor is forbidden, we use a tasklet
998 * to process all sockets that eventually need to send more skbs.
999 * We use one tasklet per cpu, with its own queue of sockets.
1000 */
1001 struct tsq_tasklet {
1002 struct tasklet_struct tasklet;
1003 struct list_head head; /* queue of tcp sockets */
1004 };
1005 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1006
tcp_tsq_write(struct sock * sk)1007 static void tcp_tsq_write(struct sock *sk)
1008 {
1009 if ((1 << sk->sk_state) &
1010 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1011 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
1012 struct tcp_sock *tp = tcp_sk(sk);
1013
1014 if (tp->lost_out > tp->retrans_out &&
1015 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1016 tcp_mstamp_refresh(tp);
1017 tcp_xmit_retransmit_queue(sk);
1018 }
1019
1020 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1021 0, GFP_ATOMIC);
1022 }
1023 }
1024
tcp_tsq_handler(struct sock * sk)1025 static void tcp_tsq_handler(struct sock *sk)
1026 {
1027 bh_lock_sock(sk);
1028 if (!sock_owned_by_user(sk))
1029 tcp_tsq_write(sk);
1030 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1031 sock_hold(sk);
1032 bh_unlock_sock(sk);
1033 }
1034 /*
1035 * One tasklet per cpu tries to send more skbs.
1036 * We run in tasklet context but need to disable irqs when
1037 * transferring tsq->head because tcp_wfree() might
1038 * interrupt us (non NAPI drivers)
1039 */
tcp_tasklet_func(struct tasklet_struct * t)1040 static void tcp_tasklet_func(struct tasklet_struct *t)
1041 {
1042 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet);
1043 LIST_HEAD(list);
1044 unsigned long flags;
1045 struct list_head *q, *n;
1046 struct tcp_sock *tp;
1047 struct sock *sk;
1048
1049 local_irq_save(flags);
1050 list_splice_init(&tsq->head, &list);
1051 local_irq_restore(flags);
1052
1053 list_for_each_safe(q, n, &list) {
1054 tp = list_entry(q, struct tcp_sock, tsq_node);
1055 list_del(&tp->tsq_node);
1056
1057 sk = (struct sock *)tp;
1058 smp_mb__before_atomic();
1059 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1060
1061 tcp_tsq_handler(sk);
1062 sk_free(sk);
1063 }
1064 }
1065
1066 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
1067 TCPF_WRITE_TIMER_DEFERRED | \
1068 TCPF_DELACK_TIMER_DEFERRED | \
1069 TCPF_MTU_REDUCED_DEFERRED)
1070 /**
1071 * tcp_release_cb - tcp release_sock() callback
1072 * @sk: socket
1073 *
1074 * called from release_sock() to perform protocol dependent
1075 * actions before socket release.
1076 */
tcp_release_cb(struct sock * sk)1077 void tcp_release_cb(struct sock *sk)
1078 {
1079 unsigned long flags, nflags;
1080
1081 /* perform an atomic operation only if at least one flag is set */
1082 do {
1083 flags = sk->sk_tsq_flags;
1084 if (!(flags & TCP_DEFERRED_ALL))
1085 return;
1086 nflags = flags & ~TCP_DEFERRED_ALL;
1087 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
1088
1089 if (flags & TCPF_TSQ_DEFERRED) {
1090 tcp_tsq_write(sk);
1091 __sock_put(sk);
1092 }
1093 /* Here begins the tricky part :
1094 * We are called from release_sock() with :
1095 * 1) BH disabled
1096 * 2) sk_lock.slock spinlock held
1097 * 3) socket owned by us (sk->sk_lock.owned == 1)
1098 *
1099 * But following code is meant to be called from BH handlers,
1100 * so we should keep BH disabled, but early release socket ownership
1101 */
1102 sock_release_ownership(sk);
1103
1104 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1105 tcp_write_timer_handler(sk);
1106 __sock_put(sk);
1107 }
1108 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1109 tcp_delack_timer_handler(sk);
1110 __sock_put(sk);
1111 }
1112 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1113 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1114 __sock_put(sk);
1115 }
1116 }
1117 EXPORT_SYMBOL(tcp_release_cb);
1118
tcp_tasklet_init(void)1119 void __init tcp_tasklet_init(void)
1120 {
1121 int i;
1122
1123 for_each_possible_cpu(i) {
1124 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1125
1126 INIT_LIST_HEAD(&tsq->head);
1127 tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1128 }
1129 }
1130
1131 /*
1132 * Write buffer destructor automatically called from kfree_skb.
1133 * We can't xmit new skbs from this context, as we might already
1134 * hold qdisc lock.
1135 */
tcp_wfree(struct sk_buff * skb)1136 void tcp_wfree(struct sk_buff *skb)
1137 {
1138 struct sock *sk = skb->sk;
1139 struct tcp_sock *tp = tcp_sk(sk);
1140 unsigned long flags, nval, oval;
1141
1142 /* Keep one reference on sk_wmem_alloc.
1143 * Will be released by sk_free() from here or tcp_tasklet_func()
1144 */
1145 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1146
1147 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
1148 * Wait until our queues (qdisc + devices) are drained.
1149 * This gives :
1150 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1151 * - chance for incoming ACK (processed by another cpu maybe)
1152 * to migrate this flow (skb->ooo_okay will be eventually set)
1153 */
1154 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1155 goto out;
1156
1157 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1158 struct tsq_tasklet *tsq;
1159 bool empty;
1160
1161 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1162 goto out;
1163
1164 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1165 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1166 if (nval != oval)
1167 continue;
1168
1169 /* queue this socket to tasklet queue */
1170 local_irq_save(flags);
1171 tsq = this_cpu_ptr(&tsq_tasklet);
1172 empty = list_empty(&tsq->head);
1173 list_add(&tp->tsq_node, &tsq->head);
1174 if (empty)
1175 tasklet_schedule(&tsq->tasklet);
1176 local_irq_restore(flags);
1177 return;
1178 }
1179 out:
1180 sk_free(sk);
1181 }
1182
1183 /* Note: Called under soft irq.
1184 * We can call TCP stack right away, unless socket is owned by user.
1185 */
tcp_pace_kick(struct hrtimer * timer)1186 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1187 {
1188 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1189 struct sock *sk = (struct sock *)tp;
1190
1191 tcp_tsq_handler(sk);
1192 sock_put(sk);
1193
1194 return HRTIMER_NORESTART;
1195 }
1196
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)1197 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1198 u64 prior_wstamp)
1199 {
1200 struct tcp_sock *tp = tcp_sk(sk);
1201
1202 if (sk->sk_pacing_status != SK_PACING_NONE) {
1203 unsigned long rate = sk->sk_pacing_rate;
1204
1205 /* Original sch_fq does not pace first 10 MSS
1206 * Note that tp->data_segs_out overflows after 2^32 packets,
1207 * this is a minor annoyance.
1208 */
1209 if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1210 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1211 u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1212
1213 /* take into account OS jitter */
1214 len_ns -= min_t(u64, len_ns / 2, credit);
1215 tp->tcp_wstamp_ns += len_ns;
1216 }
1217 }
1218 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1219 }
1220
1221 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1222 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1223 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1224
1225 /* This routine actually transmits TCP packets queued in by
1226 * tcp_do_sendmsg(). This is used by both the initial
1227 * transmission and possible later retransmissions.
1228 * All SKB's seen here are completely headerless. It is our
1229 * job to build the TCP header, and pass the packet down to
1230 * IP so it can do the same plus pass the packet off to the
1231 * device.
1232 *
1233 * We are working here with either a clone of the original
1234 * SKB, or a fresh unique copy made by the retransmit engine.
1235 */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1236 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1237 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1238 {
1239 const struct inet_connection_sock *icsk = inet_csk(sk);
1240 struct inet_sock *inet;
1241 struct tcp_sock *tp;
1242 struct tcp_skb_cb *tcb;
1243 struct tcp_out_options opts;
1244 unsigned int tcp_options_size, tcp_header_size;
1245 struct sk_buff *oskb = NULL;
1246 struct tcp_md5sig_key *md5;
1247 struct tcphdr *th;
1248 u64 prior_wstamp;
1249 int err;
1250
1251 BUG_ON(!skb || !tcp_skb_pcount(skb));
1252 tp = tcp_sk(sk);
1253 prior_wstamp = tp->tcp_wstamp_ns;
1254 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1255 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1256 if (clone_it) {
1257 oskb = skb;
1258
1259 tcp_skb_tsorted_save(oskb) {
1260 if (unlikely(skb_cloned(oskb)))
1261 skb = pskb_copy(oskb, gfp_mask);
1262 else
1263 skb = skb_clone(oskb, gfp_mask);
1264 } tcp_skb_tsorted_restore(oskb);
1265
1266 if (unlikely(!skb))
1267 return -ENOBUFS;
1268 /* retransmit skbs might have a non zero value in skb->dev
1269 * because skb->dev is aliased with skb->rbnode.rb_left
1270 */
1271 skb->dev = NULL;
1272 }
1273
1274 inet = inet_sk(sk);
1275 tcb = TCP_SKB_CB(skb);
1276 memset(&opts, 0, sizeof(opts));
1277
1278 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1279 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1280 } else {
1281 tcp_options_size = tcp_established_options(sk, skb, &opts,
1282 &md5);
1283 /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1284 * at receiver : This slightly improve GRO performance.
1285 * Note that we do not force the PSH flag for non GSO packets,
1286 * because they might be sent under high congestion events,
1287 * and in this case it is better to delay the delivery of 1-MSS
1288 * packets and thus the corresponding ACK packet that would
1289 * release the following packet.
1290 */
1291 if (tcp_skb_pcount(skb) > 1)
1292 tcb->tcp_flags |= TCPHDR_PSH;
1293 }
1294 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1295
1296 /* if no packet is in qdisc/device queue, then allow XPS to select
1297 * another queue. We can be called from tcp_tsq_handler()
1298 * which holds one reference to sk.
1299 *
1300 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1301 * One way to get this would be to set skb->truesize = 2 on them.
1302 */
1303 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1304
1305 /* If we had to use memory reserve to allocate this skb,
1306 * this might cause drops if packet is looped back :
1307 * Other socket might not have SOCK_MEMALLOC.
1308 * Packets not looped back do not care about pfmemalloc.
1309 */
1310 skb->pfmemalloc = 0;
1311
1312 skb_push(skb, tcp_header_size);
1313 skb_reset_transport_header(skb);
1314
1315 skb_orphan(skb);
1316 skb->sk = sk;
1317 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1318 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1319
1320 skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1321
1322 /* Build TCP header and checksum it. */
1323 th = (struct tcphdr *)skb->data;
1324 th->source = inet->inet_sport;
1325 th->dest = inet->inet_dport;
1326 th->seq = htonl(tcb->seq);
1327 th->ack_seq = htonl(rcv_nxt);
1328 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1329 tcb->tcp_flags);
1330
1331 th->check = 0;
1332 th->urg_ptr = 0;
1333
1334 /* The urg_mode check is necessary during a below snd_una win probe */
1335 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1336 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1337 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1338 th->urg = 1;
1339 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1340 th->urg_ptr = htons(0xFFFF);
1341 th->urg = 1;
1342 }
1343 }
1344
1345 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1346 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1347 th->window = htons(tcp_select_window(sk));
1348 tcp_ecn_send(sk, skb, th, tcp_header_size);
1349 } else {
1350 /* RFC1323: The window in SYN & SYN/ACK segments
1351 * is never scaled.
1352 */
1353 th->window = htons(min(tp->rcv_wnd, 65535U));
1354 }
1355
1356 tcp_options_write(th, tp, &opts);
1357
1358 #ifdef CONFIG_TCP_MD5SIG
1359 /* Calculate the MD5 hash, as we have all we need now */
1360 if (md5) {
1361 sk_gso_disable(sk);
1362 tp->af_specific->calc_md5_hash(opts.hash_location,
1363 md5, sk, skb);
1364 }
1365 #endif
1366
1367 /* BPF prog is the last one writing header option */
1368 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1369
1370 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1371 tcp_v6_send_check, tcp_v4_send_check,
1372 sk, skb);
1373
1374 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1375 tcp_event_ack_sent(sk, rcv_nxt);
1376
1377 if (skb->len != tcp_header_size) {
1378 tcp_event_data_sent(tp, sk);
1379 tp->data_segs_out += tcp_skb_pcount(skb);
1380 tp->bytes_sent += skb->len - tcp_header_size;
1381 }
1382
1383 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1384 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1385 tcp_skb_pcount(skb));
1386
1387 tp->segs_out += tcp_skb_pcount(skb);
1388 skb_set_hash_from_sk(skb, sk);
1389 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1390 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1391 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1392
1393 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1394
1395 /* Cleanup our debris for IP stacks */
1396 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1397 sizeof(struct inet6_skb_parm)));
1398
1399 tcp_add_tx_delay(skb, tp);
1400
1401 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1402 inet6_csk_xmit, ip_queue_xmit,
1403 sk, skb, &inet->cork.fl);
1404
1405 if (unlikely(err > 0)) {
1406 tcp_enter_cwr(sk);
1407 err = net_xmit_eval(err);
1408 }
1409 if (!err && oskb) {
1410 tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1411 tcp_rate_skb_sent(sk, oskb);
1412 }
1413 return err;
1414 }
1415
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1416 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1417 gfp_t gfp_mask)
1418 {
1419 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1420 tcp_sk(sk)->rcv_nxt);
1421 }
1422
1423 /* This routine just queues the buffer for sending.
1424 *
1425 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1426 * otherwise socket can stall.
1427 */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1428 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1429 {
1430 struct tcp_sock *tp = tcp_sk(sk);
1431
1432 /* Advance write_seq and place onto the write_queue. */
1433 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1434 __skb_header_release(skb);
1435 tcp_add_write_queue_tail(sk, skb);
1436 sk_wmem_queued_add(sk, skb->truesize);
1437 sk_mem_charge(sk, skb->truesize);
1438 }
1439
1440 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1441 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1442 {
1443 if (skb->len <= mss_now) {
1444 /* Avoid the costly divide in the normal
1445 * non-TSO case.
1446 */
1447 tcp_skb_pcount_set(skb, 1);
1448 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1449 } else {
1450 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1451 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1452 }
1453 }
1454
1455 /* Pcount in the middle of the write queue got changed, we need to do various
1456 * tweaks to fix counters
1457 */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1458 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1459 {
1460 struct tcp_sock *tp = tcp_sk(sk);
1461
1462 tp->packets_out -= decr;
1463
1464 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1465 tp->sacked_out -= decr;
1466 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1467 tp->retrans_out -= decr;
1468 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1469 tp->lost_out -= decr;
1470
1471 /* Reno case is special. Sigh... */
1472 if (tcp_is_reno(tp) && decr > 0)
1473 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1474
1475 if (tp->lost_skb_hint &&
1476 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1477 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1478 tp->lost_cnt_hint -= decr;
1479
1480 tcp_verify_left_out(tp);
1481 }
1482
tcp_has_tx_tstamp(const struct sk_buff * skb)1483 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1484 {
1485 return TCP_SKB_CB(skb)->txstamp_ack ||
1486 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1487 }
1488
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1489 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1490 {
1491 struct skb_shared_info *shinfo = skb_shinfo(skb);
1492
1493 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1494 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1495 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1496 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1497
1498 shinfo->tx_flags &= ~tsflags;
1499 shinfo2->tx_flags |= tsflags;
1500 swap(shinfo->tskey, shinfo2->tskey);
1501 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1502 TCP_SKB_CB(skb)->txstamp_ack = 0;
1503 }
1504 }
1505
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1506 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1507 {
1508 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1509 TCP_SKB_CB(skb)->eor = 0;
1510 }
1511
1512 /* Insert buff after skb on the write or rtx queue of sk. */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1513 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1514 struct sk_buff *buff,
1515 struct sock *sk,
1516 enum tcp_queue tcp_queue)
1517 {
1518 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1519 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1520 else
1521 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1522 }
1523
1524 /* Function to create two new TCP segments. Shrinks the given segment
1525 * to the specified size and appends a new segment with the rest of the
1526 * packet to the list. This won't be called frequently, I hope.
1527 * Remember, these are still headerless SKBs at this point.
1528 */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1529 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1530 struct sk_buff *skb, u32 len,
1531 unsigned int mss_now, gfp_t gfp)
1532 {
1533 struct tcp_sock *tp = tcp_sk(sk);
1534 struct sk_buff *buff;
1535 int nsize, old_factor;
1536 long limit;
1537 int nlen;
1538 u8 flags;
1539
1540 if (WARN_ON(len > skb->len))
1541 return -EINVAL;
1542
1543 nsize = skb_headlen(skb) - len;
1544 if (nsize < 0)
1545 nsize = 0;
1546
1547 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1548 * We need some allowance to not penalize applications setting small
1549 * SO_SNDBUF values.
1550 * Also allow first and last skb in retransmit queue to be split.
1551 */
1552 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1553 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1554 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1555 skb != tcp_rtx_queue_head(sk) &&
1556 skb != tcp_rtx_queue_tail(sk))) {
1557 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1558 return -ENOMEM;
1559 }
1560
1561 if (skb_unclone_keeptruesize(skb, gfp))
1562 return -ENOMEM;
1563
1564 /* Get a new skb... force flag on. */
1565 buff = tcp_stream_alloc_skb(sk, nsize, gfp, true);
1566 if (!buff)
1567 return -ENOMEM; /* We'll just try again later. */
1568 skb_copy_decrypted(buff, skb);
1569 mptcp_skb_ext_copy(buff, skb);
1570
1571 sk_wmem_queued_add(sk, buff->truesize);
1572 sk_mem_charge(sk, buff->truesize);
1573 nlen = skb->len - len - nsize;
1574 buff->truesize += nlen;
1575 skb->truesize -= nlen;
1576
1577 /* Correct the sequence numbers. */
1578 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1579 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1580 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1581
1582 /* PSH and FIN should only be set in the second packet. */
1583 flags = TCP_SKB_CB(skb)->tcp_flags;
1584 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1585 TCP_SKB_CB(buff)->tcp_flags = flags;
1586 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1587 tcp_skb_fragment_eor(skb, buff);
1588
1589 skb_split(skb, buff, len);
1590
1591 skb_set_delivery_time(buff, skb->tstamp, true);
1592 tcp_fragment_tstamp(skb, buff);
1593
1594 old_factor = tcp_skb_pcount(skb);
1595
1596 /* Fix up tso_factor for both original and new SKB. */
1597 tcp_set_skb_tso_segs(skb, mss_now);
1598 tcp_set_skb_tso_segs(buff, mss_now);
1599
1600 /* Update delivered info for the new segment */
1601 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1602
1603 /* If this packet has been sent out already, we must
1604 * adjust the various packet counters.
1605 */
1606 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1607 int diff = old_factor - tcp_skb_pcount(skb) -
1608 tcp_skb_pcount(buff);
1609
1610 if (diff)
1611 tcp_adjust_pcount(sk, skb, diff);
1612 }
1613
1614 /* Link BUFF into the send queue. */
1615 __skb_header_release(buff);
1616 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1617 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1618 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1619
1620 return 0;
1621 }
1622
1623 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1624 * data is not copied, but immediately discarded.
1625 */
__pskb_trim_head(struct sk_buff * skb,int len)1626 static int __pskb_trim_head(struct sk_buff *skb, int len)
1627 {
1628 struct skb_shared_info *shinfo;
1629 int i, k, eat;
1630
1631 eat = min_t(int, len, skb_headlen(skb));
1632 if (eat) {
1633 __skb_pull(skb, eat);
1634 len -= eat;
1635 if (!len)
1636 return 0;
1637 }
1638 eat = len;
1639 k = 0;
1640 shinfo = skb_shinfo(skb);
1641 for (i = 0; i < shinfo->nr_frags; i++) {
1642 int size = skb_frag_size(&shinfo->frags[i]);
1643
1644 if (size <= eat) {
1645 skb_frag_unref(skb, i);
1646 eat -= size;
1647 } else {
1648 shinfo->frags[k] = shinfo->frags[i];
1649 if (eat) {
1650 skb_frag_off_add(&shinfo->frags[k], eat);
1651 skb_frag_size_sub(&shinfo->frags[k], eat);
1652 eat = 0;
1653 }
1654 k++;
1655 }
1656 }
1657 shinfo->nr_frags = k;
1658
1659 skb->data_len -= len;
1660 skb->len = skb->data_len;
1661 return len;
1662 }
1663
1664 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1665 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1666 {
1667 u32 delta_truesize;
1668
1669 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1670 return -ENOMEM;
1671
1672 delta_truesize = __pskb_trim_head(skb, len);
1673
1674 TCP_SKB_CB(skb)->seq += len;
1675
1676 if (delta_truesize) {
1677 skb->truesize -= delta_truesize;
1678 sk_wmem_queued_add(sk, -delta_truesize);
1679 if (!skb_zcopy_pure(skb))
1680 sk_mem_uncharge(sk, delta_truesize);
1681 }
1682
1683 /* Any change of skb->len requires recalculation of tso factor. */
1684 if (tcp_skb_pcount(skb) > 1)
1685 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1686
1687 return 0;
1688 }
1689
1690 /* Calculate MSS not accounting any TCP options. */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1691 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1692 {
1693 const struct tcp_sock *tp = tcp_sk(sk);
1694 const struct inet_connection_sock *icsk = inet_csk(sk);
1695 int mss_now;
1696
1697 /* Calculate base mss without TCP options:
1698 It is MMS_S - sizeof(tcphdr) of rfc1122
1699 */
1700 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1701
1702 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1703 if (icsk->icsk_af_ops->net_frag_header_len) {
1704 const struct dst_entry *dst = __sk_dst_get(sk);
1705
1706 if (dst && dst_allfrag(dst))
1707 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1708 }
1709
1710 /* Clamp it (mss_clamp does not include tcp options) */
1711 if (mss_now > tp->rx_opt.mss_clamp)
1712 mss_now = tp->rx_opt.mss_clamp;
1713
1714 /* Now subtract optional transport overhead */
1715 mss_now -= icsk->icsk_ext_hdr_len;
1716
1717 /* Then reserve room for full set of TCP options and 8 bytes of data */
1718 mss_now = max(mss_now,
1719 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1720 return mss_now;
1721 }
1722
1723 /* Calculate MSS. Not accounting for SACKs here. */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1724 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1725 {
1726 /* Subtract TCP options size, not including SACKs */
1727 return __tcp_mtu_to_mss(sk, pmtu) -
1728 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1729 }
1730 EXPORT_SYMBOL(tcp_mtu_to_mss);
1731
1732 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1733 int tcp_mss_to_mtu(struct sock *sk, int mss)
1734 {
1735 const struct tcp_sock *tp = tcp_sk(sk);
1736 const struct inet_connection_sock *icsk = inet_csk(sk);
1737 int mtu;
1738
1739 mtu = mss +
1740 tp->tcp_header_len +
1741 icsk->icsk_ext_hdr_len +
1742 icsk->icsk_af_ops->net_header_len;
1743
1744 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1745 if (icsk->icsk_af_ops->net_frag_header_len) {
1746 const struct dst_entry *dst = __sk_dst_get(sk);
1747
1748 if (dst && dst_allfrag(dst))
1749 mtu += icsk->icsk_af_ops->net_frag_header_len;
1750 }
1751 return mtu;
1752 }
1753 EXPORT_SYMBOL(tcp_mss_to_mtu);
1754
1755 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1756 void tcp_mtup_init(struct sock *sk)
1757 {
1758 struct tcp_sock *tp = tcp_sk(sk);
1759 struct inet_connection_sock *icsk = inet_csk(sk);
1760 struct net *net = sock_net(sk);
1761
1762 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1763 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1764 icsk->icsk_af_ops->net_header_len;
1765 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1766 icsk->icsk_mtup.probe_size = 0;
1767 if (icsk->icsk_mtup.enabled)
1768 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1769 }
1770 EXPORT_SYMBOL(tcp_mtup_init);
1771
1772 /* This function synchronize snd mss to current pmtu/exthdr set.
1773
1774 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1775 for TCP options, but includes only bare TCP header.
1776
1777 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1778 It is minimum of user_mss and mss received with SYN.
1779 It also does not include TCP options.
1780
1781 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1782
1783 tp->mss_cache is current effective sending mss, including
1784 all tcp options except for SACKs. It is evaluated,
1785 taking into account current pmtu, but never exceeds
1786 tp->rx_opt.mss_clamp.
1787
1788 NOTE1. rfc1122 clearly states that advertised MSS
1789 DOES NOT include either tcp or ip options.
1790
1791 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1792 are READ ONLY outside this function. --ANK (980731)
1793 */
tcp_sync_mss(struct sock * sk,u32 pmtu)1794 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1795 {
1796 struct tcp_sock *tp = tcp_sk(sk);
1797 struct inet_connection_sock *icsk = inet_csk(sk);
1798 int mss_now;
1799
1800 if (icsk->icsk_mtup.search_high > pmtu)
1801 icsk->icsk_mtup.search_high = pmtu;
1802
1803 mss_now = tcp_mtu_to_mss(sk, pmtu);
1804 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1805
1806 /* And store cached results */
1807 icsk->icsk_pmtu_cookie = pmtu;
1808 if (icsk->icsk_mtup.enabled)
1809 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1810 tp->mss_cache = mss_now;
1811
1812 return mss_now;
1813 }
1814 EXPORT_SYMBOL(tcp_sync_mss);
1815
1816 /* Compute the current effective MSS, taking SACKs and IP options,
1817 * and even PMTU discovery events into account.
1818 */
tcp_current_mss(struct sock * sk)1819 unsigned int tcp_current_mss(struct sock *sk)
1820 {
1821 const struct tcp_sock *tp = tcp_sk(sk);
1822 const struct dst_entry *dst = __sk_dst_get(sk);
1823 u32 mss_now;
1824 unsigned int header_len;
1825 struct tcp_out_options opts;
1826 struct tcp_md5sig_key *md5;
1827
1828 mss_now = tp->mss_cache;
1829
1830 if (dst) {
1831 u32 mtu = dst_mtu(dst);
1832 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1833 mss_now = tcp_sync_mss(sk, mtu);
1834 }
1835
1836 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1837 sizeof(struct tcphdr);
1838 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1839 * some common options. If this is an odd packet (because we have SACK
1840 * blocks etc) then our calculated header_len will be different, and
1841 * we have to adjust mss_now correspondingly */
1842 if (header_len != tp->tcp_header_len) {
1843 int delta = (int) header_len - tp->tcp_header_len;
1844 mss_now -= delta;
1845 }
1846
1847 return mss_now;
1848 }
1849
1850 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1851 * As additional protections, we do not touch cwnd in retransmission phases,
1852 * and if application hit its sndbuf limit recently.
1853 */
tcp_cwnd_application_limited(struct sock * sk)1854 static void tcp_cwnd_application_limited(struct sock *sk)
1855 {
1856 struct tcp_sock *tp = tcp_sk(sk);
1857
1858 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1859 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1860 /* Limited by application or receiver window. */
1861 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1862 u32 win_used = max(tp->snd_cwnd_used, init_win);
1863 if (win_used < tcp_snd_cwnd(tp)) {
1864 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1865 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1866 }
1867 tp->snd_cwnd_used = 0;
1868 }
1869 tp->snd_cwnd_stamp = tcp_jiffies32;
1870 }
1871
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1872 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1873 {
1874 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1875 struct tcp_sock *tp = tcp_sk(sk);
1876
1877 /* Track the strongest available signal of the degree to which the cwnd
1878 * is fully utilized. If cwnd-limited then remember that fact for the
1879 * current window. If not cwnd-limited then track the maximum number of
1880 * outstanding packets in the current window. (If cwnd-limited then we
1881 * chose to not update tp->max_packets_out to avoid an extra else
1882 * clause with no functional impact.)
1883 */
1884 if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1885 is_cwnd_limited ||
1886 (!tp->is_cwnd_limited &&
1887 tp->packets_out > tp->max_packets_out)) {
1888 tp->is_cwnd_limited = is_cwnd_limited;
1889 tp->max_packets_out = tp->packets_out;
1890 tp->cwnd_usage_seq = tp->snd_nxt;
1891 }
1892
1893 if (tcp_is_cwnd_limited(sk)) {
1894 /* Network is feed fully. */
1895 tp->snd_cwnd_used = 0;
1896 tp->snd_cwnd_stamp = tcp_jiffies32;
1897 } else {
1898 /* Network starves. */
1899 if (tp->packets_out > tp->snd_cwnd_used)
1900 tp->snd_cwnd_used = tp->packets_out;
1901
1902 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1903 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1904 !ca_ops->cong_control)
1905 tcp_cwnd_application_limited(sk);
1906
1907 /* The following conditions together indicate the starvation
1908 * is caused by insufficient sender buffer:
1909 * 1) just sent some data (see tcp_write_xmit)
1910 * 2) not cwnd limited (this else condition)
1911 * 3) no more data to send (tcp_write_queue_empty())
1912 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1913 */
1914 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1915 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1916 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1917 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1918 }
1919 }
1920
1921 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1922 static bool tcp_minshall_check(const struct tcp_sock *tp)
1923 {
1924 return after(tp->snd_sml, tp->snd_una) &&
1925 !after(tp->snd_sml, tp->snd_nxt);
1926 }
1927
1928 /* Update snd_sml if this skb is under mss
1929 * Note that a TSO packet might end with a sub-mss segment
1930 * The test is really :
1931 * if ((skb->len % mss) != 0)
1932 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1933 * But we can avoid doing the divide again given we already have
1934 * skb_pcount = skb->len / mss_now
1935 */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1936 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1937 const struct sk_buff *skb)
1938 {
1939 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1940 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1941 }
1942
1943 /* Return false, if packet can be sent now without violation Nagle's rules:
1944 * 1. It is full sized. (provided by caller in %partial bool)
1945 * 2. Or it contains FIN. (already checked by caller)
1946 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1947 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1948 * With Minshall's modification: all sent small packets are ACKed.
1949 */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1950 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1951 int nonagle)
1952 {
1953 return partial &&
1954 ((nonagle & TCP_NAGLE_CORK) ||
1955 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1956 }
1957
1958 /* Return how many segs we'd like on a TSO packet,
1959 * depending on current pacing rate, and how close the peer is.
1960 *
1961 * Rationale is:
1962 * - For close peers, we rather send bigger packets to reduce
1963 * cpu costs, because occasional losses will be repaired fast.
1964 * - For long distance/rtt flows, we would like to get ACK clocking
1965 * with 1 ACK per ms.
1966 *
1967 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
1968 * in bigger TSO bursts. We we cut the RTT-based allowance in half
1969 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
1970 * is below 1500 bytes after 6 * ~500 usec = 3ms.
1971 */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)1972 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1973 int min_tso_segs)
1974 {
1975 unsigned long bytes;
1976 u32 r;
1977
1978 bytes = sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift);
1979
1980 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
1981 if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
1982 bytes += sk->sk_gso_max_size >> r;
1983
1984 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
1985
1986 return max_t(u32, bytes / mss_now, min_tso_segs);
1987 }
1988
1989 /* Return the number of segments we want in the skb we are transmitting.
1990 * See if congestion control module wants to decide; otherwise, autosize.
1991 */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)1992 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1993 {
1994 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1995 u32 min_tso, tso_segs;
1996
1997 min_tso = ca_ops->min_tso_segs ?
1998 ca_ops->min_tso_segs(sk) :
1999 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2000
2001 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2002 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2003 }
2004
2005 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)2006 static unsigned int tcp_mss_split_point(const struct sock *sk,
2007 const struct sk_buff *skb,
2008 unsigned int mss_now,
2009 unsigned int max_segs,
2010 int nonagle)
2011 {
2012 const struct tcp_sock *tp = tcp_sk(sk);
2013 u32 partial, needed, window, max_len;
2014
2015 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2016 max_len = mss_now * max_segs;
2017
2018 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2019 return max_len;
2020
2021 needed = min(skb->len, window);
2022
2023 if (max_len <= needed)
2024 return max_len;
2025
2026 partial = needed % mss_now;
2027 /* If last segment is not a full MSS, check if Nagle rules allow us
2028 * to include this last segment in this skb.
2029 * Otherwise, we'll split the skb at last MSS boundary
2030 */
2031 if (tcp_nagle_check(partial != 0, tp, nonagle))
2032 return needed - partial;
2033
2034 return needed;
2035 }
2036
2037 /* Can at least one segment of SKB be sent right now, according to the
2038 * congestion window rules? If so, return how many segments are allowed.
2039 */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)2040 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2041 const struct sk_buff *skb)
2042 {
2043 u32 in_flight, cwnd, halfcwnd;
2044
2045 /* Don't be strict about the congestion window for the final FIN. */
2046 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2047 tcp_skb_pcount(skb) == 1)
2048 return 1;
2049
2050 in_flight = tcp_packets_in_flight(tp);
2051 cwnd = tcp_snd_cwnd(tp);
2052 if (in_flight >= cwnd)
2053 return 0;
2054
2055 /* For better scheduling, ensure we have at least
2056 * 2 GSO packets in flight.
2057 */
2058 halfcwnd = max(cwnd >> 1, 1U);
2059 return min(halfcwnd, cwnd - in_flight);
2060 }
2061
2062 /* Initialize TSO state of a skb.
2063 * This must be invoked the first time we consider transmitting
2064 * SKB onto the wire.
2065 */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)2066 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2067 {
2068 int tso_segs = tcp_skb_pcount(skb);
2069
2070 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2071 tcp_set_skb_tso_segs(skb, mss_now);
2072 tso_segs = tcp_skb_pcount(skb);
2073 }
2074 return tso_segs;
2075 }
2076
2077
2078 /* Return true if the Nagle test allows this packet to be
2079 * sent now.
2080 */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)2081 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2082 unsigned int cur_mss, int nonagle)
2083 {
2084 /* Nagle rule does not apply to frames, which sit in the middle of the
2085 * write_queue (they have no chances to get new data).
2086 *
2087 * This is implemented in the callers, where they modify the 'nonagle'
2088 * argument based upon the location of SKB in the send queue.
2089 */
2090 if (nonagle & TCP_NAGLE_PUSH)
2091 return true;
2092
2093 /* Don't use the nagle rule for urgent data (or for the final FIN). */
2094 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2095 return true;
2096
2097 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2098 return true;
2099
2100 return false;
2101 }
2102
2103 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)2104 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2105 const struct sk_buff *skb,
2106 unsigned int cur_mss)
2107 {
2108 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2109
2110 if (skb->len > cur_mss)
2111 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2112
2113 return !after(end_seq, tcp_wnd_end(tp));
2114 }
2115
2116 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2117 * which is put after SKB on the list. It is very much like
2118 * tcp_fragment() except that it may make several kinds of assumptions
2119 * in order to speed up the splitting operation. In particular, we
2120 * know that all the data is in scatter-gather pages, and that the
2121 * packet has never been sent out before (and thus is not cloned).
2122 */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)2123 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2124 unsigned int mss_now, gfp_t gfp)
2125 {
2126 int nlen = skb->len - len;
2127 struct sk_buff *buff;
2128 u8 flags;
2129
2130 /* All of a TSO frame must be composed of paged data. */
2131 if (skb->len != skb->data_len)
2132 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2133 skb, len, mss_now, gfp);
2134
2135 buff = tcp_stream_alloc_skb(sk, 0, gfp, true);
2136 if (unlikely(!buff))
2137 return -ENOMEM;
2138 skb_copy_decrypted(buff, skb);
2139 mptcp_skb_ext_copy(buff, skb);
2140
2141 sk_wmem_queued_add(sk, buff->truesize);
2142 sk_mem_charge(sk, buff->truesize);
2143 buff->truesize += nlen;
2144 skb->truesize -= nlen;
2145
2146 /* Correct the sequence numbers. */
2147 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2148 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2149 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2150
2151 /* PSH and FIN should only be set in the second packet. */
2152 flags = TCP_SKB_CB(skb)->tcp_flags;
2153 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2154 TCP_SKB_CB(buff)->tcp_flags = flags;
2155
2156 tcp_skb_fragment_eor(skb, buff);
2157
2158 skb_split(skb, buff, len);
2159 tcp_fragment_tstamp(skb, buff);
2160
2161 /* Fix up tso_factor for both original and new SKB. */
2162 tcp_set_skb_tso_segs(skb, mss_now);
2163 tcp_set_skb_tso_segs(buff, mss_now);
2164
2165 /* Link BUFF into the send queue. */
2166 __skb_header_release(buff);
2167 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2168
2169 return 0;
2170 }
2171
2172 /* Try to defer sending, if possible, in order to minimize the amount
2173 * of TSO splitting we do. View it as a kind of TSO Nagle test.
2174 *
2175 * This algorithm is from John Heffner.
2176 */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)2177 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2178 bool *is_cwnd_limited,
2179 bool *is_rwnd_limited,
2180 u32 max_segs)
2181 {
2182 const struct inet_connection_sock *icsk = inet_csk(sk);
2183 u32 send_win, cong_win, limit, in_flight;
2184 struct tcp_sock *tp = tcp_sk(sk);
2185 struct sk_buff *head;
2186 int win_divisor;
2187 s64 delta;
2188
2189 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2190 goto send_now;
2191
2192 /* Avoid bursty behavior by allowing defer
2193 * only if the last write was recent (1 ms).
2194 * Note that tp->tcp_wstamp_ns can be in the future if we have
2195 * packets waiting in a qdisc or device for EDT delivery.
2196 */
2197 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2198 if (delta > 0)
2199 goto send_now;
2200
2201 in_flight = tcp_packets_in_flight(tp);
2202
2203 BUG_ON(tcp_skb_pcount(skb) <= 1);
2204 BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2205
2206 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2207
2208 /* From in_flight test above, we know that cwnd > in_flight. */
2209 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2210
2211 limit = min(send_win, cong_win);
2212
2213 /* If a full-sized TSO skb can be sent, do it. */
2214 if (limit >= max_segs * tp->mss_cache)
2215 goto send_now;
2216
2217 /* Middle in queue won't get any more data, full sendable already? */
2218 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2219 goto send_now;
2220
2221 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2222 if (win_divisor) {
2223 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2224
2225 /* If at least some fraction of a window is available,
2226 * just use it.
2227 */
2228 chunk /= win_divisor;
2229 if (limit >= chunk)
2230 goto send_now;
2231 } else {
2232 /* Different approach, try not to defer past a single
2233 * ACK. Receiver should ACK every other full sized
2234 * frame, so if we have space for more than 3 frames
2235 * then send now.
2236 */
2237 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2238 goto send_now;
2239 }
2240
2241 /* TODO : use tsorted_sent_queue ? */
2242 head = tcp_rtx_queue_head(sk);
2243 if (!head)
2244 goto send_now;
2245 delta = tp->tcp_clock_cache - head->tstamp;
2246 /* If next ACK is likely to come too late (half srtt), do not defer */
2247 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2248 goto send_now;
2249
2250 /* Ok, it looks like it is advisable to defer.
2251 * Three cases are tracked :
2252 * 1) We are cwnd-limited
2253 * 2) We are rwnd-limited
2254 * 3) We are application limited.
2255 */
2256 if (cong_win < send_win) {
2257 if (cong_win <= skb->len) {
2258 *is_cwnd_limited = true;
2259 return true;
2260 }
2261 } else {
2262 if (send_win <= skb->len) {
2263 *is_rwnd_limited = true;
2264 return true;
2265 }
2266 }
2267
2268 /* If this packet won't get more data, do not wait. */
2269 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2270 TCP_SKB_CB(skb)->eor)
2271 goto send_now;
2272
2273 return true;
2274
2275 send_now:
2276 return false;
2277 }
2278
tcp_mtu_check_reprobe(struct sock * sk)2279 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2280 {
2281 struct inet_connection_sock *icsk = inet_csk(sk);
2282 struct tcp_sock *tp = tcp_sk(sk);
2283 struct net *net = sock_net(sk);
2284 u32 interval;
2285 s32 delta;
2286
2287 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2288 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2289 if (unlikely(delta >= interval * HZ)) {
2290 int mss = tcp_current_mss(sk);
2291
2292 /* Update current search range */
2293 icsk->icsk_mtup.probe_size = 0;
2294 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2295 sizeof(struct tcphdr) +
2296 icsk->icsk_af_ops->net_header_len;
2297 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2298
2299 /* Update probe time stamp */
2300 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2301 }
2302 }
2303
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2304 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2305 {
2306 struct sk_buff *skb, *next;
2307
2308 skb = tcp_send_head(sk);
2309 tcp_for_write_queue_from_safe(skb, next, sk) {
2310 if (len <= skb->len)
2311 break;
2312
2313 if (unlikely(TCP_SKB_CB(skb)->eor) ||
2314 tcp_has_tx_tstamp(skb) ||
2315 !skb_pure_zcopy_same(skb, next))
2316 return false;
2317
2318 len -= skb->len;
2319 }
2320
2321 return true;
2322 }
2323
2324 /* Create a new MTU probe if we are ready.
2325 * MTU probe is regularly attempting to increase the path MTU by
2326 * deliberately sending larger packets. This discovers routing
2327 * changes resulting in larger path MTUs.
2328 *
2329 * Returns 0 if we should wait to probe (no cwnd available),
2330 * 1 if a probe was sent,
2331 * -1 otherwise
2332 */
tcp_mtu_probe(struct sock * sk)2333 static int tcp_mtu_probe(struct sock *sk)
2334 {
2335 struct inet_connection_sock *icsk = inet_csk(sk);
2336 struct tcp_sock *tp = tcp_sk(sk);
2337 struct sk_buff *skb, *nskb, *next;
2338 struct net *net = sock_net(sk);
2339 int probe_size;
2340 int size_needed;
2341 int copy, len;
2342 int mss_now;
2343 int interval;
2344
2345 /* Not currently probing/verifying,
2346 * not in recovery,
2347 * have enough cwnd, and
2348 * not SACKing (the variable headers throw things off)
2349 */
2350 if (likely(!icsk->icsk_mtup.enabled ||
2351 icsk->icsk_mtup.probe_size ||
2352 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2353 tcp_snd_cwnd(tp) < 11 ||
2354 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2355 return -1;
2356
2357 /* Use binary search for probe_size between tcp_mss_base,
2358 * and current mss_clamp. if (search_high - search_low)
2359 * smaller than a threshold, backoff from probing.
2360 */
2361 mss_now = tcp_current_mss(sk);
2362 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2363 icsk->icsk_mtup.search_low) >> 1);
2364 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2365 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2366 /* When misfortune happens, we are reprobing actively,
2367 * and then reprobe timer has expired. We stick with current
2368 * probing process by not resetting search range to its orignal.
2369 */
2370 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2371 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2372 /* Check whether enough time has elaplased for
2373 * another round of probing.
2374 */
2375 tcp_mtu_check_reprobe(sk);
2376 return -1;
2377 }
2378
2379 /* Have enough data in the send queue to probe? */
2380 if (tp->write_seq - tp->snd_nxt < size_needed)
2381 return -1;
2382
2383 if (tp->snd_wnd < size_needed)
2384 return -1;
2385 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2386 return 0;
2387
2388 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2389 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2390 if (!tcp_packets_in_flight(tp))
2391 return -1;
2392 else
2393 return 0;
2394 }
2395
2396 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2397 return -1;
2398
2399 /* We're allowed to probe. Build it now. */
2400 nskb = tcp_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2401 if (!nskb)
2402 return -1;
2403 sk_wmem_queued_add(sk, nskb->truesize);
2404 sk_mem_charge(sk, nskb->truesize);
2405
2406 skb = tcp_send_head(sk);
2407 skb_copy_decrypted(nskb, skb);
2408 mptcp_skb_ext_copy(nskb, skb);
2409
2410 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2411 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2412 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2413
2414 tcp_insert_write_queue_before(nskb, skb, sk);
2415 tcp_highest_sack_replace(sk, skb, nskb);
2416
2417 len = 0;
2418 tcp_for_write_queue_from_safe(skb, next, sk) {
2419 copy = min_t(int, skb->len, probe_size - len);
2420 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2421
2422 if (skb->len <= copy) {
2423 /* We've eaten all the data from this skb.
2424 * Throw it away. */
2425 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2426 /* If this is the last SKB we copy and eor is set
2427 * we need to propagate it to the new skb.
2428 */
2429 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2430 tcp_skb_collapse_tstamp(nskb, skb);
2431 tcp_unlink_write_queue(skb, sk);
2432 tcp_wmem_free_skb(sk, skb);
2433 } else {
2434 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2435 ~(TCPHDR_FIN|TCPHDR_PSH);
2436 if (!skb_shinfo(skb)->nr_frags) {
2437 skb_pull(skb, copy);
2438 } else {
2439 __pskb_trim_head(skb, copy);
2440 tcp_set_skb_tso_segs(skb, mss_now);
2441 }
2442 TCP_SKB_CB(skb)->seq += copy;
2443 }
2444
2445 len += copy;
2446
2447 if (len >= probe_size)
2448 break;
2449 }
2450 tcp_init_tso_segs(nskb, nskb->len);
2451
2452 /* We're ready to send. If this fails, the probe will
2453 * be resegmented into mss-sized pieces by tcp_write_xmit().
2454 */
2455 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2456 /* Decrement cwnd here because we are sending
2457 * effectively two packets. */
2458 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2459 tcp_event_new_data_sent(sk, nskb);
2460
2461 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2462 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2463 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2464
2465 return 1;
2466 }
2467
2468 return -1;
2469 }
2470
tcp_pacing_check(struct sock * sk)2471 static bool tcp_pacing_check(struct sock *sk)
2472 {
2473 struct tcp_sock *tp = tcp_sk(sk);
2474
2475 if (!tcp_needs_internal_pacing(sk))
2476 return false;
2477
2478 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2479 return false;
2480
2481 if (!hrtimer_is_queued(&tp->pacing_timer)) {
2482 hrtimer_start(&tp->pacing_timer,
2483 ns_to_ktime(tp->tcp_wstamp_ns),
2484 HRTIMER_MODE_ABS_PINNED_SOFT);
2485 sock_hold(sk);
2486 }
2487 return true;
2488 }
2489
tcp_rtx_queue_empty_or_single_skb(const struct sock * sk)2490 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2491 {
2492 const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2493
2494 /* No skb in the rtx queue. */
2495 if (!node)
2496 return true;
2497
2498 /* Only one skb in rtx queue. */
2499 return !node->rb_left && !node->rb_right;
2500 }
2501
2502 /* TCP Small Queues :
2503 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2504 * (These limits are doubled for retransmits)
2505 * This allows for :
2506 * - better RTT estimation and ACK scheduling
2507 * - faster recovery
2508 * - high rates
2509 * Alas, some drivers / subsystems require a fair amount
2510 * of queued bytes to ensure line rate.
2511 * One example is wifi aggregation (802.11 AMPDU)
2512 */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2513 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2514 unsigned int factor)
2515 {
2516 unsigned long limit;
2517
2518 limit = max_t(unsigned long,
2519 2 * skb->truesize,
2520 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2521 if (sk->sk_pacing_status == SK_PACING_NONE)
2522 limit = min_t(unsigned long, limit,
2523 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2524 limit <<= factor;
2525
2526 if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2527 tcp_sk(sk)->tcp_tx_delay) {
2528 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2529
2530 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2531 * approximate our needs assuming an ~100% skb->truesize overhead.
2532 * USEC_PER_SEC is approximated by 2^20.
2533 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2534 */
2535 extra_bytes >>= (20 - 1);
2536 limit += extra_bytes;
2537 }
2538 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2539 /* Always send skb if rtx queue is empty or has one skb.
2540 * No need to wait for TX completion to call us back,
2541 * after softirq/tasklet schedule.
2542 * This helps when TX completions are delayed too much.
2543 */
2544 if (tcp_rtx_queue_empty_or_single_skb(sk))
2545 return false;
2546
2547 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2548 /* It is possible TX completion already happened
2549 * before we set TSQ_THROTTLED, so we must
2550 * test again the condition.
2551 */
2552 smp_mb__after_atomic();
2553 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2554 return true;
2555 }
2556 return false;
2557 }
2558
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2559 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2560 {
2561 const u32 now = tcp_jiffies32;
2562 enum tcp_chrono old = tp->chrono_type;
2563
2564 if (old > TCP_CHRONO_UNSPEC)
2565 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2566 tp->chrono_start = now;
2567 tp->chrono_type = new;
2568 }
2569
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2570 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2571 {
2572 struct tcp_sock *tp = tcp_sk(sk);
2573
2574 /* If there are multiple conditions worthy of tracking in a
2575 * chronograph then the highest priority enum takes precedence
2576 * over the other conditions. So that if something "more interesting"
2577 * starts happening, stop the previous chrono and start a new one.
2578 */
2579 if (type > tp->chrono_type)
2580 tcp_chrono_set(tp, type);
2581 }
2582
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2583 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2584 {
2585 struct tcp_sock *tp = tcp_sk(sk);
2586
2587
2588 /* There are multiple conditions worthy of tracking in a
2589 * chronograph, so that the highest priority enum takes
2590 * precedence over the other conditions (see tcp_chrono_start).
2591 * If a condition stops, we only stop chrono tracking if
2592 * it's the "most interesting" or current chrono we are
2593 * tracking and starts busy chrono if we have pending data.
2594 */
2595 if (tcp_rtx_and_write_queues_empty(sk))
2596 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2597 else if (type == tp->chrono_type)
2598 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2599 }
2600
2601 /* This routine writes packets to the network. It advances the
2602 * send_head. This happens as incoming acks open up the remote
2603 * window for us.
2604 *
2605 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2606 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2607 * account rare use of URG, this is not a big flaw.
2608 *
2609 * Send at most one packet when push_one > 0. Temporarily ignore
2610 * cwnd limit to force at most one packet out when push_one == 2.
2611
2612 * Returns true, if no segments are in flight and we have queued segments,
2613 * but cannot send anything now because of SWS or another problem.
2614 */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2615 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2616 int push_one, gfp_t gfp)
2617 {
2618 struct tcp_sock *tp = tcp_sk(sk);
2619 struct sk_buff *skb;
2620 unsigned int tso_segs, sent_pkts;
2621 int cwnd_quota;
2622 int result;
2623 bool is_cwnd_limited = false, is_rwnd_limited = false;
2624 u32 max_segs;
2625
2626 sent_pkts = 0;
2627
2628 tcp_mstamp_refresh(tp);
2629 if (!push_one) {
2630 /* Do MTU probing. */
2631 result = tcp_mtu_probe(sk);
2632 if (!result) {
2633 return false;
2634 } else if (result > 0) {
2635 sent_pkts = 1;
2636 }
2637 }
2638
2639 max_segs = tcp_tso_segs(sk, mss_now);
2640 while ((skb = tcp_send_head(sk))) {
2641 unsigned int limit;
2642
2643 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2644 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2645 tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2646 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2647 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2648 tcp_init_tso_segs(skb, mss_now);
2649 goto repair; /* Skip network transmission */
2650 }
2651
2652 if (tcp_pacing_check(sk))
2653 break;
2654
2655 tso_segs = tcp_init_tso_segs(skb, mss_now);
2656 BUG_ON(!tso_segs);
2657
2658 cwnd_quota = tcp_cwnd_test(tp, skb);
2659 if (!cwnd_quota) {
2660 if (push_one == 2)
2661 /* Force out a loss probe pkt. */
2662 cwnd_quota = 1;
2663 else
2664 break;
2665 }
2666
2667 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2668 is_rwnd_limited = true;
2669 break;
2670 }
2671
2672 if (tso_segs == 1) {
2673 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2674 (tcp_skb_is_last(sk, skb) ?
2675 nonagle : TCP_NAGLE_PUSH))))
2676 break;
2677 } else {
2678 if (!push_one &&
2679 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2680 &is_rwnd_limited, max_segs))
2681 break;
2682 }
2683
2684 limit = mss_now;
2685 if (tso_segs > 1 && !tcp_urg_mode(tp))
2686 limit = tcp_mss_split_point(sk, skb, mss_now,
2687 min_t(unsigned int,
2688 cwnd_quota,
2689 max_segs),
2690 nonagle);
2691
2692 if (skb->len > limit &&
2693 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2694 break;
2695
2696 if (tcp_small_queue_check(sk, skb, 0))
2697 break;
2698
2699 /* Argh, we hit an empty skb(), presumably a thread
2700 * is sleeping in sendmsg()/sk_stream_wait_memory().
2701 * We do not want to send a pure-ack packet and have
2702 * a strange looking rtx queue with empty packet(s).
2703 */
2704 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2705 break;
2706
2707 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2708 break;
2709
2710 repair:
2711 /* Advance the send_head. This one is sent out.
2712 * This call will increment packets_out.
2713 */
2714 tcp_event_new_data_sent(sk, skb);
2715
2716 tcp_minshall_update(tp, mss_now, skb);
2717 sent_pkts += tcp_skb_pcount(skb);
2718
2719 if (push_one)
2720 break;
2721 }
2722
2723 if (is_rwnd_limited)
2724 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2725 else
2726 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2727
2728 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2729 if (likely(sent_pkts || is_cwnd_limited))
2730 tcp_cwnd_validate(sk, is_cwnd_limited);
2731
2732 if (likely(sent_pkts)) {
2733 if (tcp_in_cwnd_reduction(sk))
2734 tp->prr_out += sent_pkts;
2735
2736 /* Send one loss probe per tail loss episode. */
2737 if (push_one != 2)
2738 tcp_schedule_loss_probe(sk, false);
2739 return false;
2740 }
2741 return !tp->packets_out && !tcp_write_queue_empty(sk);
2742 }
2743
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2744 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2745 {
2746 struct inet_connection_sock *icsk = inet_csk(sk);
2747 struct tcp_sock *tp = tcp_sk(sk);
2748 u32 timeout, timeout_us, rto_delta_us;
2749 int early_retrans;
2750
2751 /* Don't do any loss probe on a Fast Open connection before 3WHS
2752 * finishes.
2753 */
2754 if (rcu_access_pointer(tp->fastopen_rsk))
2755 return false;
2756
2757 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2758 /* Schedule a loss probe in 2*RTT for SACK capable connections
2759 * not in loss recovery, that are either limited by cwnd or application.
2760 */
2761 if ((early_retrans != 3 && early_retrans != 4) ||
2762 !tp->packets_out || !tcp_is_sack(tp) ||
2763 (icsk->icsk_ca_state != TCP_CA_Open &&
2764 icsk->icsk_ca_state != TCP_CA_CWR))
2765 return false;
2766
2767 /* Probe timeout is 2*rtt. Add minimum RTO to account
2768 * for delayed ack when there's one outstanding packet. If no RTT
2769 * sample is available then probe after TCP_TIMEOUT_INIT.
2770 */
2771 if (tp->srtt_us) {
2772 timeout_us = tp->srtt_us >> 2;
2773 if (tp->packets_out == 1)
2774 timeout_us += tcp_rto_min_us(sk);
2775 else
2776 timeout_us += TCP_TIMEOUT_MIN_US;
2777 timeout = usecs_to_jiffies(timeout_us);
2778 } else {
2779 timeout = TCP_TIMEOUT_INIT;
2780 }
2781
2782 /* If the RTO formula yields an earlier time, then use that time. */
2783 rto_delta_us = advancing_rto ?
2784 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2785 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2786 if (rto_delta_us > 0)
2787 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2788
2789 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2790 return true;
2791 }
2792
2793 /* Thanks to skb fast clones, we can detect if a prior transmit of
2794 * a packet is still in a qdisc or driver queue.
2795 * In this case, there is very little point doing a retransmit !
2796 */
skb_still_in_host_queue(struct sock * sk,const struct sk_buff * skb)2797 static bool skb_still_in_host_queue(struct sock *sk,
2798 const struct sk_buff *skb)
2799 {
2800 if (unlikely(skb_fclone_busy(sk, skb))) {
2801 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2802 smp_mb__after_atomic();
2803 if (skb_fclone_busy(sk, skb)) {
2804 NET_INC_STATS(sock_net(sk),
2805 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2806 return true;
2807 }
2808 }
2809 return false;
2810 }
2811
2812 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2813 * retransmit the last segment.
2814 */
tcp_send_loss_probe(struct sock * sk)2815 void tcp_send_loss_probe(struct sock *sk)
2816 {
2817 struct tcp_sock *tp = tcp_sk(sk);
2818 struct sk_buff *skb;
2819 int pcount;
2820 int mss = tcp_current_mss(sk);
2821
2822 /* At most one outstanding TLP */
2823 if (tp->tlp_high_seq)
2824 goto rearm_timer;
2825
2826 tp->tlp_retrans = 0;
2827 skb = tcp_send_head(sk);
2828 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2829 pcount = tp->packets_out;
2830 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2831 if (tp->packets_out > pcount)
2832 goto probe_sent;
2833 goto rearm_timer;
2834 }
2835 skb = skb_rb_last(&sk->tcp_rtx_queue);
2836 if (unlikely(!skb)) {
2837 WARN_ONCE(tp->packets_out,
2838 "invalid inflight: %u state %u cwnd %u mss %d\n",
2839 tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2840 inet_csk(sk)->icsk_pending = 0;
2841 return;
2842 }
2843
2844 if (skb_still_in_host_queue(sk, skb))
2845 goto rearm_timer;
2846
2847 pcount = tcp_skb_pcount(skb);
2848 if (WARN_ON(!pcount))
2849 goto rearm_timer;
2850
2851 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2852 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2853 (pcount - 1) * mss, mss,
2854 GFP_ATOMIC)))
2855 goto rearm_timer;
2856 skb = skb_rb_next(skb);
2857 }
2858
2859 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2860 goto rearm_timer;
2861
2862 if (__tcp_retransmit_skb(sk, skb, 1))
2863 goto rearm_timer;
2864
2865 tp->tlp_retrans = 1;
2866
2867 probe_sent:
2868 /* Record snd_nxt for loss detection. */
2869 tp->tlp_high_seq = tp->snd_nxt;
2870
2871 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2872 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2873 inet_csk(sk)->icsk_pending = 0;
2874 rearm_timer:
2875 tcp_rearm_rto(sk);
2876 }
2877
2878 /* Push out any pending frames which were held back due to
2879 * TCP_CORK or attempt at coalescing tiny packets.
2880 * The socket must be locked by the caller.
2881 */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2882 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2883 int nonagle)
2884 {
2885 /* If we are closed, the bytes will have to remain here.
2886 * In time closedown will finish, we empty the write queue and
2887 * all will be happy.
2888 */
2889 if (unlikely(sk->sk_state == TCP_CLOSE))
2890 return;
2891
2892 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2893 sk_gfp_mask(sk, GFP_ATOMIC)))
2894 tcp_check_probe_timer(sk);
2895 }
2896
2897 /* Send _single_ skb sitting at the send head. This function requires
2898 * true push pending frames to setup probe timer etc.
2899 */
tcp_push_one(struct sock * sk,unsigned int mss_now)2900 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2901 {
2902 struct sk_buff *skb = tcp_send_head(sk);
2903
2904 BUG_ON(!skb || skb->len < mss_now);
2905
2906 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2907 }
2908
2909 /* This function returns the amount that we can raise the
2910 * usable window based on the following constraints
2911 *
2912 * 1. The window can never be shrunk once it is offered (RFC 793)
2913 * 2. We limit memory per socket
2914 *
2915 * RFC 1122:
2916 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2917 * RECV.NEXT + RCV.WIN fixed until:
2918 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2919 *
2920 * i.e. don't raise the right edge of the window until you can raise
2921 * it at least MSS bytes.
2922 *
2923 * Unfortunately, the recommended algorithm breaks header prediction,
2924 * since header prediction assumes th->window stays fixed.
2925 *
2926 * Strictly speaking, keeping th->window fixed violates the receiver
2927 * side SWS prevention criteria. The problem is that under this rule
2928 * a stream of single byte packets will cause the right side of the
2929 * window to always advance by a single byte.
2930 *
2931 * Of course, if the sender implements sender side SWS prevention
2932 * then this will not be a problem.
2933 *
2934 * BSD seems to make the following compromise:
2935 *
2936 * If the free space is less than the 1/4 of the maximum
2937 * space available and the free space is less than 1/2 mss,
2938 * then set the window to 0.
2939 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2940 * Otherwise, just prevent the window from shrinking
2941 * and from being larger than the largest representable value.
2942 *
2943 * This prevents incremental opening of the window in the regime
2944 * where TCP is limited by the speed of the reader side taking
2945 * data out of the TCP receive queue. It does nothing about
2946 * those cases where the window is constrained on the sender side
2947 * because the pipeline is full.
2948 *
2949 * BSD also seems to "accidentally" limit itself to windows that are a
2950 * multiple of MSS, at least until the free space gets quite small.
2951 * This would appear to be a side effect of the mbuf implementation.
2952 * Combining these two algorithms results in the observed behavior
2953 * of having a fixed window size at almost all times.
2954 *
2955 * Below we obtain similar behavior by forcing the offered window to
2956 * a multiple of the mss when it is feasible to do so.
2957 *
2958 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2959 * Regular options like TIMESTAMP are taken into account.
2960 */
__tcp_select_window(struct sock * sk)2961 u32 __tcp_select_window(struct sock *sk)
2962 {
2963 struct inet_connection_sock *icsk = inet_csk(sk);
2964 struct tcp_sock *tp = tcp_sk(sk);
2965 /* MSS for the peer's data. Previous versions used mss_clamp
2966 * here. I don't know if the value based on our guesses
2967 * of peer's MSS is better for the performance. It's more correct
2968 * but may be worse for the performance because of rcv_mss
2969 * fluctuations. --SAW 1998/11/1
2970 */
2971 int mss = icsk->icsk_ack.rcv_mss;
2972 int free_space = tcp_space(sk);
2973 int allowed_space = tcp_full_space(sk);
2974 int full_space, window;
2975
2976 if (sk_is_mptcp(sk))
2977 mptcp_space(sk, &free_space, &allowed_space);
2978
2979 full_space = min_t(int, tp->window_clamp, allowed_space);
2980
2981 if (unlikely(mss > full_space)) {
2982 mss = full_space;
2983 if (mss <= 0)
2984 return 0;
2985 }
2986 if (free_space < (full_space >> 1)) {
2987 icsk->icsk_ack.quick = 0;
2988
2989 if (tcp_under_memory_pressure(sk))
2990 tcp_adjust_rcv_ssthresh(sk);
2991
2992 /* free_space might become our new window, make sure we don't
2993 * increase it due to wscale.
2994 */
2995 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2996
2997 /* if free space is less than mss estimate, or is below 1/16th
2998 * of the maximum allowed, try to move to zero-window, else
2999 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3000 * new incoming data is dropped due to memory limits.
3001 * With large window, mss test triggers way too late in order
3002 * to announce zero window in time before rmem limit kicks in.
3003 */
3004 if (free_space < (allowed_space >> 4) || free_space < mss)
3005 return 0;
3006 }
3007
3008 if (free_space > tp->rcv_ssthresh)
3009 free_space = tp->rcv_ssthresh;
3010
3011 /* Don't do rounding if we are using window scaling, since the
3012 * scaled window will not line up with the MSS boundary anyway.
3013 */
3014 if (tp->rx_opt.rcv_wscale) {
3015 window = free_space;
3016
3017 /* Advertise enough space so that it won't get scaled away.
3018 * Import case: prevent zero window announcement if
3019 * 1<<rcv_wscale > mss.
3020 */
3021 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3022 } else {
3023 window = tp->rcv_wnd;
3024 /* Get the largest window that is a nice multiple of mss.
3025 * Window clamp already applied above.
3026 * If our current window offering is within 1 mss of the
3027 * free space we just keep it. This prevents the divide
3028 * and multiply from happening most of the time.
3029 * We also don't do any window rounding when the free space
3030 * is too small.
3031 */
3032 if (window <= free_space - mss || window > free_space)
3033 window = rounddown(free_space, mss);
3034 else if (mss == full_space &&
3035 free_space > window + (full_space >> 1))
3036 window = free_space;
3037 }
3038
3039 return window;
3040 }
3041
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)3042 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3043 const struct sk_buff *next_skb)
3044 {
3045 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3046 const struct skb_shared_info *next_shinfo =
3047 skb_shinfo(next_skb);
3048 struct skb_shared_info *shinfo = skb_shinfo(skb);
3049
3050 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3051 shinfo->tskey = next_shinfo->tskey;
3052 TCP_SKB_CB(skb)->txstamp_ack |=
3053 TCP_SKB_CB(next_skb)->txstamp_ack;
3054 }
3055 }
3056
3057 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)3058 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3059 {
3060 struct tcp_sock *tp = tcp_sk(sk);
3061 struct sk_buff *next_skb = skb_rb_next(skb);
3062 int next_skb_size;
3063
3064 next_skb_size = next_skb->len;
3065
3066 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3067
3068 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3069 return false;
3070
3071 tcp_highest_sack_replace(sk, next_skb, skb);
3072
3073 /* Update sequence range on original skb. */
3074 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3075
3076 /* Merge over control information. This moves PSH/FIN etc. over */
3077 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3078
3079 /* All done, get rid of second SKB and account for it so
3080 * packet counting does not break.
3081 */
3082 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3083 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3084
3085 /* changed transmit queue under us so clear hints */
3086 tcp_clear_retrans_hints_partial(tp);
3087 if (next_skb == tp->retransmit_skb_hint)
3088 tp->retransmit_skb_hint = skb;
3089
3090 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3091
3092 tcp_skb_collapse_tstamp(skb, next_skb);
3093
3094 tcp_rtx_queue_unlink_and_free(next_skb, sk);
3095 return true;
3096 }
3097
3098 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)3099 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3100 {
3101 if (tcp_skb_pcount(skb) > 1)
3102 return false;
3103 if (skb_cloned(skb))
3104 return false;
3105 /* Some heuristics for collapsing over SACK'd could be invented */
3106 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3107 return false;
3108
3109 return true;
3110 }
3111
3112 /* Collapse packets in the retransmit queue to make to create
3113 * less packets on the wire. This is only done on retransmission.
3114 */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)3115 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3116 int space)
3117 {
3118 struct tcp_sock *tp = tcp_sk(sk);
3119 struct sk_buff *skb = to, *tmp;
3120 bool first = true;
3121
3122 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3123 return;
3124 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3125 return;
3126
3127 skb_rbtree_walk_from_safe(skb, tmp) {
3128 if (!tcp_can_collapse(sk, skb))
3129 break;
3130
3131 if (!tcp_skb_can_collapse(to, skb))
3132 break;
3133
3134 space -= skb->len;
3135
3136 if (first) {
3137 first = false;
3138 continue;
3139 }
3140
3141 if (space < 0)
3142 break;
3143
3144 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3145 break;
3146
3147 if (!tcp_collapse_retrans(sk, to))
3148 break;
3149 }
3150 }
3151
3152 /* This retransmits one SKB. Policy decisions and retransmit queue
3153 * state updates are done by the caller. Returns non-zero if an
3154 * error occurred which prevented the send.
3155 */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3156 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3157 {
3158 struct inet_connection_sock *icsk = inet_csk(sk);
3159 struct tcp_sock *tp = tcp_sk(sk);
3160 unsigned int cur_mss;
3161 int diff, len, err;
3162 int avail_wnd;
3163
3164 /* Inconclusive MTU probe */
3165 if (icsk->icsk_mtup.probe_size)
3166 icsk->icsk_mtup.probe_size = 0;
3167
3168 if (skb_still_in_host_queue(sk, skb))
3169 return -EBUSY;
3170
3171 start:
3172 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3173 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3174 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3175 TCP_SKB_CB(skb)->seq++;
3176 goto start;
3177 }
3178 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3179 WARN_ON_ONCE(1);
3180 return -EINVAL;
3181 }
3182 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3183 return -ENOMEM;
3184 }
3185
3186 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3187 return -EHOSTUNREACH; /* Routing failure or similar. */
3188
3189 cur_mss = tcp_current_mss(sk);
3190 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3191
3192 /* If receiver has shrunk his window, and skb is out of
3193 * new window, do not retransmit it. The exception is the
3194 * case, when window is shrunk to zero. In this case
3195 * our retransmit of one segment serves as a zero window probe.
3196 */
3197 if (avail_wnd <= 0) {
3198 if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3199 return -EAGAIN;
3200 avail_wnd = cur_mss;
3201 }
3202
3203 len = cur_mss * segs;
3204 if (len > avail_wnd) {
3205 len = rounddown(avail_wnd, cur_mss);
3206 if (!len)
3207 len = avail_wnd;
3208 }
3209 if (skb->len > len) {
3210 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3211 cur_mss, GFP_ATOMIC))
3212 return -ENOMEM; /* We'll try again later. */
3213 } else {
3214 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3215 return -ENOMEM;
3216
3217 diff = tcp_skb_pcount(skb);
3218 tcp_set_skb_tso_segs(skb, cur_mss);
3219 diff -= tcp_skb_pcount(skb);
3220 if (diff)
3221 tcp_adjust_pcount(sk, skb, diff);
3222 avail_wnd = min_t(int, avail_wnd, cur_mss);
3223 if (skb->len < avail_wnd)
3224 tcp_retrans_try_collapse(sk, skb, avail_wnd);
3225 }
3226
3227 /* RFC3168, section 6.1.1.1. ECN fallback */
3228 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3229 tcp_ecn_clear_syn(sk, skb);
3230
3231 /* Update global and local TCP statistics. */
3232 segs = tcp_skb_pcount(skb);
3233 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3234 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3235 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3236 tp->total_retrans += segs;
3237 tp->bytes_retrans += skb->len;
3238
3239 /* make sure skb->data is aligned on arches that require it
3240 * and check if ack-trimming & collapsing extended the headroom
3241 * beyond what csum_start can cover.
3242 */
3243 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3244 skb_headroom(skb) >= 0xFFFF)) {
3245 struct sk_buff *nskb;
3246
3247 tcp_skb_tsorted_save(skb) {
3248 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3249 if (nskb) {
3250 nskb->dev = NULL;
3251 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3252 } else {
3253 err = -ENOBUFS;
3254 }
3255 } tcp_skb_tsorted_restore(skb);
3256
3257 if (!err) {
3258 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3259 tcp_rate_skb_sent(sk, skb);
3260 }
3261 } else {
3262 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3263 }
3264
3265 /* To avoid taking spuriously low RTT samples based on a timestamp
3266 * for a transmit that never happened, always mark EVER_RETRANS
3267 */
3268 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3269
3270 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3271 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3272 TCP_SKB_CB(skb)->seq, segs, err);
3273
3274 if (likely(!err)) {
3275 trace_tcp_retransmit_skb(sk, skb);
3276 } else if (err != -EBUSY) {
3277 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3278 }
3279 return err;
3280 }
3281
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3282 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3283 {
3284 struct tcp_sock *tp = tcp_sk(sk);
3285 int err = __tcp_retransmit_skb(sk, skb, segs);
3286
3287 if (err == 0) {
3288 #if FASTRETRANS_DEBUG > 0
3289 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3290 net_dbg_ratelimited("retrans_out leaked\n");
3291 }
3292 #endif
3293 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3294 tp->retrans_out += tcp_skb_pcount(skb);
3295 }
3296
3297 /* Save stamp of the first (attempted) retransmit. */
3298 if (!tp->retrans_stamp)
3299 tp->retrans_stamp = tcp_skb_timestamp(skb);
3300
3301 if (tp->undo_retrans < 0)
3302 tp->undo_retrans = 0;
3303 tp->undo_retrans += tcp_skb_pcount(skb);
3304 return err;
3305 }
3306
3307 /* This gets called after a retransmit timeout, and the initially
3308 * retransmitted data is acknowledged. It tries to continue
3309 * resending the rest of the retransmit queue, until either
3310 * we've sent it all or the congestion window limit is reached.
3311 */
tcp_xmit_retransmit_queue(struct sock * sk)3312 void tcp_xmit_retransmit_queue(struct sock *sk)
3313 {
3314 const struct inet_connection_sock *icsk = inet_csk(sk);
3315 struct sk_buff *skb, *rtx_head, *hole = NULL;
3316 struct tcp_sock *tp = tcp_sk(sk);
3317 bool rearm_timer = false;
3318 u32 max_segs;
3319 int mib_idx;
3320
3321 if (!tp->packets_out)
3322 return;
3323
3324 rtx_head = tcp_rtx_queue_head(sk);
3325 skb = tp->retransmit_skb_hint ?: rtx_head;
3326 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3327 skb_rbtree_walk_from(skb) {
3328 __u8 sacked;
3329 int segs;
3330
3331 if (tcp_pacing_check(sk))
3332 break;
3333
3334 /* we could do better than to assign each time */
3335 if (!hole)
3336 tp->retransmit_skb_hint = skb;
3337
3338 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3339 if (segs <= 0)
3340 break;
3341 sacked = TCP_SKB_CB(skb)->sacked;
3342 /* In case tcp_shift_skb_data() have aggregated large skbs,
3343 * we need to make sure not sending too bigs TSO packets
3344 */
3345 segs = min_t(int, segs, max_segs);
3346
3347 if (tp->retrans_out >= tp->lost_out) {
3348 break;
3349 } else if (!(sacked & TCPCB_LOST)) {
3350 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3351 hole = skb;
3352 continue;
3353
3354 } else {
3355 if (icsk->icsk_ca_state != TCP_CA_Loss)
3356 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3357 else
3358 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3359 }
3360
3361 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3362 continue;
3363
3364 if (tcp_small_queue_check(sk, skb, 1))
3365 break;
3366
3367 if (tcp_retransmit_skb(sk, skb, segs))
3368 break;
3369
3370 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3371
3372 if (tcp_in_cwnd_reduction(sk))
3373 tp->prr_out += tcp_skb_pcount(skb);
3374
3375 if (skb == rtx_head &&
3376 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3377 rearm_timer = true;
3378
3379 }
3380 if (rearm_timer)
3381 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3382 inet_csk(sk)->icsk_rto,
3383 TCP_RTO_MAX);
3384 }
3385
3386 /* We allow to exceed memory limits for FIN packets to expedite
3387 * connection tear down and (memory) recovery.
3388 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3389 * or even be forced to close flow without any FIN.
3390 * In general, we want to allow one skb per socket to avoid hangs
3391 * with edge trigger epoll()
3392 */
sk_forced_mem_schedule(struct sock * sk,int size)3393 void sk_forced_mem_schedule(struct sock *sk, int size)
3394 {
3395 int delta, amt;
3396
3397 delta = size - sk->sk_forward_alloc;
3398 if (delta <= 0)
3399 return;
3400 amt = sk_mem_pages(delta);
3401 sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3402 sk_memory_allocated_add(sk, amt);
3403
3404 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3405 mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3406 gfp_memcg_charge() | __GFP_NOFAIL);
3407 }
3408
3409 /* Send a FIN. The caller locks the socket for us.
3410 * We should try to send a FIN packet really hard, but eventually give up.
3411 */
tcp_send_fin(struct sock * sk)3412 void tcp_send_fin(struct sock *sk)
3413 {
3414 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3415 struct tcp_sock *tp = tcp_sk(sk);
3416
3417 /* Optimization, tack on the FIN if we have one skb in write queue and
3418 * this skb was not yet sent, or we are under memory pressure.
3419 * Note: in the latter case, FIN packet will be sent after a timeout,
3420 * as TCP stack thinks it has already been transmitted.
3421 */
3422 tskb = tail;
3423 if (!tskb && tcp_under_memory_pressure(sk))
3424 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3425
3426 if (tskb) {
3427 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3428 TCP_SKB_CB(tskb)->end_seq++;
3429 tp->write_seq++;
3430 if (!tail) {
3431 /* This means tskb was already sent.
3432 * Pretend we included the FIN on previous transmit.
3433 * We need to set tp->snd_nxt to the value it would have
3434 * if FIN had been sent. This is because retransmit path
3435 * does not change tp->snd_nxt.
3436 */
3437 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3438 return;
3439 }
3440 } else {
3441 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3442 if (unlikely(!skb))
3443 return;
3444
3445 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3446 skb_reserve(skb, MAX_TCP_HEADER);
3447 sk_forced_mem_schedule(sk, skb->truesize);
3448 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3449 tcp_init_nondata_skb(skb, tp->write_seq,
3450 TCPHDR_ACK | TCPHDR_FIN);
3451 tcp_queue_skb(sk, skb);
3452 }
3453 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3454 }
3455
3456 /* We get here when a process closes a file descriptor (either due to
3457 * an explicit close() or as a byproduct of exit()'ing) and there
3458 * was unread data in the receive queue. This behavior is recommended
3459 * by RFC 2525, section 2.17. -DaveM
3460 */
tcp_send_active_reset(struct sock * sk,gfp_t priority)3461 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3462 {
3463 struct sk_buff *skb;
3464
3465 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3466
3467 /* NOTE: No TCP options attached and we never retransmit this. */
3468 skb = alloc_skb(MAX_TCP_HEADER, priority);
3469 if (!skb) {
3470 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3471 return;
3472 }
3473
3474 /* Reserve space for headers and prepare control bits. */
3475 skb_reserve(skb, MAX_TCP_HEADER);
3476 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3477 TCPHDR_ACK | TCPHDR_RST);
3478 tcp_mstamp_refresh(tcp_sk(sk));
3479 /* Send it off. */
3480 if (tcp_transmit_skb(sk, skb, 0, priority))
3481 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3482
3483 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3484 * skb here is different to the troublesome skb, so use NULL
3485 */
3486 trace_tcp_send_reset(sk, NULL);
3487 }
3488
3489 /* Send a crossed SYN-ACK during socket establishment.
3490 * WARNING: This routine must only be called when we have already sent
3491 * a SYN packet that crossed the incoming SYN that caused this routine
3492 * to get called. If this assumption fails then the initial rcv_wnd
3493 * and rcv_wscale values will not be correct.
3494 */
tcp_send_synack(struct sock * sk)3495 int tcp_send_synack(struct sock *sk)
3496 {
3497 struct sk_buff *skb;
3498
3499 skb = tcp_rtx_queue_head(sk);
3500 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3501 pr_err("%s: wrong queue state\n", __func__);
3502 return -EFAULT;
3503 }
3504 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3505 if (skb_cloned(skb)) {
3506 struct sk_buff *nskb;
3507
3508 tcp_skb_tsorted_save(skb) {
3509 nskb = skb_copy(skb, GFP_ATOMIC);
3510 } tcp_skb_tsorted_restore(skb);
3511 if (!nskb)
3512 return -ENOMEM;
3513 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3514 tcp_highest_sack_replace(sk, skb, nskb);
3515 tcp_rtx_queue_unlink_and_free(skb, sk);
3516 __skb_header_release(nskb);
3517 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3518 sk_wmem_queued_add(sk, nskb->truesize);
3519 sk_mem_charge(sk, nskb->truesize);
3520 skb = nskb;
3521 }
3522
3523 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3524 tcp_ecn_send_synack(sk, skb);
3525 }
3526 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3527 }
3528
3529 /**
3530 * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3531 * @sk: listener socket
3532 * @dst: dst entry attached to the SYNACK. It is consumed and caller
3533 * should not use it again.
3534 * @req: request_sock pointer
3535 * @foc: cookie for tcp fast open
3536 * @synack_type: Type of synack to prepare
3537 * @syn_skb: SYN packet just received. It could be NULL for rtx case.
3538 */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)3539 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3540 struct request_sock *req,
3541 struct tcp_fastopen_cookie *foc,
3542 enum tcp_synack_type synack_type,
3543 struct sk_buff *syn_skb)
3544 {
3545 struct inet_request_sock *ireq = inet_rsk(req);
3546 const struct tcp_sock *tp = tcp_sk(sk);
3547 struct tcp_md5sig_key *md5 = NULL;
3548 struct tcp_out_options opts;
3549 struct sk_buff *skb;
3550 int tcp_header_size;
3551 struct tcphdr *th;
3552 int mss;
3553 u64 now;
3554
3555 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3556 if (unlikely(!skb)) {
3557 dst_release(dst);
3558 return NULL;
3559 }
3560 /* Reserve space for headers. */
3561 skb_reserve(skb, MAX_TCP_HEADER);
3562
3563 switch (synack_type) {
3564 case TCP_SYNACK_NORMAL:
3565 skb_set_owner_w(skb, req_to_sk(req));
3566 break;
3567 case TCP_SYNACK_COOKIE:
3568 /* Under synflood, we do not attach skb to a socket,
3569 * to avoid false sharing.
3570 */
3571 break;
3572 case TCP_SYNACK_FASTOPEN:
3573 /* sk is a const pointer, because we want to express multiple
3574 * cpu might call us concurrently.
3575 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3576 */
3577 skb_set_owner_w(skb, (struct sock *)sk);
3578 break;
3579 }
3580 skb_dst_set(skb, dst);
3581
3582 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3583
3584 memset(&opts, 0, sizeof(opts));
3585 now = tcp_clock_ns();
3586 #ifdef CONFIG_SYN_COOKIES
3587 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3588 skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3589 true);
3590 else
3591 #endif
3592 {
3593 skb_set_delivery_time(skb, now, true);
3594 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3595 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3596 }
3597
3598 #ifdef CONFIG_TCP_MD5SIG
3599 rcu_read_lock();
3600 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3601 #endif
3602 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3603 /* bpf program will be interested in the tcp_flags */
3604 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3605 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3606 foc, synack_type,
3607 syn_skb) + sizeof(*th);
3608
3609 skb_push(skb, tcp_header_size);
3610 skb_reset_transport_header(skb);
3611
3612 th = (struct tcphdr *)skb->data;
3613 memset(th, 0, sizeof(struct tcphdr));
3614 th->syn = 1;
3615 th->ack = 1;
3616 tcp_ecn_make_synack(req, th);
3617 th->source = htons(ireq->ir_num);
3618 th->dest = ireq->ir_rmt_port;
3619 skb->mark = ireq->ir_mark;
3620 skb->ip_summed = CHECKSUM_PARTIAL;
3621 th->seq = htonl(tcp_rsk(req)->snt_isn);
3622 /* XXX data is queued and acked as is. No buffer/window check */
3623 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3624
3625 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3626 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3627 tcp_options_write(th, NULL, &opts);
3628 th->doff = (tcp_header_size >> 2);
3629 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3630
3631 #ifdef CONFIG_TCP_MD5SIG
3632 /* Okay, we have all we need - do the md5 hash if needed */
3633 if (md5)
3634 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3635 md5, req_to_sk(req), skb);
3636 rcu_read_unlock();
3637 #endif
3638
3639 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3640 synack_type, &opts);
3641
3642 skb_set_delivery_time(skb, now, true);
3643 tcp_add_tx_delay(skb, tp);
3644
3645 return skb;
3646 }
3647 EXPORT_SYMBOL(tcp_make_synack);
3648
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3649 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3650 {
3651 struct inet_connection_sock *icsk = inet_csk(sk);
3652 const struct tcp_congestion_ops *ca;
3653 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3654
3655 if (ca_key == TCP_CA_UNSPEC)
3656 return;
3657
3658 rcu_read_lock();
3659 ca = tcp_ca_find_key(ca_key);
3660 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3661 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3662 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3663 icsk->icsk_ca_ops = ca;
3664 }
3665 rcu_read_unlock();
3666 }
3667
3668 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3669 static void tcp_connect_init(struct sock *sk)
3670 {
3671 const struct dst_entry *dst = __sk_dst_get(sk);
3672 struct tcp_sock *tp = tcp_sk(sk);
3673 __u8 rcv_wscale;
3674 u32 rcv_wnd;
3675
3676 /* We'll fix this up when we get a response from the other end.
3677 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3678 */
3679 tp->tcp_header_len = sizeof(struct tcphdr);
3680 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3681 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3682
3683 #ifdef CONFIG_TCP_MD5SIG
3684 if (tp->af_specific->md5_lookup(sk, sk))
3685 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3686 #endif
3687
3688 /* If user gave his TCP_MAXSEG, record it to clamp */
3689 if (tp->rx_opt.user_mss)
3690 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3691 tp->max_window = 0;
3692 tcp_mtup_init(sk);
3693 tcp_sync_mss(sk, dst_mtu(dst));
3694
3695 tcp_ca_dst_init(sk, dst);
3696
3697 if (!tp->window_clamp)
3698 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3699 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3700
3701 tcp_initialize_rcv_mss(sk);
3702
3703 /* limit the window selection if the user enforce a smaller rx buffer */
3704 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3705 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3706 tp->window_clamp = tcp_full_space(sk);
3707
3708 rcv_wnd = tcp_rwnd_init_bpf(sk);
3709 if (rcv_wnd == 0)
3710 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3711
3712 tcp_select_initial_window(sk, tcp_full_space(sk),
3713 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3714 &tp->rcv_wnd,
3715 &tp->window_clamp,
3716 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3717 &rcv_wscale,
3718 rcv_wnd);
3719
3720 tp->rx_opt.rcv_wscale = rcv_wscale;
3721 tp->rcv_ssthresh = tp->rcv_wnd;
3722
3723 sk->sk_err = 0;
3724 sock_reset_flag(sk, SOCK_DONE);
3725 tp->snd_wnd = 0;
3726 tcp_init_wl(tp, 0);
3727 tcp_write_queue_purge(sk);
3728 tp->snd_una = tp->write_seq;
3729 tp->snd_sml = tp->write_seq;
3730 tp->snd_up = tp->write_seq;
3731 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3732
3733 if (likely(!tp->repair))
3734 tp->rcv_nxt = 0;
3735 else
3736 tp->rcv_tstamp = tcp_jiffies32;
3737 tp->rcv_wup = tp->rcv_nxt;
3738 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3739
3740 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3741 inet_csk(sk)->icsk_retransmits = 0;
3742 tcp_clear_retrans(tp);
3743 }
3744
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3745 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3746 {
3747 struct tcp_sock *tp = tcp_sk(sk);
3748 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3749
3750 tcb->end_seq += skb->len;
3751 __skb_header_release(skb);
3752 sk_wmem_queued_add(sk, skb->truesize);
3753 sk_mem_charge(sk, skb->truesize);
3754 WRITE_ONCE(tp->write_seq, tcb->end_seq);
3755 tp->packets_out += tcp_skb_pcount(skb);
3756 }
3757
3758 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3759 * queue a data-only packet after the regular SYN, such that regular SYNs
3760 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3761 * only the SYN sequence, the data are retransmitted in the first ACK.
3762 * If cookie is not cached or other error occurs, falls back to send a
3763 * regular SYN with Fast Open cookie request option.
3764 */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3765 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3766 {
3767 struct inet_connection_sock *icsk = inet_csk(sk);
3768 struct tcp_sock *tp = tcp_sk(sk);
3769 struct tcp_fastopen_request *fo = tp->fastopen_req;
3770 int space, err = 0;
3771 struct sk_buff *syn_data;
3772
3773 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3774 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3775 goto fallback;
3776
3777 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3778 * user-MSS. Reserve maximum option space for middleboxes that add
3779 * private TCP options. The cost is reduced data space in SYN :(
3780 */
3781 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3782 /* Sync mss_cache after updating the mss_clamp */
3783 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3784
3785 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3786 MAX_TCP_OPTION_SPACE;
3787
3788 space = min_t(size_t, space, fo->size);
3789
3790 /* limit to order-0 allocations */
3791 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3792
3793 syn_data = tcp_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3794 if (!syn_data)
3795 goto fallback;
3796 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3797 if (space) {
3798 int copied = copy_from_iter(skb_put(syn_data, space), space,
3799 &fo->data->msg_iter);
3800 if (unlikely(!copied)) {
3801 tcp_skb_tsorted_anchor_cleanup(syn_data);
3802 kfree_skb(syn_data);
3803 goto fallback;
3804 }
3805 if (copied != space) {
3806 skb_trim(syn_data, copied);
3807 space = copied;
3808 }
3809 skb_zcopy_set(syn_data, fo->uarg, NULL);
3810 }
3811 /* No more data pending in inet_wait_for_connect() */
3812 if (space == fo->size)
3813 fo->data = NULL;
3814 fo->copied = space;
3815
3816 tcp_connect_queue_skb(sk, syn_data);
3817 if (syn_data->len)
3818 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3819
3820 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3821
3822 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3823
3824 /* Now full SYN+DATA was cloned and sent (or not),
3825 * remove the SYN from the original skb (syn_data)
3826 * we keep in write queue in case of a retransmit, as we
3827 * also have the SYN packet (with no data) in the same queue.
3828 */
3829 TCP_SKB_CB(syn_data)->seq++;
3830 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3831 if (!err) {
3832 tp->syn_data = (fo->copied > 0);
3833 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3834 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3835 goto done;
3836 }
3837
3838 /* data was not sent, put it in write_queue */
3839 __skb_queue_tail(&sk->sk_write_queue, syn_data);
3840 tp->packets_out -= tcp_skb_pcount(syn_data);
3841
3842 fallback:
3843 /* Send a regular SYN with Fast Open cookie request option */
3844 if (fo->cookie.len > 0)
3845 fo->cookie.len = 0;
3846 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3847 if (err)
3848 tp->syn_fastopen = 0;
3849 done:
3850 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3851 return err;
3852 }
3853
3854 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)3855 int tcp_connect(struct sock *sk)
3856 {
3857 struct tcp_sock *tp = tcp_sk(sk);
3858 struct sk_buff *buff;
3859 int err;
3860
3861 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3862
3863 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3864 return -EHOSTUNREACH; /* Routing failure or similar. */
3865
3866 tcp_connect_init(sk);
3867
3868 if (unlikely(tp->repair)) {
3869 tcp_finish_connect(sk, NULL);
3870 return 0;
3871 }
3872
3873 buff = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3874 if (unlikely(!buff))
3875 return -ENOBUFS;
3876
3877 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3878 tcp_mstamp_refresh(tp);
3879 tp->retrans_stamp = tcp_time_stamp(tp);
3880 tcp_connect_queue_skb(sk, buff);
3881 tcp_ecn_send_syn(sk, buff);
3882 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3883
3884 /* Send off SYN; include data in Fast Open. */
3885 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3886 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3887 if (err == -ECONNREFUSED)
3888 return err;
3889
3890 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3891 * in order to make this packet get counted in tcpOutSegs.
3892 */
3893 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3894 tp->pushed_seq = tp->write_seq;
3895 buff = tcp_send_head(sk);
3896 if (unlikely(buff)) {
3897 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3898 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3899 }
3900 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3901
3902 /* Timer for repeating the SYN until an answer. */
3903 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3904 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3905 return 0;
3906 }
3907 EXPORT_SYMBOL(tcp_connect);
3908
3909 /* Send out a delayed ack, the caller does the policy checking
3910 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3911 * for details.
3912 */
tcp_send_delayed_ack(struct sock * sk)3913 void tcp_send_delayed_ack(struct sock *sk)
3914 {
3915 struct inet_connection_sock *icsk = inet_csk(sk);
3916 int ato = icsk->icsk_ack.ato;
3917 unsigned long timeout;
3918
3919 if (ato > TCP_DELACK_MIN) {
3920 const struct tcp_sock *tp = tcp_sk(sk);
3921 int max_ato = HZ / 2;
3922
3923 if (inet_csk_in_pingpong_mode(sk) ||
3924 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3925 max_ato = TCP_DELACK_MAX;
3926
3927 /* Slow path, intersegment interval is "high". */
3928
3929 /* If some rtt estimate is known, use it to bound delayed ack.
3930 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3931 * directly.
3932 */
3933 if (tp->srtt_us) {
3934 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3935 TCP_DELACK_MIN);
3936
3937 if (rtt < max_ato)
3938 max_ato = rtt;
3939 }
3940
3941 ato = min(ato, max_ato);
3942 }
3943
3944 ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
3945
3946 /* Stay within the limit we were given */
3947 timeout = jiffies + ato;
3948
3949 /* Use new timeout only if there wasn't a older one earlier. */
3950 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3951 /* If delack timer is about to expire, send ACK now. */
3952 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3953 tcp_send_ack(sk);
3954 return;
3955 }
3956
3957 if (!time_before(timeout, icsk->icsk_ack.timeout))
3958 timeout = icsk->icsk_ack.timeout;
3959 }
3960 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3961 icsk->icsk_ack.timeout = timeout;
3962 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3963 }
3964
3965 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt)3966 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3967 {
3968 struct sk_buff *buff;
3969
3970 /* If we have been reset, we may not send again. */
3971 if (sk->sk_state == TCP_CLOSE)
3972 return;
3973
3974 /* We are not putting this on the write queue, so
3975 * tcp_transmit_skb() will set the ownership to this
3976 * sock.
3977 */
3978 buff = alloc_skb(MAX_TCP_HEADER,
3979 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3980 if (unlikely(!buff)) {
3981 struct inet_connection_sock *icsk = inet_csk(sk);
3982 unsigned long delay;
3983
3984 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
3985 if (delay < TCP_RTO_MAX)
3986 icsk->icsk_ack.retry++;
3987 inet_csk_schedule_ack(sk);
3988 icsk->icsk_ack.ato = TCP_ATO_MIN;
3989 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
3990 return;
3991 }
3992
3993 /* Reserve space for headers and prepare control bits. */
3994 skb_reserve(buff, MAX_TCP_HEADER);
3995 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3996
3997 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3998 * too much.
3999 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4000 */
4001 skb_set_tcp_pure_ack(buff);
4002
4003 /* Send it off, this clears delayed acks for us. */
4004 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4005 }
4006 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4007
tcp_send_ack(struct sock * sk)4008 void tcp_send_ack(struct sock *sk)
4009 {
4010 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4011 }
4012
4013 /* This routine sends a packet with an out of date sequence
4014 * number. It assumes the other end will try to ack it.
4015 *
4016 * Question: what should we make while urgent mode?
4017 * 4.4BSD forces sending single byte of data. We cannot send
4018 * out of window data, because we have SND.NXT==SND.MAX...
4019 *
4020 * Current solution: to send TWO zero-length segments in urgent mode:
4021 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4022 * out-of-date with SND.UNA-1 to probe window.
4023 */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)4024 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4025 {
4026 struct tcp_sock *tp = tcp_sk(sk);
4027 struct sk_buff *skb;
4028
4029 /* We don't queue it, tcp_transmit_skb() sets ownership. */
4030 skb = alloc_skb(MAX_TCP_HEADER,
4031 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4032 if (!skb)
4033 return -1;
4034
4035 /* Reserve space for headers and set control bits. */
4036 skb_reserve(skb, MAX_TCP_HEADER);
4037 /* Use a previous sequence. This should cause the other
4038 * end to send an ack. Don't queue or clone SKB, just
4039 * send it.
4040 */
4041 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4042 NET_INC_STATS(sock_net(sk), mib);
4043 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4044 }
4045
4046 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)4047 void tcp_send_window_probe(struct sock *sk)
4048 {
4049 if (sk->sk_state == TCP_ESTABLISHED) {
4050 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4051 tcp_mstamp_refresh(tcp_sk(sk));
4052 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4053 }
4054 }
4055
4056 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)4057 int tcp_write_wakeup(struct sock *sk, int mib)
4058 {
4059 struct tcp_sock *tp = tcp_sk(sk);
4060 struct sk_buff *skb;
4061
4062 if (sk->sk_state == TCP_CLOSE)
4063 return -1;
4064
4065 skb = tcp_send_head(sk);
4066 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4067 int err;
4068 unsigned int mss = tcp_current_mss(sk);
4069 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4070
4071 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4072 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4073
4074 /* We are probing the opening of a window
4075 * but the window size is != 0
4076 * must have been a result SWS avoidance ( sender )
4077 */
4078 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4079 skb->len > mss) {
4080 seg_size = min(seg_size, mss);
4081 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4082 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4083 skb, seg_size, mss, GFP_ATOMIC))
4084 return -1;
4085 } else if (!tcp_skb_pcount(skb))
4086 tcp_set_skb_tso_segs(skb, mss);
4087
4088 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4089 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4090 if (!err)
4091 tcp_event_new_data_sent(sk, skb);
4092 return err;
4093 } else {
4094 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4095 tcp_xmit_probe_skb(sk, 1, mib);
4096 return tcp_xmit_probe_skb(sk, 0, mib);
4097 }
4098 }
4099
4100 /* A window probe timeout has occurred. If window is not closed send
4101 * a partial packet else a zero probe.
4102 */
tcp_send_probe0(struct sock * sk)4103 void tcp_send_probe0(struct sock *sk)
4104 {
4105 struct inet_connection_sock *icsk = inet_csk(sk);
4106 struct tcp_sock *tp = tcp_sk(sk);
4107 struct net *net = sock_net(sk);
4108 unsigned long timeout;
4109 int err;
4110
4111 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4112
4113 if (tp->packets_out || tcp_write_queue_empty(sk)) {
4114 /* Cancel probe timer, if it is not required. */
4115 icsk->icsk_probes_out = 0;
4116 icsk->icsk_backoff = 0;
4117 icsk->icsk_probes_tstamp = 0;
4118 return;
4119 }
4120
4121 icsk->icsk_probes_out++;
4122 if (err <= 0) {
4123 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4124 icsk->icsk_backoff++;
4125 timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4126 } else {
4127 /* If packet was not sent due to local congestion,
4128 * Let senders fight for local resources conservatively.
4129 */
4130 timeout = TCP_RESOURCE_PROBE_INTERVAL;
4131 }
4132
4133 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4134 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4135 }
4136
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)4137 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4138 {
4139 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4140 struct flowi fl;
4141 int res;
4142
4143 /* Paired with WRITE_ONCE() in sock_setsockopt() */
4144 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4145 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4146 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4147 NULL);
4148 if (!res) {
4149 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4150 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4151 if (unlikely(tcp_passive_fastopen(sk)))
4152 tcp_sk(sk)->total_retrans++;
4153 trace_tcp_retransmit_synack(sk, req);
4154 }
4155 return res;
4156 }
4157 EXPORT_SYMBOL(tcp_rtx_synack);
4158