1 /*
2 * Copyright © 2014 Broadcom
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/device.h>
28 #include <linux/io.h>
29 #include <linux/sched/signal.h>
30 #include <linux/dma-fence-array.h>
31
32 #include <drm/drm_syncobj.h>
33
34 #include "uapi/drm/vc4_drm.h"
35 #include "vc4_drv.h"
36 #include "vc4_regs.h"
37 #include "vc4_trace.h"
38
39 static void
vc4_queue_hangcheck(struct drm_device * dev)40 vc4_queue_hangcheck(struct drm_device *dev)
41 {
42 struct vc4_dev *vc4 = to_vc4_dev(dev);
43
44 mod_timer(&vc4->hangcheck.timer,
45 round_jiffies_up(jiffies + msecs_to_jiffies(100)));
46 }
47
48 struct vc4_hang_state {
49 struct drm_vc4_get_hang_state user_state;
50
51 u32 bo_count;
52 struct drm_gem_object **bo;
53 };
54
55 static void
vc4_free_hang_state(struct drm_device * dev,struct vc4_hang_state * state)56 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state)
57 {
58 unsigned int i;
59
60 for (i = 0; i < state->user_state.bo_count; i++)
61 drm_gem_object_put(state->bo[i]);
62
63 kfree(state);
64 }
65
66 int
vc4_get_hang_state_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)67 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data,
68 struct drm_file *file_priv)
69 {
70 struct drm_vc4_get_hang_state *get_state = data;
71 struct drm_vc4_get_hang_state_bo *bo_state;
72 struct vc4_hang_state *kernel_state;
73 struct drm_vc4_get_hang_state *state;
74 struct vc4_dev *vc4 = to_vc4_dev(dev);
75 unsigned long irqflags;
76 u32 i;
77 int ret = 0;
78
79 if (WARN_ON_ONCE(vc4->is_vc5))
80 return -ENODEV;
81
82 if (!vc4->v3d) {
83 DRM_DEBUG("VC4_GET_HANG_STATE with no VC4 V3D probed\n");
84 return -ENODEV;
85 }
86
87 spin_lock_irqsave(&vc4->job_lock, irqflags);
88 kernel_state = vc4->hang_state;
89 if (!kernel_state) {
90 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
91 return -ENOENT;
92 }
93 state = &kernel_state->user_state;
94
95 /* If the user's array isn't big enough, just return the
96 * required array size.
97 */
98 if (get_state->bo_count < state->bo_count) {
99 get_state->bo_count = state->bo_count;
100 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
101 return 0;
102 }
103
104 vc4->hang_state = NULL;
105 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
106
107 /* Save the user's BO pointer, so we don't stomp it with the memcpy. */
108 state->bo = get_state->bo;
109 memcpy(get_state, state, sizeof(*state));
110
111 bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL);
112 if (!bo_state) {
113 ret = -ENOMEM;
114 goto err_free;
115 }
116
117 for (i = 0; i < state->bo_count; i++) {
118 struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]);
119 u32 handle;
120
121 ret = drm_gem_handle_create(file_priv, kernel_state->bo[i],
122 &handle);
123
124 if (ret) {
125 state->bo_count = i;
126 goto err_delete_handle;
127 }
128 bo_state[i].handle = handle;
129 bo_state[i].paddr = vc4_bo->base.dma_addr;
130 bo_state[i].size = vc4_bo->base.base.size;
131 }
132
133 if (copy_to_user(u64_to_user_ptr(get_state->bo),
134 bo_state,
135 state->bo_count * sizeof(*bo_state)))
136 ret = -EFAULT;
137
138 err_delete_handle:
139 if (ret) {
140 for (i = 0; i < state->bo_count; i++)
141 drm_gem_handle_delete(file_priv, bo_state[i].handle);
142 }
143
144 err_free:
145 vc4_free_hang_state(dev, kernel_state);
146 kfree(bo_state);
147
148 return ret;
149 }
150
151 static void
vc4_save_hang_state(struct drm_device * dev)152 vc4_save_hang_state(struct drm_device *dev)
153 {
154 struct vc4_dev *vc4 = to_vc4_dev(dev);
155 struct drm_vc4_get_hang_state *state;
156 struct vc4_hang_state *kernel_state;
157 struct vc4_exec_info *exec[2];
158 struct vc4_bo *bo;
159 unsigned long irqflags;
160 unsigned int i, j, k, unref_list_count;
161
162 kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL);
163 if (!kernel_state)
164 return;
165
166 state = &kernel_state->user_state;
167
168 spin_lock_irqsave(&vc4->job_lock, irqflags);
169 exec[0] = vc4_first_bin_job(vc4);
170 exec[1] = vc4_first_render_job(vc4);
171 if (!exec[0] && !exec[1]) {
172 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
173 return;
174 }
175
176 /* Get the bos from both binner and renderer into hang state. */
177 state->bo_count = 0;
178 for (i = 0; i < 2; i++) {
179 if (!exec[i])
180 continue;
181
182 unref_list_count = 0;
183 list_for_each_entry(bo, &exec[i]->unref_list, unref_head)
184 unref_list_count++;
185 state->bo_count += exec[i]->bo_count + unref_list_count;
186 }
187
188 kernel_state->bo = kcalloc(state->bo_count,
189 sizeof(*kernel_state->bo), GFP_ATOMIC);
190
191 if (!kernel_state->bo) {
192 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
193 return;
194 }
195
196 k = 0;
197 for (i = 0; i < 2; i++) {
198 if (!exec[i])
199 continue;
200
201 for (j = 0; j < exec[i]->bo_count; j++) {
202 bo = to_vc4_bo(&exec[i]->bo[j]->base);
203
204 /* Retain BOs just in case they were marked purgeable.
205 * This prevents the BO from being purged before
206 * someone had a chance to dump the hang state.
207 */
208 WARN_ON(!refcount_read(&bo->usecnt));
209 refcount_inc(&bo->usecnt);
210 drm_gem_object_get(&exec[i]->bo[j]->base);
211 kernel_state->bo[k++] = &exec[i]->bo[j]->base;
212 }
213
214 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) {
215 /* No need to retain BOs coming from the ->unref_list
216 * because they are naturally unpurgeable.
217 */
218 drm_gem_object_get(&bo->base.base);
219 kernel_state->bo[k++] = &bo->base.base;
220 }
221 }
222
223 WARN_ON_ONCE(k != state->bo_count);
224
225 if (exec[0])
226 state->start_bin = exec[0]->ct0ca;
227 if (exec[1])
228 state->start_render = exec[1]->ct1ca;
229
230 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
231
232 state->ct0ca = V3D_READ(V3D_CTNCA(0));
233 state->ct0ea = V3D_READ(V3D_CTNEA(0));
234
235 state->ct1ca = V3D_READ(V3D_CTNCA(1));
236 state->ct1ea = V3D_READ(V3D_CTNEA(1));
237
238 state->ct0cs = V3D_READ(V3D_CTNCS(0));
239 state->ct1cs = V3D_READ(V3D_CTNCS(1));
240
241 state->ct0ra0 = V3D_READ(V3D_CT00RA0);
242 state->ct1ra0 = V3D_READ(V3D_CT01RA0);
243
244 state->bpca = V3D_READ(V3D_BPCA);
245 state->bpcs = V3D_READ(V3D_BPCS);
246 state->bpoa = V3D_READ(V3D_BPOA);
247 state->bpos = V3D_READ(V3D_BPOS);
248
249 state->vpmbase = V3D_READ(V3D_VPMBASE);
250
251 state->dbge = V3D_READ(V3D_DBGE);
252 state->fdbgo = V3D_READ(V3D_FDBGO);
253 state->fdbgb = V3D_READ(V3D_FDBGB);
254 state->fdbgr = V3D_READ(V3D_FDBGR);
255 state->fdbgs = V3D_READ(V3D_FDBGS);
256 state->errstat = V3D_READ(V3D_ERRSTAT);
257
258 /* We need to turn purgeable BOs into unpurgeable ones so that
259 * userspace has a chance to dump the hang state before the kernel
260 * decides to purge those BOs.
261 * Note that BO consistency at dump time cannot be guaranteed. For
262 * example, if the owner of these BOs decides to re-use them or mark
263 * them purgeable again there's nothing we can do to prevent it.
264 */
265 for (i = 0; i < kernel_state->user_state.bo_count; i++) {
266 struct vc4_bo *bo = to_vc4_bo(kernel_state->bo[i]);
267
268 if (bo->madv == __VC4_MADV_NOTSUPP)
269 continue;
270
271 mutex_lock(&bo->madv_lock);
272 if (!WARN_ON(bo->madv == __VC4_MADV_PURGED))
273 bo->madv = VC4_MADV_WILLNEED;
274 refcount_dec(&bo->usecnt);
275 mutex_unlock(&bo->madv_lock);
276 }
277
278 spin_lock_irqsave(&vc4->job_lock, irqflags);
279 if (vc4->hang_state) {
280 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
281 vc4_free_hang_state(dev, kernel_state);
282 } else {
283 vc4->hang_state = kernel_state;
284 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
285 }
286 }
287
288 static void
vc4_reset(struct drm_device * dev)289 vc4_reset(struct drm_device *dev)
290 {
291 struct vc4_dev *vc4 = to_vc4_dev(dev);
292
293 DRM_INFO("Resetting GPU.\n");
294
295 mutex_lock(&vc4->power_lock);
296 if (vc4->power_refcount) {
297 /* Power the device off and back on the by dropping the
298 * reference on runtime PM.
299 */
300 pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev);
301 pm_runtime_get_sync(&vc4->v3d->pdev->dev);
302 }
303 mutex_unlock(&vc4->power_lock);
304
305 vc4_irq_reset(dev);
306
307 /* Rearm the hangcheck -- another job might have been waiting
308 * for our hung one to get kicked off, and vc4_irq_reset()
309 * would have started it.
310 */
311 vc4_queue_hangcheck(dev);
312 }
313
314 static void
vc4_reset_work(struct work_struct * work)315 vc4_reset_work(struct work_struct *work)
316 {
317 struct vc4_dev *vc4 =
318 container_of(work, struct vc4_dev, hangcheck.reset_work);
319
320 vc4_save_hang_state(&vc4->base);
321
322 vc4_reset(&vc4->base);
323 }
324
325 static void
vc4_hangcheck_elapsed(struct timer_list * t)326 vc4_hangcheck_elapsed(struct timer_list *t)
327 {
328 struct vc4_dev *vc4 = from_timer(vc4, t, hangcheck.timer);
329 struct drm_device *dev = &vc4->base;
330 uint32_t ct0ca, ct1ca;
331 unsigned long irqflags;
332 struct vc4_exec_info *bin_exec, *render_exec;
333
334 spin_lock_irqsave(&vc4->job_lock, irqflags);
335
336 bin_exec = vc4_first_bin_job(vc4);
337 render_exec = vc4_first_render_job(vc4);
338
339 /* If idle, we can stop watching for hangs. */
340 if (!bin_exec && !render_exec) {
341 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
342 return;
343 }
344
345 ct0ca = V3D_READ(V3D_CTNCA(0));
346 ct1ca = V3D_READ(V3D_CTNCA(1));
347
348 /* If we've made any progress in execution, rearm the timer
349 * and wait.
350 */
351 if ((bin_exec && ct0ca != bin_exec->last_ct0ca) ||
352 (render_exec && ct1ca != render_exec->last_ct1ca)) {
353 if (bin_exec)
354 bin_exec->last_ct0ca = ct0ca;
355 if (render_exec)
356 render_exec->last_ct1ca = ct1ca;
357 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
358 vc4_queue_hangcheck(dev);
359 return;
360 }
361
362 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
363
364 /* We've gone too long with no progress, reset. This has to
365 * be done from a work struct, since resetting can sleep and
366 * this timer hook isn't allowed to.
367 */
368 schedule_work(&vc4->hangcheck.reset_work);
369 }
370
371 static void
submit_cl(struct drm_device * dev,uint32_t thread,uint32_t start,uint32_t end)372 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end)
373 {
374 struct vc4_dev *vc4 = to_vc4_dev(dev);
375
376 /* Set the current and end address of the control list.
377 * Writing the end register is what starts the job.
378 */
379 V3D_WRITE(V3D_CTNCA(thread), start);
380 V3D_WRITE(V3D_CTNEA(thread), end);
381 }
382
383 int
vc4_wait_for_seqno(struct drm_device * dev,uint64_t seqno,uint64_t timeout_ns,bool interruptible)384 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns,
385 bool interruptible)
386 {
387 struct vc4_dev *vc4 = to_vc4_dev(dev);
388 int ret = 0;
389 unsigned long timeout_expire;
390 DEFINE_WAIT(wait);
391
392 if (WARN_ON_ONCE(vc4->is_vc5))
393 return -ENODEV;
394
395 if (vc4->finished_seqno >= seqno)
396 return 0;
397
398 if (timeout_ns == 0)
399 return -ETIME;
400
401 timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns);
402
403 trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns);
404 for (;;) {
405 prepare_to_wait(&vc4->job_wait_queue, &wait,
406 interruptible ? TASK_INTERRUPTIBLE :
407 TASK_UNINTERRUPTIBLE);
408
409 if (interruptible && signal_pending(current)) {
410 ret = -ERESTARTSYS;
411 break;
412 }
413
414 if (vc4->finished_seqno >= seqno)
415 break;
416
417 if (timeout_ns != ~0ull) {
418 if (time_after_eq(jiffies, timeout_expire)) {
419 ret = -ETIME;
420 break;
421 }
422 schedule_timeout(timeout_expire - jiffies);
423 } else {
424 schedule();
425 }
426 }
427
428 finish_wait(&vc4->job_wait_queue, &wait);
429 trace_vc4_wait_for_seqno_end(dev, seqno);
430
431 return ret;
432 }
433
434 static void
vc4_flush_caches(struct drm_device * dev)435 vc4_flush_caches(struct drm_device *dev)
436 {
437 struct vc4_dev *vc4 = to_vc4_dev(dev);
438
439 /* Flush the GPU L2 caches. These caches sit on top of system
440 * L3 (the 128kb or so shared with the CPU), and are
441 * non-allocating in the L3.
442 */
443 V3D_WRITE(V3D_L2CACTL,
444 V3D_L2CACTL_L2CCLR);
445
446 V3D_WRITE(V3D_SLCACTL,
447 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
448 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) |
449 VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) |
450 VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC));
451 }
452
453 static void
vc4_flush_texture_caches(struct drm_device * dev)454 vc4_flush_texture_caches(struct drm_device *dev)
455 {
456 struct vc4_dev *vc4 = to_vc4_dev(dev);
457
458 V3D_WRITE(V3D_L2CACTL,
459 V3D_L2CACTL_L2CCLR);
460
461 V3D_WRITE(V3D_SLCACTL,
462 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
463 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC));
464 }
465
466 /* Sets the registers for the next job to be actually be executed in
467 * the hardware.
468 *
469 * The job_lock should be held during this.
470 */
471 void
vc4_submit_next_bin_job(struct drm_device * dev)472 vc4_submit_next_bin_job(struct drm_device *dev)
473 {
474 struct vc4_dev *vc4 = to_vc4_dev(dev);
475 struct vc4_exec_info *exec;
476
477 if (WARN_ON_ONCE(vc4->is_vc5))
478 return;
479
480 again:
481 exec = vc4_first_bin_job(vc4);
482 if (!exec)
483 return;
484
485 vc4_flush_caches(dev);
486
487 /* Only start the perfmon if it was not already started by a previous
488 * job.
489 */
490 if (exec->perfmon && vc4->active_perfmon != exec->perfmon)
491 vc4_perfmon_start(vc4, exec->perfmon);
492
493 /* Either put the job in the binner if it uses the binner, or
494 * immediately move it to the to-be-rendered queue.
495 */
496 if (exec->ct0ca != exec->ct0ea) {
497 trace_vc4_submit_cl(dev, false, exec->seqno, exec->ct0ca,
498 exec->ct0ea);
499 submit_cl(dev, 0, exec->ct0ca, exec->ct0ea);
500 } else {
501 struct vc4_exec_info *next;
502
503 vc4_move_job_to_render(dev, exec);
504 next = vc4_first_bin_job(vc4);
505
506 /* We can't start the next bin job if the previous job had a
507 * different perfmon instance attached to it. The same goes
508 * if one of them had a perfmon attached to it and the other
509 * one doesn't.
510 */
511 if (next && next->perfmon == exec->perfmon)
512 goto again;
513 }
514 }
515
516 void
vc4_submit_next_render_job(struct drm_device * dev)517 vc4_submit_next_render_job(struct drm_device *dev)
518 {
519 struct vc4_dev *vc4 = to_vc4_dev(dev);
520 struct vc4_exec_info *exec = vc4_first_render_job(vc4);
521
522 if (!exec)
523 return;
524
525 if (WARN_ON_ONCE(vc4->is_vc5))
526 return;
527
528 /* A previous RCL may have written to one of our textures, and
529 * our full cache flush at bin time may have occurred before
530 * that RCL completed. Flush the texture cache now, but not
531 * the instructions or uniforms (since we don't write those
532 * from an RCL).
533 */
534 vc4_flush_texture_caches(dev);
535
536 trace_vc4_submit_cl(dev, true, exec->seqno, exec->ct1ca, exec->ct1ea);
537 submit_cl(dev, 1, exec->ct1ca, exec->ct1ea);
538 }
539
540 void
vc4_move_job_to_render(struct drm_device * dev,struct vc4_exec_info * exec)541 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec)
542 {
543 struct vc4_dev *vc4 = to_vc4_dev(dev);
544 bool was_empty = list_empty(&vc4->render_job_list);
545
546 if (WARN_ON_ONCE(vc4->is_vc5))
547 return;
548
549 list_move_tail(&exec->head, &vc4->render_job_list);
550 if (was_empty)
551 vc4_submit_next_render_job(dev);
552 }
553
554 static void
vc4_update_bo_seqnos(struct vc4_exec_info * exec,uint64_t seqno)555 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno)
556 {
557 struct vc4_bo *bo;
558 unsigned i;
559
560 for (i = 0; i < exec->bo_count; i++) {
561 bo = to_vc4_bo(&exec->bo[i]->base);
562 bo->seqno = seqno;
563
564 dma_resv_add_fence(bo->base.base.resv, exec->fence,
565 DMA_RESV_USAGE_READ);
566 }
567
568 list_for_each_entry(bo, &exec->unref_list, unref_head) {
569 bo->seqno = seqno;
570 }
571
572 for (i = 0; i < exec->rcl_write_bo_count; i++) {
573 bo = to_vc4_bo(&exec->rcl_write_bo[i]->base);
574 bo->write_seqno = seqno;
575
576 dma_resv_add_fence(bo->base.base.resv, exec->fence,
577 DMA_RESV_USAGE_WRITE);
578 }
579 }
580
581 static void
vc4_unlock_bo_reservations(struct drm_device * dev,struct vc4_exec_info * exec,struct ww_acquire_ctx * acquire_ctx)582 vc4_unlock_bo_reservations(struct drm_device *dev,
583 struct vc4_exec_info *exec,
584 struct ww_acquire_ctx *acquire_ctx)
585 {
586 int i;
587
588 for (i = 0; i < exec->bo_count; i++) {
589 struct drm_gem_object *bo = &exec->bo[i]->base;
590
591 dma_resv_unlock(bo->resv);
592 }
593
594 ww_acquire_fini(acquire_ctx);
595 }
596
597 /* Takes the reservation lock on all the BOs being referenced, so that
598 * at queue submit time we can update the reservations.
599 *
600 * We don't lock the RCL the tile alloc/state BOs, or overflow memory
601 * (all of which are on exec->unref_list). They're entirely private
602 * to vc4, so we don't attach dma-buf fences to them.
603 */
604 static int
vc4_lock_bo_reservations(struct drm_device * dev,struct vc4_exec_info * exec,struct ww_acquire_ctx * acquire_ctx)605 vc4_lock_bo_reservations(struct drm_device *dev,
606 struct vc4_exec_info *exec,
607 struct ww_acquire_ctx *acquire_ctx)
608 {
609 int contended_lock = -1;
610 int i, ret;
611 struct drm_gem_object *bo;
612
613 ww_acquire_init(acquire_ctx, &reservation_ww_class);
614
615 retry:
616 if (contended_lock != -1) {
617 bo = &exec->bo[contended_lock]->base;
618 ret = dma_resv_lock_slow_interruptible(bo->resv, acquire_ctx);
619 if (ret) {
620 ww_acquire_done(acquire_ctx);
621 return ret;
622 }
623 }
624
625 for (i = 0; i < exec->bo_count; i++) {
626 if (i == contended_lock)
627 continue;
628
629 bo = &exec->bo[i]->base;
630
631 ret = dma_resv_lock_interruptible(bo->resv, acquire_ctx);
632 if (ret) {
633 int j;
634
635 for (j = 0; j < i; j++) {
636 bo = &exec->bo[j]->base;
637 dma_resv_unlock(bo->resv);
638 }
639
640 if (contended_lock != -1 && contended_lock >= i) {
641 bo = &exec->bo[contended_lock]->base;
642
643 dma_resv_unlock(bo->resv);
644 }
645
646 if (ret == -EDEADLK) {
647 contended_lock = i;
648 goto retry;
649 }
650
651 ww_acquire_done(acquire_ctx);
652 return ret;
653 }
654 }
655
656 ww_acquire_done(acquire_ctx);
657
658 /* Reserve space for our shared (read-only) fence references,
659 * before we commit the CL to the hardware.
660 */
661 for (i = 0; i < exec->bo_count; i++) {
662 bo = &exec->bo[i]->base;
663
664 ret = dma_resv_reserve_fences(bo->resv, 1);
665 if (ret) {
666 vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
667 return ret;
668 }
669 }
670
671 return 0;
672 }
673
674 /* Queues a struct vc4_exec_info for execution. If no job is
675 * currently executing, then submits it.
676 *
677 * Unlike most GPUs, our hardware only handles one command list at a
678 * time. To queue multiple jobs at once, we'd need to edit the
679 * previous command list to have a jump to the new one at the end, and
680 * then bump the end address. That's a change for a later date,
681 * though.
682 */
683 static int
vc4_queue_submit(struct drm_device * dev,struct vc4_exec_info * exec,struct ww_acquire_ctx * acquire_ctx,struct drm_syncobj * out_sync)684 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec,
685 struct ww_acquire_ctx *acquire_ctx,
686 struct drm_syncobj *out_sync)
687 {
688 struct vc4_dev *vc4 = to_vc4_dev(dev);
689 struct vc4_exec_info *renderjob;
690 uint64_t seqno;
691 unsigned long irqflags;
692 struct vc4_fence *fence;
693
694 fence = kzalloc(sizeof(*fence), GFP_KERNEL);
695 if (!fence)
696 return -ENOMEM;
697 fence->dev = dev;
698
699 spin_lock_irqsave(&vc4->job_lock, irqflags);
700
701 seqno = ++vc4->emit_seqno;
702 exec->seqno = seqno;
703
704 dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock,
705 vc4->dma_fence_context, exec->seqno);
706 fence->seqno = exec->seqno;
707 exec->fence = &fence->base;
708
709 if (out_sync)
710 drm_syncobj_replace_fence(out_sync, exec->fence);
711
712 vc4_update_bo_seqnos(exec, seqno);
713
714 vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
715
716 list_add_tail(&exec->head, &vc4->bin_job_list);
717
718 /* If no bin job was executing and if the render job (if any) has the
719 * same perfmon as our job attached to it (or if both jobs don't have
720 * perfmon activated), then kick ours off. Otherwise, it'll get
721 * started when the previous job's flush/render done interrupt occurs.
722 */
723 renderjob = vc4_first_render_job(vc4);
724 if (vc4_first_bin_job(vc4) == exec &&
725 (!renderjob || renderjob->perfmon == exec->perfmon)) {
726 vc4_submit_next_bin_job(dev);
727 vc4_queue_hangcheck(dev);
728 }
729
730 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
731
732 return 0;
733 }
734
735 /**
736 * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects
737 * referenced by the job.
738 * @dev: DRM device
739 * @file_priv: DRM file for this fd
740 * @exec: V3D job being set up
741 *
742 * The command validator needs to reference BOs by their index within
743 * the submitted job's BO list. This does the validation of the job's
744 * BO list and reference counting for the lifetime of the job.
745 */
746 static int
vc4_cl_lookup_bos(struct drm_device * dev,struct drm_file * file_priv,struct vc4_exec_info * exec)747 vc4_cl_lookup_bos(struct drm_device *dev,
748 struct drm_file *file_priv,
749 struct vc4_exec_info *exec)
750 {
751 struct drm_vc4_submit_cl *args = exec->args;
752 uint32_t *handles;
753 int ret = 0;
754 int i;
755
756 exec->bo_count = args->bo_handle_count;
757
758 if (!exec->bo_count) {
759 /* See comment on bo_index for why we have to check
760 * this.
761 */
762 DRM_DEBUG("Rendering requires BOs to validate\n");
763 return -EINVAL;
764 }
765
766 exec->bo = kvmalloc_array(exec->bo_count,
767 sizeof(struct drm_gem_dma_object *),
768 GFP_KERNEL | __GFP_ZERO);
769 if (!exec->bo) {
770 DRM_ERROR("Failed to allocate validated BO pointers\n");
771 return -ENOMEM;
772 }
773
774 handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL);
775 if (!handles) {
776 ret = -ENOMEM;
777 DRM_ERROR("Failed to allocate incoming GEM handles\n");
778 goto fail;
779 }
780
781 if (copy_from_user(handles, u64_to_user_ptr(args->bo_handles),
782 exec->bo_count * sizeof(uint32_t))) {
783 ret = -EFAULT;
784 DRM_ERROR("Failed to copy in GEM handles\n");
785 goto fail;
786 }
787
788 spin_lock(&file_priv->table_lock);
789 for (i = 0; i < exec->bo_count; i++) {
790 struct drm_gem_object *bo = idr_find(&file_priv->object_idr,
791 handles[i]);
792 if (!bo) {
793 DRM_DEBUG("Failed to look up GEM BO %d: %d\n",
794 i, handles[i]);
795 ret = -EINVAL;
796 break;
797 }
798
799 drm_gem_object_get(bo);
800 exec->bo[i] = (struct drm_gem_dma_object *)bo;
801 }
802 spin_unlock(&file_priv->table_lock);
803
804 if (ret)
805 goto fail_put_bo;
806
807 for (i = 0; i < exec->bo_count; i++) {
808 ret = vc4_bo_inc_usecnt(to_vc4_bo(&exec->bo[i]->base));
809 if (ret)
810 goto fail_dec_usecnt;
811 }
812
813 kvfree(handles);
814 return 0;
815
816 fail_dec_usecnt:
817 /* Decrease usecnt on acquired objects.
818 * We cannot rely on vc4_complete_exec() to release resources here,
819 * because vc4_complete_exec() has no information about which BO has
820 * had its ->usecnt incremented.
821 * To make things easier we just free everything explicitly and set
822 * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release'
823 * step.
824 */
825 for (i-- ; i >= 0; i--)
826 vc4_bo_dec_usecnt(to_vc4_bo(&exec->bo[i]->base));
827
828 fail_put_bo:
829 /* Release any reference to acquired objects. */
830 for (i = 0; i < exec->bo_count && exec->bo[i]; i++)
831 drm_gem_object_put(&exec->bo[i]->base);
832
833 fail:
834 kvfree(handles);
835 kvfree(exec->bo);
836 exec->bo = NULL;
837 return ret;
838 }
839
840 static int
vc4_get_bcl(struct drm_device * dev,struct vc4_exec_info * exec)841 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec)
842 {
843 struct drm_vc4_submit_cl *args = exec->args;
844 struct vc4_dev *vc4 = to_vc4_dev(dev);
845 void *temp = NULL;
846 void *bin;
847 int ret = 0;
848 uint32_t bin_offset = 0;
849 uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size,
850 16);
851 uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size;
852 uint32_t exec_size = uniforms_offset + args->uniforms_size;
853 uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) *
854 args->shader_rec_count);
855 struct vc4_bo *bo;
856
857 if (shader_rec_offset < args->bin_cl_size ||
858 uniforms_offset < shader_rec_offset ||
859 exec_size < uniforms_offset ||
860 args->shader_rec_count >= (UINT_MAX /
861 sizeof(struct vc4_shader_state)) ||
862 temp_size < exec_size) {
863 DRM_DEBUG("overflow in exec arguments\n");
864 ret = -EINVAL;
865 goto fail;
866 }
867
868 /* Allocate space where we'll store the copied in user command lists
869 * and shader records.
870 *
871 * We don't just copy directly into the BOs because we need to
872 * read the contents back for validation, and I think the
873 * bo->vaddr is uncached access.
874 */
875 temp = kvmalloc_array(temp_size, 1, GFP_KERNEL);
876 if (!temp) {
877 DRM_ERROR("Failed to allocate storage for copying "
878 "in bin/render CLs.\n");
879 ret = -ENOMEM;
880 goto fail;
881 }
882 bin = temp + bin_offset;
883 exec->shader_rec_u = temp + shader_rec_offset;
884 exec->uniforms_u = temp + uniforms_offset;
885 exec->shader_state = temp + exec_size;
886 exec->shader_state_size = args->shader_rec_count;
887
888 if (copy_from_user(bin,
889 u64_to_user_ptr(args->bin_cl),
890 args->bin_cl_size)) {
891 ret = -EFAULT;
892 goto fail;
893 }
894
895 if (copy_from_user(exec->shader_rec_u,
896 u64_to_user_ptr(args->shader_rec),
897 args->shader_rec_size)) {
898 ret = -EFAULT;
899 goto fail;
900 }
901
902 if (copy_from_user(exec->uniforms_u,
903 u64_to_user_ptr(args->uniforms),
904 args->uniforms_size)) {
905 ret = -EFAULT;
906 goto fail;
907 }
908
909 bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL);
910 if (IS_ERR(bo)) {
911 DRM_ERROR("Couldn't allocate BO for binning\n");
912 ret = PTR_ERR(bo);
913 goto fail;
914 }
915 exec->exec_bo = &bo->base;
916
917 list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head,
918 &exec->unref_list);
919
920 exec->ct0ca = exec->exec_bo->dma_addr + bin_offset;
921
922 exec->bin_u = bin;
923
924 exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset;
925 exec->shader_rec_p = exec->exec_bo->dma_addr + shader_rec_offset;
926 exec->shader_rec_size = args->shader_rec_size;
927
928 exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset;
929 exec->uniforms_p = exec->exec_bo->dma_addr + uniforms_offset;
930 exec->uniforms_size = args->uniforms_size;
931
932 ret = vc4_validate_bin_cl(dev,
933 exec->exec_bo->vaddr + bin_offset,
934 bin,
935 exec);
936 if (ret)
937 goto fail;
938
939 ret = vc4_validate_shader_recs(dev, exec);
940 if (ret)
941 goto fail;
942
943 if (exec->found_tile_binning_mode_config_packet) {
944 ret = vc4_v3d_bin_bo_get(vc4, &exec->bin_bo_used);
945 if (ret)
946 goto fail;
947 }
948
949 /* Block waiting on any previous rendering into the CS's VBO,
950 * IB, or textures, so that pixels are actually written by the
951 * time we try to read them.
952 */
953 ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true);
954
955 fail:
956 kvfree(temp);
957 return ret;
958 }
959
960 static void
vc4_complete_exec(struct drm_device * dev,struct vc4_exec_info * exec)961 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec)
962 {
963 struct vc4_dev *vc4 = to_vc4_dev(dev);
964 unsigned long irqflags;
965 unsigned i;
966
967 /* If we got force-completed because of GPU reset rather than
968 * through our IRQ handler, signal the fence now.
969 */
970 if (exec->fence) {
971 dma_fence_signal(exec->fence);
972 dma_fence_put(exec->fence);
973 }
974
975 if (exec->bo) {
976 for (i = 0; i < exec->bo_count; i++) {
977 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base);
978
979 vc4_bo_dec_usecnt(bo);
980 drm_gem_object_put(&exec->bo[i]->base);
981 }
982 kvfree(exec->bo);
983 }
984
985 while (!list_empty(&exec->unref_list)) {
986 struct vc4_bo *bo = list_first_entry(&exec->unref_list,
987 struct vc4_bo, unref_head);
988 list_del(&bo->unref_head);
989 drm_gem_object_put(&bo->base.base);
990 }
991
992 /* Free up the allocation of any bin slots we used. */
993 spin_lock_irqsave(&vc4->job_lock, irqflags);
994 vc4->bin_alloc_used &= ~exec->bin_slots;
995 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
996
997 /* Release the reference on the binner BO if needed. */
998 if (exec->bin_bo_used)
999 vc4_v3d_bin_bo_put(vc4);
1000
1001 /* Release the reference we had on the perf monitor. */
1002 vc4_perfmon_put(exec->perfmon);
1003
1004 vc4_v3d_pm_put(vc4);
1005
1006 kfree(exec);
1007 }
1008
1009 void
vc4_job_handle_completed(struct vc4_dev * vc4)1010 vc4_job_handle_completed(struct vc4_dev *vc4)
1011 {
1012 unsigned long irqflags;
1013 struct vc4_seqno_cb *cb, *cb_temp;
1014
1015 if (WARN_ON_ONCE(vc4->is_vc5))
1016 return;
1017
1018 spin_lock_irqsave(&vc4->job_lock, irqflags);
1019 while (!list_empty(&vc4->job_done_list)) {
1020 struct vc4_exec_info *exec =
1021 list_first_entry(&vc4->job_done_list,
1022 struct vc4_exec_info, head);
1023 list_del(&exec->head);
1024
1025 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1026 vc4_complete_exec(&vc4->base, exec);
1027 spin_lock_irqsave(&vc4->job_lock, irqflags);
1028 }
1029
1030 list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) {
1031 if (cb->seqno <= vc4->finished_seqno) {
1032 list_del_init(&cb->work.entry);
1033 schedule_work(&cb->work);
1034 }
1035 }
1036
1037 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1038 }
1039
vc4_seqno_cb_work(struct work_struct * work)1040 static void vc4_seqno_cb_work(struct work_struct *work)
1041 {
1042 struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work);
1043
1044 cb->func(cb);
1045 }
1046
vc4_queue_seqno_cb(struct drm_device * dev,struct vc4_seqno_cb * cb,uint64_t seqno,void (* func)(struct vc4_seqno_cb * cb))1047 int vc4_queue_seqno_cb(struct drm_device *dev,
1048 struct vc4_seqno_cb *cb, uint64_t seqno,
1049 void (*func)(struct vc4_seqno_cb *cb))
1050 {
1051 struct vc4_dev *vc4 = to_vc4_dev(dev);
1052 unsigned long irqflags;
1053
1054 if (WARN_ON_ONCE(vc4->is_vc5))
1055 return -ENODEV;
1056
1057 cb->func = func;
1058 INIT_WORK(&cb->work, vc4_seqno_cb_work);
1059
1060 spin_lock_irqsave(&vc4->job_lock, irqflags);
1061 if (seqno > vc4->finished_seqno) {
1062 cb->seqno = seqno;
1063 list_add_tail(&cb->work.entry, &vc4->seqno_cb_list);
1064 } else {
1065 schedule_work(&cb->work);
1066 }
1067 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1068
1069 return 0;
1070 }
1071
1072 /* Scheduled when any job has been completed, this walks the list of
1073 * jobs that had completed and unrefs their BOs and frees their exec
1074 * structs.
1075 */
1076 static void
vc4_job_done_work(struct work_struct * work)1077 vc4_job_done_work(struct work_struct *work)
1078 {
1079 struct vc4_dev *vc4 =
1080 container_of(work, struct vc4_dev, job_done_work);
1081
1082 vc4_job_handle_completed(vc4);
1083 }
1084
1085 static int
vc4_wait_for_seqno_ioctl_helper(struct drm_device * dev,uint64_t seqno,uint64_t * timeout_ns)1086 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev,
1087 uint64_t seqno,
1088 uint64_t *timeout_ns)
1089 {
1090 unsigned long start = jiffies;
1091 int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true);
1092
1093 if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) {
1094 uint64_t delta = jiffies_to_nsecs(jiffies - start);
1095
1096 if (*timeout_ns >= delta)
1097 *timeout_ns -= delta;
1098 }
1099
1100 return ret;
1101 }
1102
1103 int
vc4_wait_seqno_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1104 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data,
1105 struct drm_file *file_priv)
1106 {
1107 struct vc4_dev *vc4 = to_vc4_dev(dev);
1108 struct drm_vc4_wait_seqno *args = data;
1109
1110 if (WARN_ON_ONCE(vc4->is_vc5))
1111 return -ENODEV;
1112
1113 return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno,
1114 &args->timeout_ns);
1115 }
1116
1117 int
vc4_wait_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1118 vc4_wait_bo_ioctl(struct drm_device *dev, void *data,
1119 struct drm_file *file_priv)
1120 {
1121 struct vc4_dev *vc4 = to_vc4_dev(dev);
1122 int ret;
1123 struct drm_vc4_wait_bo *args = data;
1124 struct drm_gem_object *gem_obj;
1125 struct vc4_bo *bo;
1126
1127 if (WARN_ON_ONCE(vc4->is_vc5))
1128 return -ENODEV;
1129
1130 if (args->pad != 0)
1131 return -EINVAL;
1132
1133 gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1134 if (!gem_obj) {
1135 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1136 return -EINVAL;
1137 }
1138 bo = to_vc4_bo(gem_obj);
1139
1140 ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno,
1141 &args->timeout_ns);
1142
1143 drm_gem_object_put(gem_obj);
1144 return ret;
1145 }
1146
1147 /**
1148 * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4.
1149 * @dev: DRM device
1150 * @data: ioctl argument
1151 * @file_priv: DRM file for this fd
1152 *
1153 * This is the main entrypoint for userspace to submit a 3D frame to
1154 * the GPU. Userspace provides the binner command list (if
1155 * applicable), and the kernel sets up the render command list to draw
1156 * to the framebuffer described in the ioctl, using the command lists
1157 * that the 3D engine's binner will produce.
1158 */
1159 int
vc4_submit_cl_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1160 vc4_submit_cl_ioctl(struct drm_device *dev, void *data,
1161 struct drm_file *file_priv)
1162 {
1163 struct vc4_dev *vc4 = to_vc4_dev(dev);
1164 struct vc4_file *vc4file = file_priv->driver_priv;
1165 struct drm_vc4_submit_cl *args = data;
1166 struct drm_syncobj *out_sync = NULL;
1167 struct vc4_exec_info *exec;
1168 struct ww_acquire_ctx acquire_ctx;
1169 struct dma_fence *in_fence;
1170 int ret = 0;
1171
1172 trace_vc4_submit_cl_ioctl(dev, args->bin_cl_size,
1173 args->shader_rec_size,
1174 args->bo_handle_count);
1175
1176 if (WARN_ON_ONCE(vc4->is_vc5))
1177 return -ENODEV;
1178
1179 if (!vc4->v3d) {
1180 DRM_DEBUG("VC4_SUBMIT_CL with no VC4 V3D probed\n");
1181 return -ENODEV;
1182 }
1183
1184 if ((args->flags & ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR |
1185 VC4_SUBMIT_CL_FIXED_RCL_ORDER |
1186 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X |
1187 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y)) != 0) {
1188 DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags);
1189 return -EINVAL;
1190 }
1191
1192 if (args->pad2 != 0) {
1193 DRM_DEBUG("Invalid pad: 0x%08x\n", args->pad2);
1194 return -EINVAL;
1195 }
1196
1197 exec = kcalloc(1, sizeof(*exec), GFP_KERNEL);
1198 if (!exec) {
1199 DRM_ERROR("malloc failure on exec struct\n");
1200 return -ENOMEM;
1201 }
1202 exec->dev = vc4;
1203
1204 ret = vc4_v3d_pm_get(vc4);
1205 if (ret) {
1206 kfree(exec);
1207 return ret;
1208 }
1209
1210 exec->args = args;
1211 INIT_LIST_HEAD(&exec->unref_list);
1212
1213 ret = vc4_cl_lookup_bos(dev, file_priv, exec);
1214 if (ret)
1215 goto fail;
1216
1217 if (args->perfmonid) {
1218 exec->perfmon = vc4_perfmon_find(vc4file,
1219 args->perfmonid);
1220 if (!exec->perfmon) {
1221 ret = -ENOENT;
1222 goto fail;
1223 }
1224 }
1225
1226 if (args->in_sync) {
1227 ret = drm_syncobj_find_fence(file_priv, args->in_sync,
1228 0, 0, &in_fence);
1229 if (ret)
1230 goto fail;
1231
1232 /* When the fence (or fence array) is exclusively from our
1233 * context we can skip the wait since jobs are executed in
1234 * order of their submission through this ioctl and this can
1235 * only have fences from a prior job.
1236 */
1237 if (!dma_fence_match_context(in_fence,
1238 vc4->dma_fence_context)) {
1239 ret = dma_fence_wait(in_fence, true);
1240 if (ret) {
1241 dma_fence_put(in_fence);
1242 goto fail;
1243 }
1244 }
1245
1246 dma_fence_put(in_fence);
1247 }
1248
1249 if (exec->args->bin_cl_size != 0) {
1250 ret = vc4_get_bcl(dev, exec);
1251 if (ret)
1252 goto fail;
1253 } else {
1254 exec->ct0ca = 0;
1255 exec->ct0ea = 0;
1256 }
1257
1258 ret = vc4_get_rcl(dev, exec);
1259 if (ret)
1260 goto fail;
1261
1262 ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx);
1263 if (ret)
1264 goto fail;
1265
1266 if (args->out_sync) {
1267 out_sync = drm_syncobj_find(file_priv, args->out_sync);
1268 if (!out_sync) {
1269 ret = -EINVAL;
1270 goto fail;
1271 }
1272
1273 /* We replace the fence in out_sync in vc4_queue_submit since
1274 * the render job could execute immediately after that call.
1275 * If it finishes before our ioctl processing resumes the
1276 * render job fence could already have been freed.
1277 */
1278 }
1279
1280 /* Clear this out of the struct we'll be putting in the queue,
1281 * since it's part of our stack.
1282 */
1283 exec->args = NULL;
1284
1285 ret = vc4_queue_submit(dev, exec, &acquire_ctx, out_sync);
1286
1287 /* The syncobj isn't part of the exec data and we need to free our
1288 * reference even if job submission failed.
1289 */
1290 if (out_sync)
1291 drm_syncobj_put(out_sync);
1292
1293 if (ret)
1294 goto fail;
1295
1296 /* Return the seqno for our job. */
1297 args->seqno = vc4->emit_seqno;
1298
1299 return 0;
1300
1301 fail:
1302 vc4_complete_exec(&vc4->base, exec);
1303
1304 return ret;
1305 }
1306
1307 static void vc4_gem_destroy(struct drm_device *dev, void *unused);
vc4_gem_init(struct drm_device * dev)1308 int vc4_gem_init(struct drm_device *dev)
1309 {
1310 struct vc4_dev *vc4 = to_vc4_dev(dev);
1311 int ret;
1312
1313 if (WARN_ON_ONCE(vc4->is_vc5))
1314 return -ENODEV;
1315
1316 vc4->dma_fence_context = dma_fence_context_alloc(1);
1317
1318 INIT_LIST_HEAD(&vc4->bin_job_list);
1319 INIT_LIST_HEAD(&vc4->render_job_list);
1320 INIT_LIST_HEAD(&vc4->job_done_list);
1321 INIT_LIST_HEAD(&vc4->seqno_cb_list);
1322 spin_lock_init(&vc4->job_lock);
1323
1324 INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work);
1325 timer_setup(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, 0);
1326
1327 INIT_WORK(&vc4->job_done_work, vc4_job_done_work);
1328
1329 ret = drmm_mutex_init(dev, &vc4->power_lock);
1330 if (ret)
1331 return ret;
1332
1333 INIT_LIST_HEAD(&vc4->purgeable.list);
1334
1335 ret = drmm_mutex_init(dev, &vc4->purgeable.lock);
1336 if (ret)
1337 return ret;
1338
1339 return drmm_add_action_or_reset(dev, vc4_gem_destroy, NULL);
1340 }
1341
vc4_gem_destroy(struct drm_device * dev,void * unused)1342 static void vc4_gem_destroy(struct drm_device *dev, void *unused)
1343 {
1344 struct vc4_dev *vc4 = to_vc4_dev(dev);
1345
1346 /* Waiting for exec to finish would need to be done before
1347 * unregistering V3D.
1348 */
1349 WARN_ON(vc4->emit_seqno != vc4->finished_seqno);
1350
1351 /* V3D should already have disabled its interrupt and cleared
1352 * the overflow allocation registers. Now free the object.
1353 */
1354 if (vc4->bin_bo) {
1355 drm_gem_object_put(&vc4->bin_bo->base.base);
1356 vc4->bin_bo = NULL;
1357 }
1358
1359 if (vc4->hang_state)
1360 vc4_free_hang_state(dev, vc4->hang_state);
1361 }
1362
vc4_gem_madvise_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1363 int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data,
1364 struct drm_file *file_priv)
1365 {
1366 struct vc4_dev *vc4 = to_vc4_dev(dev);
1367 struct drm_vc4_gem_madvise *args = data;
1368 struct drm_gem_object *gem_obj;
1369 struct vc4_bo *bo;
1370 int ret;
1371
1372 if (WARN_ON_ONCE(vc4->is_vc5))
1373 return -ENODEV;
1374
1375 switch (args->madv) {
1376 case VC4_MADV_DONTNEED:
1377 case VC4_MADV_WILLNEED:
1378 break;
1379 default:
1380 return -EINVAL;
1381 }
1382
1383 if (args->pad != 0)
1384 return -EINVAL;
1385
1386 gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1387 if (!gem_obj) {
1388 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1389 return -ENOENT;
1390 }
1391
1392 bo = to_vc4_bo(gem_obj);
1393
1394 /* Only BOs exposed to userspace can be purged. */
1395 if (bo->madv == __VC4_MADV_NOTSUPP) {
1396 DRM_DEBUG("madvise not supported on this BO\n");
1397 ret = -EINVAL;
1398 goto out_put_gem;
1399 }
1400
1401 /* Not sure it's safe to purge imported BOs. Let's just assume it's
1402 * not until proven otherwise.
1403 */
1404 if (gem_obj->import_attach) {
1405 DRM_DEBUG("madvise not supported on imported BOs\n");
1406 ret = -EINVAL;
1407 goto out_put_gem;
1408 }
1409
1410 mutex_lock(&bo->madv_lock);
1411
1412 if (args->madv == VC4_MADV_DONTNEED && bo->madv == VC4_MADV_WILLNEED &&
1413 !refcount_read(&bo->usecnt)) {
1414 /* If the BO is about to be marked as purgeable, is not used
1415 * and is not already purgeable or purged, add it to the
1416 * purgeable list.
1417 */
1418 vc4_bo_add_to_purgeable_pool(bo);
1419 } else if (args->madv == VC4_MADV_WILLNEED &&
1420 bo->madv == VC4_MADV_DONTNEED &&
1421 !refcount_read(&bo->usecnt)) {
1422 /* The BO has not been purged yet, just remove it from
1423 * the purgeable list.
1424 */
1425 vc4_bo_remove_from_purgeable_pool(bo);
1426 }
1427
1428 /* Save the purged state. */
1429 args->retained = bo->madv != __VC4_MADV_PURGED;
1430
1431 /* Update internal madv state only if the bo was not purged. */
1432 if (bo->madv != __VC4_MADV_PURGED)
1433 bo->madv = args->madv;
1434
1435 mutex_unlock(&bo->madv_lock);
1436
1437 ret = 0;
1438
1439 out_put_gem:
1440 drm_gem_object_put(gem_obj);
1441
1442 return ret;
1443 }
1444