• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2014 Broadcom
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/device.h>
28 #include <linux/io.h>
29 #include <linux/sched/signal.h>
30 #include <linux/dma-fence-array.h>
31 
32 #include <drm/drm_syncobj.h>
33 
34 #include "uapi/drm/vc4_drm.h"
35 #include "vc4_drv.h"
36 #include "vc4_regs.h"
37 #include "vc4_trace.h"
38 
39 static void
vc4_queue_hangcheck(struct drm_device * dev)40 vc4_queue_hangcheck(struct drm_device *dev)
41 {
42 	struct vc4_dev *vc4 = to_vc4_dev(dev);
43 
44 	mod_timer(&vc4->hangcheck.timer,
45 		  round_jiffies_up(jiffies + msecs_to_jiffies(100)));
46 }
47 
48 struct vc4_hang_state {
49 	struct drm_vc4_get_hang_state user_state;
50 
51 	u32 bo_count;
52 	struct drm_gem_object **bo;
53 };
54 
55 static void
vc4_free_hang_state(struct drm_device * dev,struct vc4_hang_state * state)56 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state)
57 {
58 	unsigned int i;
59 
60 	for (i = 0; i < state->user_state.bo_count; i++)
61 		drm_gem_object_put(state->bo[i]);
62 
63 	kfree(state);
64 }
65 
66 int
vc4_get_hang_state_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)67 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data,
68 			 struct drm_file *file_priv)
69 {
70 	struct drm_vc4_get_hang_state *get_state = data;
71 	struct drm_vc4_get_hang_state_bo *bo_state;
72 	struct vc4_hang_state *kernel_state;
73 	struct drm_vc4_get_hang_state *state;
74 	struct vc4_dev *vc4 = to_vc4_dev(dev);
75 	unsigned long irqflags;
76 	u32 i;
77 	int ret = 0;
78 
79 	if (WARN_ON_ONCE(vc4->is_vc5))
80 		return -ENODEV;
81 
82 	if (!vc4->v3d) {
83 		DRM_DEBUG("VC4_GET_HANG_STATE with no VC4 V3D probed\n");
84 		return -ENODEV;
85 	}
86 
87 	spin_lock_irqsave(&vc4->job_lock, irqflags);
88 	kernel_state = vc4->hang_state;
89 	if (!kernel_state) {
90 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
91 		return -ENOENT;
92 	}
93 	state = &kernel_state->user_state;
94 
95 	/* If the user's array isn't big enough, just return the
96 	 * required array size.
97 	 */
98 	if (get_state->bo_count < state->bo_count) {
99 		get_state->bo_count = state->bo_count;
100 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
101 		return 0;
102 	}
103 
104 	vc4->hang_state = NULL;
105 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
106 
107 	/* Save the user's BO pointer, so we don't stomp it with the memcpy. */
108 	state->bo = get_state->bo;
109 	memcpy(get_state, state, sizeof(*state));
110 
111 	bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL);
112 	if (!bo_state) {
113 		ret = -ENOMEM;
114 		goto err_free;
115 	}
116 
117 	for (i = 0; i < state->bo_count; i++) {
118 		struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]);
119 		u32 handle;
120 
121 		ret = drm_gem_handle_create(file_priv, kernel_state->bo[i],
122 					    &handle);
123 
124 		if (ret) {
125 			state->bo_count = i;
126 			goto err_delete_handle;
127 		}
128 		bo_state[i].handle = handle;
129 		bo_state[i].paddr = vc4_bo->base.dma_addr;
130 		bo_state[i].size = vc4_bo->base.base.size;
131 	}
132 
133 	if (copy_to_user(u64_to_user_ptr(get_state->bo),
134 			 bo_state,
135 			 state->bo_count * sizeof(*bo_state)))
136 		ret = -EFAULT;
137 
138 err_delete_handle:
139 	if (ret) {
140 		for (i = 0; i < state->bo_count; i++)
141 			drm_gem_handle_delete(file_priv, bo_state[i].handle);
142 	}
143 
144 err_free:
145 	vc4_free_hang_state(dev, kernel_state);
146 	kfree(bo_state);
147 
148 	return ret;
149 }
150 
151 static void
vc4_save_hang_state(struct drm_device * dev)152 vc4_save_hang_state(struct drm_device *dev)
153 {
154 	struct vc4_dev *vc4 = to_vc4_dev(dev);
155 	struct drm_vc4_get_hang_state *state;
156 	struct vc4_hang_state *kernel_state;
157 	struct vc4_exec_info *exec[2];
158 	struct vc4_bo *bo;
159 	unsigned long irqflags;
160 	unsigned int i, j, k, unref_list_count;
161 
162 	kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL);
163 	if (!kernel_state)
164 		return;
165 
166 	state = &kernel_state->user_state;
167 
168 	spin_lock_irqsave(&vc4->job_lock, irqflags);
169 	exec[0] = vc4_first_bin_job(vc4);
170 	exec[1] = vc4_first_render_job(vc4);
171 	if (!exec[0] && !exec[1]) {
172 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
173 		return;
174 	}
175 
176 	/* Get the bos from both binner and renderer into hang state. */
177 	state->bo_count = 0;
178 	for (i = 0; i < 2; i++) {
179 		if (!exec[i])
180 			continue;
181 
182 		unref_list_count = 0;
183 		list_for_each_entry(bo, &exec[i]->unref_list, unref_head)
184 			unref_list_count++;
185 		state->bo_count += exec[i]->bo_count + unref_list_count;
186 	}
187 
188 	kernel_state->bo = kcalloc(state->bo_count,
189 				   sizeof(*kernel_state->bo), GFP_ATOMIC);
190 
191 	if (!kernel_state->bo) {
192 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
193 		return;
194 	}
195 
196 	k = 0;
197 	for (i = 0; i < 2; i++) {
198 		if (!exec[i])
199 			continue;
200 
201 		for (j = 0; j < exec[i]->bo_count; j++) {
202 			bo = to_vc4_bo(&exec[i]->bo[j]->base);
203 
204 			/* Retain BOs just in case they were marked purgeable.
205 			 * This prevents the BO from being purged before
206 			 * someone had a chance to dump the hang state.
207 			 */
208 			WARN_ON(!refcount_read(&bo->usecnt));
209 			refcount_inc(&bo->usecnt);
210 			drm_gem_object_get(&exec[i]->bo[j]->base);
211 			kernel_state->bo[k++] = &exec[i]->bo[j]->base;
212 		}
213 
214 		list_for_each_entry(bo, &exec[i]->unref_list, unref_head) {
215 			/* No need to retain BOs coming from the ->unref_list
216 			 * because they are naturally unpurgeable.
217 			 */
218 			drm_gem_object_get(&bo->base.base);
219 			kernel_state->bo[k++] = &bo->base.base;
220 		}
221 	}
222 
223 	WARN_ON_ONCE(k != state->bo_count);
224 
225 	if (exec[0])
226 		state->start_bin = exec[0]->ct0ca;
227 	if (exec[1])
228 		state->start_render = exec[1]->ct1ca;
229 
230 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
231 
232 	state->ct0ca = V3D_READ(V3D_CTNCA(0));
233 	state->ct0ea = V3D_READ(V3D_CTNEA(0));
234 
235 	state->ct1ca = V3D_READ(V3D_CTNCA(1));
236 	state->ct1ea = V3D_READ(V3D_CTNEA(1));
237 
238 	state->ct0cs = V3D_READ(V3D_CTNCS(0));
239 	state->ct1cs = V3D_READ(V3D_CTNCS(1));
240 
241 	state->ct0ra0 = V3D_READ(V3D_CT00RA0);
242 	state->ct1ra0 = V3D_READ(V3D_CT01RA0);
243 
244 	state->bpca = V3D_READ(V3D_BPCA);
245 	state->bpcs = V3D_READ(V3D_BPCS);
246 	state->bpoa = V3D_READ(V3D_BPOA);
247 	state->bpos = V3D_READ(V3D_BPOS);
248 
249 	state->vpmbase = V3D_READ(V3D_VPMBASE);
250 
251 	state->dbge = V3D_READ(V3D_DBGE);
252 	state->fdbgo = V3D_READ(V3D_FDBGO);
253 	state->fdbgb = V3D_READ(V3D_FDBGB);
254 	state->fdbgr = V3D_READ(V3D_FDBGR);
255 	state->fdbgs = V3D_READ(V3D_FDBGS);
256 	state->errstat = V3D_READ(V3D_ERRSTAT);
257 
258 	/* We need to turn purgeable BOs into unpurgeable ones so that
259 	 * userspace has a chance to dump the hang state before the kernel
260 	 * decides to purge those BOs.
261 	 * Note that BO consistency at dump time cannot be guaranteed. For
262 	 * example, if the owner of these BOs decides to re-use them or mark
263 	 * them purgeable again there's nothing we can do to prevent it.
264 	 */
265 	for (i = 0; i < kernel_state->user_state.bo_count; i++) {
266 		struct vc4_bo *bo = to_vc4_bo(kernel_state->bo[i]);
267 
268 		if (bo->madv == __VC4_MADV_NOTSUPP)
269 			continue;
270 
271 		mutex_lock(&bo->madv_lock);
272 		if (!WARN_ON(bo->madv == __VC4_MADV_PURGED))
273 			bo->madv = VC4_MADV_WILLNEED;
274 		refcount_dec(&bo->usecnt);
275 		mutex_unlock(&bo->madv_lock);
276 	}
277 
278 	spin_lock_irqsave(&vc4->job_lock, irqflags);
279 	if (vc4->hang_state) {
280 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
281 		vc4_free_hang_state(dev, kernel_state);
282 	} else {
283 		vc4->hang_state = kernel_state;
284 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
285 	}
286 }
287 
288 static void
vc4_reset(struct drm_device * dev)289 vc4_reset(struct drm_device *dev)
290 {
291 	struct vc4_dev *vc4 = to_vc4_dev(dev);
292 
293 	DRM_INFO("Resetting GPU.\n");
294 
295 	mutex_lock(&vc4->power_lock);
296 	if (vc4->power_refcount) {
297 		/* Power the device off and back on the by dropping the
298 		 * reference on runtime PM.
299 		 */
300 		pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev);
301 		pm_runtime_get_sync(&vc4->v3d->pdev->dev);
302 	}
303 	mutex_unlock(&vc4->power_lock);
304 
305 	vc4_irq_reset(dev);
306 
307 	/* Rearm the hangcheck -- another job might have been waiting
308 	 * for our hung one to get kicked off, and vc4_irq_reset()
309 	 * would have started it.
310 	 */
311 	vc4_queue_hangcheck(dev);
312 }
313 
314 static void
vc4_reset_work(struct work_struct * work)315 vc4_reset_work(struct work_struct *work)
316 {
317 	struct vc4_dev *vc4 =
318 		container_of(work, struct vc4_dev, hangcheck.reset_work);
319 
320 	vc4_save_hang_state(&vc4->base);
321 
322 	vc4_reset(&vc4->base);
323 }
324 
325 static void
vc4_hangcheck_elapsed(struct timer_list * t)326 vc4_hangcheck_elapsed(struct timer_list *t)
327 {
328 	struct vc4_dev *vc4 = from_timer(vc4, t, hangcheck.timer);
329 	struct drm_device *dev = &vc4->base;
330 	uint32_t ct0ca, ct1ca;
331 	unsigned long irqflags;
332 	struct vc4_exec_info *bin_exec, *render_exec;
333 
334 	spin_lock_irqsave(&vc4->job_lock, irqflags);
335 
336 	bin_exec = vc4_first_bin_job(vc4);
337 	render_exec = vc4_first_render_job(vc4);
338 
339 	/* If idle, we can stop watching for hangs. */
340 	if (!bin_exec && !render_exec) {
341 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
342 		return;
343 	}
344 
345 	ct0ca = V3D_READ(V3D_CTNCA(0));
346 	ct1ca = V3D_READ(V3D_CTNCA(1));
347 
348 	/* If we've made any progress in execution, rearm the timer
349 	 * and wait.
350 	 */
351 	if ((bin_exec && ct0ca != bin_exec->last_ct0ca) ||
352 	    (render_exec && ct1ca != render_exec->last_ct1ca)) {
353 		if (bin_exec)
354 			bin_exec->last_ct0ca = ct0ca;
355 		if (render_exec)
356 			render_exec->last_ct1ca = ct1ca;
357 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
358 		vc4_queue_hangcheck(dev);
359 		return;
360 	}
361 
362 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
363 
364 	/* We've gone too long with no progress, reset.  This has to
365 	 * be done from a work struct, since resetting can sleep and
366 	 * this timer hook isn't allowed to.
367 	 */
368 	schedule_work(&vc4->hangcheck.reset_work);
369 }
370 
371 static void
submit_cl(struct drm_device * dev,uint32_t thread,uint32_t start,uint32_t end)372 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end)
373 {
374 	struct vc4_dev *vc4 = to_vc4_dev(dev);
375 
376 	/* Set the current and end address of the control list.
377 	 * Writing the end register is what starts the job.
378 	 */
379 	V3D_WRITE(V3D_CTNCA(thread), start);
380 	V3D_WRITE(V3D_CTNEA(thread), end);
381 }
382 
383 int
vc4_wait_for_seqno(struct drm_device * dev,uint64_t seqno,uint64_t timeout_ns,bool interruptible)384 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns,
385 		   bool interruptible)
386 {
387 	struct vc4_dev *vc4 = to_vc4_dev(dev);
388 	int ret = 0;
389 	unsigned long timeout_expire;
390 	DEFINE_WAIT(wait);
391 
392 	if (WARN_ON_ONCE(vc4->is_vc5))
393 		return -ENODEV;
394 
395 	if (vc4->finished_seqno >= seqno)
396 		return 0;
397 
398 	if (timeout_ns == 0)
399 		return -ETIME;
400 
401 	timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns);
402 
403 	trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns);
404 	for (;;) {
405 		prepare_to_wait(&vc4->job_wait_queue, &wait,
406 				interruptible ? TASK_INTERRUPTIBLE :
407 				TASK_UNINTERRUPTIBLE);
408 
409 		if (interruptible && signal_pending(current)) {
410 			ret = -ERESTARTSYS;
411 			break;
412 		}
413 
414 		if (vc4->finished_seqno >= seqno)
415 			break;
416 
417 		if (timeout_ns != ~0ull) {
418 			if (time_after_eq(jiffies, timeout_expire)) {
419 				ret = -ETIME;
420 				break;
421 			}
422 			schedule_timeout(timeout_expire - jiffies);
423 		} else {
424 			schedule();
425 		}
426 	}
427 
428 	finish_wait(&vc4->job_wait_queue, &wait);
429 	trace_vc4_wait_for_seqno_end(dev, seqno);
430 
431 	return ret;
432 }
433 
434 static void
vc4_flush_caches(struct drm_device * dev)435 vc4_flush_caches(struct drm_device *dev)
436 {
437 	struct vc4_dev *vc4 = to_vc4_dev(dev);
438 
439 	/* Flush the GPU L2 caches.  These caches sit on top of system
440 	 * L3 (the 128kb or so shared with the CPU), and are
441 	 * non-allocating in the L3.
442 	 */
443 	V3D_WRITE(V3D_L2CACTL,
444 		  V3D_L2CACTL_L2CCLR);
445 
446 	V3D_WRITE(V3D_SLCACTL,
447 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
448 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) |
449 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) |
450 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC));
451 }
452 
453 static void
vc4_flush_texture_caches(struct drm_device * dev)454 vc4_flush_texture_caches(struct drm_device *dev)
455 {
456 	struct vc4_dev *vc4 = to_vc4_dev(dev);
457 
458 	V3D_WRITE(V3D_L2CACTL,
459 		  V3D_L2CACTL_L2CCLR);
460 
461 	V3D_WRITE(V3D_SLCACTL,
462 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
463 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC));
464 }
465 
466 /* Sets the registers for the next job to be actually be executed in
467  * the hardware.
468  *
469  * The job_lock should be held during this.
470  */
471 void
vc4_submit_next_bin_job(struct drm_device * dev)472 vc4_submit_next_bin_job(struct drm_device *dev)
473 {
474 	struct vc4_dev *vc4 = to_vc4_dev(dev);
475 	struct vc4_exec_info *exec;
476 
477 	if (WARN_ON_ONCE(vc4->is_vc5))
478 		return;
479 
480 again:
481 	exec = vc4_first_bin_job(vc4);
482 	if (!exec)
483 		return;
484 
485 	vc4_flush_caches(dev);
486 
487 	/* Only start the perfmon if it was not already started by a previous
488 	 * job.
489 	 */
490 	if (exec->perfmon && vc4->active_perfmon != exec->perfmon)
491 		vc4_perfmon_start(vc4, exec->perfmon);
492 
493 	/* Either put the job in the binner if it uses the binner, or
494 	 * immediately move it to the to-be-rendered queue.
495 	 */
496 	if (exec->ct0ca != exec->ct0ea) {
497 		trace_vc4_submit_cl(dev, false, exec->seqno, exec->ct0ca,
498 				    exec->ct0ea);
499 		submit_cl(dev, 0, exec->ct0ca, exec->ct0ea);
500 	} else {
501 		struct vc4_exec_info *next;
502 
503 		vc4_move_job_to_render(dev, exec);
504 		next = vc4_first_bin_job(vc4);
505 
506 		/* We can't start the next bin job if the previous job had a
507 		 * different perfmon instance attached to it. The same goes
508 		 * if one of them had a perfmon attached to it and the other
509 		 * one doesn't.
510 		 */
511 		if (next && next->perfmon == exec->perfmon)
512 			goto again;
513 	}
514 }
515 
516 void
vc4_submit_next_render_job(struct drm_device * dev)517 vc4_submit_next_render_job(struct drm_device *dev)
518 {
519 	struct vc4_dev *vc4 = to_vc4_dev(dev);
520 	struct vc4_exec_info *exec = vc4_first_render_job(vc4);
521 
522 	if (!exec)
523 		return;
524 
525 	if (WARN_ON_ONCE(vc4->is_vc5))
526 		return;
527 
528 	/* A previous RCL may have written to one of our textures, and
529 	 * our full cache flush at bin time may have occurred before
530 	 * that RCL completed.  Flush the texture cache now, but not
531 	 * the instructions or uniforms (since we don't write those
532 	 * from an RCL).
533 	 */
534 	vc4_flush_texture_caches(dev);
535 
536 	trace_vc4_submit_cl(dev, true, exec->seqno, exec->ct1ca, exec->ct1ea);
537 	submit_cl(dev, 1, exec->ct1ca, exec->ct1ea);
538 }
539 
540 void
vc4_move_job_to_render(struct drm_device * dev,struct vc4_exec_info * exec)541 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec)
542 {
543 	struct vc4_dev *vc4 = to_vc4_dev(dev);
544 	bool was_empty = list_empty(&vc4->render_job_list);
545 
546 	if (WARN_ON_ONCE(vc4->is_vc5))
547 		return;
548 
549 	list_move_tail(&exec->head, &vc4->render_job_list);
550 	if (was_empty)
551 		vc4_submit_next_render_job(dev);
552 }
553 
554 static void
vc4_update_bo_seqnos(struct vc4_exec_info * exec,uint64_t seqno)555 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno)
556 {
557 	struct vc4_bo *bo;
558 	unsigned i;
559 
560 	for (i = 0; i < exec->bo_count; i++) {
561 		bo = to_vc4_bo(&exec->bo[i]->base);
562 		bo->seqno = seqno;
563 
564 		dma_resv_add_fence(bo->base.base.resv, exec->fence,
565 				   DMA_RESV_USAGE_READ);
566 	}
567 
568 	list_for_each_entry(bo, &exec->unref_list, unref_head) {
569 		bo->seqno = seqno;
570 	}
571 
572 	for (i = 0; i < exec->rcl_write_bo_count; i++) {
573 		bo = to_vc4_bo(&exec->rcl_write_bo[i]->base);
574 		bo->write_seqno = seqno;
575 
576 		dma_resv_add_fence(bo->base.base.resv, exec->fence,
577 				   DMA_RESV_USAGE_WRITE);
578 	}
579 }
580 
581 static void
vc4_unlock_bo_reservations(struct drm_device * dev,struct vc4_exec_info * exec,struct ww_acquire_ctx * acquire_ctx)582 vc4_unlock_bo_reservations(struct drm_device *dev,
583 			   struct vc4_exec_info *exec,
584 			   struct ww_acquire_ctx *acquire_ctx)
585 {
586 	int i;
587 
588 	for (i = 0; i < exec->bo_count; i++) {
589 		struct drm_gem_object *bo = &exec->bo[i]->base;
590 
591 		dma_resv_unlock(bo->resv);
592 	}
593 
594 	ww_acquire_fini(acquire_ctx);
595 }
596 
597 /* Takes the reservation lock on all the BOs being referenced, so that
598  * at queue submit time we can update the reservations.
599  *
600  * We don't lock the RCL the tile alloc/state BOs, or overflow memory
601  * (all of which are on exec->unref_list).  They're entirely private
602  * to vc4, so we don't attach dma-buf fences to them.
603  */
604 static int
vc4_lock_bo_reservations(struct drm_device * dev,struct vc4_exec_info * exec,struct ww_acquire_ctx * acquire_ctx)605 vc4_lock_bo_reservations(struct drm_device *dev,
606 			 struct vc4_exec_info *exec,
607 			 struct ww_acquire_ctx *acquire_ctx)
608 {
609 	int contended_lock = -1;
610 	int i, ret;
611 	struct drm_gem_object *bo;
612 
613 	ww_acquire_init(acquire_ctx, &reservation_ww_class);
614 
615 retry:
616 	if (contended_lock != -1) {
617 		bo = &exec->bo[contended_lock]->base;
618 		ret = dma_resv_lock_slow_interruptible(bo->resv, acquire_ctx);
619 		if (ret) {
620 			ww_acquire_done(acquire_ctx);
621 			return ret;
622 		}
623 	}
624 
625 	for (i = 0; i < exec->bo_count; i++) {
626 		if (i == contended_lock)
627 			continue;
628 
629 		bo = &exec->bo[i]->base;
630 
631 		ret = dma_resv_lock_interruptible(bo->resv, acquire_ctx);
632 		if (ret) {
633 			int j;
634 
635 			for (j = 0; j < i; j++) {
636 				bo = &exec->bo[j]->base;
637 				dma_resv_unlock(bo->resv);
638 			}
639 
640 			if (contended_lock != -1 && contended_lock >= i) {
641 				bo = &exec->bo[contended_lock]->base;
642 
643 				dma_resv_unlock(bo->resv);
644 			}
645 
646 			if (ret == -EDEADLK) {
647 				contended_lock = i;
648 				goto retry;
649 			}
650 
651 			ww_acquire_done(acquire_ctx);
652 			return ret;
653 		}
654 	}
655 
656 	ww_acquire_done(acquire_ctx);
657 
658 	/* Reserve space for our shared (read-only) fence references,
659 	 * before we commit the CL to the hardware.
660 	 */
661 	for (i = 0; i < exec->bo_count; i++) {
662 		bo = &exec->bo[i]->base;
663 
664 		ret = dma_resv_reserve_fences(bo->resv, 1);
665 		if (ret) {
666 			vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
667 			return ret;
668 		}
669 	}
670 
671 	return 0;
672 }
673 
674 /* Queues a struct vc4_exec_info for execution.  If no job is
675  * currently executing, then submits it.
676  *
677  * Unlike most GPUs, our hardware only handles one command list at a
678  * time.  To queue multiple jobs at once, we'd need to edit the
679  * previous command list to have a jump to the new one at the end, and
680  * then bump the end address.  That's a change for a later date,
681  * though.
682  */
683 static int
vc4_queue_submit(struct drm_device * dev,struct vc4_exec_info * exec,struct ww_acquire_ctx * acquire_ctx,struct drm_syncobj * out_sync)684 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec,
685 		 struct ww_acquire_ctx *acquire_ctx,
686 		 struct drm_syncobj *out_sync)
687 {
688 	struct vc4_dev *vc4 = to_vc4_dev(dev);
689 	struct vc4_exec_info *renderjob;
690 	uint64_t seqno;
691 	unsigned long irqflags;
692 	struct vc4_fence *fence;
693 
694 	fence = kzalloc(sizeof(*fence), GFP_KERNEL);
695 	if (!fence)
696 		return -ENOMEM;
697 	fence->dev = dev;
698 
699 	spin_lock_irqsave(&vc4->job_lock, irqflags);
700 
701 	seqno = ++vc4->emit_seqno;
702 	exec->seqno = seqno;
703 
704 	dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock,
705 		       vc4->dma_fence_context, exec->seqno);
706 	fence->seqno = exec->seqno;
707 	exec->fence = &fence->base;
708 
709 	if (out_sync)
710 		drm_syncobj_replace_fence(out_sync, exec->fence);
711 
712 	vc4_update_bo_seqnos(exec, seqno);
713 
714 	vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
715 
716 	list_add_tail(&exec->head, &vc4->bin_job_list);
717 
718 	/* If no bin job was executing and if the render job (if any) has the
719 	 * same perfmon as our job attached to it (or if both jobs don't have
720 	 * perfmon activated), then kick ours off.  Otherwise, it'll get
721 	 * started when the previous job's flush/render done interrupt occurs.
722 	 */
723 	renderjob = vc4_first_render_job(vc4);
724 	if (vc4_first_bin_job(vc4) == exec &&
725 	    (!renderjob || renderjob->perfmon == exec->perfmon)) {
726 		vc4_submit_next_bin_job(dev);
727 		vc4_queue_hangcheck(dev);
728 	}
729 
730 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
731 
732 	return 0;
733 }
734 
735 /**
736  * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects
737  * referenced by the job.
738  * @dev: DRM device
739  * @file_priv: DRM file for this fd
740  * @exec: V3D job being set up
741  *
742  * The command validator needs to reference BOs by their index within
743  * the submitted job's BO list.  This does the validation of the job's
744  * BO list and reference counting for the lifetime of the job.
745  */
746 static int
vc4_cl_lookup_bos(struct drm_device * dev,struct drm_file * file_priv,struct vc4_exec_info * exec)747 vc4_cl_lookup_bos(struct drm_device *dev,
748 		  struct drm_file *file_priv,
749 		  struct vc4_exec_info *exec)
750 {
751 	struct drm_vc4_submit_cl *args = exec->args;
752 	uint32_t *handles;
753 	int ret = 0;
754 	int i;
755 
756 	exec->bo_count = args->bo_handle_count;
757 
758 	if (!exec->bo_count) {
759 		/* See comment on bo_index for why we have to check
760 		 * this.
761 		 */
762 		DRM_DEBUG("Rendering requires BOs to validate\n");
763 		return -EINVAL;
764 	}
765 
766 	exec->bo = kvmalloc_array(exec->bo_count,
767 				    sizeof(struct drm_gem_dma_object *),
768 				    GFP_KERNEL | __GFP_ZERO);
769 	if (!exec->bo) {
770 		DRM_ERROR("Failed to allocate validated BO pointers\n");
771 		return -ENOMEM;
772 	}
773 
774 	handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL);
775 	if (!handles) {
776 		ret = -ENOMEM;
777 		DRM_ERROR("Failed to allocate incoming GEM handles\n");
778 		goto fail;
779 	}
780 
781 	if (copy_from_user(handles, u64_to_user_ptr(args->bo_handles),
782 			   exec->bo_count * sizeof(uint32_t))) {
783 		ret = -EFAULT;
784 		DRM_ERROR("Failed to copy in GEM handles\n");
785 		goto fail;
786 	}
787 
788 	spin_lock(&file_priv->table_lock);
789 	for (i = 0; i < exec->bo_count; i++) {
790 		struct drm_gem_object *bo = idr_find(&file_priv->object_idr,
791 						     handles[i]);
792 		if (!bo) {
793 			DRM_DEBUG("Failed to look up GEM BO %d: %d\n",
794 				  i, handles[i]);
795 			ret = -EINVAL;
796 			break;
797 		}
798 
799 		drm_gem_object_get(bo);
800 		exec->bo[i] = (struct drm_gem_dma_object *)bo;
801 	}
802 	spin_unlock(&file_priv->table_lock);
803 
804 	if (ret)
805 		goto fail_put_bo;
806 
807 	for (i = 0; i < exec->bo_count; i++) {
808 		ret = vc4_bo_inc_usecnt(to_vc4_bo(&exec->bo[i]->base));
809 		if (ret)
810 			goto fail_dec_usecnt;
811 	}
812 
813 	kvfree(handles);
814 	return 0;
815 
816 fail_dec_usecnt:
817 	/* Decrease usecnt on acquired objects.
818 	 * We cannot rely on  vc4_complete_exec() to release resources here,
819 	 * because vc4_complete_exec() has no information about which BO has
820 	 * had its ->usecnt incremented.
821 	 * To make things easier we just free everything explicitly and set
822 	 * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release'
823 	 * step.
824 	 */
825 	for (i-- ; i >= 0; i--)
826 		vc4_bo_dec_usecnt(to_vc4_bo(&exec->bo[i]->base));
827 
828 fail_put_bo:
829 	/* Release any reference to acquired objects. */
830 	for (i = 0; i < exec->bo_count && exec->bo[i]; i++)
831 		drm_gem_object_put(&exec->bo[i]->base);
832 
833 fail:
834 	kvfree(handles);
835 	kvfree(exec->bo);
836 	exec->bo = NULL;
837 	return ret;
838 }
839 
840 static int
vc4_get_bcl(struct drm_device * dev,struct vc4_exec_info * exec)841 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec)
842 {
843 	struct drm_vc4_submit_cl *args = exec->args;
844 	struct vc4_dev *vc4 = to_vc4_dev(dev);
845 	void *temp = NULL;
846 	void *bin;
847 	int ret = 0;
848 	uint32_t bin_offset = 0;
849 	uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size,
850 					     16);
851 	uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size;
852 	uint32_t exec_size = uniforms_offset + args->uniforms_size;
853 	uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) *
854 					  args->shader_rec_count);
855 	struct vc4_bo *bo;
856 
857 	if (shader_rec_offset < args->bin_cl_size ||
858 	    uniforms_offset < shader_rec_offset ||
859 	    exec_size < uniforms_offset ||
860 	    args->shader_rec_count >= (UINT_MAX /
861 					  sizeof(struct vc4_shader_state)) ||
862 	    temp_size < exec_size) {
863 		DRM_DEBUG("overflow in exec arguments\n");
864 		ret = -EINVAL;
865 		goto fail;
866 	}
867 
868 	/* Allocate space where we'll store the copied in user command lists
869 	 * and shader records.
870 	 *
871 	 * We don't just copy directly into the BOs because we need to
872 	 * read the contents back for validation, and I think the
873 	 * bo->vaddr is uncached access.
874 	 */
875 	temp = kvmalloc_array(temp_size, 1, GFP_KERNEL);
876 	if (!temp) {
877 		DRM_ERROR("Failed to allocate storage for copying "
878 			  "in bin/render CLs.\n");
879 		ret = -ENOMEM;
880 		goto fail;
881 	}
882 	bin = temp + bin_offset;
883 	exec->shader_rec_u = temp + shader_rec_offset;
884 	exec->uniforms_u = temp + uniforms_offset;
885 	exec->shader_state = temp + exec_size;
886 	exec->shader_state_size = args->shader_rec_count;
887 
888 	if (copy_from_user(bin,
889 			   u64_to_user_ptr(args->bin_cl),
890 			   args->bin_cl_size)) {
891 		ret = -EFAULT;
892 		goto fail;
893 	}
894 
895 	if (copy_from_user(exec->shader_rec_u,
896 			   u64_to_user_ptr(args->shader_rec),
897 			   args->shader_rec_size)) {
898 		ret = -EFAULT;
899 		goto fail;
900 	}
901 
902 	if (copy_from_user(exec->uniforms_u,
903 			   u64_to_user_ptr(args->uniforms),
904 			   args->uniforms_size)) {
905 		ret = -EFAULT;
906 		goto fail;
907 	}
908 
909 	bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL);
910 	if (IS_ERR(bo)) {
911 		DRM_ERROR("Couldn't allocate BO for binning\n");
912 		ret = PTR_ERR(bo);
913 		goto fail;
914 	}
915 	exec->exec_bo = &bo->base;
916 
917 	list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head,
918 		      &exec->unref_list);
919 
920 	exec->ct0ca = exec->exec_bo->dma_addr + bin_offset;
921 
922 	exec->bin_u = bin;
923 
924 	exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset;
925 	exec->shader_rec_p = exec->exec_bo->dma_addr + shader_rec_offset;
926 	exec->shader_rec_size = args->shader_rec_size;
927 
928 	exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset;
929 	exec->uniforms_p = exec->exec_bo->dma_addr + uniforms_offset;
930 	exec->uniforms_size = args->uniforms_size;
931 
932 	ret = vc4_validate_bin_cl(dev,
933 				  exec->exec_bo->vaddr + bin_offset,
934 				  bin,
935 				  exec);
936 	if (ret)
937 		goto fail;
938 
939 	ret = vc4_validate_shader_recs(dev, exec);
940 	if (ret)
941 		goto fail;
942 
943 	if (exec->found_tile_binning_mode_config_packet) {
944 		ret = vc4_v3d_bin_bo_get(vc4, &exec->bin_bo_used);
945 		if (ret)
946 			goto fail;
947 	}
948 
949 	/* Block waiting on any previous rendering into the CS's VBO,
950 	 * IB, or textures, so that pixels are actually written by the
951 	 * time we try to read them.
952 	 */
953 	ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true);
954 
955 fail:
956 	kvfree(temp);
957 	return ret;
958 }
959 
960 static void
vc4_complete_exec(struct drm_device * dev,struct vc4_exec_info * exec)961 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec)
962 {
963 	struct vc4_dev *vc4 = to_vc4_dev(dev);
964 	unsigned long irqflags;
965 	unsigned i;
966 
967 	/* If we got force-completed because of GPU reset rather than
968 	 * through our IRQ handler, signal the fence now.
969 	 */
970 	if (exec->fence) {
971 		dma_fence_signal(exec->fence);
972 		dma_fence_put(exec->fence);
973 	}
974 
975 	if (exec->bo) {
976 		for (i = 0; i < exec->bo_count; i++) {
977 			struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base);
978 
979 			vc4_bo_dec_usecnt(bo);
980 			drm_gem_object_put(&exec->bo[i]->base);
981 		}
982 		kvfree(exec->bo);
983 	}
984 
985 	while (!list_empty(&exec->unref_list)) {
986 		struct vc4_bo *bo = list_first_entry(&exec->unref_list,
987 						     struct vc4_bo, unref_head);
988 		list_del(&bo->unref_head);
989 		drm_gem_object_put(&bo->base.base);
990 	}
991 
992 	/* Free up the allocation of any bin slots we used. */
993 	spin_lock_irqsave(&vc4->job_lock, irqflags);
994 	vc4->bin_alloc_used &= ~exec->bin_slots;
995 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
996 
997 	/* Release the reference on the binner BO if needed. */
998 	if (exec->bin_bo_used)
999 		vc4_v3d_bin_bo_put(vc4);
1000 
1001 	/* Release the reference we had on the perf monitor. */
1002 	vc4_perfmon_put(exec->perfmon);
1003 
1004 	vc4_v3d_pm_put(vc4);
1005 
1006 	kfree(exec);
1007 }
1008 
1009 void
vc4_job_handle_completed(struct vc4_dev * vc4)1010 vc4_job_handle_completed(struct vc4_dev *vc4)
1011 {
1012 	unsigned long irqflags;
1013 	struct vc4_seqno_cb *cb, *cb_temp;
1014 
1015 	if (WARN_ON_ONCE(vc4->is_vc5))
1016 		return;
1017 
1018 	spin_lock_irqsave(&vc4->job_lock, irqflags);
1019 	while (!list_empty(&vc4->job_done_list)) {
1020 		struct vc4_exec_info *exec =
1021 			list_first_entry(&vc4->job_done_list,
1022 					 struct vc4_exec_info, head);
1023 		list_del(&exec->head);
1024 
1025 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1026 		vc4_complete_exec(&vc4->base, exec);
1027 		spin_lock_irqsave(&vc4->job_lock, irqflags);
1028 	}
1029 
1030 	list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) {
1031 		if (cb->seqno <= vc4->finished_seqno) {
1032 			list_del_init(&cb->work.entry);
1033 			schedule_work(&cb->work);
1034 		}
1035 	}
1036 
1037 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1038 }
1039 
vc4_seqno_cb_work(struct work_struct * work)1040 static void vc4_seqno_cb_work(struct work_struct *work)
1041 {
1042 	struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work);
1043 
1044 	cb->func(cb);
1045 }
1046 
vc4_queue_seqno_cb(struct drm_device * dev,struct vc4_seqno_cb * cb,uint64_t seqno,void (* func)(struct vc4_seqno_cb * cb))1047 int vc4_queue_seqno_cb(struct drm_device *dev,
1048 		       struct vc4_seqno_cb *cb, uint64_t seqno,
1049 		       void (*func)(struct vc4_seqno_cb *cb))
1050 {
1051 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1052 	unsigned long irqflags;
1053 
1054 	if (WARN_ON_ONCE(vc4->is_vc5))
1055 		return -ENODEV;
1056 
1057 	cb->func = func;
1058 	INIT_WORK(&cb->work, vc4_seqno_cb_work);
1059 
1060 	spin_lock_irqsave(&vc4->job_lock, irqflags);
1061 	if (seqno > vc4->finished_seqno) {
1062 		cb->seqno = seqno;
1063 		list_add_tail(&cb->work.entry, &vc4->seqno_cb_list);
1064 	} else {
1065 		schedule_work(&cb->work);
1066 	}
1067 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1068 
1069 	return 0;
1070 }
1071 
1072 /* Scheduled when any job has been completed, this walks the list of
1073  * jobs that had completed and unrefs their BOs and frees their exec
1074  * structs.
1075  */
1076 static void
vc4_job_done_work(struct work_struct * work)1077 vc4_job_done_work(struct work_struct *work)
1078 {
1079 	struct vc4_dev *vc4 =
1080 		container_of(work, struct vc4_dev, job_done_work);
1081 
1082 	vc4_job_handle_completed(vc4);
1083 }
1084 
1085 static int
vc4_wait_for_seqno_ioctl_helper(struct drm_device * dev,uint64_t seqno,uint64_t * timeout_ns)1086 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev,
1087 				uint64_t seqno,
1088 				uint64_t *timeout_ns)
1089 {
1090 	unsigned long start = jiffies;
1091 	int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true);
1092 
1093 	if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) {
1094 		uint64_t delta = jiffies_to_nsecs(jiffies - start);
1095 
1096 		if (*timeout_ns >= delta)
1097 			*timeout_ns -= delta;
1098 	}
1099 
1100 	return ret;
1101 }
1102 
1103 int
vc4_wait_seqno_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1104 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data,
1105 		     struct drm_file *file_priv)
1106 {
1107 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1108 	struct drm_vc4_wait_seqno *args = data;
1109 
1110 	if (WARN_ON_ONCE(vc4->is_vc5))
1111 		return -ENODEV;
1112 
1113 	return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno,
1114 					       &args->timeout_ns);
1115 }
1116 
1117 int
vc4_wait_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1118 vc4_wait_bo_ioctl(struct drm_device *dev, void *data,
1119 		  struct drm_file *file_priv)
1120 {
1121 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1122 	int ret;
1123 	struct drm_vc4_wait_bo *args = data;
1124 	struct drm_gem_object *gem_obj;
1125 	struct vc4_bo *bo;
1126 
1127 	if (WARN_ON_ONCE(vc4->is_vc5))
1128 		return -ENODEV;
1129 
1130 	if (args->pad != 0)
1131 		return -EINVAL;
1132 
1133 	gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1134 	if (!gem_obj) {
1135 		DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1136 		return -EINVAL;
1137 	}
1138 	bo = to_vc4_bo(gem_obj);
1139 
1140 	ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno,
1141 					      &args->timeout_ns);
1142 
1143 	drm_gem_object_put(gem_obj);
1144 	return ret;
1145 }
1146 
1147 /**
1148  * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4.
1149  * @dev: DRM device
1150  * @data: ioctl argument
1151  * @file_priv: DRM file for this fd
1152  *
1153  * This is the main entrypoint for userspace to submit a 3D frame to
1154  * the GPU.  Userspace provides the binner command list (if
1155  * applicable), and the kernel sets up the render command list to draw
1156  * to the framebuffer described in the ioctl, using the command lists
1157  * that the 3D engine's binner will produce.
1158  */
1159 int
vc4_submit_cl_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1160 vc4_submit_cl_ioctl(struct drm_device *dev, void *data,
1161 		    struct drm_file *file_priv)
1162 {
1163 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1164 	struct vc4_file *vc4file = file_priv->driver_priv;
1165 	struct drm_vc4_submit_cl *args = data;
1166 	struct drm_syncobj *out_sync = NULL;
1167 	struct vc4_exec_info *exec;
1168 	struct ww_acquire_ctx acquire_ctx;
1169 	struct dma_fence *in_fence;
1170 	int ret = 0;
1171 
1172 	trace_vc4_submit_cl_ioctl(dev, args->bin_cl_size,
1173 				  args->shader_rec_size,
1174 				  args->bo_handle_count);
1175 
1176 	if (WARN_ON_ONCE(vc4->is_vc5))
1177 		return -ENODEV;
1178 
1179 	if (!vc4->v3d) {
1180 		DRM_DEBUG("VC4_SUBMIT_CL with no VC4 V3D probed\n");
1181 		return -ENODEV;
1182 	}
1183 
1184 	if ((args->flags & ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR |
1185 			     VC4_SUBMIT_CL_FIXED_RCL_ORDER |
1186 			     VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X |
1187 			     VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y)) != 0) {
1188 		DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags);
1189 		return -EINVAL;
1190 	}
1191 
1192 	if (args->pad2 != 0) {
1193 		DRM_DEBUG("Invalid pad: 0x%08x\n", args->pad2);
1194 		return -EINVAL;
1195 	}
1196 
1197 	exec = kcalloc(1, sizeof(*exec), GFP_KERNEL);
1198 	if (!exec) {
1199 		DRM_ERROR("malloc failure on exec struct\n");
1200 		return -ENOMEM;
1201 	}
1202 	exec->dev = vc4;
1203 
1204 	ret = vc4_v3d_pm_get(vc4);
1205 	if (ret) {
1206 		kfree(exec);
1207 		return ret;
1208 	}
1209 
1210 	exec->args = args;
1211 	INIT_LIST_HEAD(&exec->unref_list);
1212 
1213 	ret = vc4_cl_lookup_bos(dev, file_priv, exec);
1214 	if (ret)
1215 		goto fail;
1216 
1217 	if (args->perfmonid) {
1218 		exec->perfmon = vc4_perfmon_find(vc4file,
1219 						 args->perfmonid);
1220 		if (!exec->perfmon) {
1221 			ret = -ENOENT;
1222 			goto fail;
1223 		}
1224 	}
1225 
1226 	if (args->in_sync) {
1227 		ret = drm_syncobj_find_fence(file_priv, args->in_sync,
1228 					     0, 0, &in_fence);
1229 		if (ret)
1230 			goto fail;
1231 
1232 		/* When the fence (or fence array) is exclusively from our
1233 		 * context we can skip the wait since jobs are executed in
1234 		 * order of their submission through this ioctl and this can
1235 		 * only have fences from a prior job.
1236 		 */
1237 		if (!dma_fence_match_context(in_fence,
1238 					     vc4->dma_fence_context)) {
1239 			ret = dma_fence_wait(in_fence, true);
1240 			if (ret) {
1241 				dma_fence_put(in_fence);
1242 				goto fail;
1243 			}
1244 		}
1245 
1246 		dma_fence_put(in_fence);
1247 	}
1248 
1249 	if (exec->args->bin_cl_size != 0) {
1250 		ret = vc4_get_bcl(dev, exec);
1251 		if (ret)
1252 			goto fail;
1253 	} else {
1254 		exec->ct0ca = 0;
1255 		exec->ct0ea = 0;
1256 	}
1257 
1258 	ret = vc4_get_rcl(dev, exec);
1259 	if (ret)
1260 		goto fail;
1261 
1262 	ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx);
1263 	if (ret)
1264 		goto fail;
1265 
1266 	if (args->out_sync) {
1267 		out_sync = drm_syncobj_find(file_priv, args->out_sync);
1268 		if (!out_sync) {
1269 			ret = -EINVAL;
1270 			goto fail;
1271 		}
1272 
1273 		/* We replace the fence in out_sync in vc4_queue_submit since
1274 		 * the render job could execute immediately after that call.
1275 		 * If it finishes before our ioctl processing resumes the
1276 		 * render job fence could already have been freed.
1277 		 */
1278 	}
1279 
1280 	/* Clear this out of the struct we'll be putting in the queue,
1281 	 * since it's part of our stack.
1282 	 */
1283 	exec->args = NULL;
1284 
1285 	ret = vc4_queue_submit(dev, exec, &acquire_ctx, out_sync);
1286 
1287 	/* The syncobj isn't part of the exec data and we need to free our
1288 	 * reference even if job submission failed.
1289 	 */
1290 	if (out_sync)
1291 		drm_syncobj_put(out_sync);
1292 
1293 	if (ret)
1294 		goto fail;
1295 
1296 	/* Return the seqno for our job. */
1297 	args->seqno = vc4->emit_seqno;
1298 
1299 	return 0;
1300 
1301 fail:
1302 	vc4_complete_exec(&vc4->base, exec);
1303 
1304 	return ret;
1305 }
1306 
1307 static void vc4_gem_destroy(struct drm_device *dev, void *unused);
vc4_gem_init(struct drm_device * dev)1308 int vc4_gem_init(struct drm_device *dev)
1309 {
1310 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1311 	int ret;
1312 
1313 	if (WARN_ON_ONCE(vc4->is_vc5))
1314 		return -ENODEV;
1315 
1316 	vc4->dma_fence_context = dma_fence_context_alloc(1);
1317 
1318 	INIT_LIST_HEAD(&vc4->bin_job_list);
1319 	INIT_LIST_HEAD(&vc4->render_job_list);
1320 	INIT_LIST_HEAD(&vc4->job_done_list);
1321 	INIT_LIST_HEAD(&vc4->seqno_cb_list);
1322 	spin_lock_init(&vc4->job_lock);
1323 
1324 	INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work);
1325 	timer_setup(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, 0);
1326 
1327 	INIT_WORK(&vc4->job_done_work, vc4_job_done_work);
1328 
1329 	ret = drmm_mutex_init(dev, &vc4->power_lock);
1330 	if (ret)
1331 		return ret;
1332 
1333 	INIT_LIST_HEAD(&vc4->purgeable.list);
1334 
1335 	ret = drmm_mutex_init(dev, &vc4->purgeable.lock);
1336 	if (ret)
1337 		return ret;
1338 
1339 	return drmm_add_action_or_reset(dev, vc4_gem_destroy, NULL);
1340 }
1341 
vc4_gem_destroy(struct drm_device * dev,void * unused)1342 static void vc4_gem_destroy(struct drm_device *dev, void *unused)
1343 {
1344 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1345 
1346 	/* Waiting for exec to finish would need to be done before
1347 	 * unregistering V3D.
1348 	 */
1349 	WARN_ON(vc4->emit_seqno != vc4->finished_seqno);
1350 
1351 	/* V3D should already have disabled its interrupt and cleared
1352 	 * the overflow allocation registers.  Now free the object.
1353 	 */
1354 	if (vc4->bin_bo) {
1355 		drm_gem_object_put(&vc4->bin_bo->base.base);
1356 		vc4->bin_bo = NULL;
1357 	}
1358 
1359 	if (vc4->hang_state)
1360 		vc4_free_hang_state(dev, vc4->hang_state);
1361 }
1362 
vc4_gem_madvise_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1363 int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data,
1364 			  struct drm_file *file_priv)
1365 {
1366 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1367 	struct drm_vc4_gem_madvise *args = data;
1368 	struct drm_gem_object *gem_obj;
1369 	struct vc4_bo *bo;
1370 	int ret;
1371 
1372 	if (WARN_ON_ONCE(vc4->is_vc5))
1373 		return -ENODEV;
1374 
1375 	switch (args->madv) {
1376 	case VC4_MADV_DONTNEED:
1377 	case VC4_MADV_WILLNEED:
1378 		break;
1379 	default:
1380 		return -EINVAL;
1381 	}
1382 
1383 	if (args->pad != 0)
1384 		return -EINVAL;
1385 
1386 	gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1387 	if (!gem_obj) {
1388 		DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1389 		return -ENOENT;
1390 	}
1391 
1392 	bo = to_vc4_bo(gem_obj);
1393 
1394 	/* Only BOs exposed to userspace can be purged. */
1395 	if (bo->madv == __VC4_MADV_NOTSUPP) {
1396 		DRM_DEBUG("madvise not supported on this BO\n");
1397 		ret = -EINVAL;
1398 		goto out_put_gem;
1399 	}
1400 
1401 	/* Not sure it's safe to purge imported BOs. Let's just assume it's
1402 	 * not until proven otherwise.
1403 	 */
1404 	if (gem_obj->import_attach) {
1405 		DRM_DEBUG("madvise not supported on imported BOs\n");
1406 		ret = -EINVAL;
1407 		goto out_put_gem;
1408 	}
1409 
1410 	mutex_lock(&bo->madv_lock);
1411 
1412 	if (args->madv == VC4_MADV_DONTNEED && bo->madv == VC4_MADV_WILLNEED &&
1413 	    !refcount_read(&bo->usecnt)) {
1414 		/* If the BO is about to be marked as purgeable, is not used
1415 		 * and is not already purgeable or purged, add it to the
1416 		 * purgeable list.
1417 		 */
1418 		vc4_bo_add_to_purgeable_pool(bo);
1419 	} else if (args->madv == VC4_MADV_WILLNEED &&
1420 		   bo->madv == VC4_MADV_DONTNEED &&
1421 		   !refcount_read(&bo->usecnt)) {
1422 		/* The BO has not been purged yet, just remove it from
1423 		 * the purgeable list.
1424 		 */
1425 		vc4_bo_remove_from_purgeable_pool(bo);
1426 	}
1427 
1428 	/* Save the purged state. */
1429 	args->retained = bo->madv != __VC4_MADV_PURGED;
1430 
1431 	/* Update internal madv state only if the bo was not purged. */
1432 	if (bo->madv != __VC4_MADV_PURGED)
1433 		bo->madv = args->madv;
1434 
1435 	mutex_unlock(&bo->madv_lock);
1436 
1437 	ret = 0;
1438 
1439 out_put_gem:
1440 	drm_gem_object_put(gem_obj);
1441 
1442 	return ret;
1443 }
1444