1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file contains the base functions to manage periodic tick
4 * related events.
5 *
6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9 */
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/nmi.h>
15 #include <linux/percpu.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/module.h>
19 #include <trace/events/power.h>
20 #include <trace/hooks/sched.h>
21
22 #include <asm/irq_regs.h>
23
24 #include "tick-internal.h"
25
26 /*
27 * Tick devices
28 */
29 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
30 /*
31 * Tick next event: keeps track of the tick time. It's updated by the
32 * CPU which handles the tick and protected by jiffies_lock. There is
33 * no requirement to write hold the jiffies seqcount for it.
34 */
35 ktime_t tick_next_period;
36
37 /*
38 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
39 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
40 * variable has two functions:
41 *
42 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
43 * timekeeping lock all at once. Only the CPU which is assigned to do the
44 * update is handling it.
45 *
46 * 2) Hand off the duty in the NOHZ idle case by setting the value to
47 * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
48 * at it will take over and keep the time keeping alive. The handover
49 * procedure also covers cpu hotplug.
50 */
51 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
52 #ifdef CONFIG_NO_HZ_FULL
53 /*
54 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
55 * tick_do_timer_cpu and it should be taken over by an eligible secondary
56 * when one comes online.
57 */
58 static int tick_do_timer_boot_cpu __read_mostly = -1;
59 #endif
60
61 /*
62 * Debugging: see timer_list.c
63 */
tick_get_device(int cpu)64 struct tick_device *tick_get_device(int cpu)
65 {
66 return &per_cpu(tick_cpu_device, cpu);
67 }
68
69 /**
70 * tick_is_oneshot_available - check for a oneshot capable event device
71 */
tick_is_oneshot_available(void)72 int tick_is_oneshot_available(void)
73 {
74 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
75
76 if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
77 return 0;
78 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
79 return 1;
80 return tick_broadcast_oneshot_available();
81 }
82
83 /*
84 * Periodic tick
85 */
tick_periodic(int cpu)86 static void tick_periodic(int cpu)
87 {
88 if (tick_do_timer_cpu == cpu) {
89 raw_spin_lock(&jiffies_lock);
90 write_seqcount_begin(&jiffies_seq);
91
92 /* Keep track of the next tick event */
93 tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC);
94
95 do_timer(1);
96 write_seqcount_end(&jiffies_seq);
97 raw_spin_unlock(&jiffies_lock);
98 update_wall_time();
99 trace_android_vh_jiffies_update(NULL);
100 }
101
102 update_process_times(user_mode(get_irq_regs()));
103 profile_tick(CPU_PROFILING);
104 }
105
106 /*
107 * Event handler for periodic ticks
108 */
tick_handle_periodic(struct clock_event_device * dev)109 void tick_handle_periodic(struct clock_event_device *dev)
110 {
111 int cpu = smp_processor_id();
112 ktime_t next = dev->next_event;
113
114 tick_periodic(cpu);
115
116 #if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
117 /*
118 * The cpu might have transitioned to HIGHRES or NOHZ mode via
119 * update_process_times() -> run_local_timers() ->
120 * hrtimer_run_queues().
121 */
122 if (dev->event_handler != tick_handle_periodic)
123 return;
124 #endif
125
126 if (!clockevent_state_oneshot(dev))
127 return;
128 for (;;) {
129 /*
130 * Setup the next period for devices, which do not have
131 * periodic mode:
132 */
133 next = ktime_add_ns(next, TICK_NSEC);
134
135 if (!clockevents_program_event(dev, next, false))
136 return;
137 /*
138 * Have to be careful here. If we're in oneshot mode,
139 * before we call tick_periodic() in a loop, we need
140 * to be sure we're using a real hardware clocksource.
141 * Otherwise we could get trapped in an infinite
142 * loop, as the tick_periodic() increments jiffies,
143 * which then will increment time, possibly causing
144 * the loop to trigger again and again.
145 */
146 if (timekeeping_valid_for_hres())
147 tick_periodic(cpu);
148 }
149 }
150
151 /*
152 * Setup the device for a periodic tick
153 */
tick_setup_periodic(struct clock_event_device * dev,int broadcast)154 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
155 {
156 tick_set_periodic_handler(dev, broadcast);
157
158 /* Broadcast setup ? */
159 if (!tick_device_is_functional(dev))
160 return;
161
162 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
163 !tick_broadcast_oneshot_active()) {
164 clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
165 } else {
166 unsigned int seq;
167 ktime_t next;
168
169 do {
170 seq = read_seqcount_begin(&jiffies_seq);
171 next = tick_next_period;
172 } while (read_seqcount_retry(&jiffies_seq, seq));
173
174 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
175
176 for (;;) {
177 if (!clockevents_program_event(dev, next, false))
178 return;
179 next = ktime_add_ns(next, TICK_NSEC);
180 }
181 }
182 }
183
184 #ifdef CONFIG_NO_HZ_FULL
giveup_do_timer(void * info)185 static void giveup_do_timer(void *info)
186 {
187 int cpu = *(unsigned int *)info;
188
189 WARN_ON(tick_do_timer_cpu != smp_processor_id());
190
191 tick_do_timer_cpu = cpu;
192 }
193
tick_take_do_timer_from_boot(void)194 static void tick_take_do_timer_from_boot(void)
195 {
196 int cpu = smp_processor_id();
197 int from = tick_do_timer_boot_cpu;
198
199 if (from >= 0 && from != cpu)
200 smp_call_function_single(from, giveup_do_timer, &cpu, 1);
201 }
202 #endif
203
204 /*
205 * Setup the tick device
206 */
tick_setup_device(struct tick_device * td,struct clock_event_device * newdev,int cpu,const struct cpumask * cpumask)207 static void tick_setup_device(struct tick_device *td,
208 struct clock_event_device *newdev, int cpu,
209 const struct cpumask *cpumask)
210 {
211 void (*handler)(struct clock_event_device *) = NULL;
212 ktime_t next_event = 0;
213
214 /*
215 * First device setup ?
216 */
217 if (!td->evtdev) {
218 /*
219 * If no cpu took the do_timer update, assign it to
220 * this cpu:
221 */
222 if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
223 tick_do_timer_cpu = cpu;
224 tick_next_period = ktime_get();
225 #ifdef CONFIG_NO_HZ_FULL
226 /*
227 * The boot CPU may be nohz_full, in which case set
228 * tick_do_timer_boot_cpu so the first housekeeping
229 * secondary that comes up will take do_timer from
230 * us.
231 */
232 if (tick_nohz_full_cpu(cpu))
233 tick_do_timer_boot_cpu = cpu;
234
235 } else if (tick_do_timer_boot_cpu != -1 &&
236 !tick_nohz_full_cpu(cpu)) {
237 tick_take_do_timer_from_boot();
238 tick_do_timer_boot_cpu = -1;
239 WARN_ON(tick_do_timer_cpu != cpu);
240 #endif
241 }
242
243 /*
244 * Startup in periodic mode first.
245 */
246 td->mode = TICKDEV_MODE_PERIODIC;
247 } else {
248 handler = td->evtdev->event_handler;
249 next_event = td->evtdev->next_event;
250 td->evtdev->event_handler = clockevents_handle_noop;
251 }
252
253 td->evtdev = newdev;
254
255 /*
256 * When the device is not per cpu, pin the interrupt to the
257 * current cpu:
258 */
259 if (!cpumask_equal(newdev->cpumask, cpumask))
260 irq_set_affinity(newdev->irq, cpumask);
261
262 /*
263 * When global broadcasting is active, check if the current
264 * device is registered as a placeholder for broadcast mode.
265 * This allows us to handle this x86 misfeature in a generic
266 * way. This function also returns !=0 when we keep the
267 * current active broadcast state for this CPU.
268 */
269 if (tick_device_uses_broadcast(newdev, cpu))
270 return;
271
272 if (td->mode == TICKDEV_MODE_PERIODIC)
273 tick_setup_periodic(newdev, 0);
274 else
275 tick_setup_oneshot(newdev, handler, next_event);
276 }
277
tick_install_replacement(struct clock_event_device * newdev)278 void tick_install_replacement(struct clock_event_device *newdev)
279 {
280 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
281 int cpu = smp_processor_id();
282
283 clockevents_exchange_device(td->evtdev, newdev);
284 tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
285 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
286 tick_oneshot_notify();
287 }
288
tick_check_percpu(struct clock_event_device * curdev,struct clock_event_device * newdev,int cpu)289 static bool tick_check_percpu(struct clock_event_device *curdev,
290 struct clock_event_device *newdev, int cpu)
291 {
292 if (!cpumask_test_cpu(cpu, newdev->cpumask))
293 return false;
294 if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
295 return true;
296 /* Check if irq affinity can be set */
297 if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
298 return false;
299 /* Prefer an existing cpu local device */
300 if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
301 return false;
302 return true;
303 }
304
tick_check_preferred(struct clock_event_device * curdev,struct clock_event_device * newdev)305 static bool tick_check_preferred(struct clock_event_device *curdev,
306 struct clock_event_device *newdev)
307 {
308 /* Prefer oneshot capable device */
309 if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
310 if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
311 return false;
312 if (tick_oneshot_mode_active())
313 return false;
314 }
315
316 /*
317 * Use the higher rated one, but prefer a CPU local device with a lower
318 * rating than a non-CPU local device
319 */
320 return !curdev ||
321 newdev->rating > curdev->rating ||
322 !cpumask_equal(curdev->cpumask, newdev->cpumask);
323 }
324
325 /*
326 * Check whether the new device is a better fit than curdev. curdev
327 * can be NULL !
328 */
tick_check_replacement(struct clock_event_device * curdev,struct clock_event_device * newdev)329 bool tick_check_replacement(struct clock_event_device *curdev,
330 struct clock_event_device *newdev)
331 {
332 if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
333 return false;
334
335 return tick_check_preferred(curdev, newdev);
336 }
337
338 /*
339 * Check, if the new registered device should be used. Called with
340 * clockevents_lock held and interrupts disabled.
341 */
tick_check_new_device(struct clock_event_device * newdev)342 void tick_check_new_device(struct clock_event_device *newdev)
343 {
344 struct clock_event_device *curdev;
345 struct tick_device *td;
346 int cpu;
347
348 cpu = smp_processor_id();
349 td = &per_cpu(tick_cpu_device, cpu);
350 curdev = td->evtdev;
351
352 if (!tick_check_replacement(curdev, newdev))
353 goto out_bc;
354
355 if (!try_module_get(newdev->owner))
356 return;
357
358 /*
359 * Replace the eventually existing device by the new
360 * device. If the current device is the broadcast device, do
361 * not give it back to the clockevents layer !
362 */
363 if (tick_is_broadcast_device(curdev)) {
364 clockevents_shutdown(curdev);
365 curdev = NULL;
366 }
367 clockevents_exchange_device(curdev, newdev);
368 tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
369 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
370 tick_oneshot_notify();
371 return;
372
373 out_bc:
374 /*
375 * Can the new device be used as a broadcast device ?
376 */
377 tick_install_broadcast_device(newdev, cpu);
378 }
379
380 /**
381 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
382 * @state: The target state (enter/exit)
383 *
384 * The system enters/leaves a state, where affected devices might stop
385 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
386 *
387 * Called with interrupts disabled, so clockevents_lock is not
388 * required here because the local clock event device cannot go away
389 * under us.
390 */
tick_broadcast_oneshot_control(enum tick_broadcast_state state)391 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
392 {
393 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
394
395 if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
396 return 0;
397
398 return __tick_broadcast_oneshot_control(state);
399 }
400 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
401
402 #ifdef CONFIG_HOTPLUG_CPU
403 /*
404 * Transfer the do_timer job away from a dying cpu.
405 *
406 * Called with interrupts disabled. No locking required. If
407 * tick_do_timer_cpu is owned by this cpu, nothing can change it.
408 */
tick_handover_do_timer(void)409 void tick_handover_do_timer(void)
410 {
411 if (tick_do_timer_cpu == smp_processor_id())
412 tick_do_timer_cpu = cpumask_first(cpu_online_mask);
413 }
414
415 /*
416 * Shutdown an event device on a given cpu:
417 *
418 * This is called on a life CPU, when a CPU is dead. So we cannot
419 * access the hardware device itself.
420 * We just set the mode and remove it from the lists.
421 */
tick_shutdown(unsigned int cpu)422 void tick_shutdown(unsigned int cpu)
423 {
424 struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
425 struct clock_event_device *dev = td->evtdev;
426
427 td->mode = TICKDEV_MODE_PERIODIC;
428 if (dev) {
429 /*
430 * Prevent that the clock events layer tries to call
431 * the set mode function!
432 */
433 clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
434 clockevents_exchange_device(dev, NULL);
435 dev->event_handler = clockevents_handle_noop;
436 td->evtdev = NULL;
437 }
438 }
439 #endif
440
441 /**
442 * tick_suspend_local - Suspend the local tick device
443 *
444 * Called from the local cpu for freeze with interrupts disabled.
445 *
446 * No locks required. Nothing can change the per cpu device.
447 */
tick_suspend_local(void)448 void tick_suspend_local(void)
449 {
450 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
451
452 clockevents_shutdown(td->evtdev);
453 }
454
455 /**
456 * tick_resume_local - Resume the local tick device
457 *
458 * Called from the local CPU for unfreeze or XEN resume magic.
459 *
460 * No locks required. Nothing can change the per cpu device.
461 */
tick_resume_local(void)462 void tick_resume_local(void)
463 {
464 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
465 bool broadcast = tick_resume_check_broadcast();
466
467 clockevents_tick_resume(td->evtdev);
468 if (!broadcast) {
469 if (td->mode == TICKDEV_MODE_PERIODIC)
470 tick_setup_periodic(td->evtdev, 0);
471 else
472 tick_resume_oneshot();
473 }
474
475 /*
476 * Ensure that hrtimers are up to date and the clockevents device
477 * is reprogrammed correctly when high resolution timers are
478 * enabled.
479 */
480 hrtimers_resume_local();
481 }
482
483 /**
484 * tick_suspend - Suspend the tick and the broadcast device
485 *
486 * Called from syscore_suspend() via timekeeping_suspend with only one
487 * CPU online and interrupts disabled or from tick_unfreeze() under
488 * tick_freeze_lock.
489 *
490 * No locks required. Nothing can change the per cpu device.
491 */
tick_suspend(void)492 void tick_suspend(void)
493 {
494 tick_suspend_local();
495 tick_suspend_broadcast();
496 }
497
498 /**
499 * tick_resume - Resume the tick and the broadcast device
500 *
501 * Called from syscore_resume() via timekeeping_resume with only one
502 * CPU online and interrupts disabled.
503 *
504 * No locks required. Nothing can change the per cpu device.
505 */
tick_resume(void)506 void tick_resume(void)
507 {
508 tick_resume_broadcast();
509 tick_resume_local();
510 }
511
512 #ifdef CONFIG_SUSPEND
513 static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
514 static unsigned int tick_freeze_depth;
515
516 /**
517 * tick_freeze - Suspend the local tick and (possibly) timekeeping.
518 *
519 * Check if this is the last online CPU executing the function and if so,
520 * suspend timekeeping. Otherwise suspend the local tick.
521 *
522 * Call with interrupts disabled. Must be balanced with %tick_unfreeze().
523 * Interrupts must not be enabled before the subsequent %tick_unfreeze().
524 */
tick_freeze(void)525 void tick_freeze(void)
526 {
527 raw_spin_lock(&tick_freeze_lock);
528
529 tick_freeze_depth++;
530 if (tick_freeze_depth == num_online_cpus()) {
531 trace_suspend_resume(TPS("timekeeping_freeze"),
532 smp_processor_id(), true);
533 system_state = SYSTEM_SUSPEND;
534 sched_clock_suspend();
535 timekeeping_suspend();
536 } else {
537 tick_suspend_local();
538 }
539
540 raw_spin_unlock(&tick_freeze_lock);
541 }
542
543 /**
544 * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
545 *
546 * Check if this is the first CPU executing the function and if so, resume
547 * timekeeping. Otherwise resume the local tick.
548 *
549 * Call with interrupts disabled. Must be balanced with %tick_freeze().
550 * Interrupts must not be enabled after the preceding %tick_freeze().
551 */
tick_unfreeze(void)552 void tick_unfreeze(void)
553 {
554 raw_spin_lock(&tick_freeze_lock);
555
556 if (tick_freeze_depth == num_online_cpus()) {
557 timekeeping_resume();
558 sched_clock_resume();
559 system_state = SYSTEM_RUNNING;
560 trace_suspend_resume(TPS("timekeeping_freeze"),
561 smp_processor_id(), false);
562 } else {
563 touch_softlockup_watchdog();
564 tick_resume_local();
565 }
566
567 tick_freeze_depth--;
568
569 raw_spin_unlock(&tick_freeze_lock);
570 }
571 #endif /* CONFIG_SUSPEND */
572
573 /**
574 * tick_init - initialize the tick control
575 */
tick_init(void)576 void __init tick_init(void)
577 {
578 tick_broadcast_init();
579 tick_nohz_init();
580 }
581