• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * udc.c - Core UDC Framework
4  *
5  * Copyright (C) 2010 Texas Instruments
6  * Author: Felipe Balbi <balbi@ti.com>
7  */
8 
9 #define pr_fmt(fmt)	"UDC core: " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/list.h>
15 #include <linux/idr.h>
16 #include <linux/err.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/sched/task_stack.h>
19 #include <linux/workqueue.h>
20 
21 #include <linux/usb/ch9.h>
22 #include <linux/usb/gadget.h>
23 #include <linux/usb.h>
24 
25 #include "trace.h"
26 
27 static DEFINE_IDA(gadget_id_numbers);
28 
29 static struct bus_type gadget_bus_type;
30 
31 /**
32  * struct usb_udc - describes one usb device controller
33  * @driver: the gadget driver pointer. For use by the class code
34  * @dev: the child device to the actual controller
35  * @gadget: the gadget. For use by the class code
36  * @list: for use by the udc class driver
37  * @vbus: for udcs who care about vbus status, this value is real vbus status;
38  * for udcs who do not care about vbus status, this value is always true
39  * @started: the UDC's started state. True if the UDC had started.
40  * @allow_connect: Indicates whether UDC is allowed to be pulled up.
41  * Set/cleared by gadget_(un)bind_driver() after gadget driver is bound or
42  * unbound.
43  * @vbus_work: work routine to handle VBUS status change notifications.
44  * @connect_lock: protects udc->started, gadget->connect,
45  * gadget->allow_connect and gadget->deactivate. The routines
46  * usb_gadget_connect_locked(), usb_gadget_disconnect_locked(),
47  * usb_udc_connect_control_locked(), usb_gadget_udc_start_locked() and
48  * usb_gadget_udc_stop_locked() are called with this lock held.
49  *
50  * This represents the internal data structure which is used by the UDC-class
51  * to hold information about udc driver and gadget together.
52  */
53 struct usb_udc {
54 	struct usb_gadget_driver	*driver;
55 	struct usb_gadget		*gadget;
56 	struct device			dev;
57 	struct list_head		list;
58 	bool				vbus;
59 	bool				started;
60 	bool				allow_connect;
61 	struct work_struct		vbus_work;
62 	struct mutex			connect_lock;
63 };
64 
65 static struct class *udc_class;
66 static LIST_HEAD(udc_list);
67 
68 /* Protects udc_list, udc->driver, driver->is_bound, and related calls */
69 static DEFINE_MUTEX(udc_lock);
70 
71 /* ------------------------------------------------------------------------- */
72 
73 /**
74  * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
75  * @ep:the endpoint being configured
76  * @maxpacket_limit:value of maximum packet size limit
77  *
78  * This function should be used only in UDC drivers to initialize endpoint
79  * (usually in probe function).
80  */
usb_ep_set_maxpacket_limit(struct usb_ep * ep,unsigned maxpacket_limit)81 void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
82 					      unsigned maxpacket_limit)
83 {
84 	ep->maxpacket_limit = maxpacket_limit;
85 	ep->maxpacket = maxpacket_limit;
86 
87 	trace_usb_ep_set_maxpacket_limit(ep, 0);
88 }
89 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
90 
91 /**
92  * usb_ep_enable - configure endpoint, making it usable
93  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
94  *	drivers discover endpoints through the ep_list of a usb_gadget.
95  *
96  * When configurations are set, or when interface settings change, the driver
97  * will enable or disable the relevant endpoints.  while it is enabled, an
98  * endpoint may be used for i/o until the driver receives a disconnect() from
99  * the host or until the endpoint is disabled.
100  *
101  * the ep0 implementation (which calls this routine) must ensure that the
102  * hardware capabilities of each endpoint match the descriptor provided
103  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
104  * for interrupt transfers as well as bulk, but it likely couldn't be used
105  * for iso transfers or for endpoint 14.  some endpoints are fully
106  * configurable, with more generic names like "ep-a".  (remember that for
107  * USB, "in" means "towards the USB host".)
108  *
109  * This routine may be called in an atomic (interrupt) context.
110  *
111  * returns zero, or a negative error code.
112  */
usb_ep_enable(struct usb_ep * ep)113 int usb_ep_enable(struct usb_ep *ep)
114 {
115 	int ret = 0;
116 
117 	if (ep->enabled)
118 		goto out;
119 
120 	/* UDC drivers can't handle endpoints with maxpacket size 0 */
121 	if (usb_endpoint_maxp(ep->desc) == 0) {
122 		/*
123 		 * We should log an error message here, but we can't call
124 		 * dev_err() because there's no way to find the gadget
125 		 * given only ep.
126 		 */
127 		ret = -EINVAL;
128 		goto out;
129 	}
130 
131 	ret = ep->ops->enable(ep, ep->desc);
132 	if (ret)
133 		goto out;
134 
135 	ep->enabled = true;
136 
137 out:
138 	trace_usb_ep_enable(ep, ret);
139 
140 	return ret;
141 }
142 EXPORT_SYMBOL_GPL(usb_ep_enable);
143 
144 /**
145  * usb_ep_disable - endpoint is no longer usable
146  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
147  *
148  * no other task may be using this endpoint when this is called.
149  * any pending and uncompleted requests will complete with status
150  * indicating disconnect (-ESHUTDOWN) before this call returns.
151  * gadget drivers must call usb_ep_enable() again before queueing
152  * requests to the endpoint.
153  *
154  * This routine may be called in an atomic (interrupt) context.
155  *
156  * returns zero, or a negative error code.
157  */
usb_ep_disable(struct usb_ep * ep)158 int usb_ep_disable(struct usb_ep *ep)
159 {
160 	int ret = 0;
161 
162 	if (!ep->enabled)
163 		goto out;
164 
165 	ret = ep->ops->disable(ep);
166 	if (ret)
167 		goto out;
168 
169 	ep->enabled = false;
170 
171 out:
172 	trace_usb_ep_disable(ep, ret);
173 
174 	return ret;
175 }
176 EXPORT_SYMBOL_GPL(usb_ep_disable);
177 
178 /**
179  * usb_ep_alloc_request - allocate a request object to use with this endpoint
180  * @ep:the endpoint to be used with with the request
181  * @gfp_flags:GFP_* flags to use
182  *
183  * Request objects must be allocated with this call, since they normally
184  * need controller-specific setup and may even need endpoint-specific
185  * resources such as allocation of DMA descriptors.
186  * Requests may be submitted with usb_ep_queue(), and receive a single
187  * completion callback.  Free requests with usb_ep_free_request(), when
188  * they are no longer needed.
189  *
190  * Returns the request, or null if one could not be allocated.
191  */
usb_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)192 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
193 						       gfp_t gfp_flags)
194 {
195 	struct usb_request *req = NULL;
196 
197 	req = ep->ops->alloc_request(ep, gfp_flags);
198 
199 	trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
200 
201 	return req;
202 }
203 EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
204 
205 /**
206  * usb_ep_free_request - frees a request object
207  * @ep:the endpoint associated with the request
208  * @req:the request being freed
209  *
210  * Reverses the effect of usb_ep_alloc_request().
211  * Caller guarantees the request is not queued, and that it will
212  * no longer be requeued (or otherwise used).
213  */
usb_ep_free_request(struct usb_ep * ep,struct usb_request * req)214 void usb_ep_free_request(struct usb_ep *ep,
215 				       struct usb_request *req)
216 {
217 	trace_usb_ep_free_request(ep, req, 0);
218 	ep->ops->free_request(ep, req);
219 }
220 EXPORT_SYMBOL_GPL(usb_ep_free_request);
221 
222 /**
223  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
224  * @ep:the endpoint associated with the request
225  * @req:the request being submitted
226  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
227  *	pre-allocate all necessary memory with the request.
228  *
229  * This tells the device controller to perform the specified request through
230  * that endpoint (reading or writing a buffer).  When the request completes,
231  * including being canceled by usb_ep_dequeue(), the request's completion
232  * routine is called to return the request to the driver.  Any endpoint
233  * (except control endpoints like ep0) may have more than one transfer
234  * request queued; they complete in FIFO order.  Once a gadget driver
235  * submits a request, that request may not be examined or modified until it
236  * is given back to that driver through the completion callback.
237  *
238  * Each request is turned into one or more packets.  The controller driver
239  * never merges adjacent requests into the same packet.  OUT transfers
240  * will sometimes use data that's already buffered in the hardware.
241  * Drivers can rely on the fact that the first byte of the request's buffer
242  * always corresponds to the first byte of some USB packet, for both
243  * IN and OUT transfers.
244  *
245  * Bulk endpoints can queue any amount of data; the transfer is packetized
246  * automatically.  The last packet will be short if the request doesn't fill it
247  * out completely.  Zero length packets (ZLPs) should be avoided in portable
248  * protocols since not all usb hardware can successfully handle zero length
249  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
250  * the request 'zero' flag is set.)  Bulk endpoints may also be used
251  * for interrupt transfers; but the reverse is not true, and some endpoints
252  * won't support every interrupt transfer.  (Such as 768 byte packets.)
253  *
254  * Interrupt-only endpoints are less functional than bulk endpoints, for
255  * example by not supporting queueing or not handling buffers that are
256  * larger than the endpoint's maxpacket size.  They may also treat data
257  * toggle differently.
258  *
259  * Control endpoints ... after getting a setup() callback, the driver queues
260  * one response (even if it would be zero length).  That enables the
261  * status ack, after transferring data as specified in the response.  Setup
262  * functions may return negative error codes to generate protocol stalls.
263  * (Note that some USB device controllers disallow protocol stall responses
264  * in some cases.)  When control responses are deferred (the response is
265  * written after the setup callback returns), then usb_ep_set_halt() may be
266  * used on ep0 to trigger protocol stalls.  Depending on the controller,
267  * it may not be possible to trigger a status-stage protocol stall when the
268  * data stage is over, that is, from within the response's completion
269  * routine.
270  *
271  * For periodic endpoints, like interrupt or isochronous ones, the usb host
272  * arranges to poll once per interval, and the gadget driver usually will
273  * have queued some data to transfer at that time.
274  *
275  * Note that @req's ->complete() callback must never be called from
276  * within usb_ep_queue() as that can create deadlock situations.
277  *
278  * This routine may be called in interrupt context.
279  *
280  * Returns zero, or a negative error code.  Endpoints that are not enabled
281  * report errors; errors will also be
282  * reported when the usb peripheral is disconnected.
283  *
284  * If and only if @req is successfully queued (the return value is zero),
285  * @req->complete() will be called exactly once, when the Gadget core and
286  * UDC are finished with the request.  When the completion function is called,
287  * control of the request is returned to the device driver which submitted it.
288  * The completion handler may then immediately free or reuse @req.
289  */
usb_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)290 int usb_ep_queue(struct usb_ep *ep,
291 			       struct usb_request *req, gfp_t gfp_flags)
292 {
293 	int ret = 0;
294 
295 	if (WARN_ON_ONCE(!ep->enabled && ep->address)) {
296 		ret = -ESHUTDOWN;
297 		goto out;
298 	}
299 
300 	ret = ep->ops->queue(ep, req, gfp_flags);
301 
302 out:
303 	trace_usb_ep_queue(ep, req, ret);
304 
305 	return ret;
306 }
307 EXPORT_SYMBOL_GPL(usb_ep_queue);
308 
309 /**
310  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
311  * @ep:the endpoint associated with the request
312  * @req:the request being canceled
313  *
314  * If the request is still active on the endpoint, it is dequeued and
315  * eventually its completion routine is called (with status -ECONNRESET);
316  * else a negative error code is returned.  This routine is asynchronous,
317  * that is, it may return before the completion routine runs.
318  *
319  * Note that some hardware can't clear out write fifos (to unlink the request
320  * at the head of the queue) except as part of disconnecting from usb. Such
321  * restrictions prevent drivers from supporting configuration changes,
322  * even to configuration zero (a "chapter 9" requirement).
323  *
324  * This routine may be called in interrupt context.
325  */
usb_ep_dequeue(struct usb_ep * ep,struct usb_request * req)326 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
327 {
328 	int ret;
329 
330 	ret = ep->ops->dequeue(ep, req);
331 	trace_usb_ep_dequeue(ep, req, ret);
332 
333 	return ret;
334 }
335 EXPORT_SYMBOL_GPL(usb_ep_dequeue);
336 
337 /**
338  * usb_ep_set_halt - sets the endpoint halt feature.
339  * @ep: the non-isochronous endpoint being stalled
340  *
341  * Use this to stall an endpoint, perhaps as an error report.
342  * Except for control endpoints,
343  * the endpoint stays halted (will not stream any data) until the host
344  * clears this feature; drivers may need to empty the endpoint's request
345  * queue first, to make sure no inappropriate transfers happen.
346  *
347  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
348  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
349  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
350  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
351  *
352  * This routine may be called in interrupt context.
353  *
354  * Returns zero, or a negative error code.  On success, this call sets
355  * underlying hardware state that blocks data transfers.
356  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
357  * transfer requests are still queued, or if the controller hardware
358  * (usually a FIFO) still holds bytes that the host hasn't collected.
359  */
usb_ep_set_halt(struct usb_ep * ep)360 int usb_ep_set_halt(struct usb_ep *ep)
361 {
362 	int ret;
363 
364 	ret = ep->ops->set_halt(ep, 1);
365 	trace_usb_ep_set_halt(ep, ret);
366 
367 	return ret;
368 }
369 EXPORT_SYMBOL_GPL(usb_ep_set_halt);
370 
371 /**
372  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
373  * @ep:the bulk or interrupt endpoint being reset
374  *
375  * Use this when responding to the standard usb "set interface" request,
376  * for endpoints that aren't reconfigured, after clearing any other state
377  * in the endpoint's i/o queue.
378  *
379  * This routine may be called in interrupt context.
380  *
381  * Returns zero, or a negative error code.  On success, this call clears
382  * the underlying hardware state reflecting endpoint halt and data toggle.
383  * Note that some hardware can't support this request (like pxa2xx_udc),
384  * and accordingly can't correctly implement interface altsettings.
385  */
usb_ep_clear_halt(struct usb_ep * ep)386 int usb_ep_clear_halt(struct usb_ep *ep)
387 {
388 	int ret;
389 
390 	ret = ep->ops->set_halt(ep, 0);
391 	trace_usb_ep_clear_halt(ep, ret);
392 
393 	return ret;
394 }
395 EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
396 
397 /**
398  * usb_ep_set_wedge - sets the halt feature and ignores clear requests
399  * @ep: the endpoint being wedged
400  *
401  * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
402  * requests. If the gadget driver clears the halt status, it will
403  * automatically unwedge the endpoint.
404  *
405  * This routine may be called in interrupt context.
406  *
407  * Returns zero on success, else negative errno.
408  */
usb_ep_set_wedge(struct usb_ep * ep)409 int usb_ep_set_wedge(struct usb_ep *ep)
410 {
411 	int ret;
412 
413 	if (ep->ops->set_wedge)
414 		ret = ep->ops->set_wedge(ep);
415 	else
416 		ret = ep->ops->set_halt(ep, 1);
417 
418 	trace_usb_ep_set_wedge(ep, ret);
419 
420 	return ret;
421 }
422 EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
423 
424 /**
425  * usb_ep_fifo_status - returns number of bytes in fifo, or error
426  * @ep: the endpoint whose fifo status is being checked.
427  *
428  * FIFO endpoints may have "unclaimed data" in them in certain cases,
429  * such as after aborted transfers.  Hosts may not have collected all
430  * the IN data written by the gadget driver (and reported by a request
431  * completion).  The gadget driver may not have collected all the data
432  * written OUT to it by the host.  Drivers that need precise handling for
433  * fault reporting or recovery may need to use this call.
434  *
435  * This routine may be called in interrupt context.
436  *
437  * This returns the number of such bytes in the fifo, or a negative
438  * errno if the endpoint doesn't use a FIFO or doesn't support such
439  * precise handling.
440  */
usb_ep_fifo_status(struct usb_ep * ep)441 int usb_ep_fifo_status(struct usb_ep *ep)
442 {
443 	int ret;
444 
445 	if (ep->ops->fifo_status)
446 		ret = ep->ops->fifo_status(ep);
447 	else
448 		ret = -EOPNOTSUPP;
449 
450 	trace_usb_ep_fifo_status(ep, ret);
451 
452 	return ret;
453 }
454 EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
455 
456 /**
457  * usb_ep_fifo_flush - flushes contents of a fifo
458  * @ep: the endpoint whose fifo is being flushed.
459  *
460  * This call may be used to flush the "unclaimed data" that may exist in
461  * an endpoint fifo after abnormal transaction terminations.  The call
462  * must never be used except when endpoint is not being used for any
463  * protocol translation.
464  *
465  * This routine may be called in interrupt context.
466  */
usb_ep_fifo_flush(struct usb_ep * ep)467 void usb_ep_fifo_flush(struct usb_ep *ep)
468 {
469 	if (ep->ops->fifo_flush)
470 		ep->ops->fifo_flush(ep);
471 
472 	trace_usb_ep_fifo_flush(ep, 0);
473 }
474 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
475 
476 /* ------------------------------------------------------------------------- */
477 
478 /**
479  * usb_gadget_frame_number - returns the current frame number
480  * @gadget: controller that reports the frame number
481  *
482  * Returns the usb frame number, normally eleven bits from a SOF packet,
483  * or negative errno if this device doesn't support this capability.
484  */
usb_gadget_frame_number(struct usb_gadget * gadget)485 int usb_gadget_frame_number(struct usb_gadget *gadget)
486 {
487 	int ret;
488 
489 	ret = gadget->ops->get_frame(gadget);
490 
491 	trace_usb_gadget_frame_number(gadget, ret);
492 
493 	return ret;
494 }
495 EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
496 
497 /**
498  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
499  * @gadget: controller used to wake up the host
500  *
501  * Returns zero on success, else negative error code if the hardware
502  * doesn't support such attempts, or its support has not been enabled
503  * by the usb host.  Drivers must return device descriptors that report
504  * their ability to support this, or hosts won't enable it.
505  *
506  * This may also try to use SRP to wake the host and start enumeration,
507  * even if OTG isn't otherwise in use.  OTG devices may also start
508  * remote wakeup even when hosts don't explicitly enable it.
509  */
usb_gadget_wakeup(struct usb_gadget * gadget)510 int usb_gadget_wakeup(struct usb_gadget *gadget)
511 {
512 	int ret = 0;
513 
514 	if (!gadget->ops->wakeup) {
515 		ret = -EOPNOTSUPP;
516 		goto out;
517 	}
518 
519 	ret = gadget->ops->wakeup(gadget);
520 
521 out:
522 	trace_usb_gadget_wakeup(gadget, ret);
523 
524 	return ret;
525 }
526 EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
527 
528 /**
529  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
530  * @gadget:the device being declared as self-powered
531  *
532  * this affects the device status reported by the hardware driver
533  * to reflect that it now has a local power supply.
534  *
535  * returns zero on success, else negative errno.
536  */
usb_gadget_set_selfpowered(struct usb_gadget * gadget)537 int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
538 {
539 	int ret = 0;
540 
541 	if (!gadget->ops->set_selfpowered) {
542 		ret = -EOPNOTSUPP;
543 		goto out;
544 	}
545 
546 	ret = gadget->ops->set_selfpowered(gadget, 1);
547 
548 out:
549 	trace_usb_gadget_set_selfpowered(gadget, ret);
550 
551 	return ret;
552 }
553 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
554 
555 /**
556  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
557  * @gadget:the device being declared as bus-powered
558  *
559  * this affects the device status reported by the hardware driver.
560  * some hardware may not support bus-powered operation, in which
561  * case this feature's value can never change.
562  *
563  * returns zero on success, else negative errno.
564  */
usb_gadget_clear_selfpowered(struct usb_gadget * gadget)565 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
566 {
567 	int ret = 0;
568 
569 	if (!gadget->ops->set_selfpowered) {
570 		ret = -EOPNOTSUPP;
571 		goto out;
572 	}
573 
574 	ret = gadget->ops->set_selfpowered(gadget, 0);
575 
576 out:
577 	trace_usb_gadget_clear_selfpowered(gadget, ret);
578 
579 	return ret;
580 }
581 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
582 
583 /**
584  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
585  * @gadget:The device which now has VBUS power.
586  * Context: can sleep
587  *
588  * This call is used by a driver for an external transceiver (or GPIO)
589  * that detects a VBUS power session starting.  Common responses include
590  * resuming the controller, activating the D+ (or D-) pullup to let the
591  * host detect that a USB device is attached, and starting to draw power
592  * (8mA or possibly more, especially after SET_CONFIGURATION).
593  *
594  * Returns zero on success, else negative errno.
595  */
usb_gadget_vbus_connect(struct usb_gadget * gadget)596 int usb_gadget_vbus_connect(struct usb_gadget *gadget)
597 {
598 	int ret = 0;
599 
600 	if (!gadget->ops->vbus_session) {
601 		ret = -EOPNOTSUPP;
602 		goto out;
603 	}
604 
605 	ret = gadget->ops->vbus_session(gadget, 1);
606 
607 out:
608 	trace_usb_gadget_vbus_connect(gadget, ret);
609 
610 	return ret;
611 }
612 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
613 
614 /**
615  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
616  * @gadget:The device whose VBUS usage is being described
617  * @mA:How much current to draw, in milliAmperes.  This should be twice
618  *	the value listed in the configuration descriptor bMaxPower field.
619  *
620  * This call is used by gadget drivers during SET_CONFIGURATION calls,
621  * reporting how much power the device may consume.  For example, this
622  * could affect how quickly batteries are recharged.
623  *
624  * Returns zero on success, else negative errno.
625  */
usb_gadget_vbus_draw(struct usb_gadget * gadget,unsigned mA)626 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
627 {
628 	int ret = 0;
629 
630 	if (!gadget->ops->vbus_draw) {
631 		ret = -EOPNOTSUPP;
632 		goto out;
633 	}
634 
635 	ret = gadget->ops->vbus_draw(gadget, mA);
636 	if (!ret)
637 		gadget->mA = mA;
638 
639 out:
640 	trace_usb_gadget_vbus_draw(gadget, ret);
641 
642 	return ret;
643 }
644 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
645 
646 /**
647  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
648  * @gadget:the device whose VBUS supply is being described
649  * Context: can sleep
650  *
651  * This call is used by a driver for an external transceiver (or GPIO)
652  * that detects a VBUS power session ending.  Common responses include
653  * reversing everything done in usb_gadget_vbus_connect().
654  *
655  * Returns zero on success, else negative errno.
656  */
usb_gadget_vbus_disconnect(struct usb_gadget * gadget)657 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
658 {
659 	int ret = 0;
660 
661 	if (!gadget->ops->vbus_session) {
662 		ret = -EOPNOTSUPP;
663 		goto out;
664 	}
665 
666 	ret = gadget->ops->vbus_session(gadget, 0);
667 
668 out:
669 	trace_usb_gadget_vbus_disconnect(gadget, ret);
670 
671 	return ret;
672 }
673 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
674 
usb_gadget_connect_locked(struct usb_gadget * gadget)675 static int usb_gadget_connect_locked(struct usb_gadget *gadget)
676 	__must_hold(&gadget->udc->connect_lock)
677 {
678 	int ret = 0;
679 
680 	if (!gadget->ops->pullup) {
681 		ret = -EOPNOTSUPP;
682 		goto out;
683 	}
684 
685 	if (gadget->deactivated || !gadget->udc->allow_connect || !gadget->udc->started) {
686 		/*
687 		 * If the gadget isn't usable (because it is deactivated,
688 		 * unbound, or not yet started), we only save the new state.
689 		 * The gadget will be connected automatically when it is
690 		 * activated/bound/started.
691 		 */
692 		gadget->connected = true;
693 		goto out;
694 	}
695 
696 	ret = gadget->ops->pullup(gadget, 1);
697 	if (!ret)
698 		gadget->connected = 1;
699 
700 out:
701 	trace_usb_gadget_connect(gadget, ret);
702 
703 	return ret;
704 }
705 
706 /**
707  * usb_gadget_connect - software-controlled connect to USB host
708  * @gadget:the peripheral being connected
709  *
710  * Enables the D+ (or potentially D-) pullup.  The host will start
711  * enumerating this gadget when the pullup is active and a VBUS session
712  * is active (the link is powered).
713  *
714  * Returns zero on success, else negative errno.
715  */
usb_gadget_connect(struct usb_gadget * gadget)716 int usb_gadget_connect(struct usb_gadget *gadget)
717 {
718 	int ret;
719 
720 	mutex_lock(&gadget->udc->connect_lock);
721 	ret = usb_gadget_connect_locked(gadget);
722 	mutex_unlock(&gadget->udc->connect_lock);
723 
724 	return ret;
725 }
726 EXPORT_SYMBOL_GPL(usb_gadget_connect);
727 
usb_gadget_disconnect_locked(struct usb_gadget * gadget)728 static int usb_gadget_disconnect_locked(struct usb_gadget *gadget)
729 	__must_hold(&gadget->udc->connect_lock)
730 {
731 	int ret = 0;
732 
733 	if (!gadget->ops->pullup) {
734 		ret = -EOPNOTSUPP;
735 		goto out;
736 	}
737 
738 	if (!gadget->connected)
739 		goto out;
740 
741 	if (gadget->deactivated || !gadget->udc->started) {
742 		/*
743 		 * If gadget is deactivated we only save new state.
744 		 * Gadget will stay disconnected after activation.
745 		 */
746 		gadget->connected = false;
747 		goto out;
748 	}
749 
750 	ret = gadget->ops->pullup(gadget, 0);
751 	if (!ret)
752 		gadget->connected = 0;
753 
754 	mutex_lock(&udc_lock);
755 	if (gadget->udc->driver)
756 		gadget->udc->driver->disconnect(gadget);
757 	mutex_unlock(&udc_lock);
758 
759 out:
760 	trace_usb_gadget_disconnect(gadget, ret);
761 
762 	return ret;
763 }
764 
765 /**
766  * usb_gadget_disconnect - software-controlled disconnect from USB host
767  * @gadget:the peripheral being disconnected
768  *
769  * Disables the D+ (or potentially D-) pullup, which the host may see
770  * as a disconnect (when a VBUS session is active).  Not all systems
771  * support software pullup controls.
772  *
773  * Following a successful disconnect, invoke the ->disconnect() callback
774  * for the current gadget driver so that UDC drivers don't need to.
775  *
776  * Returns zero on success, else negative errno.
777  */
usb_gadget_disconnect(struct usb_gadget * gadget)778 int usb_gadget_disconnect(struct usb_gadget *gadget)
779 {
780 	int ret;
781 
782 	mutex_lock(&gadget->udc->connect_lock);
783 	ret = usb_gadget_disconnect_locked(gadget);
784 	mutex_unlock(&gadget->udc->connect_lock);
785 
786 	return ret;
787 }
788 EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
789 
790 /**
791  * usb_gadget_deactivate - deactivate function which is not ready to work
792  * @gadget: the peripheral being deactivated
793  *
794  * This routine may be used during the gadget driver bind() call to prevent
795  * the peripheral from ever being visible to the USB host, unless later
796  * usb_gadget_activate() is called.  For example, user mode components may
797  * need to be activated before the system can talk to hosts.
798  *
799  * This routine may sleep; it must not be called in interrupt context
800  * (such as from within a gadget driver's disconnect() callback).
801  *
802  * Returns zero on success, else negative errno.
803  */
usb_gadget_deactivate(struct usb_gadget * gadget)804 int usb_gadget_deactivate(struct usb_gadget *gadget)
805 {
806 	int ret = 0;
807 
808 	mutex_lock(&gadget->udc->connect_lock);
809 	if (gadget->deactivated)
810 		goto unlock;
811 
812 	if (gadget->connected) {
813 		ret = usb_gadget_disconnect_locked(gadget);
814 		if (ret)
815 			goto unlock;
816 
817 		/*
818 		 * If gadget was being connected before deactivation, we want
819 		 * to reconnect it in usb_gadget_activate().
820 		 */
821 		gadget->connected = true;
822 	}
823 	gadget->deactivated = true;
824 
825 unlock:
826 	mutex_unlock(&gadget->udc->connect_lock);
827 	trace_usb_gadget_deactivate(gadget, ret);
828 
829 	return ret;
830 }
831 EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
832 
833 /**
834  * usb_gadget_activate - activate function which is not ready to work
835  * @gadget: the peripheral being activated
836  *
837  * This routine activates gadget which was previously deactivated with
838  * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
839  *
840  * This routine may sleep; it must not be called in interrupt context.
841  *
842  * Returns zero on success, else negative errno.
843  */
usb_gadget_activate(struct usb_gadget * gadget)844 int usb_gadget_activate(struct usb_gadget *gadget)
845 {
846 	int ret = 0;
847 
848 	mutex_lock(&gadget->udc->connect_lock);
849 	if (!gadget->deactivated)
850 		goto unlock;
851 
852 	gadget->deactivated = false;
853 
854 	/*
855 	 * If gadget has been connected before deactivation, or became connected
856 	 * while it was being deactivated, we call usb_gadget_connect().
857 	 */
858 	if (gadget->connected)
859 		ret = usb_gadget_connect_locked(gadget);
860 
861 unlock:
862 	mutex_unlock(&gadget->udc->connect_lock);
863 	trace_usb_gadget_activate(gadget, ret);
864 
865 	return ret;
866 }
867 EXPORT_SYMBOL_GPL(usb_gadget_activate);
868 
869 /* ------------------------------------------------------------------------- */
870 
871 #ifdef	CONFIG_HAS_DMA
872 
usb_gadget_map_request_by_dev(struct device * dev,struct usb_request * req,int is_in)873 int usb_gadget_map_request_by_dev(struct device *dev,
874 		struct usb_request *req, int is_in)
875 {
876 	if (req->length == 0)
877 		return 0;
878 
879 	if (req->num_sgs) {
880 		int     mapped;
881 
882 		mapped = dma_map_sg(dev, req->sg, req->num_sgs,
883 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
884 		if (mapped == 0) {
885 			dev_err(dev, "failed to map SGs\n");
886 			return -EFAULT;
887 		}
888 
889 		req->num_mapped_sgs = mapped;
890 	} else {
891 		if (is_vmalloc_addr(req->buf)) {
892 			dev_err(dev, "buffer is not dma capable\n");
893 			return -EFAULT;
894 		} else if (object_is_on_stack(req->buf)) {
895 			dev_err(dev, "buffer is on stack\n");
896 			return -EFAULT;
897 		}
898 
899 		req->dma = dma_map_single(dev, req->buf, req->length,
900 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
901 
902 		if (dma_mapping_error(dev, req->dma)) {
903 			dev_err(dev, "failed to map buffer\n");
904 			return -EFAULT;
905 		}
906 
907 		req->dma_mapped = 1;
908 	}
909 
910 	return 0;
911 }
912 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
913 
usb_gadget_map_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)914 int usb_gadget_map_request(struct usb_gadget *gadget,
915 		struct usb_request *req, int is_in)
916 {
917 	return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
918 }
919 EXPORT_SYMBOL_GPL(usb_gadget_map_request);
920 
usb_gadget_unmap_request_by_dev(struct device * dev,struct usb_request * req,int is_in)921 void usb_gadget_unmap_request_by_dev(struct device *dev,
922 		struct usb_request *req, int is_in)
923 {
924 	if (req->length == 0)
925 		return;
926 
927 	if (req->num_mapped_sgs) {
928 		dma_unmap_sg(dev, req->sg, req->num_sgs,
929 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
930 
931 		req->num_mapped_sgs = 0;
932 	} else if (req->dma_mapped) {
933 		dma_unmap_single(dev, req->dma, req->length,
934 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
935 		req->dma_mapped = 0;
936 	}
937 }
938 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
939 
usb_gadget_unmap_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)940 void usb_gadget_unmap_request(struct usb_gadget *gadget,
941 		struct usb_request *req, int is_in)
942 {
943 	usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
944 }
945 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
946 
947 #endif	/* CONFIG_HAS_DMA */
948 
949 /* ------------------------------------------------------------------------- */
950 
951 /**
952  * usb_gadget_giveback_request - give the request back to the gadget layer
953  * @ep: the endpoint to be used with with the request
954  * @req: the request being given back
955  *
956  * This is called by device controller drivers in order to return the
957  * completed request back to the gadget layer.
958  */
usb_gadget_giveback_request(struct usb_ep * ep,struct usb_request * req)959 void usb_gadget_giveback_request(struct usb_ep *ep,
960 		struct usb_request *req)
961 {
962 	if (likely(req->status == 0))
963 		usb_led_activity(USB_LED_EVENT_GADGET);
964 
965 	trace_usb_gadget_giveback_request(ep, req, 0);
966 
967 	req->complete(ep, req);
968 }
969 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
970 
971 /* ------------------------------------------------------------------------- */
972 
973 /**
974  * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
975  *	in second parameter or NULL if searched endpoint not found
976  * @g: controller to check for quirk
977  * @name: name of searched endpoint
978  */
gadget_find_ep_by_name(struct usb_gadget * g,const char * name)979 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
980 {
981 	struct usb_ep *ep;
982 
983 	gadget_for_each_ep(ep, g) {
984 		if (!strcmp(ep->name, name))
985 			return ep;
986 	}
987 
988 	return NULL;
989 }
990 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
991 
992 /* ------------------------------------------------------------------------- */
993 
usb_gadget_ep_match_desc(struct usb_gadget * gadget,struct usb_ep * ep,struct usb_endpoint_descriptor * desc,struct usb_ss_ep_comp_descriptor * ep_comp)994 int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
995 		struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
996 		struct usb_ss_ep_comp_descriptor *ep_comp)
997 {
998 	u8		type;
999 	u16		max;
1000 	int		num_req_streams = 0;
1001 
1002 	/* endpoint already claimed? */
1003 	if (ep->claimed)
1004 		return 0;
1005 
1006 	type = usb_endpoint_type(desc);
1007 	max = usb_endpoint_maxp(desc);
1008 
1009 	if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
1010 		return 0;
1011 	if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
1012 		return 0;
1013 
1014 	if (max > ep->maxpacket_limit)
1015 		return 0;
1016 
1017 	/* "high bandwidth" works only at high speed */
1018 	if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1)
1019 		return 0;
1020 
1021 	switch (type) {
1022 	case USB_ENDPOINT_XFER_CONTROL:
1023 		/* only support ep0 for portable CONTROL traffic */
1024 		return 0;
1025 	case USB_ENDPOINT_XFER_ISOC:
1026 		if (!ep->caps.type_iso)
1027 			return 0;
1028 		/* ISO:  limit 1023 bytes full speed, 1024 high/super speed */
1029 		if (!gadget_is_dualspeed(gadget) && max > 1023)
1030 			return 0;
1031 		break;
1032 	case USB_ENDPOINT_XFER_BULK:
1033 		if (!ep->caps.type_bulk)
1034 			return 0;
1035 		if (ep_comp && gadget_is_superspeed(gadget)) {
1036 			/* Get the number of required streams from the
1037 			 * EP companion descriptor and see if the EP
1038 			 * matches it
1039 			 */
1040 			num_req_streams = ep_comp->bmAttributes & 0x1f;
1041 			if (num_req_streams > ep->max_streams)
1042 				return 0;
1043 		}
1044 		break;
1045 	case USB_ENDPOINT_XFER_INT:
1046 		/* Bulk endpoints handle interrupt transfers,
1047 		 * except the toggle-quirky iso-synch kind
1048 		 */
1049 		if (!ep->caps.type_int && !ep->caps.type_bulk)
1050 			return 0;
1051 		/* INT:  limit 64 bytes full speed, 1024 high/super speed */
1052 		if (!gadget_is_dualspeed(gadget) && max > 64)
1053 			return 0;
1054 		break;
1055 	}
1056 
1057 	return 1;
1058 }
1059 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
1060 
1061 /**
1062  * usb_gadget_check_config - checks if the UDC can support the binded
1063  *	configuration
1064  * @gadget: controller to check the USB configuration
1065  *
1066  * Ensure that a UDC is able to support the requested resources by a
1067  * configuration, and that there are no resource limitations, such as
1068  * internal memory allocated to all requested endpoints.
1069  *
1070  * Returns zero on success, else a negative errno.
1071  */
usb_gadget_check_config(struct usb_gadget * gadget)1072 int usb_gadget_check_config(struct usb_gadget *gadget)
1073 {
1074 	if (gadget->ops->check_config)
1075 		return gadget->ops->check_config(gadget);
1076 	return 0;
1077 }
1078 EXPORT_SYMBOL_GPL(usb_gadget_check_config);
1079 
1080 /* ------------------------------------------------------------------------- */
1081 
usb_gadget_state_work(struct work_struct * work)1082 static void usb_gadget_state_work(struct work_struct *work)
1083 {
1084 	struct usb_gadget *gadget = work_to_gadget(work);
1085 	struct usb_udc *udc = gadget->udc;
1086 
1087 	if (udc)
1088 		sysfs_notify(&udc->dev.kobj, NULL, "state");
1089 }
1090 
usb_gadget_set_state(struct usb_gadget * gadget,enum usb_device_state state)1091 void usb_gadget_set_state(struct usb_gadget *gadget,
1092 		enum usb_device_state state)
1093 {
1094 	gadget->state = state;
1095 	schedule_work(&gadget->work);
1096 }
1097 EXPORT_SYMBOL_GPL(usb_gadget_set_state);
1098 
1099 /* ------------------------------------------------------------------------- */
1100 
1101 /* Acquire connect_lock before calling this function. */
usb_udc_connect_control_locked(struct usb_udc * udc)1102 static int usb_udc_connect_control_locked(struct usb_udc *udc) __must_hold(&udc->connect_lock)
1103 {
1104 	if (udc->vbus)
1105 		return usb_gadget_connect_locked(udc->gadget);
1106 	else
1107 		return usb_gadget_disconnect_locked(udc->gadget);
1108 }
1109 
vbus_event_work(struct work_struct * work)1110 static void vbus_event_work(struct work_struct *work)
1111 {
1112 	struct usb_udc *udc = container_of(work, struct usb_udc, vbus_work);
1113 
1114 	mutex_lock(&udc->connect_lock);
1115 	usb_udc_connect_control_locked(udc);
1116 	mutex_unlock(&udc->connect_lock);
1117 }
1118 
1119 /**
1120  * usb_udc_vbus_handler - updates the udc core vbus status, and try to
1121  * connect or disconnect gadget
1122  * @gadget: The gadget which vbus change occurs
1123  * @status: The vbus status
1124  *
1125  * The udc driver calls it when it wants to connect or disconnect gadget
1126  * according to vbus status.
1127  *
1128  * This function can be invoked from interrupt context by irq handlers of
1129  * the gadget drivers, however, usb_udc_connect_control() has to run in
1130  * non-atomic context due to the following:
1131  * a. Some of the gadget driver implementations expect the ->pullup
1132  * callback to be invoked in non-atomic context.
1133  * b. usb_gadget_disconnect() acquires udc_lock which is a mutex.
1134  * Hence offload invocation of usb_udc_connect_control() to workqueue.
1135  */
usb_udc_vbus_handler(struct usb_gadget * gadget,bool status)1136 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
1137 {
1138 	struct usb_udc *udc = gadget->udc;
1139 
1140 	if (udc) {
1141 		udc->vbus = status;
1142 		schedule_work(&udc->vbus_work);
1143 	}
1144 }
1145 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1146 
1147 /**
1148  * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1149  * @gadget: The gadget which bus reset occurs
1150  * @driver: The gadget driver we want to notify
1151  *
1152  * If the udc driver has bus reset handler, it needs to call this when the bus
1153  * reset occurs, it notifies the gadget driver that the bus reset occurs as
1154  * well as updates gadget state.
1155  */
usb_gadget_udc_reset(struct usb_gadget * gadget,struct usb_gadget_driver * driver)1156 void usb_gadget_udc_reset(struct usb_gadget *gadget,
1157 		struct usb_gadget_driver *driver)
1158 {
1159 	driver->reset(gadget);
1160 	usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1161 }
1162 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1163 
1164 /**
1165  * usb_gadget_udc_start_locked - tells usb device controller to start up
1166  * @udc: The UDC to be started
1167  *
1168  * This call is issued by the UDC Class driver when it's about
1169  * to register a gadget driver to the device controller, before
1170  * calling gadget driver's bind() method.
1171  *
1172  * It allows the controller to be powered off until strictly
1173  * necessary to have it powered on.
1174  *
1175  * Returns zero on success, else negative errno.
1176  *
1177  * Caller should acquire connect_lock before invoking this function.
1178  */
usb_gadget_udc_start_locked(struct usb_udc * udc)1179 static inline int usb_gadget_udc_start_locked(struct usb_udc *udc)
1180 	__must_hold(&udc->connect_lock)
1181 {
1182 	int ret;
1183 
1184 	if (udc->started) {
1185 		dev_err(&udc->dev, "UDC had already started\n");
1186 		return -EBUSY;
1187 	}
1188 
1189 	ret = udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1190 	if (!ret)
1191 		udc->started = true;
1192 
1193 	return ret;
1194 }
1195 
1196 /**
1197  * usb_gadget_udc_stop_locked - tells usb device controller we don't need it anymore
1198  * @udc: The UDC to be stopped
1199  *
1200  * This call is issued by the UDC Class driver after calling
1201  * gadget driver's unbind() method.
1202  *
1203  * The details are implementation specific, but it can go as
1204  * far as powering off UDC completely and disable its data
1205  * line pullups.
1206  *
1207  * Caller should acquire connect lock before invoking this function.
1208  */
usb_gadget_udc_stop_locked(struct usb_udc * udc)1209 static inline void usb_gadget_udc_stop_locked(struct usb_udc *udc)
1210 	__must_hold(&udc->connect_lock)
1211 {
1212 	if (!udc->started) {
1213 		dev_err(&udc->dev, "UDC had already stopped\n");
1214 		return;
1215 	}
1216 
1217 	udc->gadget->ops->udc_stop(udc->gadget);
1218 	udc->started = false;
1219 }
1220 
1221 /**
1222  * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1223  *    current driver
1224  * @udc: The device we want to set maximum speed
1225  * @speed: The maximum speed to allowed to run
1226  *
1227  * This call is issued by the UDC Class driver before calling
1228  * usb_gadget_udc_start() in order to make sure that we don't try to
1229  * connect on speeds the gadget driver doesn't support.
1230  */
usb_gadget_udc_set_speed(struct usb_udc * udc,enum usb_device_speed speed)1231 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
1232 					    enum usb_device_speed speed)
1233 {
1234 	struct usb_gadget *gadget = udc->gadget;
1235 	enum usb_device_speed s;
1236 
1237 	if (speed == USB_SPEED_UNKNOWN)
1238 		s = gadget->max_speed;
1239 	else
1240 		s = min(speed, gadget->max_speed);
1241 
1242 	if (s == USB_SPEED_SUPER_PLUS && gadget->ops->udc_set_ssp_rate)
1243 		gadget->ops->udc_set_ssp_rate(gadget, gadget->max_ssp_rate);
1244 	else if (gadget->ops->udc_set_speed)
1245 		gadget->ops->udc_set_speed(gadget, s);
1246 }
1247 
1248 /**
1249  * usb_gadget_enable_async_callbacks - tell usb device controller to enable asynchronous callbacks
1250  * @udc: The UDC which should enable async callbacks
1251  *
1252  * This routine is used when binding gadget drivers.  It undoes the effect
1253  * of usb_gadget_disable_async_callbacks(); the UDC driver should enable IRQs
1254  * (if necessary) and resume issuing callbacks.
1255  *
1256  * This routine will always be called in process context.
1257  */
usb_gadget_enable_async_callbacks(struct usb_udc * udc)1258 static inline void usb_gadget_enable_async_callbacks(struct usb_udc *udc)
1259 {
1260 	struct usb_gadget *gadget = udc->gadget;
1261 
1262 	if (gadget->ops->udc_async_callbacks)
1263 		gadget->ops->udc_async_callbacks(gadget, true);
1264 }
1265 
1266 /**
1267  * usb_gadget_disable_async_callbacks - tell usb device controller to disable asynchronous callbacks
1268  * @udc: The UDC which should disable async callbacks
1269  *
1270  * This routine is used when unbinding gadget drivers.  It prevents a race:
1271  * The UDC driver doesn't know when the gadget driver's ->unbind callback
1272  * runs, so unless it is told to disable asynchronous callbacks, it might
1273  * issue a callback (such as ->disconnect) after the unbind has completed.
1274  *
1275  * After this function runs, the UDC driver must suppress all ->suspend,
1276  * ->resume, ->disconnect, ->reset, and ->setup callbacks to the gadget driver
1277  * until async callbacks are again enabled.  A simple-minded but effective
1278  * way to accomplish this is to tell the UDC hardware not to generate any
1279  * more IRQs.
1280  *
1281  * Request completion callbacks must still be issued.  However, it's okay
1282  * to defer them until the request is cancelled, since the pull-up will be
1283  * turned off during the time period when async callbacks are disabled.
1284  *
1285  * This routine will always be called in process context.
1286  */
usb_gadget_disable_async_callbacks(struct usb_udc * udc)1287 static inline void usb_gadget_disable_async_callbacks(struct usb_udc *udc)
1288 {
1289 	struct usb_gadget *gadget = udc->gadget;
1290 
1291 	if (gadget->ops->udc_async_callbacks)
1292 		gadget->ops->udc_async_callbacks(gadget, false);
1293 }
1294 
1295 /**
1296  * usb_udc_release - release the usb_udc struct
1297  * @dev: the dev member within usb_udc
1298  *
1299  * This is called by driver's core in order to free memory once the last
1300  * reference is released.
1301  */
usb_udc_release(struct device * dev)1302 static void usb_udc_release(struct device *dev)
1303 {
1304 	struct usb_udc *udc;
1305 
1306 	udc = container_of(dev, struct usb_udc, dev);
1307 	dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1308 	kfree(udc);
1309 }
1310 
1311 static const struct attribute_group *usb_udc_attr_groups[];
1312 
usb_udc_nop_release(struct device * dev)1313 static void usb_udc_nop_release(struct device *dev)
1314 {
1315 	dev_vdbg(dev, "%s\n", __func__);
1316 }
1317 
1318 /**
1319  * usb_initialize_gadget - initialize a gadget and its embedded struct device
1320  * @parent: the parent device to this udc. Usually the controller driver's
1321  * device.
1322  * @gadget: the gadget to be initialized.
1323  * @release: a gadget release function.
1324  */
usb_initialize_gadget(struct device * parent,struct usb_gadget * gadget,void (* release)(struct device * dev))1325 void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget,
1326 		void (*release)(struct device *dev))
1327 {
1328 	INIT_WORK(&gadget->work, usb_gadget_state_work);
1329 	gadget->dev.parent = parent;
1330 
1331 	if (release)
1332 		gadget->dev.release = release;
1333 	else
1334 		gadget->dev.release = usb_udc_nop_release;
1335 
1336 	device_initialize(&gadget->dev);
1337 	gadget->dev.bus = &gadget_bus_type;
1338 }
1339 EXPORT_SYMBOL_GPL(usb_initialize_gadget);
1340 
1341 /**
1342  * usb_add_gadget - adds a new gadget to the udc class driver list
1343  * @gadget: the gadget to be added to the list.
1344  *
1345  * Returns zero on success, negative errno otherwise.
1346  * Does not do a final usb_put_gadget() if an error occurs.
1347  */
usb_add_gadget(struct usb_gadget * gadget)1348 int usb_add_gadget(struct usb_gadget *gadget)
1349 {
1350 	struct usb_udc		*udc;
1351 	int			ret = -ENOMEM;
1352 
1353 	udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1354 	if (!udc)
1355 		goto error;
1356 
1357 	device_initialize(&udc->dev);
1358 	udc->dev.release = usb_udc_release;
1359 	udc->dev.class = udc_class;
1360 	udc->dev.groups = usb_udc_attr_groups;
1361 	udc->dev.parent = gadget->dev.parent;
1362 	ret = dev_set_name(&udc->dev, "%s",
1363 			kobject_name(&gadget->dev.parent->kobj));
1364 	if (ret)
1365 		goto err_put_udc;
1366 
1367 	udc->gadget = gadget;
1368 	gadget->udc = udc;
1369 	mutex_init(&udc->connect_lock);
1370 
1371 	udc->started = false;
1372 
1373 	mutex_lock(&udc_lock);
1374 	list_add_tail(&udc->list, &udc_list);
1375 	mutex_unlock(&udc_lock);
1376 	INIT_WORK(&udc->vbus_work, vbus_event_work);
1377 
1378 	ret = device_add(&udc->dev);
1379 	if (ret)
1380 		goto err_unlist_udc;
1381 
1382 	usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1383 	udc->vbus = true;
1384 
1385 	ret = ida_alloc(&gadget_id_numbers, GFP_KERNEL);
1386 	if (ret < 0)
1387 		goto err_del_udc;
1388 	gadget->id_number = ret;
1389 	dev_set_name(&gadget->dev, "gadget.%d", ret);
1390 
1391 	ret = device_add(&gadget->dev);
1392 	if (ret)
1393 		goto err_free_id;
1394 
1395 	return 0;
1396 
1397  err_free_id:
1398 	ida_free(&gadget_id_numbers, gadget->id_number);
1399 
1400  err_del_udc:
1401 	flush_work(&gadget->work);
1402 	device_del(&udc->dev);
1403 
1404  err_unlist_udc:
1405 	mutex_lock(&udc_lock);
1406 	list_del(&udc->list);
1407 	mutex_unlock(&udc_lock);
1408 
1409  err_put_udc:
1410 	put_device(&udc->dev);
1411 
1412  error:
1413 	return ret;
1414 }
1415 EXPORT_SYMBOL_GPL(usb_add_gadget);
1416 
1417 /**
1418  * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1419  * @parent: the parent device to this udc. Usually the controller driver's
1420  * device.
1421  * @gadget: the gadget to be added to the list.
1422  * @release: a gadget release function.
1423  *
1424  * Returns zero on success, negative errno otherwise.
1425  * Calls the gadget release function in the latter case.
1426  */
usb_add_gadget_udc_release(struct device * parent,struct usb_gadget * gadget,void (* release)(struct device * dev))1427 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1428 		void (*release)(struct device *dev))
1429 {
1430 	int	ret;
1431 
1432 	usb_initialize_gadget(parent, gadget, release);
1433 	ret = usb_add_gadget(gadget);
1434 	if (ret)
1435 		usb_put_gadget(gadget);
1436 	return ret;
1437 }
1438 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1439 
1440 /**
1441  * usb_get_gadget_udc_name - get the name of the first UDC controller
1442  * This functions returns the name of the first UDC controller in the system.
1443  * Please note that this interface is usefull only for legacy drivers which
1444  * assume that there is only one UDC controller in the system and they need to
1445  * get its name before initialization. There is no guarantee that the UDC
1446  * of the returned name will be still available, when gadget driver registers
1447  * itself.
1448  *
1449  * Returns pointer to string with UDC controller name on success, NULL
1450  * otherwise. Caller should kfree() returned string.
1451  */
usb_get_gadget_udc_name(void)1452 char *usb_get_gadget_udc_name(void)
1453 {
1454 	struct usb_udc *udc;
1455 	char *name = NULL;
1456 
1457 	/* For now we take the first available UDC */
1458 	mutex_lock(&udc_lock);
1459 	list_for_each_entry(udc, &udc_list, list) {
1460 		if (!udc->driver) {
1461 			name = kstrdup(udc->gadget->name, GFP_KERNEL);
1462 			break;
1463 		}
1464 	}
1465 	mutex_unlock(&udc_lock);
1466 	return name;
1467 }
1468 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1469 
1470 /**
1471  * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1472  * @parent: the parent device to this udc. Usually the controller
1473  * driver's device.
1474  * @gadget: the gadget to be added to the list
1475  *
1476  * Returns zero on success, negative errno otherwise.
1477  */
usb_add_gadget_udc(struct device * parent,struct usb_gadget * gadget)1478 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1479 {
1480 	return usb_add_gadget_udc_release(parent, gadget, NULL);
1481 }
1482 EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1483 
1484 /**
1485  * usb_del_gadget - deletes a gadget and unregisters its udc
1486  * @gadget: the gadget to be deleted.
1487  *
1488  * This will unbind @gadget, if it is bound.
1489  * It will not do a final usb_put_gadget().
1490  */
usb_del_gadget(struct usb_gadget * gadget)1491 void usb_del_gadget(struct usb_gadget *gadget)
1492 {
1493 	struct usb_udc *udc = gadget->udc;
1494 
1495 	if (!udc)
1496 		return;
1497 
1498 	dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1499 
1500 	mutex_lock(&udc_lock);
1501 	list_del(&udc->list);
1502 	mutex_unlock(&udc_lock);
1503 
1504 	kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1505 	flush_work(&gadget->work);
1506 	device_del(&gadget->dev);
1507 	ida_free(&gadget_id_numbers, gadget->id_number);
1508 	cancel_work_sync(&udc->vbus_work);
1509 	device_unregister(&udc->dev);
1510 }
1511 EXPORT_SYMBOL_GPL(usb_del_gadget);
1512 
1513 /**
1514  * usb_del_gadget_udc - unregisters a gadget
1515  * @gadget: the gadget to be unregistered.
1516  *
1517  * Calls usb_del_gadget() and does a final usb_put_gadget().
1518  */
usb_del_gadget_udc(struct usb_gadget * gadget)1519 void usb_del_gadget_udc(struct usb_gadget *gadget)
1520 {
1521 	usb_del_gadget(gadget);
1522 	usb_put_gadget(gadget);
1523 }
1524 EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1525 
1526 /* ------------------------------------------------------------------------- */
1527 
gadget_match_driver(struct device * dev,struct device_driver * drv)1528 static int gadget_match_driver(struct device *dev, struct device_driver *drv)
1529 {
1530 	struct usb_gadget *gadget = dev_to_usb_gadget(dev);
1531 	struct usb_udc *udc = gadget->udc;
1532 	struct usb_gadget_driver *driver = container_of(drv,
1533 			struct usb_gadget_driver, driver);
1534 
1535 	/* If the driver specifies a udc_name, it must match the UDC's name */
1536 	if (driver->udc_name &&
1537 			strcmp(driver->udc_name, dev_name(&udc->dev)) != 0)
1538 		return 0;
1539 
1540 	/* If the driver is already bound to a gadget, it doesn't match */
1541 	if (driver->is_bound)
1542 		return 0;
1543 
1544 	/* Otherwise any gadget driver matches any UDC */
1545 	return 1;
1546 }
1547 
gadget_bind_driver(struct device * dev)1548 static int gadget_bind_driver(struct device *dev)
1549 {
1550 	struct usb_gadget *gadget = dev_to_usb_gadget(dev);
1551 	struct usb_udc *udc = gadget->udc;
1552 	struct usb_gadget_driver *driver = container_of(dev->driver,
1553 			struct usb_gadget_driver, driver);
1554 	int ret = 0;
1555 
1556 	mutex_lock(&udc_lock);
1557 	if (driver->is_bound) {
1558 		mutex_unlock(&udc_lock);
1559 		return -ENXIO;		/* Driver binds to only one gadget */
1560 	}
1561 	driver->is_bound = true;
1562 	udc->driver = driver;
1563 	mutex_unlock(&udc_lock);
1564 
1565 	dev_dbg(&udc->dev, "binding gadget driver [%s]\n", driver->function);
1566 
1567 	usb_gadget_udc_set_speed(udc, driver->max_speed);
1568 
1569 	ret = driver->bind(udc->gadget, driver);
1570 	if (ret)
1571 		goto err_bind;
1572 
1573 	mutex_lock(&udc->connect_lock);
1574 	ret = usb_gadget_udc_start_locked(udc);
1575 	if (ret) {
1576 		mutex_unlock(&udc->connect_lock);
1577 		goto err_start;
1578 	}
1579 	usb_gadget_enable_async_callbacks(udc);
1580 	udc->allow_connect = true;
1581 	ret = usb_udc_connect_control_locked(udc);
1582 	if (ret)
1583 		goto err_connect_control;
1584 
1585 	mutex_unlock(&udc->connect_lock);
1586 
1587 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1588 	return 0;
1589 
1590  err_connect_control:
1591 	udc->allow_connect = false;
1592 	usb_gadget_disable_async_callbacks(udc);
1593 	if (gadget->irq)
1594 		synchronize_irq(gadget->irq);
1595 	usb_gadget_udc_stop_locked(udc);
1596 	mutex_unlock(&udc->connect_lock);
1597 
1598  err_start:
1599 	driver->unbind(udc->gadget);
1600 
1601  err_bind:
1602 	if (ret != -EISNAM)
1603 		dev_err(&udc->dev, "failed to start %s: %d\n",
1604 			driver->function, ret);
1605 
1606 	mutex_lock(&udc_lock);
1607 	udc->driver = NULL;
1608 	driver->is_bound = false;
1609 	mutex_unlock(&udc_lock);
1610 
1611 	return ret;
1612 }
1613 
gadget_unbind_driver(struct device * dev)1614 static void gadget_unbind_driver(struct device *dev)
1615 {
1616 	struct usb_gadget *gadget = dev_to_usb_gadget(dev);
1617 	struct usb_udc *udc = gadget->udc;
1618 	struct usb_gadget_driver *driver = udc->driver;
1619 
1620 	dev_dbg(&udc->dev, "unbinding gadget driver [%s]\n", driver->function);
1621 
1622 	udc->allow_connect = false;
1623 	cancel_work_sync(&udc->vbus_work);
1624 	mutex_lock(&udc->connect_lock);
1625 	usb_gadget_disconnect_locked(gadget);
1626 	usb_gadget_disable_async_callbacks(udc);
1627 	if (gadget->irq)
1628 		synchronize_irq(gadget->irq);
1629 	mutex_unlock(&udc->connect_lock);
1630 
1631 	udc->driver->unbind(gadget);
1632 
1633 	mutex_lock(&udc->connect_lock);
1634 	usb_gadget_udc_stop_locked(udc);
1635 	mutex_unlock(&udc->connect_lock);
1636 
1637 	mutex_lock(&udc_lock);
1638 	driver->is_bound = false;
1639 	udc->driver = NULL;
1640 	mutex_unlock(&udc_lock);
1641 
1642 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1643 }
1644 
1645 /* ------------------------------------------------------------------------- */
1646 
usb_gadget_register_driver_owner(struct usb_gadget_driver * driver,struct module * owner,const char * mod_name)1647 int usb_gadget_register_driver_owner(struct usb_gadget_driver *driver,
1648 		struct module *owner, const char *mod_name)
1649 {
1650 	int ret;
1651 
1652 	if (!driver || !driver->bind || !driver->setup)
1653 		return -EINVAL;
1654 
1655 	driver->driver.bus = &gadget_bus_type;
1656 	driver->driver.owner = owner;
1657 	driver->driver.mod_name = mod_name;
1658 	ret = driver_register(&driver->driver);
1659 	if (ret) {
1660 		pr_warn("%s: driver registration failed: %d\n",
1661 				driver->function, ret);
1662 		return ret;
1663 	}
1664 
1665 	mutex_lock(&udc_lock);
1666 	if (!driver->is_bound) {
1667 		if (driver->match_existing_only) {
1668 			pr_warn("%s: couldn't find an available UDC or it's busy\n",
1669 					driver->function);
1670 			ret = -EBUSY;
1671 		} else {
1672 			pr_info("%s: couldn't find an available UDC\n",
1673 					driver->function);
1674 			ret = 0;
1675 		}
1676 	}
1677 	mutex_unlock(&udc_lock);
1678 
1679 	if (ret)
1680 		driver_unregister(&driver->driver);
1681 	return ret;
1682 }
1683 EXPORT_SYMBOL_GPL(usb_gadget_register_driver_owner);
1684 
usb_gadget_unregister_driver(struct usb_gadget_driver * driver)1685 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1686 {
1687 	if (!driver || !driver->unbind)
1688 		return -EINVAL;
1689 
1690 	driver_unregister(&driver->driver);
1691 	return 0;
1692 }
1693 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1694 
1695 /* ------------------------------------------------------------------------- */
1696 
srp_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t n)1697 static ssize_t srp_store(struct device *dev,
1698 		struct device_attribute *attr, const char *buf, size_t n)
1699 {
1700 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1701 
1702 	if (sysfs_streq(buf, "1"))
1703 		usb_gadget_wakeup(udc->gadget);
1704 
1705 	return n;
1706 }
1707 static DEVICE_ATTR_WO(srp);
1708 
soft_connect_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t n)1709 static ssize_t soft_connect_store(struct device *dev,
1710 		struct device_attribute *attr, const char *buf, size_t n)
1711 {
1712 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1713 	ssize_t			ret;
1714 
1715 	device_lock(&udc->gadget->dev);
1716 	if (!udc->driver) {
1717 		dev_err(dev, "soft-connect without a gadget driver\n");
1718 		ret = -EOPNOTSUPP;
1719 		goto out;
1720 	}
1721 
1722 	if (sysfs_streq(buf, "connect")) {
1723 		mutex_lock(&udc->connect_lock);
1724 		usb_gadget_udc_start_locked(udc);
1725 		usb_gadget_connect_locked(udc->gadget);
1726 		mutex_unlock(&udc->connect_lock);
1727 	} else if (sysfs_streq(buf, "disconnect")) {
1728 		mutex_lock(&udc->connect_lock);
1729 		usb_gadget_disconnect_locked(udc->gadget);
1730 		usb_gadget_udc_stop_locked(udc);
1731 		mutex_unlock(&udc->connect_lock);
1732 	} else {
1733 		dev_err(dev, "unsupported command '%s'\n", buf);
1734 		ret = -EINVAL;
1735 		goto out;
1736 	}
1737 
1738 	ret = n;
1739 out:
1740 	device_unlock(&udc->gadget->dev);
1741 	return ret;
1742 }
1743 static DEVICE_ATTR_WO(soft_connect);
1744 
state_show(struct device * dev,struct device_attribute * attr,char * buf)1745 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1746 			  char *buf)
1747 {
1748 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1749 	struct usb_gadget	*gadget = udc->gadget;
1750 
1751 	return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1752 }
1753 static DEVICE_ATTR_RO(state);
1754 
function_show(struct device * dev,struct device_attribute * attr,char * buf)1755 static ssize_t function_show(struct device *dev, struct device_attribute *attr,
1756 			     char *buf)
1757 {
1758 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1759 	struct usb_gadget_driver *drv;
1760 	int			rc = 0;
1761 
1762 	mutex_lock(&udc_lock);
1763 	drv = udc->driver;
1764 	if (drv && drv->function)
1765 		rc = scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
1766 	mutex_unlock(&udc_lock);
1767 	return rc;
1768 }
1769 static DEVICE_ATTR_RO(function);
1770 
1771 #define USB_UDC_SPEED_ATTR(name, param)					\
1772 ssize_t name##_show(struct device *dev,					\
1773 		struct device_attribute *attr, char *buf)		\
1774 {									\
1775 	struct usb_udc *udc = container_of(dev, struct usb_udc, dev);	\
1776 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1777 			usb_speed_string(udc->gadget->param));		\
1778 }									\
1779 static DEVICE_ATTR_RO(name)
1780 
1781 static USB_UDC_SPEED_ATTR(current_speed, speed);
1782 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1783 
1784 #define USB_UDC_ATTR(name)					\
1785 ssize_t name##_show(struct device *dev,				\
1786 		struct device_attribute *attr, char *buf)	\
1787 {								\
1788 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev); \
1789 	struct usb_gadget	*gadget = udc->gadget;		\
1790 								\
1791 	return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name);	\
1792 }								\
1793 static DEVICE_ATTR_RO(name)
1794 
1795 static USB_UDC_ATTR(is_otg);
1796 static USB_UDC_ATTR(is_a_peripheral);
1797 static USB_UDC_ATTR(b_hnp_enable);
1798 static USB_UDC_ATTR(a_hnp_support);
1799 static USB_UDC_ATTR(a_alt_hnp_support);
1800 static USB_UDC_ATTR(is_selfpowered);
1801 
1802 static struct attribute *usb_udc_attrs[] = {
1803 	&dev_attr_srp.attr,
1804 	&dev_attr_soft_connect.attr,
1805 	&dev_attr_state.attr,
1806 	&dev_attr_function.attr,
1807 	&dev_attr_current_speed.attr,
1808 	&dev_attr_maximum_speed.attr,
1809 
1810 	&dev_attr_is_otg.attr,
1811 	&dev_attr_is_a_peripheral.attr,
1812 	&dev_attr_b_hnp_enable.attr,
1813 	&dev_attr_a_hnp_support.attr,
1814 	&dev_attr_a_alt_hnp_support.attr,
1815 	&dev_attr_is_selfpowered.attr,
1816 	NULL,
1817 };
1818 
1819 static const struct attribute_group usb_udc_attr_group = {
1820 	.attrs = usb_udc_attrs,
1821 };
1822 
1823 static const struct attribute_group *usb_udc_attr_groups[] = {
1824 	&usb_udc_attr_group,
1825 	NULL,
1826 };
1827 
usb_udc_uevent(struct device * dev,struct kobj_uevent_env * env)1828 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env)
1829 {
1830 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1831 	int			ret;
1832 
1833 	ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1834 	if (ret) {
1835 		dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1836 		return ret;
1837 	}
1838 
1839 	mutex_lock(&udc_lock);
1840 	if (udc->driver)
1841 		ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1842 				udc->driver->function);
1843 	mutex_unlock(&udc_lock);
1844 	if (ret) {
1845 		dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1846 		return ret;
1847 	}
1848 
1849 	return 0;
1850 }
1851 
1852 static struct bus_type gadget_bus_type = {
1853 	.name = "gadget",
1854 	.probe = gadget_bind_driver,
1855 	.remove = gadget_unbind_driver,
1856 	.match = gadget_match_driver,
1857 };
1858 
usb_udc_init(void)1859 static int __init usb_udc_init(void)
1860 {
1861 	int rc;
1862 
1863 	udc_class = class_create(THIS_MODULE, "udc");
1864 	if (IS_ERR(udc_class)) {
1865 		pr_err("failed to create udc class --> %ld\n",
1866 				PTR_ERR(udc_class));
1867 		return PTR_ERR(udc_class);
1868 	}
1869 
1870 	udc_class->dev_uevent = usb_udc_uevent;
1871 
1872 	rc = bus_register(&gadget_bus_type);
1873 	if (rc)
1874 		class_destroy(udc_class);
1875 	return rc;
1876 }
1877 subsys_initcall(usb_udc_init);
1878 
usb_udc_exit(void)1879 static void __exit usb_udc_exit(void)
1880 {
1881 	bus_unregister(&gadget_bus_type);
1882 	class_destroy(udc_class);
1883 }
1884 module_exit(usb_udc_exit);
1885 
1886 MODULE_DESCRIPTION("UDC Framework");
1887 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1888 MODULE_LICENSE("GPL v2");
1889