1 // SPDX-License-Identifier: ISC
2 /*
3 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
4 * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
5 */
6
7 #include <linux/etherdevice.h>
8 #include <net/ieee80211_radiotap.h>
9 #include <linux/if_arp.h>
10 #include <linux/moduleparam.h>
11 #include <linux/ip.h>
12 #include <linux/ipv6.h>
13 #include <linux/if_vlan.h>
14 #include <net/ipv6.h>
15 #include <linux/prefetch.h>
16
17 #include "wil6210.h"
18 #include "wmi.h"
19 #include "txrx.h"
20 #include "trace.h"
21 #include "txrx_edma.h"
22
23 bool rx_align_2;
24 module_param(rx_align_2, bool, 0444);
25 MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no");
26
27 bool rx_large_buf;
28 module_param(rx_large_buf, bool, 0444);
29 MODULE_PARM_DESC(rx_large_buf, " allocate 8KB RX buffers, default - no");
30
31 /* Drop Tx packets in case Tx ring is full */
32 bool drop_if_ring_full;
33
wil_rx_snaplen(void)34 static inline uint wil_rx_snaplen(void)
35 {
36 return rx_align_2 ? 6 : 0;
37 }
38
39 /* wil_ring_wmark_low - low watermark for available descriptor space */
wil_ring_wmark_low(struct wil_ring * ring)40 static inline int wil_ring_wmark_low(struct wil_ring *ring)
41 {
42 return ring->size / 8;
43 }
44
45 /* wil_ring_wmark_high - high watermark for available descriptor space */
wil_ring_wmark_high(struct wil_ring * ring)46 static inline int wil_ring_wmark_high(struct wil_ring *ring)
47 {
48 return ring->size / 4;
49 }
50
51 /* returns true if num avail descriptors is lower than wmark_low */
wil_ring_avail_low(struct wil_ring * ring)52 static inline int wil_ring_avail_low(struct wil_ring *ring)
53 {
54 return wil_ring_avail_tx(ring) < wil_ring_wmark_low(ring);
55 }
56
57 /* returns true if num avail descriptors is higher than wmark_high */
wil_ring_avail_high(struct wil_ring * ring)58 static inline int wil_ring_avail_high(struct wil_ring *ring)
59 {
60 return wil_ring_avail_tx(ring) > wil_ring_wmark_high(ring);
61 }
62
63 /* returns true when all tx vrings are empty */
wil_is_tx_idle(struct wil6210_priv * wil)64 bool wil_is_tx_idle(struct wil6210_priv *wil)
65 {
66 int i;
67 unsigned long data_comp_to;
68 int min_ring_id = wil_get_min_tx_ring_id(wil);
69
70 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
71 struct wil_ring *vring = &wil->ring_tx[i];
72 int vring_index = vring - wil->ring_tx;
73 struct wil_ring_tx_data *txdata =
74 &wil->ring_tx_data[vring_index];
75
76 spin_lock(&txdata->lock);
77
78 if (!vring->va || !txdata->enabled) {
79 spin_unlock(&txdata->lock);
80 continue;
81 }
82
83 data_comp_to = jiffies + msecs_to_jiffies(
84 WIL_DATA_COMPLETION_TO_MS);
85 if (test_bit(wil_status_napi_en, wil->status)) {
86 while (!wil_ring_is_empty(vring)) {
87 if (time_after(jiffies, data_comp_to)) {
88 wil_dbg_pm(wil,
89 "TO waiting for idle tx\n");
90 spin_unlock(&txdata->lock);
91 return false;
92 }
93 wil_dbg_ratelimited(wil,
94 "tx vring is not empty -> NAPI\n");
95 spin_unlock(&txdata->lock);
96 napi_synchronize(&wil->napi_tx);
97 msleep(20);
98 spin_lock(&txdata->lock);
99 if (!vring->va || !txdata->enabled)
100 break;
101 }
102 }
103
104 spin_unlock(&txdata->lock);
105 }
106
107 return true;
108 }
109
wil_vring_alloc(struct wil6210_priv * wil,struct wil_ring * vring)110 static int wil_vring_alloc(struct wil6210_priv *wil, struct wil_ring *vring)
111 {
112 struct device *dev = wil_to_dev(wil);
113 size_t sz = vring->size * sizeof(vring->va[0]);
114 uint i;
115
116 wil_dbg_misc(wil, "vring_alloc:\n");
117
118 BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
119
120 vring->swhead = 0;
121 vring->swtail = 0;
122 vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL);
123 if (!vring->ctx) {
124 vring->va = NULL;
125 return -ENOMEM;
126 }
127
128 /* vring->va should be aligned on its size rounded up to power of 2
129 * This is granted by the dma_alloc_coherent.
130 *
131 * HW has limitation that all vrings addresses must share the same
132 * upper 16 msb bits part of 48 bits address. To workaround that,
133 * if we are using more than 32 bit addresses switch to 32 bit
134 * allocation before allocating vring memory.
135 *
136 * There's no check for the return value of dma_set_mask_and_coherent,
137 * since we assume if we were able to set the mask during
138 * initialization in this system it will not fail if we set it again
139 */
140 if (wil->dma_addr_size > 32)
141 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
142
143 vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
144 if (!vring->va) {
145 kfree(vring->ctx);
146 vring->ctx = NULL;
147 return -ENOMEM;
148 }
149
150 if (wil->dma_addr_size > 32)
151 dma_set_mask_and_coherent(dev,
152 DMA_BIT_MASK(wil->dma_addr_size));
153
154 /* initially, all descriptors are SW owned
155 * For Tx and Rx, ownership bit is at the same location, thus
156 * we can use any
157 */
158 for (i = 0; i < vring->size; i++) {
159 volatile struct vring_tx_desc *_d =
160 &vring->va[i].tx.legacy;
161
162 _d->dma.status = TX_DMA_STATUS_DU;
163 }
164
165 wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size,
166 vring->va, &vring->pa, vring->ctx);
167
168 return 0;
169 }
170
wil_txdesc_unmap(struct device * dev,union wil_tx_desc * desc,struct wil_ctx * ctx)171 static void wil_txdesc_unmap(struct device *dev, union wil_tx_desc *desc,
172 struct wil_ctx *ctx)
173 {
174 struct vring_tx_desc *d = &desc->legacy;
175 dma_addr_t pa = wil_desc_addr(&d->dma.addr);
176 u16 dmalen = le16_to_cpu(d->dma.length);
177
178 switch (ctx->mapped_as) {
179 case wil_mapped_as_single:
180 dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE);
181 break;
182 case wil_mapped_as_page:
183 dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE);
184 break;
185 default:
186 break;
187 }
188 }
189
wil_vring_free(struct wil6210_priv * wil,struct wil_ring * vring)190 static void wil_vring_free(struct wil6210_priv *wil, struct wil_ring *vring)
191 {
192 struct device *dev = wil_to_dev(wil);
193 size_t sz = vring->size * sizeof(vring->va[0]);
194
195 lockdep_assert_held(&wil->mutex);
196 if (!vring->is_rx) {
197 int vring_index = vring - wil->ring_tx;
198
199 wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n",
200 vring_index, vring->size, vring->va,
201 &vring->pa, vring->ctx);
202 } else {
203 wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n",
204 vring->size, vring->va,
205 &vring->pa, vring->ctx);
206 }
207
208 while (!wil_ring_is_empty(vring)) {
209 dma_addr_t pa;
210 u16 dmalen;
211 struct wil_ctx *ctx;
212
213 if (!vring->is_rx) {
214 struct vring_tx_desc dd, *d = ⅆ
215 volatile struct vring_tx_desc *_d =
216 &vring->va[vring->swtail].tx.legacy;
217
218 ctx = &vring->ctx[vring->swtail];
219 if (!ctx) {
220 wil_dbg_txrx(wil,
221 "ctx(%d) was already completed\n",
222 vring->swtail);
223 vring->swtail = wil_ring_next_tail(vring);
224 continue;
225 }
226 *d = *_d;
227 wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
228 if (ctx->skb)
229 dev_kfree_skb_any(ctx->skb);
230 vring->swtail = wil_ring_next_tail(vring);
231 } else { /* rx */
232 struct vring_rx_desc dd, *d = ⅆ
233 volatile struct vring_rx_desc *_d =
234 &vring->va[vring->swhead].rx.legacy;
235
236 ctx = &vring->ctx[vring->swhead];
237 *d = *_d;
238 pa = wil_desc_addr(&d->dma.addr);
239 dmalen = le16_to_cpu(d->dma.length);
240 dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE);
241 kfree_skb(ctx->skb);
242 wil_ring_advance_head(vring, 1);
243 }
244 }
245 dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
246 kfree(vring->ctx);
247 vring->pa = 0;
248 vring->va = NULL;
249 vring->ctx = NULL;
250 }
251
252 /* Allocate one skb for Rx VRING
253 *
254 * Safe to call from IRQ
255 */
wil_vring_alloc_skb(struct wil6210_priv * wil,struct wil_ring * vring,u32 i,int headroom)256 static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct wil_ring *vring,
257 u32 i, int headroom)
258 {
259 struct device *dev = wil_to_dev(wil);
260 unsigned int sz = wil->rx_buf_len + ETH_HLEN + wil_rx_snaplen();
261 struct vring_rx_desc dd, *d = ⅆ
262 volatile struct vring_rx_desc *_d = &vring->va[i].rx.legacy;
263 dma_addr_t pa;
264 struct sk_buff *skb = dev_alloc_skb(sz + headroom);
265
266 if (unlikely(!skb))
267 return -ENOMEM;
268
269 skb_reserve(skb, headroom);
270 skb_put(skb, sz);
271
272 /**
273 * Make sure that the network stack calculates checksum for packets
274 * which failed the HW checksum calculation
275 */
276 skb->ip_summed = CHECKSUM_NONE;
277
278 pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
279 if (unlikely(dma_mapping_error(dev, pa))) {
280 kfree_skb(skb);
281 return -ENOMEM;
282 }
283
284 d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT;
285 wil_desc_addr_set(&d->dma.addr, pa);
286 /* ip_length don't care */
287 /* b11 don't care */
288 /* error don't care */
289 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
290 d->dma.length = cpu_to_le16(sz);
291 *_d = *d;
292 vring->ctx[i].skb = skb;
293
294 return 0;
295 }
296
297 /* Adds radiotap header
298 *
299 * Any error indicated as "Bad FCS"
300 *
301 * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
302 * - Rx descriptor: 32 bytes
303 * - Phy info
304 */
wil_rx_add_radiotap_header(struct wil6210_priv * wil,struct sk_buff * skb)305 static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
306 struct sk_buff *skb)
307 {
308 struct wil6210_rtap {
309 struct ieee80211_radiotap_header rthdr;
310 /* fields should be in the order of bits in rthdr.it_present */
311 /* flags */
312 u8 flags;
313 /* channel */
314 __le16 chnl_freq __aligned(2);
315 __le16 chnl_flags;
316 /* MCS */
317 u8 mcs_present;
318 u8 mcs_flags;
319 u8 mcs_index;
320 } __packed;
321 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
322 struct wil6210_rtap *rtap;
323 int rtap_len = sizeof(struct wil6210_rtap);
324 struct ieee80211_channel *ch = wil->monitor_chandef.chan;
325
326 if (skb_headroom(skb) < rtap_len &&
327 pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
328 wil_err(wil, "Unable to expand headroom to %d\n", rtap_len);
329 return;
330 }
331
332 rtap = skb_push(skb, rtap_len);
333 memset(rtap, 0, rtap_len);
334
335 rtap->rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
336 rtap->rthdr.it_len = cpu_to_le16(rtap_len);
337 rtap->rthdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
338 (1 << IEEE80211_RADIOTAP_CHANNEL) |
339 (1 << IEEE80211_RADIOTAP_MCS));
340 if (d->dma.status & RX_DMA_STATUS_ERROR)
341 rtap->flags |= IEEE80211_RADIOTAP_F_BADFCS;
342
343 rtap->chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
344 rtap->chnl_flags = cpu_to_le16(0);
345
346 rtap->mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
347 rtap->mcs_flags = 0;
348 rtap->mcs_index = wil_rxdesc_mcs(d);
349 }
350
wil_is_rx_idle(struct wil6210_priv * wil)351 static bool wil_is_rx_idle(struct wil6210_priv *wil)
352 {
353 struct vring_rx_desc *_d;
354 struct wil_ring *ring = &wil->ring_rx;
355
356 _d = (struct vring_rx_desc *)&ring->va[ring->swhead].rx.legacy;
357 if (_d->dma.status & RX_DMA_STATUS_DU)
358 return false;
359
360 return true;
361 }
362
wil_rx_get_cid_by_skb(struct wil6210_priv * wil,struct sk_buff * skb)363 static int wil_rx_get_cid_by_skb(struct wil6210_priv *wil, struct sk_buff *skb)
364 {
365 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
366 int mid = wil_rxdesc_mid(d);
367 struct wil6210_vif *vif = wil->vifs[mid];
368 /* cid from DMA descriptor is limited to 3 bits.
369 * In case of cid>=8, the value would be cid modulo 8 and we need to
370 * find real cid by locating the transmitter (ta) inside sta array
371 */
372 int cid = wil_rxdesc_cid(d);
373 unsigned int snaplen = wil_rx_snaplen();
374 struct ieee80211_hdr_3addr *hdr;
375 int i;
376 unsigned char *ta;
377 u8 ftype;
378
379 /* in monitor mode there are no connections */
380 if (vif->wdev.iftype == NL80211_IFTYPE_MONITOR)
381 return cid;
382
383 ftype = wil_rxdesc_ftype(d) << 2;
384 if (likely(ftype == IEEE80211_FTYPE_DATA)) {
385 if (unlikely(skb->len < ETH_HLEN + snaplen)) {
386 wil_err_ratelimited(wil,
387 "Short data frame, len = %d\n",
388 skb->len);
389 return -ENOENT;
390 }
391 ta = wil_skb_get_sa(skb);
392 } else {
393 if (unlikely(skb->len < sizeof(struct ieee80211_hdr_3addr))) {
394 wil_err_ratelimited(wil, "Short frame, len = %d\n",
395 skb->len);
396 return -ENOENT;
397 }
398 hdr = (void *)skb->data;
399 ta = hdr->addr2;
400 }
401
402 if (wil->max_assoc_sta <= WIL6210_RX_DESC_MAX_CID)
403 return cid;
404
405 /* assuming no concurrency between AP interfaces and STA interfaces.
406 * multista is used only in P2P_GO or AP mode. In other modes return
407 * cid from the rx descriptor
408 */
409 if (vif->wdev.iftype != NL80211_IFTYPE_P2P_GO &&
410 vif->wdev.iftype != NL80211_IFTYPE_AP)
411 return cid;
412
413 /* For Rx packets cid from rx descriptor is limited to 3 bits (0..7),
414 * to find the real cid, compare transmitter address with the stored
415 * stations mac address in the driver sta array
416 */
417 for (i = cid; i < wil->max_assoc_sta; i += WIL6210_RX_DESC_MAX_CID) {
418 if (wil->sta[i].status != wil_sta_unused &&
419 ether_addr_equal(wil->sta[i].addr, ta)) {
420 cid = i;
421 break;
422 }
423 }
424 if (i >= wil->max_assoc_sta) {
425 wil_err_ratelimited(wil, "Could not find cid for frame with transmit addr = %pM, iftype = %d, frametype = %d, len = %d\n",
426 ta, vif->wdev.iftype, ftype, skb->len);
427 cid = -ENOENT;
428 }
429
430 return cid;
431 }
432
433 /* reap 1 frame from @swhead
434 *
435 * Rx descriptor copied to skb->cb
436 *
437 * Safe to call from IRQ
438 */
wil_vring_reap_rx(struct wil6210_priv * wil,struct wil_ring * vring)439 static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
440 struct wil_ring *vring)
441 {
442 struct device *dev = wil_to_dev(wil);
443 struct wil6210_vif *vif;
444 struct net_device *ndev;
445 volatile struct vring_rx_desc *_d;
446 struct vring_rx_desc *d;
447 struct sk_buff *skb;
448 dma_addr_t pa;
449 unsigned int snaplen = wil_rx_snaplen();
450 unsigned int sz = wil->rx_buf_len + ETH_HLEN + snaplen;
451 u16 dmalen;
452 u8 ftype;
453 int cid, mid;
454 int i;
455 struct wil_net_stats *stats;
456
457 BUILD_BUG_ON(sizeof(struct skb_rx_info) > sizeof(skb->cb));
458
459 again:
460 if (unlikely(wil_ring_is_empty(vring)))
461 return NULL;
462
463 i = (int)vring->swhead;
464 _d = &vring->va[i].rx.legacy;
465 if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) {
466 /* it is not error, we just reached end of Rx done area */
467 return NULL;
468 }
469
470 skb = vring->ctx[i].skb;
471 vring->ctx[i].skb = NULL;
472 wil_ring_advance_head(vring, 1);
473 if (!skb) {
474 wil_err(wil, "No Rx skb at [%d]\n", i);
475 goto again;
476 }
477 d = wil_skb_rxdesc(skb);
478 *d = *_d;
479 pa = wil_desc_addr(&d->dma.addr);
480
481 dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
482 dmalen = le16_to_cpu(d->dma.length);
483
484 trace_wil6210_rx(i, d);
485 wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen);
486 wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
487 (const void *)d, sizeof(*d), false);
488
489 mid = wil_rxdesc_mid(d);
490 vif = wil->vifs[mid];
491
492 if (unlikely(!vif)) {
493 wil_dbg_txrx(wil, "skipped RX descriptor with invalid mid %d",
494 mid);
495 kfree_skb(skb);
496 goto again;
497 }
498 ndev = vif_to_ndev(vif);
499 if (unlikely(dmalen > sz)) {
500 wil_err_ratelimited(wil, "Rx size too large: %d bytes!\n",
501 dmalen);
502 kfree_skb(skb);
503 goto again;
504 }
505 skb_trim(skb, dmalen);
506
507 prefetch(skb->data);
508
509 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
510 skb->data, skb_headlen(skb), false);
511
512 cid = wil_rx_get_cid_by_skb(wil, skb);
513 if (cid == -ENOENT) {
514 kfree_skb(skb);
515 goto again;
516 }
517 wil_skb_set_cid(skb, (u8)cid);
518 stats = &wil->sta[cid].stats;
519
520 stats->last_mcs_rx = wil_rxdesc_mcs(d);
521 if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs))
522 stats->rx_per_mcs[stats->last_mcs_rx]++;
523
524 /* use radiotap header only if required */
525 if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
526 wil_rx_add_radiotap_header(wil, skb);
527
528 /* no extra checks if in sniffer mode */
529 if (ndev->type != ARPHRD_ETHER)
530 return skb;
531 /* Non-data frames may be delivered through Rx DMA channel (ex: BAR)
532 * Driver should recognize it by frame type, that is found
533 * in Rx descriptor. If type is not data, it is 802.11 frame as is
534 */
535 ftype = wil_rxdesc_ftype(d) << 2;
536 if (unlikely(ftype != IEEE80211_FTYPE_DATA)) {
537 u8 fc1 = wil_rxdesc_fc1(d);
538 int tid = wil_rxdesc_tid(d);
539 u16 seq = wil_rxdesc_seq(d);
540
541 wil_dbg_txrx(wil,
542 "Non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
543 fc1, mid, cid, tid, seq);
544 stats->rx_non_data_frame++;
545 if (wil_is_back_req(fc1)) {
546 wil_dbg_txrx(wil,
547 "BAR: MID %d CID %d TID %d Seq 0x%03x\n",
548 mid, cid, tid, seq);
549 wil_rx_bar(wil, vif, cid, tid, seq);
550 } else {
551 /* print again all info. One can enable only this
552 * without overhead for printing every Rx frame
553 */
554 wil_dbg_txrx(wil,
555 "Unhandled non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
556 fc1, mid, cid, tid, seq);
557 wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
558 (const void *)d, sizeof(*d), false);
559 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
560 skb->data, skb_headlen(skb), false);
561 }
562 kfree_skb(skb);
563 goto again;
564 }
565
566 /* L4 IDENT is on when HW calculated checksum, check status
567 * and in case of error drop the packet
568 * higher stack layers will handle retransmission (if required)
569 */
570 if (likely(d->dma.status & RX_DMA_STATUS_L4I)) {
571 /* L4 protocol identified, csum calculated */
572 if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0))
573 skb->ip_summed = CHECKSUM_UNNECESSARY;
574 /* If HW reports bad checksum, let IP stack re-check it
575 * For example, HW don't understand Microsoft IP stack that
576 * mis-calculates TCP checksum - if it should be 0x0,
577 * it writes 0xffff in violation of RFC 1624
578 */
579 else
580 stats->rx_csum_err++;
581 }
582
583 if (snaplen) {
584 /* Packet layout
585 * +-------+-------+---------+------------+------+
586 * | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA |
587 * +-------+-------+---------+------------+------+
588 * Need to remove SNAP, shifting SA and DA forward
589 */
590 memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN);
591 skb_pull(skb, snaplen);
592 }
593
594 return skb;
595 }
596
597 /* allocate and fill up to @count buffers in rx ring
598 * buffers posted at @swtail
599 * Note: we have a single RX queue for servicing all VIFs, but we
600 * allocate skbs with headroom according to main interface only. This
601 * means it will not work with monitor interface together with other VIFs.
602 * Currently we only support monitor interface on its own without other VIFs,
603 * and we will need to fix this code once we add support.
604 */
wil_rx_refill(struct wil6210_priv * wil,int count)605 static int wil_rx_refill(struct wil6210_priv *wil, int count)
606 {
607 struct net_device *ndev = wil->main_ndev;
608 struct wil_ring *v = &wil->ring_rx;
609 u32 next_tail;
610 int rc = 0;
611 int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
612 WIL6210_RTAP_SIZE : 0;
613
614 for (; next_tail = wil_ring_next_tail(v),
615 (next_tail != v->swhead) && (count-- > 0);
616 v->swtail = next_tail) {
617 rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
618 if (unlikely(rc)) {
619 wil_err_ratelimited(wil, "Error %d in rx refill[%d]\n",
620 rc, v->swtail);
621 break;
622 }
623 }
624
625 /* make sure all writes to descriptors (shared memory) are done before
626 * committing them to HW
627 */
628 wmb();
629
630 wil_w(wil, v->hwtail, v->swtail);
631
632 return rc;
633 }
634
635 /**
636 * reverse_memcmp - Compare two areas of memory, in reverse order
637 * @cs: One area of memory
638 * @ct: Another area of memory
639 * @count: The size of the area.
640 *
641 * Cut'n'paste from original memcmp (see lib/string.c)
642 * with minimal modifications
643 */
reverse_memcmp(const void * cs,const void * ct,size_t count)644 int reverse_memcmp(const void *cs, const void *ct, size_t count)
645 {
646 const unsigned char *su1, *su2;
647 int res = 0;
648
649 for (su1 = cs + count - 1, su2 = ct + count - 1; count > 0;
650 --su1, --su2, count--) {
651 res = *su1 - *su2;
652 if (res)
653 break;
654 }
655 return res;
656 }
657
wil_rx_crypto_check(struct wil6210_priv * wil,struct sk_buff * skb)658 static int wil_rx_crypto_check(struct wil6210_priv *wil, struct sk_buff *skb)
659 {
660 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
661 int cid = wil_skb_get_cid(skb);
662 int tid = wil_rxdesc_tid(d);
663 int key_id = wil_rxdesc_key_id(d);
664 int mc = wil_rxdesc_mcast(d);
665 struct wil_sta_info *s = &wil->sta[cid];
666 struct wil_tid_crypto_rx *c = mc ? &s->group_crypto_rx :
667 &s->tid_crypto_rx[tid];
668 struct wil_tid_crypto_rx_single *cc = &c->key_id[key_id];
669 const u8 *pn = (u8 *)&d->mac.pn;
670
671 if (!cc->key_set) {
672 wil_err_ratelimited(wil,
673 "Key missing. CID %d TID %d MCast %d KEY_ID %d\n",
674 cid, tid, mc, key_id);
675 return -EINVAL;
676 }
677
678 if (reverse_memcmp(pn, cc->pn, IEEE80211_GCMP_PN_LEN) <= 0) {
679 wil_err_ratelimited(wil,
680 "Replay attack. CID %d TID %d MCast %d KEY_ID %d PN %6phN last %6phN\n",
681 cid, tid, mc, key_id, pn, cc->pn);
682 return -EINVAL;
683 }
684 memcpy(cc->pn, pn, IEEE80211_GCMP_PN_LEN);
685
686 return 0;
687 }
688
wil_rx_error_check(struct wil6210_priv * wil,struct sk_buff * skb,struct wil_net_stats * stats)689 static int wil_rx_error_check(struct wil6210_priv *wil, struct sk_buff *skb,
690 struct wil_net_stats *stats)
691 {
692 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
693
694 if ((d->dma.status & RX_DMA_STATUS_ERROR) &&
695 (d->dma.error & RX_DMA_ERROR_MIC)) {
696 stats->rx_mic_error++;
697 wil_dbg_txrx(wil, "MIC error, dropping packet\n");
698 return -EFAULT;
699 }
700
701 return 0;
702 }
703
wil_get_netif_rx_params(struct sk_buff * skb,int * cid,int * security)704 static void wil_get_netif_rx_params(struct sk_buff *skb, int *cid,
705 int *security)
706 {
707 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
708
709 *cid = wil_skb_get_cid(skb);
710 *security = wil_rxdesc_security(d);
711 }
712
713 /*
714 * Check if skb is ptk eapol key message
715 *
716 * returns a pointer to the start of the eapol key structure, NULL
717 * if frame is not PTK eapol key
718 */
wil_is_ptk_eapol_key(struct wil6210_priv * wil,struct sk_buff * skb)719 static struct wil_eapol_key *wil_is_ptk_eapol_key(struct wil6210_priv *wil,
720 struct sk_buff *skb)
721 {
722 u8 *buf;
723 const struct wil_1x_hdr *hdr;
724 struct wil_eapol_key *key;
725 u16 key_info;
726 int len = skb->len;
727
728 if (!skb_mac_header_was_set(skb)) {
729 wil_err(wil, "mac header was not set\n");
730 return NULL;
731 }
732
733 len -= skb_mac_offset(skb);
734
735 if (len < sizeof(struct ethhdr) + sizeof(struct wil_1x_hdr) +
736 sizeof(struct wil_eapol_key))
737 return NULL;
738
739 buf = skb_mac_header(skb) + sizeof(struct ethhdr);
740
741 hdr = (const struct wil_1x_hdr *)buf;
742 if (hdr->type != WIL_1X_TYPE_EAPOL_KEY)
743 return NULL;
744
745 key = (struct wil_eapol_key *)(buf + sizeof(struct wil_1x_hdr));
746 if (key->type != WIL_EAPOL_KEY_TYPE_WPA &&
747 key->type != WIL_EAPOL_KEY_TYPE_RSN)
748 return NULL;
749
750 key_info = be16_to_cpu(key->key_info);
751 if (!(key_info & WIL_KEY_INFO_KEY_TYPE)) /* check if pairwise */
752 return NULL;
753
754 return key;
755 }
756
wil_skb_is_eap_3(struct wil6210_priv * wil,struct sk_buff * skb)757 static bool wil_skb_is_eap_3(struct wil6210_priv *wil, struct sk_buff *skb)
758 {
759 struct wil_eapol_key *key;
760 u16 key_info;
761
762 key = wil_is_ptk_eapol_key(wil, skb);
763 if (!key)
764 return false;
765
766 key_info = be16_to_cpu(key->key_info);
767 if (key_info & (WIL_KEY_INFO_MIC |
768 WIL_KEY_INFO_ENCR_KEY_DATA)) {
769 /* 3/4 of 4-Way Handshake */
770 wil_dbg_misc(wil, "EAPOL key message 3\n");
771 return true;
772 }
773 /* 1/4 of 4-Way Handshake */
774 wil_dbg_misc(wil, "EAPOL key message 1\n");
775
776 return false;
777 }
778
wil_skb_is_eap_4(struct wil6210_priv * wil,struct sk_buff * skb)779 static bool wil_skb_is_eap_4(struct wil6210_priv *wil, struct sk_buff *skb)
780 {
781 struct wil_eapol_key *key;
782 u32 *nonce, i;
783
784 key = wil_is_ptk_eapol_key(wil, skb);
785 if (!key)
786 return false;
787
788 nonce = (u32 *)key->key_nonce;
789 for (i = 0; i < WIL_EAP_NONCE_LEN / sizeof(u32); i++, nonce++) {
790 if (*nonce != 0) {
791 /* message 2/4 */
792 wil_dbg_misc(wil, "EAPOL key message 2\n");
793 return false;
794 }
795 }
796 wil_dbg_misc(wil, "EAPOL key message 4\n");
797
798 return true;
799 }
800
wil_enable_tx_key_worker(struct work_struct * work)801 void wil_enable_tx_key_worker(struct work_struct *work)
802 {
803 struct wil6210_vif *vif = container_of(work,
804 struct wil6210_vif, enable_tx_key_worker);
805 struct wil6210_priv *wil = vif_to_wil(vif);
806 int rc, cid;
807
808 rtnl_lock();
809 if (vif->ptk_rekey_state != WIL_REKEY_WAIT_M4_SENT) {
810 wil_dbg_misc(wil, "Invalid rekey state = %d\n",
811 vif->ptk_rekey_state);
812 rtnl_unlock();
813 return;
814 }
815
816 cid = wil_find_cid_by_idx(wil, vif->mid, 0);
817 if (!wil_cid_valid(wil, cid)) {
818 wil_err(wil, "Invalid cid = %d\n", cid);
819 rtnl_unlock();
820 return;
821 }
822
823 wil_dbg_misc(wil, "Apply PTK key after eapol was sent out\n");
824 rc = wmi_add_cipher_key(vif, 0, wil->sta[cid].addr, 0, NULL,
825 WMI_KEY_USE_APPLY_PTK);
826
827 vif->ptk_rekey_state = WIL_REKEY_IDLE;
828 rtnl_unlock();
829
830 if (rc)
831 wil_err(wil, "Apply PTK key failed %d\n", rc);
832 }
833
wil_tx_complete_handle_eapol(struct wil6210_vif * vif,struct sk_buff * skb)834 void wil_tx_complete_handle_eapol(struct wil6210_vif *vif, struct sk_buff *skb)
835 {
836 struct wil6210_priv *wil = vif_to_wil(vif);
837 struct wireless_dev *wdev = vif_to_wdev(vif);
838 bool q = false;
839
840 if (wdev->iftype != NL80211_IFTYPE_STATION ||
841 !test_bit(WMI_FW_CAPABILITY_SPLIT_REKEY, wil->fw_capabilities))
842 return;
843
844 /* check if skb is an EAP message 4/4 */
845 if (!wil_skb_is_eap_4(wil, skb))
846 return;
847
848 spin_lock_bh(&wil->eap_lock);
849 switch (vif->ptk_rekey_state) {
850 case WIL_REKEY_IDLE:
851 /* ignore idle state, can happen due to M4 retransmission */
852 break;
853 case WIL_REKEY_M3_RECEIVED:
854 vif->ptk_rekey_state = WIL_REKEY_IDLE;
855 break;
856 case WIL_REKEY_WAIT_M4_SENT:
857 q = true;
858 break;
859 default:
860 wil_err(wil, "Unknown rekey state = %d",
861 vif->ptk_rekey_state);
862 }
863 spin_unlock_bh(&wil->eap_lock);
864
865 if (q) {
866 q = queue_work(wil->wmi_wq, &vif->enable_tx_key_worker);
867 wil_dbg_misc(wil, "queue_work of enable_tx_key_worker -> %d\n",
868 q);
869 }
870 }
871
wil_rx_handle_eapol(struct wil6210_vif * vif,struct sk_buff * skb)872 static void wil_rx_handle_eapol(struct wil6210_vif *vif, struct sk_buff *skb)
873 {
874 struct wil6210_priv *wil = vif_to_wil(vif);
875 struct wireless_dev *wdev = vif_to_wdev(vif);
876
877 if (wdev->iftype != NL80211_IFTYPE_STATION ||
878 !test_bit(WMI_FW_CAPABILITY_SPLIT_REKEY, wil->fw_capabilities))
879 return;
880
881 /* check if skb is a EAP message 3/4 */
882 if (!wil_skb_is_eap_3(wil, skb))
883 return;
884
885 if (vif->ptk_rekey_state == WIL_REKEY_IDLE)
886 vif->ptk_rekey_state = WIL_REKEY_M3_RECEIVED;
887 }
888
889 /*
890 * Pass Rx packet to the netif. Update statistics.
891 * Called in softirq context (NAPI poll).
892 */
wil_netif_rx(struct sk_buff * skb,struct net_device * ndev,int cid,struct wil_net_stats * stats,bool gro)893 void wil_netif_rx(struct sk_buff *skb, struct net_device *ndev, int cid,
894 struct wil_net_stats *stats, bool gro)
895 {
896 struct wil6210_vif *vif = ndev_to_vif(ndev);
897 struct wil6210_priv *wil = ndev_to_wil(ndev);
898 struct wireless_dev *wdev = vif_to_wdev(vif);
899 unsigned int len = skb->len;
900 u8 *sa, *da = wil_skb_get_da(skb);
901 /* here looking for DA, not A1, thus Rxdesc's 'mcast' indication
902 * is not suitable, need to look at data
903 */
904 int mcast = is_multicast_ether_addr(da);
905 struct sk_buff *xmit_skb = NULL;
906
907 if (wdev->iftype == NL80211_IFTYPE_STATION) {
908 sa = wil_skb_get_sa(skb);
909 if (mcast && ether_addr_equal(sa, ndev->dev_addr)) {
910 /* mcast packet looped back to us */
911 dev_kfree_skb(skb);
912 ndev->stats.rx_dropped++;
913 stats->rx_dropped++;
914 wil_dbg_txrx(wil, "Rx drop %d bytes\n", len);
915 return;
916 }
917 } else if (wdev->iftype == NL80211_IFTYPE_AP && !vif->ap_isolate) {
918 if (mcast) {
919 /* send multicast frames both to higher layers in
920 * local net stack and back to the wireless medium
921 */
922 xmit_skb = skb_copy(skb, GFP_ATOMIC);
923 } else {
924 int xmit_cid = wil_find_cid(wil, vif->mid, da);
925
926 if (xmit_cid >= 0) {
927 /* The destination station is associated to
928 * this AP (in this VLAN), so send the frame
929 * directly to it and do not pass it to local
930 * net stack.
931 */
932 xmit_skb = skb;
933 skb = NULL;
934 }
935 }
936 }
937 if (xmit_skb) {
938 /* Send to wireless media and increase priority by 256 to
939 * keep the received priority instead of reclassifying
940 * the frame (see cfg80211_classify8021d).
941 */
942 xmit_skb->dev = ndev;
943 xmit_skb->priority += 256;
944 xmit_skb->protocol = htons(ETH_P_802_3);
945 skb_reset_network_header(xmit_skb);
946 skb_reset_mac_header(xmit_skb);
947 wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len);
948 dev_queue_xmit(xmit_skb);
949 }
950
951 if (skb) { /* deliver to local stack */
952 skb->protocol = eth_type_trans(skb, ndev);
953 skb->dev = ndev;
954
955 if (skb->protocol == cpu_to_be16(ETH_P_PAE))
956 wil_rx_handle_eapol(vif, skb);
957
958 if (gro)
959 napi_gro_receive(&wil->napi_rx, skb);
960 else
961 netif_rx(skb);
962 }
963 ndev->stats.rx_packets++;
964 stats->rx_packets++;
965 ndev->stats.rx_bytes += len;
966 stats->rx_bytes += len;
967 if (mcast)
968 ndev->stats.multicast++;
969 }
970
wil_netif_rx_any(struct sk_buff * skb,struct net_device * ndev)971 void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
972 {
973 int cid, security;
974 struct wil6210_priv *wil = ndev_to_wil(ndev);
975 struct wil_net_stats *stats;
976
977 wil->txrx_ops.get_netif_rx_params(skb, &cid, &security);
978
979 stats = &wil->sta[cid].stats;
980
981 skb_orphan(skb);
982
983 if (security && (wil->txrx_ops.rx_crypto_check(wil, skb) != 0)) {
984 wil_dbg_txrx(wil, "Rx drop %d bytes\n", skb->len);
985 dev_kfree_skb(skb);
986 ndev->stats.rx_dropped++;
987 stats->rx_replay++;
988 stats->rx_dropped++;
989 return;
990 }
991
992 /* check errors reported by HW and update statistics */
993 if (unlikely(wil->txrx_ops.rx_error_check(wil, skb, stats))) {
994 dev_kfree_skb(skb);
995 return;
996 }
997
998 wil_netif_rx(skb, ndev, cid, stats, true);
999 }
1000
1001 /* Proceed all completed skb's from Rx VRING
1002 *
1003 * Safe to call from NAPI poll, i.e. softirq with interrupts enabled
1004 */
wil_rx_handle(struct wil6210_priv * wil,int * quota)1005 void wil_rx_handle(struct wil6210_priv *wil, int *quota)
1006 {
1007 struct net_device *ndev = wil->main_ndev;
1008 struct wireless_dev *wdev = ndev->ieee80211_ptr;
1009 struct wil_ring *v = &wil->ring_rx;
1010 struct sk_buff *skb;
1011
1012 if (unlikely(!v->va)) {
1013 wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
1014 return;
1015 }
1016 wil_dbg_txrx(wil, "rx_handle\n");
1017 while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) {
1018 (*quota)--;
1019
1020 /* monitor is currently supported on main interface only */
1021 if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
1022 skb->dev = ndev;
1023 skb_reset_mac_header(skb);
1024 skb->ip_summed = CHECKSUM_UNNECESSARY;
1025 skb->pkt_type = PACKET_OTHERHOST;
1026 skb->protocol = htons(ETH_P_802_2);
1027 wil_netif_rx_any(skb, ndev);
1028 } else {
1029 wil_rx_reorder(wil, skb);
1030 }
1031 }
1032 wil_rx_refill(wil, v->size);
1033 }
1034
wil_rx_buf_len_init(struct wil6210_priv * wil)1035 static void wil_rx_buf_len_init(struct wil6210_priv *wil)
1036 {
1037 wil->rx_buf_len = rx_large_buf ?
1038 WIL_MAX_ETH_MTU : TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
1039 if (mtu_max > wil->rx_buf_len) {
1040 /* do not allow RX buffers to be smaller than mtu_max, for
1041 * backward compatibility (mtu_max parameter was also used
1042 * to support receiving large packets)
1043 */
1044 wil_info(wil, "Override RX buffer to mtu_max(%d)\n", mtu_max);
1045 wil->rx_buf_len = mtu_max;
1046 }
1047 }
1048
wil_rx_init(struct wil6210_priv * wil,uint order)1049 static int wil_rx_init(struct wil6210_priv *wil, uint order)
1050 {
1051 struct wil_ring *vring = &wil->ring_rx;
1052 int rc;
1053
1054 wil_dbg_misc(wil, "rx_init\n");
1055
1056 if (vring->va) {
1057 wil_err(wil, "Rx ring already allocated\n");
1058 return -EINVAL;
1059 }
1060
1061 wil_rx_buf_len_init(wil);
1062
1063 vring->size = 1 << order;
1064 vring->is_rx = true;
1065 rc = wil_vring_alloc(wil, vring);
1066 if (rc)
1067 return rc;
1068
1069 rc = wmi_rx_chain_add(wil, vring);
1070 if (rc)
1071 goto err_free;
1072
1073 rc = wil_rx_refill(wil, vring->size);
1074 if (rc)
1075 goto err_free;
1076
1077 return 0;
1078 err_free:
1079 wil_vring_free(wil, vring);
1080
1081 return rc;
1082 }
1083
wil_rx_fini(struct wil6210_priv * wil)1084 static void wil_rx_fini(struct wil6210_priv *wil)
1085 {
1086 struct wil_ring *vring = &wil->ring_rx;
1087
1088 wil_dbg_misc(wil, "rx_fini\n");
1089
1090 if (vring->va)
1091 wil_vring_free(wil, vring);
1092 }
1093
wil_tx_desc_map(union wil_tx_desc * desc,dma_addr_t pa,u32 len,int vring_index)1094 static int wil_tx_desc_map(union wil_tx_desc *desc, dma_addr_t pa,
1095 u32 len, int vring_index)
1096 {
1097 struct vring_tx_desc *d = &desc->legacy;
1098
1099 wil_desc_addr_set(&d->dma.addr, pa);
1100 d->dma.ip_length = 0;
1101 /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
1102 d->dma.b11 = 0/*14 | BIT(7)*/;
1103 d->dma.error = 0;
1104 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
1105 d->dma.length = cpu_to_le16((u16)len);
1106 d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
1107 d->mac.d[0] = 0;
1108 d->mac.d[1] = 0;
1109 d->mac.d[2] = 0;
1110 d->mac.ucode_cmd = 0;
1111 /* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */
1112 d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
1113 (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
1114
1115 return 0;
1116 }
1117
wil_tx_data_init(struct wil_ring_tx_data * txdata)1118 void wil_tx_data_init(struct wil_ring_tx_data *txdata)
1119 {
1120 spin_lock_bh(&txdata->lock);
1121 txdata->dot1x_open = false;
1122 txdata->enabled = 0;
1123 txdata->idle = 0;
1124 txdata->last_idle = 0;
1125 txdata->begin = 0;
1126 txdata->agg_wsize = 0;
1127 txdata->agg_timeout = 0;
1128 txdata->agg_amsdu = 0;
1129 txdata->addba_in_progress = false;
1130 txdata->mid = U8_MAX;
1131 spin_unlock_bh(&txdata->lock);
1132 }
1133
wil_vring_init_tx(struct wil6210_vif * vif,int id,int size,int cid,int tid)1134 static int wil_vring_init_tx(struct wil6210_vif *vif, int id, int size,
1135 int cid, int tid)
1136 {
1137 struct wil6210_priv *wil = vif_to_wil(vif);
1138 int rc;
1139 struct wmi_vring_cfg_cmd cmd = {
1140 .action = cpu_to_le32(WMI_VRING_CMD_ADD),
1141 .vring_cfg = {
1142 .tx_sw_ring = {
1143 .max_mpdu_size =
1144 cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1145 .ring_size = cpu_to_le16(size),
1146 },
1147 .ringid = id,
1148 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1149 .mac_ctrl = 0,
1150 .to_resolution = 0,
1151 .agg_max_wsize = 0,
1152 .schd_params = {
1153 .priority = cpu_to_le16(0),
1154 .timeslot_us = cpu_to_le16(0xfff),
1155 },
1156 },
1157 };
1158 struct {
1159 struct wmi_cmd_hdr wmi;
1160 struct wmi_vring_cfg_done_event cmd;
1161 } __packed reply = {
1162 .cmd = {.status = WMI_FW_STATUS_FAILURE},
1163 };
1164 struct wil_ring *vring = &wil->ring_tx[id];
1165 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
1166
1167 if (cid >= WIL6210_RX_DESC_MAX_CID) {
1168 cmd.vring_cfg.cidxtid = CIDXTID_EXTENDED_CID_TID;
1169 cmd.vring_cfg.cid = cid;
1170 cmd.vring_cfg.tid = tid;
1171 } else {
1172 cmd.vring_cfg.cidxtid = mk_cidxtid(cid, tid);
1173 }
1174
1175 wil_dbg_misc(wil, "vring_init_tx: max_mpdu_size %d\n",
1176 cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
1177 lockdep_assert_held(&wil->mutex);
1178
1179 if (vring->va) {
1180 wil_err(wil, "Tx ring [%d] already allocated\n", id);
1181 rc = -EINVAL;
1182 goto out;
1183 }
1184
1185 wil_tx_data_init(txdata);
1186 vring->is_rx = false;
1187 vring->size = size;
1188 rc = wil_vring_alloc(wil, vring);
1189 if (rc)
1190 goto out;
1191
1192 wil->ring2cid_tid[id][0] = cid;
1193 wil->ring2cid_tid[id][1] = tid;
1194
1195 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1196
1197 if (!vif->privacy)
1198 txdata->dot1x_open = true;
1199 rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1200 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
1201 WIL_WMI_CALL_GENERAL_TO_MS);
1202 if (rc)
1203 goto out_free;
1204
1205 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1206 wil_err(wil, "Tx config failed, status 0x%02x\n",
1207 reply.cmd.status);
1208 rc = -EINVAL;
1209 goto out_free;
1210 }
1211
1212 spin_lock_bh(&txdata->lock);
1213 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1214 txdata->mid = vif->mid;
1215 txdata->enabled = 1;
1216 spin_unlock_bh(&txdata->lock);
1217
1218 if (txdata->dot1x_open && (agg_wsize >= 0))
1219 wil_addba_tx_request(wil, id, agg_wsize);
1220
1221 return 0;
1222 out_free:
1223 spin_lock_bh(&txdata->lock);
1224 txdata->dot1x_open = false;
1225 txdata->enabled = 0;
1226 spin_unlock_bh(&txdata->lock);
1227 wil_vring_free(wil, vring);
1228 wil->ring2cid_tid[id][0] = wil->max_assoc_sta;
1229 wil->ring2cid_tid[id][1] = 0;
1230
1231 out:
1232
1233 return rc;
1234 }
1235
wil_tx_vring_modify(struct wil6210_vif * vif,int ring_id,int cid,int tid)1236 static int wil_tx_vring_modify(struct wil6210_vif *vif, int ring_id, int cid,
1237 int tid)
1238 {
1239 struct wil6210_priv *wil = vif_to_wil(vif);
1240 int rc;
1241 struct wmi_vring_cfg_cmd cmd = {
1242 .action = cpu_to_le32(WMI_VRING_CMD_MODIFY),
1243 .vring_cfg = {
1244 .tx_sw_ring = {
1245 .max_mpdu_size =
1246 cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1247 .ring_size = 0,
1248 },
1249 .ringid = ring_id,
1250 .cidxtid = mk_cidxtid(cid, tid),
1251 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1252 .mac_ctrl = 0,
1253 .to_resolution = 0,
1254 .agg_max_wsize = 0,
1255 .schd_params = {
1256 .priority = cpu_to_le16(0),
1257 .timeslot_us = cpu_to_le16(0xfff),
1258 },
1259 },
1260 };
1261 struct {
1262 struct wmi_cmd_hdr wmi;
1263 struct wmi_vring_cfg_done_event cmd;
1264 } __packed reply = {
1265 .cmd = {.status = WMI_FW_STATUS_FAILURE},
1266 };
1267 struct wil_ring *vring = &wil->ring_tx[ring_id];
1268 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id];
1269
1270 wil_dbg_misc(wil, "vring_modify: ring %d cid %d tid %d\n", ring_id,
1271 cid, tid);
1272 lockdep_assert_held(&wil->mutex);
1273
1274 if (!vring->va) {
1275 wil_err(wil, "Tx ring [%d] not allocated\n", ring_id);
1276 return -EINVAL;
1277 }
1278
1279 if (wil->ring2cid_tid[ring_id][0] != cid ||
1280 wil->ring2cid_tid[ring_id][1] != tid) {
1281 wil_err(wil, "ring info does not match cid=%u tid=%u\n",
1282 wil->ring2cid_tid[ring_id][0],
1283 wil->ring2cid_tid[ring_id][1]);
1284 }
1285
1286 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1287
1288 rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1289 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
1290 WIL_WMI_CALL_GENERAL_TO_MS);
1291 if (rc)
1292 goto fail;
1293
1294 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1295 wil_err(wil, "Tx modify failed, status 0x%02x\n",
1296 reply.cmd.status);
1297 rc = -EINVAL;
1298 goto fail;
1299 }
1300
1301 /* set BA aggregation window size to 0 to force a new BA with the
1302 * new AP
1303 */
1304 txdata->agg_wsize = 0;
1305 if (txdata->dot1x_open && agg_wsize >= 0)
1306 wil_addba_tx_request(wil, ring_id, agg_wsize);
1307
1308 return 0;
1309 fail:
1310 spin_lock_bh(&txdata->lock);
1311 txdata->dot1x_open = false;
1312 txdata->enabled = 0;
1313 spin_unlock_bh(&txdata->lock);
1314 wil->ring2cid_tid[ring_id][0] = wil->max_assoc_sta;
1315 wil->ring2cid_tid[ring_id][1] = 0;
1316 return rc;
1317 }
1318
wil_vring_init_bcast(struct wil6210_vif * vif,int id,int size)1319 int wil_vring_init_bcast(struct wil6210_vif *vif, int id, int size)
1320 {
1321 struct wil6210_priv *wil = vif_to_wil(vif);
1322 int rc;
1323 struct wmi_bcast_vring_cfg_cmd cmd = {
1324 .action = cpu_to_le32(WMI_VRING_CMD_ADD),
1325 .vring_cfg = {
1326 .tx_sw_ring = {
1327 .max_mpdu_size =
1328 cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1329 .ring_size = cpu_to_le16(size),
1330 },
1331 .ringid = id,
1332 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1333 },
1334 };
1335 struct {
1336 struct wmi_cmd_hdr wmi;
1337 struct wmi_vring_cfg_done_event cmd;
1338 } __packed reply = {
1339 .cmd = {.status = WMI_FW_STATUS_FAILURE},
1340 };
1341 struct wil_ring *vring = &wil->ring_tx[id];
1342 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
1343
1344 wil_dbg_misc(wil, "vring_init_bcast: max_mpdu_size %d\n",
1345 cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
1346 lockdep_assert_held(&wil->mutex);
1347
1348 if (vring->va) {
1349 wil_err(wil, "Tx ring [%d] already allocated\n", id);
1350 rc = -EINVAL;
1351 goto out;
1352 }
1353
1354 wil_tx_data_init(txdata);
1355 vring->is_rx = false;
1356 vring->size = size;
1357 rc = wil_vring_alloc(wil, vring);
1358 if (rc)
1359 goto out;
1360
1361 wil->ring2cid_tid[id][0] = wil->max_assoc_sta; /* CID */
1362 wil->ring2cid_tid[id][1] = 0; /* TID */
1363
1364 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1365
1366 if (!vif->privacy)
1367 txdata->dot1x_open = true;
1368 rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, vif->mid,
1369 &cmd, sizeof(cmd),
1370 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
1371 WIL_WMI_CALL_GENERAL_TO_MS);
1372 if (rc)
1373 goto out_free;
1374
1375 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1376 wil_err(wil, "Tx config failed, status 0x%02x\n",
1377 reply.cmd.status);
1378 rc = -EINVAL;
1379 goto out_free;
1380 }
1381
1382 spin_lock_bh(&txdata->lock);
1383 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1384 txdata->mid = vif->mid;
1385 txdata->enabled = 1;
1386 spin_unlock_bh(&txdata->lock);
1387
1388 return 0;
1389 out_free:
1390 spin_lock_bh(&txdata->lock);
1391 txdata->enabled = 0;
1392 txdata->dot1x_open = false;
1393 spin_unlock_bh(&txdata->lock);
1394 wil_vring_free(wil, vring);
1395 out:
1396
1397 return rc;
1398 }
1399
wil_find_tx_ucast(struct wil6210_priv * wil,struct wil6210_vif * vif,struct sk_buff * skb)1400 static struct wil_ring *wil_find_tx_ucast(struct wil6210_priv *wil,
1401 struct wil6210_vif *vif,
1402 struct sk_buff *skb)
1403 {
1404 int i, cid;
1405 const u8 *da = wil_skb_get_da(skb);
1406 int min_ring_id = wil_get_min_tx_ring_id(wil);
1407
1408 cid = wil_find_cid(wil, vif->mid, da);
1409
1410 if (cid < 0 || cid >= wil->max_assoc_sta)
1411 return NULL;
1412
1413 /* TODO: fix for multiple TID */
1414 for (i = min_ring_id; i < ARRAY_SIZE(wil->ring2cid_tid); i++) {
1415 if (!wil->ring_tx_data[i].dot1x_open &&
1416 skb->protocol != cpu_to_be16(ETH_P_PAE))
1417 continue;
1418 if (wil->ring2cid_tid[i][0] == cid) {
1419 struct wil_ring *v = &wil->ring_tx[i];
1420 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i];
1421
1422 wil_dbg_txrx(wil, "find_tx_ucast: (%pM) -> [%d]\n",
1423 da, i);
1424 if (v->va && txdata->enabled) {
1425 return v;
1426 } else {
1427 wil_dbg_txrx(wil,
1428 "find_tx_ucast: vring[%d] not valid\n",
1429 i);
1430 return NULL;
1431 }
1432 }
1433 }
1434
1435 return NULL;
1436 }
1437
1438 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
1439 struct wil_ring *ring, struct sk_buff *skb);
1440
wil_find_tx_ring_sta(struct wil6210_priv * wil,struct wil6210_vif * vif,struct sk_buff * skb)1441 static struct wil_ring *wil_find_tx_ring_sta(struct wil6210_priv *wil,
1442 struct wil6210_vif *vif,
1443 struct sk_buff *skb)
1444 {
1445 struct wil_ring *ring;
1446 int i;
1447 u8 cid;
1448 struct wil_ring_tx_data *txdata;
1449 int min_ring_id = wil_get_min_tx_ring_id(wil);
1450
1451 /* In the STA mode, it is expected to have only 1 VRING
1452 * for the AP we connected to.
1453 * find 1-st vring eligible for this skb and use it.
1454 */
1455 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
1456 ring = &wil->ring_tx[i];
1457 txdata = &wil->ring_tx_data[i];
1458 if (!ring->va || !txdata->enabled || txdata->mid != vif->mid)
1459 continue;
1460
1461 cid = wil->ring2cid_tid[i][0];
1462 if (cid >= wil->max_assoc_sta) /* skip BCAST */
1463 continue;
1464
1465 if (!wil->ring_tx_data[i].dot1x_open &&
1466 skb->protocol != cpu_to_be16(ETH_P_PAE))
1467 continue;
1468
1469 wil_dbg_txrx(wil, "Tx -> ring %d\n", i);
1470
1471 return ring;
1472 }
1473
1474 wil_dbg_txrx(wil, "Tx while no rings active?\n");
1475
1476 return NULL;
1477 }
1478
1479 /* Use one of 2 strategies:
1480 *
1481 * 1. New (real broadcast):
1482 * use dedicated broadcast vring
1483 * 2. Old (pseudo-DMS):
1484 * Find 1-st vring and return it;
1485 * duplicate skb and send it to other active vrings;
1486 * in all cases override dest address to unicast peer's address
1487 * Use old strategy when new is not supported yet:
1488 * - for PBSS
1489 */
wil_find_tx_bcast_1(struct wil6210_priv * wil,struct wil6210_vif * vif,struct sk_buff * skb)1490 static struct wil_ring *wil_find_tx_bcast_1(struct wil6210_priv *wil,
1491 struct wil6210_vif *vif,
1492 struct sk_buff *skb)
1493 {
1494 struct wil_ring *v;
1495 struct wil_ring_tx_data *txdata;
1496 int i = vif->bcast_ring;
1497
1498 if (i < 0)
1499 return NULL;
1500 v = &wil->ring_tx[i];
1501 txdata = &wil->ring_tx_data[i];
1502 if (!v->va || !txdata->enabled)
1503 return NULL;
1504 if (!wil->ring_tx_data[i].dot1x_open &&
1505 skb->protocol != cpu_to_be16(ETH_P_PAE))
1506 return NULL;
1507
1508 return v;
1509 }
1510
1511 /* apply multicast to unicast only for ARP and IP packets
1512 * (see NL80211_CMD_SET_MULTICAST_TO_UNICAST for more info)
1513 */
wil_check_multicast_to_unicast(struct wil6210_priv * wil,struct sk_buff * skb)1514 static bool wil_check_multicast_to_unicast(struct wil6210_priv *wil,
1515 struct sk_buff *skb)
1516 {
1517 const struct ethhdr *eth = (void *)skb->data;
1518 const struct vlan_ethhdr *ethvlan = (void *)skb->data;
1519 __be16 ethertype;
1520
1521 if (!wil->multicast_to_unicast)
1522 return false;
1523
1524 /* multicast to unicast conversion only for some payload */
1525 ethertype = eth->h_proto;
1526 if (ethertype == htons(ETH_P_8021Q) && skb->len >= VLAN_ETH_HLEN)
1527 ethertype = ethvlan->h_vlan_encapsulated_proto;
1528 switch (ethertype) {
1529 case htons(ETH_P_ARP):
1530 case htons(ETH_P_IP):
1531 case htons(ETH_P_IPV6):
1532 break;
1533 default:
1534 return false;
1535 }
1536
1537 return true;
1538 }
1539
wil_set_da_for_vring(struct wil6210_priv * wil,struct sk_buff * skb,int vring_index)1540 static void wil_set_da_for_vring(struct wil6210_priv *wil,
1541 struct sk_buff *skb, int vring_index)
1542 {
1543 u8 *da = wil_skb_get_da(skb);
1544 int cid = wil->ring2cid_tid[vring_index][0];
1545
1546 ether_addr_copy(da, wil->sta[cid].addr);
1547 }
1548
wil_find_tx_bcast_2(struct wil6210_priv * wil,struct wil6210_vif * vif,struct sk_buff * skb)1549 static struct wil_ring *wil_find_tx_bcast_2(struct wil6210_priv *wil,
1550 struct wil6210_vif *vif,
1551 struct sk_buff *skb)
1552 {
1553 struct wil_ring *v, *v2;
1554 struct sk_buff *skb2;
1555 int i;
1556 u8 cid;
1557 const u8 *src = wil_skb_get_sa(skb);
1558 struct wil_ring_tx_data *txdata, *txdata2;
1559 int min_ring_id = wil_get_min_tx_ring_id(wil);
1560
1561 /* find 1-st vring eligible for data */
1562 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
1563 v = &wil->ring_tx[i];
1564 txdata = &wil->ring_tx_data[i];
1565 if (!v->va || !txdata->enabled || txdata->mid != vif->mid)
1566 continue;
1567
1568 cid = wil->ring2cid_tid[i][0];
1569 if (cid >= wil->max_assoc_sta) /* skip BCAST */
1570 continue;
1571 if (!wil->ring_tx_data[i].dot1x_open &&
1572 skb->protocol != cpu_to_be16(ETH_P_PAE))
1573 continue;
1574
1575 /* don't Tx back to source when re-routing Rx->Tx at the AP */
1576 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1577 continue;
1578
1579 goto found;
1580 }
1581
1582 wil_dbg_txrx(wil, "Tx while no vrings active?\n");
1583
1584 return NULL;
1585
1586 found:
1587 wil_dbg_txrx(wil, "BCAST -> ring %d\n", i);
1588 wil_set_da_for_vring(wil, skb, i);
1589
1590 /* find other active vrings and duplicate skb for each */
1591 for (i++; i < WIL6210_MAX_TX_RINGS; i++) {
1592 v2 = &wil->ring_tx[i];
1593 txdata2 = &wil->ring_tx_data[i];
1594 if (!v2->va || txdata2->mid != vif->mid)
1595 continue;
1596 cid = wil->ring2cid_tid[i][0];
1597 if (cid >= wil->max_assoc_sta) /* skip BCAST */
1598 continue;
1599 if (!wil->ring_tx_data[i].dot1x_open &&
1600 skb->protocol != cpu_to_be16(ETH_P_PAE))
1601 continue;
1602
1603 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1604 continue;
1605
1606 skb2 = skb_copy(skb, GFP_ATOMIC);
1607 if (skb2) {
1608 wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i);
1609 wil_set_da_for_vring(wil, skb2, i);
1610 wil_tx_ring(wil, vif, v2, skb2);
1611 /* successful call to wil_tx_ring takes skb2 ref */
1612 dev_kfree_skb_any(skb2);
1613 } else {
1614 wil_err(wil, "skb_copy failed\n");
1615 }
1616 }
1617
1618 return v;
1619 }
1620
1621 static inline
wil_tx_desc_set_nr_frags(struct vring_tx_desc * d,int nr_frags)1622 void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags)
1623 {
1624 d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
1625 }
1626
1627 /* Sets the descriptor @d up for csum and/or TSO offloading. The corresponding
1628 * @skb is used to obtain the protocol and headers length.
1629 * @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data,
1630 * 2 - middle, 3 - last descriptor.
1631 */
1632
wil_tx_desc_offload_setup_tso(struct vring_tx_desc * d,struct sk_buff * skb,int tso_desc_type,bool is_ipv4,int tcp_hdr_len,int skb_net_hdr_len)1633 static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d,
1634 struct sk_buff *skb,
1635 int tso_desc_type, bool is_ipv4,
1636 int tcp_hdr_len, int skb_net_hdr_len)
1637 {
1638 d->dma.b11 = ETH_HLEN; /* MAC header length */
1639 d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS;
1640
1641 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1642 /* L4 header len: TCP header length */
1643 d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1644
1645 /* Setup TSO: bit and desc type */
1646 d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) |
1647 (tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS);
1648 d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS);
1649
1650 d->dma.ip_length = skb_net_hdr_len;
1651 /* Enable TCP/UDP checksum */
1652 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1653 /* Calculate pseudo-header */
1654 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1655 }
1656
1657 /* Sets the descriptor @d up for csum. The corresponding
1658 * @skb is used to obtain the protocol and headers length.
1659 * Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6.
1660 * Note, if d==NULL, the function only returns the protocol result.
1661 *
1662 * It is very similar to previous wil_tx_desc_offload_setup_tso. This
1663 * is "if unrolling" to optimize the critical path.
1664 */
1665
wil_tx_desc_offload_setup(struct vring_tx_desc * d,struct sk_buff * skb)1666 static int wil_tx_desc_offload_setup(struct vring_tx_desc *d,
1667 struct sk_buff *skb){
1668 int protocol;
1669
1670 if (skb->ip_summed != CHECKSUM_PARTIAL)
1671 return 0;
1672
1673 d->dma.b11 = ETH_HLEN; /* MAC header length */
1674
1675 switch (skb->protocol) {
1676 case cpu_to_be16(ETH_P_IP):
1677 protocol = ip_hdr(skb)->protocol;
1678 d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS);
1679 break;
1680 case cpu_to_be16(ETH_P_IPV6):
1681 protocol = ipv6_hdr(skb)->nexthdr;
1682 break;
1683 default:
1684 return -EINVAL;
1685 }
1686
1687 switch (protocol) {
1688 case IPPROTO_TCP:
1689 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1690 /* L4 header len: TCP header length */
1691 d->dma.d0 |=
1692 (tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1693 break;
1694 case IPPROTO_UDP:
1695 /* L4 header len: UDP header length */
1696 d->dma.d0 |=
1697 (sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1698 break;
1699 default:
1700 return -EINVAL;
1701 }
1702
1703 d->dma.ip_length = skb_network_header_len(skb);
1704 /* Enable TCP/UDP checksum */
1705 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1706 /* Calculate pseudo-header */
1707 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1708
1709 return 0;
1710 }
1711
wil_tx_last_desc(struct vring_tx_desc * d)1712 static inline void wil_tx_last_desc(struct vring_tx_desc *d)
1713 {
1714 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) |
1715 BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) |
1716 BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1717 }
1718
wil_set_tx_desc_last_tso(volatile struct vring_tx_desc * d)1719 static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d)
1720 {
1721 d->dma.d0 |= wil_tso_type_lst <<
1722 DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS;
1723 }
1724
__wil_tx_vring_tso(struct wil6210_priv * wil,struct wil6210_vif * vif,struct wil_ring * vring,struct sk_buff * skb)1725 static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct wil6210_vif *vif,
1726 struct wil_ring *vring, struct sk_buff *skb)
1727 {
1728 struct device *dev = wil_to_dev(wil);
1729
1730 /* point to descriptors in shared memory */
1731 volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc,
1732 *_first_desc = NULL;
1733
1734 /* pointers to shadow descriptors */
1735 struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem,
1736 *d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem,
1737 *first_desc = &first_desc_mem;
1738
1739 /* pointer to shadow descriptors' context */
1740 struct wil_ctx *hdr_ctx, *first_ctx = NULL;
1741
1742 int descs_used = 0; /* total number of used descriptors */
1743 int sg_desc_cnt = 0; /* number of descriptors for current mss*/
1744
1745 u32 swhead = vring->swhead;
1746 int used, avail = wil_ring_avail_tx(vring);
1747 int nr_frags = skb_shinfo(skb)->nr_frags;
1748 int min_desc_required = nr_frags + 1;
1749 int mss = skb_shinfo(skb)->gso_size; /* payload size w/o headers */
1750 int f, len, hdrlen, headlen;
1751 int vring_index = vring - wil->ring_tx;
1752 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[vring_index];
1753 uint i = swhead;
1754 dma_addr_t pa;
1755 const skb_frag_t *frag = NULL;
1756 int rem_data = mss;
1757 int lenmss;
1758 int hdr_compensation_need = true;
1759 int desc_tso_type = wil_tso_type_first;
1760 bool is_ipv4;
1761 int tcp_hdr_len;
1762 int skb_net_hdr_len;
1763 int gso_type;
1764 int rc = -EINVAL;
1765
1766 wil_dbg_txrx(wil, "tx_vring_tso: %d bytes to vring %d\n", skb->len,
1767 vring_index);
1768
1769 if (unlikely(!txdata->enabled))
1770 return -EINVAL;
1771
1772 /* A typical page 4K is 3-4 payloads, we assume each fragment
1773 * is a full payload, that's how min_desc_required has been
1774 * calculated. In real we might need more or less descriptors,
1775 * this is the initial check only.
1776 */
1777 if (unlikely(avail < min_desc_required)) {
1778 wil_err_ratelimited(wil,
1779 "TSO: Tx ring[%2d] full. No space for %d fragments\n",
1780 vring_index, min_desc_required);
1781 return -ENOMEM;
1782 }
1783
1784 /* Header Length = MAC header len + IP header len + TCP header len*/
1785 hdrlen = skb_tcp_all_headers(skb);
1786
1787 gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4);
1788 switch (gso_type) {
1789 case SKB_GSO_TCPV4:
1790 /* TCP v4, zero out the IP length and IPv4 checksum fields
1791 * as required by the offloading doc
1792 */
1793 ip_hdr(skb)->tot_len = 0;
1794 ip_hdr(skb)->check = 0;
1795 is_ipv4 = true;
1796 break;
1797 case SKB_GSO_TCPV6:
1798 /* TCP v6, zero out the payload length */
1799 ipv6_hdr(skb)->payload_len = 0;
1800 is_ipv4 = false;
1801 break;
1802 default:
1803 /* other than TCPv4 or TCPv6 types are not supported for TSO.
1804 * It is also illegal for both to be set simultaneously
1805 */
1806 return -EINVAL;
1807 }
1808
1809 if (skb->ip_summed != CHECKSUM_PARTIAL)
1810 return -EINVAL;
1811
1812 /* tcp header length and skb network header length are fixed for all
1813 * packet's descriptors - read then once here
1814 */
1815 tcp_hdr_len = tcp_hdrlen(skb);
1816 skb_net_hdr_len = skb_network_header_len(skb);
1817
1818 _hdr_desc = &vring->va[i].tx.legacy;
1819
1820 pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE);
1821 if (unlikely(dma_mapping_error(dev, pa))) {
1822 wil_err(wil, "TSO: Skb head DMA map error\n");
1823 goto err_exit;
1824 }
1825
1826 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)hdr_desc, pa,
1827 hdrlen, vring_index);
1828 wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4,
1829 tcp_hdr_len, skb_net_hdr_len);
1830 wil_tx_last_desc(hdr_desc);
1831
1832 vring->ctx[i].mapped_as = wil_mapped_as_single;
1833 hdr_ctx = &vring->ctx[i];
1834
1835 descs_used++;
1836 headlen = skb_headlen(skb) - hdrlen;
1837
1838 for (f = headlen ? -1 : 0; f < nr_frags; f++) {
1839 if (headlen) {
1840 len = headlen;
1841 wil_dbg_txrx(wil, "TSO: process skb head, len %u\n",
1842 len);
1843 } else {
1844 frag = &skb_shinfo(skb)->frags[f];
1845 len = skb_frag_size(frag);
1846 wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len);
1847 }
1848
1849 while (len) {
1850 wil_dbg_txrx(wil,
1851 "TSO: len %d, rem_data %d, descs_used %d\n",
1852 len, rem_data, descs_used);
1853
1854 if (descs_used == avail) {
1855 wil_err_ratelimited(wil, "TSO: ring overflow\n");
1856 rc = -ENOMEM;
1857 goto mem_error;
1858 }
1859
1860 lenmss = min_t(int, rem_data, len);
1861 i = (swhead + descs_used) % vring->size;
1862 wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i);
1863
1864 if (!headlen) {
1865 pa = skb_frag_dma_map(dev, frag,
1866 skb_frag_size(frag) - len,
1867 lenmss, DMA_TO_DEVICE);
1868 vring->ctx[i].mapped_as = wil_mapped_as_page;
1869 } else {
1870 pa = dma_map_single(dev,
1871 skb->data +
1872 skb_headlen(skb) - headlen,
1873 lenmss,
1874 DMA_TO_DEVICE);
1875 vring->ctx[i].mapped_as = wil_mapped_as_single;
1876 headlen -= lenmss;
1877 }
1878
1879 if (unlikely(dma_mapping_error(dev, pa))) {
1880 wil_err(wil, "TSO: DMA map page error\n");
1881 goto mem_error;
1882 }
1883
1884 _desc = &vring->va[i].tx.legacy;
1885
1886 if (!_first_desc) {
1887 _first_desc = _desc;
1888 first_ctx = &vring->ctx[i];
1889 d = first_desc;
1890 } else {
1891 d = &desc_mem;
1892 }
1893
1894 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
1895 pa, lenmss, vring_index);
1896 wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type,
1897 is_ipv4, tcp_hdr_len,
1898 skb_net_hdr_len);
1899
1900 /* use tso_type_first only once */
1901 desc_tso_type = wil_tso_type_mid;
1902
1903 descs_used++; /* desc used so far */
1904 sg_desc_cnt++; /* desc used for this segment */
1905 len -= lenmss;
1906 rem_data -= lenmss;
1907
1908 wil_dbg_txrx(wil,
1909 "TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n",
1910 len, rem_data, descs_used, sg_desc_cnt);
1911
1912 /* Close the segment if reached mss size or last frag*/
1913 if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) {
1914 if (hdr_compensation_need) {
1915 /* first segment include hdr desc for
1916 * release
1917 */
1918 hdr_ctx->nr_frags = sg_desc_cnt;
1919 wil_tx_desc_set_nr_frags(first_desc,
1920 sg_desc_cnt +
1921 1);
1922 hdr_compensation_need = false;
1923 } else {
1924 wil_tx_desc_set_nr_frags(first_desc,
1925 sg_desc_cnt);
1926 }
1927 first_ctx->nr_frags = sg_desc_cnt - 1;
1928
1929 wil_tx_last_desc(d);
1930
1931 /* first descriptor may also be the last
1932 * for this mss - make sure not to copy
1933 * it twice
1934 */
1935 if (first_desc != d)
1936 *_first_desc = *first_desc;
1937
1938 /*last descriptor will be copied at the end
1939 * of this TS processing
1940 */
1941 if (f < nr_frags - 1 || len > 0)
1942 *_desc = *d;
1943
1944 rem_data = mss;
1945 _first_desc = NULL;
1946 sg_desc_cnt = 0;
1947 } else if (first_desc != d) /* update mid descriptor */
1948 *_desc = *d;
1949 }
1950 }
1951
1952 if (!_desc)
1953 goto mem_error;
1954
1955 /* first descriptor may also be the last.
1956 * in this case d pointer is invalid
1957 */
1958 if (_first_desc == _desc)
1959 d = first_desc;
1960
1961 /* Last data descriptor */
1962 wil_set_tx_desc_last_tso(d);
1963 *_desc = *d;
1964
1965 /* Fill the total number of descriptors in first desc (hdr)*/
1966 wil_tx_desc_set_nr_frags(hdr_desc, descs_used);
1967 *_hdr_desc = *hdr_desc;
1968
1969 /* hold reference to skb
1970 * to prevent skb release before accounting
1971 * in case of immediate "tx done"
1972 */
1973 vring->ctx[i].skb = skb_get(skb);
1974
1975 /* performance monitoring */
1976 used = wil_ring_used_tx(vring);
1977 if (wil_val_in_range(wil->ring_idle_trsh,
1978 used, used + descs_used)) {
1979 txdata->idle += get_cycles() - txdata->last_idle;
1980 wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n",
1981 vring_index, used, used + descs_used);
1982 }
1983
1984 /* Make sure to advance the head only after descriptor update is done.
1985 * This will prevent a race condition where the completion thread
1986 * will see the DU bit set from previous run and will handle the
1987 * skb before it was completed.
1988 */
1989 wmb();
1990
1991 /* advance swhead */
1992 wil_ring_advance_head(vring, descs_used);
1993 wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead);
1994
1995 /* make sure all writes to descriptors (shared memory) are done before
1996 * committing them to HW
1997 */
1998 wmb();
1999
2000 if (wil->tx_latency)
2001 *(ktime_t *)&skb->cb = ktime_get();
2002 else
2003 memset(skb->cb, 0, sizeof(ktime_t));
2004
2005 wil_w(wil, vring->hwtail, vring->swhead);
2006 return 0;
2007
2008 mem_error:
2009 while (descs_used > 0) {
2010 struct wil_ctx *ctx;
2011
2012 i = (swhead + descs_used - 1) % vring->size;
2013 d = (struct vring_tx_desc *)&vring->va[i].tx.legacy;
2014 _desc = &vring->va[i].tx.legacy;
2015 *d = *_desc;
2016 _desc->dma.status = TX_DMA_STATUS_DU;
2017 ctx = &vring->ctx[i];
2018 wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
2019 memset(ctx, 0, sizeof(*ctx));
2020 descs_used--;
2021 }
2022 err_exit:
2023 return rc;
2024 }
2025
__wil_tx_ring(struct wil6210_priv * wil,struct wil6210_vif * vif,struct wil_ring * ring,struct sk_buff * skb)2026 static int __wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
2027 struct wil_ring *ring, struct sk_buff *skb)
2028 {
2029 struct device *dev = wil_to_dev(wil);
2030 struct vring_tx_desc dd, *d = ⅆ
2031 volatile struct vring_tx_desc *_d;
2032 u32 swhead = ring->swhead;
2033 int avail = wil_ring_avail_tx(ring);
2034 int nr_frags = skb_shinfo(skb)->nr_frags;
2035 uint f = 0;
2036 int ring_index = ring - wil->ring_tx;
2037 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index];
2038 uint i = swhead;
2039 dma_addr_t pa;
2040 int used;
2041 bool mcast = (ring_index == vif->bcast_ring);
2042 uint len = skb_headlen(skb);
2043
2044 wil_dbg_txrx(wil, "tx_ring: %d bytes to ring %d, nr_frags %d\n",
2045 skb->len, ring_index, nr_frags);
2046
2047 if (unlikely(!txdata->enabled))
2048 return -EINVAL;
2049
2050 if (unlikely(avail < 1 + nr_frags)) {
2051 wil_err_ratelimited(wil,
2052 "Tx ring[%2d] full. No space for %d fragments\n",
2053 ring_index, 1 + nr_frags);
2054 return -ENOMEM;
2055 }
2056 _d = &ring->va[i].tx.legacy;
2057
2058 pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
2059
2060 wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", ring_index,
2061 skb_headlen(skb), skb->data, &pa);
2062 wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
2063 skb->data, skb_headlen(skb), false);
2064
2065 if (unlikely(dma_mapping_error(dev, pa)))
2066 return -EINVAL;
2067 ring->ctx[i].mapped_as = wil_mapped_as_single;
2068 /* 1-st segment */
2069 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, pa, len,
2070 ring_index);
2071 if (unlikely(mcast)) {
2072 d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */
2073 if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */
2074 d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS);
2075 }
2076 /* Process TCP/UDP checksum offloading */
2077 if (unlikely(wil_tx_desc_offload_setup(d, skb))) {
2078 wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n",
2079 ring_index);
2080 goto dma_error;
2081 }
2082
2083 ring->ctx[i].nr_frags = nr_frags;
2084 wil_tx_desc_set_nr_frags(d, nr_frags + 1);
2085
2086 /* middle segments */
2087 for (; f < nr_frags; f++) {
2088 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2089 int len = skb_frag_size(frag);
2090
2091 *_d = *d;
2092 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
2093 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
2094 (const void *)d, sizeof(*d), false);
2095 i = (swhead + f + 1) % ring->size;
2096 _d = &ring->va[i].tx.legacy;
2097 pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
2098 DMA_TO_DEVICE);
2099 if (unlikely(dma_mapping_error(dev, pa))) {
2100 wil_err(wil, "Tx[%2d] failed to map fragment\n",
2101 ring_index);
2102 goto dma_error;
2103 }
2104 ring->ctx[i].mapped_as = wil_mapped_as_page;
2105 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
2106 pa, len, ring_index);
2107 /* no need to check return code -
2108 * if it succeeded for 1-st descriptor,
2109 * it will succeed here too
2110 */
2111 wil_tx_desc_offload_setup(d, skb);
2112 }
2113 /* for the last seg only */
2114 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
2115 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS);
2116 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
2117 *_d = *d;
2118 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
2119 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
2120 (const void *)d, sizeof(*d), false);
2121
2122 /* hold reference to skb
2123 * to prevent skb release before accounting
2124 * in case of immediate "tx done"
2125 */
2126 ring->ctx[i].skb = skb_get(skb);
2127
2128 /* performance monitoring */
2129 used = wil_ring_used_tx(ring);
2130 if (wil_val_in_range(wil->ring_idle_trsh,
2131 used, used + nr_frags + 1)) {
2132 txdata->idle += get_cycles() - txdata->last_idle;
2133 wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n",
2134 ring_index, used, used + nr_frags + 1);
2135 }
2136
2137 /* Make sure to advance the head only after descriptor update is done.
2138 * This will prevent a race condition where the completion thread
2139 * will see the DU bit set from previous run and will handle the
2140 * skb before it was completed.
2141 */
2142 wmb();
2143
2144 /* advance swhead */
2145 wil_ring_advance_head(ring, nr_frags + 1);
2146 wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", ring_index, swhead,
2147 ring->swhead);
2148 trace_wil6210_tx(ring_index, swhead, skb->len, nr_frags);
2149
2150 /* make sure all writes to descriptors (shared memory) are done before
2151 * committing them to HW
2152 */
2153 wmb();
2154
2155 if (wil->tx_latency)
2156 *(ktime_t *)&skb->cb = ktime_get();
2157 else
2158 memset(skb->cb, 0, sizeof(ktime_t));
2159
2160 wil_w(wil, ring->hwtail, ring->swhead);
2161
2162 return 0;
2163 dma_error:
2164 /* unmap what we have mapped */
2165 nr_frags = f + 1; /* frags mapped + one for skb head */
2166 for (f = 0; f < nr_frags; f++) {
2167 struct wil_ctx *ctx;
2168
2169 i = (swhead + f) % ring->size;
2170 ctx = &ring->ctx[i];
2171 _d = &ring->va[i].tx.legacy;
2172 *d = *_d;
2173 _d->dma.status = TX_DMA_STATUS_DU;
2174 wil->txrx_ops.tx_desc_unmap(dev,
2175 (union wil_tx_desc *)d,
2176 ctx);
2177
2178 memset(ctx, 0, sizeof(*ctx));
2179 }
2180
2181 return -EINVAL;
2182 }
2183
wil_tx_ring(struct wil6210_priv * wil,struct wil6210_vif * vif,struct wil_ring * ring,struct sk_buff * skb)2184 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
2185 struct wil_ring *ring, struct sk_buff *skb)
2186 {
2187 int ring_index = ring - wil->ring_tx;
2188 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index];
2189 int rc;
2190
2191 spin_lock(&txdata->lock);
2192
2193 if (test_bit(wil_status_suspending, wil->status) ||
2194 test_bit(wil_status_suspended, wil->status) ||
2195 test_bit(wil_status_resuming, wil->status)) {
2196 wil_dbg_txrx(wil,
2197 "suspend/resume in progress. drop packet\n");
2198 spin_unlock(&txdata->lock);
2199 return -EINVAL;
2200 }
2201
2202 rc = (skb_is_gso(skb) ? wil->txrx_ops.tx_ring_tso : __wil_tx_ring)
2203 (wil, vif, ring, skb);
2204
2205 spin_unlock(&txdata->lock);
2206
2207 return rc;
2208 }
2209
2210 /* Check status of tx vrings and stop/wake net queues if needed
2211 * It will start/stop net queues of a specific VIF net_device.
2212 *
2213 * This function does one of two checks:
2214 * In case check_stop is true, will check if net queues need to be stopped. If
2215 * the conditions for stopping are met, netif_tx_stop_all_queues() is called.
2216 * In case check_stop is false, will check if net queues need to be waked. If
2217 * the conditions for waking are met, netif_tx_wake_all_queues() is called.
2218 * vring is the vring which is currently being modified by either adding
2219 * descriptors (tx) into it or removing descriptors (tx complete) from it. Can
2220 * be null when irrelevant (e.g. connect/disconnect events).
2221 *
2222 * The implementation is to stop net queues if modified vring has low
2223 * descriptor availability. Wake if all vrings are not in low descriptor
2224 * availability and modified vring has high descriptor availability.
2225 */
__wil_update_net_queues(struct wil6210_priv * wil,struct wil6210_vif * vif,struct wil_ring * ring,bool check_stop)2226 static inline void __wil_update_net_queues(struct wil6210_priv *wil,
2227 struct wil6210_vif *vif,
2228 struct wil_ring *ring,
2229 bool check_stop)
2230 {
2231 int i;
2232 int min_ring_id = wil_get_min_tx_ring_id(wil);
2233
2234 if (unlikely(!vif))
2235 return;
2236
2237 if (ring)
2238 wil_dbg_txrx(wil, "vring %d, mid %d, check_stop=%d, stopped=%d",
2239 (int)(ring - wil->ring_tx), vif->mid, check_stop,
2240 vif->net_queue_stopped);
2241 else
2242 wil_dbg_txrx(wil, "check_stop=%d, mid=%d, stopped=%d",
2243 check_stop, vif->mid, vif->net_queue_stopped);
2244
2245 if (ring && drop_if_ring_full)
2246 /* no need to stop/wake net queues */
2247 return;
2248
2249 if (check_stop == vif->net_queue_stopped)
2250 /* net queues already in desired state */
2251 return;
2252
2253 if (check_stop) {
2254 if (!ring || unlikely(wil_ring_avail_low(ring))) {
2255 /* not enough room in the vring */
2256 netif_tx_stop_all_queues(vif_to_ndev(vif));
2257 vif->net_queue_stopped = true;
2258 wil_dbg_txrx(wil, "netif_tx_stop called\n");
2259 }
2260 return;
2261 }
2262
2263 /* Do not wake the queues in suspend flow */
2264 if (test_bit(wil_status_suspending, wil->status) ||
2265 test_bit(wil_status_suspended, wil->status))
2266 return;
2267
2268 /* check wake */
2269 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
2270 struct wil_ring *cur_ring = &wil->ring_tx[i];
2271 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i];
2272
2273 if (txdata->mid != vif->mid || !cur_ring->va ||
2274 !txdata->enabled || cur_ring == ring)
2275 continue;
2276
2277 if (wil_ring_avail_low(cur_ring)) {
2278 wil_dbg_txrx(wil, "ring %d full, can't wake\n",
2279 (int)(cur_ring - wil->ring_tx));
2280 return;
2281 }
2282 }
2283
2284 if (!ring || wil_ring_avail_high(ring)) {
2285 /* enough room in the ring */
2286 wil_dbg_txrx(wil, "calling netif_tx_wake\n");
2287 netif_tx_wake_all_queues(vif_to_ndev(vif));
2288 vif->net_queue_stopped = false;
2289 }
2290 }
2291
wil_update_net_queues(struct wil6210_priv * wil,struct wil6210_vif * vif,struct wil_ring * ring,bool check_stop)2292 void wil_update_net_queues(struct wil6210_priv *wil, struct wil6210_vif *vif,
2293 struct wil_ring *ring, bool check_stop)
2294 {
2295 spin_lock(&wil->net_queue_lock);
2296 __wil_update_net_queues(wil, vif, ring, check_stop);
2297 spin_unlock(&wil->net_queue_lock);
2298 }
2299
wil_update_net_queues_bh(struct wil6210_priv * wil,struct wil6210_vif * vif,struct wil_ring * ring,bool check_stop)2300 void wil_update_net_queues_bh(struct wil6210_priv *wil, struct wil6210_vif *vif,
2301 struct wil_ring *ring, bool check_stop)
2302 {
2303 spin_lock_bh(&wil->net_queue_lock);
2304 __wil_update_net_queues(wil, vif, ring, check_stop);
2305 spin_unlock_bh(&wil->net_queue_lock);
2306 }
2307
wil_start_xmit(struct sk_buff * skb,struct net_device * ndev)2308 netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2309 {
2310 struct wil6210_vif *vif = ndev_to_vif(ndev);
2311 struct wil6210_priv *wil = vif_to_wil(vif);
2312 const u8 *da = wil_skb_get_da(skb);
2313 bool bcast = is_multicast_ether_addr(da);
2314 struct wil_ring *ring;
2315 static bool pr_once_fw;
2316 int rc;
2317
2318 wil_dbg_txrx(wil, "start_xmit\n");
2319 if (unlikely(!test_bit(wil_status_fwready, wil->status))) {
2320 if (!pr_once_fw) {
2321 wil_err(wil, "FW not ready\n");
2322 pr_once_fw = true;
2323 }
2324 goto drop;
2325 }
2326 if (unlikely(!test_bit(wil_vif_fwconnected, vif->status))) {
2327 wil_dbg_ratelimited(wil,
2328 "VIF not connected, packet dropped\n");
2329 goto drop;
2330 }
2331 if (unlikely(vif->wdev.iftype == NL80211_IFTYPE_MONITOR)) {
2332 wil_err(wil, "Xmit in monitor mode not supported\n");
2333 goto drop;
2334 }
2335 pr_once_fw = false;
2336
2337 /* find vring */
2338 if (vif->wdev.iftype == NL80211_IFTYPE_STATION && !vif->pbss) {
2339 /* in STA mode (ESS), all to same VRING (to AP) */
2340 ring = wil_find_tx_ring_sta(wil, vif, skb);
2341 } else if (bcast) {
2342 if (vif->pbss || wil_check_multicast_to_unicast(wil, skb))
2343 /* in pbss, no bcast VRING - duplicate skb in
2344 * all stations VRINGs
2345 */
2346 ring = wil_find_tx_bcast_2(wil, vif, skb);
2347 else if (vif->wdev.iftype == NL80211_IFTYPE_AP)
2348 /* AP has a dedicated bcast VRING */
2349 ring = wil_find_tx_bcast_1(wil, vif, skb);
2350 else
2351 /* unexpected combination, fallback to duplicating
2352 * the skb in all stations VRINGs
2353 */
2354 ring = wil_find_tx_bcast_2(wil, vif, skb);
2355 } else {
2356 /* unicast, find specific VRING by dest. address */
2357 ring = wil_find_tx_ucast(wil, vif, skb);
2358 }
2359 if (unlikely(!ring)) {
2360 wil_dbg_txrx(wil, "No Tx RING found for %pM\n", da);
2361 goto drop;
2362 }
2363 /* set up vring entry */
2364 rc = wil_tx_ring(wil, vif, ring, skb);
2365
2366 switch (rc) {
2367 case 0:
2368 /* shall we stop net queues? */
2369 wil_update_net_queues_bh(wil, vif, ring, true);
2370 /* statistics will be updated on the tx_complete */
2371 dev_kfree_skb_any(skb);
2372 return NETDEV_TX_OK;
2373 case -ENOMEM:
2374 if (drop_if_ring_full)
2375 goto drop;
2376 return NETDEV_TX_BUSY;
2377 default:
2378 break; /* goto drop; */
2379 }
2380 drop:
2381 ndev->stats.tx_dropped++;
2382 dev_kfree_skb_any(skb);
2383
2384 return NET_XMIT_DROP;
2385 }
2386
wil_tx_latency_calc(struct wil6210_priv * wil,struct sk_buff * skb,struct wil_sta_info * sta)2387 void wil_tx_latency_calc(struct wil6210_priv *wil, struct sk_buff *skb,
2388 struct wil_sta_info *sta)
2389 {
2390 int skb_time_us;
2391 int bin;
2392
2393 if (!wil->tx_latency)
2394 return;
2395
2396 if (ktime_to_ms(*(ktime_t *)&skb->cb) == 0)
2397 return;
2398
2399 skb_time_us = ktime_us_delta(ktime_get(), *(ktime_t *)&skb->cb);
2400 bin = skb_time_us / wil->tx_latency_res;
2401 bin = min_t(int, bin, WIL_NUM_LATENCY_BINS - 1);
2402
2403 wil_dbg_txrx(wil, "skb time %dus => bin %d\n", skb_time_us, bin);
2404 sta->tx_latency_bins[bin]++;
2405 sta->stats.tx_latency_total_us += skb_time_us;
2406 if (skb_time_us < sta->stats.tx_latency_min_us)
2407 sta->stats.tx_latency_min_us = skb_time_us;
2408 if (skb_time_us > sta->stats.tx_latency_max_us)
2409 sta->stats.tx_latency_max_us = skb_time_us;
2410 }
2411
2412 /* Clean up transmitted skb's from the Tx VRING
2413 *
2414 * Return number of descriptors cleared
2415 *
2416 * Safe to call from IRQ
2417 */
wil_tx_complete(struct wil6210_vif * vif,int ringid)2418 int wil_tx_complete(struct wil6210_vif *vif, int ringid)
2419 {
2420 struct wil6210_priv *wil = vif_to_wil(vif);
2421 struct net_device *ndev = vif_to_ndev(vif);
2422 struct device *dev = wil_to_dev(wil);
2423 struct wil_ring *vring = &wil->ring_tx[ringid];
2424 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ringid];
2425 int done = 0;
2426 int cid = wil->ring2cid_tid[ringid][0];
2427 struct wil_net_stats *stats = NULL;
2428 volatile struct vring_tx_desc *_d;
2429 int used_before_complete;
2430 int used_new;
2431
2432 if (unlikely(!vring->va)) {
2433 wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
2434 return 0;
2435 }
2436
2437 if (unlikely(!txdata->enabled)) {
2438 wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid);
2439 return 0;
2440 }
2441
2442 wil_dbg_txrx(wil, "tx_complete: (%d)\n", ringid);
2443
2444 used_before_complete = wil_ring_used_tx(vring);
2445
2446 if (cid < wil->max_assoc_sta)
2447 stats = &wil->sta[cid].stats;
2448
2449 while (!wil_ring_is_empty(vring)) {
2450 int new_swtail;
2451 struct wil_ctx *ctx = &vring->ctx[vring->swtail];
2452 /* For the fragmented skb, HW will set DU bit only for the
2453 * last fragment. look for it.
2454 * In TSO the first DU will include hdr desc
2455 */
2456 int lf = (vring->swtail + ctx->nr_frags) % vring->size;
2457 /* TODO: check we are not past head */
2458
2459 _d = &vring->va[lf].tx.legacy;
2460 if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU)))
2461 break;
2462
2463 new_swtail = (lf + 1) % vring->size;
2464 while (vring->swtail != new_swtail) {
2465 struct vring_tx_desc dd, *d = ⅆ
2466 u16 dmalen;
2467 struct sk_buff *skb;
2468
2469 ctx = &vring->ctx[vring->swtail];
2470 skb = ctx->skb;
2471 _d = &vring->va[vring->swtail].tx.legacy;
2472
2473 *d = *_d;
2474
2475 dmalen = le16_to_cpu(d->dma.length);
2476 trace_wil6210_tx_done(ringid, vring->swtail, dmalen,
2477 d->dma.error);
2478 wil_dbg_txrx(wil,
2479 "TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n",
2480 ringid, vring->swtail, dmalen,
2481 d->dma.status, d->dma.error);
2482 wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4,
2483 (const void *)d, sizeof(*d), false);
2484
2485 wil->txrx_ops.tx_desc_unmap(dev,
2486 (union wil_tx_desc *)d,
2487 ctx);
2488
2489 if (skb) {
2490 if (likely(d->dma.error == 0)) {
2491 ndev->stats.tx_packets++;
2492 ndev->stats.tx_bytes += skb->len;
2493 if (stats) {
2494 stats->tx_packets++;
2495 stats->tx_bytes += skb->len;
2496
2497 wil_tx_latency_calc(wil, skb,
2498 &wil->sta[cid]);
2499 }
2500 } else {
2501 ndev->stats.tx_errors++;
2502 if (stats)
2503 stats->tx_errors++;
2504 }
2505
2506 if (skb->protocol == cpu_to_be16(ETH_P_PAE))
2507 wil_tx_complete_handle_eapol(vif, skb);
2508
2509 wil_consume_skb(skb, d->dma.error == 0);
2510 }
2511 memset(ctx, 0, sizeof(*ctx));
2512 /* Make sure the ctx is zeroed before updating the tail
2513 * to prevent a case where wil_tx_ring will see
2514 * this descriptor as used and handle it before ctx zero
2515 * is completed.
2516 */
2517 wmb();
2518 /* There is no need to touch HW descriptor:
2519 * - ststus bit TX_DMA_STATUS_DU is set by design,
2520 * so hardware will not try to process this desc.,
2521 * - rest of descriptor will be initialized on Tx.
2522 */
2523 vring->swtail = wil_ring_next_tail(vring);
2524 done++;
2525 }
2526 }
2527
2528 /* performance monitoring */
2529 used_new = wil_ring_used_tx(vring);
2530 if (wil_val_in_range(wil->ring_idle_trsh,
2531 used_new, used_before_complete)) {
2532 wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n",
2533 ringid, used_before_complete, used_new);
2534 txdata->last_idle = get_cycles();
2535 }
2536
2537 /* shall we wake net queues? */
2538 if (done)
2539 wil_update_net_queues(wil, vif, vring, false);
2540
2541 return done;
2542 }
2543
wil_tx_init(struct wil6210_priv * wil)2544 static inline int wil_tx_init(struct wil6210_priv *wil)
2545 {
2546 return 0;
2547 }
2548
wil_tx_fini(struct wil6210_priv * wil)2549 static inline void wil_tx_fini(struct wil6210_priv *wil) {}
2550
wil_get_reorder_params(struct wil6210_priv * wil,struct sk_buff * skb,int * tid,int * cid,int * mid,u16 * seq,int * mcast,int * retry)2551 static void wil_get_reorder_params(struct wil6210_priv *wil,
2552 struct sk_buff *skb, int *tid, int *cid,
2553 int *mid, u16 *seq, int *mcast, int *retry)
2554 {
2555 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
2556
2557 *tid = wil_rxdesc_tid(d);
2558 *cid = wil_skb_get_cid(skb);
2559 *mid = wil_rxdesc_mid(d);
2560 *seq = wil_rxdesc_seq(d);
2561 *mcast = wil_rxdesc_mcast(d);
2562 *retry = wil_rxdesc_retry(d);
2563 }
2564
wil_init_txrx_ops_legacy_dma(struct wil6210_priv * wil)2565 void wil_init_txrx_ops_legacy_dma(struct wil6210_priv *wil)
2566 {
2567 wil->txrx_ops.configure_interrupt_moderation =
2568 wil_configure_interrupt_moderation;
2569 /* TX ops */
2570 wil->txrx_ops.tx_desc_map = wil_tx_desc_map;
2571 wil->txrx_ops.tx_desc_unmap = wil_txdesc_unmap;
2572 wil->txrx_ops.tx_ring_tso = __wil_tx_vring_tso;
2573 wil->txrx_ops.ring_init_tx = wil_vring_init_tx;
2574 wil->txrx_ops.ring_fini_tx = wil_vring_free;
2575 wil->txrx_ops.ring_init_bcast = wil_vring_init_bcast;
2576 wil->txrx_ops.tx_init = wil_tx_init;
2577 wil->txrx_ops.tx_fini = wil_tx_fini;
2578 wil->txrx_ops.tx_ring_modify = wil_tx_vring_modify;
2579 /* RX ops */
2580 wil->txrx_ops.rx_init = wil_rx_init;
2581 wil->txrx_ops.wmi_addba_rx_resp = wmi_addba_rx_resp;
2582 wil->txrx_ops.get_reorder_params = wil_get_reorder_params;
2583 wil->txrx_ops.get_netif_rx_params =
2584 wil_get_netif_rx_params;
2585 wil->txrx_ops.rx_crypto_check = wil_rx_crypto_check;
2586 wil->txrx_ops.rx_error_check = wil_rx_error_check;
2587 wil->txrx_ops.is_rx_idle = wil_is_rx_idle;
2588 wil->txrx_ops.rx_fini = wil_rx_fini;
2589 }
2590