• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains the base functions to manage periodic tick
4  * related events.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  */
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/nmi.h>
15 #include <linux/percpu.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/module.h>
19 #include <trace/events/power.h>
20 #include <trace/hooks/sched.h>
21 
22 #include <asm/irq_regs.h>
23 
24 #include "tick-internal.h"
25 
26 /*
27  * Tick devices
28  */
29 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
30 /*
31  * Tick next event: keeps track of the tick time. It's updated by the
32  * CPU which handles the tick and protected by jiffies_lock. There is
33  * no requirement to write hold the jiffies seqcount for it.
34  */
35 ktime_t tick_next_period;
36 
37 /*
38  * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
39  * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
40  * variable has two functions:
41  *
42  * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
43  *    timekeeping lock all at once. Only the CPU which is assigned to do the
44  *    update is handling it.
45  *
46  * 2) Hand off the duty in the NOHZ idle case by setting the value to
47  *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
48  *    at it will take over and keep the time keeping alive.  The handover
49  *    procedure also covers cpu hotplug.
50  */
51 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
52 #ifdef CONFIG_NO_HZ_FULL
53 /*
54  * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
55  * tick_do_timer_cpu and it should be taken over by an eligible secondary
56  * when one comes online.
57  */
58 static int tick_do_timer_boot_cpu __read_mostly = -1;
59 #endif
60 
61 /*
62  * Debugging: see timer_list.c
63  */
tick_get_device(int cpu)64 struct tick_device *tick_get_device(int cpu)
65 {
66 	return &per_cpu(tick_cpu_device, cpu);
67 }
68 
69 /**
70  * tick_is_oneshot_available - check for a oneshot capable event device
71  */
tick_is_oneshot_available(void)72 int tick_is_oneshot_available(void)
73 {
74 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
75 
76 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
77 		return 0;
78 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
79 		return 1;
80 	return tick_broadcast_oneshot_available();
81 }
82 
83 /*
84  * Periodic tick
85  */
tick_periodic(int cpu)86 static void tick_periodic(int cpu)
87 {
88 	if (tick_do_timer_cpu == cpu) {
89 		raw_spin_lock(&jiffies_lock);
90 		write_seqcount_begin(&jiffies_seq);
91 
92 		/* Keep track of the next tick event */
93 		tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC);
94 
95 		do_timer(1);
96 		write_seqcount_end(&jiffies_seq);
97 		raw_spin_unlock(&jiffies_lock);
98 		update_wall_time();
99 		trace_android_vh_jiffies_update(NULL);
100 	}
101 
102 	update_process_times(user_mode(get_irq_regs()));
103 	profile_tick(CPU_PROFILING);
104 }
105 
106 /*
107  * Event handler for periodic ticks
108  */
tick_handle_periodic(struct clock_event_device * dev)109 void tick_handle_periodic(struct clock_event_device *dev)
110 {
111 	int cpu = smp_processor_id();
112 	ktime_t next = dev->next_event;
113 
114 	tick_periodic(cpu);
115 
116 #if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
117 	/*
118 	 * The cpu might have transitioned to HIGHRES or NOHZ mode via
119 	 * update_process_times() -> run_local_timers() ->
120 	 * hrtimer_run_queues().
121 	 */
122 	if (dev->event_handler != tick_handle_periodic)
123 		return;
124 #endif
125 
126 	if (!clockevent_state_oneshot(dev))
127 		return;
128 	for (;;) {
129 		/*
130 		 * Setup the next period for devices, which do not have
131 		 * periodic mode:
132 		 */
133 		next = ktime_add_ns(next, TICK_NSEC);
134 
135 		if (!clockevents_program_event(dev, next, false))
136 			return;
137 		/*
138 		 * Have to be careful here. If we're in oneshot mode,
139 		 * before we call tick_periodic() in a loop, we need
140 		 * to be sure we're using a real hardware clocksource.
141 		 * Otherwise we could get trapped in an infinite
142 		 * loop, as the tick_periodic() increments jiffies,
143 		 * which then will increment time, possibly causing
144 		 * the loop to trigger again and again.
145 		 */
146 		if (timekeeping_valid_for_hres())
147 			tick_periodic(cpu);
148 	}
149 }
150 
151 /*
152  * Setup the device for a periodic tick
153  */
tick_setup_periodic(struct clock_event_device * dev,int broadcast)154 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
155 {
156 	tick_set_periodic_handler(dev, broadcast);
157 
158 	/* Broadcast setup ? */
159 	if (!tick_device_is_functional(dev))
160 		return;
161 
162 	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
163 	    !tick_broadcast_oneshot_active()) {
164 		clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
165 	} else {
166 		unsigned int seq;
167 		ktime_t next;
168 
169 		do {
170 			seq = read_seqcount_begin(&jiffies_seq);
171 			next = tick_next_period;
172 		} while (read_seqcount_retry(&jiffies_seq, seq));
173 
174 		clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
175 
176 		for (;;) {
177 			if (!clockevents_program_event(dev, next, false))
178 				return;
179 			next = ktime_add_ns(next, TICK_NSEC);
180 		}
181 	}
182 }
183 
184 #ifdef CONFIG_NO_HZ_FULL
giveup_do_timer(void * info)185 static void giveup_do_timer(void *info)
186 {
187 	int cpu = *(unsigned int *)info;
188 
189 	WARN_ON(tick_do_timer_cpu != smp_processor_id());
190 
191 	tick_do_timer_cpu = cpu;
192 }
193 
tick_take_do_timer_from_boot(void)194 static void tick_take_do_timer_from_boot(void)
195 {
196 	int cpu = smp_processor_id();
197 	int from = tick_do_timer_boot_cpu;
198 
199 	if (from >= 0 && from != cpu)
200 		smp_call_function_single(from, giveup_do_timer, &cpu, 1);
201 }
202 #endif
203 
204 /*
205  * Setup the tick device
206  */
tick_setup_device(struct tick_device * td,struct clock_event_device * newdev,int cpu,const struct cpumask * cpumask)207 static void tick_setup_device(struct tick_device *td,
208 			      struct clock_event_device *newdev, int cpu,
209 			      const struct cpumask *cpumask)
210 {
211 	void (*handler)(struct clock_event_device *) = NULL;
212 	ktime_t next_event = 0;
213 
214 	/*
215 	 * First device setup ?
216 	 */
217 	if (!td->evtdev) {
218 		/*
219 		 * If no cpu took the do_timer update, assign it to
220 		 * this cpu:
221 		 */
222 		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
223 			tick_do_timer_cpu = cpu;
224 			tick_next_period = ktime_get();
225 #ifdef CONFIG_NO_HZ_FULL
226 			/*
227 			 * The boot CPU may be nohz_full, in which case set
228 			 * tick_do_timer_boot_cpu so the first housekeeping
229 			 * secondary that comes up will take do_timer from
230 			 * us.
231 			 */
232 			if (tick_nohz_full_cpu(cpu))
233 				tick_do_timer_boot_cpu = cpu;
234 
235 		} else if (tick_do_timer_boot_cpu != -1 &&
236 						!tick_nohz_full_cpu(cpu)) {
237 			tick_take_do_timer_from_boot();
238 			tick_do_timer_boot_cpu = -1;
239 			WARN_ON(tick_do_timer_cpu != cpu);
240 #endif
241 		}
242 
243 		/*
244 		 * Startup in periodic mode first.
245 		 */
246 		td->mode = TICKDEV_MODE_PERIODIC;
247 	} else {
248 		handler = td->evtdev->event_handler;
249 		next_event = td->evtdev->next_event;
250 		td->evtdev->event_handler = clockevents_handle_noop;
251 	}
252 
253 	td->evtdev = newdev;
254 
255 	/*
256 	 * When the device is not per cpu, pin the interrupt to the
257 	 * current cpu:
258 	 */
259 	if (!cpumask_equal(newdev->cpumask, cpumask))
260 		irq_set_affinity(newdev->irq, cpumask);
261 
262 	/*
263 	 * When global broadcasting is active, check if the current
264 	 * device is registered as a placeholder for broadcast mode.
265 	 * This allows us to handle this x86 misfeature in a generic
266 	 * way. This function also returns !=0 when we keep the
267 	 * current active broadcast state for this CPU.
268 	 */
269 	if (tick_device_uses_broadcast(newdev, cpu))
270 		return;
271 
272 	if (td->mode == TICKDEV_MODE_PERIODIC)
273 		tick_setup_periodic(newdev, 0);
274 	else
275 		tick_setup_oneshot(newdev, handler, next_event);
276 }
277 
tick_install_replacement(struct clock_event_device * newdev)278 void tick_install_replacement(struct clock_event_device *newdev)
279 {
280 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
281 	int cpu = smp_processor_id();
282 
283 	clockevents_exchange_device(td->evtdev, newdev);
284 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
285 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
286 		tick_oneshot_notify();
287 }
288 
tick_check_percpu(struct clock_event_device * curdev,struct clock_event_device * newdev,int cpu)289 static bool tick_check_percpu(struct clock_event_device *curdev,
290 			      struct clock_event_device *newdev, int cpu)
291 {
292 	if (!cpumask_test_cpu(cpu, newdev->cpumask))
293 		return false;
294 	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
295 		return true;
296 	/* Check if irq affinity can be set */
297 	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
298 		return false;
299 	/* Prefer an existing cpu local device */
300 	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
301 		return false;
302 	return true;
303 }
304 
tick_check_preferred(struct clock_event_device * curdev,struct clock_event_device * newdev)305 static bool tick_check_preferred(struct clock_event_device *curdev,
306 				 struct clock_event_device *newdev)
307 {
308 	/* Prefer oneshot capable device */
309 	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
310 		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
311 			return false;
312 		if (tick_oneshot_mode_active())
313 			return false;
314 	}
315 
316 	/*
317 	 * Use the higher rated one, but prefer a CPU local device with a lower
318 	 * rating than a non-CPU local device
319 	 */
320 	return !curdev ||
321 		newdev->rating > curdev->rating ||
322 	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
323 }
324 
325 /*
326  * Check whether the new device is a better fit than curdev. curdev
327  * can be NULL !
328  */
tick_check_replacement(struct clock_event_device * curdev,struct clock_event_device * newdev)329 bool tick_check_replacement(struct clock_event_device *curdev,
330 			    struct clock_event_device *newdev)
331 {
332 	if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
333 		return false;
334 
335 	return tick_check_preferred(curdev, newdev);
336 }
337 
338 /*
339  * Check, if the new registered device should be used. Called with
340  * clockevents_lock held and interrupts disabled.
341  */
tick_check_new_device(struct clock_event_device * newdev)342 void tick_check_new_device(struct clock_event_device *newdev)
343 {
344 	struct clock_event_device *curdev;
345 	struct tick_device *td;
346 	int cpu;
347 
348 	cpu = smp_processor_id();
349 	td = &per_cpu(tick_cpu_device, cpu);
350 	curdev = td->evtdev;
351 
352 	if (!tick_check_replacement(curdev, newdev))
353 		goto out_bc;
354 
355 	if (!try_module_get(newdev->owner))
356 		return;
357 
358 	/*
359 	 * Replace the eventually existing device by the new
360 	 * device. If the current device is the broadcast device, do
361 	 * not give it back to the clockevents layer !
362 	 */
363 	if (tick_is_broadcast_device(curdev)) {
364 		clockevents_shutdown(curdev);
365 		curdev = NULL;
366 	}
367 	clockevents_exchange_device(curdev, newdev);
368 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
369 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
370 		tick_oneshot_notify();
371 	return;
372 
373 out_bc:
374 	/*
375 	 * Can the new device be used as a broadcast device ?
376 	 */
377 	tick_install_broadcast_device(newdev, cpu);
378 }
379 
380 /**
381  * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
382  * @state:	The target state (enter/exit)
383  *
384  * The system enters/leaves a state, where affected devices might stop
385  * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
386  *
387  * Called with interrupts disabled, so clockevents_lock is not
388  * required here because the local clock event device cannot go away
389  * under us.
390  */
tick_broadcast_oneshot_control(enum tick_broadcast_state state)391 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
392 {
393 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
394 
395 	if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
396 		return 0;
397 
398 	return __tick_broadcast_oneshot_control(state);
399 }
400 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
401 
402 #ifdef CONFIG_HOTPLUG_CPU
403 /*
404  * Transfer the do_timer job away from a dying cpu.
405  *
406  * Called with interrupts disabled. No locking required. If
407  * tick_do_timer_cpu is owned by this cpu, nothing can change it.
408  */
tick_handover_do_timer(void)409 void tick_handover_do_timer(void)
410 {
411 	if (tick_do_timer_cpu == smp_processor_id())
412 		tick_do_timer_cpu = cpumask_first(cpu_online_mask);
413 }
414 
415 /*
416  * Shutdown an event device on a given cpu:
417  *
418  * This is called on a life CPU, when a CPU is dead. So we cannot
419  * access the hardware device itself.
420  * We just set the mode and remove it from the lists.
421  */
tick_shutdown(unsigned int cpu)422 void tick_shutdown(unsigned int cpu)
423 {
424 	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
425 	struct clock_event_device *dev = td->evtdev;
426 
427 	td->mode = TICKDEV_MODE_PERIODIC;
428 	if (dev) {
429 		/*
430 		 * Prevent that the clock events layer tries to call
431 		 * the set mode function!
432 		 */
433 		clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
434 		clockevents_exchange_device(dev, NULL);
435 		dev->event_handler = clockevents_handle_noop;
436 		td->evtdev = NULL;
437 	}
438 }
439 #endif
440 
441 /**
442  * tick_suspend_local - Suspend the local tick device
443  *
444  * Called from the local cpu for freeze with interrupts disabled.
445  *
446  * No locks required. Nothing can change the per cpu device.
447  */
tick_suspend_local(void)448 void tick_suspend_local(void)
449 {
450 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
451 
452 	clockevents_shutdown(td->evtdev);
453 }
454 
455 /**
456  * tick_resume_local - Resume the local tick device
457  *
458  * Called from the local CPU for unfreeze or XEN resume magic.
459  *
460  * No locks required. Nothing can change the per cpu device.
461  */
tick_resume_local(void)462 void tick_resume_local(void)
463 {
464 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
465 	bool broadcast = tick_resume_check_broadcast();
466 
467 	clockevents_tick_resume(td->evtdev);
468 	if (!broadcast) {
469 		if (td->mode == TICKDEV_MODE_PERIODIC)
470 			tick_setup_periodic(td->evtdev, 0);
471 		else
472 			tick_resume_oneshot();
473 	}
474 
475 	/*
476 	 * Ensure that hrtimers are up to date and the clockevents device
477 	 * is reprogrammed correctly when high resolution timers are
478 	 * enabled.
479 	 */
480 	hrtimers_resume_local();
481 }
482 
483 /**
484  * tick_suspend - Suspend the tick and the broadcast device
485  *
486  * Called from syscore_suspend() via timekeeping_suspend with only one
487  * CPU online and interrupts disabled or from tick_unfreeze() under
488  * tick_freeze_lock.
489  *
490  * No locks required. Nothing can change the per cpu device.
491  */
tick_suspend(void)492 void tick_suspend(void)
493 {
494 	tick_suspend_local();
495 	tick_suspend_broadcast();
496 }
497 
498 /**
499  * tick_resume - Resume the tick and the broadcast device
500  *
501  * Called from syscore_resume() via timekeeping_resume with only one
502  * CPU online and interrupts disabled.
503  *
504  * No locks required. Nothing can change the per cpu device.
505  */
tick_resume(void)506 void tick_resume(void)
507 {
508 	tick_resume_broadcast();
509 	tick_resume_local();
510 }
511 
512 #ifdef CONFIG_SUSPEND
513 static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
514 static unsigned int tick_freeze_depth;
515 
516 /**
517  * tick_freeze - Suspend the local tick and (possibly) timekeeping.
518  *
519  * Check if this is the last online CPU executing the function and if so,
520  * suspend timekeeping.  Otherwise suspend the local tick.
521  *
522  * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
523  * Interrupts must not be enabled before the subsequent %tick_unfreeze().
524  */
tick_freeze(void)525 void tick_freeze(void)
526 {
527 	raw_spin_lock(&tick_freeze_lock);
528 
529 	tick_freeze_depth++;
530 	if (tick_freeze_depth == num_online_cpus()) {
531 		trace_suspend_resume(TPS("timekeeping_freeze"),
532 				     smp_processor_id(), true);
533 		system_state = SYSTEM_SUSPEND;
534 		sched_clock_suspend();
535 		timekeeping_suspend();
536 	} else {
537 		tick_suspend_local();
538 	}
539 
540 	raw_spin_unlock(&tick_freeze_lock);
541 }
542 
543 /**
544  * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
545  *
546  * Check if this is the first CPU executing the function and if so, resume
547  * timekeeping.  Otherwise resume the local tick.
548  *
549  * Call with interrupts disabled.  Must be balanced with %tick_freeze().
550  * Interrupts must not be enabled after the preceding %tick_freeze().
551  */
tick_unfreeze(void)552 void tick_unfreeze(void)
553 {
554 	raw_spin_lock(&tick_freeze_lock);
555 
556 	if (tick_freeze_depth == num_online_cpus()) {
557 		timekeeping_resume();
558 		sched_clock_resume();
559 		system_state = SYSTEM_RUNNING;
560 		trace_suspend_resume(TPS("timekeeping_freeze"),
561 				     smp_processor_id(), false);
562 	} else {
563 		touch_softlockup_watchdog();
564 		tick_resume_local();
565 	}
566 
567 	tick_freeze_depth--;
568 
569 	raw_spin_unlock(&tick_freeze_lock);
570 }
571 #endif /* CONFIG_SUSPEND */
572 
573 /**
574  * tick_init - initialize the tick control
575  */
tick_init(void)576 void __init tick_init(void)
577 {
578 	tick_broadcast_init();
579 	tick_nohz_init();
580 }
581