1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * message.c - synchronous message handling
4 *
5 * Released under the GPLv2 only.
6 */
7
8 #include <linux/acpi.h>
9 #include <linux/pci.h> /* for scatterlist macros */
10 #include <linux/usb.h>
11 #include <linux/module.h>
12 #include <linux/slab.h>
13 #include <linux/mm.h>
14 #include <linux/timer.h>
15 #include <linux/ctype.h>
16 #include <linux/nls.h>
17 #include <linux/device.h>
18 #include <linux/scatterlist.h>
19 #include <linux/usb/cdc.h>
20 #include <linux/usb/quirks.h>
21 #include <linux/usb/hcd.h> /* for usbcore internals */
22 #include <linux/usb/of.h>
23 #include <asm/byteorder.h>
24
25 #include "usb.h"
26
27 static void cancel_async_set_config(struct usb_device *udev);
28
29 struct api_context {
30 struct completion done;
31 int status;
32 };
33
usb_api_blocking_completion(struct urb * urb)34 static void usb_api_blocking_completion(struct urb *urb)
35 {
36 struct api_context *ctx = urb->context;
37
38 ctx->status = urb->status;
39 complete(&ctx->done);
40 }
41
42
43 /*
44 * Starts urb and waits for completion or timeout. Note that this call
45 * is NOT interruptible. Many device driver i/o requests should be
46 * interruptible and therefore these drivers should implement their
47 * own interruptible routines.
48 */
usb_start_wait_urb(struct urb * urb,int timeout,int * actual_length)49 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
50 {
51 struct api_context ctx;
52 unsigned long expire;
53 int retval;
54
55 init_completion(&ctx.done);
56 urb->context = &ctx;
57 urb->actual_length = 0;
58 retval = usb_submit_urb(urb, GFP_NOIO);
59 if (unlikely(retval))
60 goto out;
61
62 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
63 if (!wait_for_completion_timeout(&ctx.done, expire)) {
64 usb_kill_urb(urb);
65 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
66
67 dev_dbg(&urb->dev->dev,
68 "%s timed out on ep%d%s len=%u/%u\n",
69 current->comm,
70 usb_endpoint_num(&urb->ep->desc),
71 usb_urb_dir_in(urb) ? "in" : "out",
72 urb->actual_length,
73 urb->transfer_buffer_length);
74 } else
75 retval = ctx.status;
76 out:
77 if (actual_length)
78 *actual_length = urb->actual_length;
79
80 usb_free_urb(urb);
81 return retval;
82 }
83
84 /*-------------------------------------------------------------------*/
85 /* returns status (negative) or length (positive) */
usb_internal_control_msg(struct usb_device * usb_dev,unsigned int pipe,struct usb_ctrlrequest * cmd,void * data,int len,int timeout)86 static int usb_internal_control_msg(struct usb_device *usb_dev,
87 unsigned int pipe,
88 struct usb_ctrlrequest *cmd,
89 void *data, int len, int timeout)
90 {
91 struct urb *urb;
92 int retv;
93 int length;
94
95 urb = usb_alloc_urb(0, GFP_NOIO);
96 if (!urb)
97 return -ENOMEM;
98
99 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
100 len, usb_api_blocking_completion, NULL);
101
102 retv = usb_start_wait_urb(urb, timeout, &length);
103 if (retv < 0)
104 return retv;
105 else
106 return length;
107 }
108
109 /**
110 * usb_control_msg - Builds a control urb, sends it off and waits for completion
111 * @dev: pointer to the usb device to send the message to
112 * @pipe: endpoint "pipe" to send the message to
113 * @request: USB message request value
114 * @requesttype: USB message request type value
115 * @value: USB message value
116 * @index: USB message index value
117 * @data: pointer to the data to send
118 * @size: length in bytes of the data to send
119 * @timeout: time in msecs to wait for the message to complete before timing
120 * out (if 0 the wait is forever)
121 *
122 * Context: task context, might sleep.
123 *
124 * This function sends a simple control message to a specified endpoint and
125 * waits for the message to complete, or timeout.
126 *
127 * Don't use this function from within an interrupt context. If you need
128 * an asynchronous message, or need to send a message from within interrupt
129 * context, use usb_submit_urb(). If a thread in your driver uses this call,
130 * make sure your disconnect() method can wait for it to complete. Since you
131 * don't have a handle on the URB used, you can't cancel the request.
132 *
133 * Return: If successful, the number of bytes transferred. Otherwise, a negative
134 * error number.
135 */
usb_control_msg(struct usb_device * dev,unsigned int pipe,__u8 request,__u8 requesttype,__u16 value,__u16 index,void * data,__u16 size,int timeout)136 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
137 __u8 requesttype, __u16 value, __u16 index, void *data,
138 __u16 size, int timeout)
139 {
140 struct usb_ctrlrequest *dr;
141 int ret;
142
143 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
144 if (!dr)
145 return -ENOMEM;
146
147 dr->bRequestType = requesttype;
148 dr->bRequest = request;
149 dr->wValue = cpu_to_le16(value);
150 dr->wIndex = cpu_to_le16(index);
151 dr->wLength = cpu_to_le16(size);
152
153 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
154
155 /* Linger a bit, prior to the next control message. */
156 if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
157 msleep(200);
158
159 kfree(dr);
160
161 return ret;
162 }
163 EXPORT_SYMBOL_GPL(usb_control_msg);
164
165 /**
166 * usb_control_msg_send - Builds a control "send" message, sends it off and waits for completion
167 * @dev: pointer to the usb device to send the message to
168 * @endpoint: endpoint to send the message to
169 * @request: USB message request value
170 * @requesttype: USB message request type value
171 * @value: USB message value
172 * @index: USB message index value
173 * @driver_data: pointer to the data to send
174 * @size: length in bytes of the data to send
175 * @timeout: time in msecs to wait for the message to complete before timing
176 * out (if 0 the wait is forever)
177 * @memflags: the flags for memory allocation for buffers
178 *
179 * Context: !in_interrupt ()
180 *
181 * This function sends a control message to a specified endpoint that is not
182 * expected to fill in a response (i.e. a "send message") and waits for the
183 * message to complete, or timeout.
184 *
185 * Do not use this function from within an interrupt context. If you need
186 * an asynchronous message, or need to send a message from within interrupt
187 * context, use usb_submit_urb(). If a thread in your driver uses this call,
188 * make sure your disconnect() method can wait for it to complete. Since you
189 * don't have a handle on the URB used, you can't cancel the request.
190 *
191 * The data pointer can be made to a reference on the stack, or anywhere else,
192 * as it will not be modified at all. This does not have the restriction that
193 * usb_control_msg() has where the data pointer must be to dynamically allocated
194 * memory (i.e. memory that can be successfully DMAed to a device).
195 *
196 * Return: If successful, 0 is returned, Otherwise, a negative error number.
197 */
usb_control_msg_send(struct usb_device * dev,__u8 endpoint,__u8 request,__u8 requesttype,__u16 value,__u16 index,const void * driver_data,__u16 size,int timeout,gfp_t memflags)198 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
199 __u8 requesttype, __u16 value, __u16 index,
200 const void *driver_data, __u16 size, int timeout,
201 gfp_t memflags)
202 {
203 unsigned int pipe = usb_sndctrlpipe(dev, endpoint);
204 int ret;
205 u8 *data = NULL;
206
207 if (size) {
208 data = kmemdup(driver_data, size, memflags);
209 if (!data)
210 return -ENOMEM;
211 }
212
213 ret = usb_control_msg(dev, pipe, request, requesttype, value, index,
214 data, size, timeout);
215 kfree(data);
216
217 if (ret < 0)
218 return ret;
219
220 return 0;
221 }
222 EXPORT_SYMBOL_GPL(usb_control_msg_send);
223
224 /**
225 * usb_control_msg_recv - Builds a control "receive" message, sends it off and waits for completion
226 * @dev: pointer to the usb device to send the message to
227 * @endpoint: endpoint to send the message to
228 * @request: USB message request value
229 * @requesttype: USB message request type value
230 * @value: USB message value
231 * @index: USB message index value
232 * @driver_data: pointer to the data to be filled in by the message
233 * @size: length in bytes of the data to be received
234 * @timeout: time in msecs to wait for the message to complete before timing
235 * out (if 0 the wait is forever)
236 * @memflags: the flags for memory allocation for buffers
237 *
238 * Context: !in_interrupt ()
239 *
240 * This function sends a control message to a specified endpoint that is
241 * expected to fill in a response (i.e. a "receive message") and waits for the
242 * message to complete, or timeout.
243 *
244 * Do not use this function from within an interrupt context. If you need
245 * an asynchronous message, or need to send a message from within interrupt
246 * context, use usb_submit_urb(). If a thread in your driver uses this call,
247 * make sure your disconnect() method can wait for it to complete. Since you
248 * don't have a handle on the URB used, you can't cancel the request.
249 *
250 * The data pointer can be made to a reference on the stack, or anywhere else
251 * that can be successfully written to. This function does not have the
252 * restriction that usb_control_msg() has where the data pointer must be to
253 * dynamically allocated memory (i.e. memory that can be successfully DMAed to a
254 * device).
255 *
256 * The "whole" message must be properly received from the device in order for
257 * this function to be successful. If a device returns less than the expected
258 * amount of data, then the function will fail. Do not use this for messages
259 * where a variable amount of data might be returned.
260 *
261 * Return: If successful, 0 is returned, Otherwise, a negative error number.
262 */
usb_control_msg_recv(struct usb_device * dev,__u8 endpoint,__u8 request,__u8 requesttype,__u16 value,__u16 index,void * driver_data,__u16 size,int timeout,gfp_t memflags)263 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
264 __u8 requesttype, __u16 value, __u16 index,
265 void *driver_data, __u16 size, int timeout,
266 gfp_t memflags)
267 {
268 unsigned int pipe = usb_rcvctrlpipe(dev, endpoint);
269 int ret;
270 u8 *data;
271
272 if (!size || !driver_data)
273 return -EINVAL;
274
275 data = kmalloc(size, memflags);
276 if (!data)
277 return -ENOMEM;
278
279 ret = usb_control_msg(dev, pipe, request, requesttype, value, index,
280 data, size, timeout);
281
282 if (ret < 0)
283 goto exit;
284
285 if (ret == size) {
286 memcpy(driver_data, data, size);
287 ret = 0;
288 } else {
289 ret = -EREMOTEIO;
290 }
291
292 exit:
293 kfree(data);
294 return ret;
295 }
296 EXPORT_SYMBOL_GPL(usb_control_msg_recv);
297
298 /**
299 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
300 * @usb_dev: pointer to the usb device to send the message to
301 * @pipe: endpoint "pipe" to send the message to
302 * @data: pointer to the data to send
303 * @len: length in bytes of the data to send
304 * @actual_length: pointer to a location to put the actual length transferred
305 * in bytes
306 * @timeout: time in msecs to wait for the message to complete before
307 * timing out (if 0 the wait is forever)
308 *
309 * Context: task context, might sleep.
310 *
311 * This function sends a simple interrupt message to a specified endpoint and
312 * waits for the message to complete, or timeout.
313 *
314 * Don't use this function from within an interrupt context. If you need
315 * an asynchronous message, or need to send a message from within interrupt
316 * context, use usb_submit_urb() If a thread in your driver uses this call,
317 * make sure your disconnect() method can wait for it to complete. Since you
318 * don't have a handle on the URB used, you can't cancel the request.
319 *
320 * Return:
321 * If successful, 0. Otherwise a negative error number. The number of actual
322 * bytes transferred will be stored in the @actual_length parameter.
323 */
usb_interrupt_msg(struct usb_device * usb_dev,unsigned int pipe,void * data,int len,int * actual_length,int timeout)324 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
325 void *data, int len, int *actual_length, int timeout)
326 {
327 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
328 }
329 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
330
331 /**
332 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
333 * @usb_dev: pointer to the usb device to send the message to
334 * @pipe: endpoint "pipe" to send the message to
335 * @data: pointer to the data to send
336 * @len: length in bytes of the data to send
337 * @actual_length: pointer to a location to put the actual length transferred
338 * in bytes
339 * @timeout: time in msecs to wait for the message to complete before
340 * timing out (if 0 the wait is forever)
341 *
342 * Context: task context, might sleep.
343 *
344 * This function sends a simple bulk message to a specified endpoint
345 * and waits for the message to complete, or timeout.
346 *
347 * Don't use this function from within an interrupt context. If you need
348 * an asynchronous message, or need to send a message from within interrupt
349 * context, use usb_submit_urb() If a thread in your driver uses this call,
350 * make sure your disconnect() method can wait for it to complete. Since you
351 * don't have a handle on the URB used, you can't cancel the request.
352 *
353 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
354 * users are forced to abuse this routine by using it to submit URBs for
355 * interrupt endpoints. We will take the liberty of creating an interrupt URB
356 * (with the default interval) if the target is an interrupt endpoint.
357 *
358 * Return:
359 * If successful, 0. Otherwise a negative error number. The number of actual
360 * bytes transferred will be stored in the @actual_length parameter.
361 *
362 */
usb_bulk_msg(struct usb_device * usb_dev,unsigned int pipe,void * data,int len,int * actual_length,int timeout)363 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
364 void *data, int len, int *actual_length, int timeout)
365 {
366 struct urb *urb;
367 struct usb_host_endpoint *ep;
368
369 ep = usb_pipe_endpoint(usb_dev, pipe);
370 if (!ep || len < 0)
371 return -EINVAL;
372
373 urb = usb_alloc_urb(0, GFP_KERNEL);
374 if (!urb)
375 return -ENOMEM;
376
377 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
378 USB_ENDPOINT_XFER_INT) {
379 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
380 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
381 usb_api_blocking_completion, NULL,
382 ep->desc.bInterval);
383 } else
384 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
385 usb_api_blocking_completion, NULL);
386
387 return usb_start_wait_urb(urb, timeout, actual_length);
388 }
389 EXPORT_SYMBOL_GPL(usb_bulk_msg);
390
391 /*-------------------------------------------------------------------*/
392
sg_clean(struct usb_sg_request * io)393 static void sg_clean(struct usb_sg_request *io)
394 {
395 if (io->urbs) {
396 while (io->entries--)
397 usb_free_urb(io->urbs[io->entries]);
398 kfree(io->urbs);
399 io->urbs = NULL;
400 }
401 io->dev = NULL;
402 }
403
sg_complete(struct urb * urb)404 static void sg_complete(struct urb *urb)
405 {
406 unsigned long flags;
407 struct usb_sg_request *io = urb->context;
408 int status = urb->status;
409
410 spin_lock_irqsave(&io->lock, flags);
411
412 /* In 2.5 we require hcds' endpoint queues not to progress after fault
413 * reports, until the completion callback (this!) returns. That lets
414 * device driver code (like this routine) unlink queued urbs first,
415 * if it needs to, since the HC won't work on them at all. So it's
416 * not possible for page N+1 to overwrite page N, and so on.
417 *
418 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
419 * complete before the HCD can get requests away from hardware,
420 * though never during cleanup after a hard fault.
421 */
422 if (io->status
423 && (io->status != -ECONNRESET
424 || status != -ECONNRESET)
425 && urb->actual_length) {
426 dev_err(io->dev->bus->controller,
427 "dev %s ep%d%s scatterlist error %d/%d\n",
428 io->dev->devpath,
429 usb_endpoint_num(&urb->ep->desc),
430 usb_urb_dir_in(urb) ? "in" : "out",
431 status, io->status);
432 /* BUG (); */
433 }
434
435 if (io->status == 0 && status && status != -ECONNRESET) {
436 int i, found, retval;
437
438 io->status = status;
439
440 /* the previous urbs, and this one, completed already.
441 * unlink pending urbs so they won't rx/tx bad data.
442 * careful: unlink can sometimes be synchronous...
443 */
444 spin_unlock_irqrestore(&io->lock, flags);
445 for (i = 0, found = 0; i < io->entries; i++) {
446 if (!io->urbs[i])
447 continue;
448 if (found) {
449 usb_block_urb(io->urbs[i]);
450 retval = usb_unlink_urb(io->urbs[i]);
451 if (retval != -EINPROGRESS &&
452 retval != -ENODEV &&
453 retval != -EBUSY &&
454 retval != -EIDRM)
455 dev_err(&io->dev->dev,
456 "%s, unlink --> %d\n",
457 __func__, retval);
458 } else if (urb == io->urbs[i])
459 found = 1;
460 }
461 spin_lock_irqsave(&io->lock, flags);
462 }
463
464 /* on the last completion, signal usb_sg_wait() */
465 io->bytes += urb->actual_length;
466 io->count--;
467 if (!io->count)
468 complete(&io->complete);
469
470 spin_unlock_irqrestore(&io->lock, flags);
471 }
472
473
474 /**
475 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
476 * @io: request block being initialized. until usb_sg_wait() returns,
477 * treat this as a pointer to an opaque block of memory,
478 * @dev: the usb device that will send or receive the data
479 * @pipe: endpoint "pipe" used to transfer the data
480 * @period: polling rate for interrupt endpoints, in frames or
481 * (for high speed endpoints) microframes; ignored for bulk
482 * @sg: scatterlist entries
483 * @nents: how many entries in the scatterlist
484 * @length: how many bytes to send from the scatterlist, or zero to
485 * send every byte identified in the list.
486 * @mem_flags: SLAB_* flags affecting memory allocations in this call
487 *
488 * This initializes a scatter/gather request, allocating resources such as
489 * I/O mappings and urb memory (except maybe memory used by USB controller
490 * drivers).
491 *
492 * The request must be issued using usb_sg_wait(), which waits for the I/O to
493 * complete (or to be canceled) and then cleans up all resources allocated by
494 * usb_sg_init().
495 *
496 * The request may be canceled with usb_sg_cancel(), either before or after
497 * usb_sg_wait() is called.
498 *
499 * Return: Zero for success, else a negative errno value.
500 */
usb_sg_init(struct usb_sg_request * io,struct usb_device * dev,unsigned pipe,unsigned period,struct scatterlist * sg,int nents,size_t length,gfp_t mem_flags)501 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
502 unsigned pipe, unsigned period, struct scatterlist *sg,
503 int nents, size_t length, gfp_t mem_flags)
504 {
505 int i;
506 int urb_flags;
507 int use_sg;
508
509 if (!io || !dev || !sg
510 || usb_pipecontrol(pipe)
511 || usb_pipeisoc(pipe)
512 || nents <= 0)
513 return -EINVAL;
514
515 spin_lock_init(&io->lock);
516 io->dev = dev;
517 io->pipe = pipe;
518
519 if (dev->bus->sg_tablesize > 0) {
520 use_sg = true;
521 io->entries = 1;
522 } else {
523 use_sg = false;
524 io->entries = nents;
525 }
526
527 /* initialize all the urbs we'll use */
528 io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags);
529 if (!io->urbs)
530 goto nomem;
531
532 urb_flags = URB_NO_INTERRUPT;
533 if (usb_pipein(pipe))
534 urb_flags |= URB_SHORT_NOT_OK;
535
536 for_each_sg(sg, sg, io->entries, i) {
537 struct urb *urb;
538 unsigned len;
539
540 urb = usb_alloc_urb(0, mem_flags);
541 if (!urb) {
542 io->entries = i;
543 goto nomem;
544 }
545 io->urbs[i] = urb;
546
547 urb->dev = NULL;
548 urb->pipe = pipe;
549 urb->interval = period;
550 urb->transfer_flags = urb_flags;
551 urb->complete = sg_complete;
552 urb->context = io;
553 urb->sg = sg;
554
555 if (use_sg) {
556 /* There is no single transfer buffer */
557 urb->transfer_buffer = NULL;
558 urb->num_sgs = nents;
559
560 /* A length of zero means transfer the whole sg list */
561 len = length;
562 if (len == 0) {
563 struct scatterlist *sg2;
564 int j;
565
566 for_each_sg(sg, sg2, nents, j)
567 len += sg2->length;
568 }
569 } else {
570 /*
571 * Some systems can't use DMA; they use PIO instead.
572 * For their sakes, transfer_buffer is set whenever
573 * possible.
574 */
575 if (!PageHighMem(sg_page(sg)))
576 urb->transfer_buffer = sg_virt(sg);
577 else
578 urb->transfer_buffer = NULL;
579
580 len = sg->length;
581 if (length) {
582 len = min_t(size_t, len, length);
583 length -= len;
584 if (length == 0)
585 io->entries = i + 1;
586 }
587 }
588 urb->transfer_buffer_length = len;
589 }
590 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
591
592 /* transaction state */
593 io->count = io->entries;
594 io->status = 0;
595 io->bytes = 0;
596 init_completion(&io->complete);
597 return 0;
598
599 nomem:
600 sg_clean(io);
601 return -ENOMEM;
602 }
603 EXPORT_SYMBOL_GPL(usb_sg_init);
604
605 /**
606 * usb_sg_wait - synchronously execute scatter/gather request
607 * @io: request block handle, as initialized with usb_sg_init().
608 * some fields become accessible when this call returns.
609 *
610 * Context: task context, might sleep.
611 *
612 * This function blocks until the specified I/O operation completes. It
613 * leverages the grouping of the related I/O requests to get good transfer
614 * rates, by queueing the requests. At higher speeds, such queuing can
615 * significantly improve USB throughput.
616 *
617 * There are three kinds of completion for this function.
618 *
619 * (1) success, where io->status is zero. The number of io->bytes
620 * transferred is as requested.
621 * (2) error, where io->status is a negative errno value. The number
622 * of io->bytes transferred before the error is usually less
623 * than requested, and can be nonzero.
624 * (3) cancellation, a type of error with status -ECONNRESET that
625 * is initiated by usb_sg_cancel().
626 *
627 * When this function returns, all memory allocated through usb_sg_init() or
628 * this call will have been freed. The request block parameter may still be
629 * passed to usb_sg_cancel(), or it may be freed. It could also be
630 * reinitialized and then reused.
631 *
632 * Data Transfer Rates:
633 *
634 * Bulk transfers are valid for full or high speed endpoints.
635 * The best full speed data rate is 19 packets of 64 bytes each
636 * per frame, or 1216 bytes per millisecond.
637 * The best high speed data rate is 13 packets of 512 bytes each
638 * per microframe, or 52 KBytes per millisecond.
639 *
640 * The reason to use interrupt transfers through this API would most likely
641 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
642 * could be transferred. That capability is less useful for low or full
643 * speed interrupt endpoints, which allow at most one packet per millisecond,
644 * of at most 8 or 64 bytes (respectively).
645 *
646 * It is not necessary to call this function to reserve bandwidth for devices
647 * under an xHCI host controller, as the bandwidth is reserved when the
648 * configuration or interface alt setting is selected.
649 */
usb_sg_wait(struct usb_sg_request * io)650 void usb_sg_wait(struct usb_sg_request *io)
651 {
652 int i;
653 int entries = io->entries;
654
655 /* queue the urbs. */
656 spin_lock_irq(&io->lock);
657 i = 0;
658 while (i < entries && !io->status) {
659 int retval;
660
661 io->urbs[i]->dev = io->dev;
662 spin_unlock_irq(&io->lock);
663
664 retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
665
666 switch (retval) {
667 /* maybe we retrying will recover */
668 case -ENXIO: /* hc didn't queue this one */
669 case -EAGAIN:
670 case -ENOMEM:
671 retval = 0;
672 yield();
673 break;
674
675 /* no error? continue immediately.
676 *
677 * NOTE: to work better with UHCI (4K I/O buffer may
678 * need 3K of TDs) it may be good to limit how many
679 * URBs are queued at once; N milliseconds?
680 */
681 case 0:
682 ++i;
683 cpu_relax();
684 break;
685
686 /* fail any uncompleted urbs */
687 default:
688 io->urbs[i]->status = retval;
689 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
690 __func__, retval);
691 usb_sg_cancel(io);
692 }
693 spin_lock_irq(&io->lock);
694 if (retval && (io->status == 0 || io->status == -ECONNRESET))
695 io->status = retval;
696 }
697 io->count -= entries - i;
698 if (io->count == 0)
699 complete(&io->complete);
700 spin_unlock_irq(&io->lock);
701
702 /* OK, yes, this could be packaged as non-blocking.
703 * So could the submit loop above ... but it's easier to
704 * solve neither problem than to solve both!
705 */
706 wait_for_completion(&io->complete);
707
708 sg_clean(io);
709 }
710 EXPORT_SYMBOL_GPL(usb_sg_wait);
711
712 /**
713 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
714 * @io: request block, initialized with usb_sg_init()
715 *
716 * This stops a request after it has been started by usb_sg_wait().
717 * It can also prevents one initialized by usb_sg_init() from starting,
718 * so that call just frees resources allocated to the request.
719 */
usb_sg_cancel(struct usb_sg_request * io)720 void usb_sg_cancel(struct usb_sg_request *io)
721 {
722 unsigned long flags;
723 int i, retval;
724
725 spin_lock_irqsave(&io->lock, flags);
726 if (io->status || io->count == 0) {
727 spin_unlock_irqrestore(&io->lock, flags);
728 return;
729 }
730 /* shut everything down */
731 io->status = -ECONNRESET;
732 io->count++; /* Keep the request alive until we're done */
733 spin_unlock_irqrestore(&io->lock, flags);
734
735 for (i = io->entries - 1; i >= 0; --i) {
736 usb_block_urb(io->urbs[i]);
737
738 retval = usb_unlink_urb(io->urbs[i]);
739 if (retval != -EINPROGRESS
740 && retval != -ENODEV
741 && retval != -EBUSY
742 && retval != -EIDRM)
743 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
744 __func__, retval);
745 }
746
747 spin_lock_irqsave(&io->lock, flags);
748 io->count--;
749 if (!io->count)
750 complete(&io->complete);
751 spin_unlock_irqrestore(&io->lock, flags);
752 }
753 EXPORT_SYMBOL_GPL(usb_sg_cancel);
754
755 /*-------------------------------------------------------------------*/
756
757 /**
758 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
759 * @dev: the device whose descriptor is being retrieved
760 * @type: the descriptor type (USB_DT_*)
761 * @index: the number of the descriptor
762 * @buf: where to put the descriptor
763 * @size: how big is "buf"?
764 *
765 * Context: task context, might sleep.
766 *
767 * Gets a USB descriptor. Convenience functions exist to simplify
768 * getting some types of descriptors. Use
769 * usb_get_string() or usb_string() for USB_DT_STRING.
770 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
771 * are part of the device structure.
772 * In addition to a number of USB-standard descriptors, some
773 * devices also use class-specific or vendor-specific descriptors.
774 *
775 * This call is synchronous, and may not be used in an interrupt context.
776 *
777 * Return: The number of bytes received on success, or else the status code
778 * returned by the underlying usb_control_msg() call.
779 */
usb_get_descriptor(struct usb_device * dev,unsigned char type,unsigned char index,void * buf,int size)780 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
781 unsigned char index, void *buf, int size)
782 {
783 int i;
784 int result;
785
786 if (size <= 0) /* No point in asking for no data */
787 return -EINVAL;
788
789 memset(buf, 0, size); /* Make sure we parse really received data */
790
791 for (i = 0; i < 3; ++i) {
792 /* retry on length 0 or error; some devices are flakey */
793 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
794 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
795 (type << 8) + index, 0, buf, size,
796 USB_CTRL_GET_TIMEOUT);
797 if (result <= 0 && result != -ETIMEDOUT)
798 continue;
799 if (result > 1 && ((u8 *)buf)[1] != type) {
800 result = -ENODATA;
801 continue;
802 }
803 break;
804 }
805 return result;
806 }
807 EXPORT_SYMBOL_GPL(usb_get_descriptor);
808
809 /**
810 * usb_get_string - gets a string descriptor
811 * @dev: the device whose string descriptor is being retrieved
812 * @langid: code for language chosen (from string descriptor zero)
813 * @index: the number of the descriptor
814 * @buf: where to put the string
815 * @size: how big is "buf"?
816 *
817 * Context: task context, might sleep.
818 *
819 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
820 * in little-endian byte order).
821 * The usb_string() function will often be a convenient way to turn
822 * these strings into kernel-printable form.
823 *
824 * Strings may be referenced in device, configuration, interface, or other
825 * descriptors, and could also be used in vendor-specific ways.
826 *
827 * This call is synchronous, and may not be used in an interrupt context.
828 *
829 * Return: The number of bytes received on success, or else the status code
830 * returned by the underlying usb_control_msg() call.
831 */
usb_get_string(struct usb_device * dev,unsigned short langid,unsigned char index,void * buf,int size)832 static int usb_get_string(struct usb_device *dev, unsigned short langid,
833 unsigned char index, void *buf, int size)
834 {
835 int i;
836 int result;
837
838 if (size <= 0) /* No point in asking for no data */
839 return -EINVAL;
840
841 for (i = 0; i < 3; ++i) {
842 /* retry on length 0 or stall; some devices are flakey */
843 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
844 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
845 (USB_DT_STRING << 8) + index, langid, buf, size,
846 USB_CTRL_GET_TIMEOUT);
847 if (result == 0 || result == -EPIPE)
848 continue;
849 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
850 result = -ENODATA;
851 continue;
852 }
853 break;
854 }
855 return result;
856 }
857
usb_try_string_workarounds(unsigned char * buf,int * length)858 static void usb_try_string_workarounds(unsigned char *buf, int *length)
859 {
860 int newlength, oldlength = *length;
861
862 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
863 if (!isprint(buf[newlength]) || buf[newlength + 1])
864 break;
865
866 if (newlength > 2) {
867 buf[0] = newlength;
868 *length = newlength;
869 }
870 }
871
usb_string_sub(struct usb_device * dev,unsigned int langid,unsigned int index,unsigned char * buf)872 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
873 unsigned int index, unsigned char *buf)
874 {
875 int rc;
876
877 /* Try to read the string descriptor by asking for the maximum
878 * possible number of bytes */
879 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
880 rc = -EIO;
881 else
882 rc = usb_get_string(dev, langid, index, buf, 255);
883
884 /* If that failed try to read the descriptor length, then
885 * ask for just that many bytes */
886 if (rc < 2) {
887 rc = usb_get_string(dev, langid, index, buf, 2);
888 if (rc == 2)
889 rc = usb_get_string(dev, langid, index, buf, buf[0]);
890 }
891
892 if (rc >= 2) {
893 if (!buf[0] && !buf[1])
894 usb_try_string_workarounds(buf, &rc);
895
896 /* There might be extra junk at the end of the descriptor */
897 if (buf[0] < rc)
898 rc = buf[0];
899
900 rc = rc - (rc & 1); /* force a multiple of two */
901 }
902
903 if (rc < 2)
904 rc = (rc < 0 ? rc : -EINVAL);
905
906 return rc;
907 }
908
usb_get_langid(struct usb_device * dev,unsigned char * tbuf)909 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
910 {
911 int err;
912
913 if (dev->have_langid)
914 return 0;
915
916 if (dev->string_langid < 0)
917 return -EPIPE;
918
919 err = usb_string_sub(dev, 0, 0, tbuf);
920
921 /* If the string was reported but is malformed, default to english
922 * (0x0409) */
923 if (err == -ENODATA || (err > 0 && err < 4)) {
924 dev->string_langid = 0x0409;
925 dev->have_langid = 1;
926 dev_err(&dev->dev,
927 "language id specifier not provided by device, defaulting to English\n");
928 return 0;
929 }
930
931 /* In case of all other errors, we assume the device is not able to
932 * deal with strings at all. Set string_langid to -1 in order to
933 * prevent any string to be retrieved from the device */
934 if (err < 0) {
935 dev_info(&dev->dev, "string descriptor 0 read error: %d\n",
936 err);
937 dev->string_langid = -1;
938 return -EPIPE;
939 }
940
941 /* always use the first langid listed */
942 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
943 dev->have_langid = 1;
944 dev_dbg(&dev->dev, "default language 0x%04x\n",
945 dev->string_langid);
946 return 0;
947 }
948
949 /**
950 * usb_string - returns UTF-8 version of a string descriptor
951 * @dev: the device whose string descriptor is being retrieved
952 * @index: the number of the descriptor
953 * @buf: where to put the string
954 * @size: how big is "buf"?
955 *
956 * Context: task context, might sleep.
957 *
958 * This converts the UTF-16LE encoded strings returned by devices, from
959 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
960 * that are more usable in most kernel contexts. Note that this function
961 * chooses strings in the first language supported by the device.
962 *
963 * This call is synchronous, and may not be used in an interrupt context.
964 *
965 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
966 */
usb_string(struct usb_device * dev,int index,char * buf,size_t size)967 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
968 {
969 unsigned char *tbuf;
970 int err;
971
972 if (dev->state == USB_STATE_SUSPENDED)
973 return -EHOSTUNREACH;
974 if (size <= 0 || !buf)
975 return -EINVAL;
976 buf[0] = 0;
977 if (index <= 0 || index >= 256)
978 return -EINVAL;
979 tbuf = kmalloc(256, GFP_NOIO);
980 if (!tbuf)
981 return -ENOMEM;
982
983 err = usb_get_langid(dev, tbuf);
984 if (err < 0)
985 goto errout;
986
987 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
988 if (err < 0)
989 goto errout;
990
991 size--; /* leave room for trailing NULL char in output buffer */
992 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
993 UTF16_LITTLE_ENDIAN, buf, size);
994 buf[err] = 0;
995
996 if (tbuf[1] != USB_DT_STRING)
997 dev_dbg(&dev->dev,
998 "wrong descriptor type %02x for string %d (\"%s\")\n",
999 tbuf[1], index, buf);
1000
1001 errout:
1002 kfree(tbuf);
1003 return err;
1004 }
1005 EXPORT_SYMBOL_GPL(usb_string);
1006
1007 /* one UTF-8-encoded 16-bit character has at most three bytes */
1008 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
1009
1010 /**
1011 * usb_cache_string - read a string descriptor and cache it for later use
1012 * @udev: the device whose string descriptor is being read
1013 * @index: the descriptor index
1014 *
1015 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
1016 * or %NULL if the index is 0 or the string could not be read.
1017 */
usb_cache_string(struct usb_device * udev,int index)1018 char *usb_cache_string(struct usb_device *udev, int index)
1019 {
1020 char *buf;
1021 char *smallbuf = NULL;
1022 int len;
1023
1024 if (index <= 0)
1025 return NULL;
1026
1027 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
1028 if (buf) {
1029 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
1030 if (len > 0) {
1031 smallbuf = kmalloc(++len, GFP_NOIO);
1032 if (!smallbuf)
1033 return buf;
1034 memcpy(smallbuf, buf, len);
1035 }
1036 kfree(buf);
1037 }
1038 return smallbuf;
1039 }
1040
1041 /*
1042 * usb_get_device_descriptor - read the device descriptor
1043 * @udev: the device whose device descriptor should be read
1044 *
1045 * Context: task context, might sleep.
1046 *
1047 * Not exported, only for use by the core. If drivers really want to read
1048 * the device descriptor directly, they can call usb_get_descriptor() with
1049 * type = USB_DT_DEVICE and index = 0.
1050 *
1051 * Returns: a pointer to a dynamically allocated usb_device_descriptor
1052 * structure (which the caller must deallocate), or an ERR_PTR value.
1053 */
usb_get_device_descriptor(struct usb_device * udev)1054 struct usb_device_descriptor *usb_get_device_descriptor(struct usb_device *udev)
1055 {
1056 struct usb_device_descriptor *desc;
1057 int ret;
1058
1059 desc = kmalloc(sizeof(*desc), GFP_NOIO);
1060 if (!desc)
1061 return ERR_PTR(-ENOMEM);
1062
1063 ret = usb_get_descriptor(udev, USB_DT_DEVICE, 0, desc, sizeof(*desc));
1064 if (ret == sizeof(*desc))
1065 return desc;
1066
1067 if (ret >= 0)
1068 ret = -EMSGSIZE;
1069 kfree(desc);
1070 return ERR_PTR(ret);
1071 }
1072
1073 /*
1074 * usb_set_isoch_delay - informs the device of the packet transmit delay
1075 * @dev: the device whose delay is to be informed
1076 * Context: task context, might sleep
1077 *
1078 * Since this is an optional request, we don't bother if it fails.
1079 */
usb_set_isoch_delay(struct usb_device * dev)1080 int usb_set_isoch_delay(struct usb_device *dev)
1081 {
1082 /* skip hub devices */
1083 if (dev->descriptor.bDeviceClass == USB_CLASS_HUB)
1084 return 0;
1085
1086 /* skip non-SS/non-SSP devices */
1087 if (dev->speed < USB_SPEED_SUPER)
1088 return 0;
1089
1090 return usb_control_msg_send(dev, 0,
1091 USB_REQ_SET_ISOCH_DELAY,
1092 USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
1093 dev->hub_delay, 0, NULL, 0,
1094 USB_CTRL_SET_TIMEOUT,
1095 GFP_NOIO);
1096 }
1097
1098 /**
1099 * usb_get_status - issues a GET_STATUS call
1100 * @dev: the device whose status is being checked
1101 * @recip: USB_RECIP_*; for device, interface, or endpoint
1102 * @type: USB_STATUS_TYPE_*; for standard or PTM status types
1103 * @target: zero (for device), else interface or endpoint number
1104 * @data: pointer to two bytes of bitmap data
1105 *
1106 * Context: task context, might sleep.
1107 *
1108 * Returns device, interface, or endpoint status. Normally only of
1109 * interest to see if the device is self powered, or has enabled the
1110 * remote wakeup facility; or whether a bulk or interrupt endpoint
1111 * is halted ("stalled").
1112 *
1113 * Bits in these status bitmaps are set using the SET_FEATURE request,
1114 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
1115 * function should be used to clear halt ("stall") status.
1116 *
1117 * This call is synchronous, and may not be used in an interrupt context.
1118 *
1119 * Returns 0 and the status value in *@data (in host byte order) on success,
1120 * or else the status code from the underlying usb_control_msg() call.
1121 */
usb_get_status(struct usb_device * dev,int recip,int type,int target,void * data)1122 int usb_get_status(struct usb_device *dev, int recip, int type, int target,
1123 void *data)
1124 {
1125 int ret;
1126 void *status;
1127 int length;
1128
1129 switch (type) {
1130 case USB_STATUS_TYPE_STANDARD:
1131 length = 2;
1132 break;
1133 case USB_STATUS_TYPE_PTM:
1134 if (recip != USB_RECIP_DEVICE)
1135 return -EINVAL;
1136
1137 length = 4;
1138 break;
1139 default:
1140 return -EINVAL;
1141 }
1142
1143 status = kmalloc(length, GFP_KERNEL);
1144 if (!status)
1145 return -ENOMEM;
1146
1147 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
1148 USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
1149 target, status, length, USB_CTRL_GET_TIMEOUT);
1150
1151 switch (ret) {
1152 case 4:
1153 if (type != USB_STATUS_TYPE_PTM) {
1154 ret = -EIO;
1155 break;
1156 }
1157
1158 *(u32 *) data = le32_to_cpu(*(__le32 *) status);
1159 ret = 0;
1160 break;
1161 case 2:
1162 if (type != USB_STATUS_TYPE_STANDARD) {
1163 ret = -EIO;
1164 break;
1165 }
1166
1167 *(u16 *) data = le16_to_cpu(*(__le16 *) status);
1168 ret = 0;
1169 break;
1170 default:
1171 ret = -EIO;
1172 }
1173
1174 kfree(status);
1175 return ret;
1176 }
1177 EXPORT_SYMBOL_GPL(usb_get_status);
1178
1179 /**
1180 * usb_clear_halt - tells device to clear endpoint halt/stall condition
1181 * @dev: device whose endpoint is halted
1182 * @pipe: endpoint "pipe" being cleared
1183 *
1184 * Context: task context, might sleep.
1185 *
1186 * This is used to clear halt conditions for bulk and interrupt endpoints,
1187 * as reported by URB completion status. Endpoints that are halted are
1188 * sometimes referred to as being "stalled". Such endpoints are unable
1189 * to transmit or receive data until the halt status is cleared. Any URBs
1190 * queued for such an endpoint should normally be unlinked by the driver
1191 * before clearing the halt condition, as described in sections 5.7.5
1192 * and 5.8.5 of the USB 2.0 spec.
1193 *
1194 * Note that control and isochronous endpoints don't halt, although control
1195 * endpoints report "protocol stall" (for unsupported requests) using the
1196 * same status code used to report a true stall.
1197 *
1198 * This call is synchronous, and may not be used in an interrupt context.
1199 *
1200 * Return: Zero on success, or else the status code returned by the
1201 * underlying usb_control_msg() call.
1202 */
usb_clear_halt(struct usb_device * dev,int pipe)1203 int usb_clear_halt(struct usb_device *dev, int pipe)
1204 {
1205 int result;
1206 int endp = usb_pipeendpoint(pipe);
1207
1208 if (usb_pipein(pipe))
1209 endp |= USB_DIR_IN;
1210
1211 /* we don't care if it wasn't halted first. in fact some devices
1212 * (like some ibmcam model 1 units) seem to expect hosts to make
1213 * this request for iso endpoints, which can't halt!
1214 */
1215 result = usb_control_msg_send(dev, 0,
1216 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1217 USB_ENDPOINT_HALT, endp, NULL, 0,
1218 USB_CTRL_SET_TIMEOUT, GFP_NOIO);
1219
1220 /* don't un-halt or force to DATA0 except on success */
1221 if (result)
1222 return result;
1223
1224 /* NOTE: seems like Microsoft and Apple don't bother verifying
1225 * the clear "took", so some devices could lock up if you check...
1226 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1227 *
1228 * NOTE: make sure the logic here doesn't diverge much from
1229 * the copy in usb-storage, for as long as we need two copies.
1230 */
1231
1232 usb_reset_endpoint(dev, endp);
1233
1234 return 0;
1235 }
1236 EXPORT_SYMBOL_GPL(usb_clear_halt);
1237
create_intf_ep_devs(struct usb_interface * intf)1238 static int create_intf_ep_devs(struct usb_interface *intf)
1239 {
1240 struct usb_device *udev = interface_to_usbdev(intf);
1241 struct usb_host_interface *alt = intf->cur_altsetting;
1242 int i;
1243
1244 if (intf->ep_devs_created || intf->unregistering)
1245 return 0;
1246
1247 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1248 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1249 intf->ep_devs_created = 1;
1250 return 0;
1251 }
1252
remove_intf_ep_devs(struct usb_interface * intf)1253 static void remove_intf_ep_devs(struct usb_interface *intf)
1254 {
1255 struct usb_host_interface *alt = intf->cur_altsetting;
1256 int i;
1257
1258 if (!intf->ep_devs_created)
1259 return;
1260
1261 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1262 usb_remove_ep_devs(&alt->endpoint[i]);
1263 intf->ep_devs_created = 0;
1264 }
1265
1266 /**
1267 * usb_disable_endpoint -- Disable an endpoint by address
1268 * @dev: the device whose endpoint is being disabled
1269 * @epaddr: the endpoint's address. Endpoint number for output,
1270 * endpoint number + USB_DIR_IN for input
1271 * @reset_hardware: flag to erase any endpoint state stored in the
1272 * controller hardware
1273 *
1274 * Disables the endpoint for URB submission and nukes all pending URBs.
1275 * If @reset_hardware is set then also deallocates hcd/hardware state
1276 * for the endpoint.
1277 */
usb_disable_endpoint(struct usb_device * dev,unsigned int epaddr,bool reset_hardware)1278 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1279 bool reset_hardware)
1280 {
1281 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1282 struct usb_host_endpoint *ep;
1283
1284 if (!dev)
1285 return;
1286
1287 if (usb_endpoint_out(epaddr)) {
1288 ep = dev->ep_out[epnum];
1289 if (reset_hardware && epnum != 0)
1290 dev->ep_out[epnum] = NULL;
1291 } else {
1292 ep = dev->ep_in[epnum];
1293 if (reset_hardware && epnum != 0)
1294 dev->ep_in[epnum] = NULL;
1295 }
1296 if (ep) {
1297 ep->enabled = 0;
1298 usb_hcd_flush_endpoint(dev, ep);
1299 if (reset_hardware)
1300 usb_hcd_disable_endpoint(dev, ep);
1301 }
1302 }
1303
1304 /**
1305 * usb_reset_endpoint - Reset an endpoint's state.
1306 * @dev: the device whose endpoint is to be reset
1307 * @epaddr: the endpoint's address. Endpoint number for output,
1308 * endpoint number + USB_DIR_IN for input
1309 *
1310 * Resets any host-side endpoint state such as the toggle bit,
1311 * sequence number or current window.
1312 */
usb_reset_endpoint(struct usb_device * dev,unsigned int epaddr)1313 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1314 {
1315 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1316 struct usb_host_endpoint *ep;
1317
1318 if (usb_endpoint_out(epaddr))
1319 ep = dev->ep_out[epnum];
1320 else
1321 ep = dev->ep_in[epnum];
1322 if (ep)
1323 usb_hcd_reset_endpoint(dev, ep);
1324 }
1325 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1326
1327
1328 /**
1329 * usb_disable_interface -- Disable all endpoints for an interface
1330 * @dev: the device whose interface is being disabled
1331 * @intf: pointer to the interface descriptor
1332 * @reset_hardware: flag to erase any endpoint state stored in the
1333 * controller hardware
1334 *
1335 * Disables all the endpoints for the interface's current altsetting.
1336 */
usb_disable_interface(struct usb_device * dev,struct usb_interface * intf,bool reset_hardware)1337 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1338 bool reset_hardware)
1339 {
1340 struct usb_host_interface *alt = intf->cur_altsetting;
1341 int i;
1342
1343 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1344 usb_disable_endpoint(dev,
1345 alt->endpoint[i].desc.bEndpointAddress,
1346 reset_hardware);
1347 }
1348 }
1349
1350 /*
1351 * usb_disable_device_endpoints -- Disable all endpoints for a device
1352 * @dev: the device whose endpoints are being disabled
1353 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1354 */
usb_disable_device_endpoints(struct usb_device * dev,int skip_ep0)1355 static void usb_disable_device_endpoints(struct usb_device *dev, int skip_ep0)
1356 {
1357 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1358 int i;
1359
1360 if (hcd->driver->check_bandwidth) {
1361 /* First pass: Cancel URBs, leave endpoint pointers intact. */
1362 for (i = skip_ep0; i < 16; ++i) {
1363 usb_disable_endpoint(dev, i, false);
1364 usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1365 }
1366 /* Remove endpoints from the host controller internal state */
1367 mutex_lock(hcd->bandwidth_mutex);
1368 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1369 mutex_unlock(hcd->bandwidth_mutex);
1370 }
1371 /* Second pass: remove endpoint pointers */
1372 for (i = skip_ep0; i < 16; ++i) {
1373 usb_disable_endpoint(dev, i, true);
1374 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1375 }
1376 }
1377
1378 /**
1379 * usb_disable_device - Disable all the endpoints for a USB device
1380 * @dev: the device whose endpoints are being disabled
1381 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1382 *
1383 * Disables all the device's endpoints, potentially including endpoint 0.
1384 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1385 * pending urbs) and usbcore state for the interfaces, so that usbcore
1386 * must usb_set_configuration() before any interfaces could be used.
1387 */
usb_disable_device(struct usb_device * dev,int skip_ep0)1388 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1389 {
1390 int i;
1391
1392 /* getting rid of interfaces will disconnect
1393 * any drivers bound to them (a key side effect)
1394 */
1395 if (dev->actconfig) {
1396 /*
1397 * FIXME: In order to avoid self-deadlock involving the
1398 * bandwidth_mutex, we have to mark all the interfaces
1399 * before unregistering any of them.
1400 */
1401 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1402 dev->actconfig->interface[i]->unregistering = 1;
1403
1404 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1405 struct usb_interface *interface;
1406
1407 /* remove this interface if it has been registered */
1408 interface = dev->actconfig->interface[i];
1409 if (!device_is_registered(&interface->dev))
1410 continue;
1411 dev_dbg(&dev->dev, "unregistering interface %s\n",
1412 dev_name(&interface->dev));
1413 remove_intf_ep_devs(interface);
1414 device_del(&interface->dev);
1415 }
1416
1417 /* Now that the interfaces are unbound, nobody should
1418 * try to access them.
1419 */
1420 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1421 put_device(&dev->actconfig->interface[i]->dev);
1422 dev->actconfig->interface[i] = NULL;
1423 }
1424
1425 usb_disable_usb2_hardware_lpm(dev);
1426 usb_unlocked_disable_lpm(dev);
1427 usb_disable_ltm(dev);
1428
1429 dev->actconfig = NULL;
1430 if (dev->state == USB_STATE_CONFIGURED)
1431 usb_set_device_state(dev, USB_STATE_ADDRESS);
1432 }
1433
1434 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1435 skip_ep0 ? "non-ep0" : "all");
1436
1437 usb_disable_device_endpoints(dev, skip_ep0);
1438 }
1439
1440 /**
1441 * usb_enable_endpoint - Enable an endpoint for USB communications
1442 * @dev: the device whose interface is being enabled
1443 * @ep: the endpoint
1444 * @reset_ep: flag to reset the endpoint state
1445 *
1446 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1447 * For control endpoints, both the input and output sides are handled.
1448 */
usb_enable_endpoint(struct usb_device * dev,struct usb_host_endpoint * ep,bool reset_ep)1449 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1450 bool reset_ep)
1451 {
1452 int epnum = usb_endpoint_num(&ep->desc);
1453 int is_out = usb_endpoint_dir_out(&ep->desc);
1454 int is_control = usb_endpoint_xfer_control(&ep->desc);
1455
1456 if (reset_ep)
1457 usb_hcd_reset_endpoint(dev, ep);
1458 if (is_out || is_control)
1459 dev->ep_out[epnum] = ep;
1460 if (!is_out || is_control)
1461 dev->ep_in[epnum] = ep;
1462 ep->enabled = 1;
1463 }
1464
1465 /**
1466 * usb_enable_interface - Enable all the endpoints for an interface
1467 * @dev: the device whose interface is being enabled
1468 * @intf: pointer to the interface descriptor
1469 * @reset_eps: flag to reset the endpoints' state
1470 *
1471 * Enables all the endpoints for the interface's current altsetting.
1472 */
usb_enable_interface(struct usb_device * dev,struct usb_interface * intf,bool reset_eps)1473 void usb_enable_interface(struct usb_device *dev,
1474 struct usb_interface *intf, bool reset_eps)
1475 {
1476 struct usb_host_interface *alt = intf->cur_altsetting;
1477 int i;
1478
1479 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1480 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1481 }
1482
1483 /**
1484 * usb_set_interface - Makes a particular alternate setting be current
1485 * @dev: the device whose interface is being updated
1486 * @interface: the interface being updated
1487 * @alternate: the setting being chosen.
1488 *
1489 * Context: task context, might sleep.
1490 *
1491 * This is used to enable data transfers on interfaces that may not
1492 * be enabled by default. Not all devices support such configurability.
1493 * Only the driver bound to an interface may change its setting.
1494 *
1495 * Within any given configuration, each interface may have several
1496 * alternative settings. These are often used to control levels of
1497 * bandwidth consumption. For example, the default setting for a high
1498 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1499 * while interrupt transfers of up to 3KBytes per microframe are legal.
1500 * Also, isochronous endpoints may never be part of an
1501 * interface's default setting. To access such bandwidth, alternate
1502 * interface settings must be made current.
1503 *
1504 * Note that in the Linux USB subsystem, bandwidth associated with
1505 * an endpoint in a given alternate setting is not reserved until an URB
1506 * is submitted that needs that bandwidth. Some other operating systems
1507 * allocate bandwidth early, when a configuration is chosen.
1508 *
1509 * xHCI reserves bandwidth and configures the alternate setting in
1510 * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting
1511 * may be disabled. Drivers cannot rely on any particular alternate
1512 * setting being in effect after a failure.
1513 *
1514 * This call is synchronous, and may not be used in an interrupt context.
1515 * Also, drivers must not change altsettings while urbs are scheduled for
1516 * endpoints in that interface; all such urbs must first be completed
1517 * (perhaps forced by unlinking).
1518 *
1519 * Return: Zero on success, or else the status code returned by the
1520 * underlying usb_control_msg() call.
1521 */
usb_set_interface(struct usb_device * dev,int interface,int alternate)1522 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1523 {
1524 struct usb_interface *iface;
1525 struct usb_host_interface *alt;
1526 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1527 int i, ret, manual = 0;
1528 unsigned int epaddr;
1529 unsigned int pipe;
1530
1531 if (dev->state == USB_STATE_SUSPENDED)
1532 return -EHOSTUNREACH;
1533
1534 iface = usb_ifnum_to_if(dev, interface);
1535 if (!iface) {
1536 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1537 interface);
1538 return -EINVAL;
1539 }
1540 if (iface->unregistering)
1541 return -ENODEV;
1542
1543 alt = usb_altnum_to_altsetting(iface, alternate);
1544 if (!alt) {
1545 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1546 alternate);
1547 return -EINVAL;
1548 }
1549 /*
1550 * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth,
1551 * including freeing dropped endpoint ring buffers.
1552 * Make sure the interface endpoints are flushed before that
1553 */
1554 usb_disable_interface(dev, iface, false);
1555
1556 /* Make sure we have enough bandwidth for this alternate interface.
1557 * Remove the current alt setting and add the new alt setting.
1558 */
1559 mutex_lock(hcd->bandwidth_mutex);
1560 /* Disable LPM, and re-enable it once the new alt setting is installed,
1561 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1562 */
1563 if (usb_disable_lpm(dev)) {
1564 dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__);
1565 mutex_unlock(hcd->bandwidth_mutex);
1566 return -ENOMEM;
1567 }
1568 /* Changing alt-setting also frees any allocated streams */
1569 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1570 iface->cur_altsetting->endpoint[i].streams = 0;
1571
1572 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1573 if (ret < 0) {
1574 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1575 alternate);
1576 usb_enable_lpm(dev);
1577 mutex_unlock(hcd->bandwidth_mutex);
1578 return ret;
1579 }
1580
1581 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1582 ret = -EPIPE;
1583 else
1584 ret = usb_control_msg_send(dev, 0,
1585 USB_REQ_SET_INTERFACE,
1586 USB_RECIP_INTERFACE, alternate,
1587 interface, NULL, 0, 5000,
1588 GFP_NOIO);
1589
1590 /* 9.4.10 says devices don't need this and are free to STALL the
1591 * request if the interface only has one alternate setting.
1592 */
1593 if (ret == -EPIPE && iface->num_altsetting == 1) {
1594 dev_dbg(&dev->dev,
1595 "manual set_interface for iface %d, alt %d\n",
1596 interface, alternate);
1597 manual = 1;
1598 } else if (ret) {
1599 /* Re-instate the old alt setting */
1600 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1601 usb_enable_lpm(dev);
1602 mutex_unlock(hcd->bandwidth_mutex);
1603 return ret;
1604 }
1605 mutex_unlock(hcd->bandwidth_mutex);
1606
1607 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1608 * when they implement async or easily-killable versions of this or
1609 * other "should-be-internal" functions (like clear_halt).
1610 * should hcd+usbcore postprocess control requests?
1611 */
1612
1613 /* prevent submissions using previous endpoint settings */
1614 if (iface->cur_altsetting != alt) {
1615 remove_intf_ep_devs(iface);
1616 usb_remove_sysfs_intf_files(iface);
1617 }
1618 usb_disable_interface(dev, iface, true);
1619
1620 iface->cur_altsetting = alt;
1621
1622 /* Now that the interface is installed, re-enable LPM. */
1623 usb_unlocked_enable_lpm(dev);
1624
1625 /* If the interface only has one altsetting and the device didn't
1626 * accept the request, we attempt to carry out the equivalent action
1627 * by manually clearing the HALT feature for each endpoint in the
1628 * new altsetting.
1629 */
1630 if (manual) {
1631 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1632 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1633 pipe = __create_pipe(dev,
1634 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1635 (usb_endpoint_out(epaddr) ?
1636 USB_DIR_OUT : USB_DIR_IN);
1637
1638 usb_clear_halt(dev, pipe);
1639 }
1640 }
1641
1642 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1643 *
1644 * Note:
1645 * Despite EP0 is always present in all interfaces/AS, the list of
1646 * endpoints from the descriptor does not contain EP0. Due to its
1647 * omnipresence one might expect EP0 being considered "affected" by
1648 * any SetInterface request and hence assume toggles need to be reset.
1649 * However, EP0 toggles are re-synced for every individual transfer
1650 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1651 * (Likewise, EP0 never "halts" on well designed devices.)
1652 */
1653 usb_enable_interface(dev, iface, true);
1654 if (device_is_registered(&iface->dev)) {
1655 usb_create_sysfs_intf_files(iface);
1656 create_intf_ep_devs(iface);
1657 }
1658 return 0;
1659 }
1660 EXPORT_SYMBOL_GPL(usb_set_interface);
1661
1662 /**
1663 * usb_reset_configuration - lightweight device reset
1664 * @dev: the device whose configuration is being reset
1665 *
1666 * This issues a standard SET_CONFIGURATION request to the device using
1667 * the current configuration. The effect is to reset most USB-related
1668 * state in the device, including interface altsettings (reset to zero),
1669 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1670 * endpoints). Other usbcore state is unchanged, including bindings of
1671 * usb device drivers to interfaces.
1672 *
1673 * Because this affects multiple interfaces, avoid using this with composite
1674 * (multi-interface) devices. Instead, the driver for each interface may
1675 * use usb_set_interface() on the interfaces it claims. Be careful though;
1676 * some devices don't support the SET_INTERFACE request, and others won't
1677 * reset all the interface state (notably endpoint state). Resetting the whole
1678 * configuration would affect other drivers' interfaces.
1679 *
1680 * The caller must own the device lock.
1681 *
1682 * Return: Zero on success, else a negative error code.
1683 *
1684 * If this routine fails the device will probably be in an unusable state
1685 * with endpoints disabled, and interfaces only partially enabled.
1686 */
usb_reset_configuration(struct usb_device * dev)1687 int usb_reset_configuration(struct usb_device *dev)
1688 {
1689 int i, retval;
1690 struct usb_host_config *config;
1691 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1692
1693 if (dev->state == USB_STATE_SUSPENDED)
1694 return -EHOSTUNREACH;
1695
1696 /* caller must have locked the device and must own
1697 * the usb bus readlock (so driver bindings are stable);
1698 * calls during probe() are fine
1699 */
1700
1701 usb_disable_device_endpoints(dev, 1); /* skip ep0*/
1702
1703 config = dev->actconfig;
1704 retval = 0;
1705 mutex_lock(hcd->bandwidth_mutex);
1706 /* Disable LPM, and re-enable it once the configuration is reset, so
1707 * that the xHCI driver can recalculate the U1/U2 timeouts.
1708 */
1709 if (usb_disable_lpm(dev)) {
1710 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1711 mutex_unlock(hcd->bandwidth_mutex);
1712 return -ENOMEM;
1713 }
1714
1715 /* xHCI adds all endpoints in usb_hcd_alloc_bandwidth */
1716 retval = usb_hcd_alloc_bandwidth(dev, config, NULL, NULL);
1717 if (retval < 0) {
1718 usb_enable_lpm(dev);
1719 mutex_unlock(hcd->bandwidth_mutex);
1720 return retval;
1721 }
1722 retval = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0,
1723 config->desc.bConfigurationValue, 0,
1724 NULL, 0, USB_CTRL_SET_TIMEOUT,
1725 GFP_NOIO);
1726 if (retval) {
1727 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1728 usb_enable_lpm(dev);
1729 mutex_unlock(hcd->bandwidth_mutex);
1730 return retval;
1731 }
1732 mutex_unlock(hcd->bandwidth_mutex);
1733
1734 /* re-init hc/hcd interface/endpoint state */
1735 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1736 struct usb_interface *intf = config->interface[i];
1737 struct usb_host_interface *alt;
1738
1739 alt = usb_altnum_to_altsetting(intf, 0);
1740
1741 /* No altsetting 0? We'll assume the first altsetting.
1742 * We could use a GetInterface call, but if a device is
1743 * so non-compliant that it doesn't have altsetting 0
1744 * then I wouldn't trust its reply anyway.
1745 */
1746 if (!alt)
1747 alt = &intf->altsetting[0];
1748
1749 if (alt != intf->cur_altsetting) {
1750 remove_intf_ep_devs(intf);
1751 usb_remove_sysfs_intf_files(intf);
1752 }
1753 intf->cur_altsetting = alt;
1754 usb_enable_interface(dev, intf, true);
1755 if (device_is_registered(&intf->dev)) {
1756 usb_create_sysfs_intf_files(intf);
1757 create_intf_ep_devs(intf);
1758 }
1759 }
1760 /* Now that the interfaces are installed, re-enable LPM. */
1761 usb_unlocked_enable_lpm(dev);
1762 return 0;
1763 }
1764 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1765
usb_release_interface(struct device * dev)1766 static void usb_release_interface(struct device *dev)
1767 {
1768 struct usb_interface *intf = to_usb_interface(dev);
1769 struct usb_interface_cache *intfc =
1770 altsetting_to_usb_interface_cache(intf->altsetting);
1771
1772 kref_put(&intfc->ref, usb_release_interface_cache);
1773 usb_put_dev(interface_to_usbdev(intf));
1774 of_node_put(dev->of_node);
1775 kfree(intf);
1776 }
1777
1778 /*
1779 * usb_deauthorize_interface - deauthorize an USB interface
1780 *
1781 * @intf: USB interface structure
1782 */
usb_deauthorize_interface(struct usb_interface * intf)1783 void usb_deauthorize_interface(struct usb_interface *intf)
1784 {
1785 struct device *dev = &intf->dev;
1786
1787 device_lock(dev->parent);
1788
1789 if (intf->authorized) {
1790 device_lock(dev);
1791 intf->authorized = 0;
1792 device_unlock(dev);
1793
1794 usb_forced_unbind_intf(intf);
1795 }
1796
1797 device_unlock(dev->parent);
1798 }
1799
1800 /*
1801 * usb_authorize_interface - authorize an USB interface
1802 *
1803 * @intf: USB interface structure
1804 */
usb_authorize_interface(struct usb_interface * intf)1805 void usb_authorize_interface(struct usb_interface *intf)
1806 {
1807 struct device *dev = &intf->dev;
1808
1809 if (!intf->authorized) {
1810 device_lock(dev);
1811 intf->authorized = 1; /* authorize interface */
1812 device_unlock(dev);
1813 }
1814 }
1815
usb_if_uevent(struct device * dev,struct kobj_uevent_env * env)1816 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1817 {
1818 struct usb_device *usb_dev;
1819 struct usb_interface *intf;
1820 struct usb_host_interface *alt;
1821
1822 intf = to_usb_interface(dev);
1823 usb_dev = interface_to_usbdev(intf);
1824 alt = intf->cur_altsetting;
1825
1826 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1827 alt->desc.bInterfaceClass,
1828 alt->desc.bInterfaceSubClass,
1829 alt->desc.bInterfaceProtocol))
1830 return -ENOMEM;
1831
1832 if (add_uevent_var(env,
1833 "MODALIAS=usb:"
1834 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1835 le16_to_cpu(usb_dev->descriptor.idVendor),
1836 le16_to_cpu(usb_dev->descriptor.idProduct),
1837 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1838 usb_dev->descriptor.bDeviceClass,
1839 usb_dev->descriptor.bDeviceSubClass,
1840 usb_dev->descriptor.bDeviceProtocol,
1841 alt->desc.bInterfaceClass,
1842 alt->desc.bInterfaceSubClass,
1843 alt->desc.bInterfaceProtocol,
1844 alt->desc.bInterfaceNumber))
1845 return -ENOMEM;
1846
1847 return 0;
1848 }
1849
1850 struct device_type usb_if_device_type = {
1851 .name = "usb_interface",
1852 .release = usb_release_interface,
1853 .uevent = usb_if_uevent,
1854 };
1855
find_iad(struct usb_device * dev,struct usb_host_config * config,u8 inum)1856 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1857 struct usb_host_config *config,
1858 u8 inum)
1859 {
1860 struct usb_interface_assoc_descriptor *retval = NULL;
1861 struct usb_interface_assoc_descriptor *intf_assoc;
1862 int first_intf;
1863 int last_intf;
1864 int i;
1865
1866 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1867 intf_assoc = config->intf_assoc[i];
1868 if (intf_assoc->bInterfaceCount == 0)
1869 continue;
1870
1871 first_intf = intf_assoc->bFirstInterface;
1872 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1873 if (inum >= first_intf && inum <= last_intf) {
1874 if (!retval)
1875 retval = intf_assoc;
1876 else
1877 dev_err(&dev->dev, "Interface #%d referenced"
1878 " by multiple IADs\n", inum);
1879 }
1880 }
1881
1882 return retval;
1883 }
1884
1885
1886 /*
1887 * Internal function to queue a device reset
1888 * See usb_queue_reset_device() for more details
1889 */
__usb_queue_reset_device(struct work_struct * ws)1890 static void __usb_queue_reset_device(struct work_struct *ws)
1891 {
1892 int rc;
1893 struct usb_interface *iface =
1894 container_of(ws, struct usb_interface, reset_ws);
1895 struct usb_device *udev = interface_to_usbdev(iface);
1896
1897 rc = usb_lock_device_for_reset(udev, iface);
1898 if (rc >= 0) {
1899 usb_reset_device(udev);
1900 usb_unlock_device(udev);
1901 }
1902 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */
1903 }
1904
1905
1906 /*
1907 * usb_set_configuration - Makes a particular device setting be current
1908 * @dev: the device whose configuration is being updated
1909 * @configuration: the configuration being chosen.
1910 *
1911 * Context: task context, might sleep. Caller holds device lock.
1912 *
1913 * This is used to enable non-default device modes. Not all devices
1914 * use this kind of configurability; many devices only have one
1915 * configuration.
1916 *
1917 * @configuration is the value of the configuration to be installed.
1918 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1919 * must be non-zero; a value of zero indicates that the device in
1920 * unconfigured. However some devices erroneously use 0 as one of their
1921 * configuration values. To help manage such devices, this routine will
1922 * accept @configuration = -1 as indicating the device should be put in
1923 * an unconfigured state.
1924 *
1925 * USB device configurations may affect Linux interoperability,
1926 * power consumption and the functionality available. For example,
1927 * the default configuration is limited to using 100mA of bus power,
1928 * so that when certain device functionality requires more power,
1929 * and the device is bus powered, that functionality should be in some
1930 * non-default device configuration. Other device modes may also be
1931 * reflected as configuration options, such as whether two ISDN
1932 * channels are available independently; and choosing between open
1933 * standard device protocols (like CDC) or proprietary ones.
1934 *
1935 * Note that a non-authorized device (dev->authorized == 0) will only
1936 * be put in unconfigured mode.
1937 *
1938 * Note that USB has an additional level of device configurability,
1939 * associated with interfaces. That configurability is accessed using
1940 * usb_set_interface().
1941 *
1942 * This call is synchronous. The calling context must be able to sleep,
1943 * must own the device lock, and must not hold the driver model's USB
1944 * bus mutex; usb interface driver probe() methods cannot use this routine.
1945 *
1946 * Returns zero on success, or else the status code returned by the
1947 * underlying call that failed. On successful completion, each interface
1948 * in the original device configuration has been destroyed, and each one
1949 * in the new configuration has been probed by all relevant usb device
1950 * drivers currently known to the kernel.
1951 */
usb_set_configuration(struct usb_device * dev,int configuration)1952 int usb_set_configuration(struct usb_device *dev, int configuration)
1953 {
1954 int i, ret;
1955 struct usb_host_config *cp = NULL;
1956 struct usb_interface **new_interfaces = NULL;
1957 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1958 int n, nintf;
1959
1960 if (dev->authorized == 0 || configuration == -1)
1961 configuration = 0;
1962 else {
1963 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1964 if (dev->config[i].desc.bConfigurationValue ==
1965 configuration) {
1966 cp = &dev->config[i];
1967 break;
1968 }
1969 }
1970 }
1971 if ((!cp && configuration != 0))
1972 return -EINVAL;
1973
1974 /* The USB spec says configuration 0 means unconfigured.
1975 * But if a device includes a configuration numbered 0,
1976 * we will accept it as a correctly configured state.
1977 * Use -1 if you really want to unconfigure the device.
1978 */
1979 if (cp && configuration == 0)
1980 dev_warn(&dev->dev, "config 0 descriptor??\n");
1981
1982 /* Allocate memory for new interfaces before doing anything else,
1983 * so that if we run out then nothing will have changed. */
1984 n = nintf = 0;
1985 if (cp) {
1986 nintf = cp->desc.bNumInterfaces;
1987 new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces),
1988 GFP_NOIO);
1989 if (!new_interfaces)
1990 return -ENOMEM;
1991
1992 for (; n < nintf; ++n) {
1993 new_interfaces[n] = kzalloc(
1994 sizeof(struct usb_interface),
1995 GFP_NOIO);
1996 if (!new_interfaces[n]) {
1997 ret = -ENOMEM;
1998 free_interfaces:
1999 while (--n >= 0)
2000 kfree(new_interfaces[n]);
2001 kfree(new_interfaces);
2002 return ret;
2003 }
2004 }
2005
2006 i = dev->bus_mA - usb_get_max_power(dev, cp);
2007 if (i < 0)
2008 dev_warn(&dev->dev, "new config #%d exceeds power "
2009 "limit by %dmA\n",
2010 configuration, -i);
2011 }
2012
2013 /* Wake up the device so we can send it the Set-Config request */
2014 ret = usb_autoresume_device(dev);
2015 if (ret)
2016 goto free_interfaces;
2017
2018 /* if it's already configured, clear out old state first.
2019 * getting rid of old interfaces means unbinding their drivers.
2020 */
2021 if (dev->state != USB_STATE_ADDRESS)
2022 usb_disable_device(dev, 1); /* Skip ep0 */
2023
2024 /* Get rid of pending async Set-Config requests for this device */
2025 cancel_async_set_config(dev);
2026
2027 /* Make sure we have bandwidth (and available HCD resources) for this
2028 * configuration. Remove endpoints from the schedule if we're dropping
2029 * this configuration to set configuration 0. After this point, the
2030 * host controller will not allow submissions to dropped endpoints. If
2031 * this call fails, the device state is unchanged.
2032 */
2033 mutex_lock(hcd->bandwidth_mutex);
2034 /* Disable LPM, and re-enable it once the new configuration is
2035 * installed, so that the xHCI driver can recalculate the U1/U2
2036 * timeouts.
2037 */
2038 if (dev->actconfig && usb_disable_lpm(dev)) {
2039 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
2040 mutex_unlock(hcd->bandwidth_mutex);
2041 ret = -ENOMEM;
2042 goto free_interfaces;
2043 }
2044 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
2045 if (ret < 0) {
2046 if (dev->actconfig)
2047 usb_enable_lpm(dev);
2048 mutex_unlock(hcd->bandwidth_mutex);
2049 usb_autosuspend_device(dev);
2050 goto free_interfaces;
2051 }
2052
2053 /*
2054 * Initialize the new interface structures and the
2055 * hc/hcd/usbcore interface/endpoint state.
2056 */
2057 for (i = 0; i < nintf; ++i) {
2058 struct usb_interface_cache *intfc;
2059 struct usb_interface *intf;
2060 struct usb_host_interface *alt;
2061 u8 ifnum;
2062
2063 cp->interface[i] = intf = new_interfaces[i];
2064 intfc = cp->intf_cache[i];
2065 intf->altsetting = intfc->altsetting;
2066 intf->num_altsetting = intfc->num_altsetting;
2067 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
2068 kref_get(&intfc->ref);
2069
2070 alt = usb_altnum_to_altsetting(intf, 0);
2071
2072 /* No altsetting 0? We'll assume the first altsetting.
2073 * We could use a GetInterface call, but if a device is
2074 * so non-compliant that it doesn't have altsetting 0
2075 * then I wouldn't trust its reply anyway.
2076 */
2077 if (!alt)
2078 alt = &intf->altsetting[0];
2079
2080 ifnum = alt->desc.bInterfaceNumber;
2081 intf->intf_assoc = find_iad(dev, cp, ifnum);
2082 intf->cur_altsetting = alt;
2083 usb_enable_interface(dev, intf, true);
2084 intf->dev.parent = &dev->dev;
2085 if (usb_of_has_combined_node(dev)) {
2086 device_set_of_node_from_dev(&intf->dev, &dev->dev);
2087 } else {
2088 intf->dev.of_node = usb_of_get_interface_node(dev,
2089 configuration, ifnum);
2090 }
2091 ACPI_COMPANION_SET(&intf->dev, ACPI_COMPANION(&dev->dev));
2092 intf->dev.driver = NULL;
2093 intf->dev.bus = &usb_bus_type;
2094 intf->dev.type = &usb_if_device_type;
2095 intf->dev.groups = usb_interface_groups;
2096 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
2097 intf->minor = -1;
2098 device_initialize(&intf->dev);
2099 pm_runtime_no_callbacks(&intf->dev);
2100 dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum,
2101 dev->devpath, configuration, ifnum);
2102 usb_get_dev(dev);
2103 }
2104 kfree(new_interfaces);
2105
2106 ret = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0,
2107 configuration, 0, NULL, 0,
2108 USB_CTRL_SET_TIMEOUT, GFP_NOIO);
2109 if (ret && cp) {
2110 /*
2111 * All the old state is gone, so what else can we do?
2112 * The device is probably useless now anyway.
2113 */
2114 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
2115 for (i = 0; i < nintf; ++i) {
2116 usb_disable_interface(dev, cp->interface[i], true);
2117 put_device(&cp->interface[i]->dev);
2118 cp->interface[i] = NULL;
2119 }
2120 cp = NULL;
2121 }
2122
2123 dev->actconfig = cp;
2124 mutex_unlock(hcd->bandwidth_mutex);
2125
2126 if (!cp) {
2127 usb_set_device_state(dev, USB_STATE_ADDRESS);
2128
2129 /* Leave LPM disabled while the device is unconfigured. */
2130 usb_autosuspend_device(dev);
2131 return ret;
2132 }
2133 usb_set_device_state(dev, USB_STATE_CONFIGURED);
2134
2135 if (cp->string == NULL &&
2136 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
2137 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
2138
2139 /* Now that the interfaces are installed, re-enable LPM. */
2140 usb_unlocked_enable_lpm(dev);
2141 /* Enable LTM if it was turned off by usb_disable_device. */
2142 usb_enable_ltm(dev);
2143
2144 /* Now that all the interfaces are set up, register them
2145 * to trigger binding of drivers to interfaces. probe()
2146 * routines may install different altsettings and may
2147 * claim() any interfaces not yet bound. Many class drivers
2148 * need that: CDC, audio, video, etc.
2149 */
2150 for (i = 0; i < nintf; ++i) {
2151 struct usb_interface *intf = cp->interface[i];
2152
2153 if (intf->dev.of_node &&
2154 !of_device_is_available(intf->dev.of_node)) {
2155 dev_info(&dev->dev, "skipping disabled interface %d\n",
2156 intf->cur_altsetting->desc.bInterfaceNumber);
2157 continue;
2158 }
2159
2160 dev_dbg(&dev->dev,
2161 "adding %s (config #%d, interface %d)\n",
2162 dev_name(&intf->dev), configuration,
2163 intf->cur_altsetting->desc.bInterfaceNumber);
2164 device_enable_async_suspend(&intf->dev);
2165 ret = device_add(&intf->dev);
2166 if (ret != 0) {
2167 dev_err(&dev->dev, "device_add(%s) --> %d\n",
2168 dev_name(&intf->dev), ret);
2169 continue;
2170 }
2171 create_intf_ep_devs(intf);
2172 }
2173
2174 usb_autosuspend_device(dev);
2175 return 0;
2176 }
2177 EXPORT_SYMBOL_GPL(usb_set_configuration);
2178
2179 static LIST_HEAD(set_config_list);
2180 static DEFINE_SPINLOCK(set_config_lock);
2181
2182 struct set_config_request {
2183 struct usb_device *udev;
2184 int config;
2185 struct work_struct work;
2186 struct list_head node;
2187 };
2188
2189 /* Worker routine for usb_driver_set_configuration() */
driver_set_config_work(struct work_struct * work)2190 static void driver_set_config_work(struct work_struct *work)
2191 {
2192 struct set_config_request *req =
2193 container_of(work, struct set_config_request, work);
2194 struct usb_device *udev = req->udev;
2195
2196 usb_lock_device(udev);
2197 spin_lock(&set_config_lock);
2198 list_del(&req->node);
2199 spin_unlock(&set_config_lock);
2200
2201 if (req->config >= -1) /* Is req still valid? */
2202 usb_set_configuration(udev, req->config);
2203 usb_unlock_device(udev);
2204 usb_put_dev(udev);
2205 kfree(req);
2206 }
2207
2208 /* Cancel pending Set-Config requests for a device whose configuration
2209 * was just changed
2210 */
cancel_async_set_config(struct usb_device * udev)2211 static void cancel_async_set_config(struct usb_device *udev)
2212 {
2213 struct set_config_request *req;
2214
2215 spin_lock(&set_config_lock);
2216 list_for_each_entry(req, &set_config_list, node) {
2217 if (req->udev == udev)
2218 req->config = -999; /* Mark as cancelled */
2219 }
2220 spin_unlock(&set_config_lock);
2221 }
2222
2223 /**
2224 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2225 * @udev: the device whose configuration is being updated
2226 * @config: the configuration being chosen.
2227 * Context: In process context, must be able to sleep
2228 *
2229 * Device interface drivers are not allowed to change device configurations.
2230 * This is because changing configurations will destroy the interface the
2231 * driver is bound to and create new ones; it would be like a floppy-disk
2232 * driver telling the computer to replace the floppy-disk drive with a
2233 * tape drive!
2234 *
2235 * Still, in certain specialized circumstances the need may arise. This
2236 * routine gets around the normal restrictions by using a work thread to
2237 * submit the change-config request.
2238 *
2239 * Return: 0 if the request was successfully queued, error code otherwise.
2240 * The caller has no way to know whether the queued request will eventually
2241 * succeed.
2242 */
usb_driver_set_configuration(struct usb_device * udev,int config)2243 int usb_driver_set_configuration(struct usb_device *udev, int config)
2244 {
2245 struct set_config_request *req;
2246
2247 req = kmalloc(sizeof(*req), GFP_KERNEL);
2248 if (!req)
2249 return -ENOMEM;
2250 req->udev = udev;
2251 req->config = config;
2252 INIT_WORK(&req->work, driver_set_config_work);
2253
2254 spin_lock(&set_config_lock);
2255 list_add(&req->node, &set_config_list);
2256 spin_unlock(&set_config_lock);
2257
2258 usb_get_dev(udev);
2259 schedule_work(&req->work);
2260 return 0;
2261 }
2262 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2263
2264 /**
2265 * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2266 * @hdr: the place to put the results of the parsing
2267 * @intf: the interface for which parsing is requested
2268 * @buffer: pointer to the extra headers to be parsed
2269 * @buflen: length of the extra headers
2270 *
2271 * This evaluates the extra headers present in CDC devices which
2272 * bind the interfaces for data and control and provide details
2273 * about the capabilities of the device.
2274 *
2275 * Return: number of descriptors parsed or -EINVAL
2276 * if the header is contradictory beyond salvage
2277 */
2278
cdc_parse_cdc_header(struct usb_cdc_parsed_header * hdr,struct usb_interface * intf,u8 * buffer,int buflen)2279 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2280 struct usb_interface *intf,
2281 u8 *buffer,
2282 int buflen)
2283 {
2284 /* duplicates are ignored */
2285 struct usb_cdc_union_desc *union_header = NULL;
2286
2287 /* duplicates are not tolerated */
2288 struct usb_cdc_header_desc *header = NULL;
2289 struct usb_cdc_ether_desc *ether = NULL;
2290 struct usb_cdc_mdlm_detail_desc *detail = NULL;
2291 struct usb_cdc_mdlm_desc *desc = NULL;
2292
2293 unsigned int elength;
2294 int cnt = 0;
2295
2296 memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2297 hdr->phonet_magic_present = false;
2298 while (buflen > 0) {
2299 elength = buffer[0];
2300 if (!elength) {
2301 dev_err(&intf->dev, "skipping garbage byte\n");
2302 elength = 1;
2303 goto next_desc;
2304 }
2305 if ((buflen < elength) || (elength < 3)) {
2306 dev_err(&intf->dev, "invalid descriptor buffer length\n");
2307 break;
2308 }
2309 if (buffer[1] != USB_DT_CS_INTERFACE) {
2310 dev_err(&intf->dev, "skipping garbage\n");
2311 goto next_desc;
2312 }
2313
2314 switch (buffer[2]) {
2315 case USB_CDC_UNION_TYPE: /* we've found it */
2316 if (elength < sizeof(struct usb_cdc_union_desc))
2317 goto next_desc;
2318 if (union_header) {
2319 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2320 goto next_desc;
2321 }
2322 union_header = (struct usb_cdc_union_desc *)buffer;
2323 break;
2324 case USB_CDC_COUNTRY_TYPE:
2325 if (elength < sizeof(struct usb_cdc_country_functional_desc))
2326 goto next_desc;
2327 hdr->usb_cdc_country_functional_desc =
2328 (struct usb_cdc_country_functional_desc *)buffer;
2329 break;
2330 case USB_CDC_HEADER_TYPE:
2331 if (elength != sizeof(struct usb_cdc_header_desc))
2332 goto next_desc;
2333 if (header)
2334 return -EINVAL;
2335 header = (struct usb_cdc_header_desc *)buffer;
2336 break;
2337 case USB_CDC_ACM_TYPE:
2338 if (elength < sizeof(struct usb_cdc_acm_descriptor))
2339 goto next_desc;
2340 hdr->usb_cdc_acm_descriptor =
2341 (struct usb_cdc_acm_descriptor *)buffer;
2342 break;
2343 case USB_CDC_ETHERNET_TYPE:
2344 if (elength != sizeof(struct usb_cdc_ether_desc))
2345 goto next_desc;
2346 if (ether)
2347 return -EINVAL;
2348 ether = (struct usb_cdc_ether_desc *)buffer;
2349 break;
2350 case USB_CDC_CALL_MANAGEMENT_TYPE:
2351 if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2352 goto next_desc;
2353 hdr->usb_cdc_call_mgmt_descriptor =
2354 (struct usb_cdc_call_mgmt_descriptor *)buffer;
2355 break;
2356 case USB_CDC_DMM_TYPE:
2357 if (elength < sizeof(struct usb_cdc_dmm_desc))
2358 goto next_desc;
2359 hdr->usb_cdc_dmm_desc =
2360 (struct usb_cdc_dmm_desc *)buffer;
2361 break;
2362 case USB_CDC_MDLM_TYPE:
2363 if (elength < sizeof(struct usb_cdc_mdlm_desc))
2364 goto next_desc;
2365 if (desc)
2366 return -EINVAL;
2367 desc = (struct usb_cdc_mdlm_desc *)buffer;
2368 break;
2369 case USB_CDC_MDLM_DETAIL_TYPE:
2370 if (elength < sizeof(struct usb_cdc_mdlm_detail_desc))
2371 goto next_desc;
2372 if (detail)
2373 return -EINVAL;
2374 detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2375 break;
2376 case USB_CDC_NCM_TYPE:
2377 if (elength < sizeof(struct usb_cdc_ncm_desc))
2378 goto next_desc;
2379 hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2380 break;
2381 case USB_CDC_MBIM_TYPE:
2382 if (elength < sizeof(struct usb_cdc_mbim_desc))
2383 goto next_desc;
2384
2385 hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2386 break;
2387 case USB_CDC_MBIM_EXTENDED_TYPE:
2388 if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2389 break;
2390 hdr->usb_cdc_mbim_extended_desc =
2391 (struct usb_cdc_mbim_extended_desc *)buffer;
2392 break;
2393 case CDC_PHONET_MAGIC_NUMBER:
2394 hdr->phonet_magic_present = true;
2395 break;
2396 default:
2397 /*
2398 * there are LOTS more CDC descriptors that
2399 * could legitimately be found here.
2400 */
2401 dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2402 buffer[2], elength);
2403 goto next_desc;
2404 }
2405 cnt++;
2406 next_desc:
2407 buflen -= elength;
2408 buffer += elength;
2409 }
2410 hdr->usb_cdc_union_desc = union_header;
2411 hdr->usb_cdc_header_desc = header;
2412 hdr->usb_cdc_mdlm_detail_desc = detail;
2413 hdr->usb_cdc_mdlm_desc = desc;
2414 hdr->usb_cdc_ether_desc = ether;
2415 return cnt;
2416 }
2417
2418 EXPORT_SYMBOL(cdc_parse_cdc_header);
2419