1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * The User Datagram Protocol (UDP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 *
15 * Fixes:
16 * Alan Cox : verify_area() calls
17 * Alan Cox : stopped close while in use off icmp
18 * messages. Not a fix but a botch that
19 * for udp at least is 'valid'.
20 * Alan Cox : Fixed icmp handling properly
21 * Alan Cox : Correct error for oversized datagrams
22 * Alan Cox : Tidied select() semantics.
23 * Alan Cox : udp_err() fixed properly, also now
24 * select and read wake correctly on errors
25 * Alan Cox : udp_send verify_area moved to avoid mem leak
26 * Alan Cox : UDP can count its memory
27 * Alan Cox : send to an unknown connection causes
28 * an ECONNREFUSED off the icmp, but
29 * does NOT close.
30 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
32 * bug no longer crashes it.
33 * Fred Van Kempen : Net2e support for sk->broadcast.
34 * Alan Cox : Uses skb_free_datagram
35 * Alan Cox : Added get/set sockopt support.
36 * Alan Cox : Broadcasting without option set returns EACCES.
37 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
38 * Alan Cox : Use ip_tos and ip_ttl
39 * Alan Cox : SNMP Mibs
40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
41 * Matt Dillon : UDP length checks.
42 * Alan Cox : Smarter af_inet used properly.
43 * Alan Cox : Use new kernel side addressing.
44 * Alan Cox : Incorrect return on truncated datagram receive.
45 * Arnt Gulbrandsen : New udp_send and stuff
46 * Alan Cox : Cache last socket
47 * Alan Cox : Route cache
48 * Jon Peatfield : Minor efficiency fix to sendto().
49 * Mike Shaver : RFC1122 checks.
50 * Alan Cox : Nonblocking error fix.
51 * Willy Konynenberg : Transparent proxying support.
52 * Mike McLagan : Routing by source
53 * David S. Miller : New socket lookup architecture.
54 * Last socket cache retained as it
55 * does have a high hit rate.
56 * Olaf Kirch : Don't linearise iovec on sendmsg.
57 * Andi Kleen : Some cleanups, cache destination entry
58 * for connect.
59 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
60 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
61 * return ENOTCONN for unconnected sockets (POSIX)
62 * Janos Farkas : don't deliver multi/broadcasts to a different
63 * bound-to-device socket
64 * Hirokazu Takahashi : HW checksumming for outgoing UDP
65 * datagrams.
66 * Hirokazu Takahashi : sendfile() on UDP works now.
67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
70 * a single port at the same time.
71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72 * James Chapman : Add L2TP encapsulation type.
73 */
74
75 #define pr_fmt(fmt) "UDP: " fmt
76
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <linux/btf_ids.h>
110 #include <trace/events/skb.h>
111 #include <net/busy_poll.h>
112 #include "udp_impl.h"
113 #include <net/sock_reuseport.h>
114 #include <net/addrconf.h>
115 #include <net/udp_tunnel.h>
116 #if IS_ENABLED(CONFIG_IPV6)
117 #include <net/ipv6_stubs.h>
118 #endif
119
120 struct udp_table udp_table __read_mostly;
121 EXPORT_SYMBOL(udp_table);
122
123 long sysctl_udp_mem[3] __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_mem);
125
126 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
127 EXPORT_SYMBOL(udp_memory_allocated);
128 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
129 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
130
131 #define MAX_UDP_PORTS 65536
132 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
133
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,unsigned int log)134 static int udp_lib_lport_inuse(struct net *net, __u16 num,
135 const struct udp_hslot *hslot,
136 unsigned long *bitmap,
137 struct sock *sk, unsigned int log)
138 {
139 struct sock *sk2;
140 kuid_t uid = sock_i_uid(sk);
141
142 sk_for_each(sk2, &hslot->head) {
143 if (net_eq(sock_net(sk2), net) &&
144 sk2 != sk &&
145 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
146 (!sk2->sk_reuse || !sk->sk_reuse) &&
147 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
148 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
149 inet_rcv_saddr_equal(sk, sk2, true)) {
150 if (sk2->sk_reuseport && sk->sk_reuseport &&
151 !rcu_access_pointer(sk->sk_reuseport_cb) &&
152 uid_eq(uid, sock_i_uid(sk2))) {
153 if (!bitmap)
154 return 0;
155 } else {
156 if (!bitmap)
157 return 1;
158 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
159 bitmap);
160 }
161 }
162 }
163 return 0;
164 }
165
166 /*
167 * Note: we still hold spinlock of primary hash chain, so no other writer
168 * can insert/delete a socket with local_port == num
169 */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk)170 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
171 struct udp_hslot *hslot2,
172 struct sock *sk)
173 {
174 struct sock *sk2;
175 kuid_t uid = sock_i_uid(sk);
176 int res = 0;
177
178 spin_lock(&hslot2->lock);
179 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
180 if (net_eq(sock_net(sk2), net) &&
181 sk2 != sk &&
182 (udp_sk(sk2)->udp_port_hash == num) &&
183 (!sk2->sk_reuse || !sk->sk_reuse) &&
184 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
185 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
186 inet_rcv_saddr_equal(sk, sk2, true)) {
187 if (sk2->sk_reuseport && sk->sk_reuseport &&
188 !rcu_access_pointer(sk->sk_reuseport_cb) &&
189 uid_eq(uid, sock_i_uid(sk2))) {
190 res = 0;
191 } else {
192 res = 1;
193 }
194 break;
195 }
196 }
197 spin_unlock(&hslot2->lock);
198 return res;
199 }
200
udp_reuseport_add_sock(struct sock * sk,struct udp_hslot * hslot)201 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
202 {
203 struct net *net = sock_net(sk);
204 kuid_t uid = sock_i_uid(sk);
205 struct sock *sk2;
206
207 sk_for_each(sk2, &hslot->head) {
208 if (net_eq(sock_net(sk2), net) &&
209 sk2 != sk &&
210 sk2->sk_family == sk->sk_family &&
211 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
212 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
213 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
214 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
215 inet_rcv_saddr_equal(sk, sk2, false)) {
216 return reuseport_add_sock(sk, sk2,
217 inet_rcv_saddr_any(sk));
218 }
219 }
220
221 return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
222 }
223
224 /**
225 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
226 *
227 * @sk: socket struct in question
228 * @snum: port number to look up
229 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
230 * with NULL address
231 */
udp_lib_get_port(struct sock * sk,unsigned short snum,unsigned int hash2_nulladdr)232 int udp_lib_get_port(struct sock *sk, unsigned short snum,
233 unsigned int hash2_nulladdr)
234 {
235 struct udp_table *udptable = sk->sk_prot->h.udp_table;
236 struct udp_hslot *hslot, *hslot2;
237 struct net *net = sock_net(sk);
238 int error = -EADDRINUSE;
239
240 if (!snum) {
241 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
242 unsigned short first, last;
243 int low, high, remaining;
244 unsigned int rand;
245
246 inet_sk_get_local_port_range(sk, &low, &high);
247 remaining = (high - low) + 1;
248
249 rand = get_random_u32();
250 first = reciprocal_scale(rand, remaining) + low;
251 /*
252 * force rand to be an odd multiple of UDP_HTABLE_SIZE
253 */
254 rand = (rand | 1) * (udptable->mask + 1);
255 last = first + udptable->mask + 1;
256 do {
257 hslot = udp_hashslot(udptable, net, first);
258 bitmap_zero(bitmap, PORTS_PER_CHAIN);
259 spin_lock_bh(&hslot->lock);
260 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
261 udptable->log);
262
263 snum = first;
264 /*
265 * Iterate on all possible values of snum for this hash.
266 * Using steps of an odd multiple of UDP_HTABLE_SIZE
267 * give us randomization and full range coverage.
268 */
269 do {
270 if (low <= snum && snum <= high &&
271 !test_bit(snum >> udptable->log, bitmap) &&
272 !inet_is_local_reserved_port(net, snum))
273 goto found;
274 snum += rand;
275 } while (snum != first);
276 spin_unlock_bh(&hslot->lock);
277 cond_resched();
278 } while (++first != last);
279 goto fail;
280 } else {
281 hslot = udp_hashslot(udptable, net, snum);
282 spin_lock_bh(&hslot->lock);
283 if (hslot->count > 10) {
284 int exist;
285 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
286
287 slot2 &= udptable->mask;
288 hash2_nulladdr &= udptable->mask;
289
290 hslot2 = udp_hashslot2(udptable, slot2);
291 if (hslot->count < hslot2->count)
292 goto scan_primary_hash;
293
294 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
295 if (!exist && (hash2_nulladdr != slot2)) {
296 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
297 exist = udp_lib_lport_inuse2(net, snum, hslot2,
298 sk);
299 }
300 if (exist)
301 goto fail_unlock;
302 else
303 goto found;
304 }
305 scan_primary_hash:
306 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
307 goto fail_unlock;
308 }
309 found:
310 inet_sk(sk)->inet_num = snum;
311 udp_sk(sk)->udp_port_hash = snum;
312 udp_sk(sk)->udp_portaddr_hash ^= snum;
313 if (sk_unhashed(sk)) {
314 if (sk->sk_reuseport &&
315 udp_reuseport_add_sock(sk, hslot)) {
316 inet_sk(sk)->inet_num = 0;
317 udp_sk(sk)->udp_port_hash = 0;
318 udp_sk(sk)->udp_portaddr_hash ^= snum;
319 goto fail_unlock;
320 }
321
322 sk_add_node_rcu(sk, &hslot->head);
323 hslot->count++;
324 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
325
326 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
327 spin_lock(&hslot2->lock);
328 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
329 sk->sk_family == AF_INET6)
330 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
331 &hslot2->head);
332 else
333 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
334 &hslot2->head);
335 hslot2->count++;
336 spin_unlock(&hslot2->lock);
337 }
338 sock_set_flag(sk, SOCK_RCU_FREE);
339 error = 0;
340 fail_unlock:
341 spin_unlock_bh(&hslot->lock);
342 fail:
343 return error;
344 }
345 EXPORT_SYMBOL(udp_lib_get_port);
346
udp_v4_get_port(struct sock * sk,unsigned short snum)347 int udp_v4_get_port(struct sock *sk, unsigned short snum)
348 {
349 unsigned int hash2_nulladdr =
350 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
351 unsigned int hash2_partial =
352 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
353
354 /* precompute partial secondary hash */
355 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
356 return udp_lib_get_port(sk, snum, hash2_nulladdr);
357 }
358
compute_score(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum,int dif,int sdif)359 static int compute_score(struct sock *sk, struct net *net,
360 __be32 saddr, __be16 sport,
361 __be32 daddr, unsigned short hnum,
362 int dif, int sdif)
363 {
364 int score;
365 struct inet_sock *inet;
366 bool dev_match;
367
368 if (!net_eq(sock_net(sk), net) ||
369 udp_sk(sk)->udp_port_hash != hnum ||
370 ipv6_only_sock(sk))
371 return -1;
372
373 if (sk->sk_rcv_saddr != daddr)
374 return -1;
375
376 score = (sk->sk_family == PF_INET) ? 2 : 1;
377
378 inet = inet_sk(sk);
379 if (inet->inet_daddr) {
380 if (inet->inet_daddr != saddr)
381 return -1;
382 score += 4;
383 }
384
385 if (inet->inet_dport) {
386 if (inet->inet_dport != sport)
387 return -1;
388 score += 4;
389 }
390
391 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
392 dif, sdif);
393 if (!dev_match)
394 return -1;
395 if (sk->sk_bound_dev_if)
396 score += 4;
397
398 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
399 score++;
400 return score;
401 }
402
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)403 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
404 const __u16 lport, const __be32 faddr,
405 const __be16 fport)
406 {
407 static u32 udp_ehash_secret __read_mostly;
408
409 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
410
411 return __inet_ehashfn(laddr, lport, faddr, fport,
412 udp_ehash_secret + net_hash_mix(net));
413 }
414
lookup_reuseport(struct net * net,struct sock * sk,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum)415 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
416 struct sk_buff *skb,
417 __be32 saddr, __be16 sport,
418 __be32 daddr, unsigned short hnum)
419 {
420 struct sock *reuse_sk = NULL;
421 u32 hash;
422
423 if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
424 hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
425 reuse_sk = reuseport_select_sock(sk, hash, skb,
426 sizeof(struct udphdr));
427 }
428 return reuse_sk;
429 }
430
431 /* called with rcu_read_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_hslot * hslot2,struct sk_buff * skb)432 static struct sock *udp4_lib_lookup2(struct net *net,
433 __be32 saddr, __be16 sport,
434 __be32 daddr, unsigned int hnum,
435 int dif, int sdif,
436 struct udp_hslot *hslot2,
437 struct sk_buff *skb)
438 {
439 struct sock *sk, *result;
440 int score, badness;
441
442 result = NULL;
443 badness = 0;
444 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
445 score = compute_score(sk, net, saddr, sport,
446 daddr, hnum, dif, sdif);
447 if (score > badness) {
448 badness = score;
449 result = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
450 if (!result) {
451 result = sk;
452 continue;
453 }
454
455 /* Fall back to scoring if group has connections */
456 if (!reuseport_has_conns(sk))
457 return result;
458
459 /* Reuseport logic returned an error, keep original score. */
460 if (IS_ERR(result))
461 continue;
462
463 badness = compute_score(result, net, saddr, sport,
464 daddr, hnum, dif, sdif);
465
466 }
467 }
468 return result;
469 }
470
udp4_lookup_run_bpf(struct net * net,struct udp_table * udptable,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,u16 hnum,const int dif)471 static struct sock *udp4_lookup_run_bpf(struct net *net,
472 struct udp_table *udptable,
473 struct sk_buff *skb,
474 __be32 saddr, __be16 sport,
475 __be32 daddr, u16 hnum, const int dif)
476 {
477 struct sock *sk, *reuse_sk;
478 bool no_reuseport;
479
480 if (udptable != &udp_table)
481 return NULL; /* only UDP is supported */
482
483 no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP, saddr, sport,
484 daddr, hnum, dif, &sk);
485 if (no_reuseport || IS_ERR_OR_NULL(sk))
486 return sk;
487
488 reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
489 if (reuse_sk)
490 sk = reuse_sk;
491 return sk;
492 }
493
494 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
495 * harder than this. -DaveM
496 */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,int sdif,struct udp_table * udptable,struct sk_buff * skb)497 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
498 __be16 sport, __be32 daddr, __be16 dport, int dif,
499 int sdif, struct udp_table *udptable, struct sk_buff *skb)
500 {
501 unsigned short hnum = ntohs(dport);
502 unsigned int hash2, slot2;
503 struct udp_hslot *hslot2;
504 struct sock *result, *sk;
505
506 hash2 = ipv4_portaddr_hash(net, daddr, hnum);
507 slot2 = hash2 & udptable->mask;
508 hslot2 = &udptable->hash2[slot2];
509
510 /* Lookup connected or non-wildcard socket */
511 result = udp4_lib_lookup2(net, saddr, sport,
512 daddr, hnum, dif, sdif,
513 hslot2, skb);
514 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
515 goto done;
516
517 /* Lookup redirect from BPF */
518 if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
519 sk = udp4_lookup_run_bpf(net, udptable, skb,
520 saddr, sport, daddr, hnum, dif);
521 if (sk) {
522 result = sk;
523 goto done;
524 }
525 }
526
527 /* Got non-wildcard socket or error on first lookup */
528 if (result)
529 goto done;
530
531 /* Lookup wildcard sockets */
532 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
533 slot2 = hash2 & udptable->mask;
534 hslot2 = &udptable->hash2[slot2];
535
536 result = udp4_lib_lookup2(net, saddr, sport,
537 htonl(INADDR_ANY), hnum, dif, sdif,
538 hslot2, skb);
539 done:
540 if (IS_ERR(result))
541 return NULL;
542 return result;
543 }
544 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
545
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)546 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
547 __be16 sport, __be16 dport,
548 struct udp_table *udptable)
549 {
550 const struct iphdr *iph = ip_hdr(skb);
551
552 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
553 iph->daddr, dport, inet_iif(skb),
554 inet_sdif(skb), udptable, skb);
555 }
556
udp4_lib_lookup_skb(const struct sk_buff * skb,__be16 sport,__be16 dport)557 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
558 __be16 sport, __be16 dport)
559 {
560 const struct iphdr *iph = ip_hdr(skb);
561
562 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
563 iph->daddr, dport, inet_iif(skb),
564 inet_sdif(skb), &udp_table, NULL);
565 }
566
567 /* Must be called under rcu_read_lock().
568 * Does increment socket refcount.
569 */
570 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)571 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
572 __be32 daddr, __be16 dport, int dif)
573 {
574 struct sock *sk;
575
576 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
577 dif, 0, &udp_table, NULL);
578 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
579 sk = NULL;
580 return sk;
581 }
582 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
583 #endif
584
__udp_is_mcast_sock(struct net * net,struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif,unsigned short hnum)585 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
586 __be16 loc_port, __be32 loc_addr,
587 __be16 rmt_port, __be32 rmt_addr,
588 int dif, int sdif, unsigned short hnum)
589 {
590 struct inet_sock *inet = inet_sk(sk);
591
592 if (!net_eq(sock_net(sk), net) ||
593 udp_sk(sk)->udp_port_hash != hnum ||
594 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
595 (inet->inet_dport != rmt_port && inet->inet_dport) ||
596 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
597 ipv6_only_sock(sk) ||
598 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
599 return false;
600 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
601 return false;
602 return true;
603 }
604
605 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
udp_encap_enable(void)606 void udp_encap_enable(void)
607 {
608 static_branch_inc(&udp_encap_needed_key);
609 }
610 EXPORT_SYMBOL(udp_encap_enable);
611
udp_encap_disable(void)612 void udp_encap_disable(void)
613 {
614 static_branch_dec(&udp_encap_needed_key);
615 }
616 EXPORT_SYMBOL(udp_encap_disable);
617
618 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
619 * through error handlers in encapsulations looking for a match.
620 */
__udp4_lib_err_encap_no_sk(struct sk_buff * skb,u32 info)621 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
622 {
623 int i;
624
625 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
626 int (*handler)(struct sk_buff *skb, u32 info);
627 const struct ip_tunnel_encap_ops *encap;
628
629 encap = rcu_dereference(iptun_encaps[i]);
630 if (!encap)
631 continue;
632 handler = encap->err_handler;
633 if (handler && !handler(skb, info))
634 return 0;
635 }
636
637 return -ENOENT;
638 }
639
640 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
641 * reversing source and destination port: this will match tunnels that force the
642 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
643 * lwtunnels might actually break this assumption by being configured with
644 * different destination ports on endpoints, in this case we won't be able to
645 * trace ICMP messages back to them.
646 *
647 * If this doesn't match any socket, probe tunnels with arbitrary destination
648 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
649 * we've sent packets to won't necessarily match the local destination port.
650 *
651 * Then ask the tunnel implementation to match the error against a valid
652 * association.
653 *
654 * Return an error if we can't find a match, the socket if we need further
655 * processing, zero otherwise.
656 */
__udp4_lib_err_encap(struct net * net,const struct iphdr * iph,struct udphdr * uh,struct udp_table * udptable,struct sock * sk,struct sk_buff * skb,u32 info)657 static struct sock *__udp4_lib_err_encap(struct net *net,
658 const struct iphdr *iph,
659 struct udphdr *uh,
660 struct udp_table *udptable,
661 struct sock *sk,
662 struct sk_buff *skb, u32 info)
663 {
664 int (*lookup)(struct sock *sk, struct sk_buff *skb);
665 int network_offset, transport_offset;
666 struct udp_sock *up;
667
668 network_offset = skb_network_offset(skb);
669 transport_offset = skb_transport_offset(skb);
670
671 /* Network header needs to point to the outer IPv4 header inside ICMP */
672 skb_reset_network_header(skb);
673
674 /* Transport header needs to point to the UDP header */
675 skb_set_transport_header(skb, iph->ihl << 2);
676
677 if (sk) {
678 up = udp_sk(sk);
679
680 lookup = READ_ONCE(up->encap_err_lookup);
681 if (lookup && lookup(sk, skb))
682 sk = NULL;
683
684 goto out;
685 }
686
687 sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
688 iph->saddr, uh->dest, skb->dev->ifindex, 0,
689 udptable, NULL);
690 if (sk) {
691 up = udp_sk(sk);
692
693 lookup = READ_ONCE(up->encap_err_lookup);
694 if (!lookup || lookup(sk, skb))
695 sk = NULL;
696 }
697
698 out:
699 if (!sk)
700 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
701
702 skb_set_transport_header(skb, transport_offset);
703 skb_set_network_header(skb, network_offset);
704
705 return sk;
706 }
707
708 /*
709 * This routine is called by the ICMP module when it gets some
710 * sort of error condition. If err < 0 then the socket should
711 * be closed and the error returned to the user. If err > 0
712 * it's just the icmp type << 8 | icmp code.
713 * Header points to the ip header of the error packet. We move
714 * on past this. Then (as it used to claim before adjustment)
715 * header points to the first 8 bytes of the udp header. We need
716 * to find the appropriate port.
717 */
718
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)719 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
720 {
721 struct inet_sock *inet;
722 const struct iphdr *iph = (const struct iphdr *)skb->data;
723 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
724 const int type = icmp_hdr(skb)->type;
725 const int code = icmp_hdr(skb)->code;
726 bool tunnel = false;
727 struct sock *sk;
728 int harderr;
729 int err;
730 struct net *net = dev_net(skb->dev);
731
732 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
733 iph->saddr, uh->source, skb->dev->ifindex,
734 inet_sdif(skb), udptable, NULL);
735
736 if (!sk || udp_sk(sk)->encap_type) {
737 /* No socket for error: try tunnels before discarding */
738 if (static_branch_unlikely(&udp_encap_needed_key)) {
739 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
740 info);
741 if (!sk)
742 return 0;
743 } else
744 sk = ERR_PTR(-ENOENT);
745
746 if (IS_ERR(sk)) {
747 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
748 return PTR_ERR(sk);
749 }
750
751 tunnel = true;
752 }
753
754 err = 0;
755 harderr = 0;
756 inet = inet_sk(sk);
757
758 switch (type) {
759 default:
760 case ICMP_TIME_EXCEEDED:
761 err = EHOSTUNREACH;
762 break;
763 case ICMP_SOURCE_QUENCH:
764 goto out;
765 case ICMP_PARAMETERPROB:
766 err = EPROTO;
767 harderr = 1;
768 break;
769 case ICMP_DEST_UNREACH:
770 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
771 ipv4_sk_update_pmtu(skb, sk, info);
772 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
773 err = EMSGSIZE;
774 harderr = 1;
775 break;
776 }
777 goto out;
778 }
779 err = EHOSTUNREACH;
780 if (code <= NR_ICMP_UNREACH) {
781 harderr = icmp_err_convert[code].fatal;
782 err = icmp_err_convert[code].errno;
783 }
784 break;
785 case ICMP_REDIRECT:
786 ipv4_sk_redirect(skb, sk);
787 goto out;
788 }
789
790 /*
791 * RFC1122: OK. Passes ICMP errors back to application, as per
792 * 4.1.3.3.
793 */
794 if (tunnel) {
795 /* ...not for tunnels though: we don't have a sending socket */
796 if (udp_sk(sk)->encap_err_rcv)
797 udp_sk(sk)->encap_err_rcv(sk, skb, iph->ihl << 2);
798 goto out;
799 }
800 if (!inet->recverr) {
801 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
802 goto out;
803 } else
804 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
805
806 sk->sk_err = err;
807 sk_error_report(sk);
808 out:
809 return 0;
810 }
811
udp_err(struct sk_buff * skb,u32 info)812 int udp_err(struct sk_buff *skb, u32 info)
813 {
814 return __udp4_lib_err(skb, info, &udp_table);
815 }
816
817 /*
818 * Throw away all pending data and cancel the corking. Socket is locked.
819 */
udp_flush_pending_frames(struct sock * sk)820 void udp_flush_pending_frames(struct sock *sk)
821 {
822 struct udp_sock *up = udp_sk(sk);
823
824 if (up->pending) {
825 up->len = 0;
826 WRITE_ONCE(up->pending, 0);
827 ip_flush_pending_frames(sk);
828 }
829 }
830 EXPORT_SYMBOL(udp_flush_pending_frames);
831
832 /**
833 * udp4_hwcsum - handle outgoing HW checksumming
834 * @skb: sk_buff containing the filled-in UDP header
835 * (checksum field must be zeroed out)
836 * @src: source IP address
837 * @dst: destination IP address
838 */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)839 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
840 {
841 struct udphdr *uh = udp_hdr(skb);
842 int offset = skb_transport_offset(skb);
843 int len = skb->len - offset;
844 int hlen = len;
845 __wsum csum = 0;
846
847 if (!skb_has_frag_list(skb)) {
848 /*
849 * Only one fragment on the socket.
850 */
851 skb->csum_start = skb_transport_header(skb) - skb->head;
852 skb->csum_offset = offsetof(struct udphdr, check);
853 uh->check = ~csum_tcpudp_magic(src, dst, len,
854 IPPROTO_UDP, 0);
855 } else {
856 struct sk_buff *frags;
857
858 /*
859 * HW-checksum won't work as there are two or more
860 * fragments on the socket so that all csums of sk_buffs
861 * should be together
862 */
863 skb_walk_frags(skb, frags) {
864 csum = csum_add(csum, frags->csum);
865 hlen -= frags->len;
866 }
867
868 csum = skb_checksum(skb, offset, hlen, csum);
869 skb->ip_summed = CHECKSUM_NONE;
870
871 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
872 if (uh->check == 0)
873 uh->check = CSUM_MANGLED_0;
874 }
875 }
876 EXPORT_SYMBOL_GPL(udp4_hwcsum);
877
878 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
879 * for the simple case like when setting the checksum for a UDP tunnel.
880 */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)881 void udp_set_csum(bool nocheck, struct sk_buff *skb,
882 __be32 saddr, __be32 daddr, int len)
883 {
884 struct udphdr *uh = udp_hdr(skb);
885
886 if (nocheck) {
887 uh->check = 0;
888 } else if (skb_is_gso(skb)) {
889 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
890 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
891 uh->check = 0;
892 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
893 if (uh->check == 0)
894 uh->check = CSUM_MANGLED_0;
895 } else {
896 skb->ip_summed = CHECKSUM_PARTIAL;
897 skb->csum_start = skb_transport_header(skb) - skb->head;
898 skb->csum_offset = offsetof(struct udphdr, check);
899 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
900 }
901 }
902 EXPORT_SYMBOL(udp_set_csum);
903
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4,struct inet_cork * cork)904 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
905 struct inet_cork *cork)
906 {
907 struct sock *sk = skb->sk;
908 struct inet_sock *inet = inet_sk(sk);
909 struct udphdr *uh;
910 int err;
911 int is_udplite = IS_UDPLITE(sk);
912 int offset = skb_transport_offset(skb);
913 int len = skb->len - offset;
914 int datalen = len - sizeof(*uh);
915 __wsum csum = 0;
916
917 /*
918 * Create a UDP header
919 */
920 uh = udp_hdr(skb);
921 uh->source = inet->inet_sport;
922 uh->dest = fl4->fl4_dport;
923 uh->len = htons(len);
924 uh->check = 0;
925
926 if (cork->gso_size) {
927 const int hlen = skb_network_header_len(skb) +
928 sizeof(struct udphdr);
929
930 if (hlen + cork->gso_size > cork->fragsize) {
931 kfree_skb(skb);
932 return -EINVAL;
933 }
934 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
935 kfree_skb(skb);
936 return -EINVAL;
937 }
938 if (sk->sk_no_check_tx) {
939 kfree_skb(skb);
940 return -EINVAL;
941 }
942 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
943 dst_xfrm(skb_dst(skb))) {
944 kfree_skb(skb);
945 return -EIO;
946 }
947
948 if (datalen > cork->gso_size) {
949 skb_shinfo(skb)->gso_size = cork->gso_size;
950 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
951 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
952 cork->gso_size);
953 }
954 goto csum_partial;
955 }
956
957 if (is_udplite) /* UDP-Lite */
958 csum = udplite_csum(skb);
959
960 else if (sk->sk_no_check_tx) { /* UDP csum off */
961
962 skb->ip_summed = CHECKSUM_NONE;
963 goto send;
964
965 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
966 csum_partial:
967
968 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
969 goto send;
970
971 } else
972 csum = udp_csum(skb);
973
974 /* add protocol-dependent pseudo-header */
975 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
976 sk->sk_protocol, csum);
977 if (uh->check == 0)
978 uh->check = CSUM_MANGLED_0;
979
980 send:
981 err = ip_send_skb(sock_net(sk), skb);
982 if (err) {
983 if (err == -ENOBUFS && !inet->recverr) {
984 UDP_INC_STATS(sock_net(sk),
985 UDP_MIB_SNDBUFERRORS, is_udplite);
986 err = 0;
987 }
988 } else
989 UDP_INC_STATS(sock_net(sk),
990 UDP_MIB_OUTDATAGRAMS, is_udplite);
991 return err;
992 }
993
994 /*
995 * Push out all pending data as one UDP datagram. Socket is locked.
996 */
udp_push_pending_frames(struct sock * sk)997 int udp_push_pending_frames(struct sock *sk)
998 {
999 struct udp_sock *up = udp_sk(sk);
1000 struct inet_sock *inet = inet_sk(sk);
1001 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1002 struct sk_buff *skb;
1003 int err = 0;
1004
1005 skb = ip_finish_skb(sk, fl4);
1006 if (!skb)
1007 goto out;
1008
1009 err = udp_send_skb(skb, fl4, &inet->cork.base);
1010
1011 out:
1012 up->len = 0;
1013 WRITE_ONCE(up->pending, 0);
1014 return err;
1015 }
1016 EXPORT_SYMBOL(udp_push_pending_frames);
1017
__udp_cmsg_send(struct cmsghdr * cmsg,u16 * gso_size)1018 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1019 {
1020 switch (cmsg->cmsg_type) {
1021 case UDP_SEGMENT:
1022 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1023 return -EINVAL;
1024 *gso_size = *(__u16 *)CMSG_DATA(cmsg);
1025 return 0;
1026 default:
1027 return -EINVAL;
1028 }
1029 }
1030
udp_cmsg_send(struct sock * sk,struct msghdr * msg,u16 * gso_size)1031 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1032 {
1033 struct cmsghdr *cmsg;
1034 bool need_ip = false;
1035 int err;
1036
1037 for_each_cmsghdr(cmsg, msg) {
1038 if (!CMSG_OK(msg, cmsg))
1039 return -EINVAL;
1040
1041 if (cmsg->cmsg_level != SOL_UDP) {
1042 need_ip = true;
1043 continue;
1044 }
1045
1046 err = __udp_cmsg_send(cmsg, gso_size);
1047 if (err)
1048 return err;
1049 }
1050
1051 return need_ip;
1052 }
1053 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1054
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1055 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1056 {
1057 struct inet_sock *inet = inet_sk(sk);
1058 struct udp_sock *up = udp_sk(sk);
1059 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1060 struct flowi4 fl4_stack;
1061 struct flowi4 *fl4;
1062 int ulen = len;
1063 struct ipcm_cookie ipc;
1064 struct rtable *rt = NULL;
1065 int free = 0;
1066 int connected = 0;
1067 __be32 daddr, faddr, saddr;
1068 __be16 dport;
1069 u8 tos;
1070 int err, is_udplite = IS_UDPLITE(sk);
1071 int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1072 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1073 struct sk_buff *skb;
1074 struct ip_options_data opt_copy;
1075
1076 if (len > 0xFFFF)
1077 return -EMSGSIZE;
1078
1079 /*
1080 * Check the flags.
1081 */
1082
1083 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1084 return -EOPNOTSUPP;
1085
1086 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1087
1088 fl4 = &inet->cork.fl.u.ip4;
1089 if (READ_ONCE(up->pending)) {
1090 /*
1091 * There are pending frames.
1092 * The socket lock must be held while it's corked.
1093 */
1094 lock_sock(sk);
1095 if (likely(up->pending)) {
1096 if (unlikely(up->pending != AF_INET)) {
1097 release_sock(sk);
1098 return -EINVAL;
1099 }
1100 goto do_append_data;
1101 }
1102 release_sock(sk);
1103 }
1104 ulen += sizeof(struct udphdr);
1105
1106 /*
1107 * Get and verify the address.
1108 */
1109 if (usin) {
1110 if (msg->msg_namelen < sizeof(*usin))
1111 return -EINVAL;
1112 if (usin->sin_family != AF_INET) {
1113 if (usin->sin_family != AF_UNSPEC)
1114 return -EAFNOSUPPORT;
1115 }
1116
1117 daddr = usin->sin_addr.s_addr;
1118 dport = usin->sin_port;
1119 if (dport == 0)
1120 return -EINVAL;
1121 } else {
1122 if (sk->sk_state != TCP_ESTABLISHED)
1123 return -EDESTADDRREQ;
1124 daddr = inet->inet_daddr;
1125 dport = inet->inet_dport;
1126 /* Open fast path for connected socket.
1127 Route will not be used, if at least one option is set.
1128 */
1129 connected = 1;
1130 }
1131
1132 ipcm_init_sk(&ipc, inet);
1133 ipc.gso_size = READ_ONCE(up->gso_size);
1134
1135 if (msg->msg_controllen) {
1136 err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1137 if (err > 0)
1138 err = ip_cmsg_send(sk, msg, &ipc,
1139 sk->sk_family == AF_INET6);
1140 if (unlikely(err < 0)) {
1141 kfree(ipc.opt);
1142 return err;
1143 }
1144 if (ipc.opt)
1145 free = 1;
1146 connected = 0;
1147 }
1148 if (!ipc.opt) {
1149 struct ip_options_rcu *inet_opt;
1150
1151 rcu_read_lock();
1152 inet_opt = rcu_dereference(inet->inet_opt);
1153 if (inet_opt) {
1154 memcpy(&opt_copy, inet_opt,
1155 sizeof(*inet_opt) + inet_opt->opt.optlen);
1156 ipc.opt = &opt_copy.opt;
1157 }
1158 rcu_read_unlock();
1159 }
1160
1161 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1162 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1163 (struct sockaddr *)usin, &ipc.addr);
1164 if (err)
1165 goto out_free;
1166 if (usin) {
1167 if (usin->sin_port == 0) {
1168 /* BPF program set invalid port. Reject it. */
1169 err = -EINVAL;
1170 goto out_free;
1171 }
1172 daddr = usin->sin_addr.s_addr;
1173 dport = usin->sin_port;
1174 }
1175 }
1176
1177 saddr = ipc.addr;
1178 ipc.addr = faddr = daddr;
1179
1180 if (ipc.opt && ipc.opt->opt.srr) {
1181 if (!daddr) {
1182 err = -EINVAL;
1183 goto out_free;
1184 }
1185 faddr = ipc.opt->opt.faddr;
1186 connected = 0;
1187 }
1188 tos = get_rttos(&ipc, inet);
1189 if (sock_flag(sk, SOCK_LOCALROUTE) ||
1190 (msg->msg_flags & MSG_DONTROUTE) ||
1191 (ipc.opt && ipc.opt->opt.is_strictroute)) {
1192 tos |= RTO_ONLINK;
1193 connected = 0;
1194 }
1195
1196 if (ipv4_is_multicast(daddr)) {
1197 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1198 ipc.oif = inet->mc_index;
1199 if (!saddr)
1200 saddr = inet->mc_addr;
1201 connected = 0;
1202 } else if (!ipc.oif) {
1203 ipc.oif = inet->uc_index;
1204 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1205 /* oif is set, packet is to local broadcast and
1206 * uc_index is set. oif is most likely set
1207 * by sk_bound_dev_if. If uc_index != oif check if the
1208 * oif is an L3 master and uc_index is an L3 slave.
1209 * If so, we want to allow the send using the uc_index.
1210 */
1211 if (ipc.oif != inet->uc_index &&
1212 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1213 inet->uc_index)) {
1214 ipc.oif = inet->uc_index;
1215 }
1216 }
1217
1218 if (connected)
1219 rt = (struct rtable *)sk_dst_check(sk, 0);
1220
1221 if (!rt) {
1222 struct net *net = sock_net(sk);
1223 __u8 flow_flags = inet_sk_flowi_flags(sk);
1224
1225 fl4 = &fl4_stack;
1226
1227 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1228 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1229 flow_flags,
1230 faddr, saddr, dport, inet->inet_sport,
1231 sk->sk_uid);
1232
1233 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1234 rt = ip_route_output_flow(net, fl4, sk);
1235 if (IS_ERR(rt)) {
1236 err = PTR_ERR(rt);
1237 rt = NULL;
1238 if (err == -ENETUNREACH)
1239 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1240 goto out;
1241 }
1242
1243 err = -EACCES;
1244 if ((rt->rt_flags & RTCF_BROADCAST) &&
1245 !sock_flag(sk, SOCK_BROADCAST))
1246 goto out;
1247 if (connected)
1248 sk_dst_set(sk, dst_clone(&rt->dst));
1249 }
1250
1251 if (msg->msg_flags&MSG_CONFIRM)
1252 goto do_confirm;
1253 back_from_confirm:
1254
1255 saddr = fl4->saddr;
1256 if (!ipc.addr)
1257 daddr = ipc.addr = fl4->daddr;
1258
1259 /* Lockless fast path for the non-corking case. */
1260 if (!corkreq) {
1261 struct inet_cork cork;
1262
1263 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1264 sizeof(struct udphdr), &ipc, &rt,
1265 &cork, msg->msg_flags);
1266 err = PTR_ERR(skb);
1267 if (!IS_ERR_OR_NULL(skb))
1268 err = udp_send_skb(skb, fl4, &cork);
1269 goto out;
1270 }
1271
1272 lock_sock(sk);
1273 if (unlikely(up->pending)) {
1274 /* The socket is already corked while preparing it. */
1275 /* ... which is an evident application bug. --ANK */
1276 release_sock(sk);
1277
1278 net_dbg_ratelimited("socket already corked\n");
1279 err = -EINVAL;
1280 goto out;
1281 }
1282 /*
1283 * Now cork the socket to pend data.
1284 */
1285 fl4 = &inet->cork.fl.u.ip4;
1286 fl4->daddr = daddr;
1287 fl4->saddr = saddr;
1288 fl4->fl4_dport = dport;
1289 fl4->fl4_sport = inet->inet_sport;
1290 WRITE_ONCE(up->pending, AF_INET);
1291
1292 do_append_data:
1293 up->len += ulen;
1294 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1295 sizeof(struct udphdr), &ipc, &rt,
1296 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1297 if (err)
1298 udp_flush_pending_frames(sk);
1299 else if (!corkreq)
1300 err = udp_push_pending_frames(sk);
1301 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1302 WRITE_ONCE(up->pending, 0);
1303 release_sock(sk);
1304
1305 out:
1306 ip_rt_put(rt);
1307 out_free:
1308 if (free)
1309 kfree(ipc.opt);
1310 if (!err)
1311 return len;
1312 /*
1313 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1314 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1315 * we don't have a good statistic (IpOutDiscards but it can be too many
1316 * things). We could add another new stat but at least for now that
1317 * seems like overkill.
1318 */
1319 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1320 UDP_INC_STATS(sock_net(sk),
1321 UDP_MIB_SNDBUFERRORS, is_udplite);
1322 }
1323 return err;
1324
1325 do_confirm:
1326 if (msg->msg_flags & MSG_PROBE)
1327 dst_confirm_neigh(&rt->dst, &fl4->daddr);
1328 if (!(msg->msg_flags&MSG_PROBE) || len)
1329 goto back_from_confirm;
1330 err = 0;
1331 goto out;
1332 }
1333 EXPORT_SYMBOL(udp_sendmsg);
1334
udp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1335 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1336 size_t size, int flags)
1337 {
1338 struct bio_vec bvec;
1339 struct msghdr msg = { .msg_flags = flags | MSG_SPLICE_PAGES };
1340
1341 if (flags & MSG_SENDPAGE_NOTLAST)
1342 msg.msg_flags |= MSG_MORE;
1343
1344 bvec_set_page(&bvec, page, size, offset);
1345 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
1346 return udp_sendmsg(sk, &msg, size);
1347 }
1348
1349 #define UDP_SKB_IS_STATELESS 0x80000000
1350
1351 /* all head states (dst, sk, nf conntrack) except skb extensions are
1352 * cleared by udp_rcv().
1353 *
1354 * We need to preserve secpath, if present, to eventually process
1355 * IP_CMSG_PASSSEC at recvmsg() time.
1356 *
1357 * Other extensions can be cleared.
1358 */
udp_try_make_stateless(struct sk_buff * skb)1359 static bool udp_try_make_stateless(struct sk_buff *skb)
1360 {
1361 if (!skb_has_extensions(skb))
1362 return true;
1363
1364 if (!secpath_exists(skb)) {
1365 skb_ext_reset(skb);
1366 return true;
1367 }
1368
1369 return false;
1370 }
1371
udp_set_dev_scratch(struct sk_buff * skb)1372 static void udp_set_dev_scratch(struct sk_buff *skb)
1373 {
1374 struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1375
1376 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1377 scratch->_tsize_state = skb->truesize;
1378 #if BITS_PER_LONG == 64
1379 scratch->len = skb->len;
1380 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1381 scratch->is_linear = !skb_is_nonlinear(skb);
1382 #endif
1383 if (udp_try_make_stateless(skb))
1384 scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1385 }
1386
udp_skb_csum_unnecessary_set(struct sk_buff * skb)1387 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1388 {
1389 /* We come here after udp_lib_checksum_complete() returned 0.
1390 * This means that __skb_checksum_complete() might have
1391 * set skb->csum_valid to 1.
1392 * On 64bit platforms, we can set csum_unnecessary
1393 * to true, but only if the skb is not shared.
1394 */
1395 #if BITS_PER_LONG == 64
1396 if (!skb_shared(skb))
1397 udp_skb_scratch(skb)->csum_unnecessary = true;
1398 #endif
1399 }
1400
udp_skb_truesize(struct sk_buff * skb)1401 static int udp_skb_truesize(struct sk_buff *skb)
1402 {
1403 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1404 }
1405
udp_skb_has_head_state(struct sk_buff * skb)1406 static bool udp_skb_has_head_state(struct sk_buff *skb)
1407 {
1408 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1409 }
1410
1411 /* fully reclaim rmem/fwd memory allocated for skb */
udp_rmem_release(struct sock * sk,int size,int partial,bool rx_queue_lock_held)1412 static void udp_rmem_release(struct sock *sk, int size, int partial,
1413 bool rx_queue_lock_held)
1414 {
1415 struct udp_sock *up = udp_sk(sk);
1416 struct sk_buff_head *sk_queue;
1417 int amt;
1418
1419 if (likely(partial)) {
1420 up->forward_deficit += size;
1421 size = up->forward_deficit;
1422 if (size < (sk->sk_rcvbuf >> 2) &&
1423 !skb_queue_empty(&up->reader_queue))
1424 return;
1425 } else {
1426 size += up->forward_deficit;
1427 }
1428 up->forward_deficit = 0;
1429
1430 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1431 * if the called don't held it already
1432 */
1433 sk_queue = &sk->sk_receive_queue;
1434 if (!rx_queue_lock_held)
1435 spin_lock(&sk_queue->lock);
1436
1437
1438 sk_forward_alloc_add(sk, size);
1439 amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1440 sk_forward_alloc_add(sk, -amt);
1441
1442 if (amt)
1443 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1444
1445 atomic_sub(size, &sk->sk_rmem_alloc);
1446
1447 /* this can save us from acquiring the rx queue lock on next receive */
1448 skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1449
1450 if (!rx_queue_lock_held)
1451 spin_unlock(&sk_queue->lock);
1452 }
1453
1454 /* Note: called with reader_queue.lock held.
1455 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1456 * This avoids a cache line miss while receive_queue lock is held.
1457 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1458 */
udp_skb_destructor(struct sock * sk,struct sk_buff * skb)1459 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1460 {
1461 prefetch(&skb->data);
1462 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1463 }
1464 EXPORT_SYMBOL(udp_skb_destructor);
1465
1466 /* as above, but the caller held the rx queue lock, too */
udp_skb_dtor_locked(struct sock * sk,struct sk_buff * skb)1467 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1468 {
1469 prefetch(&skb->data);
1470 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1471 }
1472
1473 /* Idea of busylocks is to let producers grab an extra spinlock
1474 * to relieve pressure on the receive_queue spinlock shared by consumer.
1475 * Under flood, this means that only one producer can be in line
1476 * trying to acquire the receive_queue spinlock.
1477 * These busylock can be allocated on a per cpu manner, instead of a
1478 * per socket one (that would consume a cache line per socket)
1479 */
1480 static int udp_busylocks_log __read_mostly;
1481 static spinlock_t *udp_busylocks __read_mostly;
1482
busylock_acquire(void * ptr)1483 static spinlock_t *busylock_acquire(void *ptr)
1484 {
1485 spinlock_t *busy;
1486
1487 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1488 spin_lock(busy);
1489 return busy;
1490 }
1491
busylock_release(spinlock_t * busy)1492 static void busylock_release(spinlock_t *busy)
1493 {
1494 if (busy)
1495 spin_unlock(busy);
1496 }
1497
__udp_enqueue_schedule_skb(struct sock * sk,struct sk_buff * skb)1498 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1499 {
1500 struct sk_buff_head *list = &sk->sk_receive_queue;
1501 int rmem, delta, amt, err = -ENOMEM;
1502 spinlock_t *busy = NULL;
1503 int size;
1504
1505 /* try to avoid the costly atomic add/sub pair when the receive
1506 * queue is full; always allow at least a packet
1507 */
1508 rmem = atomic_read(&sk->sk_rmem_alloc);
1509 if (rmem > sk->sk_rcvbuf)
1510 goto drop;
1511
1512 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1513 * having linear skbs :
1514 * - Reduce memory overhead and thus increase receive queue capacity
1515 * - Less cache line misses at copyout() time
1516 * - Less work at consume_skb() (less alien page frag freeing)
1517 */
1518 if (rmem > (sk->sk_rcvbuf >> 1)) {
1519 skb_condense(skb);
1520
1521 busy = busylock_acquire(sk);
1522 }
1523 size = skb->truesize;
1524 udp_set_dev_scratch(skb);
1525
1526 /* we drop only if the receive buf is full and the receive
1527 * queue contains some other skb
1528 */
1529 rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1530 if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1531 goto uncharge_drop;
1532
1533 spin_lock(&list->lock);
1534 if (size >= sk->sk_forward_alloc) {
1535 amt = sk_mem_pages(size);
1536 delta = amt << PAGE_SHIFT;
1537 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1538 err = -ENOBUFS;
1539 spin_unlock(&list->lock);
1540 goto uncharge_drop;
1541 }
1542
1543 sk->sk_forward_alloc += delta;
1544 }
1545
1546 sk_forward_alloc_add(sk, -size);
1547
1548 /* no need to setup a destructor, we will explicitly release the
1549 * forward allocated memory on dequeue
1550 */
1551 sock_skb_set_dropcount(sk, skb);
1552
1553 __skb_queue_tail(list, skb);
1554 spin_unlock(&list->lock);
1555
1556 if (!sock_flag(sk, SOCK_DEAD))
1557 sk->sk_data_ready(sk);
1558
1559 busylock_release(busy);
1560 return 0;
1561
1562 uncharge_drop:
1563 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1564
1565 drop:
1566 atomic_inc(&sk->sk_drops);
1567 busylock_release(busy);
1568 return err;
1569 }
1570 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1571
udp_destruct_common(struct sock * sk)1572 void udp_destruct_common(struct sock *sk)
1573 {
1574 /* reclaim completely the forward allocated memory */
1575 struct udp_sock *up = udp_sk(sk);
1576 unsigned int total = 0;
1577 struct sk_buff *skb;
1578
1579 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1580 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1581 total += skb->truesize;
1582 kfree_skb(skb);
1583 }
1584 udp_rmem_release(sk, total, 0, true);
1585 }
1586 EXPORT_SYMBOL_GPL(udp_destruct_common);
1587
udp_destruct_sock(struct sock * sk)1588 static void udp_destruct_sock(struct sock *sk)
1589 {
1590 udp_destruct_common(sk);
1591 inet_sock_destruct(sk);
1592 }
1593
udp_init_sock(struct sock * sk)1594 int udp_init_sock(struct sock *sk)
1595 {
1596 skb_queue_head_init(&udp_sk(sk)->reader_queue);
1597 sk->sk_destruct = udp_destruct_sock;
1598 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1599 return 0;
1600 }
1601
skb_consume_udp(struct sock * sk,struct sk_buff * skb,int len)1602 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1603 {
1604 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1605 bool slow = lock_sock_fast(sk);
1606
1607 sk_peek_offset_bwd(sk, len);
1608 unlock_sock_fast(sk, slow);
1609 }
1610
1611 if (!skb_unref(skb))
1612 return;
1613
1614 /* In the more common cases we cleared the head states previously,
1615 * see __udp_queue_rcv_skb().
1616 */
1617 if (unlikely(udp_skb_has_head_state(skb)))
1618 skb_release_head_state(skb);
1619 __consume_stateless_skb(skb);
1620 }
1621 EXPORT_SYMBOL_GPL(skb_consume_udp);
1622
__first_packet_length(struct sock * sk,struct sk_buff_head * rcvq,int * total)1623 static struct sk_buff *__first_packet_length(struct sock *sk,
1624 struct sk_buff_head *rcvq,
1625 int *total)
1626 {
1627 struct sk_buff *skb;
1628
1629 while ((skb = skb_peek(rcvq)) != NULL) {
1630 if (udp_lib_checksum_complete(skb)) {
1631 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1632 IS_UDPLITE(sk));
1633 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1634 IS_UDPLITE(sk));
1635 atomic_inc(&sk->sk_drops);
1636 __skb_unlink(skb, rcvq);
1637 *total += skb->truesize;
1638 kfree_skb(skb);
1639 } else {
1640 udp_skb_csum_unnecessary_set(skb);
1641 break;
1642 }
1643 }
1644 return skb;
1645 }
1646
1647 /**
1648 * first_packet_length - return length of first packet in receive queue
1649 * @sk: socket
1650 *
1651 * Drops all bad checksum frames, until a valid one is found.
1652 * Returns the length of found skb, or -1 if none is found.
1653 */
first_packet_length(struct sock * sk)1654 static int first_packet_length(struct sock *sk)
1655 {
1656 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1657 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1658 struct sk_buff *skb;
1659 int total = 0;
1660 int res;
1661
1662 spin_lock_bh(&rcvq->lock);
1663 skb = __first_packet_length(sk, rcvq, &total);
1664 if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1665 spin_lock(&sk_queue->lock);
1666 skb_queue_splice_tail_init(sk_queue, rcvq);
1667 spin_unlock(&sk_queue->lock);
1668
1669 skb = __first_packet_length(sk, rcvq, &total);
1670 }
1671 res = skb ? skb->len : -1;
1672 if (total)
1673 udp_rmem_release(sk, total, 1, false);
1674 spin_unlock_bh(&rcvq->lock);
1675 return res;
1676 }
1677
1678 /*
1679 * IOCTL requests applicable to the UDP protocol
1680 */
1681
udp_ioctl(struct sock * sk,int cmd,unsigned long arg)1682 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1683 {
1684 switch (cmd) {
1685 case SIOCOUTQ:
1686 {
1687 int amount = sk_wmem_alloc_get(sk);
1688
1689 return put_user(amount, (int __user *)arg);
1690 }
1691
1692 case SIOCINQ:
1693 {
1694 int amount = max_t(int, 0, first_packet_length(sk));
1695
1696 return put_user(amount, (int __user *)arg);
1697 }
1698
1699 default:
1700 return -ENOIOCTLCMD;
1701 }
1702
1703 return 0;
1704 }
1705 EXPORT_SYMBOL(udp_ioctl);
1706
__skb_recv_udp(struct sock * sk,unsigned int flags,int * off,int * err)1707 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1708 int *off, int *err)
1709 {
1710 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1711 struct sk_buff_head *queue;
1712 struct sk_buff *last;
1713 long timeo;
1714 int error;
1715
1716 queue = &udp_sk(sk)->reader_queue;
1717 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1718 do {
1719 struct sk_buff *skb;
1720
1721 error = sock_error(sk);
1722 if (error)
1723 break;
1724
1725 error = -EAGAIN;
1726 do {
1727 spin_lock_bh(&queue->lock);
1728 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1729 err, &last);
1730 if (skb) {
1731 if (!(flags & MSG_PEEK))
1732 udp_skb_destructor(sk, skb);
1733 spin_unlock_bh(&queue->lock);
1734 return skb;
1735 }
1736
1737 if (skb_queue_empty_lockless(sk_queue)) {
1738 spin_unlock_bh(&queue->lock);
1739 goto busy_check;
1740 }
1741
1742 /* refill the reader queue and walk it again
1743 * keep both queues locked to avoid re-acquiring
1744 * the sk_receive_queue lock if fwd memory scheduling
1745 * is needed.
1746 */
1747 spin_lock(&sk_queue->lock);
1748 skb_queue_splice_tail_init(sk_queue, queue);
1749
1750 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1751 err, &last);
1752 if (skb && !(flags & MSG_PEEK))
1753 udp_skb_dtor_locked(sk, skb);
1754 spin_unlock(&sk_queue->lock);
1755 spin_unlock_bh(&queue->lock);
1756 if (skb)
1757 return skb;
1758
1759 busy_check:
1760 if (!sk_can_busy_loop(sk))
1761 break;
1762
1763 sk_busy_loop(sk, flags & MSG_DONTWAIT);
1764 } while (!skb_queue_empty_lockless(sk_queue));
1765
1766 /* sk_queue is empty, reader_queue may contain peeked packets */
1767 } while (timeo &&
1768 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1769 &error, &timeo,
1770 (struct sk_buff *)sk_queue));
1771
1772 *err = error;
1773 return NULL;
1774 }
1775 EXPORT_SYMBOL(__skb_recv_udp);
1776
udp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1777 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1778 {
1779 struct sk_buff *skb;
1780 int err;
1781
1782 try_again:
1783 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1784 if (!skb)
1785 return err;
1786
1787 if (udp_lib_checksum_complete(skb)) {
1788 int is_udplite = IS_UDPLITE(sk);
1789 struct net *net = sock_net(sk);
1790
1791 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1792 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1793 atomic_inc(&sk->sk_drops);
1794 kfree_skb(skb);
1795 goto try_again;
1796 }
1797
1798 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1799 return recv_actor(sk, skb);
1800 }
1801 EXPORT_SYMBOL(udp_read_skb);
1802
1803 /*
1804 * This should be easy, if there is something there we
1805 * return it, otherwise we block.
1806 */
1807
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)1808 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1809 int *addr_len)
1810 {
1811 struct inet_sock *inet = inet_sk(sk);
1812 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1813 struct sk_buff *skb;
1814 unsigned int ulen, copied;
1815 int off, err, peeking = flags & MSG_PEEK;
1816 int is_udplite = IS_UDPLITE(sk);
1817 bool checksum_valid = false;
1818
1819 if (flags & MSG_ERRQUEUE)
1820 return ip_recv_error(sk, msg, len, addr_len);
1821
1822 try_again:
1823 off = sk_peek_offset(sk, flags);
1824 skb = __skb_recv_udp(sk, flags, &off, &err);
1825 if (!skb)
1826 return err;
1827
1828 ulen = udp_skb_len(skb);
1829 copied = len;
1830 if (copied > ulen - off)
1831 copied = ulen - off;
1832 else if (copied < ulen)
1833 msg->msg_flags |= MSG_TRUNC;
1834
1835 /*
1836 * If checksum is needed at all, try to do it while copying the
1837 * data. If the data is truncated, or if we only want a partial
1838 * coverage checksum (UDP-Lite), do it before the copy.
1839 */
1840
1841 if (copied < ulen || peeking ||
1842 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1843 checksum_valid = udp_skb_csum_unnecessary(skb) ||
1844 !__udp_lib_checksum_complete(skb);
1845 if (!checksum_valid)
1846 goto csum_copy_err;
1847 }
1848
1849 if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1850 if (udp_skb_is_linear(skb))
1851 err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1852 else
1853 err = skb_copy_datagram_msg(skb, off, msg, copied);
1854 } else {
1855 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1856
1857 if (err == -EINVAL)
1858 goto csum_copy_err;
1859 }
1860
1861 if (unlikely(err)) {
1862 if (!peeking) {
1863 atomic_inc(&sk->sk_drops);
1864 UDP_INC_STATS(sock_net(sk),
1865 UDP_MIB_INERRORS, is_udplite);
1866 }
1867 kfree_skb(skb);
1868 return err;
1869 }
1870
1871 if (!peeking)
1872 UDP_INC_STATS(sock_net(sk),
1873 UDP_MIB_INDATAGRAMS, is_udplite);
1874
1875 sock_recv_cmsgs(msg, sk, skb);
1876
1877 /* Copy the address. */
1878 if (sin) {
1879 sin->sin_family = AF_INET;
1880 sin->sin_port = udp_hdr(skb)->source;
1881 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1882 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1883 *addr_len = sizeof(*sin);
1884
1885 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1886 (struct sockaddr *)sin);
1887 }
1888
1889 if (udp_sk(sk)->gro_enabled)
1890 udp_cmsg_recv(msg, sk, skb);
1891
1892 if (inet->cmsg_flags)
1893 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1894
1895 err = copied;
1896 if (flags & MSG_TRUNC)
1897 err = ulen;
1898
1899 skb_consume_udp(sk, skb, peeking ? -err : err);
1900 return err;
1901
1902 csum_copy_err:
1903 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1904 udp_skb_destructor)) {
1905 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1906 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1907 }
1908 kfree_skb(skb);
1909
1910 /* starting over for a new packet, but check if we need to yield */
1911 cond_resched();
1912 msg->msg_flags &= ~MSG_TRUNC;
1913 goto try_again;
1914 }
1915
udp_pre_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)1916 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1917 {
1918 /* This check is replicated from __ip4_datagram_connect() and
1919 * intended to prevent BPF program called below from accessing bytes
1920 * that are out of the bound specified by user in addr_len.
1921 */
1922 if (addr_len < sizeof(struct sockaddr_in))
1923 return -EINVAL;
1924
1925 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1926 }
1927 EXPORT_SYMBOL(udp_pre_connect);
1928
__udp_disconnect(struct sock * sk,int flags)1929 int __udp_disconnect(struct sock *sk, int flags)
1930 {
1931 struct inet_sock *inet = inet_sk(sk);
1932 /*
1933 * 1003.1g - break association.
1934 */
1935
1936 sk->sk_state = TCP_CLOSE;
1937 inet->inet_daddr = 0;
1938 inet->inet_dport = 0;
1939 sock_rps_reset_rxhash(sk);
1940 sk->sk_bound_dev_if = 0;
1941 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1942 inet_reset_saddr(sk);
1943 if (sk->sk_prot->rehash &&
1944 (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1945 sk->sk_prot->rehash(sk);
1946 }
1947
1948 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1949 sk->sk_prot->unhash(sk);
1950 inet->inet_sport = 0;
1951 }
1952 sk_dst_reset(sk);
1953 return 0;
1954 }
1955 EXPORT_SYMBOL(__udp_disconnect);
1956
udp_disconnect(struct sock * sk,int flags)1957 int udp_disconnect(struct sock *sk, int flags)
1958 {
1959 lock_sock(sk);
1960 __udp_disconnect(sk, flags);
1961 release_sock(sk);
1962 return 0;
1963 }
1964 EXPORT_SYMBOL(udp_disconnect);
1965
udp_lib_unhash(struct sock * sk)1966 void udp_lib_unhash(struct sock *sk)
1967 {
1968 if (sk_hashed(sk)) {
1969 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1970 struct udp_hslot *hslot, *hslot2;
1971
1972 hslot = udp_hashslot(udptable, sock_net(sk),
1973 udp_sk(sk)->udp_port_hash);
1974 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1975
1976 spin_lock_bh(&hslot->lock);
1977 if (rcu_access_pointer(sk->sk_reuseport_cb))
1978 reuseport_detach_sock(sk);
1979 if (sk_del_node_init_rcu(sk)) {
1980 hslot->count--;
1981 inet_sk(sk)->inet_num = 0;
1982 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1983
1984 spin_lock(&hslot2->lock);
1985 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1986 hslot2->count--;
1987 spin_unlock(&hslot2->lock);
1988 }
1989 spin_unlock_bh(&hslot->lock);
1990 }
1991 }
1992 EXPORT_SYMBOL(udp_lib_unhash);
1993
1994 /*
1995 * inet_rcv_saddr was changed, we must rehash secondary hash
1996 */
udp_lib_rehash(struct sock * sk,u16 newhash)1997 void udp_lib_rehash(struct sock *sk, u16 newhash)
1998 {
1999 if (sk_hashed(sk)) {
2000 struct udp_table *udptable = sk->sk_prot->h.udp_table;
2001 struct udp_hslot *hslot, *hslot2, *nhslot2;
2002
2003 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2004 nhslot2 = udp_hashslot2(udptable, newhash);
2005 udp_sk(sk)->udp_portaddr_hash = newhash;
2006
2007 if (hslot2 != nhslot2 ||
2008 rcu_access_pointer(sk->sk_reuseport_cb)) {
2009 hslot = udp_hashslot(udptable, sock_net(sk),
2010 udp_sk(sk)->udp_port_hash);
2011 /* we must lock primary chain too */
2012 spin_lock_bh(&hslot->lock);
2013 if (rcu_access_pointer(sk->sk_reuseport_cb))
2014 reuseport_detach_sock(sk);
2015
2016 if (hslot2 != nhslot2) {
2017 spin_lock(&hslot2->lock);
2018 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2019 hslot2->count--;
2020 spin_unlock(&hslot2->lock);
2021
2022 spin_lock(&nhslot2->lock);
2023 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2024 &nhslot2->head);
2025 nhslot2->count++;
2026 spin_unlock(&nhslot2->lock);
2027 }
2028
2029 spin_unlock_bh(&hslot->lock);
2030 }
2031 }
2032 }
2033 EXPORT_SYMBOL(udp_lib_rehash);
2034
udp_v4_rehash(struct sock * sk)2035 void udp_v4_rehash(struct sock *sk)
2036 {
2037 u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2038 inet_sk(sk)->inet_rcv_saddr,
2039 inet_sk(sk)->inet_num);
2040 udp_lib_rehash(sk, new_hash);
2041 }
2042
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2043 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2044 {
2045 int rc;
2046
2047 if (inet_sk(sk)->inet_daddr) {
2048 sock_rps_save_rxhash(sk, skb);
2049 sk_mark_napi_id(sk, skb);
2050 sk_incoming_cpu_update(sk);
2051 } else {
2052 sk_mark_napi_id_once(sk, skb);
2053 }
2054
2055 rc = __udp_enqueue_schedule_skb(sk, skb);
2056 if (rc < 0) {
2057 int is_udplite = IS_UDPLITE(sk);
2058 int drop_reason;
2059
2060 /* Note that an ENOMEM error is charged twice */
2061 if (rc == -ENOMEM) {
2062 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2063 is_udplite);
2064 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2065 } else {
2066 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2067 is_udplite);
2068 drop_reason = SKB_DROP_REASON_PROTO_MEM;
2069 }
2070 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2071 kfree_skb_reason(skb, drop_reason);
2072 trace_udp_fail_queue_rcv_skb(rc, sk);
2073 return -1;
2074 }
2075
2076 return 0;
2077 }
2078
2079 /* returns:
2080 * -1: error
2081 * 0: success
2082 * >0: "udp encap" protocol resubmission
2083 *
2084 * Note that in the success and error cases, the skb is assumed to
2085 * have either been requeued or freed.
2086 */
udp_queue_rcv_one_skb(struct sock * sk,struct sk_buff * skb)2087 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2088 {
2089 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2090 struct udp_sock *up = udp_sk(sk);
2091 int is_udplite = IS_UDPLITE(sk);
2092
2093 /*
2094 * Charge it to the socket, dropping if the queue is full.
2095 */
2096 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2097 drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2098 goto drop;
2099 }
2100 nf_reset_ct(skb);
2101
2102 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2103 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2104
2105 /*
2106 * This is an encapsulation socket so pass the skb to
2107 * the socket's udp_encap_rcv() hook. Otherwise, just
2108 * fall through and pass this up the UDP socket.
2109 * up->encap_rcv() returns the following value:
2110 * =0 if skb was successfully passed to the encap
2111 * handler or was discarded by it.
2112 * >0 if skb should be passed on to UDP.
2113 * <0 if skb should be resubmitted as proto -N
2114 */
2115
2116 /* if we're overly short, let UDP handle it */
2117 encap_rcv = READ_ONCE(up->encap_rcv);
2118 if (encap_rcv) {
2119 int ret;
2120
2121 /* Verify checksum before giving to encap */
2122 if (udp_lib_checksum_complete(skb))
2123 goto csum_error;
2124
2125 ret = encap_rcv(sk, skb);
2126 if (ret <= 0) {
2127 __UDP_INC_STATS(sock_net(sk),
2128 UDP_MIB_INDATAGRAMS,
2129 is_udplite);
2130 return -ret;
2131 }
2132 }
2133
2134 /* FALLTHROUGH -- it's a UDP Packet */
2135 }
2136
2137 /*
2138 * UDP-Lite specific tests, ignored on UDP sockets
2139 */
2140 if ((up->pcflag & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
2141
2142 /*
2143 * MIB statistics other than incrementing the error count are
2144 * disabled for the following two types of errors: these depend
2145 * on the application settings, not on the functioning of the
2146 * protocol stack as such.
2147 *
2148 * RFC 3828 here recommends (sec 3.3): "There should also be a
2149 * way ... to ... at least let the receiving application block
2150 * delivery of packets with coverage values less than a value
2151 * provided by the application."
2152 */
2153 if (up->pcrlen == 0) { /* full coverage was set */
2154 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2155 UDP_SKB_CB(skb)->cscov, skb->len);
2156 goto drop;
2157 }
2158 /* The next case involves violating the min. coverage requested
2159 * by the receiver. This is subtle: if receiver wants x and x is
2160 * greater than the buffersize/MTU then receiver will complain
2161 * that it wants x while sender emits packets of smaller size y.
2162 * Therefore the above ...()->partial_cov statement is essential.
2163 */
2164 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
2165 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2166 UDP_SKB_CB(skb)->cscov, up->pcrlen);
2167 goto drop;
2168 }
2169 }
2170
2171 prefetch(&sk->sk_rmem_alloc);
2172 if (rcu_access_pointer(sk->sk_filter) &&
2173 udp_lib_checksum_complete(skb))
2174 goto csum_error;
2175
2176 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2177 drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2178 goto drop;
2179 }
2180
2181 udp_csum_pull_header(skb);
2182
2183 ipv4_pktinfo_prepare(sk, skb, true);
2184 return __udp_queue_rcv_skb(sk, skb);
2185
2186 csum_error:
2187 drop_reason = SKB_DROP_REASON_UDP_CSUM;
2188 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2189 drop:
2190 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2191 atomic_inc(&sk->sk_drops);
2192 kfree_skb_reason(skb, drop_reason);
2193 return -1;
2194 }
2195
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2196 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2197 {
2198 struct sk_buff *next, *segs;
2199 int ret;
2200
2201 if (likely(!udp_unexpected_gso(sk, skb)))
2202 return udp_queue_rcv_one_skb(sk, skb);
2203
2204 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2205 __skb_push(skb, -skb_mac_offset(skb));
2206 segs = udp_rcv_segment(sk, skb, true);
2207 skb_list_walk_safe(segs, skb, next) {
2208 __skb_pull(skb, skb_transport_offset(skb));
2209
2210 udp_post_segment_fix_csum(skb);
2211 ret = udp_queue_rcv_one_skb(sk, skb);
2212 if (ret > 0)
2213 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2214 }
2215 return 0;
2216 }
2217
2218 /* For TCP sockets, sk_rx_dst is protected by socket lock
2219 * For UDP, we use xchg() to guard against concurrent changes.
2220 */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)2221 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2222 {
2223 struct dst_entry *old;
2224
2225 if (dst_hold_safe(dst)) {
2226 old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2227 dst_release(old);
2228 return old != dst;
2229 }
2230 return false;
2231 }
2232 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2233
2234 /*
2235 * Multicasts and broadcasts go to each listener.
2236 *
2237 * Note: called only from the BH handler context.
2238 */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)2239 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2240 struct udphdr *uh,
2241 __be32 saddr, __be32 daddr,
2242 struct udp_table *udptable,
2243 int proto)
2244 {
2245 struct sock *sk, *first = NULL;
2246 unsigned short hnum = ntohs(uh->dest);
2247 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2248 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2249 unsigned int offset = offsetof(typeof(*sk), sk_node);
2250 int dif = skb->dev->ifindex;
2251 int sdif = inet_sdif(skb);
2252 struct hlist_node *node;
2253 struct sk_buff *nskb;
2254
2255 if (use_hash2) {
2256 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2257 udptable->mask;
2258 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2259 start_lookup:
2260 hslot = &udptable->hash2[hash2];
2261 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2262 }
2263
2264 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2265 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2266 uh->source, saddr, dif, sdif, hnum))
2267 continue;
2268
2269 if (!first) {
2270 first = sk;
2271 continue;
2272 }
2273 nskb = skb_clone(skb, GFP_ATOMIC);
2274
2275 if (unlikely(!nskb)) {
2276 atomic_inc(&sk->sk_drops);
2277 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2278 IS_UDPLITE(sk));
2279 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
2280 IS_UDPLITE(sk));
2281 continue;
2282 }
2283 if (udp_queue_rcv_skb(sk, nskb) > 0)
2284 consume_skb(nskb);
2285 }
2286
2287 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2288 if (use_hash2 && hash2 != hash2_any) {
2289 hash2 = hash2_any;
2290 goto start_lookup;
2291 }
2292
2293 if (first) {
2294 if (udp_queue_rcv_skb(first, skb) > 0)
2295 consume_skb(skb);
2296 } else {
2297 kfree_skb(skb);
2298 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2299 proto == IPPROTO_UDPLITE);
2300 }
2301 return 0;
2302 }
2303
2304 /* Initialize UDP checksum. If exited with zero value (success),
2305 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2306 * Otherwise, csum completion requires checksumming packet body,
2307 * including udp header and folding it to skb->csum.
2308 */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)2309 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2310 int proto)
2311 {
2312 int err;
2313
2314 UDP_SKB_CB(skb)->partial_cov = 0;
2315 UDP_SKB_CB(skb)->cscov = skb->len;
2316
2317 if (proto == IPPROTO_UDPLITE) {
2318 err = udplite_checksum_init(skb, uh);
2319 if (err)
2320 return err;
2321
2322 if (UDP_SKB_CB(skb)->partial_cov) {
2323 skb->csum = inet_compute_pseudo(skb, proto);
2324 return 0;
2325 }
2326 }
2327
2328 /* Note, we are only interested in != 0 or == 0, thus the
2329 * force to int.
2330 */
2331 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2332 inet_compute_pseudo);
2333 if (err)
2334 return err;
2335
2336 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2337 /* If SW calculated the value, we know it's bad */
2338 if (skb->csum_complete_sw)
2339 return 1;
2340
2341 /* HW says the value is bad. Let's validate that.
2342 * skb->csum is no longer the full packet checksum,
2343 * so don't treat it as such.
2344 */
2345 skb_checksum_complete_unset(skb);
2346 }
2347
2348 return 0;
2349 }
2350
2351 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2352 * return code conversion for ip layer consumption
2353 */
udp_unicast_rcv_skb(struct sock * sk,struct sk_buff * skb,struct udphdr * uh)2354 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2355 struct udphdr *uh)
2356 {
2357 int ret;
2358
2359 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2360 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2361
2362 ret = udp_queue_rcv_skb(sk, skb);
2363
2364 /* a return value > 0 means to resubmit the input, but
2365 * it wants the return to be -protocol, or 0
2366 */
2367 if (ret > 0)
2368 return -ret;
2369 return 0;
2370 }
2371
2372 /*
2373 * All we need to do is get the socket, and then do a checksum.
2374 */
2375
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)2376 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2377 int proto)
2378 {
2379 struct sock *sk;
2380 struct udphdr *uh;
2381 unsigned short ulen;
2382 struct rtable *rt = skb_rtable(skb);
2383 __be32 saddr, daddr;
2384 struct net *net = dev_net(skb->dev);
2385 bool refcounted;
2386 int drop_reason;
2387
2388 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2389
2390 /*
2391 * Validate the packet.
2392 */
2393 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2394 goto drop; /* No space for header. */
2395
2396 uh = udp_hdr(skb);
2397 ulen = ntohs(uh->len);
2398 saddr = ip_hdr(skb)->saddr;
2399 daddr = ip_hdr(skb)->daddr;
2400
2401 if (ulen > skb->len)
2402 goto short_packet;
2403
2404 if (proto == IPPROTO_UDP) {
2405 /* UDP validates ulen. */
2406 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2407 goto short_packet;
2408 uh = udp_hdr(skb);
2409 }
2410
2411 if (udp4_csum_init(skb, uh, proto))
2412 goto csum_error;
2413
2414 sk = skb_steal_sock(skb, &refcounted);
2415 if (sk) {
2416 struct dst_entry *dst = skb_dst(skb);
2417 int ret;
2418
2419 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2420 udp_sk_rx_dst_set(sk, dst);
2421
2422 ret = udp_unicast_rcv_skb(sk, skb, uh);
2423 if (refcounted)
2424 sock_put(sk);
2425 return ret;
2426 }
2427
2428 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2429 return __udp4_lib_mcast_deliver(net, skb, uh,
2430 saddr, daddr, udptable, proto);
2431
2432 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2433 if (sk)
2434 return udp_unicast_rcv_skb(sk, skb, uh);
2435
2436 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2437 goto drop;
2438 nf_reset_ct(skb);
2439
2440 /* No socket. Drop packet silently, if checksum is wrong */
2441 if (udp_lib_checksum_complete(skb))
2442 goto csum_error;
2443
2444 drop_reason = SKB_DROP_REASON_NO_SOCKET;
2445 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2446 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2447
2448 /*
2449 * Hmm. We got an UDP packet to a port to which we
2450 * don't wanna listen. Ignore it.
2451 */
2452 kfree_skb_reason(skb, drop_reason);
2453 return 0;
2454
2455 short_packet:
2456 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2457 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2458 proto == IPPROTO_UDPLITE ? "Lite" : "",
2459 &saddr, ntohs(uh->source),
2460 ulen, skb->len,
2461 &daddr, ntohs(uh->dest));
2462 goto drop;
2463
2464 csum_error:
2465 /*
2466 * RFC1122: OK. Discards the bad packet silently (as far as
2467 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2468 */
2469 drop_reason = SKB_DROP_REASON_UDP_CSUM;
2470 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2471 proto == IPPROTO_UDPLITE ? "Lite" : "",
2472 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2473 ulen);
2474 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2475 drop:
2476 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2477 kfree_skb_reason(skb, drop_reason);
2478 return 0;
2479 }
2480
2481 /* We can only early demux multicast if there is a single matching socket.
2482 * If more than one socket found returns NULL
2483 */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2484 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2485 __be16 loc_port, __be32 loc_addr,
2486 __be16 rmt_port, __be32 rmt_addr,
2487 int dif, int sdif)
2488 {
2489 unsigned short hnum = ntohs(loc_port);
2490 struct sock *sk, *result;
2491 struct udp_hslot *hslot;
2492 unsigned int slot;
2493
2494 slot = udp_hashfn(net, hnum, udp_table.mask);
2495 hslot = &udp_table.hash[slot];
2496
2497 /* Do not bother scanning a too big list */
2498 if (hslot->count > 10)
2499 return NULL;
2500
2501 result = NULL;
2502 sk_for_each_rcu(sk, &hslot->head) {
2503 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2504 rmt_port, rmt_addr, dif, sdif, hnum)) {
2505 if (result)
2506 return NULL;
2507 result = sk;
2508 }
2509 }
2510
2511 return result;
2512 }
2513
2514 /* For unicast we should only early demux connected sockets or we can
2515 * break forwarding setups. The chains here can be long so only check
2516 * if the first socket is an exact match and if not move on.
2517 */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2518 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2519 __be16 loc_port, __be32 loc_addr,
2520 __be16 rmt_port, __be32 rmt_addr,
2521 int dif, int sdif)
2522 {
2523 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2524 unsigned short hnum = ntohs(loc_port);
2525 unsigned int hash2, slot2;
2526 struct udp_hslot *hslot2;
2527 __portpair ports;
2528 struct sock *sk;
2529
2530 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2531 slot2 = hash2 & udp_table.mask;
2532 hslot2 = &udp_table.hash2[slot2];
2533 ports = INET_COMBINED_PORTS(rmt_port, hnum);
2534
2535 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2536 if (inet_match(net, sk, acookie, ports, dif, sdif))
2537 return sk;
2538 /* Only check first socket in chain */
2539 break;
2540 }
2541 return NULL;
2542 }
2543
udp_v4_early_demux(struct sk_buff * skb)2544 int udp_v4_early_demux(struct sk_buff *skb)
2545 {
2546 struct net *net = dev_net(skb->dev);
2547 struct in_device *in_dev = NULL;
2548 const struct iphdr *iph;
2549 const struct udphdr *uh;
2550 struct sock *sk = NULL;
2551 struct dst_entry *dst;
2552 int dif = skb->dev->ifindex;
2553 int sdif = inet_sdif(skb);
2554 int ours;
2555
2556 /* validate the packet */
2557 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2558 return 0;
2559
2560 iph = ip_hdr(skb);
2561 uh = udp_hdr(skb);
2562
2563 if (skb->pkt_type == PACKET_MULTICAST) {
2564 in_dev = __in_dev_get_rcu(skb->dev);
2565
2566 if (!in_dev)
2567 return 0;
2568
2569 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2570 iph->protocol);
2571 if (!ours)
2572 return 0;
2573
2574 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2575 uh->source, iph->saddr,
2576 dif, sdif);
2577 } else if (skb->pkt_type == PACKET_HOST) {
2578 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2579 uh->source, iph->saddr, dif, sdif);
2580 }
2581
2582 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2583 return 0;
2584
2585 skb->sk = sk;
2586 skb->destructor = sock_efree;
2587 dst = rcu_dereference(sk->sk_rx_dst);
2588
2589 if (dst)
2590 dst = dst_check(dst, 0);
2591 if (dst) {
2592 u32 itag = 0;
2593
2594 /* set noref for now.
2595 * any place which wants to hold dst has to call
2596 * dst_hold_safe()
2597 */
2598 skb_dst_set_noref(skb, dst);
2599
2600 /* for unconnected multicast sockets we need to validate
2601 * the source on each packet
2602 */
2603 if (!inet_sk(sk)->inet_daddr && in_dev)
2604 return ip_mc_validate_source(skb, iph->daddr,
2605 iph->saddr,
2606 iph->tos & IPTOS_RT_MASK,
2607 skb->dev, in_dev, &itag);
2608 }
2609 return 0;
2610 }
2611
udp_rcv(struct sk_buff * skb)2612 int udp_rcv(struct sk_buff *skb)
2613 {
2614 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2615 }
2616
udp_destroy_sock(struct sock * sk)2617 void udp_destroy_sock(struct sock *sk)
2618 {
2619 struct udp_sock *up = udp_sk(sk);
2620 bool slow = lock_sock_fast(sk);
2621
2622 /* protects from races with udp_abort() */
2623 sock_set_flag(sk, SOCK_DEAD);
2624 udp_flush_pending_frames(sk);
2625 unlock_sock_fast(sk, slow);
2626 if (static_branch_unlikely(&udp_encap_needed_key)) {
2627 if (up->encap_type) {
2628 void (*encap_destroy)(struct sock *sk);
2629 encap_destroy = READ_ONCE(up->encap_destroy);
2630 if (encap_destroy)
2631 encap_destroy(sk);
2632 }
2633 if (up->encap_enabled)
2634 static_branch_dec(&udp_encap_needed_key);
2635 }
2636 }
2637
2638 /*
2639 * Socket option code for UDP
2640 */
udp_lib_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))2641 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2642 sockptr_t optval, unsigned int optlen,
2643 int (*push_pending_frames)(struct sock *))
2644 {
2645 struct udp_sock *up = udp_sk(sk);
2646 int val, valbool;
2647 int err = 0;
2648 int is_udplite = IS_UDPLITE(sk);
2649
2650 if (optlen < sizeof(int))
2651 return -EINVAL;
2652
2653 if (copy_from_sockptr(&val, optval, sizeof(val)))
2654 return -EFAULT;
2655
2656 valbool = val ? 1 : 0;
2657
2658 switch (optname) {
2659 case UDP_CORK:
2660 if (val != 0) {
2661 WRITE_ONCE(up->corkflag, 1);
2662 } else {
2663 WRITE_ONCE(up->corkflag, 0);
2664 lock_sock(sk);
2665 push_pending_frames(sk);
2666 release_sock(sk);
2667 }
2668 break;
2669
2670 case UDP_ENCAP:
2671 switch (val) {
2672 case 0:
2673 #ifdef CONFIG_XFRM
2674 case UDP_ENCAP_ESPINUDP:
2675 case UDP_ENCAP_ESPINUDP_NON_IKE:
2676 #if IS_ENABLED(CONFIG_IPV6)
2677 if (sk->sk_family == AF_INET6)
2678 WRITE_ONCE(up->encap_rcv,
2679 ipv6_stub->xfrm6_udp_encap_rcv);
2680 else
2681 #endif
2682 WRITE_ONCE(up->encap_rcv,
2683 xfrm4_udp_encap_rcv);
2684 #endif
2685 fallthrough;
2686 case UDP_ENCAP_L2TPINUDP:
2687 up->encap_type = val;
2688 lock_sock(sk);
2689 udp_tunnel_encap_enable(sk->sk_socket);
2690 release_sock(sk);
2691 break;
2692 default:
2693 err = -ENOPROTOOPT;
2694 break;
2695 }
2696 break;
2697
2698 case UDP_NO_CHECK6_TX:
2699 up->no_check6_tx = valbool;
2700 break;
2701
2702 case UDP_NO_CHECK6_RX:
2703 up->no_check6_rx = valbool;
2704 break;
2705
2706 case UDP_SEGMENT:
2707 if (val < 0 || val > USHRT_MAX)
2708 return -EINVAL;
2709 WRITE_ONCE(up->gso_size, val);
2710 break;
2711
2712 case UDP_GRO:
2713 lock_sock(sk);
2714
2715 /* when enabling GRO, accept the related GSO packet type */
2716 if (valbool)
2717 udp_tunnel_encap_enable(sk->sk_socket);
2718 up->gro_enabled = valbool;
2719 up->accept_udp_l4 = valbool;
2720 release_sock(sk);
2721 break;
2722
2723 /*
2724 * UDP-Lite's partial checksum coverage (RFC 3828).
2725 */
2726 /* The sender sets actual checksum coverage length via this option.
2727 * The case coverage > packet length is handled by send module. */
2728 case UDPLITE_SEND_CSCOV:
2729 if (!is_udplite) /* Disable the option on UDP sockets */
2730 return -ENOPROTOOPT;
2731 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2732 val = 8;
2733 else if (val > USHRT_MAX)
2734 val = USHRT_MAX;
2735 up->pcslen = val;
2736 up->pcflag |= UDPLITE_SEND_CC;
2737 break;
2738
2739 /* The receiver specifies a minimum checksum coverage value. To make
2740 * sense, this should be set to at least 8 (as done below). If zero is
2741 * used, this again means full checksum coverage. */
2742 case UDPLITE_RECV_CSCOV:
2743 if (!is_udplite) /* Disable the option on UDP sockets */
2744 return -ENOPROTOOPT;
2745 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2746 val = 8;
2747 else if (val > USHRT_MAX)
2748 val = USHRT_MAX;
2749 up->pcrlen = val;
2750 up->pcflag |= UDPLITE_RECV_CC;
2751 break;
2752
2753 default:
2754 err = -ENOPROTOOPT;
2755 break;
2756 }
2757
2758 return err;
2759 }
2760 EXPORT_SYMBOL(udp_lib_setsockopt);
2761
udp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)2762 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2763 unsigned int optlen)
2764 {
2765 if (level == SOL_UDP || level == SOL_UDPLITE)
2766 return udp_lib_setsockopt(sk, level, optname,
2767 optval, optlen,
2768 udp_push_pending_frames);
2769 return ip_setsockopt(sk, level, optname, optval, optlen);
2770 }
2771
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2772 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2773 char __user *optval, int __user *optlen)
2774 {
2775 struct udp_sock *up = udp_sk(sk);
2776 int val, len;
2777
2778 if (get_user(len, optlen))
2779 return -EFAULT;
2780
2781 len = min_t(unsigned int, len, sizeof(int));
2782
2783 if (len < 0)
2784 return -EINVAL;
2785
2786 switch (optname) {
2787 case UDP_CORK:
2788 val = READ_ONCE(up->corkflag);
2789 break;
2790
2791 case UDP_ENCAP:
2792 val = up->encap_type;
2793 break;
2794
2795 case UDP_NO_CHECK6_TX:
2796 val = up->no_check6_tx;
2797 break;
2798
2799 case UDP_NO_CHECK6_RX:
2800 val = up->no_check6_rx;
2801 break;
2802
2803 case UDP_SEGMENT:
2804 val = READ_ONCE(up->gso_size);
2805 break;
2806
2807 case UDP_GRO:
2808 val = up->gro_enabled;
2809 break;
2810
2811 /* The following two cannot be changed on UDP sockets, the return is
2812 * always 0 (which corresponds to the full checksum coverage of UDP). */
2813 case UDPLITE_SEND_CSCOV:
2814 val = up->pcslen;
2815 break;
2816
2817 case UDPLITE_RECV_CSCOV:
2818 val = up->pcrlen;
2819 break;
2820
2821 default:
2822 return -ENOPROTOOPT;
2823 }
2824
2825 if (put_user(len, optlen))
2826 return -EFAULT;
2827 if (copy_to_user(optval, &val, len))
2828 return -EFAULT;
2829 return 0;
2830 }
2831 EXPORT_SYMBOL(udp_lib_getsockopt);
2832
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2833 int udp_getsockopt(struct sock *sk, int level, int optname,
2834 char __user *optval, int __user *optlen)
2835 {
2836 if (level == SOL_UDP || level == SOL_UDPLITE)
2837 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2838 return ip_getsockopt(sk, level, optname, optval, optlen);
2839 }
2840
2841 /**
2842 * udp_poll - wait for a UDP event.
2843 * @file: - file struct
2844 * @sock: - socket
2845 * @wait: - poll table
2846 *
2847 * This is same as datagram poll, except for the special case of
2848 * blocking sockets. If application is using a blocking fd
2849 * and a packet with checksum error is in the queue;
2850 * then it could get return from select indicating data available
2851 * but then block when reading it. Add special case code
2852 * to work around these arguably broken applications.
2853 */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)2854 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2855 {
2856 __poll_t mask = datagram_poll(file, sock, wait);
2857 struct sock *sk = sock->sk;
2858
2859 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2860 mask |= EPOLLIN | EPOLLRDNORM;
2861
2862 /* Check for false positives due to checksum errors */
2863 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2864 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2865 mask &= ~(EPOLLIN | EPOLLRDNORM);
2866
2867 /* psock ingress_msg queue should not contain any bad checksum frames */
2868 if (sk_is_readable(sk))
2869 mask |= EPOLLIN | EPOLLRDNORM;
2870 return mask;
2871
2872 }
2873 EXPORT_SYMBOL(udp_poll);
2874
udp_abort(struct sock * sk,int err)2875 int udp_abort(struct sock *sk, int err)
2876 {
2877 lock_sock(sk);
2878
2879 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2880 * with close()
2881 */
2882 if (sock_flag(sk, SOCK_DEAD))
2883 goto out;
2884
2885 sk->sk_err = err;
2886 sk_error_report(sk);
2887 __udp_disconnect(sk, 0);
2888
2889 out:
2890 release_sock(sk);
2891
2892 return 0;
2893 }
2894 EXPORT_SYMBOL_GPL(udp_abort);
2895
2896 struct proto udp_prot = {
2897 .name = "UDP",
2898 .owner = THIS_MODULE,
2899 .close = udp_lib_close,
2900 .pre_connect = udp_pre_connect,
2901 .connect = ip4_datagram_connect,
2902 .disconnect = udp_disconnect,
2903 .ioctl = udp_ioctl,
2904 .init = udp_init_sock,
2905 .destroy = udp_destroy_sock,
2906 .setsockopt = udp_setsockopt,
2907 .getsockopt = udp_getsockopt,
2908 .sendmsg = udp_sendmsg,
2909 .recvmsg = udp_recvmsg,
2910 .sendpage = udp_sendpage,
2911 .release_cb = ip4_datagram_release_cb,
2912 .hash = udp_lib_hash,
2913 .unhash = udp_lib_unhash,
2914 .rehash = udp_v4_rehash,
2915 .get_port = udp_v4_get_port,
2916 .put_port = udp_lib_unhash,
2917 #ifdef CONFIG_BPF_SYSCALL
2918 .psock_update_sk_prot = udp_bpf_update_proto,
2919 #endif
2920 .memory_allocated = &udp_memory_allocated,
2921 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc,
2922
2923 .sysctl_mem = sysctl_udp_mem,
2924 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2925 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2926 .obj_size = sizeof(struct udp_sock),
2927 .h.udp_table = &udp_table,
2928 .diag_destroy = udp_abort,
2929 };
2930 EXPORT_SYMBOL(udp_prot);
2931
2932 /* ------------------------------------------------------------------------ */
2933 #ifdef CONFIG_PROC_FS
2934
udp_get_first(struct seq_file * seq,int start)2935 static struct sock *udp_get_first(struct seq_file *seq, int start)
2936 {
2937 struct udp_iter_state *state = seq->private;
2938 struct net *net = seq_file_net(seq);
2939 struct udp_seq_afinfo *afinfo;
2940 struct sock *sk;
2941
2942 if (state->bpf_seq_afinfo)
2943 afinfo = state->bpf_seq_afinfo;
2944 else
2945 afinfo = pde_data(file_inode(seq->file));
2946
2947 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2948 ++state->bucket) {
2949 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2950
2951 if (hlist_empty(&hslot->head))
2952 continue;
2953
2954 spin_lock_bh(&hslot->lock);
2955 sk_for_each(sk, &hslot->head) {
2956 if (!net_eq(sock_net(sk), net))
2957 continue;
2958 if (afinfo->family == AF_UNSPEC ||
2959 sk->sk_family == afinfo->family)
2960 goto found;
2961 }
2962 spin_unlock_bh(&hslot->lock);
2963 }
2964 sk = NULL;
2965 found:
2966 return sk;
2967 }
2968
udp_get_next(struct seq_file * seq,struct sock * sk)2969 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2970 {
2971 struct udp_iter_state *state = seq->private;
2972 struct net *net = seq_file_net(seq);
2973 struct udp_seq_afinfo *afinfo;
2974
2975 if (state->bpf_seq_afinfo)
2976 afinfo = state->bpf_seq_afinfo;
2977 else
2978 afinfo = pde_data(file_inode(seq->file));
2979
2980 do {
2981 sk = sk_next(sk);
2982 } while (sk && (!net_eq(sock_net(sk), net) ||
2983 (afinfo->family != AF_UNSPEC &&
2984 sk->sk_family != afinfo->family)));
2985
2986 if (!sk) {
2987 if (state->bucket <= afinfo->udp_table->mask)
2988 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2989 return udp_get_first(seq, state->bucket + 1);
2990 }
2991 return sk;
2992 }
2993
udp_get_idx(struct seq_file * seq,loff_t pos)2994 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2995 {
2996 struct sock *sk = udp_get_first(seq, 0);
2997
2998 if (sk)
2999 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3000 --pos;
3001 return pos ? NULL : sk;
3002 }
3003
udp_seq_start(struct seq_file * seq,loff_t * pos)3004 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3005 {
3006 struct udp_iter_state *state = seq->private;
3007 state->bucket = MAX_UDP_PORTS;
3008
3009 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3010 }
3011 EXPORT_SYMBOL(udp_seq_start);
3012
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)3013 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3014 {
3015 struct sock *sk;
3016
3017 if (v == SEQ_START_TOKEN)
3018 sk = udp_get_idx(seq, 0);
3019 else
3020 sk = udp_get_next(seq, v);
3021
3022 ++*pos;
3023 return sk;
3024 }
3025 EXPORT_SYMBOL(udp_seq_next);
3026
udp_seq_stop(struct seq_file * seq,void * v)3027 void udp_seq_stop(struct seq_file *seq, void *v)
3028 {
3029 struct udp_iter_state *state = seq->private;
3030 struct udp_seq_afinfo *afinfo;
3031
3032 if (state->bpf_seq_afinfo)
3033 afinfo = state->bpf_seq_afinfo;
3034 else
3035 afinfo = pde_data(file_inode(seq->file));
3036
3037 if (state->bucket <= afinfo->udp_table->mask)
3038 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3039 }
3040 EXPORT_SYMBOL(udp_seq_stop);
3041
3042 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)3043 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3044 int bucket)
3045 {
3046 struct inet_sock *inet = inet_sk(sp);
3047 __be32 dest = inet->inet_daddr;
3048 __be32 src = inet->inet_rcv_saddr;
3049 __u16 destp = ntohs(inet->inet_dport);
3050 __u16 srcp = ntohs(inet->inet_sport);
3051
3052 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3053 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3054 bucket, src, srcp, dest, destp, sp->sk_state,
3055 sk_wmem_alloc_get(sp),
3056 udp_rqueue_get(sp),
3057 0, 0L, 0,
3058 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3059 0, sock_i_ino(sp),
3060 refcount_read(&sp->sk_refcnt), sp,
3061 atomic_read(&sp->sk_drops));
3062 }
3063
udp4_seq_show(struct seq_file * seq,void * v)3064 int udp4_seq_show(struct seq_file *seq, void *v)
3065 {
3066 seq_setwidth(seq, 127);
3067 if (v == SEQ_START_TOKEN)
3068 seq_puts(seq, " sl local_address rem_address st tx_queue "
3069 "rx_queue tr tm->when retrnsmt uid timeout "
3070 "inode ref pointer drops");
3071 else {
3072 struct udp_iter_state *state = seq->private;
3073
3074 udp4_format_sock(v, seq, state->bucket);
3075 }
3076 seq_pad(seq, '\n');
3077 return 0;
3078 }
3079
3080 #ifdef CONFIG_BPF_SYSCALL
3081 struct bpf_iter__udp {
3082 __bpf_md_ptr(struct bpf_iter_meta *, meta);
3083 __bpf_md_ptr(struct udp_sock *, udp_sk);
3084 uid_t uid __aligned(8);
3085 int bucket __aligned(8);
3086 };
3087
udp_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3088 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3089 struct udp_sock *udp_sk, uid_t uid, int bucket)
3090 {
3091 struct bpf_iter__udp ctx;
3092
3093 meta->seq_num--; /* skip SEQ_START_TOKEN */
3094 ctx.meta = meta;
3095 ctx.udp_sk = udp_sk;
3096 ctx.uid = uid;
3097 ctx.bucket = bucket;
3098 return bpf_iter_run_prog(prog, &ctx);
3099 }
3100
bpf_iter_udp_seq_show(struct seq_file * seq,void * v)3101 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3102 {
3103 struct udp_iter_state *state = seq->private;
3104 struct bpf_iter_meta meta;
3105 struct bpf_prog *prog;
3106 struct sock *sk = v;
3107 uid_t uid;
3108
3109 if (v == SEQ_START_TOKEN)
3110 return 0;
3111
3112 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3113 meta.seq = seq;
3114 prog = bpf_iter_get_info(&meta, false);
3115 return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3116 }
3117
bpf_iter_udp_seq_stop(struct seq_file * seq,void * v)3118 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3119 {
3120 struct bpf_iter_meta meta;
3121 struct bpf_prog *prog;
3122
3123 if (!v) {
3124 meta.seq = seq;
3125 prog = bpf_iter_get_info(&meta, true);
3126 if (prog)
3127 (void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3128 }
3129
3130 udp_seq_stop(seq, v);
3131 }
3132
3133 static const struct seq_operations bpf_iter_udp_seq_ops = {
3134 .start = udp_seq_start,
3135 .next = udp_seq_next,
3136 .stop = bpf_iter_udp_seq_stop,
3137 .show = bpf_iter_udp_seq_show,
3138 };
3139 #endif
3140
3141 const struct seq_operations udp_seq_ops = {
3142 .start = udp_seq_start,
3143 .next = udp_seq_next,
3144 .stop = udp_seq_stop,
3145 .show = udp4_seq_show,
3146 };
3147 EXPORT_SYMBOL(udp_seq_ops);
3148
3149 static struct udp_seq_afinfo udp4_seq_afinfo = {
3150 .family = AF_INET,
3151 .udp_table = &udp_table,
3152 };
3153
udp4_proc_init_net(struct net * net)3154 static int __net_init udp4_proc_init_net(struct net *net)
3155 {
3156 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3157 sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3158 return -ENOMEM;
3159 return 0;
3160 }
3161
udp4_proc_exit_net(struct net * net)3162 static void __net_exit udp4_proc_exit_net(struct net *net)
3163 {
3164 remove_proc_entry("udp", net->proc_net);
3165 }
3166
3167 static struct pernet_operations udp4_net_ops = {
3168 .init = udp4_proc_init_net,
3169 .exit = udp4_proc_exit_net,
3170 };
3171
udp4_proc_init(void)3172 int __init udp4_proc_init(void)
3173 {
3174 return register_pernet_subsys(&udp4_net_ops);
3175 }
3176
udp4_proc_exit(void)3177 void udp4_proc_exit(void)
3178 {
3179 unregister_pernet_subsys(&udp4_net_ops);
3180 }
3181 #endif /* CONFIG_PROC_FS */
3182
3183 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)3184 static int __init set_uhash_entries(char *str)
3185 {
3186 ssize_t ret;
3187
3188 if (!str)
3189 return 0;
3190
3191 ret = kstrtoul(str, 0, &uhash_entries);
3192 if (ret)
3193 return 0;
3194
3195 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3196 uhash_entries = UDP_HTABLE_SIZE_MIN;
3197 return 1;
3198 }
3199 __setup("uhash_entries=", set_uhash_entries);
3200
udp_table_init(struct udp_table * table,const char * name)3201 void __init udp_table_init(struct udp_table *table, const char *name)
3202 {
3203 unsigned int i;
3204
3205 table->hash = alloc_large_system_hash(name,
3206 2 * sizeof(struct udp_hslot),
3207 uhash_entries,
3208 21, /* one slot per 2 MB */
3209 0,
3210 &table->log,
3211 &table->mask,
3212 UDP_HTABLE_SIZE_MIN,
3213 64 * 1024);
3214
3215 table->hash2 = table->hash + (table->mask + 1);
3216 for (i = 0; i <= table->mask; i++) {
3217 INIT_HLIST_HEAD(&table->hash[i].head);
3218 table->hash[i].count = 0;
3219 spin_lock_init(&table->hash[i].lock);
3220 }
3221 for (i = 0; i <= table->mask; i++) {
3222 INIT_HLIST_HEAD(&table->hash2[i].head);
3223 table->hash2[i].count = 0;
3224 spin_lock_init(&table->hash2[i].lock);
3225 }
3226 }
3227
udp_flow_hashrnd(void)3228 u32 udp_flow_hashrnd(void)
3229 {
3230 static u32 hashrnd __read_mostly;
3231
3232 net_get_random_once(&hashrnd, sizeof(hashrnd));
3233
3234 return hashrnd;
3235 }
3236 EXPORT_SYMBOL(udp_flow_hashrnd);
3237
udp_sysctl_init(struct net * net)3238 static int __net_init udp_sysctl_init(struct net *net)
3239 {
3240 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3241 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3242
3243 #ifdef CONFIG_NET_L3_MASTER_DEV
3244 net->ipv4.sysctl_udp_l3mdev_accept = 0;
3245 #endif
3246
3247 return 0;
3248 }
3249
3250 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3251 .init = udp_sysctl_init,
3252 };
3253
3254 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(udp,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3255 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3256 struct udp_sock *udp_sk, uid_t uid, int bucket)
3257
3258 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3259 {
3260 struct udp_iter_state *st = priv_data;
3261 struct udp_seq_afinfo *afinfo;
3262 int ret;
3263
3264 afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3265 if (!afinfo)
3266 return -ENOMEM;
3267
3268 afinfo->family = AF_UNSPEC;
3269 afinfo->udp_table = &udp_table;
3270 st->bpf_seq_afinfo = afinfo;
3271 ret = bpf_iter_init_seq_net(priv_data, aux);
3272 if (ret)
3273 kfree(afinfo);
3274 return ret;
3275 }
3276
bpf_iter_fini_udp(void * priv_data)3277 static void bpf_iter_fini_udp(void *priv_data)
3278 {
3279 struct udp_iter_state *st = priv_data;
3280
3281 kfree(st->bpf_seq_afinfo);
3282 bpf_iter_fini_seq_net(priv_data);
3283 }
3284
3285 static const struct bpf_iter_seq_info udp_seq_info = {
3286 .seq_ops = &bpf_iter_udp_seq_ops,
3287 .init_seq_private = bpf_iter_init_udp,
3288 .fini_seq_private = bpf_iter_fini_udp,
3289 .seq_priv_size = sizeof(struct udp_iter_state),
3290 };
3291
3292 static struct bpf_iter_reg udp_reg_info = {
3293 .target = "udp",
3294 .ctx_arg_info_size = 1,
3295 .ctx_arg_info = {
3296 { offsetof(struct bpf_iter__udp, udp_sk),
3297 PTR_TO_BTF_ID_OR_NULL },
3298 },
3299 .seq_info = &udp_seq_info,
3300 };
3301
bpf_iter_register(void)3302 static void __init bpf_iter_register(void)
3303 {
3304 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3305 if (bpf_iter_reg_target(&udp_reg_info))
3306 pr_warn("Warning: could not register bpf iterator udp\n");
3307 }
3308 #endif
3309
udp_init(void)3310 void __init udp_init(void)
3311 {
3312 unsigned long limit;
3313 unsigned int i;
3314
3315 udp_table_init(&udp_table, "UDP");
3316 limit = nr_free_buffer_pages() / 8;
3317 limit = max(limit, 128UL);
3318 sysctl_udp_mem[0] = limit / 4 * 3;
3319 sysctl_udp_mem[1] = limit;
3320 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3321
3322 /* 16 spinlocks per cpu */
3323 udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3324 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3325 GFP_KERNEL);
3326 if (!udp_busylocks)
3327 panic("UDP: failed to alloc udp_busylocks\n");
3328 for (i = 0; i < (1U << udp_busylocks_log); i++)
3329 spin_lock_init(udp_busylocks + i);
3330
3331 if (register_pernet_subsys(&udp_sysctl_ops))
3332 panic("UDP: failed to init sysctl parameters.\n");
3333
3334 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3335 bpf_iter_register();
3336 #endif
3337 }
3338