1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file is subject to the terms and conditions of the GNU General Public
4 * License. See the file "COPYING" in the main directory of this archive
5 * for more details.
6 *
7 * Copyright (C) 2008 Cavium Networks
8 *
9 * Some parts of the code were originally released under BSD license:
10 *
11 * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
12 * reserved.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met:
17 *
18 * * Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * * Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials provided
24 * with the distribution.
25 *
26 * * Neither the name of Cavium Networks nor the names of
27 * its contributors may be used to endorse or promote products
28 * derived from this software without specific prior written
29 * permission.
30 *
31 * This Software, including technical data, may be subject to U.S. export
32 * control laws, including the U.S. Export Administration Act and its associated
33 * regulations, and may be subject to export or import regulations in other
34 * countries.
35 *
36 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
37 * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
38 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
39 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
40 * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
41 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
42 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
43 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
44 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
45 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
46 */
47
48 #include <linux/usb.h>
49 #include <linux/slab.h>
50 #include <linux/module.h>
51 #include <linux/usb/hcd.h>
52 #include <linux/prefetch.h>
53 #include <linux/irqdomain.h>
54 #include <linux/dma-mapping.h>
55 #include <linux/platform_device.h>
56 #include <linux/of.h>
57
58 #include <asm/octeon/octeon.h>
59
60 #include "octeon-hcd.h"
61
62 /**
63 * enum cvmx_usb_speed - the possible USB device speeds
64 *
65 * @CVMX_USB_SPEED_HIGH: Device is operation at 480Mbps
66 * @CVMX_USB_SPEED_FULL: Device is operation at 12Mbps
67 * @CVMX_USB_SPEED_LOW: Device is operation at 1.5Mbps
68 */
69 enum cvmx_usb_speed {
70 CVMX_USB_SPEED_HIGH = 0,
71 CVMX_USB_SPEED_FULL = 1,
72 CVMX_USB_SPEED_LOW = 2,
73 };
74
75 /**
76 * enum cvmx_usb_transfer - the possible USB transfer types
77 *
78 * @CVMX_USB_TRANSFER_CONTROL: USB transfer type control for hub and status
79 * transfers
80 * @CVMX_USB_TRANSFER_ISOCHRONOUS: USB transfer type isochronous for low
81 * priority periodic transfers
82 * @CVMX_USB_TRANSFER_BULK: USB transfer type bulk for large low priority
83 * transfers
84 * @CVMX_USB_TRANSFER_INTERRUPT: USB transfer type interrupt for high priority
85 * periodic transfers
86 */
87 enum cvmx_usb_transfer {
88 CVMX_USB_TRANSFER_CONTROL = 0,
89 CVMX_USB_TRANSFER_ISOCHRONOUS = 1,
90 CVMX_USB_TRANSFER_BULK = 2,
91 CVMX_USB_TRANSFER_INTERRUPT = 3,
92 };
93
94 /**
95 * enum cvmx_usb_direction - the transfer directions
96 *
97 * @CVMX_USB_DIRECTION_OUT: Data is transferring from Octeon to the device/host
98 * @CVMX_USB_DIRECTION_IN: Data is transferring from the device/host to Octeon
99 */
100 enum cvmx_usb_direction {
101 CVMX_USB_DIRECTION_OUT,
102 CVMX_USB_DIRECTION_IN,
103 };
104
105 /**
106 * enum cvmx_usb_status - possible callback function status codes
107 *
108 * @CVMX_USB_STATUS_OK: The transaction / operation finished without
109 * any errors
110 * @CVMX_USB_STATUS_SHORT: FIXME: This is currently not implemented
111 * @CVMX_USB_STATUS_CANCEL: The transaction was canceled while in flight
112 * by a user call to cvmx_usb_cancel
113 * @CVMX_USB_STATUS_ERROR: The transaction aborted with an unexpected
114 * error status
115 * @CVMX_USB_STATUS_STALL: The transaction received a USB STALL response
116 * from the device
117 * @CVMX_USB_STATUS_XACTERR: The transaction failed with an error from the
118 * device even after a number of retries
119 * @CVMX_USB_STATUS_DATATGLERR: The transaction failed with a data toggle
120 * error even after a number of retries
121 * @CVMX_USB_STATUS_BABBLEERR: The transaction failed with a babble error
122 * @CVMX_USB_STATUS_FRAMEERR: The transaction failed with a frame error
123 * even after a number of retries
124 */
125 enum cvmx_usb_status {
126 CVMX_USB_STATUS_OK,
127 CVMX_USB_STATUS_SHORT,
128 CVMX_USB_STATUS_CANCEL,
129 CVMX_USB_STATUS_ERROR,
130 CVMX_USB_STATUS_STALL,
131 CVMX_USB_STATUS_XACTERR,
132 CVMX_USB_STATUS_DATATGLERR,
133 CVMX_USB_STATUS_BABBLEERR,
134 CVMX_USB_STATUS_FRAMEERR,
135 };
136
137 /**
138 * struct cvmx_usb_port_status - the USB port status information
139 *
140 * @port_enabled: 1 = Usb port is enabled, 0 = disabled
141 * @port_over_current: 1 = Over current detected, 0 = Over current not
142 * detected. Octeon doesn't support over current detection.
143 * @port_powered: 1 = Port power is being supplied to the device, 0 =
144 * power is off. Octeon doesn't support turning port power
145 * off.
146 * @port_speed: Current port speed.
147 * @connected: 1 = A device is connected to the port, 0 = No device is
148 * connected.
149 * @connect_change: 1 = Device connected state changed since the last set
150 * status call.
151 */
152 struct cvmx_usb_port_status {
153 u32 reserved : 25;
154 u32 port_enabled : 1;
155 u32 port_over_current : 1;
156 u32 port_powered : 1;
157 enum cvmx_usb_speed port_speed : 2;
158 u32 connected : 1;
159 u32 connect_change : 1;
160 };
161
162 /**
163 * struct cvmx_usb_iso_packet - descriptor for Isochronous packets
164 *
165 * @offset: This is the offset in bytes into the main buffer where this data
166 * is stored.
167 * @length: This is the length in bytes of the data.
168 * @status: This is the status of this individual packet transfer.
169 */
170 struct cvmx_usb_iso_packet {
171 int offset;
172 int length;
173 enum cvmx_usb_status status;
174 };
175
176 /**
177 * enum cvmx_usb_initialize_flags - flags used by the initialization function
178 *
179 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI: The USB port uses a 12MHz crystal
180 * as clock source at USB_XO and
181 * USB_XI.
182 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND: The USB port uses 12/24/48MHz 2.5V
183 * board clock source at USB_XO.
184 * USB_XI should be tied to GND.
185 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK: Mask for clock speed field
186 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ: Speed of reference clock or
187 * crystal
188 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ: Speed of reference clock
189 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ: Speed of reference clock
190 * @CVMX_USB_INITIALIZE_FLAGS_NO_DMA: Disable DMA and used polled IO for
191 * data transfer use for the USB
192 */
193 enum cvmx_usb_initialize_flags {
194 CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI = 1 << 0,
195 CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND = 1 << 1,
196 CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK = 3 << 3,
197 CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ = 1 << 3,
198 CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ = 2 << 3,
199 CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ = 3 << 3,
200 /* Bits 3-4 used to encode the clock frequency */
201 CVMX_USB_INITIALIZE_FLAGS_NO_DMA = 1 << 5,
202 };
203
204 /**
205 * enum cvmx_usb_pipe_flags - internal flags for a pipe.
206 *
207 * @CVMX_USB_PIPE_FLAGS_SCHEDULED: Used internally to determine if a pipe is
208 * actively using hardware.
209 * @CVMX_USB_PIPE_FLAGS_NEED_PING: Used internally to determine if a high speed
210 * pipe is in the ping state.
211 */
212 enum cvmx_usb_pipe_flags {
213 CVMX_USB_PIPE_FLAGS_SCHEDULED = 1 << 17,
214 CVMX_USB_PIPE_FLAGS_NEED_PING = 1 << 18,
215 };
216
217 /* Maximum number of times to retry failed transactions */
218 #define MAX_RETRIES 3
219
220 /* Maximum number of hardware channels supported by the USB block */
221 #define MAX_CHANNELS 8
222
223 /*
224 * The low level hardware can transfer a maximum of this number of bytes in each
225 * transfer. The field is 19 bits wide
226 */
227 #define MAX_TRANSFER_BYTES ((1 << 19) - 1)
228
229 /*
230 * The low level hardware can transfer a maximum of this number of packets in
231 * each transfer. The field is 10 bits wide
232 */
233 #define MAX_TRANSFER_PACKETS ((1 << 10) - 1)
234
235 /**
236 * Logical transactions may take numerous low level
237 * transactions, especially when splits are concerned. This
238 * enum represents all of the possible stages a transaction can
239 * be in. Note that split completes are always even. This is so
240 * the NAK handler can backup to the previous low level
241 * transaction with a simple clearing of bit 0.
242 */
243 enum cvmx_usb_stage {
244 CVMX_USB_STAGE_NON_CONTROL,
245 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE,
246 CVMX_USB_STAGE_SETUP,
247 CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE,
248 CVMX_USB_STAGE_DATA,
249 CVMX_USB_STAGE_DATA_SPLIT_COMPLETE,
250 CVMX_USB_STAGE_STATUS,
251 CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE,
252 };
253
254 /**
255 * struct cvmx_usb_transaction - describes each pending USB transaction
256 * regardless of type. These are linked together
257 * to form a list of pending requests for a pipe.
258 *
259 * @node: List node for transactions in the pipe.
260 * @type: Type of transaction, duplicated of the pipe.
261 * @flags: State flags for this transaction.
262 * @buffer: User's physical buffer address to read/write.
263 * @buffer_length: Size of the user's buffer in bytes.
264 * @control_header: For control transactions, physical address of the 8
265 * byte standard header.
266 * @iso_start_frame: For ISO transactions, the starting frame number.
267 * @iso_number_packets: For ISO transactions, the number of packets in the
268 * request.
269 * @iso_packets: For ISO transactions, the sub packets in the request.
270 * @actual_bytes: Actual bytes transfer for this transaction.
271 * @stage: For control transactions, the current stage.
272 * @urb: URB.
273 */
274 struct cvmx_usb_transaction {
275 struct list_head node;
276 enum cvmx_usb_transfer type;
277 u64 buffer;
278 int buffer_length;
279 u64 control_header;
280 int iso_start_frame;
281 int iso_number_packets;
282 struct cvmx_usb_iso_packet *iso_packets;
283 int xfersize;
284 int pktcnt;
285 int retries;
286 int actual_bytes;
287 enum cvmx_usb_stage stage;
288 struct urb *urb;
289 };
290
291 /**
292 * struct cvmx_usb_pipe - a pipe represents a virtual connection between Octeon
293 * and some USB device. It contains a list of pending
294 * request to the device.
295 *
296 * @node: List node for pipe list
297 * @next: Pipe after this one in the list
298 * @transactions: List of pending transactions
299 * @interval: For periodic pipes, the interval between packets in
300 * frames
301 * @next_tx_frame: The next frame this pipe is allowed to transmit on
302 * @flags: State flags for this pipe
303 * @device_speed: Speed of device connected to this pipe
304 * @transfer_type: Type of transaction supported by this pipe
305 * @transfer_dir: IN or OUT. Ignored for Control
306 * @multi_count: Max packet in a row for the device
307 * @max_packet: The device's maximum packet size in bytes
308 * @device_addr: USB device address at other end of pipe
309 * @endpoint_num: USB endpoint number at other end of pipe
310 * @hub_device_addr: Hub address this device is connected to
311 * @hub_port: Hub port this device is connected to
312 * @pid_toggle: This toggles between 0/1 on every packet send to track
313 * the data pid needed
314 * @channel: Hardware DMA channel for this pipe
315 * @split_sc_frame: The low order bits of the frame number the split
316 * complete should be sent on
317 */
318 struct cvmx_usb_pipe {
319 struct list_head node;
320 struct list_head transactions;
321 u64 interval;
322 u64 next_tx_frame;
323 enum cvmx_usb_pipe_flags flags;
324 enum cvmx_usb_speed device_speed;
325 enum cvmx_usb_transfer transfer_type;
326 enum cvmx_usb_direction transfer_dir;
327 int multi_count;
328 u16 max_packet;
329 u8 device_addr;
330 u8 endpoint_num;
331 u8 hub_device_addr;
332 u8 hub_port;
333 u8 pid_toggle;
334 u8 channel;
335 s8 split_sc_frame;
336 };
337
338 struct cvmx_usb_tx_fifo {
339 struct {
340 int channel;
341 int size;
342 u64 address;
343 } entry[MAX_CHANNELS + 1];
344 int head;
345 int tail;
346 };
347
348 /**
349 * struct octeon_hcd - the state of the USB block
350 *
351 * lock: Serialization lock.
352 * init_flags: Flags passed to initialize.
353 * index: Which USB block this is for.
354 * idle_hardware_channels: Bit set for every idle hardware channel.
355 * usbcx_hprt: Stored port status so we don't need to read a CSR to
356 * determine splits.
357 * pipe_for_channel: Map channels to pipes.
358 * pipe: Storage for pipes.
359 * indent: Used by debug output to indent functions.
360 * port_status: Last port status used for change notification.
361 * idle_pipes: List of open pipes that have no transactions.
362 * active_pipes: Active pipes indexed by transfer type.
363 * frame_number: Increments every SOF interrupt for time keeping.
364 * active_split: Points to the current active split, or NULL.
365 */
366 struct octeon_hcd {
367 spinlock_t lock; /* serialization lock */
368 int init_flags;
369 int index;
370 int idle_hardware_channels;
371 union cvmx_usbcx_hprt usbcx_hprt;
372 struct cvmx_usb_pipe *pipe_for_channel[MAX_CHANNELS];
373 int indent;
374 struct cvmx_usb_port_status port_status;
375 struct list_head idle_pipes;
376 struct list_head active_pipes[4];
377 u64 frame_number;
378 struct cvmx_usb_transaction *active_split;
379 struct cvmx_usb_tx_fifo periodic;
380 struct cvmx_usb_tx_fifo nonperiodic;
381 };
382
383 /*
384 * This macro logically sets a single field in a CSR. It does the sequence
385 * read, modify, and write
386 */
387 #define USB_SET_FIELD32(address, _union, field, value) \
388 do { \
389 union _union c; \
390 \
391 c.u32 = cvmx_usb_read_csr32(usb, address); \
392 c.s.field = value; \
393 cvmx_usb_write_csr32(usb, address, c.u32); \
394 } while (0)
395
396 /* Returns the IO address to push/pop stuff data from the FIFOs */
397 #define USB_FIFO_ADDRESS(channel, usb_index) \
398 (CVMX_USBCX_GOTGCTL(usb_index) + ((channel) + 1) * 0x1000)
399
400 /**
401 * struct octeon_temp_buffer - a bounce buffer for USB transfers
402 * @orig_buffer: the original buffer passed by the USB stack
403 * @data: the newly allocated temporary buffer (excluding meta-data)
404 *
405 * Both the DMA engine and FIFO mode will always transfer full 32-bit words. If
406 * the buffer is too short, we need to allocate a temporary one, and this struct
407 * represents it.
408 */
409 struct octeon_temp_buffer {
410 void *orig_buffer;
411 u8 data[];
412 };
413
octeon_to_hcd(struct octeon_hcd * p)414 static inline struct usb_hcd *octeon_to_hcd(struct octeon_hcd *p)
415 {
416 return container_of((void *)p, struct usb_hcd, hcd_priv);
417 }
418
419 /**
420 * octeon_alloc_temp_buffer - allocate a temporary buffer for USB transfer
421 * (if needed)
422 * @urb: URB.
423 * @mem_flags: Memory allocation flags.
424 *
425 * This function allocates a temporary bounce buffer whenever it's needed
426 * due to HW limitations.
427 */
octeon_alloc_temp_buffer(struct urb * urb,gfp_t mem_flags)428 static int octeon_alloc_temp_buffer(struct urb *urb, gfp_t mem_flags)
429 {
430 struct octeon_temp_buffer *temp;
431
432 if (urb->num_sgs || urb->sg ||
433 (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) ||
434 !(urb->transfer_buffer_length % sizeof(u32)))
435 return 0;
436
437 temp = kmalloc(ALIGN(urb->transfer_buffer_length, sizeof(u32)) +
438 sizeof(*temp), mem_flags);
439 if (!temp)
440 return -ENOMEM;
441
442 temp->orig_buffer = urb->transfer_buffer;
443 if (usb_urb_dir_out(urb))
444 memcpy(temp->data, urb->transfer_buffer,
445 urb->transfer_buffer_length);
446 urb->transfer_buffer = temp->data;
447 urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
448
449 return 0;
450 }
451
452 /**
453 * octeon_free_temp_buffer - free a temporary buffer used by USB transfers.
454 * @urb: URB.
455 *
456 * Frees a buffer allocated by octeon_alloc_temp_buffer().
457 */
octeon_free_temp_buffer(struct urb * urb)458 static void octeon_free_temp_buffer(struct urb *urb)
459 {
460 struct octeon_temp_buffer *temp;
461 size_t length;
462
463 if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
464 return;
465
466 temp = container_of(urb->transfer_buffer, struct octeon_temp_buffer,
467 data);
468 if (usb_urb_dir_in(urb)) {
469 if (usb_pipeisoc(urb->pipe))
470 length = urb->transfer_buffer_length;
471 else
472 length = urb->actual_length;
473
474 memcpy(temp->orig_buffer, urb->transfer_buffer, length);
475 }
476 urb->transfer_buffer = temp->orig_buffer;
477 urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
478 kfree(temp);
479 }
480
481 /**
482 * octeon_map_urb_for_dma - Octeon-specific map_urb_for_dma().
483 * @hcd: USB HCD structure.
484 * @urb: URB.
485 * @mem_flags: Memory allocation flags.
486 */
octeon_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)487 static int octeon_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
488 gfp_t mem_flags)
489 {
490 int ret;
491
492 ret = octeon_alloc_temp_buffer(urb, mem_flags);
493 if (ret)
494 return ret;
495
496 ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
497 if (ret)
498 octeon_free_temp_buffer(urb);
499
500 return ret;
501 }
502
503 /**
504 * octeon_unmap_urb_for_dma - Octeon-specific unmap_urb_for_dma()
505 * @hcd: USB HCD structure.
506 * @urb: URB.
507 */
octeon_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)508 static void octeon_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
509 {
510 usb_hcd_unmap_urb_for_dma(hcd, urb);
511 octeon_free_temp_buffer(urb);
512 }
513
514 /**
515 * Read a USB 32bit CSR. It performs the necessary address swizzle
516 * for 32bit CSRs and logs the value in a readable format if
517 * debugging is on.
518 *
519 * @usb: USB block this access is for
520 * @address: 64bit address to read
521 *
522 * Returns: Result of the read
523 */
cvmx_usb_read_csr32(struct octeon_hcd * usb,u64 address)524 static inline u32 cvmx_usb_read_csr32(struct octeon_hcd *usb, u64 address)
525 {
526 return cvmx_read64_uint32(address ^ 4);
527 }
528
529 /**
530 * Write a USB 32bit CSR. It performs the necessary address
531 * swizzle for 32bit CSRs and logs the value in a readable format
532 * if debugging is on.
533 *
534 * @usb: USB block this access is for
535 * @address: 64bit address to write
536 * @value: Value to write
537 */
cvmx_usb_write_csr32(struct octeon_hcd * usb,u64 address,u32 value)538 static inline void cvmx_usb_write_csr32(struct octeon_hcd *usb,
539 u64 address, u32 value)
540 {
541 cvmx_write64_uint32(address ^ 4, value);
542 cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
543 }
544
545 /**
546 * Return non zero if this pipe connects to a non HIGH speed
547 * device through a high speed hub.
548 *
549 * @usb: USB block this access is for
550 * @pipe: Pipe to check
551 *
552 * Returns: Non zero if we need to do split transactions
553 */
cvmx_usb_pipe_needs_split(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe)554 static inline int cvmx_usb_pipe_needs_split(struct octeon_hcd *usb,
555 struct cvmx_usb_pipe *pipe)
556 {
557 return pipe->device_speed != CVMX_USB_SPEED_HIGH &&
558 usb->usbcx_hprt.s.prtspd == CVMX_USB_SPEED_HIGH;
559 }
560
561 /**
562 * Trivial utility function to return the correct PID for a pipe
563 *
564 * @pipe: pipe to check
565 *
566 * Returns: PID for pipe
567 */
cvmx_usb_get_data_pid(struct cvmx_usb_pipe * pipe)568 static inline int cvmx_usb_get_data_pid(struct cvmx_usb_pipe *pipe)
569 {
570 if (pipe->pid_toggle)
571 return 2; /* Data1 */
572 return 0; /* Data0 */
573 }
574
575 /* Loops through register until txfflsh or rxfflsh become zero.*/
cvmx_wait_tx_rx(struct octeon_hcd * usb,int fflsh_type)576 static int cvmx_wait_tx_rx(struct octeon_hcd *usb, int fflsh_type)
577 {
578 int result;
579 u64 address = CVMX_USBCX_GRSTCTL(usb->index);
580 u64 done = cvmx_get_cycle() + 100 *
581 (u64)octeon_get_clock_rate / 1000000;
582 union cvmx_usbcx_grstctl c;
583
584 while (1) {
585 c.u32 = cvmx_usb_read_csr32(usb, address);
586 if (fflsh_type == 0 && c.s.txfflsh == 0) {
587 result = 0;
588 break;
589 } else if (fflsh_type == 1 && c.s.rxfflsh == 0) {
590 result = 0;
591 break;
592 } else if (cvmx_get_cycle() > done) {
593 result = -1;
594 break;
595 }
596
597 __delay(100);
598 }
599 return result;
600 }
601
cvmx_fifo_setup(struct octeon_hcd * usb)602 static void cvmx_fifo_setup(struct octeon_hcd *usb)
603 {
604 union cvmx_usbcx_ghwcfg3 usbcx_ghwcfg3;
605 union cvmx_usbcx_gnptxfsiz npsiz;
606 union cvmx_usbcx_hptxfsiz psiz;
607
608 usbcx_ghwcfg3.u32 = cvmx_usb_read_csr32(usb,
609 CVMX_USBCX_GHWCFG3(usb->index));
610
611 /*
612 * Program the USBC_GRXFSIZ register to select the size of the receive
613 * FIFO (25%).
614 */
615 USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb->index), cvmx_usbcx_grxfsiz,
616 rxfdep, usbcx_ghwcfg3.s.dfifodepth / 4);
617
618 /*
619 * Program the USBC_GNPTXFSIZ register to select the size and the start
620 * address of the non-periodic transmit FIFO for nonperiodic
621 * transactions (50%).
622 */
623 npsiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index));
624 npsiz.s.nptxfdep = usbcx_ghwcfg3.s.dfifodepth / 2;
625 npsiz.s.nptxfstaddr = usbcx_ghwcfg3.s.dfifodepth / 4;
626 cvmx_usb_write_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index), npsiz.u32);
627
628 /*
629 * Program the USBC_HPTXFSIZ register to select the size and start
630 * address of the periodic transmit FIFO for periodic transactions
631 * (25%).
632 */
633 psiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index));
634 psiz.s.ptxfsize = usbcx_ghwcfg3.s.dfifodepth / 4;
635 psiz.s.ptxfstaddr = 3 * usbcx_ghwcfg3.s.dfifodepth / 4;
636 cvmx_usb_write_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index), psiz.u32);
637
638 /* Flush all FIFOs */
639 USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
640 cvmx_usbcx_grstctl, txfnum, 0x10);
641 USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
642 cvmx_usbcx_grstctl, txfflsh, 1);
643 cvmx_wait_tx_rx(usb, 0);
644 USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
645 cvmx_usbcx_grstctl, rxfflsh, 1);
646 cvmx_wait_tx_rx(usb, 1);
647 }
648
649 /**
650 * Shutdown a USB port after a call to cvmx_usb_initialize().
651 * The port should be disabled with all pipes closed when this
652 * function is called.
653 *
654 * @usb: USB device state populated by cvmx_usb_initialize().
655 *
656 * Returns: 0 or a negative error code.
657 */
cvmx_usb_shutdown(struct octeon_hcd * usb)658 static int cvmx_usb_shutdown(struct octeon_hcd *usb)
659 {
660 union cvmx_usbnx_clk_ctl usbn_clk_ctl;
661
662 /* Make sure all pipes are closed */
663 if (!list_empty(&usb->idle_pipes) ||
664 !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_ISOCHRONOUS]) ||
665 !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_INTERRUPT]) ||
666 !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_CONTROL]) ||
667 !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_BULK]))
668 return -EBUSY;
669
670 /* Disable the clocks and put them in power on reset */
671 usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
672 usbn_clk_ctl.s.enable = 1;
673 usbn_clk_ctl.s.por = 1;
674 usbn_clk_ctl.s.hclk_rst = 1;
675 usbn_clk_ctl.s.prst = 0;
676 usbn_clk_ctl.s.hrst = 0;
677 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
678 return 0;
679 }
680
681 /**
682 * Initialize a USB port for use. This must be called before any
683 * other access to the Octeon USB port is made. The port starts
684 * off in the disabled state.
685 *
686 * @dev: Pointer to struct device for logging purposes.
687 * @usb: Pointer to struct octeon_hcd.
688 *
689 * Returns: 0 or a negative error code.
690 */
cvmx_usb_initialize(struct device * dev,struct octeon_hcd * usb)691 static int cvmx_usb_initialize(struct device *dev,
692 struct octeon_hcd *usb)
693 {
694 int channel;
695 int divisor;
696 int retries = 0;
697 union cvmx_usbcx_hcfg usbcx_hcfg;
698 union cvmx_usbnx_clk_ctl usbn_clk_ctl;
699 union cvmx_usbcx_gintsts usbc_gintsts;
700 union cvmx_usbcx_gahbcfg usbcx_gahbcfg;
701 union cvmx_usbcx_gintmsk usbcx_gintmsk;
702 union cvmx_usbcx_gusbcfg usbcx_gusbcfg;
703 union cvmx_usbnx_usbp_ctl_status usbn_usbp_ctl_status;
704
705 retry:
706 /*
707 * Power On Reset and PHY Initialization
708 *
709 * 1. Wait for DCOK to assert (nothing to do)
710 *
711 * 2a. Write USBN0/1_CLK_CTL[POR] = 1 and
712 * USBN0/1_CLK_CTL[HRST,PRST,HCLK_RST] = 0
713 */
714 usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
715 usbn_clk_ctl.s.por = 1;
716 usbn_clk_ctl.s.hrst = 0;
717 usbn_clk_ctl.s.prst = 0;
718 usbn_clk_ctl.s.hclk_rst = 0;
719 usbn_clk_ctl.s.enable = 0;
720 /*
721 * 2b. Select the USB reference clock/crystal parameters by writing
722 * appropriate values to USBN0/1_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON]
723 */
724 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND) {
725 /*
726 * The USB port uses 12/24/48MHz 2.5V board clock
727 * source at USB_XO. USB_XI should be tied to GND.
728 * Most Octeon evaluation boards require this setting
729 */
730 if (OCTEON_IS_MODEL(OCTEON_CN3XXX) ||
731 OCTEON_IS_MODEL(OCTEON_CN56XX) ||
732 OCTEON_IS_MODEL(OCTEON_CN50XX))
733 /* From CN56XX,CN50XX,CN31XX,CN30XX manuals */
734 usbn_clk_ctl.s.p_rtype = 2; /* p_rclk=1 & p_xenbn=0 */
735 else
736 /* From CN52XX manual */
737 usbn_clk_ctl.s.p_rtype = 1;
738
739 switch (usb->init_flags &
740 CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK) {
741 case CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ:
742 usbn_clk_ctl.s.p_c_sel = 0;
743 break;
744 case CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ:
745 usbn_clk_ctl.s.p_c_sel = 1;
746 break;
747 case CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ:
748 usbn_clk_ctl.s.p_c_sel = 2;
749 break;
750 }
751 } else {
752 /*
753 * The USB port uses a 12MHz crystal as clock source
754 * at USB_XO and USB_XI
755 */
756 if (OCTEON_IS_MODEL(OCTEON_CN3XXX))
757 /* From CN31XX,CN30XX manual */
758 usbn_clk_ctl.s.p_rtype = 3; /* p_rclk=1 & p_xenbn=1 */
759 else
760 /* From CN56XX,CN52XX,CN50XX manuals. */
761 usbn_clk_ctl.s.p_rtype = 0;
762
763 usbn_clk_ctl.s.p_c_sel = 0;
764 }
765 /*
766 * 2c. Select the HCLK via writing USBN0/1_CLK_CTL[DIVIDE, DIVIDE2] and
767 * setting USBN0/1_CLK_CTL[ENABLE] = 1. Divide the core clock down
768 * such that USB is as close as possible to 125Mhz
769 */
770 divisor = DIV_ROUND_UP(octeon_get_clock_rate(), 125000000);
771 /* Lower than 4 doesn't seem to work properly */
772 if (divisor < 4)
773 divisor = 4;
774 usbn_clk_ctl.s.divide = divisor;
775 usbn_clk_ctl.s.divide2 = 0;
776 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
777
778 /* 2d. Write USBN0/1_CLK_CTL[HCLK_RST] = 1 */
779 usbn_clk_ctl.s.hclk_rst = 1;
780 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
781 /* 2e. Wait 64 core-clock cycles for HCLK to stabilize */
782 __delay(64);
783 /*
784 * 3. Program the power-on reset field in the USBN clock-control
785 * register:
786 * USBN_CLK_CTL[POR] = 0
787 */
788 usbn_clk_ctl.s.por = 0;
789 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
790 /* 4. Wait 1 ms for PHY clock to start */
791 mdelay(1);
792 /*
793 * 5. Program the Reset input from automatic test equipment field in the
794 * USBP control and status register:
795 * USBN_USBP_CTL_STATUS[ATE_RESET] = 1
796 */
797 usbn_usbp_ctl_status.u64 =
798 cvmx_read64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index));
799 usbn_usbp_ctl_status.s.ate_reset = 1;
800 cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
801 usbn_usbp_ctl_status.u64);
802 /* 6. Wait 10 cycles */
803 __delay(10);
804 /*
805 * 7. Clear ATE_RESET field in the USBN clock-control register:
806 * USBN_USBP_CTL_STATUS[ATE_RESET] = 0
807 */
808 usbn_usbp_ctl_status.s.ate_reset = 0;
809 cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
810 usbn_usbp_ctl_status.u64);
811 /*
812 * 8. Program the PHY reset field in the USBN clock-control register:
813 * USBN_CLK_CTL[PRST] = 1
814 */
815 usbn_clk_ctl.s.prst = 1;
816 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
817 /*
818 * 9. Program the USBP control and status register to select host or
819 * device mode. USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for
820 * device
821 */
822 usbn_usbp_ctl_status.s.hst_mode = 0;
823 cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
824 usbn_usbp_ctl_status.u64);
825 /* 10. Wait 1 us */
826 udelay(1);
827 /*
828 * 11. Program the hreset_n field in the USBN clock-control register:
829 * USBN_CLK_CTL[HRST] = 1
830 */
831 usbn_clk_ctl.s.hrst = 1;
832 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
833 /* 12. Proceed to USB core initialization */
834 usbn_clk_ctl.s.enable = 1;
835 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
836 udelay(1);
837
838 /*
839 * USB Core Initialization
840 *
841 * 1. Read USBC_GHWCFG1, USBC_GHWCFG2, USBC_GHWCFG3, USBC_GHWCFG4 to
842 * determine USB core configuration parameters.
843 *
844 * Nothing needed
845 *
846 * 2. Program the following fields in the global AHB configuration
847 * register (USBC_GAHBCFG)
848 * DMA mode, USBC_GAHBCFG[DMAEn]: 1 = DMA mode, 0 = slave mode
849 * Burst length, USBC_GAHBCFG[HBSTLEN] = 0
850 * Nonperiodic TxFIFO empty level (slave mode only),
851 * USBC_GAHBCFG[NPTXFEMPLVL]
852 * Periodic TxFIFO empty level (slave mode only),
853 * USBC_GAHBCFG[PTXFEMPLVL]
854 * Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1
855 */
856 usbcx_gahbcfg.u32 = 0;
857 usbcx_gahbcfg.s.dmaen = !(usb->init_flags &
858 CVMX_USB_INITIALIZE_FLAGS_NO_DMA);
859 usbcx_gahbcfg.s.hbstlen = 0;
860 usbcx_gahbcfg.s.nptxfemplvl = 1;
861 usbcx_gahbcfg.s.ptxfemplvl = 1;
862 usbcx_gahbcfg.s.glblintrmsk = 1;
863 cvmx_usb_write_csr32(usb, CVMX_USBCX_GAHBCFG(usb->index),
864 usbcx_gahbcfg.u32);
865
866 /*
867 * 3. Program the following fields in USBC_GUSBCFG register.
868 * HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0
869 * ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0
870 * USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5
871 * PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0
872 */
873 usbcx_gusbcfg.u32 = cvmx_usb_read_csr32(usb,
874 CVMX_USBCX_GUSBCFG(usb->index));
875 usbcx_gusbcfg.s.toutcal = 0;
876 usbcx_gusbcfg.s.ddrsel = 0;
877 usbcx_gusbcfg.s.usbtrdtim = 0x5;
878 usbcx_gusbcfg.s.phylpwrclksel = 0;
879 cvmx_usb_write_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index),
880 usbcx_gusbcfg.u32);
881
882 /*
883 * 4. The software must unmask the following bits in the USBC_GINTMSK
884 * register.
885 * OTG interrupt mask, USBC_GINTMSK[OTGINTMSK] = 1
886 * Mode mismatch interrupt mask, USBC_GINTMSK[MODEMISMSK] = 1
887 */
888 usbcx_gintmsk.u32 = cvmx_usb_read_csr32(usb,
889 CVMX_USBCX_GINTMSK(usb->index));
890 usbcx_gintmsk.s.otgintmsk = 1;
891 usbcx_gintmsk.s.modemismsk = 1;
892 usbcx_gintmsk.s.hchintmsk = 1;
893 usbcx_gintmsk.s.sofmsk = 0;
894 /* We need RX FIFO interrupts if we don't have DMA */
895 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
896 usbcx_gintmsk.s.rxflvlmsk = 1;
897 cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTMSK(usb->index),
898 usbcx_gintmsk.u32);
899
900 /*
901 * Disable all channel interrupts. We'll enable them per channel later.
902 */
903 for (channel = 0; channel < 8; channel++)
904 cvmx_usb_write_csr32(usb,
905 CVMX_USBCX_HCINTMSKX(channel, usb->index),
906 0);
907
908 /*
909 * Host Port Initialization
910 *
911 * 1. Program the host-port interrupt-mask field to unmask,
912 * USBC_GINTMSK[PRTINT] = 1
913 */
914 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
915 cvmx_usbcx_gintmsk, prtintmsk, 1);
916 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
917 cvmx_usbcx_gintmsk, disconnintmsk, 1);
918
919 /*
920 * 2. Program the USBC_HCFG register to select full-speed host
921 * or high-speed host.
922 */
923 usbcx_hcfg.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCFG(usb->index));
924 usbcx_hcfg.s.fslssupp = 0;
925 usbcx_hcfg.s.fslspclksel = 0;
926 cvmx_usb_write_csr32(usb, CVMX_USBCX_HCFG(usb->index), usbcx_hcfg.u32);
927
928 cvmx_fifo_setup(usb);
929
930 /*
931 * If the controller is getting port events right after the reset, it
932 * means the initialization failed. Try resetting the controller again
933 * in such case. This is seen to happen after cold boot on DSR-1000N.
934 */
935 usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
936 CVMX_USBCX_GINTSTS(usb->index));
937 cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
938 usbc_gintsts.u32);
939 dev_dbg(dev, "gintsts after reset: 0x%x\n", (int)usbc_gintsts.u32);
940 if (!usbc_gintsts.s.disconnint && !usbc_gintsts.s.prtint)
941 return 0;
942 if (retries++ >= 5)
943 return -EAGAIN;
944 dev_info(dev, "controller reset failed (gintsts=0x%x) - retrying\n",
945 (int)usbc_gintsts.u32);
946 msleep(50);
947 cvmx_usb_shutdown(usb);
948 msleep(50);
949 goto retry;
950 }
951
952 /**
953 * Reset a USB port. After this call succeeds, the USB port is
954 * online and servicing requests.
955 *
956 * @usb: USB device state populated by cvmx_usb_initialize().
957 */
cvmx_usb_reset_port(struct octeon_hcd * usb)958 static void cvmx_usb_reset_port(struct octeon_hcd *usb)
959 {
960 usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
961 CVMX_USBCX_HPRT(usb->index));
962
963 /* Program the port reset bit to start the reset process */
964 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
965 prtrst, 1);
966
967 /*
968 * Wait at least 50ms (high speed), or 10ms (full speed) for the reset
969 * process to complete.
970 */
971 mdelay(50);
972
973 /* Program the port reset bit to 0, USBC_HPRT[PRTRST] = 0 */
974 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
975 prtrst, 0);
976
977 /*
978 * Read the port speed field to get the enumerated speed,
979 * USBC_HPRT[PRTSPD].
980 */
981 usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
982 CVMX_USBCX_HPRT(usb->index));
983 }
984
985 /**
986 * Disable a USB port. After this call the USB port will not
987 * generate data transfers and will not generate events.
988 * Transactions in process will fail and call their
989 * associated callbacks.
990 *
991 * @usb: USB device state populated by cvmx_usb_initialize().
992 *
993 * Returns: 0 or a negative error code.
994 */
cvmx_usb_disable(struct octeon_hcd * usb)995 static int cvmx_usb_disable(struct octeon_hcd *usb)
996 {
997 /* Disable the port */
998 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
999 prtena, 1);
1000 return 0;
1001 }
1002
1003 /**
1004 * Get the current state of the USB port. Use this call to
1005 * determine if the usb port has anything connected, is enabled,
1006 * or has some sort of error condition. The return value of this
1007 * call has "changed" bits to signal of the value of some fields
1008 * have changed between calls.
1009 *
1010 * @usb: USB device state populated by cvmx_usb_initialize().
1011 *
1012 * Returns: Port status information
1013 */
cvmx_usb_get_status(struct octeon_hcd * usb)1014 static struct cvmx_usb_port_status cvmx_usb_get_status(struct octeon_hcd *usb)
1015 {
1016 union cvmx_usbcx_hprt usbc_hprt;
1017 struct cvmx_usb_port_status result;
1018
1019 memset(&result, 0, sizeof(result));
1020
1021 usbc_hprt.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
1022 result.port_enabled = usbc_hprt.s.prtena;
1023 result.port_over_current = usbc_hprt.s.prtovrcurract;
1024 result.port_powered = usbc_hprt.s.prtpwr;
1025 result.port_speed = usbc_hprt.s.prtspd;
1026 result.connected = usbc_hprt.s.prtconnsts;
1027 result.connect_change =
1028 result.connected != usb->port_status.connected;
1029
1030 return result;
1031 }
1032
1033 /**
1034 * Open a virtual pipe between the host and a USB device. A pipe
1035 * must be opened before data can be transferred between a device
1036 * and Octeon.
1037 *
1038 * @usb: USB device state populated by cvmx_usb_initialize().
1039 * @device_addr:
1040 * USB device address to open the pipe to
1041 * (0-127).
1042 * @endpoint_num:
1043 * USB endpoint number to open the pipe to
1044 * (0-15).
1045 * @device_speed:
1046 * The speed of the device the pipe is going
1047 * to. This must match the device's speed,
1048 * which may be different than the port speed.
1049 * @max_packet: The maximum packet length the device can
1050 * transmit/receive (low speed=0-8, full
1051 * speed=0-1023, high speed=0-1024). This value
1052 * comes from the standard endpoint descriptor
1053 * field wMaxPacketSize bits <10:0>.
1054 * @transfer_type:
1055 * The type of transfer this pipe is for.
1056 * @transfer_dir:
1057 * The direction the pipe is in. This is not
1058 * used for control pipes.
1059 * @interval: For ISOCHRONOUS and INTERRUPT transfers,
1060 * this is how often the transfer is scheduled
1061 * for. All other transfers should specify
1062 * zero. The units are in frames (8000/sec at
1063 * high speed, 1000/sec for full speed).
1064 * @multi_count:
1065 * For high speed devices, this is the maximum
1066 * allowed number of packet per microframe.
1067 * Specify zero for non high speed devices. This
1068 * value comes from the standard endpoint descriptor
1069 * field wMaxPacketSize bits <12:11>.
1070 * @hub_device_addr:
1071 * Hub device address this device is connected
1072 * to. Devices connected directly to Octeon
1073 * use zero. This is only used when the device
1074 * is full/low speed behind a high speed hub.
1075 * The address will be of the high speed hub,
1076 * not and full speed hubs after it.
1077 * @hub_port: Which port on the hub the device is
1078 * connected. Use zero for devices connected
1079 * directly to Octeon. Like hub_device_addr,
1080 * this is only used for full/low speed
1081 * devices behind a high speed hub.
1082 *
1083 * Returns: A non-NULL value is a pipe. NULL means an error.
1084 */
cvmx_usb_open_pipe(struct octeon_hcd * usb,int device_addr,int endpoint_num,enum cvmx_usb_speed device_speed,int max_packet,enum cvmx_usb_transfer transfer_type,enum cvmx_usb_direction transfer_dir,int interval,int multi_count,int hub_device_addr,int hub_port)1085 static struct cvmx_usb_pipe *cvmx_usb_open_pipe(struct octeon_hcd *usb,
1086 int device_addr,
1087 int endpoint_num,
1088 enum cvmx_usb_speed
1089 device_speed,
1090 int max_packet,
1091 enum cvmx_usb_transfer
1092 transfer_type,
1093 enum cvmx_usb_direction
1094 transfer_dir,
1095 int interval, int multi_count,
1096 int hub_device_addr,
1097 int hub_port)
1098 {
1099 struct cvmx_usb_pipe *pipe;
1100
1101 pipe = kzalloc(sizeof(*pipe), GFP_ATOMIC);
1102 if (!pipe)
1103 return NULL;
1104 if ((device_speed == CVMX_USB_SPEED_HIGH) &&
1105 (transfer_dir == CVMX_USB_DIRECTION_OUT) &&
1106 (transfer_type == CVMX_USB_TRANSFER_BULK))
1107 pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
1108 pipe->device_addr = device_addr;
1109 pipe->endpoint_num = endpoint_num;
1110 pipe->device_speed = device_speed;
1111 pipe->max_packet = max_packet;
1112 pipe->transfer_type = transfer_type;
1113 pipe->transfer_dir = transfer_dir;
1114 INIT_LIST_HEAD(&pipe->transactions);
1115
1116 /*
1117 * All pipes use interval to rate limit NAK processing. Force an
1118 * interval if one wasn't supplied
1119 */
1120 if (!interval)
1121 interval = 1;
1122 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1123 pipe->interval = interval * 8;
1124 /* Force start splits to be schedule on uFrame 0 */
1125 pipe->next_tx_frame = ((usb->frame_number + 7) & ~7) +
1126 pipe->interval;
1127 } else {
1128 pipe->interval = interval;
1129 pipe->next_tx_frame = usb->frame_number + pipe->interval;
1130 }
1131 pipe->multi_count = multi_count;
1132 pipe->hub_device_addr = hub_device_addr;
1133 pipe->hub_port = hub_port;
1134 pipe->pid_toggle = 0;
1135 pipe->split_sc_frame = -1;
1136 list_add_tail(&pipe->node, &usb->idle_pipes);
1137
1138 /*
1139 * We don't need to tell the hardware about this pipe yet since
1140 * it doesn't have any submitted requests
1141 */
1142
1143 return pipe;
1144 }
1145
1146 /**
1147 * Poll the RX FIFOs and remove data as needed. This function is only used
1148 * in non DMA mode. It is very important that this function be called quickly
1149 * enough to prevent FIFO overflow.
1150 *
1151 * @usb: USB device state populated by cvmx_usb_initialize().
1152 */
cvmx_usb_poll_rx_fifo(struct octeon_hcd * usb)1153 static void cvmx_usb_poll_rx_fifo(struct octeon_hcd *usb)
1154 {
1155 union cvmx_usbcx_grxstsph rx_status;
1156 int channel;
1157 int bytes;
1158 u64 address;
1159 u32 *ptr;
1160
1161 rx_status.u32 = cvmx_usb_read_csr32(usb,
1162 CVMX_USBCX_GRXSTSPH(usb->index));
1163 /* Only read data if IN data is there */
1164 if (rx_status.s.pktsts != 2)
1165 return;
1166 /* Check if no data is available */
1167 if (!rx_status.s.bcnt)
1168 return;
1169
1170 channel = rx_status.s.chnum;
1171 bytes = rx_status.s.bcnt;
1172 if (!bytes)
1173 return;
1174
1175 /* Get where the DMA engine would have written this data */
1176 address = cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) +
1177 channel * 8);
1178
1179 ptr = cvmx_phys_to_ptr(address);
1180 cvmx_write64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) + channel * 8,
1181 address + bytes);
1182
1183 /* Loop writing the FIFO data for this packet into memory */
1184 while (bytes > 0) {
1185 *ptr++ = cvmx_usb_read_csr32(usb,
1186 USB_FIFO_ADDRESS(channel, usb->index));
1187 bytes -= 4;
1188 }
1189 CVMX_SYNCW;
1190 }
1191
1192 /**
1193 * Fill the TX hardware fifo with data out of the software
1194 * fifos
1195 *
1196 * @usb: USB device state populated by cvmx_usb_initialize().
1197 * @fifo: Software fifo to use
1198 * @available: Amount of space in the hardware fifo
1199 *
1200 * Returns: Non zero if the hardware fifo was too small and needs
1201 * to be serviced again.
1202 */
cvmx_usb_fill_tx_hw(struct octeon_hcd * usb,struct cvmx_usb_tx_fifo * fifo,int available)1203 static int cvmx_usb_fill_tx_hw(struct octeon_hcd *usb,
1204 struct cvmx_usb_tx_fifo *fifo, int available)
1205 {
1206 /*
1207 * We're done either when there isn't anymore space or the software FIFO
1208 * is empty
1209 */
1210 while (available && (fifo->head != fifo->tail)) {
1211 int i = fifo->tail;
1212 const u32 *ptr = cvmx_phys_to_ptr(fifo->entry[i].address);
1213 u64 csr_address = USB_FIFO_ADDRESS(fifo->entry[i].channel,
1214 usb->index) ^ 4;
1215 int words = available;
1216
1217 /* Limit the amount of data to what the SW fifo has */
1218 if (fifo->entry[i].size <= available) {
1219 words = fifo->entry[i].size;
1220 fifo->tail++;
1221 if (fifo->tail > MAX_CHANNELS)
1222 fifo->tail = 0;
1223 }
1224
1225 /* Update the next locations and counts */
1226 available -= words;
1227 fifo->entry[i].address += words * 4;
1228 fifo->entry[i].size -= words;
1229
1230 /*
1231 * Write the HW fifo data. The read every three writes is due
1232 * to an errata on CN3XXX chips
1233 */
1234 while (words > 3) {
1235 cvmx_write64_uint32(csr_address, *ptr++);
1236 cvmx_write64_uint32(csr_address, *ptr++);
1237 cvmx_write64_uint32(csr_address, *ptr++);
1238 cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
1239 words -= 3;
1240 }
1241 cvmx_write64_uint32(csr_address, *ptr++);
1242 if (--words) {
1243 cvmx_write64_uint32(csr_address, *ptr++);
1244 if (--words)
1245 cvmx_write64_uint32(csr_address, *ptr++);
1246 }
1247 cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
1248 }
1249 return fifo->head != fifo->tail;
1250 }
1251
1252 /**
1253 * Check the hardware FIFOs and fill them as needed
1254 *
1255 * @usb: USB device state populated by cvmx_usb_initialize().
1256 */
cvmx_usb_poll_tx_fifo(struct octeon_hcd * usb)1257 static void cvmx_usb_poll_tx_fifo(struct octeon_hcd *usb)
1258 {
1259 if (usb->periodic.head != usb->periodic.tail) {
1260 union cvmx_usbcx_hptxsts tx_status;
1261
1262 tx_status.u32 = cvmx_usb_read_csr32(usb,
1263 CVMX_USBCX_HPTXSTS(usb->index));
1264 if (cvmx_usb_fill_tx_hw(usb, &usb->periodic,
1265 tx_status.s.ptxfspcavail))
1266 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1267 cvmx_usbcx_gintmsk, ptxfempmsk, 1);
1268 else
1269 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1270 cvmx_usbcx_gintmsk, ptxfempmsk, 0);
1271 }
1272
1273 if (usb->nonperiodic.head != usb->nonperiodic.tail) {
1274 union cvmx_usbcx_gnptxsts tx_status;
1275
1276 tx_status.u32 = cvmx_usb_read_csr32(usb,
1277 CVMX_USBCX_GNPTXSTS(usb->index));
1278 if (cvmx_usb_fill_tx_hw(usb, &usb->nonperiodic,
1279 tx_status.s.nptxfspcavail))
1280 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1281 cvmx_usbcx_gintmsk, nptxfempmsk, 1);
1282 else
1283 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1284 cvmx_usbcx_gintmsk, nptxfempmsk, 0);
1285 }
1286 }
1287
1288 /**
1289 * Fill the TX FIFO with an outgoing packet
1290 *
1291 * @usb: USB device state populated by cvmx_usb_initialize().
1292 * @channel: Channel number to get packet from
1293 */
cvmx_usb_fill_tx_fifo(struct octeon_hcd * usb,int channel)1294 static void cvmx_usb_fill_tx_fifo(struct octeon_hcd *usb, int channel)
1295 {
1296 union cvmx_usbcx_hccharx hcchar;
1297 union cvmx_usbcx_hcspltx usbc_hcsplt;
1298 union cvmx_usbcx_hctsizx usbc_hctsiz;
1299 struct cvmx_usb_tx_fifo *fifo;
1300
1301 /* We only need to fill data on outbound channels */
1302 hcchar.u32 = cvmx_usb_read_csr32(usb,
1303 CVMX_USBCX_HCCHARX(channel, usb->index));
1304 if (hcchar.s.epdir != CVMX_USB_DIRECTION_OUT)
1305 return;
1306
1307 /* OUT Splits only have data on the start and not the complete */
1308 usbc_hcsplt.u32 = cvmx_usb_read_csr32(usb,
1309 CVMX_USBCX_HCSPLTX(channel, usb->index));
1310 if (usbc_hcsplt.s.spltena && usbc_hcsplt.s.compsplt)
1311 return;
1312
1313 /*
1314 * Find out how many bytes we need to fill and convert it into 32bit
1315 * words.
1316 */
1317 usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
1318 CVMX_USBCX_HCTSIZX(channel, usb->index));
1319 if (!usbc_hctsiz.s.xfersize)
1320 return;
1321
1322 if ((hcchar.s.eptype == CVMX_USB_TRANSFER_INTERRUPT) ||
1323 (hcchar.s.eptype == CVMX_USB_TRANSFER_ISOCHRONOUS))
1324 fifo = &usb->periodic;
1325 else
1326 fifo = &usb->nonperiodic;
1327
1328 fifo->entry[fifo->head].channel = channel;
1329 fifo->entry[fifo->head].address =
1330 cvmx_read64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
1331 channel * 8);
1332 fifo->entry[fifo->head].size = (usbc_hctsiz.s.xfersize + 3) >> 2;
1333 fifo->head++;
1334 if (fifo->head > MAX_CHANNELS)
1335 fifo->head = 0;
1336
1337 cvmx_usb_poll_tx_fifo(usb);
1338 }
1339
1340 /**
1341 * Perform channel specific setup for Control transactions. All
1342 * the generic stuff will already have been done in cvmx_usb_start_channel().
1343 *
1344 * @usb: USB device state populated by cvmx_usb_initialize().
1345 * @channel: Channel to setup
1346 * @pipe: Pipe for control transaction
1347 */
cvmx_usb_start_channel_control(struct octeon_hcd * usb,int channel,struct cvmx_usb_pipe * pipe)1348 static void cvmx_usb_start_channel_control(struct octeon_hcd *usb,
1349 int channel,
1350 struct cvmx_usb_pipe *pipe)
1351 {
1352 struct usb_hcd *hcd = octeon_to_hcd(usb);
1353 struct device *dev = hcd->self.controller;
1354 struct cvmx_usb_transaction *transaction =
1355 list_first_entry(&pipe->transactions, typeof(*transaction),
1356 node);
1357 struct usb_ctrlrequest *header =
1358 cvmx_phys_to_ptr(transaction->control_header);
1359 int bytes_to_transfer = transaction->buffer_length -
1360 transaction->actual_bytes;
1361 int packets_to_transfer;
1362 union cvmx_usbcx_hctsizx usbc_hctsiz;
1363
1364 usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
1365 CVMX_USBCX_HCTSIZX(channel, usb->index));
1366
1367 switch (transaction->stage) {
1368 case CVMX_USB_STAGE_NON_CONTROL:
1369 case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
1370 dev_err(dev, "%s: ERROR - Non control stage\n", __func__);
1371 break;
1372 case CVMX_USB_STAGE_SETUP:
1373 usbc_hctsiz.s.pid = 3; /* Setup */
1374 bytes_to_transfer = sizeof(*header);
1375 /* All Control operations start with a setup going OUT */
1376 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1377 cvmx_usbcx_hccharx, epdir,
1378 CVMX_USB_DIRECTION_OUT);
1379 /*
1380 * Setup send the control header instead of the buffer data. The
1381 * buffer data will be used in the next stage
1382 */
1383 cvmx_write64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
1384 channel * 8,
1385 transaction->control_header);
1386 break;
1387 case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
1388 usbc_hctsiz.s.pid = 3; /* Setup */
1389 bytes_to_transfer = 0;
1390 /* All Control operations start with a setup going OUT */
1391 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1392 cvmx_usbcx_hccharx, epdir,
1393 CVMX_USB_DIRECTION_OUT);
1394
1395 USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1396 cvmx_usbcx_hcspltx, compsplt, 1);
1397 break;
1398 case CVMX_USB_STAGE_DATA:
1399 usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1400 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1401 if (header->bRequestType & USB_DIR_IN)
1402 bytes_to_transfer = 0;
1403 else if (bytes_to_transfer > pipe->max_packet)
1404 bytes_to_transfer = pipe->max_packet;
1405 }
1406 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1407 cvmx_usbcx_hccharx, epdir,
1408 ((header->bRequestType & USB_DIR_IN) ?
1409 CVMX_USB_DIRECTION_IN :
1410 CVMX_USB_DIRECTION_OUT));
1411 break;
1412 case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
1413 usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1414 if (!(header->bRequestType & USB_DIR_IN))
1415 bytes_to_transfer = 0;
1416 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1417 cvmx_usbcx_hccharx, epdir,
1418 ((header->bRequestType & USB_DIR_IN) ?
1419 CVMX_USB_DIRECTION_IN :
1420 CVMX_USB_DIRECTION_OUT));
1421 USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1422 cvmx_usbcx_hcspltx, compsplt, 1);
1423 break;
1424 case CVMX_USB_STAGE_STATUS:
1425 usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1426 bytes_to_transfer = 0;
1427 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1428 cvmx_usbcx_hccharx, epdir,
1429 ((header->bRequestType & USB_DIR_IN) ?
1430 CVMX_USB_DIRECTION_OUT :
1431 CVMX_USB_DIRECTION_IN));
1432 break;
1433 case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
1434 usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1435 bytes_to_transfer = 0;
1436 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1437 cvmx_usbcx_hccharx, epdir,
1438 ((header->bRequestType & USB_DIR_IN) ?
1439 CVMX_USB_DIRECTION_OUT :
1440 CVMX_USB_DIRECTION_IN));
1441 USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1442 cvmx_usbcx_hcspltx, compsplt, 1);
1443 break;
1444 }
1445
1446 /*
1447 * Make sure the transfer never exceeds the byte limit of the hardware.
1448 * Further bytes will be sent as continued transactions
1449 */
1450 if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
1451 /* Round MAX_TRANSFER_BYTES to a multiple of out packet size */
1452 bytes_to_transfer = MAX_TRANSFER_BYTES / pipe->max_packet;
1453 bytes_to_transfer *= pipe->max_packet;
1454 }
1455
1456 /*
1457 * Calculate the number of packets to transfer. If the length is zero
1458 * we still need to transfer one packet
1459 */
1460 packets_to_transfer = DIV_ROUND_UP(bytes_to_transfer,
1461 pipe->max_packet);
1462 if (packets_to_transfer == 0) {
1463 packets_to_transfer = 1;
1464 } else if ((packets_to_transfer > 1) &&
1465 (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
1466 /*
1467 * Limit to one packet when not using DMA. Channels must be
1468 * restarted between every packet for IN transactions, so there
1469 * is no reason to do multiple packets in a row
1470 */
1471 packets_to_transfer = 1;
1472 bytes_to_transfer = packets_to_transfer * pipe->max_packet;
1473 } else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
1474 /*
1475 * Limit the number of packet and data transferred to what the
1476 * hardware can handle
1477 */
1478 packets_to_transfer = MAX_TRANSFER_PACKETS;
1479 bytes_to_transfer = packets_to_transfer * pipe->max_packet;
1480 }
1481
1482 usbc_hctsiz.s.xfersize = bytes_to_transfer;
1483 usbc_hctsiz.s.pktcnt = packets_to_transfer;
1484
1485 cvmx_usb_write_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index),
1486 usbc_hctsiz.u32);
1487 }
1488
1489 /**
1490 * Start a channel to perform the pipe's head transaction
1491 *
1492 * @usb: USB device state populated by cvmx_usb_initialize().
1493 * @channel: Channel to setup
1494 * @pipe: Pipe to start
1495 */
cvmx_usb_start_channel(struct octeon_hcd * usb,int channel,struct cvmx_usb_pipe * pipe)1496 static void cvmx_usb_start_channel(struct octeon_hcd *usb, int channel,
1497 struct cvmx_usb_pipe *pipe)
1498 {
1499 struct cvmx_usb_transaction *transaction =
1500 list_first_entry(&pipe->transactions, typeof(*transaction),
1501 node);
1502
1503 /* Make sure all writes to the DMA region get flushed */
1504 CVMX_SYNCW;
1505
1506 /* Attach the channel to the pipe */
1507 usb->pipe_for_channel[channel] = pipe;
1508 pipe->channel = channel;
1509 pipe->flags |= CVMX_USB_PIPE_FLAGS_SCHEDULED;
1510
1511 /* Mark this channel as in use */
1512 usb->idle_hardware_channels &= ~(1 << channel);
1513
1514 /* Enable the channel interrupt bits */
1515 {
1516 union cvmx_usbcx_hcintx usbc_hcint;
1517 union cvmx_usbcx_hcintmskx usbc_hcintmsk;
1518 union cvmx_usbcx_haintmsk usbc_haintmsk;
1519
1520 /* Clear all channel status bits */
1521 usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
1522 CVMX_USBCX_HCINTX(channel, usb->index));
1523
1524 cvmx_usb_write_csr32(usb,
1525 CVMX_USBCX_HCINTX(channel, usb->index),
1526 usbc_hcint.u32);
1527
1528 usbc_hcintmsk.u32 = 0;
1529 usbc_hcintmsk.s.chhltdmsk = 1;
1530 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
1531 /*
1532 * Channels need these extra interrupts when we aren't
1533 * in DMA mode.
1534 */
1535 usbc_hcintmsk.s.datatglerrmsk = 1;
1536 usbc_hcintmsk.s.frmovrunmsk = 1;
1537 usbc_hcintmsk.s.bblerrmsk = 1;
1538 usbc_hcintmsk.s.xacterrmsk = 1;
1539 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1540 /*
1541 * Splits don't generate xfercompl, so we need
1542 * ACK and NYET.
1543 */
1544 usbc_hcintmsk.s.nyetmsk = 1;
1545 usbc_hcintmsk.s.ackmsk = 1;
1546 }
1547 usbc_hcintmsk.s.nakmsk = 1;
1548 usbc_hcintmsk.s.stallmsk = 1;
1549 usbc_hcintmsk.s.xfercomplmsk = 1;
1550 }
1551 cvmx_usb_write_csr32(usb,
1552 CVMX_USBCX_HCINTMSKX(channel, usb->index),
1553 usbc_hcintmsk.u32);
1554
1555 /* Enable the channel interrupt to propagate */
1556 usbc_haintmsk.u32 = cvmx_usb_read_csr32(usb,
1557 CVMX_USBCX_HAINTMSK(usb->index));
1558 usbc_haintmsk.s.haintmsk |= 1 << channel;
1559 cvmx_usb_write_csr32(usb, CVMX_USBCX_HAINTMSK(usb->index),
1560 usbc_haintmsk.u32);
1561 }
1562
1563 /* Setup the location the DMA engine uses. */
1564 {
1565 u64 reg;
1566 u64 dma_address = transaction->buffer +
1567 transaction->actual_bytes;
1568
1569 if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1570 dma_address = transaction->buffer +
1571 transaction->iso_packets[0].offset +
1572 transaction->actual_bytes;
1573
1574 if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT)
1575 reg = CVMX_USBNX_DMA0_OUTB_CHN0(usb->index);
1576 else
1577 reg = CVMX_USBNX_DMA0_INB_CHN0(usb->index);
1578 cvmx_write64_uint64(reg + channel * 8, dma_address);
1579 }
1580
1581 /* Setup both the size of the transfer and the SPLIT characteristics */
1582 {
1583 union cvmx_usbcx_hcspltx usbc_hcsplt = {.u32 = 0};
1584 union cvmx_usbcx_hctsizx usbc_hctsiz = {.u32 = 0};
1585 int packets_to_transfer;
1586 int bytes_to_transfer = transaction->buffer_length -
1587 transaction->actual_bytes;
1588
1589 /*
1590 * ISOCHRONOUS transactions store each individual transfer size
1591 * in the packet structure, not the global buffer_length
1592 */
1593 if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1594 bytes_to_transfer =
1595 transaction->iso_packets[0].length -
1596 transaction->actual_bytes;
1597
1598 /*
1599 * We need to do split transactions when we are talking to non
1600 * high speed devices that are behind a high speed hub
1601 */
1602 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1603 /*
1604 * On the start split phase (stage is even) record the
1605 * frame number we will need to send the split complete.
1606 * We only store the lower two bits since the time ahead
1607 * can only be two frames
1608 */
1609 if ((transaction->stage & 1) == 0) {
1610 if (transaction->type == CVMX_USB_TRANSFER_BULK)
1611 pipe->split_sc_frame =
1612 (usb->frame_number + 1) & 0x7f;
1613 else
1614 pipe->split_sc_frame =
1615 (usb->frame_number + 2) & 0x7f;
1616 } else {
1617 pipe->split_sc_frame = -1;
1618 }
1619
1620 usbc_hcsplt.s.spltena = 1;
1621 usbc_hcsplt.s.hubaddr = pipe->hub_device_addr;
1622 usbc_hcsplt.s.prtaddr = pipe->hub_port;
1623 usbc_hcsplt.s.compsplt = (transaction->stage ==
1624 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE);
1625
1626 /*
1627 * SPLIT transactions can only ever transmit one data
1628 * packet so limit the transfer size to the max packet
1629 * size
1630 */
1631 if (bytes_to_transfer > pipe->max_packet)
1632 bytes_to_transfer = pipe->max_packet;
1633
1634 /*
1635 * ISOCHRONOUS OUT splits are unique in that they limit
1636 * data transfers to 188 byte chunks representing the
1637 * begin/middle/end of the data or all
1638 */
1639 if (!usbc_hcsplt.s.compsplt &&
1640 (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
1641 (pipe->transfer_type ==
1642 CVMX_USB_TRANSFER_ISOCHRONOUS)) {
1643 /*
1644 * Clear the split complete frame number as
1645 * there isn't going to be a split complete
1646 */
1647 pipe->split_sc_frame = -1;
1648 /*
1649 * See if we've started this transfer and sent
1650 * data
1651 */
1652 if (transaction->actual_bytes == 0) {
1653 /*
1654 * Nothing sent yet, this is either a
1655 * begin or the entire payload
1656 */
1657 if (bytes_to_transfer <= 188)
1658 /* Entire payload in one go */
1659 usbc_hcsplt.s.xactpos = 3;
1660 else
1661 /* First part of payload */
1662 usbc_hcsplt.s.xactpos = 2;
1663 } else {
1664 /*
1665 * Continuing the previous data, we must
1666 * either be in the middle or at the end
1667 */
1668 if (bytes_to_transfer <= 188)
1669 /* End of payload */
1670 usbc_hcsplt.s.xactpos = 1;
1671 else
1672 /* Middle of payload */
1673 usbc_hcsplt.s.xactpos = 0;
1674 }
1675 /*
1676 * Again, the transfer size is limited to 188
1677 * bytes
1678 */
1679 if (bytes_to_transfer > 188)
1680 bytes_to_transfer = 188;
1681 }
1682 }
1683
1684 /*
1685 * Make sure the transfer never exceeds the byte limit of the
1686 * hardware. Further bytes will be sent as continued
1687 * transactions
1688 */
1689 if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
1690 /*
1691 * Round MAX_TRANSFER_BYTES to a multiple of out packet
1692 * size
1693 */
1694 bytes_to_transfer = MAX_TRANSFER_BYTES /
1695 pipe->max_packet;
1696 bytes_to_transfer *= pipe->max_packet;
1697 }
1698
1699 /*
1700 * Calculate the number of packets to transfer. If the length is
1701 * zero we still need to transfer one packet
1702 */
1703 packets_to_transfer =
1704 DIV_ROUND_UP(bytes_to_transfer, pipe->max_packet);
1705 if (packets_to_transfer == 0) {
1706 packets_to_transfer = 1;
1707 } else if ((packets_to_transfer > 1) &&
1708 (usb->init_flags &
1709 CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
1710 /*
1711 * Limit to one packet when not using DMA. Channels must
1712 * be restarted between every packet for IN
1713 * transactions, so there is no reason to do multiple
1714 * packets in a row
1715 */
1716 packets_to_transfer = 1;
1717 bytes_to_transfer = packets_to_transfer *
1718 pipe->max_packet;
1719 } else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
1720 /*
1721 * Limit the number of packet and data transferred to
1722 * what the hardware can handle
1723 */
1724 packets_to_transfer = MAX_TRANSFER_PACKETS;
1725 bytes_to_transfer = packets_to_transfer *
1726 pipe->max_packet;
1727 }
1728
1729 usbc_hctsiz.s.xfersize = bytes_to_transfer;
1730 usbc_hctsiz.s.pktcnt = packets_to_transfer;
1731
1732 /* Update the DATA0/DATA1 toggle */
1733 usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1734 /*
1735 * High speed pipes may need a hardware ping before they start
1736 */
1737 if (pipe->flags & CVMX_USB_PIPE_FLAGS_NEED_PING)
1738 usbc_hctsiz.s.dopng = 1;
1739
1740 cvmx_usb_write_csr32(usb,
1741 CVMX_USBCX_HCSPLTX(channel, usb->index),
1742 usbc_hcsplt.u32);
1743 cvmx_usb_write_csr32(usb,
1744 CVMX_USBCX_HCTSIZX(channel, usb->index),
1745 usbc_hctsiz.u32);
1746 }
1747
1748 /* Setup the Host Channel Characteristics Register */
1749 {
1750 union cvmx_usbcx_hccharx usbc_hcchar = {.u32 = 0};
1751
1752 /*
1753 * Set the startframe odd/even properly. This is only used for
1754 * periodic
1755 */
1756 usbc_hcchar.s.oddfrm = usb->frame_number & 1;
1757
1758 /*
1759 * Set the number of back to back packets allowed by this
1760 * endpoint. Split transactions interpret "ec" as the number of
1761 * immediate retries of failure. These retries happen too
1762 * quickly, so we disable these entirely for splits
1763 */
1764 if (cvmx_usb_pipe_needs_split(usb, pipe))
1765 usbc_hcchar.s.ec = 1;
1766 else if (pipe->multi_count < 1)
1767 usbc_hcchar.s.ec = 1;
1768 else if (pipe->multi_count > 3)
1769 usbc_hcchar.s.ec = 3;
1770 else
1771 usbc_hcchar.s.ec = pipe->multi_count;
1772
1773 /* Set the rest of the endpoint specific settings */
1774 usbc_hcchar.s.devaddr = pipe->device_addr;
1775 usbc_hcchar.s.eptype = transaction->type;
1776 usbc_hcchar.s.lspddev =
1777 (pipe->device_speed == CVMX_USB_SPEED_LOW);
1778 usbc_hcchar.s.epdir = pipe->transfer_dir;
1779 usbc_hcchar.s.epnum = pipe->endpoint_num;
1780 usbc_hcchar.s.mps = pipe->max_packet;
1781 cvmx_usb_write_csr32(usb,
1782 CVMX_USBCX_HCCHARX(channel, usb->index),
1783 usbc_hcchar.u32);
1784 }
1785
1786 /* Do transaction type specific fixups as needed */
1787 switch (transaction->type) {
1788 case CVMX_USB_TRANSFER_CONTROL:
1789 cvmx_usb_start_channel_control(usb, channel, pipe);
1790 break;
1791 case CVMX_USB_TRANSFER_BULK:
1792 case CVMX_USB_TRANSFER_INTERRUPT:
1793 break;
1794 case CVMX_USB_TRANSFER_ISOCHRONOUS:
1795 if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
1796 /*
1797 * ISO transactions require different PIDs depending on
1798 * direction and how many packets are needed
1799 */
1800 if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
1801 if (pipe->multi_count < 2) /* Need DATA0 */
1802 USB_SET_FIELD32(
1803 CVMX_USBCX_HCTSIZX(channel,
1804 usb->index),
1805 cvmx_usbcx_hctsizx, pid, 0);
1806 else /* Need MDATA */
1807 USB_SET_FIELD32(
1808 CVMX_USBCX_HCTSIZX(channel,
1809 usb->index),
1810 cvmx_usbcx_hctsizx, pid, 3);
1811 }
1812 }
1813 break;
1814 }
1815 {
1816 union cvmx_usbcx_hctsizx usbc_hctsiz = { .u32 =
1817 cvmx_usb_read_csr32(usb,
1818 CVMX_USBCX_HCTSIZX(channel,
1819 usb->index))
1820 };
1821 transaction->xfersize = usbc_hctsiz.s.xfersize;
1822 transaction->pktcnt = usbc_hctsiz.s.pktcnt;
1823 }
1824 /* Remember when we start a split transaction */
1825 if (cvmx_usb_pipe_needs_split(usb, pipe))
1826 usb->active_split = transaction;
1827 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1828 cvmx_usbcx_hccharx, chena, 1);
1829 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
1830 cvmx_usb_fill_tx_fifo(usb, channel);
1831 }
1832
1833 /**
1834 * Find a pipe that is ready to be scheduled to hardware.
1835 * @usb: USB device state populated by cvmx_usb_initialize().
1836 * @xfer_type: Transfer type
1837 *
1838 * Returns: Pipe or NULL if none are ready
1839 */
cvmx_usb_find_ready_pipe(struct octeon_hcd * usb,enum cvmx_usb_transfer xfer_type)1840 static struct cvmx_usb_pipe *cvmx_usb_find_ready_pipe(struct octeon_hcd *usb,
1841 enum cvmx_usb_transfer xfer_type)
1842 {
1843 struct list_head *list = usb->active_pipes + xfer_type;
1844 u64 current_frame = usb->frame_number;
1845 struct cvmx_usb_pipe *pipe;
1846
1847 list_for_each_entry(pipe, list, node) {
1848 struct cvmx_usb_transaction *t =
1849 list_first_entry(&pipe->transactions, typeof(*t),
1850 node);
1851 if (!(pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED) && t &&
1852 (pipe->next_tx_frame <= current_frame) &&
1853 ((pipe->split_sc_frame == -1) ||
1854 ((((int)current_frame - pipe->split_sc_frame) & 0x7f) <
1855 0x40)) &&
1856 (!usb->active_split || (usb->active_split == t))) {
1857 prefetch(t);
1858 return pipe;
1859 }
1860 }
1861 return NULL;
1862 }
1863
cvmx_usb_next_pipe(struct octeon_hcd * usb,int is_sof)1864 static struct cvmx_usb_pipe *cvmx_usb_next_pipe(struct octeon_hcd *usb,
1865 int is_sof)
1866 {
1867 struct cvmx_usb_pipe *pipe;
1868
1869 /* Find a pipe needing service. */
1870 if (is_sof) {
1871 /*
1872 * Only process periodic pipes on SOF interrupts. This way we
1873 * are sure that the periodic data is sent in the beginning of
1874 * the frame.
1875 */
1876 pipe = cvmx_usb_find_ready_pipe(usb,
1877 CVMX_USB_TRANSFER_ISOCHRONOUS);
1878 if (pipe)
1879 return pipe;
1880 pipe = cvmx_usb_find_ready_pipe(usb,
1881 CVMX_USB_TRANSFER_INTERRUPT);
1882 if (pipe)
1883 return pipe;
1884 }
1885 pipe = cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_CONTROL);
1886 if (pipe)
1887 return pipe;
1888 return cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_BULK);
1889 }
1890
1891 /**
1892 * Called whenever a pipe might need to be scheduled to the
1893 * hardware.
1894 *
1895 * @usb: USB device state populated by cvmx_usb_initialize().
1896 * @is_sof: True if this schedule was called on a SOF interrupt.
1897 */
cvmx_usb_schedule(struct octeon_hcd * usb,int is_sof)1898 static void cvmx_usb_schedule(struct octeon_hcd *usb, int is_sof)
1899 {
1900 int channel;
1901 struct cvmx_usb_pipe *pipe;
1902 int need_sof;
1903 enum cvmx_usb_transfer ttype;
1904
1905 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
1906 /*
1907 * Without DMA we need to be careful to not schedule something
1908 * at the end of a frame and cause an overrun.
1909 */
1910 union cvmx_usbcx_hfnum hfnum = {
1911 .u32 = cvmx_usb_read_csr32(usb,
1912 CVMX_USBCX_HFNUM(usb->index))
1913 };
1914
1915 union cvmx_usbcx_hfir hfir = {
1916 .u32 = cvmx_usb_read_csr32(usb,
1917 CVMX_USBCX_HFIR(usb->index))
1918 };
1919
1920 if (hfnum.s.frrem < hfir.s.frint / 4)
1921 goto done;
1922 }
1923
1924 while (usb->idle_hardware_channels) {
1925 /* Find an idle channel */
1926 channel = __fls(usb->idle_hardware_channels);
1927 if (unlikely(channel > 7))
1928 break;
1929
1930 pipe = cvmx_usb_next_pipe(usb, is_sof);
1931 if (!pipe)
1932 break;
1933
1934 cvmx_usb_start_channel(usb, channel, pipe);
1935 }
1936
1937 done:
1938 /*
1939 * Only enable SOF interrupts when we have transactions pending in the
1940 * future that might need to be scheduled
1941 */
1942 need_sof = 0;
1943 for (ttype = CVMX_USB_TRANSFER_CONTROL;
1944 ttype <= CVMX_USB_TRANSFER_INTERRUPT; ttype++) {
1945 list_for_each_entry(pipe, &usb->active_pipes[ttype], node) {
1946 if (pipe->next_tx_frame > usb->frame_number) {
1947 need_sof = 1;
1948 break;
1949 }
1950 }
1951 }
1952 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1953 cvmx_usbcx_gintmsk, sofmsk, need_sof);
1954 }
1955
octeon_usb_urb_complete_callback(struct octeon_hcd * usb,enum cvmx_usb_status status,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,int bytes_transferred,struct urb * urb)1956 static void octeon_usb_urb_complete_callback(struct octeon_hcd *usb,
1957 enum cvmx_usb_status status,
1958 struct cvmx_usb_pipe *pipe,
1959 struct cvmx_usb_transaction
1960 *transaction,
1961 int bytes_transferred,
1962 struct urb *urb)
1963 {
1964 struct usb_hcd *hcd = octeon_to_hcd(usb);
1965 struct device *dev = hcd->self.controller;
1966
1967 if (likely(status == CVMX_USB_STATUS_OK))
1968 urb->actual_length = bytes_transferred;
1969 else
1970 urb->actual_length = 0;
1971
1972 urb->hcpriv = NULL;
1973
1974 /* For Isochronous transactions we need to update the URB packet status
1975 * list from data in our private copy
1976 */
1977 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1978 int i;
1979 /*
1980 * The pointer to the private list is stored in the setup_packet
1981 * field.
1982 */
1983 struct cvmx_usb_iso_packet *iso_packet =
1984 (struct cvmx_usb_iso_packet *)urb->setup_packet;
1985 /* Recalculate the transfer size by adding up each packet */
1986 urb->actual_length = 0;
1987 for (i = 0; i < urb->number_of_packets; i++) {
1988 if (iso_packet[i].status == CVMX_USB_STATUS_OK) {
1989 urb->iso_frame_desc[i].status = 0;
1990 urb->iso_frame_desc[i].actual_length =
1991 iso_packet[i].length;
1992 urb->actual_length +=
1993 urb->iso_frame_desc[i].actual_length;
1994 } else {
1995 dev_dbg(dev, "ISOCHRONOUS packet=%d of %d status=%d pipe=%p transaction=%p size=%d\n",
1996 i, urb->number_of_packets,
1997 iso_packet[i].status, pipe,
1998 transaction, iso_packet[i].length);
1999 urb->iso_frame_desc[i].status = -EREMOTEIO;
2000 }
2001 }
2002 /* Free the private list now that we don't need it anymore */
2003 kfree(iso_packet);
2004 urb->setup_packet = NULL;
2005 }
2006
2007 switch (status) {
2008 case CVMX_USB_STATUS_OK:
2009 urb->status = 0;
2010 break;
2011 case CVMX_USB_STATUS_CANCEL:
2012 if (urb->status == 0)
2013 urb->status = -ENOENT;
2014 break;
2015 case CVMX_USB_STATUS_STALL:
2016 dev_dbg(dev, "status=stall pipe=%p transaction=%p size=%d\n",
2017 pipe, transaction, bytes_transferred);
2018 urb->status = -EPIPE;
2019 break;
2020 case CVMX_USB_STATUS_BABBLEERR:
2021 dev_dbg(dev, "status=babble pipe=%p transaction=%p size=%d\n",
2022 pipe, transaction, bytes_transferred);
2023 urb->status = -EPIPE;
2024 break;
2025 case CVMX_USB_STATUS_SHORT:
2026 dev_dbg(dev, "status=short pipe=%p transaction=%p size=%d\n",
2027 pipe, transaction, bytes_transferred);
2028 urb->status = -EREMOTEIO;
2029 break;
2030 case CVMX_USB_STATUS_ERROR:
2031 case CVMX_USB_STATUS_XACTERR:
2032 case CVMX_USB_STATUS_DATATGLERR:
2033 case CVMX_USB_STATUS_FRAMEERR:
2034 dev_dbg(dev, "status=%d pipe=%p transaction=%p size=%d\n",
2035 status, pipe, transaction, bytes_transferred);
2036 urb->status = -EPROTO;
2037 break;
2038 }
2039 usb_hcd_unlink_urb_from_ep(octeon_to_hcd(usb), urb);
2040 spin_unlock(&usb->lock);
2041 usb_hcd_giveback_urb(octeon_to_hcd(usb), urb, urb->status);
2042 spin_lock(&usb->lock);
2043 }
2044
2045 /**
2046 * Signal the completion of a transaction and free it. The
2047 * transaction will be removed from the pipe transaction list.
2048 *
2049 * @usb: USB device state populated by cvmx_usb_initialize().
2050 * @pipe: Pipe the transaction is on
2051 * @transaction:
2052 * Transaction that completed
2053 * @complete_code:
2054 * Completion code
2055 */
cvmx_usb_complete(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,enum cvmx_usb_status complete_code)2056 static void cvmx_usb_complete(struct octeon_hcd *usb,
2057 struct cvmx_usb_pipe *pipe,
2058 struct cvmx_usb_transaction *transaction,
2059 enum cvmx_usb_status complete_code)
2060 {
2061 /* If this was a split then clear our split in progress marker */
2062 if (usb->active_split == transaction)
2063 usb->active_split = NULL;
2064
2065 /*
2066 * Isochronous transactions need extra processing as they might not be
2067 * done after a single data transfer
2068 */
2069 if (unlikely(transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)) {
2070 /* Update the number of bytes transferred in this ISO packet */
2071 transaction->iso_packets[0].length = transaction->actual_bytes;
2072 transaction->iso_packets[0].status = complete_code;
2073
2074 /*
2075 * If there are more ISOs pending and we succeeded, schedule the
2076 * next one
2077 */
2078 if ((transaction->iso_number_packets > 1) &&
2079 (complete_code == CVMX_USB_STATUS_OK)) {
2080 /* No bytes transferred for this packet as of yet */
2081 transaction->actual_bytes = 0;
2082 /* One less ISO waiting to transfer */
2083 transaction->iso_number_packets--;
2084 /* Increment to the next location in our packet array */
2085 transaction->iso_packets++;
2086 transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2087 return;
2088 }
2089 }
2090
2091 /* Remove the transaction from the pipe list */
2092 list_del(&transaction->node);
2093 if (list_empty(&pipe->transactions))
2094 list_move_tail(&pipe->node, &usb->idle_pipes);
2095 octeon_usb_urb_complete_callback(usb, complete_code, pipe,
2096 transaction,
2097 transaction->actual_bytes,
2098 transaction->urb);
2099 kfree(transaction);
2100 }
2101
2102 /**
2103 * Submit a usb transaction to a pipe. Called for all types
2104 * of transactions.
2105 *
2106 * @usb:
2107 * @pipe: Which pipe to submit to.
2108 * @type: Transaction type
2109 * @buffer: User buffer for the transaction
2110 * @buffer_length:
2111 * User buffer's length in bytes
2112 * @control_header:
2113 * For control transactions, the 8 byte standard header
2114 * @iso_start_frame:
2115 * For ISO transactions, the start frame
2116 * @iso_number_packets:
2117 * For ISO, the number of packet in the transaction.
2118 * @iso_packets:
2119 * A description of each ISO packet
2120 * @urb: URB for the callback
2121 *
2122 * Returns: Transaction or NULL on failure.
2123 */
cvmx_usb_submit_transaction(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,enum cvmx_usb_transfer type,u64 buffer,int buffer_length,u64 control_header,int iso_start_frame,int iso_number_packets,struct cvmx_usb_iso_packet * iso_packets,struct urb * urb)2124 static struct cvmx_usb_transaction *cvmx_usb_submit_transaction(
2125 struct octeon_hcd *usb,
2126 struct cvmx_usb_pipe *pipe,
2127 enum cvmx_usb_transfer type,
2128 u64 buffer,
2129 int buffer_length,
2130 u64 control_header,
2131 int iso_start_frame,
2132 int iso_number_packets,
2133 struct cvmx_usb_iso_packet *iso_packets,
2134 struct urb *urb)
2135 {
2136 struct cvmx_usb_transaction *transaction;
2137
2138 if (unlikely(pipe->transfer_type != type))
2139 return NULL;
2140
2141 transaction = kzalloc(sizeof(*transaction), GFP_ATOMIC);
2142 if (unlikely(!transaction))
2143 return NULL;
2144
2145 transaction->type = type;
2146 transaction->buffer = buffer;
2147 transaction->buffer_length = buffer_length;
2148 transaction->control_header = control_header;
2149 /* FIXME: This is not used, implement it. */
2150 transaction->iso_start_frame = iso_start_frame;
2151 transaction->iso_number_packets = iso_number_packets;
2152 transaction->iso_packets = iso_packets;
2153 transaction->urb = urb;
2154 if (transaction->type == CVMX_USB_TRANSFER_CONTROL)
2155 transaction->stage = CVMX_USB_STAGE_SETUP;
2156 else
2157 transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2158
2159 if (!list_empty(&pipe->transactions)) {
2160 list_add_tail(&transaction->node, &pipe->transactions);
2161 } else {
2162 list_add_tail(&transaction->node, &pipe->transactions);
2163 list_move_tail(&pipe->node,
2164 &usb->active_pipes[pipe->transfer_type]);
2165
2166 /*
2167 * We may need to schedule the pipe if this was the head of the
2168 * pipe.
2169 */
2170 cvmx_usb_schedule(usb, 0);
2171 }
2172
2173 return transaction;
2174 }
2175
2176 /**
2177 * Call to submit a USB Bulk transfer to a pipe.
2178 *
2179 * @usb: USB device state populated by cvmx_usb_initialize().
2180 * @pipe: Handle to the pipe for the transfer.
2181 * @urb: URB.
2182 *
2183 * Returns: A submitted transaction or NULL on failure.
2184 */
cvmx_usb_submit_bulk(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct urb * urb)2185 static struct cvmx_usb_transaction *cvmx_usb_submit_bulk(
2186 struct octeon_hcd *usb,
2187 struct cvmx_usb_pipe *pipe,
2188 struct urb *urb)
2189 {
2190 return cvmx_usb_submit_transaction(usb, pipe, CVMX_USB_TRANSFER_BULK,
2191 urb->transfer_dma,
2192 urb->transfer_buffer_length,
2193 0, /* control_header */
2194 0, /* iso_start_frame */
2195 0, /* iso_number_packets */
2196 NULL, /* iso_packets */
2197 urb);
2198 }
2199
2200 /**
2201 * Call to submit a USB Interrupt transfer to a pipe.
2202 *
2203 * @usb: USB device state populated by cvmx_usb_initialize().
2204 * @pipe: Handle to the pipe for the transfer.
2205 * @urb: URB returned when the callback is called.
2206 *
2207 * Returns: A submitted transaction or NULL on failure.
2208 */
cvmx_usb_submit_interrupt(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct urb * urb)2209 static struct cvmx_usb_transaction *cvmx_usb_submit_interrupt(
2210 struct octeon_hcd *usb,
2211 struct cvmx_usb_pipe *pipe,
2212 struct urb *urb)
2213 {
2214 return cvmx_usb_submit_transaction(usb, pipe,
2215 CVMX_USB_TRANSFER_INTERRUPT,
2216 urb->transfer_dma,
2217 urb->transfer_buffer_length,
2218 0, /* control_header */
2219 0, /* iso_start_frame */
2220 0, /* iso_number_packets */
2221 NULL, /* iso_packets */
2222 urb);
2223 }
2224
2225 /**
2226 * Call to submit a USB Control transfer to a pipe.
2227 *
2228 * @usb: USB device state populated by cvmx_usb_initialize().
2229 * @pipe: Handle to the pipe for the transfer.
2230 * @urb: URB.
2231 *
2232 * Returns: A submitted transaction or NULL on failure.
2233 */
cvmx_usb_submit_control(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct urb * urb)2234 static struct cvmx_usb_transaction *cvmx_usb_submit_control(
2235 struct octeon_hcd *usb,
2236 struct cvmx_usb_pipe *pipe,
2237 struct urb *urb)
2238 {
2239 int buffer_length = urb->transfer_buffer_length;
2240 u64 control_header = urb->setup_dma;
2241 struct usb_ctrlrequest *header = cvmx_phys_to_ptr(control_header);
2242
2243 if ((header->bRequestType & USB_DIR_IN) == 0)
2244 buffer_length = le16_to_cpu(header->wLength);
2245
2246 return cvmx_usb_submit_transaction(usb, pipe,
2247 CVMX_USB_TRANSFER_CONTROL,
2248 urb->transfer_dma, buffer_length,
2249 control_header,
2250 0, /* iso_start_frame */
2251 0, /* iso_number_packets */
2252 NULL, /* iso_packets */
2253 urb);
2254 }
2255
2256 /**
2257 * Call to submit a USB Isochronous transfer to a pipe.
2258 *
2259 * @usb: USB device state populated by cvmx_usb_initialize().
2260 * @pipe: Handle to the pipe for the transfer.
2261 * @urb: URB returned when the callback is called.
2262 *
2263 * Returns: A submitted transaction or NULL on failure.
2264 */
cvmx_usb_submit_isochronous(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct urb * urb)2265 static struct cvmx_usb_transaction *cvmx_usb_submit_isochronous(
2266 struct octeon_hcd *usb,
2267 struct cvmx_usb_pipe *pipe,
2268 struct urb *urb)
2269 {
2270 struct cvmx_usb_iso_packet *packets;
2271
2272 packets = (struct cvmx_usb_iso_packet *)urb->setup_packet;
2273 return cvmx_usb_submit_transaction(usb, pipe,
2274 CVMX_USB_TRANSFER_ISOCHRONOUS,
2275 urb->transfer_dma,
2276 urb->transfer_buffer_length,
2277 0, /* control_header */
2278 urb->start_frame,
2279 urb->number_of_packets,
2280 packets, urb);
2281 }
2282
2283 /**
2284 * Cancel one outstanding request in a pipe. Canceling a request
2285 * can fail if the transaction has already completed before cancel
2286 * is called. Even after a successful cancel call, it may take
2287 * a frame or two for the cvmx_usb_poll() function to call the
2288 * associated callback.
2289 *
2290 * @usb: USB device state populated by cvmx_usb_initialize().
2291 * @pipe: Pipe to cancel requests in.
2292 * @transaction: Transaction to cancel, returned by the submit function.
2293 *
2294 * Returns: 0 or a negative error code.
2295 */
cvmx_usb_cancel(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction)2296 static int cvmx_usb_cancel(struct octeon_hcd *usb,
2297 struct cvmx_usb_pipe *pipe,
2298 struct cvmx_usb_transaction *transaction)
2299 {
2300 /*
2301 * If the transaction is the HEAD of the queue and scheduled. We need to
2302 * treat it special
2303 */
2304 if (list_first_entry(&pipe->transactions, typeof(*transaction), node) ==
2305 transaction && (pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED)) {
2306 union cvmx_usbcx_hccharx usbc_hcchar;
2307
2308 usb->pipe_for_channel[pipe->channel] = NULL;
2309 pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
2310
2311 CVMX_SYNCW;
2312
2313 usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2314 CVMX_USBCX_HCCHARX(pipe->channel,
2315 usb->index));
2316 /*
2317 * If the channel isn't enabled then the transaction already
2318 * completed.
2319 */
2320 if (usbc_hcchar.s.chena) {
2321 usbc_hcchar.s.chdis = 1;
2322 cvmx_usb_write_csr32(usb,
2323 CVMX_USBCX_HCCHARX(pipe->channel,
2324 usb->index),
2325 usbc_hcchar.u32);
2326 }
2327 }
2328 cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_CANCEL);
2329 return 0;
2330 }
2331
2332 /**
2333 * Cancel all outstanding requests in a pipe. Logically all this
2334 * does is call cvmx_usb_cancel() in a loop.
2335 *
2336 * @usb: USB device state populated by cvmx_usb_initialize().
2337 * @pipe: Pipe to cancel requests in.
2338 *
2339 * Returns: 0 or a negative error code.
2340 */
cvmx_usb_cancel_all(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe)2341 static int cvmx_usb_cancel_all(struct octeon_hcd *usb,
2342 struct cvmx_usb_pipe *pipe)
2343 {
2344 struct cvmx_usb_transaction *transaction, *next;
2345
2346 /* Simply loop through and attempt to cancel each transaction */
2347 list_for_each_entry_safe(transaction, next, &pipe->transactions, node) {
2348 int result = cvmx_usb_cancel(usb, pipe, transaction);
2349
2350 if (unlikely(result != 0))
2351 return result;
2352 }
2353 return 0;
2354 }
2355
2356 /**
2357 * Close a pipe created with cvmx_usb_open_pipe().
2358 *
2359 * @usb: USB device state populated by cvmx_usb_initialize().
2360 * @pipe: Pipe to close.
2361 *
2362 * Returns: 0 or a negative error code. EBUSY is returned if the pipe has
2363 * outstanding transfers.
2364 */
cvmx_usb_close_pipe(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe)2365 static int cvmx_usb_close_pipe(struct octeon_hcd *usb,
2366 struct cvmx_usb_pipe *pipe)
2367 {
2368 /* Fail if the pipe has pending transactions */
2369 if (!list_empty(&pipe->transactions))
2370 return -EBUSY;
2371
2372 list_del(&pipe->node);
2373 kfree(pipe);
2374
2375 return 0;
2376 }
2377
2378 /**
2379 * Get the current USB protocol level frame number. The frame
2380 * number is always in the range of 0-0x7ff.
2381 *
2382 * @usb: USB device state populated by cvmx_usb_initialize().
2383 *
2384 * Returns: USB frame number
2385 */
cvmx_usb_get_frame_number(struct octeon_hcd * usb)2386 static int cvmx_usb_get_frame_number(struct octeon_hcd *usb)
2387 {
2388 union cvmx_usbcx_hfnum usbc_hfnum;
2389
2390 usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
2391
2392 return usbc_hfnum.s.frnum;
2393 }
2394
cvmx_usb_transfer_control(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,union cvmx_usbcx_hccharx usbc_hcchar,int buffer_space_left,int bytes_in_last_packet)2395 static void cvmx_usb_transfer_control(struct octeon_hcd *usb,
2396 struct cvmx_usb_pipe *pipe,
2397 struct cvmx_usb_transaction *transaction,
2398 union cvmx_usbcx_hccharx usbc_hcchar,
2399 int buffer_space_left,
2400 int bytes_in_last_packet)
2401 {
2402 switch (transaction->stage) {
2403 case CVMX_USB_STAGE_NON_CONTROL:
2404 case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
2405 /* This should be impossible */
2406 cvmx_usb_complete(usb, pipe, transaction,
2407 CVMX_USB_STATUS_ERROR);
2408 break;
2409 case CVMX_USB_STAGE_SETUP:
2410 pipe->pid_toggle = 1;
2411 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2412 transaction->stage =
2413 CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE;
2414 } else {
2415 struct usb_ctrlrequest *header =
2416 cvmx_phys_to_ptr(transaction->control_header);
2417 if (header->wLength)
2418 transaction->stage = CVMX_USB_STAGE_DATA;
2419 else
2420 transaction->stage = CVMX_USB_STAGE_STATUS;
2421 }
2422 break;
2423 case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
2424 {
2425 struct usb_ctrlrequest *header =
2426 cvmx_phys_to_ptr(transaction->control_header);
2427 if (header->wLength)
2428 transaction->stage = CVMX_USB_STAGE_DATA;
2429 else
2430 transaction->stage = CVMX_USB_STAGE_STATUS;
2431 }
2432 break;
2433 case CVMX_USB_STAGE_DATA:
2434 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2435 transaction->stage = CVMX_USB_STAGE_DATA_SPLIT_COMPLETE;
2436 /*
2437 * For setup OUT data that are splits,
2438 * the hardware doesn't appear to count
2439 * transferred data. Here we manually
2440 * update the data transferred
2441 */
2442 if (!usbc_hcchar.s.epdir) {
2443 if (buffer_space_left < pipe->max_packet)
2444 transaction->actual_bytes +=
2445 buffer_space_left;
2446 else
2447 transaction->actual_bytes +=
2448 pipe->max_packet;
2449 }
2450 } else if ((buffer_space_left == 0) ||
2451 (bytes_in_last_packet < pipe->max_packet)) {
2452 pipe->pid_toggle = 1;
2453 transaction->stage = CVMX_USB_STAGE_STATUS;
2454 }
2455 break;
2456 case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
2457 if ((buffer_space_left == 0) ||
2458 (bytes_in_last_packet < pipe->max_packet)) {
2459 pipe->pid_toggle = 1;
2460 transaction->stage = CVMX_USB_STAGE_STATUS;
2461 } else {
2462 transaction->stage = CVMX_USB_STAGE_DATA;
2463 }
2464 break;
2465 case CVMX_USB_STAGE_STATUS:
2466 if (cvmx_usb_pipe_needs_split(usb, pipe))
2467 transaction->stage =
2468 CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE;
2469 else
2470 cvmx_usb_complete(usb, pipe, transaction,
2471 CVMX_USB_STATUS_OK);
2472 break;
2473 case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
2474 cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
2475 break;
2476 }
2477 }
2478
cvmx_usb_transfer_bulk(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,union cvmx_usbcx_hcintx usbc_hcint,int buffer_space_left,int bytes_in_last_packet)2479 static void cvmx_usb_transfer_bulk(struct octeon_hcd *usb,
2480 struct cvmx_usb_pipe *pipe,
2481 struct cvmx_usb_transaction *transaction,
2482 union cvmx_usbcx_hcintx usbc_hcint,
2483 int buffer_space_left,
2484 int bytes_in_last_packet)
2485 {
2486 /*
2487 * The only time a bulk transfer isn't complete when it finishes with
2488 * an ACK is during a split transaction. For splits we need to continue
2489 * the transfer if more data is needed.
2490 */
2491 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2492 if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL)
2493 transaction->stage =
2494 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2495 else if (buffer_space_left &&
2496 (bytes_in_last_packet == pipe->max_packet))
2497 transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2498 else
2499 cvmx_usb_complete(usb, pipe, transaction,
2500 CVMX_USB_STATUS_OK);
2501 } else {
2502 if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
2503 (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
2504 (usbc_hcint.s.nak))
2505 pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
2506 if (!buffer_space_left ||
2507 (bytes_in_last_packet < pipe->max_packet))
2508 cvmx_usb_complete(usb, pipe, transaction,
2509 CVMX_USB_STATUS_OK);
2510 }
2511 }
2512
cvmx_usb_transfer_intr(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,int buffer_space_left,int bytes_in_last_packet)2513 static void cvmx_usb_transfer_intr(struct octeon_hcd *usb,
2514 struct cvmx_usb_pipe *pipe,
2515 struct cvmx_usb_transaction *transaction,
2516 int buffer_space_left,
2517 int bytes_in_last_packet)
2518 {
2519 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2520 if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL) {
2521 transaction->stage =
2522 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2523 } else if (buffer_space_left &&
2524 (bytes_in_last_packet == pipe->max_packet)) {
2525 transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2526 } else {
2527 pipe->next_tx_frame += pipe->interval;
2528 cvmx_usb_complete(usb, pipe, transaction,
2529 CVMX_USB_STATUS_OK);
2530 }
2531 } else if (!buffer_space_left ||
2532 (bytes_in_last_packet < pipe->max_packet)) {
2533 pipe->next_tx_frame += pipe->interval;
2534 cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
2535 }
2536 }
2537
cvmx_usb_transfer_isoc(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,int buffer_space_left,int bytes_in_last_packet,int bytes_this_transfer)2538 static void cvmx_usb_transfer_isoc(struct octeon_hcd *usb,
2539 struct cvmx_usb_pipe *pipe,
2540 struct cvmx_usb_transaction *transaction,
2541 int buffer_space_left,
2542 int bytes_in_last_packet,
2543 int bytes_this_transfer)
2544 {
2545 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2546 /*
2547 * ISOCHRONOUS OUT splits don't require a complete split stage.
2548 * Instead they use a sequence of begin OUT splits to transfer
2549 * the data 188 bytes at a time. Once the transfer is complete,
2550 * the pipe sleeps until the next schedule interval.
2551 */
2552 if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
2553 /*
2554 * If no space left or this wasn't a max size packet
2555 * then this transfer is complete. Otherwise start it
2556 * again to send the next 188 bytes
2557 */
2558 if (!buffer_space_left || (bytes_this_transfer < 188)) {
2559 pipe->next_tx_frame += pipe->interval;
2560 cvmx_usb_complete(usb, pipe, transaction,
2561 CVMX_USB_STATUS_OK);
2562 }
2563 return;
2564 }
2565 if (transaction->stage ==
2566 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE) {
2567 /*
2568 * We are in the incoming data phase. Keep getting data
2569 * until we run out of space or get a small packet
2570 */
2571 if ((buffer_space_left == 0) ||
2572 (bytes_in_last_packet < pipe->max_packet)) {
2573 pipe->next_tx_frame += pipe->interval;
2574 cvmx_usb_complete(usb, pipe, transaction,
2575 CVMX_USB_STATUS_OK);
2576 }
2577 } else {
2578 transaction->stage =
2579 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2580 }
2581 } else {
2582 pipe->next_tx_frame += pipe->interval;
2583 cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
2584 }
2585 }
2586
2587 /**
2588 * Poll a channel for status
2589 *
2590 * @usb: USB device
2591 * @channel: Channel to poll
2592 *
2593 * Returns: Zero on success
2594 */
cvmx_usb_poll_channel(struct octeon_hcd * usb,int channel)2595 static int cvmx_usb_poll_channel(struct octeon_hcd *usb, int channel)
2596 {
2597 struct usb_hcd *hcd = octeon_to_hcd(usb);
2598 struct device *dev = hcd->self.controller;
2599 union cvmx_usbcx_hcintx usbc_hcint;
2600 union cvmx_usbcx_hctsizx usbc_hctsiz;
2601 union cvmx_usbcx_hccharx usbc_hcchar;
2602 struct cvmx_usb_pipe *pipe;
2603 struct cvmx_usb_transaction *transaction;
2604 int bytes_this_transfer;
2605 int bytes_in_last_packet;
2606 int packets_processed;
2607 int buffer_space_left;
2608
2609 /* Read the interrupt status bits for the channel */
2610 usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
2611 CVMX_USBCX_HCINTX(channel, usb->index));
2612
2613 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
2614 usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2615 CVMX_USBCX_HCCHARX(channel,
2616 usb->index));
2617
2618 if (usbc_hcchar.s.chena && usbc_hcchar.s.chdis) {
2619 /*
2620 * There seems to be a bug in CN31XX which can cause
2621 * interrupt IN transfers to get stuck until we do a
2622 * write of HCCHARX without changing things
2623 */
2624 cvmx_usb_write_csr32(usb,
2625 CVMX_USBCX_HCCHARX(channel,
2626 usb->index),
2627 usbc_hcchar.u32);
2628 return 0;
2629 }
2630
2631 /*
2632 * In non DMA mode the channels don't halt themselves. We need
2633 * to manually disable channels that are left running
2634 */
2635 if (!usbc_hcint.s.chhltd) {
2636 if (usbc_hcchar.s.chena) {
2637 union cvmx_usbcx_hcintmskx hcintmsk;
2638 /* Disable all interrupts except CHHLTD */
2639 hcintmsk.u32 = 0;
2640 hcintmsk.s.chhltdmsk = 1;
2641 cvmx_usb_write_csr32(usb,
2642 CVMX_USBCX_HCINTMSKX(channel, usb->index),
2643 hcintmsk.u32);
2644 usbc_hcchar.s.chdis = 1;
2645 cvmx_usb_write_csr32(usb,
2646 CVMX_USBCX_HCCHARX(channel, usb->index),
2647 usbc_hcchar.u32);
2648 return 0;
2649 } else if (usbc_hcint.s.xfercompl) {
2650 /*
2651 * Successful IN/OUT with transfer complete.
2652 * Channel halt isn't needed.
2653 */
2654 } else {
2655 dev_err(dev, "USB%d: Channel %d interrupt without halt\n",
2656 usb->index, channel);
2657 return 0;
2658 }
2659 }
2660 } else {
2661 /*
2662 * There is are no interrupts that we need to process when the
2663 * channel is still running
2664 */
2665 if (!usbc_hcint.s.chhltd)
2666 return 0;
2667 }
2668
2669 /* Disable the channel interrupts now that it is done */
2670 cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), 0);
2671 usb->idle_hardware_channels |= (1 << channel);
2672
2673 /* Make sure this channel is tied to a valid pipe */
2674 pipe = usb->pipe_for_channel[channel];
2675 prefetch(pipe);
2676 if (!pipe)
2677 return 0;
2678 transaction = list_first_entry(&pipe->transactions,
2679 typeof(*transaction),
2680 node);
2681 prefetch(transaction);
2682
2683 /*
2684 * Disconnect this pipe from the HW channel. Later the schedule
2685 * function will figure out which pipe needs to go
2686 */
2687 usb->pipe_for_channel[channel] = NULL;
2688 pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
2689
2690 /*
2691 * Read the channel config info so we can figure out how much data
2692 * transferred
2693 */
2694 usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2695 CVMX_USBCX_HCCHARX(channel, usb->index));
2696 usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
2697 CVMX_USBCX_HCTSIZX(channel, usb->index));
2698
2699 /*
2700 * Calculating the number of bytes successfully transferred is dependent
2701 * on the transfer direction
2702 */
2703 packets_processed = transaction->pktcnt - usbc_hctsiz.s.pktcnt;
2704 if (usbc_hcchar.s.epdir) {
2705 /*
2706 * IN transactions are easy. For every byte received the
2707 * hardware decrements xfersize. All we need to do is subtract
2708 * the current value of xfersize from its starting value and we
2709 * know how many bytes were written to the buffer
2710 */
2711 bytes_this_transfer = transaction->xfersize -
2712 usbc_hctsiz.s.xfersize;
2713 } else {
2714 /*
2715 * OUT transaction don't decrement xfersize. Instead pktcnt is
2716 * decremented on every successful packet send. The hardware
2717 * does this when it receives an ACK, or NYET. If it doesn't
2718 * receive one of these responses pktcnt doesn't change
2719 */
2720 bytes_this_transfer = packets_processed * usbc_hcchar.s.mps;
2721 /*
2722 * The last packet may not be a full transfer if we didn't have
2723 * enough data
2724 */
2725 if (bytes_this_transfer > transaction->xfersize)
2726 bytes_this_transfer = transaction->xfersize;
2727 }
2728 /* Figure out how many bytes were in the last packet of the transfer */
2729 if (packets_processed)
2730 bytes_in_last_packet = bytes_this_transfer -
2731 (packets_processed - 1) * usbc_hcchar.s.mps;
2732 else
2733 bytes_in_last_packet = bytes_this_transfer;
2734
2735 /*
2736 * As a special case, setup transactions output the setup header, not
2737 * the user's data. For this reason we don't count setup data as bytes
2738 * transferred
2739 */
2740 if ((transaction->stage == CVMX_USB_STAGE_SETUP) ||
2741 (transaction->stage == CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE))
2742 bytes_this_transfer = 0;
2743
2744 /*
2745 * Add the bytes transferred to the running total. It is important that
2746 * bytes_this_transfer doesn't count any data that needs to be
2747 * retransmitted
2748 */
2749 transaction->actual_bytes += bytes_this_transfer;
2750 if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
2751 buffer_space_left = transaction->iso_packets[0].length -
2752 transaction->actual_bytes;
2753 else
2754 buffer_space_left = transaction->buffer_length -
2755 transaction->actual_bytes;
2756
2757 /*
2758 * We need to remember the PID toggle state for the next transaction.
2759 * The hardware already updated it for the next transaction
2760 */
2761 pipe->pid_toggle = !(usbc_hctsiz.s.pid == 0);
2762
2763 /*
2764 * For high speed bulk out, assume the next transaction will need to do
2765 * a ping before proceeding. If this isn't true the ACK processing below
2766 * will clear this flag
2767 */
2768 if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
2769 (pipe->transfer_type == CVMX_USB_TRANSFER_BULK) &&
2770 (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT))
2771 pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
2772
2773 if (WARN_ON_ONCE(bytes_this_transfer < 0)) {
2774 /*
2775 * In some rare cases the DMA engine seems to get stuck and
2776 * keeps substracting same byte count over and over again. In
2777 * such case we just need to fail every transaction.
2778 */
2779 cvmx_usb_complete(usb, pipe, transaction,
2780 CVMX_USB_STATUS_ERROR);
2781 return 0;
2782 }
2783
2784 if (usbc_hcint.s.stall) {
2785 /*
2786 * STALL as a response means this transaction cannot be
2787 * completed because the device can't process transactions. Tell
2788 * the user. Any data that was transferred will be counted on
2789 * the actual bytes transferred
2790 */
2791 pipe->pid_toggle = 0;
2792 cvmx_usb_complete(usb, pipe, transaction,
2793 CVMX_USB_STATUS_STALL);
2794 } else if (usbc_hcint.s.xacterr) {
2795 /*
2796 * XactErr as a response means the device signaled
2797 * something wrong with the transfer. For example, PID
2798 * toggle errors cause these.
2799 */
2800 cvmx_usb_complete(usb, pipe, transaction,
2801 CVMX_USB_STATUS_XACTERR);
2802 } else if (usbc_hcint.s.bblerr) {
2803 /* Babble Error (BblErr) */
2804 cvmx_usb_complete(usb, pipe, transaction,
2805 CVMX_USB_STATUS_BABBLEERR);
2806 } else if (usbc_hcint.s.datatglerr) {
2807 /* Data toggle error */
2808 cvmx_usb_complete(usb, pipe, transaction,
2809 CVMX_USB_STATUS_DATATGLERR);
2810 } else if (usbc_hcint.s.nyet) {
2811 /*
2812 * NYET as a response is only allowed in three cases: as a
2813 * response to a ping, as a response to a split transaction, and
2814 * as a response to a bulk out. The ping case is handled by
2815 * hardware, so we only have splits and bulk out
2816 */
2817 if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
2818 transaction->retries = 0;
2819 /*
2820 * If there is more data to go then we need to try
2821 * again. Otherwise this transaction is complete
2822 */
2823 if ((buffer_space_left == 0) ||
2824 (bytes_in_last_packet < pipe->max_packet))
2825 cvmx_usb_complete(usb, pipe,
2826 transaction,
2827 CVMX_USB_STATUS_OK);
2828 } else {
2829 /*
2830 * Split transactions retry the split complete 4 times
2831 * then rewind to the start split and do the entire
2832 * transactions again
2833 */
2834 transaction->retries++;
2835 if ((transaction->retries & 0x3) == 0) {
2836 /*
2837 * Rewind to the beginning of the transaction by
2838 * anding off the split complete bit
2839 */
2840 transaction->stage &= ~1;
2841 pipe->split_sc_frame = -1;
2842 }
2843 }
2844 } else if (usbc_hcint.s.ack) {
2845 transaction->retries = 0;
2846 /*
2847 * The ACK bit can only be checked after the other error bits.
2848 * This is because a multi packet transfer may succeed in a
2849 * number of packets and then get a different response on the
2850 * last packet. In this case both ACK and the last response bit
2851 * will be set. If none of the other response bits is set, then
2852 * the last packet must have been an ACK
2853 *
2854 * Since we got an ACK, we know we don't need to do a ping on
2855 * this pipe
2856 */
2857 pipe->flags &= ~CVMX_USB_PIPE_FLAGS_NEED_PING;
2858
2859 switch (transaction->type) {
2860 case CVMX_USB_TRANSFER_CONTROL:
2861 cvmx_usb_transfer_control(usb, pipe, transaction,
2862 usbc_hcchar,
2863 buffer_space_left,
2864 bytes_in_last_packet);
2865 break;
2866 case CVMX_USB_TRANSFER_BULK:
2867 cvmx_usb_transfer_bulk(usb, pipe, transaction,
2868 usbc_hcint, buffer_space_left,
2869 bytes_in_last_packet);
2870 break;
2871 case CVMX_USB_TRANSFER_INTERRUPT:
2872 cvmx_usb_transfer_intr(usb, pipe, transaction,
2873 buffer_space_left,
2874 bytes_in_last_packet);
2875 break;
2876 case CVMX_USB_TRANSFER_ISOCHRONOUS:
2877 cvmx_usb_transfer_isoc(usb, pipe, transaction,
2878 buffer_space_left,
2879 bytes_in_last_packet,
2880 bytes_this_transfer);
2881 break;
2882 }
2883 } else if (usbc_hcint.s.nak) {
2884 /*
2885 * If this was a split then clear our split in progress marker.
2886 */
2887 if (usb->active_split == transaction)
2888 usb->active_split = NULL;
2889 /*
2890 * NAK as a response means the device couldn't accept the
2891 * transaction, but it should be retried in the future. Rewind
2892 * to the beginning of the transaction by anding off the split
2893 * complete bit. Retry in the next interval
2894 */
2895 transaction->retries = 0;
2896 transaction->stage &= ~1;
2897 pipe->next_tx_frame += pipe->interval;
2898 if (pipe->next_tx_frame < usb->frame_number)
2899 pipe->next_tx_frame = usb->frame_number +
2900 pipe->interval -
2901 (usb->frame_number - pipe->next_tx_frame) %
2902 pipe->interval;
2903 } else {
2904 struct cvmx_usb_port_status port;
2905
2906 port = cvmx_usb_get_status(usb);
2907 if (port.port_enabled) {
2908 /* We'll retry the exact same transaction again */
2909 transaction->retries++;
2910 } else {
2911 /*
2912 * We get channel halted interrupts with no result bits
2913 * sets when the cable is unplugged
2914 */
2915 cvmx_usb_complete(usb, pipe, transaction,
2916 CVMX_USB_STATUS_ERROR);
2917 }
2918 }
2919 return 0;
2920 }
2921
octeon_usb_port_callback(struct octeon_hcd * usb)2922 static void octeon_usb_port_callback(struct octeon_hcd *usb)
2923 {
2924 spin_unlock(&usb->lock);
2925 usb_hcd_poll_rh_status(octeon_to_hcd(usb));
2926 spin_lock(&usb->lock);
2927 }
2928
2929 /**
2930 * Poll the USB block for status and call all needed callback
2931 * handlers. This function is meant to be called in the interrupt
2932 * handler for the USB controller. It can also be called
2933 * periodically in a loop for non-interrupt based operation.
2934 *
2935 * @usb: USB device state populated by cvmx_usb_initialize().
2936 *
2937 * Returns: 0 or a negative error code.
2938 */
cvmx_usb_poll(struct octeon_hcd * usb)2939 static int cvmx_usb_poll(struct octeon_hcd *usb)
2940 {
2941 union cvmx_usbcx_hfnum usbc_hfnum;
2942 union cvmx_usbcx_gintsts usbc_gintsts;
2943
2944 prefetch_range(usb, sizeof(*usb));
2945
2946 /* Update the frame counter */
2947 usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
2948 if ((usb->frame_number & 0x3fff) > usbc_hfnum.s.frnum)
2949 usb->frame_number += 0x4000;
2950 usb->frame_number &= ~0x3fffull;
2951 usb->frame_number |= usbc_hfnum.s.frnum;
2952
2953 /* Read the pending interrupts */
2954 usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
2955 CVMX_USBCX_GINTSTS(usb->index));
2956
2957 /* Clear the interrupts now that we know about them */
2958 cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
2959 usbc_gintsts.u32);
2960
2961 if (usbc_gintsts.s.rxflvl) {
2962 /*
2963 * RxFIFO Non-Empty (RxFLvl)
2964 * Indicates that there is at least one packet pending to be
2965 * read from the RxFIFO.
2966 *
2967 * In DMA mode this is handled by hardware
2968 */
2969 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
2970 cvmx_usb_poll_rx_fifo(usb);
2971 }
2972 if (usbc_gintsts.s.ptxfemp || usbc_gintsts.s.nptxfemp) {
2973 /* Fill the Tx FIFOs when not in DMA mode */
2974 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
2975 cvmx_usb_poll_tx_fifo(usb);
2976 }
2977 if (usbc_gintsts.s.disconnint || usbc_gintsts.s.prtint) {
2978 union cvmx_usbcx_hprt usbc_hprt;
2979 /*
2980 * Disconnect Detected Interrupt (DisconnInt)
2981 * Asserted when a device disconnect is detected.
2982 *
2983 * Host Port Interrupt (PrtInt)
2984 * The core sets this bit to indicate a change in port status of
2985 * one of the O2P USB core ports in Host mode. The application
2986 * must read the Host Port Control and Status (HPRT) register to
2987 * determine the exact event that caused this interrupt. The
2988 * application must clear the appropriate status bit in the Host
2989 * Port Control and Status register to clear this bit.
2990 *
2991 * Call the user's port callback
2992 */
2993 octeon_usb_port_callback(usb);
2994 /* Clear the port change bits */
2995 usbc_hprt.u32 =
2996 cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
2997 usbc_hprt.s.prtena = 0;
2998 cvmx_usb_write_csr32(usb, CVMX_USBCX_HPRT(usb->index),
2999 usbc_hprt.u32);
3000 }
3001 if (usbc_gintsts.s.hchint) {
3002 /*
3003 * Host Channels Interrupt (HChInt)
3004 * The core sets this bit to indicate that an interrupt is
3005 * pending on one of the channels of the core (in Host mode).
3006 * The application must read the Host All Channels Interrupt
3007 * (HAINT) register to determine the exact number of the channel
3008 * on which the interrupt occurred, and then read the
3009 * corresponding Host Channel-n Interrupt (HCINTn) register to
3010 * determine the exact cause of the interrupt. The application
3011 * must clear the appropriate status bit in the HCINTn register
3012 * to clear this bit.
3013 */
3014 union cvmx_usbcx_haint usbc_haint;
3015
3016 usbc_haint.u32 = cvmx_usb_read_csr32(usb,
3017 CVMX_USBCX_HAINT(usb->index));
3018 while (usbc_haint.u32) {
3019 int channel;
3020
3021 channel = __fls(usbc_haint.u32);
3022 cvmx_usb_poll_channel(usb, channel);
3023 usbc_haint.u32 ^= 1 << channel;
3024 }
3025 }
3026
3027 cvmx_usb_schedule(usb, usbc_gintsts.s.sof);
3028
3029 return 0;
3030 }
3031
3032 /* convert between an HCD pointer and the corresponding struct octeon_hcd */
hcd_to_octeon(struct usb_hcd * hcd)3033 static inline struct octeon_hcd *hcd_to_octeon(struct usb_hcd *hcd)
3034 {
3035 return (struct octeon_hcd *)(hcd->hcd_priv);
3036 }
3037
octeon_usb_irq(struct usb_hcd * hcd)3038 static irqreturn_t octeon_usb_irq(struct usb_hcd *hcd)
3039 {
3040 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3041 unsigned long flags;
3042
3043 spin_lock_irqsave(&usb->lock, flags);
3044 cvmx_usb_poll(usb);
3045 spin_unlock_irqrestore(&usb->lock, flags);
3046 return IRQ_HANDLED;
3047 }
3048
octeon_usb_start(struct usb_hcd * hcd)3049 static int octeon_usb_start(struct usb_hcd *hcd)
3050 {
3051 hcd->state = HC_STATE_RUNNING;
3052 return 0;
3053 }
3054
octeon_usb_stop(struct usb_hcd * hcd)3055 static void octeon_usb_stop(struct usb_hcd *hcd)
3056 {
3057 hcd->state = HC_STATE_HALT;
3058 }
3059
octeon_usb_get_frame_number(struct usb_hcd * hcd)3060 static int octeon_usb_get_frame_number(struct usb_hcd *hcd)
3061 {
3062 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3063
3064 return cvmx_usb_get_frame_number(usb);
3065 }
3066
octeon_usb_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)3067 static int octeon_usb_urb_enqueue(struct usb_hcd *hcd,
3068 struct urb *urb,
3069 gfp_t mem_flags)
3070 {
3071 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3072 struct device *dev = hcd->self.controller;
3073 struct cvmx_usb_transaction *transaction = NULL;
3074 struct cvmx_usb_pipe *pipe;
3075 unsigned long flags;
3076 struct cvmx_usb_iso_packet *iso_packet;
3077 struct usb_host_endpoint *ep = urb->ep;
3078 int rc;
3079
3080 urb->status = 0;
3081 spin_lock_irqsave(&usb->lock, flags);
3082
3083 rc = usb_hcd_link_urb_to_ep(hcd, urb);
3084 if (rc) {
3085 spin_unlock_irqrestore(&usb->lock, flags);
3086 return rc;
3087 }
3088
3089 if (!ep->hcpriv) {
3090 enum cvmx_usb_transfer transfer_type;
3091 enum cvmx_usb_speed speed;
3092 int split_device = 0;
3093 int split_port = 0;
3094
3095 switch (usb_pipetype(urb->pipe)) {
3096 case PIPE_ISOCHRONOUS:
3097 transfer_type = CVMX_USB_TRANSFER_ISOCHRONOUS;
3098 break;
3099 case PIPE_INTERRUPT:
3100 transfer_type = CVMX_USB_TRANSFER_INTERRUPT;
3101 break;
3102 case PIPE_CONTROL:
3103 transfer_type = CVMX_USB_TRANSFER_CONTROL;
3104 break;
3105 default:
3106 transfer_type = CVMX_USB_TRANSFER_BULK;
3107 break;
3108 }
3109 switch (urb->dev->speed) {
3110 case USB_SPEED_LOW:
3111 speed = CVMX_USB_SPEED_LOW;
3112 break;
3113 case USB_SPEED_FULL:
3114 speed = CVMX_USB_SPEED_FULL;
3115 break;
3116 default:
3117 speed = CVMX_USB_SPEED_HIGH;
3118 break;
3119 }
3120 /*
3121 * For slow devices on high speed ports we need to find the hub
3122 * that does the speed translation so we know where to send the
3123 * split transactions.
3124 */
3125 if (speed != CVMX_USB_SPEED_HIGH) {
3126 /*
3127 * Start at this device and work our way up the usb
3128 * tree.
3129 */
3130 struct usb_device *dev = urb->dev;
3131
3132 while (dev->parent) {
3133 /*
3134 * If our parent is high speed then he'll
3135 * receive the splits.
3136 */
3137 if (dev->parent->speed == USB_SPEED_HIGH) {
3138 split_device = dev->parent->devnum;
3139 split_port = dev->portnum;
3140 break;
3141 }
3142 /*
3143 * Move up the tree one level. If we make it all
3144 * the way up the tree, then the port must not
3145 * be in high speed mode and we don't need a
3146 * split.
3147 */
3148 dev = dev->parent;
3149 }
3150 }
3151 pipe = cvmx_usb_open_pipe(usb, usb_pipedevice(urb->pipe),
3152 usb_pipeendpoint(urb->pipe), speed,
3153 le16_to_cpu(ep->desc.wMaxPacketSize)
3154 & 0x7ff,
3155 transfer_type,
3156 usb_pipein(urb->pipe) ?
3157 CVMX_USB_DIRECTION_IN :
3158 CVMX_USB_DIRECTION_OUT,
3159 urb->interval,
3160 (le16_to_cpu(ep->desc.wMaxPacketSize)
3161 >> 11) & 0x3,
3162 split_device, split_port);
3163 if (!pipe) {
3164 usb_hcd_unlink_urb_from_ep(hcd, urb);
3165 spin_unlock_irqrestore(&usb->lock, flags);
3166 dev_dbg(dev, "Failed to create pipe\n");
3167 return -ENOMEM;
3168 }
3169 ep->hcpriv = pipe;
3170 } else {
3171 pipe = ep->hcpriv;
3172 }
3173
3174 switch (usb_pipetype(urb->pipe)) {
3175 case PIPE_ISOCHRONOUS:
3176 dev_dbg(dev, "Submit isochronous to %d.%d\n",
3177 usb_pipedevice(urb->pipe),
3178 usb_pipeendpoint(urb->pipe));
3179 /*
3180 * Allocate a structure to use for our private list of
3181 * isochronous packets.
3182 */
3183 iso_packet = kmalloc_array(urb->number_of_packets,
3184 sizeof(struct cvmx_usb_iso_packet),
3185 GFP_ATOMIC);
3186 if (iso_packet) {
3187 int i;
3188 /* Fill the list with the data from the URB */
3189 for (i = 0; i < urb->number_of_packets; i++) {
3190 iso_packet[i].offset =
3191 urb->iso_frame_desc[i].offset;
3192 iso_packet[i].length =
3193 urb->iso_frame_desc[i].length;
3194 iso_packet[i].status = CVMX_USB_STATUS_ERROR;
3195 }
3196 /*
3197 * Store a pointer to the list in the URB setup_packet
3198 * field. We know this currently isn't being used and
3199 * this saves us a bunch of logic.
3200 */
3201 urb->setup_packet = (char *)iso_packet;
3202 transaction = cvmx_usb_submit_isochronous(usb,
3203 pipe, urb);
3204 /*
3205 * If submit failed we need to free our private packet
3206 * list.
3207 */
3208 if (!transaction) {
3209 urb->setup_packet = NULL;
3210 kfree(iso_packet);
3211 }
3212 }
3213 break;
3214 case PIPE_INTERRUPT:
3215 dev_dbg(dev, "Submit interrupt to %d.%d\n",
3216 usb_pipedevice(urb->pipe),
3217 usb_pipeendpoint(urb->pipe));
3218 transaction = cvmx_usb_submit_interrupt(usb, pipe, urb);
3219 break;
3220 case PIPE_CONTROL:
3221 dev_dbg(dev, "Submit control to %d.%d\n",
3222 usb_pipedevice(urb->pipe),
3223 usb_pipeendpoint(urb->pipe));
3224 transaction = cvmx_usb_submit_control(usb, pipe, urb);
3225 break;
3226 case PIPE_BULK:
3227 dev_dbg(dev, "Submit bulk to %d.%d\n",
3228 usb_pipedevice(urb->pipe),
3229 usb_pipeendpoint(urb->pipe));
3230 transaction = cvmx_usb_submit_bulk(usb, pipe, urb);
3231 break;
3232 }
3233 if (!transaction) {
3234 usb_hcd_unlink_urb_from_ep(hcd, urb);
3235 spin_unlock_irqrestore(&usb->lock, flags);
3236 dev_dbg(dev, "Failed to submit\n");
3237 return -ENOMEM;
3238 }
3239 urb->hcpriv = transaction;
3240 spin_unlock_irqrestore(&usb->lock, flags);
3241 return 0;
3242 }
3243
octeon_usb_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)3244 static int octeon_usb_urb_dequeue(struct usb_hcd *hcd,
3245 struct urb *urb,
3246 int status)
3247 {
3248 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3249 unsigned long flags;
3250 int rc;
3251
3252 if (!urb->dev)
3253 return -EINVAL;
3254
3255 spin_lock_irqsave(&usb->lock, flags);
3256
3257 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
3258 if (rc)
3259 goto out;
3260
3261 urb->status = status;
3262 cvmx_usb_cancel(usb, urb->ep->hcpriv, urb->hcpriv);
3263
3264 out:
3265 spin_unlock_irqrestore(&usb->lock, flags);
3266
3267 return rc;
3268 }
3269
octeon_usb_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * ep)3270 static void octeon_usb_endpoint_disable(struct usb_hcd *hcd,
3271 struct usb_host_endpoint *ep)
3272 {
3273 struct device *dev = hcd->self.controller;
3274
3275 if (ep->hcpriv) {
3276 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3277 struct cvmx_usb_pipe *pipe = ep->hcpriv;
3278 unsigned long flags;
3279
3280 spin_lock_irqsave(&usb->lock, flags);
3281 cvmx_usb_cancel_all(usb, pipe);
3282 if (cvmx_usb_close_pipe(usb, pipe))
3283 dev_dbg(dev, "Closing pipe %p failed\n", pipe);
3284 spin_unlock_irqrestore(&usb->lock, flags);
3285 ep->hcpriv = NULL;
3286 }
3287 }
3288
octeon_usb_hub_status_data(struct usb_hcd * hcd,char * buf)3289 static int octeon_usb_hub_status_data(struct usb_hcd *hcd, char *buf)
3290 {
3291 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3292 struct cvmx_usb_port_status port_status;
3293 unsigned long flags;
3294
3295 spin_lock_irqsave(&usb->lock, flags);
3296 port_status = cvmx_usb_get_status(usb);
3297 spin_unlock_irqrestore(&usb->lock, flags);
3298 buf[0] = port_status.connect_change << 1;
3299
3300 return buf[0] != 0;
3301 }
3302
octeon_usb_hub_control(struct usb_hcd * hcd,u16 typeReq,u16 wValue,u16 wIndex,char * buf,u16 wLength)3303 static int octeon_usb_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
3304 u16 wIndex, char *buf, u16 wLength)
3305 {
3306 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3307 struct device *dev = hcd->self.controller;
3308 struct cvmx_usb_port_status usb_port_status;
3309 int port_status;
3310 struct usb_hub_descriptor *desc;
3311 unsigned long flags;
3312
3313 switch (typeReq) {
3314 case ClearHubFeature:
3315 dev_dbg(dev, "ClearHubFeature\n");
3316 switch (wValue) {
3317 case C_HUB_LOCAL_POWER:
3318 case C_HUB_OVER_CURRENT:
3319 /* Nothing required here */
3320 break;
3321 default:
3322 return -EINVAL;
3323 }
3324 break;
3325 case ClearPortFeature:
3326 dev_dbg(dev, "ClearPortFeature\n");
3327 if (wIndex != 1) {
3328 dev_dbg(dev, " INVALID\n");
3329 return -EINVAL;
3330 }
3331
3332 switch (wValue) {
3333 case USB_PORT_FEAT_ENABLE:
3334 dev_dbg(dev, " ENABLE\n");
3335 spin_lock_irqsave(&usb->lock, flags);
3336 cvmx_usb_disable(usb);
3337 spin_unlock_irqrestore(&usb->lock, flags);
3338 break;
3339 case USB_PORT_FEAT_SUSPEND:
3340 dev_dbg(dev, " SUSPEND\n");
3341 /* Not supported on Octeon */
3342 break;
3343 case USB_PORT_FEAT_POWER:
3344 dev_dbg(dev, " POWER\n");
3345 /* Not supported on Octeon */
3346 break;
3347 case USB_PORT_FEAT_INDICATOR:
3348 dev_dbg(dev, " INDICATOR\n");
3349 /* Port inidicator not supported */
3350 break;
3351 case USB_PORT_FEAT_C_CONNECTION:
3352 dev_dbg(dev, " C_CONNECTION\n");
3353 /* Clears drivers internal connect status change flag */
3354 spin_lock_irqsave(&usb->lock, flags);
3355 usb->port_status = cvmx_usb_get_status(usb);
3356 spin_unlock_irqrestore(&usb->lock, flags);
3357 break;
3358 case USB_PORT_FEAT_C_RESET:
3359 dev_dbg(dev, " C_RESET\n");
3360 /*
3361 * Clears the driver's internal Port Reset Change flag.
3362 */
3363 spin_lock_irqsave(&usb->lock, flags);
3364 usb->port_status = cvmx_usb_get_status(usb);
3365 spin_unlock_irqrestore(&usb->lock, flags);
3366 break;
3367 case USB_PORT_FEAT_C_ENABLE:
3368 dev_dbg(dev, " C_ENABLE\n");
3369 /*
3370 * Clears the driver's internal Port Enable/Disable
3371 * Change flag.
3372 */
3373 spin_lock_irqsave(&usb->lock, flags);
3374 usb->port_status = cvmx_usb_get_status(usb);
3375 spin_unlock_irqrestore(&usb->lock, flags);
3376 break;
3377 case USB_PORT_FEAT_C_SUSPEND:
3378 dev_dbg(dev, " C_SUSPEND\n");
3379 /*
3380 * Clears the driver's internal Port Suspend Change
3381 * flag, which is set when resume signaling on the host
3382 * port is complete.
3383 */
3384 break;
3385 case USB_PORT_FEAT_C_OVER_CURRENT:
3386 dev_dbg(dev, " C_OVER_CURRENT\n");
3387 /* Clears the driver's overcurrent Change flag */
3388 spin_lock_irqsave(&usb->lock, flags);
3389 usb->port_status = cvmx_usb_get_status(usb);
3390 spin_unlock_irqrestore(&usb->lock, flags);
3391 break;
3392 default:
3393 dev_dbg(dev, " UNKNOWN\n");
3394 return -EINVAL;
3395 }
3396 break;
3397 case GetHubDescriptor:
3398 dev_dbg(dev, "GetHubDescriptor\n");
3399 desc = (struct usb_hub_descriptor *)buf;
3400 desc->bDescLength = 9;
3401 desc->bDescriptorType = 0x29;
3402 desc->bNbrPorts = 1;
3403 desc->wHubCharacteristics = cpu_to_le16(0x08);
3404 desc->bPwrOn2PwrGood = 1;
3405 desc->bHubContrCurrent = 0;
3406 desc->u.hs.DeviceRemovable[0] = 0;
3407 desc->u.hs.DeviceRemovable[1] = 0xff;
3408 break;
3409 case GetHubStatus:
3410 dev_dbg(dev, "GetHubStatus\n");
3411 *(__le32 *)buf = 0;
3412 break;
3413 case GetPortStatus:
3414 dev_dbg(dev, "GetPortStatus\n");
3415 if (wIndex != 1) {
3416 dev_dbg(dev, " INVALID\n");
3417 return -EINVAL;
3418 }
3419
3420 spin_lock_irqsave(&usb->lock, flags);
3421 usb_port_status = cvmx_usb_get_status(usb);
3422 spin_unlock_irqrestore(&usb->lock, flags);
3423 port_status = 0;
3424
3425 if (usb_port_status.connect_change) {
3426 port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
3427 dev_dbg(dev, " C_CONNECTION\n");
3428 }
3429
3430 if (usb_port_status.port_enabled) {
3431 port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
3432 dev_dbg(dev, " C_ENABLE\n");
3433 }
3434
3435 if (usb_port_status.connected) {
3436 port_status |= (1 << USB_PORT_FEAT_CONNECTION);
3437 dev_dbg(dev, " CONNECTION\n");
3438 }
3439
3440 if (usb_port_status.port_enabled) {
3441 port_status |= (1 << USB_PORT_FEAT_ENABLE);
3442 dev_dbg(dev, " ENABLE\n");
3443 }
3444
3445 if (usb_port_status.port_over_current) {
3446 port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
3447 dev_dbg(dev, " OVER_CURRENT\n");
3448 }
3449
3450 if (usb_port_status.port_powered) {
3451 port_status |= (1 << USB_PORT_FEAT_POWER);
3452 dev_dbg(dev, " POWER\n");
3453 }
3454
3455 if (usb_port_status.port_speed == CVMX_USB_SPEED_HIGH) {
3456 port_status |= USB_PORT_STAT_HIGH_SPEED;
3457 dev_dbg(dev, " HIGHSPEED\n");
3458 } else if (usb_port_status.port_speed == CVMX_USB_SPEED_LOW) {
3459 port_status |= (1 << USB_PORT_FEAT_LOWSPEED);
3460 dev_dbg(dev, " LOWSPEED\n");
3461 }
3462
3463 *((__le32 *)buf) = cpu_to_le32(port_status);
3464 break;
3465 case SetHubFeature:
3466 dev_dbg(dev, "SetHubFeature\n");
3467 /* No HUB features supported */
3468 break;
3469 case SetPortFeature:
3470 dev_dbg(dev, "SetPortFeature\n");
3471 if (wIndex != 1) {
3472 dev_dbg(dev, " INVALID\n");
3473 return -EINVAL;
3474 }
3475
3476 switch (wValue) {
3477 case USB_PORT_FEAT_SUSPEND:
3478 dev_dbg(dev, " SUSPEND\n");
3479 return -EINVAL;
3480 case USB_PORT_FEAT_POWER:
3481 dev_dbg(dev, " POWER\n");
3482 /*
3483 * Program the port power bit to drive VBUS on the USB.
3484 */
3485 spin_lock_irqsave(&usb->lock, flags);
3486 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index),
3487 cvmx_usbcx_hprt, prtpwr, 1);
3488 spin_unlock_irqrestore(&usb->lock, flags);
3489 return 0;
3490 case USB_PORT_FEAT_RESET:
3491 dev_dbg(dev, " RESET\n");
3492 spin_lock_irqsave(&usb->lock, flags);
3493 cvmx_usb_reset_port(usb);
3494 spin_unlock_irqrestore(&usb->lock, flags);
3495 return 0;
3496 case USB_PORT_FEAT_INDICATOR:
3497 dev_dbg(dev, " INDICATOR\n");
3498 /* Not supported */
3499 break;
3500 default:
3501 dev_dbg(dev, " UNKNOWN\n");
3502 return -EINVAL;
3503 }
3504 break;
3505 default:
3506 dev_dbg(dev, "Unknown root hub request\n");
3507 return -EINVAL;
3508 }
3509 return 0;
3510 }
3511
3512 static const struct hc_driver octeon_hc_driver = {
3513 .description = "Octeon USB",
3514 .product_desc = "Octeon Host Controller",
3515 .hcd_priv_size = sizeof(struct octeon_hcd),
3516 .irq = octeon_usb_irq,
3517 .flags = HCD_MEMORY | HCD_DMA | HCD_USB2,
3518 .start = octeon_usb_start,
3519 .stop = octeon_usb_stop,
3520 .urb_enqueue = octeon_usb_urb_enqueue,
3521 .urb_dequeue = octeon_usb_urb_dequeue,
3522 .endpoint_disable = octeon_usb_endpoint_disable,
3523 .get_frame_number = octeon_usb_get_frame_number,
3524 .hub_status_data = octeon_usb_hub_status_data,
3525 .hub_control = octeon_usb_hub_control,
3526 .map_urb_for_dma = octeon_map_urb_for_dma,
3527 .unmap_urb_for_dma = octeon_unmap_urb_for_dma,
3528 };
3529
octeon_usb_probe(struct platform_device * pdev)3530 static int octeon_usb_probe(struct platform_device *pdev)
3531 {
3532 int status;
3533 int initialize_flags;
3534 int usb_num;
3535 struct resource *res_mem;
3536 struct device_node *usbn_node;
3537 int irq = platform_get_irq(pdev, 0);
3538 struct device *dev = &pdev->dev;
3539 struct octeon_hcd *usb;
3540 struct usb_hcd *hcd;
3541 u32 clock_rate = 48000000;
3542 bool is_crystal_clock = false;
3543 const char *clock_type;
3544 int i;
3545
3546 if (!dev->of_node) {
3547 dev_err(dev, "Error: empty of_node\n");
3548 return -ENXIO;
3549 }
3550 usbn_node = dev->of_node->parent;
3551
3552 i = of_property_read_u32(usbn_node,
3553 "clock-frequency", &clock_rate);
3554 if (i)
3555 i = of_property_read_u32(usbn_node,
3556 "refclk-frequency", &clock_rate);
3557 if (i) {
3558 dev_err(dev, "No USBN \"clock-frequency\"\n");
3559 return -ENXIO;
3560 }
3561 switch (clock_rate) {
3562 case 12000000:
3563 initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ;
3564 break;
3565 case 24000000:
3566 initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ;
3567 break;
3568 case 48000000:
3569 initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ;
3570 break;
3571 default:
3572 dev_err(dev, "Illegal USBN \"clock-frequency\" %u\n",
3573 clock_rate);
3574 return -ENXIO;
3575 }
3576
3577 i = of_property_read_string(usbn_node,
3578 "cavium,refclk-type", &clock_type);
3579 if (i)
3580 i = of_property_read_string(usbn_node,
3581 "refclk-type", &clock_type);
3582
3583 if (!i && strcmp("crystal", clock_type) == 0)
3584 is_crystal_clock = true;
3585
3586 if (is_crystal_clock)
3587 initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI;
3588 else
3589 initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND;
3590
3591 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3592 if (!res_mem) {
3593 dev_err(dev, "found no memory resource\n");
3594 return -ENXIO;
3595 }
3596 usb_num = (res_mem->start >> 44) & 1;
3597
3598 if (irq < 0) {
3599 /* Defective device tree, but we know how to fix it. */
3600 irq_hw_number_t hwirq = usb_num ? (1 << 6) + 17 : 56;
3601
3602 irq = irq_create_mapping(NULL, hwirq);
3603 }
3604
3605 /*
3606 * Set the DMA mask to 64bits so we get buffers already translated for
3607 * DMA.
3608 */
3609 i = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(64));
3610 if (i)
3611 return i;
3612
3613 /*
3614 * Only cn52XX and cn56XX have DWC_OTG USB hardware and the
3615 * IOB priority registers. Under heavy network load USB
3616 * hardware can be starved by the IOB causing a crash. Give
3617 * it a priority boost if it has been waiting more than 400
3618 * cycles to avoid this situation.
3619 *
3620 * Testing indicates that a cnt_val of 8192 is not sufficient,
3621 * but no failures are seen with 4096. We choose a value of
3622 * 400 to give a safety factor of 10.
3623 */
3624 if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX)) {
3625 union cvmx_iob_n2c_l2c_pri_cnt pri_cnt;
3626
3627 pri_cnt.u64 = 0;
3628 pri_cnt.s.cnt_enb = 1;
3629 pri_cnt.s.cnt_val = 400;
3630 cvmx_write_csr(CVMX_IOB_N2C_L2C_PRI_CNT, pri_cnt.u64);
3631 }
3632
3633 hcd = usb_create_hcd(&octeon_hc_driver, dev, dev_name(dev));
3634 if (!hcd) {
3635 dev_dbg(dev, "Failed to allocate memory for HCD\n");
3636 return -1;
3637 }
3638 hcd->uses_new_polling = 1;
3639 usb = (struct octeon_hcd *)hcd->hcd_priv;
3640
3641 spin_lock_init(&usb->lock);
3642
3643 usb->init_flags = initialize_flags;
3644
3645 /* Initialize the USB state structure */
3646 usb->index = usb_num;
3647 INIT_LIST_HEAD(&usb->idle_pipes);
3648 for (i = 0; i < ARRAY_SIZE(usb->active_pipes); i++)
3649 INIT_LIST_HEAD(&usb->active_pipes[i]);
3650
3651 /* Due to an errata, CN31XX doesn't support DMA */
3652 if (OCTEON_IS_MODEL(OCTEON_CN31XX)) {
3653 usb->init_flags |= CVMX_USB_INITIALIZE_FLAGS_NO_DMA;
3654 /* Only use one channel with non DMA */
3655 usb->idle_hardware_channels = 0x1;
3656 } else if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) {
3657 /* CN5XXX have an errata with channel 3 */
3658 usb->idle_hardware_channels = 0xf7;
3659 } else {
3660 usb->idle_hardware_channels = 0xff;
3661 }
3662
3663 status = cvmx_usb_initialize(dev, usb);
3664 if (status) {
3665 dev_dbg(dev, "USB initialization failed with %d\n", status);
3666 usb_put_hcd(hcd);
3667 return -1;
3668 }
3669
3670 status = usb_add_hcd(hcd, irq, 0);
3671 if (status) {
3672 dev_dbg(dev, "USB add HCD failed with %d\n", status);
3673 usb_put_hcd(hcd);
3674 return -1;
3675 }
3676 device_wakeup_enable(hcd->self.controller);
3677
3678 dev_info(dev, "Registered HCD for port %d on irq %d\n", usb_num, irq);
3679
3680 return 0;
3681 }
3682
octeon_usb_remove(struct platform_device * pdev)3683 static int octeon_usb_remove(struct platform_device *pdev)
3684 {
3685 int status;
3686 struct device *dev = &pdev->dev;
3687 struct usb_hcd *hcd = dev_get_drvdata(dev);
3688 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3689 unsigned long flags;
3690
3691 usb_remove_hcd(hcd);
3692 spin_lock_irqsave(&usb->lock, flags);
3693 status = cvmx_usb_shutdown(usb);
3694 spin_unlock_irqrestore(&usb->lock, flags);
3695 if (status)
3696 dev_dbg(dev, "USB shutdown failed with %d\n", status);
3697
3698 usb_put_hcd(hcd);
3699
3700 return 0;
3701 }
3702
3703 static const struct of_device_id octeon_usb_match[] = {
3704 {
3705 .compatible = "cavium,octeon-5750-usbc",
3706 },
3707 {},
3708 };
3709 MODULE_DEVICE_TABLE(of, octeon_usb_match);
3710
3711 static struct platform_driver octeon_usb_driver = {
3712 .driver = {
3713 .name = "octeon-hcd",
3714 .of_match_table = octeon_usb_match,
3715 },
3716 .probe = octeon_usb_probe,
3717 .remove = octeon_usb_remove,
3718 };
3719
octeon_usb_driver_init(void)3720 static int __init octeon_usb_driver_init(void)
3721 {
3722 if (usb_disabled())
3723 return 0;
3724
3725 return platform_driver_register(&octeon_usb_driver);
3726 }
3727 module_init(octeon_usb_driver_init);
3728
octeon_usb_driver_exit(void)3729 static void __exit octeon_usb_driver_exit(void)
3730 {
3731 if (usb_disabled())
3732 return;
3733
3734 platform_driver_unregister(&octeon_usb_driver);
3735 }
3736 module_exit(octeon_usb_driver_exit);
3737
3738 MODULE_LICENSE("GPL");
3739 MODULE_AUTHOR("Cavium, Inc. <support@cavium.com>");
3740 MODULE_DESCRIPTION("Cavium Inc. OCTEON USB Host driver.");
3741