• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * Copyright (c) 2018 Red Hat, Inc.
5  * All rights reserved.
6  */
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_bit.h"
14 #include "xfs_sb.h"
15 #include "xfs_mount.h"
16 #include "xfs_btree.h"
17 #include "xfs_alloc_btree.h"
18 #include "xfs_rmap_btree.h"
19 #include "xfs_alloc.h"
20 #include "xfs_ialloc.h"
21 #include "xfs_rmap.h"
22 #include "xfs_ag.h"
23 #include "xfs_ag_resv.h"
24 #include "xfs_health.h"
25 #include "xfs_error.h"
26 #include "xfs_bmap.h"
27 #include "xfs_defer.h"
28 #include "xfs_log_format.h"
29 #include "xfs_trans.h"
30 #include "xfs_trace.h"
31 #include "xfs_inode.h"
32 #include "xfs_icache.h"
33 
34 
35 /*
36  * Passive reference counting access wrappers to the perag structures.  If the
37  * per-ag structure is to be freed, the freeing code is responsible for cleaning
38  * up objects with passive references before freeing the structure. This is
39  * things like cached buffers.
40  */
41 struct xfs_perag *
xfs_perag_get(struct xfs_mount * mp,xfs_agnumber_t agno)42 xfs_perag_get(
43 	struct xfs_mount	*mp,
44 	xfs_agnumber_t		agno)
45 {
46 	struct xfs_perag	*pag;
47 	int			ref = 0;
48 
49 	rcu_read_lock();
50 	pag = radix_tree_lookup(&mp->m_perag_tree, agno);
51 	if (pag) {
52 		ASSERT(atomic_read(&pag->pag_ref) >= 0);
53 		ref = atomic_inc_return(&pag->pag_ref);
54 	}
55 	rcu_read_unlock();
56 	trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
57 	return pag;
58 }
59 
60 /*
61  * search from @first to find the next perag with the given tag set.
62  */
63 struct xfs_perag *
xfs_perag_get_tag(struct xfs_mount * mp,xfs_agnumber_t first,unsigned int tag)64 xfs_perag_get_tag(
65 	struct xfs_mount	*mp,
66 	xfs_agnumber_t		first,
67 	unsigned int		tag)
68 {
69 	struct xfs_perag	*pag;
70 	int			found;
71 	int			ref;
72 
73 	rcu_read_lock();
74 	found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
75 					(void **)&pag, first, 1, tag);
76 	if (found <= 0) {
77 		rcu_read_unlock();
78 		return NULL;
79 	}
80 	ref = atomic_inc_return(&pag->pag_ref);
81 	rcu_read_unlock();
82 	trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
83 	return pag;
84 }
85 
86 void
xfs_perag_put(struct xfs_perag * pag)87 xfs_perag_put(
88 	struct xfs_perag	*pag)
89 {
90 	int	ref;
91 
92 	ASSERT(atomic_read(&pag->pag_ref) > 0);
93 	ref = atomic_dec_return(&pag->pag_ref);
94 	trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
95 }
96 
97 /*
98  * xfs_initialize_perag_data
99  *
100  * Read in each per-ag structure so we can count up the number of
101  * allocated inodes, free inodes and used filesystem blocks as this
102  * information is no longer persistent in the superblock. Once we have
103  * this information, write it into the in-core superblock structure.
104  */
105 int
xfs_initialize_perag_data(struct xfs_mount * mp,xfs_agnumber_t agcount)106 xfs_initialize_perag_data(
107 	struct xfs_mount	*mp,
108 	xfs_agnumber_t		agcount)
109 {
110 	xfs_agnumber_t		index;
111 	struct xfs_perag	*pag;
112 	struct xfs_sb		*sbp = &mp->m_sb;
113 	uint64_t		ifree = 0;
114 	uint64_t		ialloc = 0;
115 	uint64_t		bfree = 0;
116 	uint64_t		bfreelst = 0;
117 	uint64_t		btree = 0;
118 	uint64_t		fdblocks;
119 	int			error = 0;
120 
121 	for (index = 0; index < agcount; index++) {
122 		/*
123 		 * Read the AGF and AGI buffers to populate the per-ag
124 		 * structures for us.
125 		 */
126 		pag = xfs_perag_get(mp, index);
127 		error = xfs_alloc_read_agf(pag, NULL, 0, NULL);
128 		if (!error)
129 			error = xfs_ialloc_read_agi(pag, NULL, NULL);
130 		if (error) {
131 			xfs_perag_put(pag);
132 			return error;
133 		}
134 
135 		ifree += pag->pagi_freecount;
136 		ialloc += pag->pagi_count;
137 		bfree += pag->pagf_freeblks;
138 		bfreelst += pag->pagf_flcount;
139 		btree += pag->pagf_btreeblks;
140 		xfs_perag_put(pag);
141 	}
142 	fdblocks = bfree + bfreelst + btree;
143 
144 	/*
145 	 * If the new summary counts are obviously incorrect, fail the
146 	 * mount operation because that implies the AGFs are also corrupt.
147 	 * Clear FS_COUNTERS so that we don't unmount with a dirty log, which
148 	 * will prevent xfs_repair from fixing anything.
149 	 */
150 	if (fdblocks > sbp->sb_dblocks || ifree > ialloc) {
151 		xfs_alert(mp, "AGF corruption. Please run xfs_repair.");
152 		error = -EFSCORRUPTED;
153 		goto out;
154 	}
155 
156 	/* Overwrite incore superblock counters with just-read data */
157 	spin_lock(&mp->m_sb_lock);
158 	sbp->sb_ifree = ifree;
159 	sbp->sb_icount = ialloc;
160 	sbp->sb_fdblocks = fdblocks;
161 	spin_unlock(&mp->m_sb_lock);
162 
163 	xfs_reinit_percpu_counters(mp);
164 out:
165 	xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS);
166 	return error;
167 }
168 
169 STATIC void
__xfs_free_perag(struct rcu_head * head)170 __xfs_free_perag(
171 	struct rcu_head	*head)
172 {
173 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
174 
175 	ASSERT(!delayed_work_pending(&pag->pag_blockgc_work));
176 	kmem_free(pag);
177 }
178 
179 /*
180  * Free up the per-ag resources associated with the mount structure.
181  */
182 void
xfs_free_perag(struct xfs_mount * mp)183 xfs_free_perag(
184 	struct xfs_mount	*mp)
185 {
186 	struct xfs_perag	*pag;
187 	xfs_agnumber_t		agno;
188 
189 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
190 		spin_lock(&mp->m_perag_lock);
191 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
192 		spin_unlock(&mp->m_perag_lock);
193 		ASSERT(pag);
194 		XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0);
195 
196 		cancel_delayed_work_sync(&pag->pag_blockgc_work);
197 		xfs_buf_hash_destroy(pag);
198 
199 		call_rcu(&pag->rcu_head, __xfs_free_perag);
200 	}
201 }
202 
203 /* Find the size of the AG, in blocks. */
204 static xfs_agblock_t
__xfs_ag_block_count(struct xfs_mount * mp,xfs_agnumber_t agno,xfs_agnumber_t agcount,xfs_rfsblock_t dblocks)205 __xfs_ag_block_count(
206 	struct xfs_mount	*mp,
207 	xfs_agnumber_t		agno,
208 	xfs_agnumber_t		agcount,
209 	xfs_rfsblock_t		dblocks)
210 {
211 	ASSERT(agno < agcount);
212 
213 	if (agno < agcount - 1)
214 		return mp->m_sb.sb_agblocks;
215 	return dblocks - (agno * mp->m_sb.sb_agblocks);
216 }
217 
218 xfs_agblock_t
xfs_ag_block_count(struct xfs_mount * mp,xfs_agnumber_t agno)219 xfs_ag_block_count(
220 	struct xfs_mount	*mp,
221 	xfs_agnumber_t		agno)
222 {
223 	return __xfs_ag_block_count(mp, agno, mp->m_sb.sb_agcount,
224 			mp->m_sb.sb_dblocks);
225 }
226 
227 /* Calculate the first and last possible inode number in an AG. */
228 static void
__xfs_agino_range(struct xfs_mount * mp,xfs_agblock_t eoag,xfs_agino_t * first,xfs_agino_t * last)229 __xfs_agino_range(
230 	struct xfs_mount	*mp,
231 	xfs_agblock_t		eoag,
232 	xfs_agino_t		*first,
233 	xfs_agino_t		*last)
234 {
235 	xfs_agblock_t		bno;
236 
237 	/*
238 	 * Calculate the first inode, which will be in the first
239 	 * cluster-aligned block after the AGFL.
240 	 */
241 	bno = round_up(XFS_AGFL_BLOCK(mp) + 1, M_IGEO(mp)->cluster_align);
242 	*first = XFS_AGB_TO_AGINO(mp, bno);
243 
244 	/*
245 	 * Calculate the last inode, which will be at the end of the
246 	 * last (aligned) cluster that can be allocated in the AG.
247 	 */
248 	bno = round_down(eoag, M_IGEO(mp)->cluster_align);
249 	*last = XFS_AGB_TO_AGINO(mp, bno) - 1;
250 }
251 
252 void
xfs_agino_range(struct xfs_mount * mp,xfs_agnumber_t agno,xfs_agino_t * first,xfs_agino_t * last)253 xfs_agino_range(
254 	struct xfs_mount	*mp,
255 	xfs_agnumber_t		agno,
256 	xfs_agino_t		*first,
257 	xfs_agino_t		*last)
258 {
259 	return __xfs_agino_range(mp, xfs_ag_block_count(mp, agno), first, last);
260 }
261 
262 int
xfs_initialize_perag(struct xfs_mount * mp,xfs_agnumber_t agcount,xfs_rfsblock_t dblocks,xfs_agnumber_t * maxagi)263 xfs_initialize_perag(
264 	struct xfs_mount	*mp,
265 	xfs_agnumber_t		agcount,
266 	xfs_rfsblock_t		dblocks,
267 	xfs_agnumber_t		*maxagi)
268 {
269 	struct xfs_perag	*pag;
270 	xfs_agnumber_t		index;
271 	xfs_agnumber_t		first_initialised = NULLAGNUMBER;
272 	int			error;
273 
274 	/*
275 	 * Walk the current per-ag tree so we don't try to initialise AGs
276 	 * that already exist (growfs case). Allocate and insert all the
277 	 * AGs we don't find ready for initialisation.
278 	 */
279 	for (index = 0; index < agcount; index++) {
280 		pag = xfs_perag_get(mp, index);
281 		if (pag) {
282 			xfs_perag_put(pag);
283 			continue;
284 		}
285 
286 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
287 		if (!pag) {
288 			error = -ENOMEM;
289 			goto out_unwind_new_pags;
290 		}
291 		pag->pag_agno = index;
292 		pag->pag_mount = mp;
293 
294 		error = radix_tree_preload(GFP_NOFS);
295 		if (error)
296 			goto out_free_pag;
297 
298 		spin_lock(&mp->m_perag_lock);
299 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
300 			WARN_ON_ONCE(1);
301 			spin_unlock(&mp->m_perag_lock);
302 			radix_tree_preload_end();
303 			error = -EEXIST;
304 			goto out_free_pag;
305 		}
306 		spin_unlock(&mp->m_perag_lock);
307 		radix_tree_preload_end();
308 
309 #ifdef __KERNEL__
310 		/* Place kernel structure only init below this point. */
311 		spin_lock_init(&pag->pag_ici_lock);
312 		spin_lock_init(&pag->pagb_lock);
313 		spin_lock_init(&pag->pag_state_lock);
314 		INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker);
315 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
316 		init_waitqueue_head(&pag->pagb_wait);
317 		pag->pagb_count = 0;
318 		pag->pagb_tree = RB_ROOT;
319 #endif /* __KERNEL__ */
320 
321 		error = xfs_buf_hash_init(pag);
322 		if (error)
323 			goto out_remove_pag;
324 
325 		/* first new pag is fully initialized */
326 		if (first_initialised == NULLAGNUMBER)
327 			first_initialised = index;
328 
329 		/*
330 		 * Pre-calculated geometry
331 		 */
332 		pag->block_count = __xfs_ag_block_count(mp, index, agcount,
333 				dblocks);
334 		pag->min_block = XFS_AGFL_BLOCK(mp);
335 		__xfs_agino_range(mp, pag->block_count, &pag->agino_min,
336 				&pag->agino_max);
337 	}
338 
339 	index = xfs_set_inode_alloc(mp, agcount);
340 
341 	if (maxagi)
342 		*maxagi = index;
343 
344 	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
345 	return 0;
346 
347 out_remove_pag:
348 	radix_tree_delete(&mp->m_perag_tree, index);
349 out_free_pag:
350 	kmem_free(pag);
351 out_unwind_new_pags:
352 	/* unwind any prior newly initialized pags */
353 	for (index = first_initialised; index < agcount; index++) {
354 		pag = radix_tree_delete(&mp->m_perag_tree, index);
355 		if (!pag)
356 			break;
357 		xfs_buf_hash_destroy(pag);
358 		kmem_free(pag);
359 	}
360 	return error;
361 }
362 
363 static int
xfs_get_aghdr_buf(struct xfs_mount * mp,xfs_daddr_t blkno,size_t numblks,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops)364 xfs_get_aghdr_buf(
365 	struct xfs_mount	*mp,
366 	xfs_daddr_t		blkno,
367 	size_t			numblks,
368 	struct xfs_buf		**bpp,
369 	const struct xfs_buf_ops *ops)
370 {
371 	struct xfs_buf		*bp;
372 	int			error;
373 
374 	error = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, 0, &bp);
375 	if (error)
376 		return error;
377 
378 	bp->b_maps[0].bm_bn = blkno;
379 	bp->b_ops = ops;
380 
381 	*bpp = bp;
382 	return 0;
383 }
384 
385 /*
386  * Generic btree root block init function
387  */
388 static void
xfs_btroot_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)389 xfs_btroot_init(
390 	struct xfs_mount	*mp,
391 	struct xfs_buf		*bp,
392 	struct aghdr_init_data	*id)
393 {
394 	xfs_btree_init_block(mp, bp, id->type, 0, 0, id->agno);
395 }
396 
397 /* Finish initializing a free space btree. */
398 static void
xfs_freesp_init_recs(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)399 xfs_freesp_init_recs(
400 	struct xfs_mount	*mp,
401 	struct xfs_buf		*bp,
402 	struct aghdr_init_data	*id)
403 {
404 	struct xfs_alloc_rec	*arec;
405 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
406 
407 	arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1);
408 	arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks);
409 
410 	if (xfs_ag_contains_log(mp, id->agno)) {
411 		struct xfs_alloc_rec	*nrec;
412 		xfs_agblock_t		start = XFS_FSB_TO_AGBNO(mp,
413 							mp->m_sb.sb_logstart);
414 
415 		ASSERT(start >= mp->m_ag_prealloc_blocks);
416 		if (start != mp->m_ag_prealloc_blocks) {
417 			/*
418 			 * Modify first record to pad stripe align of log
419 			 */
420 			arec->ar_blockcount = cpu_to_be32(start -
421 						mp->m_ag_prealloc_blocks);
422 			nrec = arec + 1;
423 
424 			/*
425 			 * Insert second record at start of internal log
426 			 * which then gets trimmed.
427 			 */
428 			nrec->ar_startblock = cpu_to_be32(
429 					be32_to_cpu(arec->ar_startblock) +
430 					be32_to_cpu(arec->ar_blockcount));
431 			arec = nrec;
432 			be16_add_cpu(&block->bb_numrecs, 1);
433 		}
434 		/*
435 		 * Change record start to after the internal log
436 		 */
437 		be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks);
438 	}
439 
440 	/*
441 	 * Calculate the record block count and check for the case where
442 	 * the log might have consumed all available space in the AG. If
443 	 * so, reset the record count to 0 to avoid exposure of an invalid
444 	 * record start block.
445 	 */
446 	arec->ar_blockcount = cpu_to_be32(id->agsize -
447 					  be32_to_cpu(arec->ar_startblock));
448 	if (!arec->ar_blockcount)
449 		block->bb_numrecs = 0;
450 }
451 
452 /*
453  * Alloc btree root block init functions
454  */
455 static void
xfs_bnoroot_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)456 xfs_bnoroot_init(
457 	struct xfs_mount	*mp,
458 	struct xfs_buf		*bp,
459 	struct aghdr_init_data	*id)
460 {
461 	xfs_btree_init_block(mp, bp, XFS_BTNUM_BNO, 0, 1, id->agno);
462 	xfs_freesp_init_recs(mp, bp, id);
463 }
464 
465 static void
xfs_cntroot_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)466 xfs_cntroot_init(
467 	struct xfs_mount	*mp,
468 	struct xfs_buf		*bp,
469 	struct aghdr_init_data	*id)
470 {
471 	xfs_btree_init_block(mp, bp, XFS_BTNUM_CNT, 0, 1, id->agno);
472 	xfs_freesp_init_recs(mp, bp, id);
473 }
474 
475 /*
476  * Reverse map root block init
477  */
478 static void
xfs_rmaproot_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)479 xfs_rmaproot_init(
480 	struct xfs_mount	*mp,
481 	struct xfs_buf		*bp,
482 	struct aghdr_init_data	*id)
483 {
484 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
485 	struct xfs_rmap_rec	*rrec;
486 
487 	xfs_btree_init_block(mp, bp, XFS_BTNUM_RMAP, 0, 4, id->agno);
488 
489 	/*
490 	 * mark the AG header regions as static metadata The BNO
491 	 * btree block is the first block after the headers, so
492 	 * it's location defines the size of region the static
493 	 * metadata consumes.
494 	 *
495 	 * Note: unlike mkfs, we never have to account for log
496 	 * space when growing the data regions
497 	 */
498 	rrec = XFS_RMAP_REC_ADDR(block, 1);
499 	rrec->rm_startblock = 0;
500 	rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp));
501 	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS);
502 	rrec->rm_offset = 0;
503 
504 	/* account freespace btree root blocks */
505 	rrec = XFS_RMAP_REC_ADDR(block, 2);
506 	rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp));
507 	rrec->rm_blockcount = cpu_to_be32(2);
508 	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
509 	rrec->rm_offset = 0;
510 
511 	/* account inode btree root blocks */
512 	rrec = XFS_RMAP_REC_ADDR(block, 3);
513 	rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp));
514 	rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) -
515 					  XFS_IBT_BLOCK(mp));
516 	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT);
517 	rrec->rm_offset = 0;
518 
519 	/* account for rmap btree root */
520 	rrec = XFS_RMAP_REC_ADDR(block, 4);
521 	rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp));
522 	rrec->rm_blockcount = cpu_to_be32(1);
523 	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
524 	rrec->rm_offset = 0;
525 
526 	/* account for refc btree root */
527 	if (xfs_has_reflink(mp)) {
528 		rrec = XFS_RMAP_REC_ADDR(block, 5);
529 		rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp));
530 		rrec->rm_blockcount = cpu_to_be32(1);
531 		rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC);
532 		rrec->rm_offset = 0;
533 		be16_add_cpu(&block->bb_numrecs, 1);
534 	}
535 
536 	/* account for the log space */
537 	if (xfs_ag_contains_log(mp, id->agno)) {
538 		rrec = XFS_RMAP_REC_ADDR(block,
539 				be16_to_cpu(block->bb_numrecs) + 1);
540 		rrec->rm_startblock = cpu_to_be32(
541 				XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart));
542 		rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks);
543 		rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG);
544 		rrec->rm_offset = 0;
545 		be16_add_cpu(&block->bb_numrecs, 1);
546 	}
547 }
548 
549 /*
550  * Initialise new secondary superblocks with the pre-grow geometry, but mark
551  * them as "in progress" so we know they haven't yet been activated. This will
552  * get cleared when the update with the new geometry information is done after
553  * changes to the primary are committed. This isn't strictly necessary, but we
554  * get it for free with the delayed buffer write lists and it means we can tell
555  * if a grow operation didn't complete properly after the fact.
556  */
557 static void
xfs_sbblock_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)558 xfs_sbblock_init(
559 	struct xfs_mount	*mp,
560 	struct xfs_buf		*bp,
561 	struct aghdr_init_data	*id)
562 {
563 	struct xfs_dsb		*dsb = bp->b_addr;
564 
565 	xfs_sb_to_disk(dsb, &mp->m_sb);
566 	dsb->sb_inprogress = 1;
567 }
568 
569 static void
xfs_agfblock_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)570 xfs_agfblock_init(
571 	struct xfs_mount	*mp,
572 	struct xfs_buf		*bp,
573 	struct aghdr_init_data	*id)
574 {
575 	struct xfs_agf		*agf = bp->b_addr;
576 	xfs_extlen_t		tmpsize;
577 
578 	agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC);
579 	agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION);
580 	agf->agf_seqno = cpu_to_be32(id->agno);
581 	agf->agf_length = cpu_to_be32(id->agsize);
582 	agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp));
583 	agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp));
584 	agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1);
585 	agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1);
586 	if (xfs_has_rmapbt(mp)) {
587 		agf->agf_roots[XFS_BTNUM_RMAPi] =
588 					cpu_to_be32(XFS_RMAP_BLOCK(mp));
589 		agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1);
590 		agf->agf_rmap_blocks = cpu_to_be32(1);
591 	}
592 
593 	agf->agf_flfirst = cpu_to_be32(1);
594 	agf->agf_fllast = 0;
595 	agf->agf_flcount = 0;
596 	tmpsize = id->agsize - mp->m_ag_prealloc_blocks;
597 	agf->agf_freeblks = cpu_to_be32(tmpsize);
598 	agf->agf_longest = cpu_to_be32(tmpsize);
599 	if (xfs_has_crc(mp))
600 		uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid);
601 	if (xfs_has_reflink(mp)) {
602 		agf->agf_refcount_root = cpu_to_be32(
603 				xfs_refc_block(mp));
604 		agf->agf_refcount_level = cpu_to_be32(1);
605 		agf->agf_refcount_blocks = cpu_to_be32(1);
606 	}
607 
608 	if (xfs_ag_contains_log(mp, id->agno)) {
609 		int64_t	logblocks = mp->m_sb.sb_logblocks;
610 
611 		be32_add_cpu(&agf->agf_freeblks, -logblocks);
612 		agf->agf_longest = cpu_to_be32(id->agsize -
613 			XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks);
614 	}
615 }
616 
617 static void
xfs_agflblock_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)618 xfs_agflblock_init(
619 	struct xfs_mount	*mp,
620 	struct xfs_buf		*bp,
621 	struct aghdr_init_data	*id)
622 {
623 	struct xfs_agfl		*agfl = XFS_BUF_TO_AGFL(bp);
624 	__be32			*agfl_bno;
625 	int			bucket;
626 
627 	if (xfs_has_crc(mp)) {
628 		agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC);
629 		agfl->agfl_seqno = cpu_to_be32(id->agno);
630 		uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid);
631 	}
632 
633 	agfl_bno = xfs_buf_to_agfl_bno(bp);
634 	for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++)
635 		agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK);
636 }
637 
638 static void
xfs_agiblock_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)639 xfs_agiblock_init(
640 	struct xfs_mount	*mp,
641 	struct xfs_buf		*bp,
642 	struct aghdr_init_data	*id)
643 {
644 	struct xfs_agi		*agi = bp->b_addr;
645 	int			bucket;
646 
647 	agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC);
648 	agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION);
649 	agi->agi_seqno = cpu_to_be32(id->agno);
650 	agi->agi_length = cpu_to_be32(id->agsize);
651 	agi->agi_count = 0;
652 	agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp));
653 	agi->agi_level = cpu_to_be32(1);
654 	agi->agi_freecount = 0;
655 	agi->agi_newino = cpu_to_be32(NULLAGINO);
656 	agi->agi_dirino = cpu_to_be32(NULLAGINO);
657 	if (xfs_has_crc(mp))
658 		uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid);
659 	if (xfs_has_finobt(mp)) {
660 		agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp));
661 		agi->agi_free_level = cpu_to_be32(1);
662 	}
663 	for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++)
664 		agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
665 	if (xfs_has_inobtcounts(mp)) {
666 		agi->agi_iblocks = cpu_to_be32(1);
667 		if (xfs_has_finobt(mp))
668 			agi->agi_fblocks = cpu_to_be32(1);
669 	}
670 }
671 
672 typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp,
673 				  struct aghdr_init_data *id);
674 static int
xfs_ag_init_hdr(struct xfs_mount * mp,struct aghdr_init_data * id,aghdr_init_work_f work,const struct xfs_buf_ops * ops)675 xfs_ag_init_hdr(
676 	struct xfs_mount	*mp,
677 	struct aghdr_init_data	*id,
678 	aghdr_init_work_f	work,
679 	const struct xfs_buf_ops *ops)
680 {
681 	struct xfs_buf		*bp;
682 	int			error;
683 
684 	error = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, &bp, ops);
685 	if (error)
686 		return error;
687 
688 	(*work)(mp, bp, id);
689 
690 	xfs_buf_delwri_queue(bp, &id->buffer_list);
691 	xfs_buf_relse(bp);
692 	return 0;
693 }
694 
695 struct xfs_aghdr_grow_data {
696 	xfs_daddr_t		daddr;
697 	size_t			numblks;
698 	const struct xfs_buf_ops *ops;
699 	aghdr_init_work_f	work;
700 	xfs_btnum_t		type;
701 	bool			need_init;
702 };
703 
704 /*
705  * Prepare new AG headers to be written to disk. We use uncached buffers here,
706  * as it is assumed these new AG headers are currently beyond the currently
707  * valid filesystem address space. Using cached buffers would trip over EOFS
708  * corruption detection alogrithms in the buffer cache lookup routines.
709  *
710  * This is a non-transactional function, but the prepared buffers are added to a
711  * delayed write buffer list supplied by the caller so they can submit them to
712  * disk and wait on them as required.
713  */
714 int
xfs_ag_init_headers(struct xfs_mount * mp,struct aghdr_init_data * id)715 xfs_ag_init_headers(
716 	struct xfs_mount	*mp,
717 	struct aghdr_init_data	*id)
718 
719 {
720 	struct xfs_aghdr_grow_data aghdr_data[] = {
721 	{ /* SB */
722 		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR),
723 		.numblks = XFS_FSS_TO_BB(mp, 1),
724 		.ops = &xfs_sb_buf_ops,
725 		.work = &xfs_sbblock_init,
726 		.need_init = true
727 	},
728 	{ /* AGF */
729 		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)),
730 		.numblks = XFS_FSS_TO_BB(mp, 1),
731 		.ops = &xfs_agf_buf_ops,
732 		.work = &xfs_agfblock_init,
733 		.need_init = true
734 	},
735 	{ /* AGFL */
736 		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)),
737 		.numblks = XFS_FSS_TO_BB(mp, 1),
738 		.ops = &xfs_agfl_buf_ops,
739 		.work = &xfs_agflblock_init,
740 		.need_init = true
741 	},
742 	{ /* AGI */
743 		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)),
744 		.numblks = XFS_FSS_TO_BB(mp, 1),
745 		.ops = &xfs_agi_buf_ops,
746 		.work = &xfs_agiblock_init,
747 		.need_init = true
748 	},
749 	{ /* BNO root block */
750 		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)),
751 		.numblks = BTOBB(mp->m_sb.sb_blocksize),
752 		.ops = &xfs_bnobt_buf_ops,
753 		.work = &xfs_bnoroot_init,
754 		.need_init = true
755 	},
756 	{ /* CNT root block */
757 		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)),
758 		.numblks = BTOBB(mp->m_sb.sb_blocksize),
759 		.ops = &xfs_cntbt_buf_ops,
760 		.work = &xfs_cntroot_init,
761 		.need_init = true
762 	},
763 	{ /* INO root block */
764 		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)),
765 		.numblks = BTOBB(mp->m_sb.sb_blocksize),
766 		.ops = &xfs_inobt_buf_ops,
767 		.work = &xfs_btroot_init,
768 		.type = XFS_BTNUM_INO,
769 		.need_init = true
770 	},
771 	{ /* FINO root block */
772 		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)),
773 		.numblks = BTOBB(mp->m_sb.sb_blocksize),
774 		.ops = &xfs_finobt_buf_ops,
775 		.work = &xfs_btroot_init,
776 		.type = XFS_BTNUM_FINO,
777 		.need_init =  xfs_has_finobt(mp)
778 	},
779 	{ /* RMAP root block */
780 		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)),
781 		.numblks = BTOBB(mp->m_sb.sb_blocksize),
782 		.ops = &xfs_rmapbt_buf_ops,
783 		.work = &xfs_rmaproot_init,
784 		.need_init = xfs_has_rmapbt(mp)
785 	},
786 	{ /* REFC root block */
787 		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)),
788 		.numblks = BTOBB(mp->m_sb.sb_blocksize),
789 		.ops = &xfs_refcountbt_buf_ops,
790 		.work = &xfs_btroot_init,
791 		.type = XFS_BTNUM_REFC,
792 		.need_init = xfs_has_reflink(mp)
793 	},
794 	{ /* NULL terminating block */
795 		.daddr = XFS_BUF_DADDR_NULL,
796 	}
797 	};
798 	struct  xfs_aghdr_grow_data *dp;
799 	int			error = 0;
800 
801 	/* Account for AG free space in new AG */
802 	id->nfree += id->agsize - mp->m_ag_prealloc_blocks;
803 	for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) {
804 		if (!dp->need_init)
805 			continue;
806 
807 		id->daddr = dp->daddr;
808 		id->numblks = dp->numblks;
809 		id->type = dp->type;
810 		error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops);
811 		if (error)
812 			break;
813 	}
814 	return error;
815 }
816 
817 int
xfs_ag_shrink_space(struct xfs_perag * pag,struct xfs_trans ** tpp,xfs_extlen_t delta)818 xfs_ag_shrink_space(
819 	struct xfs_perag	*pag,
820 	struct xfs_trans	**tpp,
821 	xfs_extlen_t		delta)
822 {
823 	struct xfs_mount	*mp = pag->pag_mount;
824 	struct xfs_alloc_arg	args = {
825 		.tp	= *tpp,
826 		.mp	= mp,
827 		.type	= XFS_ALLOCTYPE_THIS_BNO,
828 		.minlen = delta,
829 		.maxlen = delta,
830 		.oinfo	= XFS_RMAP_OINFO_SKIP_UPDATE,
831 		.resv	= XFS_AG_RESV_NONE,
832 		.prod	= 1
833 	};
834 	struct xfs_buf		*agibp, *agfbp;
835 	struct xfs_agi		*agi;
836 	struct xfs_agf		*agf;
837 	xfs_agblock_t		aglen;
838 	int			error, err2;
839 
840 	ASSERT(pag->pag_agno == mp->m_sb.sb_agcount - 1);
841 	error = xfs_ialloc_read_agi(pag, *tpp, &agibp);
842 	if (error)
843 		return error;
844 
845 	agi = agibp->b_addr;
846 
847 	error = xfs_alloc_read_agf(pag, *tpp, 0, &agfbp);
848 	if (error)
849 		return error;
850 
851 	agf = agfbp->b_addr;
852 	aglen = be32_to_cpu(agi->agi_length);
853 	/* some extra paranoid checks before we shrink the ag */
854 	if (XFS_IS_CORRUPT(mp, agf->agf_length != agi->agi_length))
855 		return -EFSCORRUPTED;
856 	if (delta >= aglen)
857 		return -EINVAL;
858 
859 	args.fsbno = XFS_AGB_TO_FSB(mp, pag->pag_agno, aglen - delta);
860 
861 	/*
862 	 * Make sure that the last inode cluster cannot overlap with the new
863 	 * end of the AG, even if it's sparse.
864 	 */
865 	error = xfs_ialloc_check_shrink(*tpp, pag->pag_agno, agibp,
866 			aglen - delta);
867 	if (error)
868 		return error;
869 
870 	/*
871 	 * Disable perag reservations so it doesn't cause the allocation request
872 	 * to fail. We'll reestablish reservation before we return.
873 	 */
874 	error = xfs_ag_resv_free(pag);
875 	if (error)
876 		return error;
877 
878 	/* internal log shouldn't also show up in the free space btrees */
879 	error = xfs_alloc_vextent(&args);
880 	if (!error && args.agbno == NULLAGBLOCK)
881 		error = -ENOSPC;
882 
883 	if (error) {
884 		/*
885 		 * if extent allocation fails, need to roll the transaction to
886 		 * ensure that the AGFL fixup has been committed anyway.
887 		 */
888 		xfs_trans_bhold(*tpp, agfbp);
889 		err2 = xfs_trans_roll(tpp);
890 		if (err2)
891 			return err2;
892 		xfs_trans_bjoin(*tpp, agfbp);
893 		goto resv_init_out;
894 	}
895 
896 	/*
897 	 * if successfully deleted from freespace btrees, need to confirm
898 	 * per-AG reservation works as expected.
899 	 */
900 	be32_add_cpu(&agi->agi_length, -delta);
901 	be32_add_cpu(&agf->agf_length, -delta);
902 
903 	err2 = xfs_ag_resv_init(pag, *tpp);
904 	if (err2) {
905 		be32_add_cpu(&agi->agi_length, delta);
906 		be32_add_cpu(&agf->agf_length, delta);
907 		if (err2 != -ENOSPC)
908 			goto resv_err;
909 
910 		__xfs_free_extent_later(*tpp, args.fsbno, delta, NULL, true);
911 
912 		/*
913 		 * Roll the transaction before trying to re-init the per-ag
914 		 * reservation. The new transaction is clean so it will cancel
915 		 * without any side effects.
916 		 */
917 		error = xfs_defer_finish(tpp);
918 		if (error)
919 			return error;
920 
921 		error = -ENOSPC;
922 		goto resv_init_out;
923 	}
924 	xfs_ialloc_log_agi(*tpp, agibp, XFS_AGI_LENGTH);
925 	xfs_alloc_log_agf(*tpp, agfbp, XFS_AGF_LENGTH);
926 	return 0;
927 
928 resv_init_out:
929 	err2 = xfs_ag_resv_init(pag, *tpp);
930 	if (!err2)
931 		return error;
932 resv_err:
933 	xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", err2);
934 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
935 	return err2;
936 }
937 
938 /*
939  * Extent the AG indicated by the @id by the length passed in
940  */
941 int
xfs_ag_extend_space(struct xfs_perag * pag,struct xfs_trans * tp,xfs_extlen_t len)942 xfs_ag_extend_space(
943 	struct xfs_perag	*pag,
944 	struct xfs_trans	*tp,
945 	xfs_extlen_t		len)
946 {
947 	struct xfs_buf		*bp;
948 	struct xfs_agi		*agi;
949 	struct xfs_agf		*agf;
950 	int			error;
951 
952 	ASSERT(pag->pag_agno == pag->pag_mount->m_sb.sb_agcount - 1);
953 
954 	error = xfs_ialloc_read_agi(pag, tp, &bp);
955 	if (error)
956 		return error;
957 
958 	agi = bp->b_addr;
959 	be32_add_cpu(&agi->agi_length, len);
960 	xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH);
961 
962 	/*
963 	 * Change agf length.
964 	 */
965 	error = xfs_alloc_read_agf(pag, tp, 0, &bp);
966 	if (error)
967 		return error;
968 
969 	agf = bp->b_addr;
970 	be32_add_cpu(&agf->agf_length, len);
971 	ASSERT(agf->agf_length == agi->agi_length);
972 	xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH);
973 
974 	/*
975 	 * Free the new space.
976 	 *
977 	 * XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that
978 	 * this doesn't actually exist in the rmap btree.
979 	 */
980 	error = xfs_rmap_free(tp, bp, pag, be32_to_cpu(agf->agf_length) - len,
981 				len, &XFS_RMAP_OINFO_SKIP_UPDATE);
982 	if (error)
983 		return error;
984 
985 	error = xfs_free_extent(tp, XFS_AGB_TO_FSB(pag->pag_mount, pag->pag_agno,
986 					be32_to_cpu(agf->agf_length) - len),
987 				len, &XFS_RMAP_OINFO_SKIP_UPDATE,
988 				XFS_AG_RESV_NONE);
989 	if (error)
990 		return error;
991 
992 	/* Update perag geometry */
993 	pag->block_count = be32_to_cpu(agf->agf_length);
994 	__xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min,
995 				&pag->agino_max);
996 	return 0;
997 }
998 
999 /* Retrieve AG geometry. */
1000 int
xfs_ag_get_geometry(struct xfs_perag * pag,struct xfs_ag_geometry * ageo)1001 xfs_ag_get_geometry(
1002 	struct xfs_perag	*pag,
1003 	struct xfs_ag_geometry	*ageo)
1004 {
1005 	struct xfs_buf		*agi_bp;
1006 	struct xfs_buf		*agf_bp;
1007 	struct xfs_agi		*agi;
1008 	struct xfs_agf		*agf;
1009 	unsigned int		freeblks;
1010 	int			error;
1011 
1012 	/* Lock the AG headers. */
1013 	error = xfs_ialloc_read_agi(pag, NULL, &agi_bp);
1014 	if (error)
1015 		return error;
1016 	error = xfs_alloc_read_agf(pag, NULL, 0, &agf_bp);
1017 	if (error)
1018 		goto out_agi;
1019 
1020 	/* Fill out form. */
1021 	memset(ageo, 0, sizeof(*ageo));
1022 	ageo->ag_number = pag->pag_agno;
1023 
1024 	agi = agi_bp->b_addr;
1025 	ageo->ag_icount = be32_to_cpu(agi->agi_count);
1026 	ageo->ag_ifree = be32_to_cpu(agi->agi_freecount);
1027 
1028 	agf = agf_bp->b_addr;
1029 	ageo->ag_length = be32_to_cpu(agf->agf_length);
1030 	freeblks = pag->pagf_freeblks +
1031 		   pag->pagf_flcount +
1032 		   pag->pagf_btreeblks -
1033 		   xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE);
1034 	ageo->ag_freeblks = freeblks;
1035 	xfs_ag_geom_health(pag, ageo);
1036 
1037 	/* Release resources. */
1038 	xfs_buf_relse(agf_bp);
1039 out_agi:
1040 	xfs_buf_relse(agi_bp);
1041 	return error;
1042 }
1043