• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements most of the debugging stuff which is compiled in only
13  * when it is enabled. But some debugging check functions are implemented in
14  * corresponding subsystem, just because they are closely related and utilize
15  * various local functions of those subsystems.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/debugfs.h>
20 #include <linux/math64.h>
21 #include <linux/uaccess.h>
22 #include <linux/random.h>
23 #include <linux/ctype.h>
24 #include "ubifs.h"
25 
26 static DEFINE_SPINLOCK(dbg_lock);
27 
get_key_fmt(int fmt)28 static const char *get_key_fmt(int fmt)
29 {
30 	switch (fmt) {
31 	case UBIFS_SIMPLE_KEY_FMT:
32 		return "simple";
33 	default:
34 		return "unknown/invalid format";
35 	}
36 }
37 
get_key_hash(int hash)38 static const char *get_key_hash(int hash)
39 {
40 	switch (hash) {
41 	case UBIFS_KEY_HASH_R5:
42 		return "R5";
43 	case UBIFS_KEY_HASH_TEST:
44 		return "test";
45 	default:
46 		return "unknown/invalid name hash";
47 	}
48 }
49 
get_key_type(int type)50 static const char *get_key_type(int type)
51 {
52 	switch (type) {
53 	case UBIFS_INO_KEY:
54 		return "inode";
55 	case UBIFS_DENT_KEY:
56 		return "direntry";
57 	case UBIFS_XENT_KEY:
58 		return "xentry";
59 	case UBIFS_DATA_KEY:
60 		return "data";
61 	case UBIFS_TRUN_KEY:
62 		return "truncate";
63 	default:
64 		return "unknown/invalid key";
65 	}
66 }
67 
get_dent_type(int type)68 static const char *get_dent_type(int type)
69 {
70 	switch (type) {
71 	case UBIFS_ITYPE_REG:
72 		return "file";
73 	case UBIFS_ITYPE_DIR:
74 		return "dir";
75 	case UBIFS_ITYPE_LNK:
76 		return "symlink";
77 	case UBIFS_ITYPE_BLK:
78 		return "blkdev";
79 	case UBIFS_ITYPE_CHR:
80 		return "char dev";
81 	case UBIFS_ITYPE_FIFO:
82 		return "fifo";
83 	case UBIFS_ITYPE_SOCK:
84 		return "socket";
85 	default:
86 		return "unknown/invalid type";
87 	}
88 }
89 
dbg_snprintf_key(const struct ubifs_info * c,const union ubifs_key * key,char * buffer,int len)90 const char *dbg_snprintf_key(const struct ubifs_info *c,
91 			     const union ubifs_key *key, char *buffer, int len)
92 {
93 	char *p = buffer;
94 	int type = key_type(c, key);
95 
96 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
97 		switch (type) {
98 		case UBIFS_INO_KEY:
99 			len -= snprintf(p, len, "(%lu, %s)",
100 					(unsigned long)key_inum(c, key),
101 					get_key_type(type));
102 			break;
103 		case UBIFS_DENT_KEY:
104 		case UBIFS_XENT_KEY:
105 			len -= snprintf(p, len, "(%lu, %s, %#08x)",
106 					(unsigned long)key_inum(c, key),
107 					get_key_type(type), key_hash(c, key));
108 			break;
109 		case UBIFS_DATA_KEY:
110 			len -= snprintf(p, len, "(%lu, %s, %u)",
111 					(unsigned long)key_inum(c, key),
112 					get_key_type(type), key_block(c, key));
113 			break;
114 		case UBIFS_TRUN_KEY:
115 			len -= snprintf(p, len, "(%lu, %s)",
116 					(unsigned long)key_inum(c, key),
117 					get_key_type(type));
118 			break;
119 		default:
120 			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
121 					key->u32[0], key->u32[1]);
122 		}
123 	} else
124 		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
125 	ubifs_assert(c, len > 0);
126 	return p;
127 }
128 
dbg_ntype(int type)129 const char *dbg_ntype(int type)
130 {
131 	switch (type) {
132 	case UBIFS_PAD_NODE:
133 		return "padding node";
134 	case UBIFS_SB_NODE:
135 		return "superblock node";
136 	case UBIFS_MST_NODE:
137 		return "master node";
138 	case UBIFS_REF_NODE:
139 		return "reference node";
140 	case UBIFS_INO_NODE:
141 		return "inode node";
142 	case UBIFS_DENT_NODE:
143 		return "direntry node";
144 	case UBIFS_XENT_NODE:
145 		return "xentry node";
146 	case UBIFS_DATA_NODE:
147 		return "data node";
148 	case UBIFS_TRUN_NODE:
149 		return "truncate node";
150 	case UBIFS_IDX_NODE:
151 		return "indexing node";
152 	case UBIFS_CS_NODE:
153 		return "commit start node";
154 	case UBIFS_ORPH_NODE:
155 		return "orphan node";
156 	case UBIFS_AUTH_NODE:
157 		return "auth node";
158 	default:
159 		return "unknown node";
160 	}
161 }
162 
dbg_gtype(int type)163 static const char *dbg_gtype(int type)
164 {
165 	switch (type) {
166 	case UBIFS_NO_NODE_GROUP:
167 		return "no node group";
168 	case UBIFS_IN_NODE_GROUP:
169 		return "in node group";
170 	case UBIFS_LAST_OF_NODE_GROUP:
171 		return "last of node group";
172 	default:
173 		return "unknown";
174 	}
175 }
176 
dbg_cstate(int cmt_state)177 const char *dbg_cstate(int cmt_state)
178 {
179 	switch (cmt_state) {
180 	case COMMIT_RESTING:
181 		return "commit resting";
182 	case COMMIT_BACKGROUND:
183 		return "background commit requested";
184 	case COMMIT_REQUIRED:
185 		return "commit required";
186 	case COMMIT_RUNNING_BACKGROUND:
187 		return "BACKGROUND commit running";
188 	case COMMIT_RUNNING_REQUIRED:
189 		return "commit running and required";
190 	case COMMIT_BROKEN:
191 		return "broken commit";
192 	default:
193 		return "unknown commit state";
194 	}
195 }
196 
dbg_jhead(int jhead)197 const char *dbg_jhead(int jhead)
198 {
199 	switch (jhead) {
200 	case GCHD:
201 		return "0 (GC)";
202 	case BASEHD:
203 		return "1 (base)";
204 	case DATAHD:
205 		return "2 (data)";
206 	default:
207 		return "unknown journal head";
208 	}
209 }
210 
dump_ch(const struct ubifs_ch * ch)211 static void dump_ch(const struct ubifs_ch *ch)
212 {
213 	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
214 	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
215 	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
216 	       dbg_ntype(ch->node_type));
217 	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
218 	       dbg_gtype(ch->group_type));
219 	pr_err("\tsqnum          %llu\n",
220 	       (unsigned long long)le64_to_cpu(ch->sqnum));
221 	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
222 }
223 
ubifs_dump_inode(struct ubifs_info * c,const struct inode * inode)224 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
225 {
226 	const struct ubifs_inode *ui = ubifs_inode(inode);
227 	struct fscrypt_name nm = {0};
228 	union ubifs_key key;
229 	struct ubifs_dent_node *dent, *pdent = NULL;
230 	int count = 2;
231 
232 	pr_err("Dump in-memory inode:");
233 	pr_err("\tinode          %lu\n", inode->i_ino);
234 	pr_err("\tsize           %llu\n",
235 	       (unsigned long long)i_size_read(inode));
236 	pr_err("\tnlink          %u\n", inode->i_nlink);
237 	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
238 	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
239 	pr_err("\tatime          %u.%u\n",
240 	       (unsigned int)inode->i_atime.tv_sec,
241 	       (unsigned int)inode->i_atime.tv_nsec);
242 	pr_err("\tmtime          %u.%u\n",
243 	       (unsigned int)inode->i_mtime.tv_sec,
244 	       (unsigned int)inode->i_mtime.tv_nsec);
245 	pr_err("\tctime          %u.%u\n",
246 	       (unsigned int)inode->i_ctime.tv_sec,
247 	       (unsigned int)inode->i_ctime.tv_nsec);
248 	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
249 	pr_err("\txattr_size     %u\n", ui->xattr_size);
250 	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
251 	pr_err("\txattr_names    %u\n", ui->xattr_names);
252 	pr_err("\tdirty          %u\n", ui->dirty);
253 	pr_err("\txattr          %u\n", ui->xattr);
254 	pr_err("\tbulk_read      %u\n", ui->bulk_read);
255 	pr_err("\tsynced_i_size  %llu\n",
256 	       (unsigned long long)ui->synced_i_size);
257 	pr_err("\tui_size        %llu\n",
258 	       (unsigned long long)ui->ui_size);
259 	pr_err("\tflags          %d\n", ui->flags);
260 	pr_err("\tcompr_type     %d\n", ui->compr_type);
261 	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
262 	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
263 	pr_err("\tdata_len       %d\n", ui->data_len);
264 
265 	if (!S_ISDIR(inode->i_mode))
266 		return;
267 
268 	pr_err("List of directory entries:\n");
269 	ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
270 
271 	lowest_dent_key(c, &key, inode->i_ino);
272 	while (1) {
273 		dent = ubifs_tnc_next_ent(c, &key, &nm);
274 		if (IS_ERR(dent)) {
275 			if (PTR_ERR(dent) != -ENOENT)
276 				pr_err("error %ld\n", PTR_ERR(dent));
277 			break;
278 		}
279 
280 		pr_err("\t%d: inode %llu, type %s, len %d\n",
281 		       count++, (unsigned long long) le64_to_cpu(dent->inum),
282 		       get_dent_type(dent->type),
283 		       le16_to_cpu(dent->nlen));
284 
285 		fname_name(&nm) = dent->name;
286 		fname_len(&nm) = le16_to_cpu(dent->nlen);
287 		kfree(pdent);
288 		pdent = dent;
289 		key_read(c, &dent->key, &key);
290 	}
291 	kfree(pdent);
292 }
293 
ubifs_dump_node(const struct ubifs_info * c,const void * node,int node_len)294 void ubifs_dump_node(const struct ubifs_info *c, const void *node, int node_len)
295 {
296 	int i, n, type, safe_len, max_node_len, min_node_len;
297 	union ubifs_key key;
298 	const struct ubifs_ch *ch = node;
299 	char key_buf[DBG_KEY_BUF_LEN];
300 
301 	/* If the magic is incorrect, just hexdump the first bytes */
302 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
303 		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
304 		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
305 			       (void *)node, UBIFS_CH_SZ, 1);
306 		return;
307 	}
308 
309 	/* Skip dumping unknown type node */
310 	type = ch->node_type;
311 	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
312 		pr_err("node type %d was not recognized\n", type);
313 		return;
314 	}
315 
316 	spin_lock(&dbg_lock);
317 	dump_ch(node);
318 
319 	if (c->ranges[type].max_len == 0) {
320 		max_node_len = min_node_len = c->ranges[type].len;
321 	} else {
322 		max_node_len = c->ranges[type].max_len;
323 		min_node_len = c->ranges[type].min_len;
324 	}
325 	safe_len = le32_to_cpu(ch->len);
326 	safe_len = safe_len > 0 ? safe_len : 0;
327 	safe_len = min3(safe_len, max_node_len, node_len);
328 	if (safe_len < min_node_len) {
329 		pr_err("node len(%d) is too short for %s, left %d bytes:\n",
330 		       safe_len, dbg_ntype(type),
331 		       safe_len > UBIFS_CH_SZ ?
332 		       safe_len - (int)UBIFS_CH_SZ : 0);
333 		if (safe_len > UBIFS_CH_SZ)
334 			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
335 				       (void *)node + UBIFS_CH_SZ,
336 				       safe_len - UBIFS_CH_SZ, 0);
337 		goto out_unlock;
338 	}
339 	if (safe_len != le32_to_cpu(ch->len))
340 		pr_err("\ttruncated node length      %d\n", safe_len);
341 
342 	switch (type) {
343 	case UBIFS_PAD_NODE:
344 	{
345 		const struct ubifs_pad_node *pad = node;
346 
347 		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
348 		break;
349 	}
350 	case UBIFS_SB_NODE:
351 	{
352 		const struct ubifs_sb_node *sup = node;
353 		unsigned int sup_flags = le32_to_cpu(sup->flags);
354 
355 		pr_err("\tkey_hash       %d (%s)\n",
356 		       (int)sup->key_hash, get_key_hash(sup->key_hash));
357 		pr_err("\tkey_fmt        %d (%s)\n",
358 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
359 		pr_err("\tflags          %#x\n", sup_flags);
360 		pr_err("\tbig_lpt        %u\n",
361 		       !!(sup_flags & UBIFS_FLG_BIGLPT));
362 		pr_err("\tspace_fixup    %u\n",
363 		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
364 		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
365 		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
366 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
367 		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
368 		pr_err("\tmax_bud_bytes  %llu\n",
369 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
370 		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
371 		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
372 		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
373 		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
374 		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
375 		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
376 		pr_err("\tdefault_compr  %u\n",
377 		       (int)le16_to_cpu(sup->default_compr));
378 		pr_err("\trp_size        %llu\n",
379 		       (unsigned long long)le64_to_cpu(sup->rp_size));
380 		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
381 		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
382 		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
383 		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
384 		pr_err("\tUUID           %pUB\n", sup->uuid);
385 		break;
386 	}
387 	case UBIFS_MST_NODE:
388 	{
389 		const struct ubifs_mst_node *mst = node;
390 
391 		pr_err("\thighest_inum   %llu\n",
392 		       (unsigned long long)le64_to_cpu(mst->highest_inum));
393 		pr_err("\tcommit number  %llu\n",
394 		       (unsigned long long)le64_to_cpu(mst->cmt_no));
395 		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
396 		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
397 		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
398 		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
399 		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
400 		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
401 		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
402 		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
403 		pr_err("\tindex_size     %llu\n",
404 		       (unsigned long long)le64_to_cpu(mst->index_size));
405 		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
406 		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
407 		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
408 		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
409 		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
410 		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
411 		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
412 		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
413 		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
414 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
415 		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
416 		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
417 		pr_err("\ttotal_free     %llu\n",
418 		       (unsigned long long)le64_to_cpu(mst->total_free));
419 		pr_err("\ttotal_dirty    %llu\n",
420 		       (unsigned long long)le64_to_cpu(mst->total_dirty));
421 		pr_err("\ttotal_used     %llu\n",
422 		       (unsigned long long)le64_to_cpu(mst->total_used));
423 		pr_err("\ttotal_dead     %llu\n",
424 		       (unsigned long long)le64_to_cpu(mst->total_dead));
425 		pr_err("\ttotal_dark     %llu\n",
426 		       (unsigned long long)le64_to_cpu(mst->total_dark));
427 		break;
428 	}
429 	case UBIFS_REF_NODE:
430 	{
431 		const struct ubifs_ref_node *ref = node;
432 
433 		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
434 		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
435 		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
436 		break;
437 	}
438 	case UBIFS_INO_NODE:
439 	{
440 		const struct ubifs_ino_node *ino = node;
441 
442 		key_read(c, &ino->key, &key);
443 		pr_err("\tkey            %s\n",
444 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
445 		pr_err("\tcreat_sqnum    %llu\n",
446 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
447 		pr_err("\tsize           %llu\n",
448 		       (unsigned long long)le64_to_cpu(ino->size));
449 		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
450 		pr_err("\tatime          %lld.%u\n",
451 		       (long long)le64_to_cpu(ino->atime_sec),
452 		       le32_to_cpu(ino->atime_nsec));
453 		pr_err("\tmtime          %lld.%u\n",
454 		       (long long)le64_to_cpu(ino->mtime_sec),
455 		       le32_to_cpu(ino->mtime_nsec));
456 		pr_err("\tctime          %lld.%u\n",
457 		       (long long)le64_to_cpu(ino->ctime_sec),
458 		       le32_to_cpu(ino->ctime_nsec));
459 		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
460 		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
461 		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
462 		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
463 		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
464 		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
465 		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
466 		pr_err("\tcompr_type     %#x\n",
467 		       (int)le16_to_cpu(ino->compr_type));
468 		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
469 		break;
470 	}
471 	case UBIFS_DENT_NODE:
472 	case UBIFS_XENT_NODE:
473 	{
474 		const struct ubifs_dent_node *dent = node;
475 		int nlen = le16_to_cpu(dent->nlen);
476 
477 		key_read(c, &dent->key, &key);
478 		pr_err("\tkey            %s\n",
479 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
480 		pr_err("\tinum           %llu\n",
481 		       (unsigned long long)le64_to_cpu(dent->inum));
482 		pr_err("\ttype           %d\n", (int)dent->type);
483 		pr_err("\tnlen           %d\n", nlen);
484 		pr_err("\tname           ");
485 
486 		if (nlen > UBIFS_MAX_NLEN ||
487 		    nlen > safe_len - UBIFS_DENT_NODE_SZ)
488 			pr_err("(bad name length, not printing, bad or corrupted node)");
489 		else {
490 			for (i = 0; i < nlen && dent->name[i]; i++)
491 				pr_cont("%c", isprint(dent->name[i]) ?
492 					dent->name[i] : '?');
493 		}
494 		pr_cont("\n");
495 
496 		break;
497 	}
498 	case UBIFS_DATA_NODE:
499 	{
500 		const struct ubifs_data_node *dn = node;
501 
502 		key_read(c, &dn->key, &key);
503 		pr_err("\tkey            %s\n",
504 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
505 		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
506 		pr_err("\tcompr_typ      %d\n",
507 		       (int)le16_to_cpu(dn->compr_type));
508 		pr_err("\tdata size      %u\n",
509 		       le32_to_cpu(ch->len) - (unsigned int)UBIFS_DATA_NODE_SZ);
510 		pr_err("\tdata (length = %d):\n",
511 		       safe_len - (int)UBIFS_DATA_NODE_SZ);
512 		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
513 			       (void *)&dn->data,
514 			       safe_len - (int)UBIFS_DATA_NODE_SZ, 0);
515 		break;
516 	}
517 	case UBIFS_TRUN_NODE:
518 	{
519 		const struct ubifs_trun_node *trun = node;
520 
521 		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
522 		pr_err("\told_size       %llu\n",
523 		       (unsigned long long)le64_to_cpu(trun->old_size));
524 		pr_err("\tnew_size       %llu\n",
525 		       (unsigned long long)le64_to_cpu(trun->new_size));
526 		break;
527 	}
528 	case UBIFS_IDX_NODE:
529 	{
530 		const struct ubifs_idx_node *idx = node;
531 		int max_child_cnt = (safe_len - UBIFS_IDX_NODE_SZ) /
532 				    (ubifs_idx_node_sz(c, 1) -
533 				    UBIFS_IDX_NODE_SZ);
534 
535 		n = min_t(int, le16_to_cpu(idx->child_cnt), max_child_cnt);
536 		pr_err("\tchild_cnt      %d\n", (int)le16_to_cpu(idx->child_cnt));
537 		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
538 		pr_err("\tBranches:\n");
539 
540 		for (i = 0; i < n && i < c->fanout; i++) {
541 			const struct ubifs_branch *br;
542 
543 			br = ubifs_idx_branch(c, idx, i);
544 			key_read(c, &br->key, &key);
545 			pr_err("\t%d: LEB %d:%d len %d key %s\n",
546 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
547 			       le32_to_cpu(br->len),
548 			       dbg_snprintf_key(c, &key, key_buf,
549 						DBG_KEY_BUF_LEN));
550 		}
551 		break;
552 	}
553 	case UBIFS_CS_NODE:
554 		break;
555 	case UBIFS_ORPH_NODE:
556 	{
557 		const struct ubifs_orph_node *orph = node;
558 
559 		pr_err("\tcommit number  %llu\n",
560 		       (unsigned long long)
561 				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
562 		pr_err("\tlast node flag %llu\n",
563 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
564 		n = (safe_len - UBIFS_ORPH_NODE_SZ) >> 3;
565 		pr_err("\t%d orphan inode numbers:\n", n);
566 		for (i = 0; i < n; i++)
567 			pr_err("\t  ino %llu\n",
568 			       (unsigned long long)le64_to_cpu(orph->inos[i]));
569 		break;
570 	}
571 	case UBIFS_AUTH_NODE:
572 	{
573 		break;
574 	}
575 	default:
576 		pr_err("node type %d was not recognized\n", type);
577 	}
578 
579 out_unlock:
580 	spin_unlock(&dbg_lock);
581 }
582 
ubifs_dump_budget_req(const struct ubifs_budget_req * req)583 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
584 {
585 	spin_lock(&dbg_lock);
586 	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
587 	       req->new_ino, req->dirtied_ino);
588 	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
589 	       req->new_ino_d, req->dirtied_ino_d);
590 	pr_err("\tnew_page    %d, dirtied_page %d\n",
591 	       req->new_page, req->dirtied_page);
592 	pr_err("\tnew_dent    %d, mod_dent     %d\n",
593 	       req->new_dent, req->mod_dent);
594 	pr_err("\tidx_growth  %d\n", req->idx_growth);
595 	pr_err("\tdata_growth %d dd_growth     %d\n",
596 	       req->data_growth, req->dd_growth);
597 	spin_unlock(&dbg_lock);
598 }
599 
ubifs_dump_lstats(const struct ubifs_lp_stats * lst)600 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
601 {
602 	spin_lock(&dbg_lock);
603 	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
604 	       current->pid, lst->empty_lebs, lst->idx_lebs);
605 	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
606 	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
607 	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
608 	       lst->total_used, lst->total_dark, lst->total_dead);
609 	spin_unlock(&dbg_lock);
610 }
611 
ubifs_dump_budg(struct ubifs_info * c,const struct ubifs_budg_info * bi)612 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
613 {
614 	int i;
615 	struct rb_node *rb;
616 	struct ubifs_bud *bud;
617 	struct ubifs_gced_idx_leb *idx_gc;
618 	long long available, outstanding, free;
619 
620 	spin_lock(&c->space_lock);
621 	spin_lock(&dbg_lock);
622 	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
623 	       current->pid, bi->data_growth + bi->dd_growth,
624 	       bi->data_growth + bi->dd_growth + bi->idx_growth);
625 	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
626 	       bi->data_growth, bi->dd_growth, bi->idx_growth);
627 	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
628 	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
629 	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
630 	       bi->page_budget, bi->inode_budget, bi->dent_budget);
631 	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
632 	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
633 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
634 
635 	if (bi != &c->bi)
636 		/*
637 		 * If we are dumping saved budgeting data, do not print
638 		 * additional information which is about the current state, not
639 		 * the old one which corresponded to the saved budgeting data.
640 		 */
641 		goto out_unlock;
642 
643 	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
644 	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
645 	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
646 	       atomic_long_read(&c->dirty_pg_cnt),
647 	       atomic_long_read(&c->dirty_zn_cnt),
648 	       atomic_long_read(&c->clean_zn_cnt));
649 	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
650 
651 	/* If we are in R/O mode, journal heads do not exist */
652 	if (c->jheads)
653 		for (i = 0; i < c->jhead_cnt; i++)
654 			pr_err("\tjhead %s\t LEB %d\n",
655 			       dbg_jhead(c->jheads[i].wbuf.jhead),
656 			       c->jheads[i].wbuf.lnum);
657 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
658 		bud = rb_entry(rb, struct ubifs_bud, rb);
659 		pr_err("\tbud LEB %d\n", bud->lnum);
660 	}
661 	list_for_each_entry(bud, &c->old_buds, list)
662 		pr_err("\told bud LEB %d\n", bud->lnum);
663 	list_for_each_entry(idx_gc, &c->idx_gc, list)
664 		pr_err("\tGC'ed idx LEB %d unmap %d\n",
665 		       idx_gc->lnum, idx_gc->unmap);
666 	pr_err("\tcommit state %d\n", c->cmt_state);
667 
668 	/* Print budgeting predictions */
669 	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
670 	outstanding = c->bi.data_growth + c->bi.dd_growth;
671 	free = ubifs_get_free_space_nolock(c);
672 	pr_err("Budgeting predictions:\n");
673 	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
674 	       available, outstanding, free);
675 out_unlock:
676 	spin_unlock(&dbg_lock);
677 	spin_unlock(&c->space_lock);
678 }
679 
ubifs_dump_lprop(const struct ubifs_info * c,const struct ubifs_lprops * lp)680 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
681 {
682 	int i, spc, dark = 0, dead = 0;
683 	struct rb_node *rb;
684 	struct ubifs_bud *bud;
685 
686 	spc = lp->free + lp->dirty;
687 	if (spc < c->dead_wm)
688 		dead = spc;
689 	else
690 		dark = ubifs_calc_dark(c, spc);
691 
692 	if (lp->flags & LPROPS_INDEX)
693 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
694 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
695 		       lp->flags);
696 	else
697 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
698 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
699 		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
700 
701 	if (lp->flags & LPROPS_TAKEN) {
702 		if (lp->flags & LPROPS_INDEX)
703 			pr_cont("index, taken");
704 		else
705 			pr_cont("taken");
706 	} else {
707 		const char *s;
708 
709 		if (lp->flags & LPROPS_INDEX) {
710 			switch (lp->flags & LPROPS_CAT_MASK) {
711 			case LPROPS_DIRTY_IDX:
712 				s = "dirty index";
713 				break;
714 			case LPROPS_FRDI_IDX:
715 				s = "freeable index";
716 				break;
717 			default:
718 				s = "index";
719 			}
720 		} else {
721 			switch (lp->flags & LPROPS_CAT_MASK) {
722 			case LPROPS_UNCAT:
723 				s = "not categorized";
724 				break;
725 			case LPROPS_DIRTY:
726 				s = "dirty";
727 				break;
728 			case LPROPS_FREE:
729 				s = "free";
730 				break;
731 			case LPROPS_EMPTY:
732 				s = "empty";
733 				break;
734 			case LPROPS_FREEABLE:
735 				s = "freeable";
736 				break;
737 			default:
738 				s = NULL;
739 				break;
740 			}
741 		}
742 		pr_cont("%s", s);
743 	}
744 
745 	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
746 		bud = rb_entry(rb, struct ubifs_bud, rb);
747 		if (bud->lnum == lp->lnum) {
748 			int head = 0;
749 			for (i = 0; i < c->jhead_cnt; i++) {
750 				/*
751 				 * Note, if we are in R/O mode or in the middle
752 				 * of mounting/re-mounting, the write-buffers do
753 				 * not exist.
754 				 */
755 				if (c->jheads &&
756 				    lp->lnum == c->jheads[i].wbuf.lnum) {
757 					pr_cont(", jhead %s", dbg_jhead(i));
758 					head = 1;
759 				}
760 			}
761 			if (!head)
762 				pr_cont(", bud of jhead %s",
763 				       dbg_jhead(bud->jhead));
764 		}
765 	}
766 	if (lp->lnum == c->gc_lnum)
767 		pr_cont(", GC LEB");
768 	pr_cont(")\n");
769 }
770 
ubifs_dump_lprops(struct ubifs_info * c)771 void ubifs_dump_lprops(struct ubifs_info *c)
772 {
773 	int lnum, err;
774 	struct ubifs_lprops lp;
775 	struct ubifs_lp_stats lst;
776 
777 	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
778 	ubifs_get_lp_stats(c, &lst);
779 	ubifs_dump_lstats(&lst);
780 
781 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
782 		err = ubifs_read_one_lp(c, lnum, &lp);
783 		if (err) {
784 			ubifs_err(c, "cannot read lprops for LEB %d", lnum);
785 			continue;
786 		}
787 
788 		ubifs_dump_lprop(c, &lp);
789 	}
790 	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
791 }
792 
ubifs_dump_lpt_info(struct ubifs_info * c)793 void ubifs_dump_lpt_info(struct ubifs_info *c)
794 {
795 	int i;
796 
797 	spin_lock(&dbg_lock);
798 	pr_err("(pid %d) dumping LPT information\n", current->pid);
799 	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
800 	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
801 	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
802 	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
803 	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
804 	pr_err("\tbig_lpt:       %u\n", c->big_lpt);
805 	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
806 	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
807 	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
808 	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
809 	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
810 	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
811 	pr_err("\tspace_bits:    %d\n", c->space_bits);
812 	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
813 	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
814 	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
815 	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
816 	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
817 	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
818 	pr_err("\tLPT head is at %d:%d\n",
819 	       c->nhead_lnum, c->nhead_offs);
820 	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
821 	if (c->big_lpt)
822 		pr_err("\tLPT lsave is at %d:%d\n",
823 		       c->lsave_lnum, c->lsave_offs);
824 	for (i = 0; i < c->lpt_lebs; i++)
825 		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
826 		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
827 		       c->ltab[i].tgc, c->ltab[i].cmt);
828 	spin_unlock(&dbg_lock);
829 }
830 
ubifs_dump_leb(const struct ubifs_info * c,int lnum)831 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
832 {
833 	struct ubifs_scan_leb *sleb;
834 	struct ubifs_scan_node *snod;
835 	void *buf;
836 
837 	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
838 
839 	buf = __vmalloc(c->leb_size, GFP_NOFS);
840 	if (!buf) {
841 		ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
842 		return;
843 	}
844 
845 	sleb = ubifs_scan(c, lnum, 0, buf, 0);
846 	if (IS_ERR(sleb)) {
847 		ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
848 		goto out;
849 	}
850 
851 	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
852 	       sleb->nodes_cnt, sleb->endpt);
853 
854 	list_for_each_entry(snod, &sleb->nodes, list) {
855 		cond_resched();
856 		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
857 		       snod->offs, snod->len);
858 		ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
859 	}
860 
861 	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
862 	ubifs_scan_destroy(sleb);
863 
864 out:
865 	vfree(buf);
866 	return;
867 }
868 
ubifs_dump_znode(const struct ubifs_info * c,const struct ubifs_znode * znode)869 void ubifs_dump_znode(const struct ubifs_info *c,
870 		      const struct ubifs_znode *znode)
871 {
872 	int n;
873 	const struct ubifs_zbranch *zbr;
874 	char key_buf[DBG_KEY_BUF_LEN];
875 
876 	spin_lock(&dbg_lock);
877 	if (znode->parent)
878 		zbr = &znode->parent->zbranch[znode->iip];
879 	else
880 		zbr = &c->zroot;
881 
882 	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
883 	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
884 	       znode->level, znode->child_cnt, znode->flags);
885 
886 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
887 		spin_unlock(&dbg_lock);
888 		return;
889 	}
890 
891 	pr_err("zbranches:\n");
892 	for (n = 0; n < znode->child_cnt; n++) {
893 		zbr = &znode->zbranch[n];
894 		if (znode->level > 0)
895 			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
896 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
897 			       dbg_snprintf_key(c, &zbr->key, key_buf,
898 						DBG_KEY_BUF_LEN));
899 		else
900 			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
901 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
902 			       dbg_snprintf_key(c, &zbr->key, key_buf,
903 						DBG_KEY_BUF_LEN));
904 	}
905 	spin_unlock(&dbg_lock);
906 }
907 
ubifs_dump_heap(struct ubifs_info * c,struct ubifs_lpt_heap * heap,int cat)908 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
909 {
910 	int i;
911 
912 	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
913 	       current->pid, cat, heap->cnt);
914 	for (i = 0; i < heap->cnt; i++) {
915 		struct ubifs_lprops *lprops = heap->arr[i];
916 
917 		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
918 		       i, lprops->lnum, lprops->hpos, lprops->free,
919 		       lprops->dirty, lprops->flags);
920 	}
921 	pr_err("(pid %d) finish dumping heap\n", current->pid);
922 }
923 
ubifs_dump_pnode(struct ubifs_info * c,struct ubifs_pnode * pnode,struct ubifs_nnode * parent,int iip)924 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
925 		      struct ubifs_nnode *parent, int iip)
926 {
927 	int i;
928 
929 	pr_err("(pid %d) dumping pnode:\n", current->pid);
930 	pr_err("\taddress %zx parent %zx cnext %zx\n",
931 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
932 	pr_err("\tflags %lu iip %d level %d num %d\n",
933 	       pnode->flags, iip, pnode->level, pnode->num);
934 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
935 		struct ubifs_lprops *lp = &pnode->lprops[i];
936 
937 		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
938 		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
939 	}
940 }
941 
ubifs_dump_tnc(struct ubifs_info * c)942 void ubifs_dump_tnc(struct ubifs_info *c)
943 {
944 	struct ubifs_znode *znode;
945 	int level;
946 
947 	pr_err("\n");
948 	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
949 	znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
950 	level = znode->level;
951 	pr_err("== Level %d ==\n", level);
952 	while (znode) {
953 		if (level != znode->level) {
954 			level = znode->level;
955 			pr_err("== Level %d ==\n", level);
956 		}
957 		ubifs_dump_znode(c, znode);
958 		znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
959 	}
960 	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
961 }
962 
dump_znode(struct ubifs_info * c,struct ubifs_znode * znode,void * priv)963 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
964 		      void *priv)
965 {
966 	ubifs_dump_znode(c, znode);
967 	return 0;
968 }
969 
970 /**
971  * ubifs_dump_index - dump the on-flash index.
972  * @c: UBIFS file-system description object
973  *
974  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
975  * which dumps only in-memory znodes and does not read znodes which from flash.
976  */
ubifs_dump_index(struct ubifs_info * c)977 void ubifs_dump_index(struct ubifs_info *c)
978 {
979 	dbg_walk_index(c, NULL, dump_znode, NULL);
980 }
981 
982 /**
983  * dbg_save_space_info - save information about flash space.
984  * @c: UBIFS file-system description object
985  *
986  * This function saves information about UBIFS free space, dirty space, etc, in
987  * order to check it later.
988  */
dbg_save_space_info(struct ubifs_info * c)989 void dbg_save_space_info(struct ubifs_info *c)
990 {
991 	struct ubifs_debug_info *d = c->dbg;
992 	int freeable_cnt;
993 
994 	spin_lock(&c->space_lock);
995 	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
996 	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
997 	d->saved_idx_gc_cnt = c->idx_gc_cnt;
998 
999 	/*
1000 	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1001 	 * affects the free space calculations, and UBIFS might not know about
1002 	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1003 	 * only when we read their lprops, and we do this only lazily, upon the
1004 	 * need. So at any given point of time @c->freeable_cnt might be not
1005 	 * exactly accurate.
1006 	 *
1007 	 * Just one example about the issue we hit when we did not zero
1008 	 * @c->freeable_cnt.
1009 	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1010 	 *    amount of free space in @d->saved_free
1011 	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1012 	 *    information from flash, where we cache LEBs from various
1013 	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1014 	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1015 	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1016 	 *    -> 'ubifs_add_to_cat()').
1017 	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1018 	 *    becomes %1.
1019 	 * 4. We calculate the amount of free space when the re-mount is
1020 	 *    finished in 'dbg_check_space_info()' and it does not match
1021 	 *    @d->saved_free.
1022 	 */
1023 	freeable_cnt = c->freeable_cnt;
1024 	c->freeable_cnt = 0;
1025 	d->saved_free = ubifs_get_free_space_nolock(c);
1026 	c->freeable_cnt = freeable_cnt;
1027 	spin_unlock(&c->space_lock);
1028 }
1029 
1030 /**
1031  * dbg_check_space_info - check flash space information.
1032  * @c: UBIFS file-system description object
1033  *
1034  * This function compares current flash space information with the information
1035  * which was saved when the 'dbg_save_space_info()' function was called.
1036  * Returns zero if the information has not changed, and %-EINVAL if it has
1037  * changed.
1038  */
dbg_check_space_info(struct ubifs_info * c)1039 int dbg_check_space_info(struct ubifs_info *c)
1040 {
1041 	struct ubifs_debug_info *d = c->dbg;
1042 	struct ubifs_lp_stats lst;
1043 	long long free;
1044 	int freeable_cnt;
1045 
1046 	spin_lock(&c->space_lock);
1047 	freeable_cnt = c->freeable_cnt;
1048 	c->freeable_cnt = 0;
1049 	free = ubifs_get_free_space_nolock(c);
1050 	c->freeable_cnt = freeable_cnt;
1051 	spin_unlock(&c->space_lock);
1052 
1053 	if (free != d->saved_free) {
1054 		ubifs_err(c, "free space changed from %lld to %lld",
1055 			  d->saved_free, free);
1056 		goto out;
1057 	}
1058 
1059 	return 0;
1060 
1061 out:
1062 	ubifs_msg(c, "saved lprops statistics dump");
1063 	ubifs_dump_lstats(&d->saved_lst);
1064 	ubifs_msg(c, "saved budgeting info dump");
1065 	ubifs_dump_budg(c, &d->saved_bi);
1066 	ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1067 	ubifs_msg(c, "current lprops statistics dump");
1068 	ubifs_get_lp_stats(c, &lst);
1069 	ubifs_dump_lstats(&lst);
1070 	ubifs_msg(c, "current budgeting info dump");
1071 	ubifs_dump_budg(c, &c->bi);
1072 	dump_stack();
1073 	return -EINVAL;
1074 }
1075 
1076 /**
1077  * dbg_check_synced_i_size - check synchronized inode size.
1078  * @c: UBIFS file-system description object
1079  * @inode: inode to check
1080  *
1081  * If inode is clean, synchronized inode size has to be equivalent to current
1082  * inode size. This function has to be called only for locked inodes (@i_mutex
1083  * has to be locked). Returns %0 if synchronized inode size if correct, and
1084  * %-EINVAL if not.
1085  */
dbg_check_synced_i_size(const struct ubifs_info * c,struct inode * inode)1086 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1087 {
1088 	int err = 0;
1089 	struct ubifs_inode *ui = ubifs_inode(inode);
1090 
1091 	if (!dbg_is_chk_gen(c))
1092 		return 0;
1093 	if (!S_ISREG(inode->i_mode))
1094 		return 0;
1095 
1096 	mutex_lock(&ui->ui_mutex);
1097 	spin_lock(&ui->ui_lock);
1098 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1099 		ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1100 			  ui->ui_size, ui->synced_i_size);
1101 		ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1102 			  inode->i_mode, i_size_read(inode));
1103 		dump_stack();
1104 		err = -EINVAL;
1105 	}
1106 	spin_unlock(&ui->ui_lock);
1107 	mutex_unlock(&ui->ui_mutex);
1108 	return err;
1109 }
1110 
1111 /*
1112  * dbg_check_dir - check directory inode size and link count.
1113  * @c: UBIFS file-system description object
1114  * @dir: the directory to calculate size for
1115  * @size: the result is returned here
1116  *
1117  * This function makes sure that directory size and link count are correct.
1118  * Returns zero in case of success and a negative error code in case of
1119  * failure.
1120  *
1121  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1122  * calling this function.
1123  */
dbg_check_dir(struct ubifs_info * c,const struct inode * dir)1124 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1125 {
1126 	unsigned int nlink = 2;
1127 	union ubifs_key key;
1128 	struct ubifs_dent_node *dent, *pdent = NULL;
1129 	struct fscrypt_name nm = {0};
1130 	loff_t size = UBIFS_INO_NODE_SZ;
1131 
1132 	if (!dbg_is_chk_gen(c))
1133 		return 0;
1134 
1135 	if (!S_ISDIR(dir->i_mode))
1136 		return 0;
1137 
1138 	lowest_dent_key(c, &key, dir->i_ino);
1139 	while (1) {
1140 		int err;
1141 
1142 		dent = ubifs_tnc_next_ent(c, &key, &nm);
1143 		if (IS_ERR(dent)) {
1144 			err = PTR_ERR(dent);
1145 			if (err == -ENOENT)
1146 				break;
1147 			kfree(pdent);
1148 			return err;
1149 		}
1150 
1151 		fname_name(&nm) = dent->name;
1152 		fname_len(&nm) = le16_to_cpu(dent->nlen);
1153 		size += CALC_DENT_SIZE(fname_len(&nm));
1154 		if (dent->type == UBIFS_ITYPE_DIR)
1155 			nlink += 1;
1156 		kfree(pdent);
1157 		pdent = dent;
1158 		key_read(c, &dent->key, &key);
1159 	}
1160 	kfree(pdent);
1161 
1162 	if (i_size_read(dir) != size) {
1163 		ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1164 			  dir->i_ino, (unsigned long long)i_size_read(dir),
1165 			  (unsigned long long)size);
1166 		ubifs_dump_inode(c, dir);
1167 		dump_stack();
1168 		return -EINVAL;
1169 	}
1170 	if (dir->i_nlink != nlink) {
1171 		ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1172 			  dir->i_ino, dir->i_nlink, nlink);
1173 		ubifs_dump_inode(c, dir);
1174 		dump_stack();
1175 		return -EINVAL;
1176 	}
1177 
1178 	return 0;
1179 }
1180 
1181 /**
1182  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1183  * @c: UBIFS file-system description object
1184  * @zbr1: first zbranch
1185  * @zbr2: following zbranch
1186  *
1187  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1188  * names of the direntries/xentries which are referred by the keys. This
1189  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1190  * sure the name of direntry/xentry referred by @zbr1 is less than
1191  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1192  * and a negative error code in case of failure.
1193  */
dbg_check_key_order(struct ubifs_info * c,struct ubifs_zbranch * zbr1,struct ubifs_zbranch * zbr2)1194 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1195 			       struct ubifs_zbranch *zbr2)
1196 {
1197 	int err, nlen1, nlen2, cmp;
1198 	struct ubifs_dent_node *dent1, *dent2;
1199 	union ubifs_key key;
1200 	char key_buf[DBG_KEY_BUF_LEN];
1201 
1202 	ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1203 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1204 	if (!dent1)
1205 		return -ENOMEM;
1206 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1207 	if (!dent2) {
1208 		err = -ENOMEM;
1209 		goto out_free;
1210 	}
1211 
1212 	err = ubifs_tnc_read_node(c, zbr1, dent1);
1213 	if (err)
1214 		goto out_free;
1215 	err = ubifs_validate_entry(c, dent1);
1216 	if (err)
1217 		goto out_free;
1218 
1219 	err = ubifs_tnc_read_node(c, zbr2, dent2);
1220 	if (err)
1221 		goto out_free;
1222 	err = ubifs_validate_entry(c, dent2);
1223 	if (err)
1224 		goto out_free;
1225 
1226 	/* Make sure node keys are the same as in zbranch */
1227 	err = 1;
1228 	key_read(c, &dent1->key, &key);
1229 	if (keys_cmp(c, &zbr1->key, &key)) {
1230 		ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1231 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1232 						       DBG_KEY_BUF_LEN));
1233 		ubifs_err(c, "but it should have key %s according to tnc",
1234 			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1235 					   DBG_KEY_BUF_LEN));
1236 		ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1237 		goto out_free;
1238 	}
1239 
1240 	key_read(c, &dent2->key, &key);
1241 	if (keys_cmp(c, &zbr2->key, &key)) {
1242 		ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1243 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1244 						       DBG_KEY_BUF_LEN));
1245 		ubifs_err(c, "but it should have key %s according to tnc",
1246 			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1247 					   DBG_KEY_BUF_LEN));
1248 		ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1249 		goto out_free;
1250 	}
1251 
1252 	nlen1 = le16_to_cpu(dent1->nlen);
1253 	nlen2 = le16_to_cpu(dent2->nlen);
1254 
1255 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1256 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1257 		err = 0;
1258 		goto out_free;
1259 	}
1260 	if (cmp == 0 && nlen1 == nlen2)
1261 		ubifs_err(c, "2 xent/dent nodes with the same name");
1262 	else
1263 		ubifs_err(c, "bad order of colliding key %s",
1264 			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1265 
1266 	ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1267 	ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1268 	ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1269 	ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1270 
1271 out_free:
1272 	kfree(dent2);
1273 	kfree(dent1);
1274 	return err;
1275 }
1276 
1277 /**
1278  * dbg_check_znode - check if znode is all right.
1279  * @c: UBIFS file-system description object
1280  * @zbr: zbranch which points to this znode
1281  *
1282  * This function makes sure that znode referred to by @zbr is all right.
1283  * Returns zero if it is, and %-EINVAL if it is not.
1284  */
dbg_check_znode(struct ubifs_info * c,struct ubifs_zbranch * zbr)1285 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1286 {
1287 	struct ubifs_znode *znode = zbr->znode;
1288 	struct ubifs_znode *zp = znode->parent;
1289 	int n, err, cmp;
1290 
1291 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1292 		err = 1;
1293 		goto out;
1294 	}
1295 	if (znode->level < 0) {
1296 		err = 2;
1297 		goto out;
1298 	}
1299 	if (znode->iip < 0 || znode->iip >= c->fanout) {
1300 		err = 3;
1301 		goto out;
1302 	}
1303 
1304 	if (zbr->len == 0)
1305 		/* Only dirty zbranch may have no on-flash nodes */
1306 		if (!ubifs_zn_dirty(znode)) {
1307 			err = 4;
1308 			goto out;
1309 		}
1310 
1311 	if (ubifs_zn_dirty(znode)) {
1312 		/*
1313 		 * If znode is dirty, its parent has to be dirty as well. The
1314 		 * order of the operation is important, so we have to have
1315 		 * memory barriers.
1316 		 */
1317 		smp_mb();
1318 		if (zp && !ubifs_zn_dirty(zp)) {
1319 			/*
1320 			 * The dirty flag is atomic and is cleared outside the
1321 			 * TNC mutex, so znode's dirty flag may now have
1322 			 * been cleared. The child is always cleared before the
1323 			 * parent, so we just need to check again.
1324 			 */
1325 			smp_mb();
1326 			if (ubifs_zn_dirty(znode)) {
1327 				err = 5;
1328 				goto out;
1329 			}
1330 		}
1331 	}
1332 
1333 	if (zp) {
1334 		const union ubifs_key *min, *max;
1335 
1336 		if (znode->level != zp->level - 1) {
1337 			err = 6;
1338 			goto out;
1339 		}
1340 
1341 		/* Make sure the 'parent' pointer in our znode is correct */
1342 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1343 		if (!err) {
1344 			/* This zbranch does not exist in the parent */
1345 			err = 7;
1346 			goto out;
1347 		}
1348 
1349 		if (znode->iip >= zp->child_cnt) {
1350 			err = 8;
1351 			goto out;
1352 		}
1353 
1354 		if (znode->iip != n) {
1355 			/* This may happen only in case of collisions */
1356 			if (keys_cmp(c, &zp->zbranch[n].key,
1357 				     &zp->zbranch[znode->iip].key)) {
1358 				err = 9;
1359 				goto out;
1360 			}
1361 			n = znode->iip;
1362 		}
1363 
1364 		/*
1365 		 * Make sure that the first key in our znode is greater than or
1366 		 * equal to the key in the pointing zbranch.
1367 		 */
1368 		min = &zbr->key;
1369 		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1370 		if (cmp == 1) {
1371 			err = 10;
1372 			goto out;
1373 		}
1374 
1375 		if (n + 1 < zp->child_cnt) {
1376 			max = &zp->zbranch[n + 1].key;
1377 
1378 			/*
1379 			 * Make sure the last key in our znode is less or
1380 			 * equivalent than the key in the zbranch which goes
1381 			 * after our pointing zbranch.
1382 			 */
1383 			cmp = keys_cmp(c, max,
1384 				&znode->zbranch[znode->child_cnt - 1].key);
1385 			if (cmp == -1) {
1386 				err = 11;
1387 				goto out;
1388 			}
1389 		}
1390 	} else {
1391 		/* This may only be root znode */
1392 		if (zbr != &c->zroot) {
1393 			err = 12;
1394 			goto out;
1395 		}
1396 	}
1397 
1398 	/*
1399 	 * Make sure that next key is greater or equivalent then the previous
1400 	 * one.
1401 	 */
1402 	for (n = 1; n < znode->child_cnt; n++) {
1403 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1404 			       &znode->zbranch[n].key);
1405 		if (cmp > 0) {
1406 			err = 13;
1407 			goto out;
1408 		}
1409 		if (cmp == 0) {
1410 			/* This can only be keys with colliding hash */
1411 			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1412 				err = 14;
1413 				goto out;
1414 			}
1415 
1416 			if (znode->level != 0 || c->replaying)
1417 				continue;
1418 
1419 			/*
1420 			 * Colliding keys should follow binary order of
1421 			 * corresponding xentry/dentry names.
1422 			 */
1423 			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1424 						  &znode->zbranch[n]);
1425 			if (err < 0)
1426 				return err;
1427 			if (err) {
1428 				err = 15;
1429 				goto out;
1430 			}
1431 		}
1432 	}
1433 
1434 	for (n = 0; n < znode->child_cnt; n++) {
1435 		if (!znode->zbranch[n].znode &&
1436 		    (znode->zbranch[n].lnum == 0 ||
1437 		     znode->zbranch[n].len == 0)) {
1438 			err = 16;
1439 			goto out;
1440 		}
1441 
1442 		if (znode->zbranch[n].lnum != 0 &&
1443 		    znode->zbranch[n].len == 0) {
1444 			err = 17;
1445 			goto out;
1446 		}
1447 
1448 		if (znode->zbranch[n].lnum == 0 &&
1449 		    znode->zbranch[n].len != 0) {
1450 			err = 18;
1451 			goto out;
1452 		}
1453 
1454 		if (znode->zbranch[n].lnum == 0 &&
1455 		    znode->zbranch[n].offs != 0) {
1456 			err = 19;
1457 			goto out;
1458 		}
1459 
1460 		if (znode->level != 0 && znode->zbranch[n].znode)
1461 			if (znode->zbranch[n].znode->parent != znode) {
1462 				err = 20;
1463 				goto out;
1464 			}
1465 	}
1466 
1467 	return 0;
1468 
1469 out:
1470 	ubifs_err(c, "failed, error %d", err);
1471 	ubifs_msg(c, "dump of the znode");
1472 	ubifs_dump_znode(c, znode);
1473 	if (zp) {
1474 		ubifs_msg(c, "dump of the parent znode");
1475 		ubifs_dump_znode(c, zp);
1476 	}
1477 	dump_stack();
1478 	return -EINVAL;
1479 }
1480 
1481 /**
1482  * dbg_check_tnc - check TNC tree.
1483  * @c: UBIFS file-system description object
1484  * @extra: do extra checks that are possible at start commit
1485  *
1486  * This function traverses whole TNC tree and checks every znode. Returns zero
1487  * if everything is all right and %-EINVAL if something is wrong with TNC.
1488  */
dbg_check_tnc(struct ubifs_info * c,int extra)1489 int dbg_check_tnc(struct ubifs_info *c, int extra)
1490 {
1491 	struct ubifs_znode *znode;
1492 	long clean_cnt = 0, dirty_cnt = 0;
1493 	int err, last;
1494 
1495 	if (!dbg_is_chk_index(c))
1496 		return 0;
1497 
1498 	ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1499 	if (!c->zroot.znode)
1500 		return 0;
1501 
1502 	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1503 	while (1) {
1504 		struct ubifs_znode *prev;
1505 		struct ubifs_zbranch *zbr;
1506 
1507 		if (!znode->parent)
1508 			zbr = &c->zroot;
1509 		else
1510 			zbr = &znode->parent->zbranch[znode->iip];
1511 
1512 		err = dbg_check_znode(c, zbr);
1513 		if (err)
1514 			return err;
1515 
1516 		if (extra) {
1517 			if (ubifs_zn_dirty(znode))
1518 				dirty_cnt += 1;
1519 			else
1520 				clean_cnt += 1;
1521 		}
1522 
1523 		prev = znode;
1524 		znode = ubifs_tnc_postorder_next(c, znode);
1525 		if (!znode)
1526 			break;
1527 
1528 		/*
1529 		 * If the last key of this znode is equivalent to the first key
1530 		 * of the next znode (collision), then check order of the keys.
1531 		 */
1532 		last = prev->child_cnt - 1;
1533 		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1534 		    !keys_cmp(c, &prev->zbranch[last].key,
1535 			      &znode->zbranch[0].key)) {
1536 			err = dbg_check_key_order(c, &prev->zbranch[last],
1537 						  &znode->zbranch[0]);
1538 			if (err < 0)
1539 				return err;
1540 			if (err) {
1541 				ubifs_msg(c, "first znode");
1542 				ubifs_dump_znode(c, prev);
1543 				ubifs_msg(c, "second znode");
1544 				ubifs_dump_znode(c, znode);
1545 				return -EINVAL;
1546 			}
1547 		}
1548 	}
1549 
1550 	if (extra) {
1551 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1552 			ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1553 				  atomic_long_read(&c->clean_zn_cnt),
1554 				  clean_cnt);
1555 			return -EINVAL;
1556 		}
1557 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1558 			ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1559 				  atomic_long_read(&c->dirty_zn_cnt),
1560 				  dirty_cnt);
1561 			return -EINVAL;
1562 		}
1563 	}
1564 
1565 	return 0;
1566 }
1567 
1568 /**
1569  * dbg_walk_index - walk the on-flash index.
1570  * @c: UBIFS file-system description object
1571  * @leaf_cb: called for each leaf node
1572  * @znode_cb: called for each indexing node
1573  * @priv: private data which is passed to callbacks
1574  *
1575  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1576  * node and @znode_cb for each indexing node. Returns zero in case of success
1577  * and a negative error code in case of failure.
1578  *
1579  * It would be better if this function removed every znode it pulled to into
1580  * the TNC, so that the behavior more closely matched the non-debugging
1581  * behavior.
1582  */
dbg_walk_index(struct ubifs_info * c,dbg_leaf_callback leaf_cb,dbg_znode_callback znode_cb,void * priv)1583 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1584 		   dbg_znode_callback znode_cb, void *priv)
1585 {
1586 	int err;
1587 	struct ubifs_zbranch *zbr;
1588 	struct ubifs_znode *znode, *child;
1589 
1590 	mutex_lock(&c->tnc_mutex);
1591 	/* If the root indexing node is not in TNC - pull it */
1592 	if (!c->zroot.znode) {
1593 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1594 		if (IS_ERR(c->zroot.znode)) {
1595 			err = PTR_ERR(c->zroot.znode);
1596 			c->zroot.znode = NULL;
1597 			goto out_unlock;
1598 		}
1599 	}
1600 
1601 	/*
1602 	 * We are going to traverse the indexing tree in the postorder manner.
1603 	 * Go down and find the leftmost indexing node where we are going to
1604 	 * start from.
1605 	 */
1606 	znode = c->zroot.znode;
1607 	while (znode->level > 0) {
1608 		zbr = &znode->zbranch[0];
1609 		child = zbr->znode;
1610 		if (!child) {
1611 			child = ubifs_load_znode(c, zbr, znode, 0);
1612 			if (IS_ERR(child)) {
1613 				err = PTR_ERR(child);
1614 				goto out_unlock;
1615 			}
1616 		}
1617 
1618 		znode = child;
1619 	}
1620 
1621 	/* Iterate over all indexing nodes */
1622 	while (1) {
1623 		int idx;
1624 
1625 		cond_resched();
1626 
1627 		if (znode_cb) {
1628 			err = znode_cb(c, znode, priv);
1629 			if (err) {
1630 				ubifs_err(c, "znode checking function returned error %d",
1631 					  err);
1632 				ubifs_dump_znode(c, znode);
1633 				goto out_dump;
1634 			}
1635 		}
1636 		if (leaf_cb && znode->level == 0) {
1637 			for (idx = 0; idx < znode->child_cnt; idx++) {
1638 				zbr = &znode->zbranch[idx];
1639 				err = leaf_cb(c, zbr, priv);
1640 				if (err) {
1641 					ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1642 						  err, zbr->lnum, zbr->offs);
1643 					goto out_dump;
1644 				}
1645 			}
1646 		}
1647 
1648 		if (!znode->parent)
1649 			break;
1650 
1651 		idx = znode->iip + 1;
1652 		znode = znode->parent;
1653 		if (idx < znode->child_cnt) {
1654 			/* Switch to the next index in the parent */
1655 			zbr = &znode->zbranch[idx];
1656 			child = zbr->znode;
1657 			if (!child) {
1658 				child = ubifs_load_znode(c, zbr, znode, idx);
1659 				if (IS_ERR(child)) {
1660 					err = PTR_ERR(child);
1661 					goto out_unlock;
1662 				}
1663 				zbr->znode = child;
1664 			}
1665 			znode = child;
1666 		} else
1667 			/*
1668 			 * This is the last child, switch to the parent and
1669 			 * continue.
1670 			 */
1671 			continue;
1672 
1673 		/* Go to the lowest leftmost znode in the new sub-tree */
1674 		while (znode->level > 0) {
1675 			zbr = &znode->zbranch[0];
1676 			child = zbr->znode;
1677 			if (!child) {
1678 				child = ubifs_load_znode(c, zbr, znode, 0);
1679 				if (IS_ERR(child)) {
1680 					err = PTR_ERR(child);
1681 					goto out_unlock;
1682 				}
1683 				zbr->znode = child;
1684 			}
1685 			znode = child;
1686 		}
1687 	}
1688 
1689 	mutex_unlock(&c->tnc_mutex);
1690 	return 0;
1691 
1692 out_dump:
1693 	if (znode->parent)
1694 		zbr = &znode->parent->zbranch[znode->iip];
1695 	else
1696 		zbr = &c->zroot;
1697 	ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1698 	ubifs_dump_znode(c, znode);
1699 out_unlock:
1700 	mutex_unlock(&c->tnc_mutex);
1701 	return err;
1702 }
1703 
1704 /**
1705  * add_size - add znode size to partially calculated index size.
1706  * @c: UBIFS file-system description object
1707  * @znode: znode to add size for
1708  * @priv: partially calculated index size
1709  *
1710  * This is a helper function for 'dbg_check_idx_size()' which is called for
1711  * every indexing node and adds its size to the 'long long' variable pointed to
1712  * by @priv.
1713  */
add_size(struct ubifs_info * c,struct ubifs_znode * znode,void * priv)1714 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1715 {
1716 	long long *idx_size = priv;
1717 	int add;
1718 
1719 	add = ubifs_idx_node_sz(c, znode->child_cnt);
1720 	add = ALIGN(add, 8);
1721 	*idx_size += add;
1722 	return 0;
1723 }
1724 
1725 /**
1726  * dbg_check_idx_size - check index size.
1727  * @c: UBIFS file-system description object
1728  * @idx_size: size to check
1729  *
1730  * This function walks the UBIFS index, calculates its size and checks that the
1731  * size is equivalent to @idx_size. Returns zero in case of success and a
1732  * negative error code in case of failure.
1733  */
dbg_check_idx_size(struct ubifs_info * c,long long idx_size)1734 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1735 {
1736 	int err;
1737 	long long calc = 0;
1738 
1739 	if (!dbg_is_chk_index(c))
1740 		return 0;
1741 
1742 	err = dbg_walk_index(c, NULL, add_size, &calc);
1743 	if (err) {
1744 		ubifs_err(c, "error %d while walking the index", err);
1745 		return err;
1746 	}
1747 
1748 	if (calc != idx_size) {
1749 		ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1750 			  calc, idx_size);
1751 		dump_stack();
1752 		return -EINVAL;
1753 	}
1754 
1755 	return 0;
1756 }
1757 
1758 /**
1759  * struct fsck_inode - information about an inode used when checking the file-system.
1760  * @rb: link in the RB-tree of inodes
1761  * @inum: inode number
1762  * @mode: inode type, permissions, etc
1763  * @nlink: inode link count
1764  * @xattr_cnt: count of extended attributes
1765  * @references: how many directory/xattr entries refer this inode (calculated
1766  *              while walking the index)
1767  * @calc_cnt: for directory inode count of child directories
1768  * @size: inode size (read from on-flash inode)
1769  * @xattr_sz: summary size of all extended attributes (read from on-flash
1770  *            inode)
1771  * @calc_sz: for directories calculated directory size
1772  * @calc_xcnt: count of extended attributes
1773  * @calc_xsz: calculated summary size of all extended attributes
1774  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1775  *             inode (read from on-flash inode)
1776  * @calc_xnms: calculated sum of lengths of all extended attribute names
1777  */
1778 struct fsck_inode {
1779 	struct rb_node rb;
1780 	ino_t inum;
1781 	umode_t mode;
1782 	unsigned int nlink;
1783 	unsigned int xattr_cnt;
1784 	int references;
1785 	int calc_cnt;
1786 	long long size;
1787 	unsigned int xattr_sz;
1788 	long long calc_sz;
1789 	long long calc_xcnt;
1790 	long long calc_xsz;
1791 	unsigned int xattr_nms;
1792 	long long calc_xnms;
1793 };
1794 
1795 /**
1796  * struct fsck_data - private FS checking information.
1797  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1798  */
1799 struct fsck_data {
1800 	struct rb_root inodes;
1801 };
1802 
1803 /**
1804  * add_inode - add inode information to RB-tree of inodes.
1805  * @c: UBIFS file-system description object
1806  * @fsckd: FS checking information
1807  * @ino: raw UBIFS inode to add
1808  *
1809  * This is a helper function for 'check_leaf()' which adds information about
1810  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1811  * case of success and a negative error code in case of failure.
1812  */
add_inode(struct ubifs_info * c,struct fsck_data * fsckd,struct ubifs_ino_node * ino)1813 static struct fsck_inode *add_inode(struct ubifs_info *c,
1814 				    struct fsck_data *fsckd,
1815 				    struct ubifs_ino_node *ino)
1816 {
1817 	struct rb_node **p, *parent = NULL;
1818 	struct fsck_inode *fscki;
1819 	ino_t inum = key_inum_flash(c, &ino->key);
1820 	struct inode *inode;
1821 	struct ubifs_inode *ui;
1822 
1823 	p = &fsckd->inodes.rb_node;
1824 	while (*p) {
1825 		parent = *p;
1826 		fscki = rb_entry(parent, struct fsck_inode, rb);
1827 		if (inum < fscki->inum)
1828 			p = &(*p)->rb_left;
1829 		else if (inum > fscki->inum)
1830 			p = &(*p)->rb_right;
1831 		else
1832 			return fscki;
1833 	}
1834 
1835 	if (inum > c->highest_inum) {
1836 		ubifs_err(c, "too high inode number, max. is %lu",
1837 			  (unsigned long)c->highest_inum);
1838 		return ERR_PTR(-EINVAL);
1839 	}
1840 
1841 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1842 	if (!fscki)
1843 		return ERR_PTR(-ENOMEM);
1844 
1845 	inode = ilookup(c->vfs_sb, inum);
1846 
1847 	fscki->inum = inum;
1848 	/*
1849 	 * If the inode is present in the VFS inode cache, use it instead of
1850 	 * the on-flash inode which might be out-of-date. E.g., the size might
1851 	 * be out-of-date. If we do not do this, the following may happen, for
1852 	 * example:
1853 	 *   1. A power cut happens
1854 	 *   2. We mount the file-system R/O, the replay process fixes up the
1855 	 *      inode size in the VFS cache, but on on-flash.
1856 	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1857 	 *      size.
1858 	 */
1859 	if (!inode) {
1860 		fscki->nlink = le32_to_cpu(ino->nlink);
1861 		fscki->size = le64_to_cpu(ino->size);
1862 		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1863 		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1864 		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1865 		fscki->mode = le32_to_cpu(ino->mode);
1866 	} else {
1867 		ui = ubifs_inode(inode);
1868 		fscki->nlink = inode->i_nlink;
1869 		fscki->size = inode->i_size;
1870 		fscki->xattr_cnt = ui->xattr_cnt;
1871 		fscki->xattr_sz = ui->xattr_size;
1872 		fscki->xattr_nms = ui->xattr_names;
1873 		fscki->mode = inode->i_mode;
1874 		iput(inode);
1875 	}
1876 
1877 	if (S_ISDIR(fscki->mode)) {
1878 		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1879 		fscki->calc_cnt = 2;
1880 	}
1881 
1882 	rb_link_node(&fscki->rb, parent, p);
1883 	rb_insert_color(&fscki->rb, &fsckd->inodes);
1884 
1885 	return fscki;
1886 }
1887 
1888 /**
1889  * search_inode - search inode in the RB-tree of inodes.
1890  * @fsckd: FS checking information
1891  * @inum: inode number to search
1892  *
1893  * This is a helper function for 'check_leaf()' which searches inode @inum in
1894  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1895  * the inode was not found.
1896  */
search_inode(struct fsck_data * fsckd,ino_t inum)1897 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1898 {
1899 	struct rb_node *p;
1900 	struct fsck_inode *fscki;
1901 
1902 	p = fsckd->inodes.rb_node;
1903 	while (p) {
1904 		fscki = rb_entry(p, struct fsck_inode, rb);
1905 		if (inum < fscki->inum)
1906 			p = p->rb_left;
1907 		else if (inum > fscki->inum)
1908 			p = p->rb_right;
1909 		else
1910 			return fscki;
1911 	}
1912 	return NULL;
1913 }
1914 
1915 /**
1916  * read_add_inode - read inode node and add it to RB-tree of inodes.
1917  * @c: UBIFS file-system description object
1918  * @fsckd: FS checking information
1919  * @inum: inode number to read
1920  *
1921  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1922  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1923  * information pointer in case of success and a negative error code in case of
1924  * failure.
1925  */
read_add_inode(struct ubifs_info * c,struct fsck_data * fsckd,ino_t inum)1926 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1927 					 struct fsck_data *fsckd, ino_t inum)
1928 {
1929 	int n, err;
1930 	union ubifs_key key;
1931 	struct ubifs_znode *znode;
1932 	struct ubifs_zbranch *zbr;
1933 	struct ubifs_ino_node *ino;
1934 	struct fsck_inode *fscki;
1935 
1936 	fscki = search_inode(fsckd, inum);
1937 	if (fscki)
1938 		return fscki;
1939 
1940 	ino_key_init(c, &key, inum);
1941 	err = ubifs_lookup_level0(c, &key, &znode, &n);
1942 	if (!err) {
1943 		ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1944 		return ERR_PTR(-ENOENT);
1945 	} else if (err < 0) {
1946 		ubifs_err(c, "error %d while looking up inode %lu",
1947 			  err, (unsigned long)inum);
1948 		return ERR_PTR(err);
1949 	}
1950 
1951 	zbr = &znode->zbranch[n];
1952 	if (zbr->len < UBIFS_INO_NODE_SZ) {
1953 		ubifs_err(c, "bad node %lu node length %d",
1954 			  (unsigned long)inum, zbr->len);
1955 		return ERR_PTR(-EINVAL);
1956 	}
1957 
1958 	ino = kmalloc(zbr->len, GFP_NOFS);
1959 	if (!ino)
1960 		return ERR_PTR(-ENOMEM);
1961 
1962 	err = ubifs_tnc_read_node(c, zbr, ino);
1963 	if (err) {
1964 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1965 			  zbr->lnum, zbr->offs, err);
1966 		kfree(ino);
1967 		return ERR_PTR(err);
1968 	}
1969 
1970 	fscki = add_inode(c, fsckd, ino);
1971 	kfree(ino);
1972 	if (IS_ERR(fscki)) {
1973 		ubifs_err(c, "error %ld while adding inode %lu node",
1974 			  PTR_ERR(fscki), (unsigned long)inum);
1975 		return fscki;
1976 	}
1977 
1978 	return fscki;
1979 }
1980 
1981 /**
1982  * check_leaf - check leaf node.
1983  * @c: UBIFS file-system description object
1984  * @zbr: zbranch of the leaf node to check
1985  * @priv: FS checking information
1986  *
1987  * This is a helper function for 'dbg_check_filesystem()' which is called for
1988  * every single leaf node while walking the indexing tree. It checks that the
1989  * leaf node referred from the indexing tree exists, has correct CRC, and does
1990  * some other basic validation. This function is also responsible for building
1991  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1992  * calculates reference count, size, etc for each inode in order to later
1993  * compare them to the information stored inside the inodes and detect possible
1994  * inconsistencies. Returns zero in case of success and a negative error code
1995  * in case of failure.
1996  */
check_leaf(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * priv)1997 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1998 		      void *priv)
1999 {
2000 	ino_t inum;
2001 	void *node;
2002 	struct ubifs_ch *ch;
2003 	int err, type = key_type(c, &zbr->key);
2004 	struct fsck_inode *fscki;
2005 
2006 	if (zbr->len < UBIFS_CH_SZ) {
2007 		ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2008 			  zbr->len, zbr->lnum, zbr->offs);
2009 		return -EINVAL;
2010 	}
2011 
2012 	node = kmalloc(zbr->len, GFP_NOFS);
2013 	if (!node)
2014 		return -ENOMEM;
2015 
2016 	err = ubifs_tnc_read_node(c, zbr, node);
2017 	if (err) {
2018 		ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2019 			  zbr->lnum, zbr->offs, err);
2020 		goto out_free;
2021 	}
2022 
2023 	/* If this is an inode node, add it to RB-tree of inodes */
2024 	if (type == UBIFS_INO_KEY) {
2025 		fscki = add_inode(c, priv, node);
2026 		if (IS_ERR(fscki)) {
2027 			err = PTR_ERR(fscki);
2028 			ubifs_err(c, "error %d while adding inode node", err);
2029 			goto out_dump;
2030 		}
2031 		goto out;
2032 	}
2033 
2034 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2035 	    type != UBIFS_DATA_KEY) {
2036 		ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2037 			  type, zbr->lnum, zbr->offs);
2038 		err = -EINVAL;
2039 		goto out_free;
2040 	}
2041 
2042 	ch = node;
2043 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2044 		ubifs_err(c, "too high sequence number, max. is %llu",
2045 			  c->max_sqnum);
2046 		err = -EINVAL;
2047 		goto out_dump;
2048 	}
2049 
2050 	if (type == UBIFS_DATA_KEY) {
2051 		long long blk_offs;
2052 		struct ubifs_data_node *dn = node;
2053 
2054 		ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2055 
2056 		/*
2057 		 * Search the inode node this data node belongs to and insert
2058 		 * it to the RB-tree of inodes.
2059 		 */
2060 		inum = key_inum_flash(c, &dn->key);
2061 		fscki = read_add_inode(c, priv, inum);
2062 		if (IS_ERR(fscki)) {
2063 			err = PTR_ERR(fscki);
2064 			ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2065 				  err, (unsigned long)inum);
2066 			goto out_dump;
2067 		}
2068 
2069 		/* Make sure the data node is within inode size */
2070 		blk_offs = key_block_flash(c, &dn->key);
2071 		blk_offs <<= UBIFS_BLOCK_SHIFT;
2072 		blk_offs += le32_to_cpu(dn->size);
2073 		if (blk_offs > fscki->size) {
2074 			ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2075 				  zbr->lnum, zbr->offs, fscki->size);
2076 			err = -EINVAL;
2077 			goto out_dump;
2078 		}
2079 	} else {
2080 		int nlen;
2081 		struct ubifs_dent_node *dent = node;
2082 		struct fsck_inode *fscki1;
2083 
2084 		ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2085 
2086 		err = ubifs_validate_entry(c, dent);
2087 		if (err)
2088 			goto out_dump;
2089 
2090 		/*
2091 		 * Search the inode node this entry refers to and the parent
2092 		 * inode node and insert them to the RB-tree of inodes.
2093 		 */
2094 		inum = le64_to_cpu(dent->inum);
2095 		fscki = read_add_inode(c, priv, inum);
2096 		if (IS_ERR(fscki)) {
2097 			err = PTR_ERR(fscki);
2098 			ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2099 				  err, (unsigned long)inum);
2100 			goto out_dump;
2101 		}
2102 
2103 		/* Count how many direntries or xentries refers this inode */
2104 		fscki->references += 1;
2105 
2106 		inum = key_inum_flash(c, &dent->key);
2107 		fscki1 = read_add_inode(c, priv, inum);
2108 		if (IS_ERR(fscki1)) {
2109 			err = PTR_ERR(fscki1);
2110 			ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2111 				  err, (unsigned long)inum);
2112 			goto out_dump;
2113 		}
2114 
2115 		nlen = le16_to_cpu(dent->nlen);
2116 		if (type == UBIFS_XENT_KEY) {
2117 			fscki1->calc_xcnt += 1;
2118 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2119 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2120 			fscki1->calc_xnms += nlen;
2121 		} else {
2122 			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2123 			if (dent->type == UBIFS_ITYPE_DIR)
2124 				fscki1->calc_cnt += 1;
2125 		}
2126 	}
2127 
2128 out:
2129 	kfree(node);
2130 	return 0;
2131 
2132 out_dump:
2133 	ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2134 	ubifs_dump_node(c, node, zbr->len);
2135 out_free:
2136 	kfree(node);
2137 	return err;
2138 }
2139 
2140 /**
2141  * free_inodes - free RB-tree of inodes.
2142  * @fsckd: FS checking information
2143  */
free_inodes(struct fsck_data * fsckd)2144 static void free_inodes(struct fsck_data *fsckd)
2145 {
2146 	struct fsck_inode *fscki, *n;
2147 
2148 	rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2149 		kfree(fscki);
2150 }
2151 
2152 /**
2153  * check_inodes - checks all inodes.
2154  * @c: UBIFS file-system description object
2155  * @fsckd: FS checking information
2156  *
2157  * This is a helper function for 'dbg_check_filesystem()' which walks the
2158  * RB-tree of inodes after the index scan has been finished, and checks that
2159  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2160  * %-EINVAL if not, and a negative error code in case of failure.
2161  */
check_inodes(struct ubifs_info * c,struct fsck_data * fsckd)2162 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2163 {
2164 	int n, err;
2165 	union ubifs_key key;
2166 	struct ubifs_znode *znode;
2167 	struct ubifs_zbranch *zbr;
2168 	struct ubifs_ino_node *ino;
2169 	struct fsck_inode *fscki;
2170 	struct rb_node *this = rb_first(&fsckd->inodes);
2171 
2172 	while (this) {
2173 		fscki = rb_entry(this, struct fsck_inode, rb);
2174 		this = rb_next(this);
2175 
2176 		if (S_ISDIR(fscki->mode)) {
2177 			/*
2178 			 * Directories have to have exactly one reference (they
2179 			 * cannot have hardlinks), although root inode is an
2180 			 * exception.
2181 			 */
2182 			if (fscki->inum != UBIFS_ROOT_INO &&
2183 			    fscki->references != 1) {
2184 				ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2185 					  (unsigned long)fscki->inum,
2186 					  fscki->references);
2187 				goto out_dump;
2188 			}
2189 			if (fscki->inum == UBIFS_ROOT_INO &&
2190 			    fscki->references != 0) {
2191 				ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2192 					  (unsigned long)fscki->inum,
2193 					  fscki->references);
2194 				goto out_dump;
2195 			}
2196 			if (fscki->calc_sz != fscki->size) {
2197 				ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2198 					  (unsigned long)fscki->inum,
2199 					  fscki->size, fscki->calc_sz);
2200 				goto out_dump;
2201 			}
2202 			if (fscki->calc_cnt != fscki->nlink) {
2203 				ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2204 					  (unsigned long)fscki->inum,
2205 					  fscki->nlink, fscki->calc_cnt);
2206 				goto out_dump;
2207 			}
2208 		} else {
2209 			if (fscki->references != fscki->nlink) {
2210 				ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2211 					  (unsigned long)fscki->inum,
2212 					  fscki->nlink, fscki->references);
2213 				goto out_dump;
2214 			}
2215 		}
2216 		if (fscki->xattr_sz != fscki->calc_xsz) {
2217 			ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2218 				  (unsigned long)fscki->inum, fscki->xattr_sz,
2219 				  fscki->calc_xsz);
2220 			goto out_dump;
2221 		}
2222 		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2223 			ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2224 				  (unsigned long)fscki->inum,
2225 				  fscki->xattr_cnt, fscki->calc_xcnt);
2226 			goto out_dump;
2227 		}
2228 		if (fscki->xattr_nms != fscki->calc_xnms) {
2229 			ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2230 				  (unsigned long)fscki->inum, fscki->xattr_nms,
2231 				  fscki->calc_xnms);
2232 			goto out_dump;
2233 		}
2234 	}
2235 
2236 	return 0;
2237 
2238 out_dump:
2239 	/* Read the bad inode and dump it */
2240 	ino_key_init(c, &key, fscki->inum);
2241 	err = ubifs_lookup_level0(c, &key, &znode, &n);
2242 	if (!err) {
2243 		ubifs_err(c, "inode %lu not found in index",
2244 			  (unsigned long)fscki->inum);
2245 		return -ENOENT;
2246 	} else if (err < 0) {
2247 		ubifs_err(c, "error %d while looking up inode %lu",
2248 			  err, (unsigned long)fscki->inum);
2249 		return err;
2250 	}
2251 
2252 	zbr = &znode->zbranch[n];
2253 	ino = kmalloc(zbr->len, GFP_NOFS);
2254 	if (!ino)
2255 		return -ENOMEM;
2256 
2257 	err = ubifs_tnc_read_node(c, zbr, ino);
2258 	if (err) {
2259 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2260 			  zbr->lnum, zbr->offs, err);
2261 		kfree(ino);
2262 		return err;
2263 	}
2264 
2265 	ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2266 		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2267 	ubifs_dump_node(c, ino, zbr->len);
2268 	kfree(ino);
2269 	return -EINVAL;
2270 }
2271 
2272 /**
2273  * dbg_check_filesystem - check the file-system.
2274  * @c: UBIFS file-system description object
2275  *
2276  * This function checks the file system, namely:
2277  * o makes sure that all leaf nodes exist and their CRCs are correct;
2278  * o makes sure inode nlink, size, xattr size/count are correct (for all
2279  *   inodes).
2280  *
2281  * The function reads whole indexing tree and all nodes, so it is pretty
2282  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2283  * not, and a negative error code in case of failure.
2284  */
dbg_check_filesystem(struct ubifs_info * c)2285 int dbg_check_filesystem(struct ubifs_info *c)
2286 {
2287 	int err;
2288 	struct fsck_data fsckd;
2289 
2290 	if (!dbg_is_chk_fs(c))
2291 		return 0;
2292 
2293 	fsckd.inodes = RB_ROOT;
2294 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2295 	if (err)
2296 		goto out_free;
2297 
2298 	err = check_inodes(c, &fsckd);
2299 	if (err)
2300 		goto out_free;
2301 
2302 	free_inodes(&fsckd);
2303 	return 0;
2304 
2305 out_free:
2306 	ubifs_err(c, "file-system check failed with error %d", err);
2307 	dump_stack();
2308 	free_inodes(&fsckd);
2309 	return err;
2310 }
2311 
2312 /**
2313  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2314  * @c: UBIFS file-system description object
2315  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2316  *
2317  * This function returns zero if the list of data nodes is sorted correctly,
2318  * and %-EINVAL if not.
2319  */
dbg_check_data_nodes_order(struct ubifs_info * c,struct list_head * head)2320 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2321 {
2322 	struct list_head *cur;
2323 	struct ubifs_scan_node *sa, *sb;
2324 
2325 	if (!dbg_is_chk_gen(c))
2326 		return 0;
2327 
2328 	for (cur = head->next; cur->next != head; cur = cur->next) {
2329 		ino_t inuma, inumb;
2330 		uint32_t blka, blkb;
2331 
2332 		cond_resched();
2333 		sa = container_of(cur, struct ubifs_scan_node, list);
2334 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2335 
2336 		if (sa->type != UBIFS_DATA_NODE) {
2337 			ubifs_err(c, "bad node type %d", sa->type);
2338 			ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2339 			return -EINVAL;
2340 		}
2341 		if (sb->type != UBIFS_DATA_NODE) {
2342 			ubifs_err(c, "bad node type %d", sb->type);
2343 			ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2344 			return -EINVAL;
2345 		}
2346 
2347 		inuma = key_inum(c, &sa->key);
2348 		inumb = key_inum(c, &sb->key);
2349 
2350 		if (inuma < inumb)
2351 			continue;
2352 		if (inuma > inumb) {
2353 			ubifs_err(c, "larger inum %lu goes before inum %lu",
2354 				  (unsigned long)inuma, (unsigned long)inumb);
2355 			goto error_dump;
2356 		}
2357 
2358 		blka = key_block(c, &sa->key);
2359 		blkb = key_block(c, &sb->key);
2360 
2361 		if (blka > blkb) {
2362 			ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2363 			goto error_dump;
2364 		}
2365 		if (blka == blkb) {
2366 			ubifs_err(c, "two data nodes for the same block");
2367 			goto error_dump;
2368 		}
2369 	}
2370 
2371 	return 0;
2372 
2373 error_dump:
2374 	ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2375 	ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2376 	return -EINVAL;
2377 }
2378 
2379 /**
2380  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2381  * @c: UBIFS file-system description object
2382  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2383  *
2384  * This function returns zero if the list of non-data nodes is sorted correctly,
2385  * and %-EINVAL if not.
2386  */
dbg_check_nondata_nodes_order(struct ubifs_info * c,struct list_head * head)2387 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2388 {
2389 	struct list_head *cur;
2390 	struct ubifs_scan_node *sa, *sb;
2391 
2392 	if (!dbg_is_chk_gen(c))
2393 		return 0;
2394 
2395 	for (cur = head->next; cur->next != head; cur = cur->next) {
2396 		ino_t inuma, inumb;
2397 		uint32_t hasha, hashb;
2398 
2399 		cond_resched();
2400 		sa = container_of(cur, struct ubifs_scan_node, list);
2401 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2402 
2403 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2404 		    sa->type != UBIFS_XENT_NODE) {
2405 			ubifs_err(c, "bad node type %d", sa->type);
2406 			ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2407 			return -EINVAL;
2408 		}
2409 		if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2410 		    sb->type != UBIFS_XENT_NODE) {
2411 			ubifs_err(c, "bad node type %d", sb->type);
2412 			ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2413 			return -EINVAL;
2414 		}
2415 
2416 		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2417 			ubifs_err(c, "non-inode node goes before inode node");
2418 			goto error_dump;
2419 		}
2420 
2421 		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2422 			continue;
2423 
2424 		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2425 			/* Inode nodes are sorted in descending size order */
2426 			if (sa->len < sb->len) {
2427 				ubifs_err(c, "smaller inode node goes first");
2428 				goto error_dump;
2429 			}
2430 			continue;
2431 		}
2432 
2433 		/*
2434 		 * This is either a dentry or xentry, which should be sorted in
2435 		 * ascending (parent ino, hash) order.
2436 		 */
2437 		inuma = key_inum(c, &sa->key);
2438 		inumb = key_inum(c, &sb->key);
2439 
2440 		if (inuma < inumb)
2441 			continue;
2442 		if (inuma > inumb) {
2443 			ubifs_err(c, "larger inum %lu goes before inum %lu",
2444 				  (unsigned long)inuma, (unsigned long)inumb);
2445 			goto error_dump;
2446 		}
2447 
2448 		hasha = key_block(c, &sa->key);
2449 		hashb = key_block(c, &sb->key);
2450 
2451 		if (hasha > hashb) {
2452 			ubifs_err(c, "larger hash %u goes before %u",
2453 				  hasha, hashb);
2454 			goto error_dump;
2455 		}
2456 	}
2457 
2458 	return 0;
2459 
2460 error_dump:
2461 	ubifs_msg(c, "dumping first node");
2462 	ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2463 	ubifs_msg(c, "dumping second node");
2464 	ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2465 	return -EINVAL;
2466 }
2467 
chance(unsigned int n,unsigned int out_of)2468 static inline int chance(unsigned int n, unsigned int out_of)
2469 {
2470 	return !!(prandom_u32_max(out_of) + 1 <= n);
2471 
2472 }
2473 
power_cut_emulated(struct ubifs_info * c,int lnum,int write)2474 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2475 {
2476 	struct ubifs_debug_info *d = c->dbg;
2477 
2478 	ubifs_assert(c, dbg_is_tst_rcvry(c));
2479 
2480 	if (!d->pc_cnt) {
2481 		/* First call - decide delay to the power cut */
2482 		if (chance(1, 2)) {
2483 			unsigned long delay;
2484 
2485 			if (chance(1, 2)) {
2486 				d->pc_delay = 1;
2487 				/* Fail within 1 minute */
2488 				delay = prandom_u32_max(60000);
2489 				d->pc_timeout = jiffies;
2490 				d->pc_timeout += msecs_to_jiffies(delay);
2491 				ubifs_warn(c, "failing after %lums", delay);
2492 			} else {
2493 				d->pc_delay = 2;
2494 				delay = prandom_u32_max(10000);
2495 				/* Fail within 10000 operations */
2496 				d->pc_cnt_max = delay;
2497 				ubifs_warn(c, "failing after %lu calls", delay);
2498 			}
2499 		}
2500 
2501 		d->pc_cnt += 1;
2502 	}
2503 
2504 	/* Determine if failure delay has expired */
2505 	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2506 			return 0;
2507 	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2508 			return 0;
2509 
2510 	if (lnum == UBIFS_SB_LNUM) {
2511 		if (write && chance(1, 2))
2512 			return 0;
2513 		if (chance(19, 20))
2514 			return 0;
2515 		ubifs_warn(c, "failing in super block LEB %d", lnum);
2516 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2517 		if (chance(19, 20))
2518 			return 0;
2519 		ubifs_warn(c, "failing in master LEB %d", lnum);
2520 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2521 		if (write && chance(99, 100))
2522 			return 0;
2523 		if (chance(399, 400))
2524 			return 0;
2525 		ubifs_warn(c, "failing in log LEB %d", lnum);
2526 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2527 		if (write && chance(7, 8))
2528 			return 0;
2529 		if (chance(19, 20))
2530 			return 0;
2531 		ubifs_warn(c, "failing in LPT LEB %d", lnum);
2532 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2533 		if (write && chance(1, 2))
2534 			return 0;
2535 		if (chance(9, 10))
2536 			return 0;
2537 		ubifs_warn(c, "failing in orphan LEB %d", lnum);
2538 	} else if (lnum == c->ihead_lnum) {
2539 		if (chance(99, 100))
2540 			return 0;
2541 		ubifs_warn(c, "failing in index head LEB %d", lnum);
2542 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2543 		if (chance(9, 10))
2544 			return 0;
2545 		ubifs_warn(c, "failing in GC head LEB %d", lnum);
2546 	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2547 		   !ubifs_search_bud(c, lnum)) {
2548 		if (chance(19, 20))
2549 			return 0;
2550 		ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2551 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2552 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2553 		if (chance(999, 1000))
2554 			return 0;
2555 		ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2556 	} else {
2557 		if (chance(9999, 10000))
2558 			return 0;
2559 		ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2560 	}
2561 
2562 	d->pc_happened = 1;
2563 	ubifs_warn(c, "========== Power cut emulated ==========");
2564 	dump_stack();
2565 	return 1;
2566 }
2567 
corrupt_data(const struct ubifs_info * c,const void * buf,unsigned int len)2568 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2569 			unsigned int len)
2570 {
2571 	unsigned int from, to, ffs = chance(1, 2);
2572 	unsigned char *p = (void *)buf;
2573 
2574 	from = prandom_u32_max(len);
2575 	/* Corruption span max to end of write unit */
2576 	to = min(len, ALIGN(from + 1, c->max_write_size));
2577 
2578 	ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2579 		   ffs ? "0xFFs" : "random data");
2580 
2581 	if (ffs)
2582 		memset(p + from, 0xFF, to - from);
2583 	else
2584 		get_random_bytes(p + from, to - from);
2585 
2586 	return to;
2587 }
2588 
dbg_leb_write(struct ubifs_info * c,int lnum,const void * buf,int offs,int len)2589 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2590 		  int offs, int len)
2591 {
2592 	int err, failing;
2593 
2594 	if (dbg_is_power_cut(c))
2595 		return -EROFS;
2596 
2597 	failing = power_cut_emulated(c, lnum, 1);
2598 	if (failing) {
2599 		len = corrupt_data(c, buf, len);
2600 		ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2601 			   len, lnum, offs);
2602 	}
2603 	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2604 	if (err)
2605 		return err;
2606 	if (failing)
2607 		return -EROFS;
2608 	return 0;
2609 }
2610 
dbg_leb_change(struct ubifs_info * c,int lnum,const void * buf,int len)2611 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2612 		   int len)
2613 {
2614 	int err;
2615 
2616 	if (dbg_is_power_cut(c))
2617 		return -EROFS;
2618 	if (power_cut_emulated(c, lnum, 1))
2619 		return -EROFS;
2620 	err = ubi_leb_change(c->ubi, lnum, buf, len);
2621 	if (err)
2622 		return err;
2623 	if (power_cut_emulated(c, lnum, 1))
2624 		return -EROFS;
2625 	return 0;
2626 }
2627 
dbg_leb_unmap(struct ubifs_info * c,int lnum)2628 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2629 {
2630 	int err;
2631 
2632 	if (dbg_is_power_cut(c))
2633 		return -EROFS;
2634 	if (power_cut_emulated(c, lnum, 0))
2635 		return -EROFS;
2636 	err = ubi_leb_unmap(c->ubi, lnum);
2637 	if (err)
2638 		return err;
2639 	if (power_cut_emulated(c, lnum, 0))
2640 		return -EROFS;
2641 	return 0;
2642 }
2643 
dbg_leb_map(struct ubifs_info * c,int lnum)2644 int dbg_leb_map(struct ubifs_info *c, int lnum)
2645 {
2646 	int err;
2647 
2648 	if (dbg_is_power_cut(c))
2649 		return -EROFS;
2650 	if (power_cut_emulated(c, lnum, 0))
2651 		return -EROFS;
2652 	err = ubi_leb_map(c->ubi, lnum);
2653 	if (err)
2654 		return err;
2655 	if (power_cut_emulated(c, lnum, 0))
2656 		return -EROFS;
2657 	return 0;
2658 }
2659 
2660 /*
2661  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2662  * contain the stuff specific to particular file-system mounts.
2663  */
2664 static struct dentry *dfs_rootdir;
2665 
dfs_file_open(struct inode * inode,struct file * file)2666 static int dfs_file_open(struct inode *inode, struct file *file)
2667 {
2668 	file->private_data = inode->i_private;
2669 	return nonseekable_open(inode, file);
2670 }
2671 
2672 /**
2673  * provide_user_output - provide output to the user reading a debugfs file.
2674  * @val: boolean value for the answer
2675  * @u: the buffer to store the answer at
2676  * @count: size of the buffer
2677  * @ppos: position in the @u output buffer
2678  *
2679  * This is a simple helper function which stores @val boolean value in the user
2680  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2681  * bytes written to @u in case of success and a negative error code in case of
2682  * failure.
2683  */
provide_user_output(int val,char __user * u,size_t count,loff_t * ppos)2684 static int provide_user_output(int val, char __user *u, size_t count,
2685 			       loff_t *ppos)
2686 {
2687 	char buf[3];
2688 
2689 	if (val)
2690 		buf[0] = '1';
2691 	else
2692 		buf[0] = '0';
2693 	buf[1] = '\n';
2694 	buf[2] = 0x00;
2695 
2696 	return simple_read_from_buffer(u, count, ppos, buf, 2);
2697 }
2698 
dfs_file_read(struct file * file,char __user * u,size_t count,loff_t * ppos)2699 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2700 			     loff_t *ppos)
2701 {
2702 	struct dentry *dent = file->f_path.dentry;
2703 	struct ubifs_info *c = file->private_data;
2704 	struct ubifs_debug_info *d = c->dbg;
2705 	int val;
2706 
2707 	if (dent == d->dfs_chk_gen)
2708 		val = d->chk_gen;
2709 	else if (dent == d->dfs_chk_index)
2710 		val = d->chk_index;
2711 	else if (dent == d->dfs_chk_orph)
2712 		val = d->chk_orph;
2713 	else if (dent == d->dfs_chk_lprops)
2714 		val = d->chk_lprops;
2715 	else if (dent == d->dfs_chk_fs)
2716 		val = d->chk_fs;
2717 	else if (dent == d->dfs_tst_rcvry)
2718 		val = d->tst_rcvry;
2719 	else if (dent == d->dfs_ro_error)
2720 		val = c->ro_error;
2721 	else
2722 		return -EINVAL;
2723 
2724 	return provide_user_output(val, u, count, ppos);
2725 }
2726 
2727 /**
2728  * interpret_user_input - interpret user debugfs file input.
2729  * @u: user-provided buffer with the input
2730  * @count: buffer size
2731  *
2732  * This is a helper function which interpret user input to a boolean UBIFS
2733  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2734  * in case of failure.
2735  */
interpret_user_input(const char __user * u,size_t count)2736 static int interpret_user_input(const char __user *u, size_t count)
2737 {
2738 	size_t buf_size;
2739 	char buf[8];
2740 
2741 	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2742 	if (copy_from_user(buf, u, buf_size))
2743 		return -EFAULT;
2744 
2745 	if (buf[0] == '1')
2746 		return 1;
2747 	else if (buf[0] == '0')
2748 		return 0;
2749 
2750 	return -EINVAL;
2751 }
2752 
dfs_file_write(struct file * file,const char __user * u,size_t count,loff_t * ppos)2753 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2754 			      size_t count, loff_t *ppos)
2755 {
2756 	struct ubifs_info *c = file->private_data;
2757 	struct ubifs_debug_info *d = c->dbg;
2758 	struct dentry *dent = file->f_path.dentry;
2759 	int val;
2760 
2761 	if (file->f_path.dentry == d->dfs_dump_lprops) {
2762 		ubifs_dump_lprops(c);
2763 		return count;
2764 	}
2765 	if (file->f_path.dentry == d->dfs_dump_budg) {
2766 		ubifs_dump_budg(c, &c->bi);
2767 		return count;
2768 	}
2769 	if (file->f_path.dentry == d->dfs_dump_tnc) {
2770 		mutex_lock(&c->tnc_mutex);
2771 		ubifs_dump_tnc(c);
2772 		mutex_unlock(&c->tnc_mutex);
2773 		return count;
2774 	}
2775 
2776 	val = interpret_user_input(u, count);
2777 	if (val < 0)
2778 		return val;
2779 
2780 	if (dent == d->dfs_chk_gen)
2781 		d->chk_gen = val;
2782 	else if (dent == d->dfs_chk_index)
2783 		d->chk_index = val;
2784 	else if (dent == d->dfs_chk_orph)
2785 		d->chk_orph = val;
2786 	else if (dent == d->dfs_chk_lprops)
2787 		d->chk_lprops = val;
2788 	else if (dent == d->dfs_chk_fs)
2789 		d->chk_fs = val;
2790 	else if (dent == d->dfs_tst_rcvry)
2791 		d->tst_rcvry = val;
2792 	else if (dent == d->dfs_ro_error)
2793 		c->ro_error = !!val;
2794 	else
2795 		return -EINVAL;
2796 
2797 	return count;
2798 }
2799 
2800 static const struct file_operations dfs_fops = {
2801 	.open = dfs_file_open,
2802 	.read = dfs_file_read,
2803 	.write = dfs_file_write,
2804 	.owner = THIS_MODULE,
2805 	.llseek = no_llseek,
2806 };
2807 
2808 /**
2809  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2810  * @c: UBIFS file-system description object
2811  *
2812  * This function creates all debugfs files for this instance of UBIFS.
2813  *
2814  * Note, the only reason we have not merged this function with the
2815  * 'ubifs_debugging_init()' function is because it is better to initialize
2816  * debugfs interfaces at the very end of the mount process, and remove them at
2817  * the very beginning of the mount process.
2818  */
dbg_debugfs_init_fs(struct ubifs_info * c)2819 void dbg_debugfs_init_fs(struct ubifs_info *c)
2820 {
2821 	int n;
2822 	const char *fname;
2823 	struct ubifs_debug_info *d = c->dbg;
2824 
2825 	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2826 		     c->vi.ubi_num, c->vi.vol_id);
2827 	if (n > UBIFS_DFS_DIR_LEN) {
2828 		/* The array size is too small */
2829 		return;
2830 	}
2831 
2832 	fname = d->dfs_dir_name;
2833 	d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir);
2834 
2835 	fname = "dump_lprops";
2836 	d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2837 						 &dfs_fops);
2838 
2839 	fname = "dump_budg";
2840 	d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2841 					       &dfs_fops);
2842 
2843 	fname = "dump_tnc";
2844 	d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2845 					      &dfs_fops);
2846 
2847 	fname = "chk_general";
2848 	d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2849 					     d->dfs_dir, c, &dfs_fops);
2850 
2851 	fname = "chk_index";
2852 	d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2853 					       d->dfs_dir, c, &dfs_fops);
2854 
2855 	fname = "chk_orphans";
2856 	d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2857 					      d->dfs_dir, c, &dfs_fops);
2858 
2859 	fname = "chk_lprops";
2860 	d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2861 						d->dfs_dir, c, &dfs_fops);
2862 
2863 	fname = "chk_fs";
2864 	d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2865 					    d->dfs_dir, c, &dfs_fops);
2866 
2867 	fname = "tst_recovery";
2868 	d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2869 					       d->dfs_dir, c, &dfs_fops);
2870 
2871 	fname = "ro_error";
2872 	d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2873 					      d->dfs_dir, c, &dfs_fops);
2874 }
2875 
2876 /**
2877  * dbg_debugfs_exit_fs - remove all debugfs files.
2878  * @c: UBIFS file-system description object
2879  */
dbg_debugfs_exit_fs(struct ubifs_info * c)2880 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2881 {
2882 	debugfs_remove_recursive(c->dbg->dfs_dir);
2883 }
2884 
2885 struct ubifs_global_debug_info ubifs_dbg;
2886 
2887 static struct dentry *dfs_chk_gen;
2888 static struct dentry *dfs_chk_index;
2889 static struct dentry *dfs_chk_orph;
2890 static struct dentry *dfs_chk_lprops;
2891 static struct dentry *dfs_chk_fs;
2892 static struct dentry *dfs_tst_rcvry;
2893 
dfs_global_file_read(struct file * file,char __user * u,size_t count,loff_t * ppos)2894 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2895 				    size_t count, loff_t *ppos)
2896 {
2897 	struct dentry *dent = file->f_path.dentry;
2898 	int val;
2899 
2900 	if (dent == dfs_chk_gen)
2901 		val = ubifs_dbg.chk_gen;
2902 	else if (dent == dfs_chk_index)
2903 		val = ubifs_dbg.chk_index;
2904 	else if (dent == dfs_chk_orph)
2905 		val = ubifs_dbg.chk_orph;
2906 	else if (dent == dfs_chk_lprops)
2907 		val = ubifs_dbg.chk_lprops;
2908 	else if (dent == dfs_chk_fs)
2909 		val = ubifs_dbg.chk_fs;
2910 	else if (dent == dfs_tst_rcvry)
2911 		val = ubifs_dbg.tst_rcvry;
2912 	else
2913 		return -EINVAL;
2914 
2915 	return provide_user_output(val, u, count, ppos);
2916 }
2917 
dfs_global_file_write(struct file * file,const char __user * u,size_t count,loff_t * ppos)2918 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2919 				     size_t count, loff_t *ppos)
2920 {
2921 	struct dentry *dent = file->f_path.dentry;
2922 	int val;
2923 
2924 	val = interpret_user_input(u, count);
2925 	if (val < 0)
2926 		return val;
2927 
2928 	if (dent == dfs_chk_gen)
2929 		ubifs_dbg.chk_gen = val;
2930 	else if (dent == dfs_chk_index)
2931 		ubifs_dbg.chk_index = val;
2932 	else if (dent == dfs_chk_orph)
2933 		ubifs_dbg.chk_orph = val;
2934 	else if (dent == dfs_chk_lprops)
2935 		ubifs_dbg.chk_lprops = val;
2936 	else if (dent == dfs_chk_fs)
2937 		ubifs_dbg.chk_fs = val;
2938 	else if (dent == dfs_tst_rcvry)
2939 		ubifs_dbg.tst_rcvry = val;
2940 	else
2941 		return -EINVAL;
2942 
2943 	return count;
2944 }
2945 
2946 static const struct file_operations dfs_global_fops = {
2947 	.read = dfs_global_file_read,
2948 	.write = dfs_global_file_write,
2949 	.owner = THIS_MODULE,
2950 	.llseek = no_llseek,
2951 };
2952 
2953 /**
2954  * dbg_debugfs_init - initialize debugfs file-system.
2955  *
2956  * UBIFS uses debugfs file-system to expose various debugging knobs to
2957  * user-space. This function creates "ubifs" directory in the debugfs
2958  * file-system.
2959  */
dbg_debugfs_init(void)2960 void dbg_debugfs_init(void)
2961 {
2962 	const char *fname;
2963 
2964 	fname = "ubifs";
2965 	dfs_rootdir = debugfs_create_dir(fname, NULL);
2966 
2967 	fname = "chk_general";
2968 	dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2969 					  NULL, &dfs_global_fops);
2970 
2971 	fname = "chk_index";
2972 	dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2973 					    dfs_rootdir, NULL, &dfs_global_fops);
2974 
2975 	fname = "chk_orphans";
2976 	dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2977 					   dfs_rootdir, NULL, &dfs_global_fops);
2978 
2979 	fname = "chk_lprops";
2980 	dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2981 					     dfs_rootdir, NULL, &dfs_global_fops);
2982 
2983 	fname = "chk_fs";
2984 	dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2985 					 NULL, &dfs_global_fops);
2986 
2987 	fname = "tst_recovery";
2988 	dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2989 					    dfs_rootdir, NULL, &dfs_global_fops);
2990 }
2991 
2992 /**
2993  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2994  */
dbg_debugfs_exit(void)2995 void dbg_debugfs_exit(void)
2996 {
2997 	debugfs_remove_recursive(dfs_rootdir);
2998 }
2999 
ubifs_assert_failed(struct ubifs_info * c,const char * expr,const char * file,int line)3000 void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
3001 			 const char *file, int line)
3002 {
3003 	ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
3004 
3005 	switch (c->assert_action) {
3006 		case ASSACT_PANIC:
3007 		BUG();
3008 		break;
3009 
3010 		case ASSACT_RO:
3011 		ubifs_ro_mode(c, -EINVAL);
3012 		break;
3013 
3014 		case ASSACT_REPORT:
3015 		default:
3016 		dump_stack();
3017 		break;
3018 
3019 	}
3020 }
3021 
3022 /**
3023  * ubifs_debugging_init - initialize UBIFS debugging.
3024  * @c: UBIFS file-system description object
3025  *
3026  * This function initializes debugging-related data for the file system.
3027  * Returns zero in case of success and a negative error code in case of
3028  * failure.
3029  */
ubifs_debugging_init(struct ubifs_info * c)3030 int ubifs_debugging_init(struct ubifs_info *c)
3031 {
3032 	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3033 	if (!c->dbg)
3034 		return -ENOMEM;
3035 
3036 	return 0;
3037 }
3038 
3039 /**
3040  * ubifs_debugging_exit - free debugging data.
3041  * @c: UBIFS file-system description object
3042  */
ubifs_debugging_exit(struct ubifs_info * c)3043 void ubifs_debugging_exit(struct ubifs_info *c)
3044 {
3045 	kfree(c->dbg);
3046 }
3047