• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_quota.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_dquot_item.h"
22 #include "xfs_dquot.h"
23 #include "xfs_reflink.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_ag.h"
26 #include "xfs_log_priv.h"
27 
28 #include <linux/iversion.h>
29 
30 /* Radix tree tags for incore inode tree. */
31 
32 /* inode is to be reclaimed */
33 #define XFS_ICI_RECLAIM_TAG	0
34 /* Inode has speculative preallocations (posteof or cow) to clean. */
35 #define XFS_ICI_BLOCKGC_TAG	1
36 
37 /*
38  * The goal for walking incore inodes.  These can correspond with incore inode
39  * radix tree tags when convenient.  Avoid existing XFS_IWALK namespace.
40  */
41 enum xfs_icwalk_goal {
42 	/* Goals directly associated with tagged inodes. */
43 	XFS_ICWALK_BLOCKGC	= XFS_ICI_BLOCKGC_TAG,
44 	XFS_ICWALK_RECLAIM	= XFS_ICI_RECLAIM_TAG,
45 };
46 
47 static int xfs_icwalk(struct xfs_mount *mp,
48 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
49 static int xfs_icwalk_ag(struct xfs_perag *pag,
50 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
51 
52 /*
53  * Private inode cache walk flags for struct xfs_icwalk.  Must not
54  * coincide with XFS_ICWALK_FLAGS_VALID.
55  */
56 
57 /* Stop scanning after icw_scan_limit inodes. */
58 #define XFS_ICWALK_FLAG_SCAN_LIMIT	(1U << 28)
59 
60 #define XFS_ICWALK_FLAG_RECLAIM_SICK	(1U << 27)
61 #define XFS_ICWALK_FLAG_UNION		(1U << 26) /* union filter algorithm */
62 
63 #define XFS_ICWALK_PRIVATE_FLAGS	(XFS_ICWALK_FLAG_SCAN_LIMIT | \
64 					 XFS_ICWALK_FLAG_RECLAIM_SICK | \
65 					 XFS_ICWALK_FLAG_UNION)
66 
67 /*
68  * Allocate and initialise an xfs_inode.
69  */
70 struct xfs_inode *
xfs_inode_alloc(struct xfs_mount * mp,xfs_ino_t ino)71 xfs_inode_alloc(
72 	struct xfs_mount	*mp,
73 	xfs_ino_t		ino)
74 {
75 	struct xfs_inode	*ip;
76 
77 	/*
78 	 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
79 	 * and return NULL here on ENOMEM.
80 	 */
81 	ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
82 
83 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
84 		kmem_cache_free(xfs_inode_cache, ip);
85 		return NULL;
86 	}
87 
88 	/* VFS doesn't initialise i_mode or i_state! */
89 	VFS_I(ip)->i_mode = 0;
90 	VFS_I(ip)->i_state = 0;
91 	mapping_set_large_folios(VFS_I(ip)->i_mapping);
92 
93 	XFS_STATS_INC(mp, vn_active);
94 	ASSERT(atomic_read(&ip->i_pincount) == 0);
95 	ASSERT(ip->i_ino == 0);
96 
97 	/* initialise the xfs inode */
98 	ip->i_ino = ino;
99 	ip->i_mount = mp;
100 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
101 	ip->i_cowfp = NULL;
102 	memset(&ip->i_af, 0, sizeof(ip->i_af));
103 	ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
104 	memset(&ip->i_df, 0, sizeof(ip->i_df));
105 	ip->i_flags = 0;
106 	ip->i_delayed_blks = 0;
107 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
108 	ip->i_nblocks = 0;
109 	ip->i_forkoff = 0;
110 	ip->i_sick = 0;
111 	ip->i_checked = 0;
112 	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
113 	INIT_LIST_HEAD(&ip->i_ioend_list);
114 	spin_lock_init(&ip->i_ioend_lock);
115 	ip->i_next_unlinked = NULLAGINO;
116 	ip->i_prev_unlinked = NULLAGINO;
117 
118 	return ip;
119 }
120 
121 STATIC void
xfs_inode_free_callback(struct rcu_head * head)122 xfs_inode_free_callback(
123 	struct rcu_head		*head)
124 {
125 	struct inode		*inode = container_of(head, struct inode, i_rcu);
126 	struct xfs_inode	*ip = XFS_I(inode);
127 
128 	switch (VFS_I(ip)->i_mode & S_IFMT) {
129 	case S_IFREG:
130 	case S_IFDIR:
131 	case S_IFLNK:
132 		xfs_idestroy_fork(&ip->i_df);
133 		break;
134 	}
135 
136 	xfs_ifork_zap_attr(ip);
137 
138 	if (ip->i_cowfp) {
139 		xfs_idestroy_fork(ip->i_cowfp);
140 		kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
141 	}
142 	if (ip->i_itemp) {
143 		ASSERT(!test_bit(XFS_LI_IN_AIL,
144 				 &ip->i_itemp->ili_item.li_flags));
145 		xfs_inode_item_destroy(ip);
146 		ip->i_itemp = NULL;
147 	}
148 
149 	kmem_cache_free(xfs_inode_cache, ip);
150 }
151 
152 static void
__xfs_inode_free(struct xfs_inode * ip)153 __xfs_inode_free(
154 	struct xfs_inode	*ip)
155 {
156 	/* asserts to verify all state is correct here */
157 	ASSERT(atomic_read(&ip->i_pincount) == 0);
158 	ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
159 	XFS_STATS_DEC(ip->i_mount, vn_active);
160 
161 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
162 }
163 
164 void
xfs_inode_free(struct xfs_inode * ip)165 xfs_inode_free(
166 	struct xfs_inode	*ip)
167 {
168 	ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
169 
170 	/*
171 	 * Because we use RCU freeing we need to ensure the inode always
172 	 * appears to be reclaimed with an invalid inode number when in the
173 	 * free state. The ip->i_flags_lock provides the barrier against lookup
174 	 * races.
175 	 */
176 	spin_lock(&ip->i_flags_lock);
177 	ip->i_flags = XFS_IRECLAIM;
178 	ip->i_ino = 0;
179 	spin_unlock(&ip->i_flags_lock);
180 
181 	__xfs_inode_free(ip);
182 }
183 
184 /*
185  * Queue background inode reclaim work if there are reclaimable inodes and there
186  * isn't reclaim work already scheduled or in progress.
187  */
188 static void
xfs_reclaim_work_queue(struct xfs_mount * mp)189 xfs_reclaim_work_queue(
190 	struct xfs_mount        *mp)
191 {
192 
193 	rcu_read_lock();
194 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
195 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
196 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
197 	}
198 	rcu_read_unlock();
199 }
200 
201 /*
202  * Background scanning to trim preallocated space. This is queued based on the
203  * 'speculative_prealloc_lifetime' tunable (5m by default).
204  */
205 static inline void
xfs_blockgc_queue(struct xfs_perag * pag)206 xfs_blockgc_queue(
207 	struct xfs_perag	*pag)
208 {
209 	struct xfs_mount	*mp = pag->pag_mount;
210 
211 	if (!xfs_is_blockgc_enabled(mp))
212 		return;
213 
214 	rcu_read_lock();
215 	if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
216 		queue_delayed_work(pag->pag_mount->m_blockgc_wq,
217 				   &pag->pag_blockgc_work,
218 				   msecs_to_jiffies(xfs_blockgc_secs * 1000));
219 	rcu_read_unlock();
220 }
221 
222 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
223 static void
xfs_perag_set_inode_tag(struct xfs_perag * pag,xfs_agino_t agino,unsigned int tag)224 xfs_perag_set_inode_tag(
225 	struct xfs_perag	*pag,
226 	xfs_agino_t		agino,
227 	unsigned int		tag)
228 {
229 	struct xfs_mount	*mp = pag->pag_mount;
230 	bool			was_tagged;
231 
232 	lockdep_assert_held(&pag->pag_ici_lock);
233 
234 	was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
235 	radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
236 
237 	if (tag == XFS_ICI_RECLAIM_TAG)
238 		pag->pag_ici_reclaimable++;
239 
240 	if (was_tagged)
241 		return;
242 
243 	/* propagate the tag up into the perag radix tree */
244 	spin_lock(&mp->m_perag_lock);
245 	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
246 	spin_unlock(&mp->m_perag_lock);
247 
248 	/* start background work */
249 	switch (tag) {
250 	case XFS_ICI_RECLAIM_TAG:
251 		xfs_reclaim_work_queue(mp);
252 		break;
253 	case XFS_ICI_BLOCKGC_TAG:
254 		xfs_blockgc_queue(pag);
255 		break;
256 	}
257 
258 	trace_xfs_perag_set_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
259 }
260 
261 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
262 static void
xfs_perag_clear_inode_tag(struct xfs_perag * pag,xfs_agino_t agino,unsigned int tag)263 xfs_perag_clear_inode_tag(
264 	struct xfs_perag	*pag,
265 	xfs_agino_t		agino,
266 	unsigned int		tag)
267 {
268 	struct xfs_mount	*mp = pag->pag_mount;
269 
270 	lockdep_assert_held(&pag->pag_ici_lock);
271 
272 	/*
273 	 * Reclaim can signal (with a null agino) that it cleared its own tag
274 	 * by removing the inode from the radix tree.
275 	 */
276 	if (agino != NULLAGINO)
277 		radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
278 	else
279 		ASSERT(tag == XFS_ICI_RECLAIM_TAG);
280 
281 	if (tag == XFS_ICI_RECLAIM_TAG)
282 		pag->pag_ici_reclaimable--;
283 
284 	if (radix_tree_tagged(&pag->pag_ici_root, tag))
285 		return;
286 
287 	/* clear the tag from the perag radix tree */
288 	spin_lock(&mp->m_perag_lock);
289 	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
290 	spin_unlock(&mp->m_perag_lock);
291 
292 	trace_xfs_perag_clear_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
293 }
294 
295 /*
296  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
297  * part of the structure. This is made more complex by the fact we store
298  * information about the on-disk values in the VFS inode and so we can't just
299  * overwrite the values unconditionally. Hence we save the parameters we
300  * need to retain across reinitialisation, and rewrite them into the VFS inode
301  * after reinitialisation even if it fails.
302  */
303 static int
xfs_reinit_inode(struct xfs_mount * mp,struct inode * inode)304 xfs_reinit_inode(
305 	struct xfs_mount	*mp,
306 	struct inode		*inode)
307 {
308 	int			error;
309 	uint32_t		nlink = inode->i_nlink;
310 	uint32_t		generation = inode->i_generation;
311 	uint64_t		version = inode_peek_iversion(inode);
312 	umode_t			mode = inode->i_mode;
313 	dev_t			dev = inode->i_rdev;
314 	kuid_t			uid = inode->i_uid;
315 	kgid_t			gid = inode->i_gid;
316 
317 	error = inode_init_always(mp->m_super, inode);
318 
319 	set_nlink(inode, nlink);
320 	inode->i_generation = generation;
321 	inode_set_iversion_queried(inode, version);
322 	inode->i_mode = mode;
323 	inode->i_rdev = dev;
324 	inode->i_uid = uid;
325 	inode->i_gid = gid;
326 	mapping_set_large_folios(inode->i_mapping);
327 	return error;
328 }
329 
330 /*
331  * Carefully nudge an inode whose VFS state has been torn down back into a
332  * usable state.  Drops the i_flags_lock and the rcu read lock.
333  */
334 static int
xfs_iget_recycle(struct xfs_perag * pag,struct xfs_inode * ip)335 xfs_iget_recycle(
336 	struct xfs_perag	*pag,
337 	struct xfs_inode	*ip) __releases(&ip->i_flags_lock)
338 {
339 	struct xfs_mount	*mp = ip->i_mount;
340 	struct inode		*inode = VFS_I(ip);
341 	int			error;
342 
343 	trace_xfs_iget_recycle(ip);
344 
345 	/*
346 	 * We need to make it look like the inode is being reclaimed to prevent
347 	 * the actual reclaim workers from stomping over us while we recycle
348 	 * the inode.  We can't clear the radix tree tag yet as it requires
349 	 * pag_ici_lock to be held exclusive.
350 	 */
351 	ip->i_flags |= XFS_IRECLAIM;
352 
353 	spin_unlock(&ip->i_flags_lock);
354 	rcu_read_unlock();
355 
356 	ASSERT(!rwsem_is_locked(&inode->i_rwsem));
357 	error = xfs_reinit_inode(mp, inode);
358 	if (error) {
359 		/*
360 		 * Re-initializing the inode failed, and we are in deep
361 		 * trouble.  Try to re-add it to the reclaim list.
362 		 */
363 		rcu_read_lock();
364 		spin_lock(&ip->i_flags_lock);
365 		ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
366 		ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
367 		spin_unlock(&ip->i_flags_lock);
368 		rcu_read_unlock();
369 
370 		trace_xfs_iget_recycle_fail(ip);
371 		return error;
372 	}
373 
374 	spin_lock(&pag->pag_ici_lock);
375 	spin_lock(&ip->i_flags_lock);
376 
377 	/*
378 	 * Clear the per-lifetime state in the inode as we are now effectively
379 	 * a new inode and need to return to the initial state before reuse
380 	 * occurs.
381 	 */
382 	ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
383 	ip->i_flags |= XFS_INEW;
384 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
385 			XFS_ICI_RECLAIM_TAG);
386 	inode->i_state = I_NEW;
387 	spin_unlock(&ip->i_flags_lock);
388 	spin_unlock(&pag->pag_ici_lock);
389 
390 	return 0;
391 }
392 
393 /*
394  * If we are allocating a new inode, then check what was returned is
395  * actually a free, empty inode. If we are not allocating an inode,
396  * then check we didn't find a free inode.
397  *
398  * Returns:
399  *	0		if the inode free state matches the lookup context
400  *	-ENOENT		if the inode is free and we are not allocating
401  *	-EFSCORRUPTED	if there is any state mismatch at all
402  */
403 static int
xfs_iget_check_free_state(struct xfs_inode * ip,int flags)404 xfs_iget_check_free_state(
405 	struct xfs_inode	*ip,
406 	int			flags)
407 {
408 	if (flags & XFS_IGET_CREATE) {
409 		/* should be a free inode */
410 		if (VFS_I(ip)->i_mode != 0) {
411 			xfs_warn(ip->i_mount,
412 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
413 				ip->i_ino, VFS_I(ip)->i_mode);
414 			return -EFSCORRUPTED;
415 		}
416 
417 		if (ip->i_nblocks != 0) {
418 			xfs_warn(ip->i_mount,
419 "Corruption detected! Free inode 0x%llx has blocks allocated!",
420 				ip->i_ino);
421 			return -EFSCORRUPTED;
422 		}
423 		return 0;
424 	}
425 
426 	/* should be an allocated inode */
427 	if (VFS_I(ip)->i_mode == 0)
428 		return -ENOENT;
429 
430 	return 0;
431 }
432 
433 /* Make all pending inactivation work start immediately. */
434 static bool
xfs_inodegc_queue_all(struct xfs_mount * mp)435 xfs_inodegc_queue_all(
436 	struct xfs_mount	*mp)
437 {
438 	struct xfs_inodegc	*gc;
439 	int			cpu;
440 	bool			ret = false;
441 
442 	for_each_online_cpu(cpu) {
443 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
444 		if (!llist_empty(&gc->list)) {
445 			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
446 			ret = true;
447 		}
448 	}
449 
450 	return ret;
451 }
452 
453 /*
454  * Check the validity of the inode we just found it the cache
455  */
456 static int
xfs_iget_cache_hit(struct xfs_perag * pag,struct xfs_inode * ip,xfs_ino_t ino,int flags,int lock_flags)457 xfs_iget_cache_hit(
458 	struct xfs_perag	*pag,
459 	struct xfs_inode	*ip,
460 	xfs_ino_t		ino,
461 	int			flags,
462 	int			lock_flags) __releases(RCU)
463 {
464 	struct inode		*inode = VFS_I(ip);
465 	struct xfs_mount	*mp = ip->i_mount;
466 	int			error;
467 
468 	/*
469 	 * check for re-use of an inode within an RCU grace period due to the
470 	 * radix tree nodes not being updated yet. We monitor for this by
471 	 * setting the inode number to zero before freeing the inode structure.
472 	 * If the inode has been reallocated and set up, then the inode number
473 	 * will not match, so check for that, too.
474 	 */
475 	spin_lock(&ip->i_flags_lock);
476 	if (ip->i_ino != ino)
477 		goto out_skip;
478 
479 	/*
480 	 * If we are racing with another cache hit that is currently
481 	 * instantiating this inode or currently recycling it out of
482 	 * reclaimable state, wait for the initialisation to complete
483 	 * before continuing.
484 	 *
485 	 * If we're racing with the inactivation worker we also want to wait.
486 	 * If we're creating a new file, it's possible that the worker
487 	 * previously marked the inode as free on disk but hasn't finished
488 	 * updating the incore state yet.  The AGI buffer will be dirty and
489 	 * locked to the icreate transaction, so a synchronous push of the
490 	 * inodegc workers would result in deadlock.  For a regular iget, the
491 	 * worker is running already, so we might as well wait.
492 	 *
493 	 * XXX(hch): eventually we should do something equivalent to
494 	 *	     wait_on_inode to wait for these flags to be cleared
495 	 *	     instead of polling for it.
496 	 */
497 	if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
498 		goto out_skip;
499 
500 	if (ip->i_flags & XFS_NEED_INACTIVE) {
501 		/* Unlinked inodes cannot be re-grabbed. */
502 		if (VFS_I(ip)->i_nlink == 0) {
503 			error = -ENOENT;
504 			goto out_error;
505 		}
506 		goto out_inodegc_flush;
507 	}
508 
509 	/*
510 	 * Check the inode free state is valid. This also detects lookup
511 	 * racing with unlinks.
512 	 */
513 	error = xfs_iget_check_free_state(ip, flags);
514 	if (error)
515 		goto out_error;
516 
517 	/* Skip inodes that have no vfs state. */
518 	if ((flags & XFS_IGET_INCORE) &&
519 	    (ip->i_flags & XFS_IRECLAIMABLE))
520 		goto out_skip;
521 
522 	/* The inode fits the selection criteria; process it. */
523 	if (ip->i_flags & XFS_IRECLAIMABLE) {
524 		/* Drops i_flags_lock and RCU read lock. */
525 		error = xfs_iget_recycle(pag, ip);
526 		if (error)
527 			return error;
528 	} else {
529 		/* If the VFS inode is being torn down, pause and try again. */
530 		if (!igrab(inode))
531 			goto out_skip;
532 
533 		/* We've got a live one. */
534 		spin_unlock(&ip->i_flags_lock);
535 		rcu_read_unlock();
536 		trace_xfs_iget_hit(ip);
537 	}
538 
539 	if (lock_flags != 0)
540 		xfs_ilock(ip, lock_flags);
541 
542 	if (!(flags & XFS_IGET_INCORE))
543 		xfs_iflags_clear(ip, XFS_ISTALE);
544 	XFS_STATS_INC(mp, xs_ig_found);
545 
546 	return 0;
547 
548 out_skip:
549 	trace_xfs_iget_skip(ip);
550 	XFS_STATS_INC(mp, xs_ig_frecycle);
551 	error = -EAGAIN;
552 out_error:
553 	spin_unlock(&ip->i_flags_lock);
554 	rcu_read_unlock();
555 	return error;
556 
557 out_inodegc_flush:
558 	spin_unlock(&ip->i_flags_lock);
559 	rcu_read_unlock();
560 	/*
561 	 * Do not wait for the workers, because the caller could hold an AGI
562 	 * buffer lock.  We're just going to sleep in a loop anyway.
563 	 */
564 	if (xfs_is_inodegc_enabled(mp))
565 		xfs_inodegc_queue_all(mp);
566 	return -EAGAIN;
567 }
568 
569 static int
xfs_iget_cache_miss(struct xfs_mount * mp,struct xfs_perag * pag,xfs_trans_t * tp,xfs_ino_t ino,struct xfs_inode ** ipp,int flags,int lock_flags)570 xfs_iget_cache_miss(
571 	struct xfs_mount	*mp,
572 	struct xfs_perag	*pag,
573 	xfs_trans_t		*tp,
574 	xfs_ino_t		ino,
575 	struct xfs_inode	**ipp,
576 	int			flags,
577 	int			lock_flags)
578 {
579 	struct xfs_inode	*ip;
580 	int			error;
581 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
582 	int			iflags;
583 
584 	ip = xfs_inode_alloc(mp, ino);
585 	if (!ip)
586 		return -ENOMEM;
587 
588 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
589 	if (error)
590 		goto out_destroy;
591 
592 	/*
593 	 * For version 5 superblocks, if we are initialising a new inode and we
594 	 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
595 	 * simply build the new inode core with a random generation number.
596 	 *
597 	 * For version 4 (and older) superblocks, log recovery is dependent on
598 	 * the i_flushiter field being initialised from the current on-disk
599 	 * value and hence we must also read the inode off disk even when
600 	 * initializing new inodes.
601 	 */
602 	if (xfs_has_v3inodes(mp) &&
603 	    (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
604 		VFS_I(ip)->i_generation = get_random_u32();
605 	} else {
606 		struct xfs_buf		*bp;
607 
608 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
609 		if (error)
610 			goto out_destroy;
611 
612 		error = xfs_inode_from_disk(ip,
613 				xfs_buf_offset(bp, ip->i_imap.im_boffset));
614 		if (!error)
615 			xfs_buf_set_ref(bp, XFS_INO_REF);
616 		xfs_trans_brelse(tp, bp);
617 
618 		if (error)
619 			goto out_destroy;
620 	}
621 
622 	trace_xfs_iget_miss(ip);
623 
624 	/*
625 	 * Check the inode free state is valid. This also detects lookup
626 	 * racing with unlinks.
627 	 */
628 	error = xfs_iget_check_free_state(ip, flags);
629 	if (error)
630 		goto out_destroy;
631 
632 	/*
633 	 * Preload the radix tree so we can insert safely under the
634 	 * write spinlock. Note that we cannot sleep inside the preload
635 	 * region. Since we can be called from transaction context, don't
636 	 * recurse into the file system.
637 	 */
638 	if (radix_tree_preload(GFP_NOFS)) {
639 		error = -EAGAIN;
640 		goto out_destroy;
641 	}
642 
643 	/*
644 	 * Because the inode hasn't been added to the radix-tree yet it can't
645 	 * be found by another thread, so we can do the non-sleeping lock here.
646 	 */
647 	if (lock_flags) {
648 		if (!xfs_ilock_nowait(ip, lock_flags))
649 			BUG();
650 	}
651 
652 	/*
653 	 * These values must be set before inserting the inode into the radix
654 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
655 	 * RCU locking mechanism) can find it and that lookup must see that this
656 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
657 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
658 	 * memory barrier that ensures this detection works correctly at lookup
659 	 * time.
660 	 */
661 	iflags = XFS_INEW;
662 	if (flags & XFS_IGET_DONTCACHE)
663 		d_mark_dontcache(VFS_I(ip));
664 	ip->i_udquot = NULL;
665 	ip->i_gdquot = NULL;
666 	ip->i_pdquot = NULL;
667 	xfs_iflags_set(ip, iflags);
668 
669 	/* insert the new inode */
670 	spin_lock(&pag->pag_ici_lock);
671 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
672 	if (unlikely(error)) {
673 		WARN_ON(error != -EEXIST);
674 		XFS_STATS_INC(mp, xs_ig_dup);
675 		error = -EAGAIN;
676 		goto out_preload_end;
677 	}
678 	spin_unlock(&pag->pag_ici_lock);
679 	radix_tree_preload_end();
680 
681 	*ipp = ip;
682 	return 0;
683 
684 out_preload_end:
685 	spin_unlock(&pag->pag_ici_lock);
686 	radix_tree_preload_end();
687 	if (lock_flags)
688 		xfs_iunlock(ip, lock_flags);
689 out_destroy:
690 	__destroy_inode(VFS_I(ip));
691 	xfs_inode_free(ip);
692 	return error;
693 }
694 
695 /*
696  * Look up an inode by number in the given file system.  The inode is looked up
697  * in the cache held in each AG.  If the inode is found in the cache, initialise
698  * the vfs inode if necessary.
699  *
700  * If it is not in core, read it in from the file system's device, add it to the
701  * cache and initialise the vfs inode.
702  *
703  * The inode is locked according to the value of the lock_flags parameter.
704  * Inode lookup is only done during metadata operations and not as part of the
705  * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
706  */
707 int
xfs_iget(struct xfs_mount * mp,struct xfs_trans * tp,xfs_ino_t ino,uint flags,uint lock_flags,struct xfs_inode ** ipp)708 xfs_iget(
709 	struct xfs_mount	*mp,
710 	struct xfs_trans	*tp,
711 	xfs_ino_t		ino,
712 	uint			flags,
713 	uint			lock_flags,
714 	struct xfs_inode	**ipp)
715 {
716 	struct xfs_inode	*ip;
717 	struct xfs_perag	*pag;
718 	xfs_agino_t		agino;
719 	int			error;
720 
721 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
722 
723 	/* reject inode numbers outside existing AGs */
724 	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
725 		return -EINVAL;
726 
727 	XFS_STATS_INC(mp, xs_ig_attempts);
728 
729 	/* get the perag structure and ensure that it's inode capable */
730 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
731 	agino = XFS_INO_TO_AGINO(mp, ino);
732 
733 again:
734 	error = 0;
735 	rcu_read_lock();
736 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
737 
738 	if (ip) {
739 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
740 		if (error)
741 			goto out_error_or_again;
742 	} else {
743 		rcu_read_unlock();
744 		if (flags & XFS_IGET_INCORE) {
745 			error = -ENODATA;
746 			goto out_error_or_again;
747 		}
748 		XFS_STATS_INC(mp, xs_ig_missed);
749 
750 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
751 							flags, lock_flags);
752 		if (error)
753 			goto out_error_or_again;
754 	}
755 	xfs_perag_put(pag);
756 
757 	*ipp = ip;
758 
759 	/*
760 	 * If we have a real type for an on-disk inode, we can setup the inode
761 	 * now.	 If it's a new inode being created, xfs_init_new_inode will
762 	 * handle it.
763 	 */
764 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
765 		xfs_setup_existing_inode(ip);
766 	return 0;
767 
768 out_error_or_again:
769 	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
770 		delay(1);
771 		goto again;
772 	}
773 	xfs_perag_put(pag);
774 	return error;
775 }
776 
777 /*
778  * "Is this a cached inode that's also allocated?"
779  *
780  * Look up an inode by number in the given file system.  If the inode is
781  * in cache and isn't in purgatory, return 1 if the inode is allocated
782  * and 0 if it is not.  For all other cases (not in cache, being torn
783  * down, etc.), return a negative error code.
784  *
785  * The caller has to prevent inode allocation and freeing activity,
786  * presumably by locking the AGI buffer.   This is to ensure that an
787  * inode cannot transition from allocated to freed until the caller is
788  * ready to allow that.  If the inode is in an intermediate state (new,
789  * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
790  * inode is not in the cache, -ENOENT will be returned.  The caller must
791  * deal with these scenarios appropriately.
792  *
793  * This is a specialized use case for the online scrubber; if you're
794  * reading this, you probably want xfs_iget.
795  */
796 int
xfs_icache_inode_is_allocated(struct xfs_mount * mp,struct xfs_trans * tp,xfs_ino_t ino,bool * inuse)797 xfs_icache_inode_is_allocated(
798 	struct xfs_mount	*mp,
799 	struct xfs_trans	*tp,
800 	xfs_ino_t		ino,
801 	bool			*inuse)
802 {
803 	struct xfs_inode	*ip;
804 	int			error;
805 
806 	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
807 	if (error)
808 		return error;
809 
810 	*inuse = !!(VFS_I(ip)->i_mode);
811 	xfs_irele(ip);
812 	return 0;
813 }
814 
815 /*
816  * Grab the inode for reclaim exclusively.
817  *
818  * We have found this inode via a lookup under RCU, so the inode may have
819  * already been freed, or it may be in the process of being recycled by
820  * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
821  * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
822  * will not be set. Hence we need to check for both these flag conditions to
823  * avoid inodes that are no longer reclaim candidates.
824  *
825  * Note: checking for other state flags here, under the i_flags_lock or not, is
826  * racy and should be avoided. Those races should be resolved only after we have
827  * ensured that we are able to reclaim this inode and the world can see that we
828  * are going to reclaim it.
829  *
830  * Return true if we grabbed it, false otherwise.
831  */
832 static bool
xfs_reclaim_igrab(struct xfs_inode * ip,struct xfs_icwalk * icw)833 xfs_reclaim_igrab(
834 	struct xfs_inode	*ip,
835 	struct xfs_icwalk	*icw)
836 {
837 	ASSERT(rcu_read_lock_held());
838 
839 	spin_lock(&ip->i_flags_lock);
840 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
841 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
842 		/* not a reclaim candidate. */
843 		spin_unlock(&ip->i_flags_lock);
844 		return false;
845 	}
846 
847 	/* Don't reclaim a sick inode unless the caller asked for it. */
848 	if (ip->i_sick &&
849 	    (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
850 		spin_unlock(&ip->i_flags_lock);
851 		return false;
852 	}
853 
854 	__xfs_iflags_set(ip, XFS_IRECLAIM);
855 	spin_unlock(&ip->i_flags_lock);
856 	return true;
857 }
858 
859 /*
860  * Inode reclaim is non-blocking, so the default action if progress cannot be
861  * made is to "requeue" the inode for reclaim by unlocking it and clearing the
862  * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
863  * blocking anymore and hence we can wait for the inode to be able to reclaim
864  * it.
865  *
866  * We do no IO here - if callers require inodes to be cleaned they must push the
867  * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
868  * done in the background in a non-blocking manner, and enables memory reclaim
869  * to make progress without blocking.
870  */
871 static void
xfs_reclaim_inode(struct xfs_inode * ip,struct xfs_perag * pag)872 xfs_reclaim_inode(
873 	struct xfs_inode	*ip,
874 	struct xfs_perag	*pag)
875 {
876 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
877 
878 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
879 		goto out;
880 	if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
881 		goto out_iunlock;
882 
883 	/*
884 	 * Check for log shutdown because aborting the inode can move the log
885 	 * tail and corrupt in memory state. This is fine if the log is shut
886 	 * down, but if the log is still active and only the mount is shut down
887 	 * then the in-memory log tail movement caused by the abort can be
888 	 * incorrectly propagated to disk.
889 	 */
890 	if (xlog_is_shutdown(ip->i_mount->m_log)) {
891 		xfs_iunpin_wait(ip);
892 		xfs_iflush_shutdown_abort(ip);
893 		goto reclaim;
894 	}
895 	if (xfs_ipincount(ip))
896 		goto out_clear_flush;
897 	if (!xfs_inode_clean(ip))
898 		goto out_clear_flush;
899 
900 	xfs_iflags_clear(ip, XFS_IFLUSHING);
901 reclaim:
902 	trace_xfs_inode_reclaiming(ip);
903 
904 	/*
905 	 * Because we use RCU freeing we need to ensure the inode always appears
906 	 * to be reclaimed with an invalid inode number when in the free state.
907 	 * We do this as early as possible under the ILOCK so that
908 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
909 	 * detect races with us here. By doing this, we guarantee that once
910 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
911 	 * it will see either a valid inode that will serialise correctly, or it
912 	 * will see an invalid inode that it can skip.
913 	 */
914 	spin_lock(&ip->i_flags_lock);
915 	ip->i_flags = XFS_IRECLAIM;
916 	ip->i_ino = 0;
917 	ip->i_sick = 0;
918 	ip->i_checked = 0;
919 	spin_unlock(&ip->i_flags_lock);
920 
921 	ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL);
922 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
923 
924 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
925 	/*
926 	 * Remove the inode from the per-AG radix tree.
927 	 *
928 	 * Because radix_tree_delete won't complain even if the item was never
929 	 * added to the tree assert that it's been there before to catch
930 	 * problems with the inode life time early on.
931 	 */
932 	spin_lock(&pag->pag_ici_lock);
933 	if (!radix_tree_delete(&pag->pag_ici_root,
934 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
935 		ASSERT(0);
936 	xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
937 	spin_unlock(&pag->pag_ici_lock);
938 
939 	/*
940 	 * Here we do an (almost) spurious inode lock in order to coordinate
941 	 * with inode cache radix tree lookups.  This is because the lookup
942 	 * can reference the inodes in the cache without taking references.
943 	 *
944 	 * We make that OK here by ensuring that we wait until the inode is
945 	 * unlocked after the lookup before we go ahead and free it.
946 	 */
947 	xfs_ilock(ip, XFS_ILOCK_EXCL);
948 	ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
949 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
950 	ASSERT(xfs_inode_clean(ip));
951 
952 	__xfs_inode_free(ip);
953 	return;
954 
955 out_clear_flush:
956 	xfs_iflags_clear(ip, XFS_IFLUSHING);
957 out_iunlock:
958 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
959 out:
960 	xfs_iflags_clear(ip, XFS_IRECLAIM);
961 }
962 
963 /* Reclaim sick inodes if we're unmounting or the fs went down. */
964 static inline bool
xfs_want_reclaim_sick(struct xfs_mount * mp)965 xfs_want_reclaim_sick(
966 	struct xfs_mount	*mp)
967 {
968 	return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
969 	       xfs_is_shutdown(mp);
970 }
971 
972 void
xfs_reclaim_inodes(struct xfs_mount * mp)973 xfs_reclaim_inodes(
974 	struct xfs_mount	*mp)
975 {
976 	struct xfs_icwalk	icw = {
977 		.icw_flags	= 0,
978 	};
979 
980 	if (xfs_want_reclaim_sick(mp))
981 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
982 
983 	while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
984 		xfs_ail_push_all_sync(mp->m_ail);
985 		xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
986 	}
987 }
988 
989 /*
990  * The shrinker infrastructure determines how many inodes we should scan for
991  * reclaim. We want as many clean inodes ready to reclaim as possible, so we
992  * push the AIL here. We also want to proactively free up memory if we can to
993  * minimise the amount of work memory reclaim has to do so we kick the
994  * background reclaim if it isn't already scheduled.
995  */
996 long
xfs_reclaim_inodes_nr(struct xfs_mount * mp,unsigned long nr_to_scan)997 xfs_reclaim_inodes_nr(
998 	struct xfs_mount	*mp,
999 	unsigned long		nr_to_scan)
1000 {
1001 	struct xfs_icwalk	icw = {
1002 		.icw_flags	= XFS_ICWALK_FLAG_SCAN_LIMIT,
1003 		.icw_scan_limit	= min_t(unsigned long, LONG_MAX, nr_to_scan),
1004 	};
1005 
1006 	if (xfs_want_reclaim_sick(mp))
1007 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1008 
1009 	/* kick background reclaimer and push the AIL */
1010 	xfs_reclaim_work_queue(mp);
1011 	xfs_ail_push_all(mp->m_ail);
1012 
1013 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1014 	return 0;
1015 }
1016 
1017 /*
1018  * Return the number of reclaimable inodes in the filesystem for
1019  * the shrinker to determine how much to reclaim.
1020  */
1021 long
xfs_reclaim_inodes_count(struct xfs_mount * mp)1022 xfs_reclaim_inodes_count(
1023 	struct xfs_mount	*mp)
1024 {
1025 	struct xfs_perag	*pag;
1026 	xfs_agnumber_t		ag = 0;
1027 	long			reclaimable = 0;
1028 
1029 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1030 		ag = pag->pag_agno + 1;
1031 		reclaimable += pag->pag_ici_reclaimable;
1032 		xfs_perag_put(pag);
1033 	}
1034 	return reclaimable;
1035 }
1036 
1037 STATIC bool
xfs_icwalk_match_id(struct xfs_inode * ip,struct xfs_icwalk * icw)1038 xfs_icwalk_match_id(
1039 	struct xfs_inode	*ip,
1040 	struct xfs_icwalk	*icw)
1041 {
1042 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1043 	    !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1044 		return false;
1045 
1046 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1047 	    !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1048 		return false;
1049 
1050 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1051 	    ip->i_projid != icw->icw_prid)
1052 		return false;
1053 
1054 	return true;
1055 }
1056 
1057 /*
1058  * A union-based inode filtering algorithm. Process the inode if any of the
1059  * criteria match. This is for global/internal scans only.
1060  */
1061 STATIC bool
xfs_icwalk_match_id_union(struct xfs_inode * ip,struct xfs_icwalk * icw)1062 xfs_icwalk_match_id_union(
1063 	struct xfs_inode	*ip,
1064 	struct xfs_icwalk	*icw)
1065 {
1066 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1067 	    uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1068 		return true;
1069 
1070 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1071 	    gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1072 		return true;
1073 
1074 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1075 	    ip->i_projid == icw->icw_prid)
1076 		return true;
1077 
1078 	return false;
1079 }
1080 
1081 /*
1082  * Is this inode @ip eligible for eof/cow block reclamation, given some
1083  * filtering parameters @icw?  The inode is eligible if @icw is null or
1084  * if the predicate functions match.
1085  */
1086 static bool
xfs_icwalk_match(struct xfs_inode * ip,struct xfs_icwalk * icw)1087 xfs_icwalk_match(
1088 	struct xfs_inode	*ip,
1089 	struct xfs_icwalk	*icw)
1090 {
1091 	bool			match;
1092 
1093 	if (!icw)
1094 		return true;
1095 
1096 	if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1097 		match = xfs_icwalk_match_id_union(ip, icw);
1098 	else
1099 		match = xfs_icwalk_match_id(ip, icw);
1100 	if (!match)
1101 		return false;
1102 
1103 	/* skip the inode if the file size is too small */
1104 	if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1105 	    XFS_ISIZE(ip) < icw->icw_min_file_size)
1106 		return false;
1107 
1108 	return true;
1109 }
1110 
1111 /*
1112  * This is a fast pass over the inode cache to try to get reclaim moving on as
1113  * many inodes as possible in a short period of time. It kicks itself every few
1114  * seconds, as well as being kicked by the inode cache shrinker when memory
1115  * goes low.
1116  */
1117 void
xfs_reclaim_worker(struct work_struct * work)1118 xfs_reclaim_worker(
1119 	struct work_struct *work)
1120 {
1121 	struct xfs_mount *mp = container_of(to_delayed_work(work),
1122 					struct xfs_mount, m_reclaim_work);
1123 
1124 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1125 	xfs_reclaim_work_queue(mp);
1126 }
1127 
1128 STATIC int
xfs_inode_free_eofblocks(struct xfs_inode * ip,struct xfs_icwalk * icw,unsigned int * lockflags)1129 xfs_inode_free_eofblocks(
1130 	struct xfs_inode	*ip,
1131 	struct xfs_icwalk	*icw,
1132 	unsigned int		*lockflags)
1133 {
1134 	bool			wait;
1135 
1136 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1137 
1138 	if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1139 		return 0;
1140 
1141 	/*
1142 	 * If the mapping is dirty the operation can block and wait for some
1143 	 * time. Unless we are waiting, skip it.
1144 	 */
1145 	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1146 		return 0;
1147 
1148 	if (!xfs_icwalk_match(ip, icw))
1149 		return 0;
1150 
1151 	/*
1152 	 * If the caller is waiting, return -EAGAIN to keep the background
1153 	 * scanner moving and revisit the inode in a subsequent pass.
1154 	 */
1155 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1156 		if (wait)
1157 			return -EAGAIN;
1158 		return 0;
1159 	}
1160 	*lockflags |= XFS_IOLOCK_EXCL;
1161 
1162 	if (xfs_can_free_eofblocks(ip, false))
1163 		return xfs_free_eofblocks(ip);
1164 
1165 	/* inode could be preallocated or append-only */
1166 	trace_xfs_inode_free_eofblocks_invalid(ip);
1167 	xfs_inode_clear_eofblocks_tag(ip);
1168 	return 0;
1169 }
1170 
1171 static void
xfs_blockgc_set_iflag(struct xfs_inode * ip,unsigned long iflag)1172 xfs_blockgc_set_iflag(
1173 	struct xfs_inode	*ip,
1174 	unsigned long		iflag)
1175 {
1176 	struct xfs_mount	*mp = ip->i_mount;
1177 	struct xfs_perag	*pag;
1178 
1179 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1180 
1181 	/*
1182 	 * Don't bother locking the AG and looking up in the radix trees
1183 	 * if we already know that we have the tag set.
1184 	 */
1185 	if (ip->i_flags & iflag)
1186 		return;
1187 	spin_lock(&ip->i_flags_lock);
1188 	ip->i_flags |= iflag;
1189 	spin_unlock(&ip->i_flags_lock);
1190 
1191 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1192 	spin_lock(&pag->pag_ici_lock);
1193 
1194 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1195 			XFS_ICI_BLOCKGC_TAG);
1196 
1197 	spin_unlock(&pag->pag_ici_lock);
1198 	xfs_perag_put(pag);
1199 }
1200 
1201 void
xfs_inode_set_eofblocks_tag(xfs_inode_t * ip)1202 xfs_inode_set_eofblocks_tag(
1203 	xfs_inode_t	*ip)
1204 {
1205 	trace_xfs_inode_set_eofblocks_tag(ip);
1206 	return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1207 }
1208 
1209 static void
xfs_blockgc_clear_iflag(struct xfs_inode * ip,unsigned long iflag)1210 xfs_blockgc_clear_iflag(
1211 	struct xfs_inode	*ip,
1212 	unsigned long		iflag)
1213 {
1214 	struct xfs_mount	*mp = ip->i_mount;
1215 	struct xfs_perag	*pag;
1216 	bool			clear_tag;
1217 
1218 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1219 
1220 	spin_lock(&ip->i_flags_lock);
1221 	ip->i_flags &= ~iflag;
1222 	clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1223 	spin_unlock(&ip->i_flags_lock);
1224 
1225 	if (!clear_tag)
1226 		return;
1227 
1228 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1229 	spin_lock(&pag->pag_ici_lock);
1230 
1231 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1232 			XFS_ICI_BLOCKGC_TAG);
1233 
1234 	spin_unlock(&pag->pag_ici_lock);
1235 	xfs_perag_put(pag);
1236 }
1237 
1238 void
xfs_inode_clear_eofblocks_tag(xfs_inode_t * ip)1239 xfs_inode_clear_eofblocks_tag(
1240 	xfs_inode_t	*ip)
1241 {
1242 	trace_xfs_inode_clear_eofblocks_tag(ip);
1243 	return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1244 }
1245 
1246 /*
1247  * Set ourselves up to free CoW blocks from this file.  If it's already clean
1248  * then we can bail out quickly, but otherwise we must back off if the file
1249  * is undergoing some kind of write.
1250  */
1251 static bool
xfs_prep_free_cowblocks(struct xfs_inode * ip)1252 xfs_prep_free_cowblocks(
1253 	struct xfs_inode	*ip)
1254 {
1255 	/*
1256 	 * Just clear the tag if we have an empty cow fork or none at all. It's
1257 	 * possible the inode was fully unshared since it was originally tagged.
1258 	 */
1259 	if (!xfs_inode_has_cow_data(ip)) {
1260 		trace_xfs_inode_free_cowblocks_invalid(ip);
1261 		xfs_inode_clear_cowblocks_tag(ip);
1262 		return false;
1263 	}
1264 
1265 	/*
1266 	 * If the mapping is dirty or under writeback we cannot touch the
1267 	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1268 	 */
1269 	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1270 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1271 	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1272 	    atomic_read(&VFS_I(ip)->i_dio_count))
1273 		return false;
1274 
1275 	return true;
1276 }
1277 
1278 /*
1279  * Automatic CoW Reservation Freeing
1280  *
1281  * These functions automatically garbage collect leftover CoW reservations
1282  * that were made on behalf of a cowextsize hint when we start to run out
1283  * of quota or when the reservations sit around for too long.  If the file
1284  * has dirty pages or is undergoing writeback, its CoW reservations will
1285  * be retained.
1286  *
1287  * The actual garbage collection piggybacks off the same code that runs
1288  * the speculative EOF preallocation garbage collector.
1289  */
1290 STATIC int
xfs_inode_free_cowblocks(struct xfs_inode * ip,struct xfs_icwalk * icw,unsigned int * lockflags)1291 xfs_inode_free_cowblocks(
1292 	struct xfs_inode	*ip,
1293 	struct xfs_icwalk	*icw,
1294 	unsigned int		*lockflags)
1295 {
1296 	bool			wait;
1297 	int			ret = 0;
1298 
1299 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1300 
1301 	if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1302 		return 0;
1303 
1304 	if (!xfs_prep_free_cowblocks(ip))
1305 		return 0;
1306 
1307 	if (!xfs_icwalk_match(ip, icw))
1308 		return 0;
1309 
1310 	/*
1311 	 * If the caller is waiting, return -EAGAIN to keep the background
1312 	 * scanner moving and revisit the inode in a subsequent pass.
1313 	 */
1314 	if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1315 	    !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1316 		if (wait)
1317 			return -EAGAIN;
1318 		return 0;
1319 	}
1320 	*lockflags |= XFS_IOLOCK_EXCL;
1321 
1322 	if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1323 		if (wait)
1324 			return -EAGAIN;
1325 		return 0;
1326 	}
1327 	*lockflags |= XFS_MMAPLOCK_EXCL;
1328 
1329 	/*
1330 	 * Check again, nobody else should be able to dirty blocks or change
1331 	 * the reflink iflag now that we have the first two locks held.
1332 	 */
1333 	if (xfs_prep_free_cowblocks(ip))
1334 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1335 	return ret;
1336 }
1337 
1338 void
xfs_inode_set_cowblocks_tag(xfs_inode_t * ip)1339 xfs_inode_set_cowblocks_tag(
1340 	xfs_inode_t	*ip)
1341 {
1342 	trace_xfs_inode_set_cowblocks_tag(ip);
1343 	return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1344 }
1345 
1346 void
xfs_inode_clear_cowblocks_tag(xfs_inode_t * ip)1347 xfs_inode_clear_cowblocks_tag(
1348 	xfs_inode_t	*ip)
1349 {
1350 	trace_xfs_inode_clear_cowblocks_tag(ip);
1351 	return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1352 }
1353 
1354 /* Disable post-EOF and CoW block auto-reclamation. */
1355 void
xfs_blockgc_stop(struct xfs_mount * mp)1356 xfs_blockgc_stop(
1357 	struct xfs_mount	*mp)
1358 {
1359 	struct xfs_perag	*pag;
1360 	xfs_agnumber_t		agno;
1361 
1362 	if (!xfs_clear_blockgc_enabled(mp))
1363 		return;
1364 
1365 	for_each_perag(mp, agno, pag)
1366 		cancel_delayed_work_sync(&pag->pag_blockgc_work);
1367 	trace_xfs_blockgc_stop(mp, __return_address);
1368 }
1369 
1370 /* Enable post-EOF and CoW block auto-reclamation. */
1371 void
xfs_blockgc_start(struct xfs_mount * mp)1372 xfs_blockgc_start(
1373 	struct xfs_mount	*mp)
1374 {
1375 	struct xfs_perag	*pag;
1376 	xfs_agnumber_t		agno;
1377 
1378 	if (xfs_set_blockgc_enabled(mp))
1379 		return;
1380 
1381 	trace_xfs_blockgc_start(mp, __return_address);
1382 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1383 		xfs_blockgc_queue(pag);
1384 }
1385 
1386 /* Don't try to run block gc on an inode that's in any of these states. */
1387 #define XFS_BLOCKGC_NOGRAB_IFLAGS	(XFS_INEW | \
1388 					 XFS_NEED_INACTIVE | \
1389 					 XFS_INACTIVATING | \
1390 					 XFS_IRECLAIMABLE | \
1391 					 XFS_IRECLAIM)
1392 /*
1393  * Decide if the given @ip is eligible for garbage collection of speculative
1394  * preallocations, and grab it if so.  Returns true if it's ready to go or
1395  * false if we should just ignore it.
1396  */
1397 static bool
xfs_blockgc_igrab(struct xfs_inode * ip)1398 xfs_blockgc_igrab(
1399 	struct xfs_inode	*ip)
1400 {
1401 	struct inode		*inode = VFS_I(ip);
1402 
1403 	ASSERT(rcu_read_lock_held());
1404 
1405 	/* Check for stale RCU freed inode */
1406 	spin_lock(&ip->i_flags_lock);
1407 	if (!ip->i_ino)
1408 		goto out_unlock_noent;
1409 
1410 	if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1411 		goto out_unlock_noent;
1412 	spin_unlock(&ip->i_flags_lock);
1413 
1414 	/* nothing to sync during shutdown */
1415 	if (xfs_is_shutdown(ip->i_mount))
1416 		return false;
1417 
1418 	/* If we can't grab the inode, it must on it's way to reclaim. */
1419 	if (!igrab(inode))
1420 		return false;
1421 
1422 	/* inode is valid */
1423 	return true;
1424 
1425 out_unlock_noent:
1426 	spin_unlock(&ip->i_flags_lock);
1427 	return false;
1428 }
1429 
1430 /* Scan one incore inode for block preallocations that we can remove. */
1431 static int
xfs_blockgc_scan_inode(struct xfs_inode * ip,struct xfs_icwalk * icw)1432 xfs_blockgc_scan_inode(
1433 	struct xfs_inode	*ip,
1434 	struct xfs_icwalk	*icw)
1435 {
1436 	unsigned int		lockflags = 0;
1437 	int			error;
1438 
1439 	error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1440 	if (error)
1441 		goto unlock;
1442 
1443 	error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1444 unlock:
1445 	if (lockflags)
1446 		xfs_iunlock(ip, lockflags);
1447 	xfs_irele(ip);
1448 	return error;
1449 }
1450 
1451 /* Background worker that trims preallocated space. */
1452 void
xfs_blockgc_worker(struct work_struct * work)1453 xfs_blockgc_worker(
1454 	struct work_struct	*work)
1455 {
1456 	struct xfs_perag	*pag = container_of(to_delayed_work(work),
1457 					struct xfs_perag, pag_blockgc_work);
1458 	struct xfs_mount	*mp = pag->pag_mount;
1459 	int			error;
1460 
1461 	trace_xfs_blockgc_worker(mp, __return_address);
1462 
1463 	error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1464 	if (error)
1465 		xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1466 				pag->pag_agno, error);
1467 	xfs_blockgc_queue(pag);
1468 }
1469 
1470 /*
1471  * Try to free space in the filesystem by purging inactive inodes, eofblocks
1472  * and cowblocks.
1473  */
1474 int
xfs_blockgc_free_space(struct xfs_mount * mp,struct xfs_icwalk * icw)1475 xfs_blockgc_free_space(
1476 	struct xfs_mount	*mp,
1477 	struct xfs_icwalk	*icw)
1478 {
1479 	int			error;
1480 
1481 	trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1482 
1483 	error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1484 	if (error)
1485 		return error;
1486 
1487 	xfs_inodegc_flush(mp);
1488 	return 0;
1489 }
1490 
1491 /*
1492  * Reclaim all the free space that we can by scheduling the background blockgc
1493  * and inodegc workers immediately and waiting for them all to clear.
1494  */
1495 void
xfs_blockgc_flush_all(struct xfs_mount * mp)1496 xfs_blockgc_flush_all(
1497 	struct xfs_mount	*mp)
1498 {
1499 	struct xfs_perag	*pag;
1500 	xfs_agnumber_t		agno;
1501 
1502 	trace_xfs_blockgc_flush_all(mp, __return_address);
1503 
1504 	/*
1505 	 * For each blockgc worker, move its queue time up to now.  If it
1506 	 * wasn't queued, it will not be requeued.  Then flush whatever's
1507 	 * left.
1508 	 */
1509 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1510 		mod_delayed_work(pag->pag_mount->m_blockgc_wq,
1511 				&pag->pag_blockgc_work, 0);
1512 
1513 	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1514 		flush_delayed_work(&pag->pag_blockgc_work);
1515 
1516 	xfs_inodegc_flush(mp);
1517 }
1518 
1519 /*
1520  * Run cow/eofblocks scans on the supplied dquots.  We don't know exactly which
1521  * quota caused an allocation failure, so we make a best effort by including
1522  * each quota under low free space conditions (less than 1% free space) in the
1523  * scan.
1524  *
1525  * Callers must not hold any inode's ILOCK.  If requesting a synchronous scan
1526  * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1527  * MMAPLOCK.
1528  */
1529 int
xfs_blockgc_free_dquots(struct xfs_mount * mp,struct xfs_dquot * udqp,struct xfs_dquot * gdqp,struct xfs_dquot * pdqp,unsigned int iwalk_flags)1530 xfs_blockgc_free_dquots(
1531 	struct xfs_mount	*mp,
1532 	struct xfs_dquot	*udqp,
1533 	struct xfs_dquot	*gdqp,
1534 	struct xfs_dquot	*pdqp,
1535 	unsigned int		iwalk_flags)
1536 {
1537 	struct xfs_icwalk	icw = {0};
1538 	bool			do_work = false;
1539 
1540 	if (!udqp && !gdqp && !pdqp)
1541 		return 0;
1542 
1543 	/*
1544 	 * Run a scan to free blocks using the union filter to cover all
1545 	 * applicable quotas in a single scan.
1546 	 */
1547 	icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1548 
1549 	if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1550 		icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1551 		icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1552 		do_work = true;
1553 	}
1554 
1555 	if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1556 		icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1557 		icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1558 		do_work = true;
1559 	}
1560 
1561 	if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1562 		icw.icw_prid = pdqp->q_id;
1563 		icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1564 		do_work = true;
1565 	}
1566 
1567 	if (!do_work)
1568 		return 0;
1569 
1570 	return xfs_blockgc_free_space(mp, &icw);
1571 }
1572 
1573 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1574 int
xfs_blockgc_free_quota(struct xfs_inode * ip,unsigned int iwalk_flags)1575 xfs_blockgc_free_quota(
1576 	struct xfs_inode	*ip,
1577 	unsigned int		iwalk_flags)
1578 {
1579 	return xfs_blockgc_free_dquots(ip->i_mount,
1580 			xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1581 			xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1582 			xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1583 }
1584 
1585 /* XFS Inode Cache Walking Code */
1586 
1587 /*
1588  * The inode lookup is done in batches to keep the amount of lock traffic and
1589  * radix tree lookups to a minimum. The batch size is a trade off between
1590  * lookup reduction and stack usage. This is in the reclaim path, so we can't
1591  * be too greedy.
1592  */
1593 #define XFS_LOOKUP_BATCH	32
1594 
1595 
1596 /*
1597  * Decide if we want to grab this inode in anticipation of doing work towards
1598  * the goal.
1599  */
1600 static inline bool
xfs_icwalk_igrab(enum xfs_icwalk_goal goal,struct xfs_inode * ip,struct xfs_icwalk * icw)1601 xfs_icwalk_igrab(
1602 	enum xfs_icwalk_goal	goal,
1603 	struct xfs_inode	*ip,
1604 	struct xfs_icwalk	*icw)
1605 {
1606 	switch (goal) {
1607 	case XFS_ICWALK_BLOCKGC:
1608 		return xfs_blockgc_igrab(ip);
1609 	case XFS_ICWALK_RECLAIM:
1610 		return xfs_reclaim_igrab(ip, icw);
1611 	default:
1612 		return false;
1613 	}
1614 }
1615 
1616 /*
1617  * Process an inode.  Each processing function must handle any state changes
1618  * made by the icwalk igrab function.  Return -EAGAIN to skip an inode.
1619  */
1620 static inline int
xfs_icwalk_process_inode(enum xfs_icwalk_goal goal,struct xfs_inode * ip,struct xfs_perag * pag,struct xfs_icwalk * icw)1621 xfs_icwalk_process_inode(
1622 	enum xfs_icwalk_goal	goal,
1623 	struct xfs_inode	*ip,
1624 	struct xfs_perag	*pag,
1625 	struct xfs_icwalk	*icw)
1626 {
1627 	int			error = 0;
1628 
1629 	switch (goal) {
1630 	case XFS_ICWALK_BLOCKGC:
1631 		error = xfs_blockgc_scan_inode(ip, icw);
1632 		break;
1633 	case XFS_ICWALK_RECLAIM:
1634 		xfs_reclaim_inode(ip, pag);
1635 		break;
1636 	}
1637 	return error;
1638 }
1639 
1640 /*
1641  * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1642  * process them in some manner.
1643  */
1644 static int
xfs_icwalk_ag(struct xfs_perag * pag,enum xfs_icwalk_goal goal,struct xfs_icwalk * icw)1645 xfs_icwalk_ag(
1646 	struct xfs_perag	*pag,
1647 	enum xfs_icwalk_goal	goal,
1648 	struct xfs_icwalk	*icw)
1649 {
1650 	struct xfs_mount	*mp = pag->pag_mount;
1651 	uint32_t		first_index;
1652 	int			last_error = 0;
1653 	int			skipped;
1654 	bool			done;
1655 	int			nr_found;
1656 
1657 restart:
1658 	done = false;
1659 	skipped = 0;
1660 	if (goal == XFS_ICWALK_RECLAIM)
1661 		first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1662 	else
1663 		first_index = 0;
1664 	nr_found = 0;
1665 	do {
1666 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1667 		int		error = 0;
1668 		int		i;
1669 
1670 		rcu_read_lock();
1671 
1672 		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1673 				(void **) batch, first_index,
1674 				XFS_LOOKUP_BATCH, goal);
1675 		if (!nr_found) {
1676 			done = true;
1677 			rcu_read_unlock();
1678 			break;
1679 		}
1680 
1681 		/*
1682 		 * Grab the inodes before we drop the lock. if we found
1683 		 * nothing, nr == 0 and the loop will be skipped.
1684 		 */
1685 		for (i = 0; i < nr_found; i++) {
1686 			struct xfs_inode *ip = batch[i];
1687 
1688 			if (done || !xfs_icwalk_igrab(goal, ip, icw))
1689 				batch[i] = NULL;
1690 
1691 			/*
1692 			 * Update the index for the next lookup. Catch
1693 			 * overflows into the next AG range which can occur if
1694 			 * we have inodes in the last block of the AG and we
1695 			 * are currently pointing to the last inode.
1696 			 *
1697 			 * Because we may see inodes that are from the wrong AG
1698 			 * due to RCU freeing and reallocation, only update the
1699 			 * index if it lies in this AG. It was a race that lead
1700 			 * us to see this inode, so another lookup from the
1701 			 * same index will not find it again.
1702 			 */
1703 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
1704 				continue;
1705 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1706 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1707 				done = true;
1708 		}
1709 
1710 		/* unlock now we've grabbed the inodes. */
1711 		rcu_read_unlock();
1712 
1713 		for (i = 0; i < nr_found; i++) {
1714 			if (!batch[i])
1715 				continue;
1716 			error = xfs_icwalk_process_inode(goal, batch[i], pag,
1717 					icw);
1718 			if (error == -EAGAIN) {
1719 				skipped++;
1720 				continue;
1721 			}
1722 			if (error && last_error != -EFSCORRUPTED)
1723 				last_error = error;
1724 		}
1725 
1726 		/* bail out if the filesystem is corrupted.  */
1727 		if (error == -EFSCORRUPTED)
1728 			break;
1729 
1730 		cond_resched();
1731 
1732 		if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1733 			icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1734 			if (icw->icw_scan_limit <= 0)
1735 				break;
1736 		}
1737 	} while (nr_found && !done);
1738 
1739 	if (goal == XFS_ICWALK_RECLAIM) {
1740 		if (done)
1741 			first_index = 0;
1742 		WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1743 	}
1744 
1745 	if (skipped) {
1746 		delay(1);
1747 		goto restart;
1748 	}
1749 	return last_error;
1750 }
1751 
1752 /* Walk all incore inodes to achieve a given goal. */
1753 static int
xfs_icwalk(struct xfs_mount * mp,enum xfs_icwalk_goal goal,struct xfs_icwalk * icw)1754 xfs_icwalk(
1755 	struct xfs_mount	*mp,
1756 	enum xfs_icwalk_goal	goal,
1757 	struct xfs_icwalk	*icw)
1758 {
1759 	struct xfs_perag	*pag;
1760 	int			error = 0;
1761 	int			last_error = 0;
1762 	xfs_agnumber_t		agno;
1763 
1764 	for_each_perag_tag(mp, agno, pag, goal) {
1765 		error = xfs_icwalk_ag(pag, goal, icw);
1766 		if (error) {
1767 			last_error = error;
1768 			if (error == -EFSCORRUPTED) {
1769 				xfs_perag_put(pag);
1770 				break;
1771 			}
1772 		}
1773 	}
1774 	return last_error;
1775 	BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1776 }
1777 
1778 #ifdef DEBUG
1779 static void
xfs_check_delalloc(struct xfs_inode * ip,int whichfork)1780 xfs_check_delalloc(
1781 	struct xfs_inode	*ip,
1782 	int			whichfork)
1783 {
1784 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
1785 	struct xfs_bmbt_irec	got;
1786 	struct xfs_iext_cursor	icur;
1787 
1788 	if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1789 		return;
1790 	do {
1791 		if (isnullstartblock(got.br_startblock)) {
1792 			xfs_warn(ip->i_mount,
1793 	"ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1794 				ip->i_ino,
1795 				whichfork == XFS_DATA_FORK ? "data" : "cow",
1796 				got.br_startoff, got.br_blockcount);
1797 		}
1798 	} while (xfs_iext_next_extent(ifp, &icur, &got));
1799 }
1800 #else
1801 #define xfs_check_delalloc(ip, whichfork)	do { } while (0)
1802 #endif
1803 
1804 /* Schedule the inode for reclaim. */
1805 static void
xfs_inodegc_set_reclaimable(struct xfs_inode * ip)1806 xfs_inodegc_set_reclaimable(
1807 	struct xfs_inode	*ip)
1808 {
1809 	struct xfs_mount	*mp = ip->i_mount;
1810 	struct xfs_perag	*pag;
1811 
1812 	if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1813 		xfs_check_delalloc(ip, XFS_DATA_FORK);
1814 		xfs_check_delalloc(ip, XFS_COW_FORK);
1815 		ASSERT(0);
1816 	}
1817 
1818 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1819 	spin_lock(&pag->pag_ici_lock);
1820 	spin_lock(&ip->i_flags_lock);
1821 
1822 	trace_xfs_inode_set_reclaimable(ip);
1823 	ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1824 	ip->i_flags |= XFS_IRECLAIMABLE;
1825 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1826 			XFS_ICI_RECLAIM_TAG);
1827 
1828 	spin_unlock(&ip->i_flags_lock);
1829 	spin_unlock(&pag->pag_ici_lock);
1830 	xfs_perag_put(pag);
1831 }
1832 
1833 /*
1834  * Free all speculative preallocations and possibly even the inode itself.
1835  * This is the last chance to make changes to an otherwise unreferenced file
1836  * before incore reclamation happens.
1837  */
1838 static void
xfs_inodegc_inactivate(struct xfs_inode * ip)1839 xfs_inodegc_inactivate(
1840 	struct xfs_inode	*ip)
1841 {
1842 	trace_xfs_inode_inactivating(ip);
1843 	xfs_inactive(ip);
1844 	xfs_inodegc_set_reclaimable(ip);
1845 }
1846 
1847 void
xfs_inodegc_worker(struct work_struct * work)1848 xfs_inodegc_worker(
1849 	struct work_struct	*work)
1850 {
1851 	struct xfs_inodegc	*gc = container_of(to_delayed_work(work),
1852 						struct xfs_inodegc, work);
1853 	struct llist_node	*node = llist_del_all(&gc->list);
1854 	struct xfs_inode	*ip, *n;
1855 
1856 	ASSERT(gc->cpu == smp_processor_id());
1857 
1858 	WRITE_ONCE(gc->items, 0);
1859 
1860 	if (!node)
1861 		return;
1862 
1863 	ip = llist_entry(node, struct xfs_inode, i_gclist);
1864 	trace_xfs_inodegc_worker(ip->i_mount, READ_ONCE(gc->shrinker_hits));
1865 
1866 	WRITE_ONCE(gc->shrinker_hits, 0);
1867 	llist_for_each_entry_safe(ip, n, node, i_gclist) {
1868 		xfs_iflags_set(ip, XFS_INACTIVATING);
1869 		xfs_inodegc_inactivate(ip);
1870 	}
1871 }
1872 
1873 /*
1874  * Expedite all pending inodegc work to run immediately. This does not wait for
1875  * completion of the work.
1876  */
1877 void
xfs_inodegc_push(struct xfs_mount * mp)1878 xfs_inodegc_push(
1879 	struct xfs_mount	*mp)
1880 {
1881 	if (!xfs_is_inodegc_enabled(mp))
1882 		return;
1883 	trace_xfs_inodegc_push(mp, __return_address);
1884 	xfs_inodegc_queue_all(mp);
1885 }
1886 
1887 /*
1888  * Force all currently queued inode inactivation work to run immediately and
1889  * wait for the work to finish.
1890  */
1891 void
xfs_inodegc_flush(struct xfs_mount * mp)1892 xfs_inodegc_flush(
1893 	struct xfs_mount	*mp)
1894 {
1895 	xfs_inodegc_push(mp);
1896 	trace_xfs_inodegc_flush(mp, __return_address);
1897 	flush_workqueue(mp->m_inodegc_wq);
1898 }
1899 
1900 /*
1901  * Flush all the pending work and then disable the inode inactivation background
1902  * workers and wait for them to stop.  Caller must hold sb->s_umount to
1903  * coordinate changes in the inodegc_enabled state.
1904  */
1905 void
xfs_inodegc_stop(struct xfs_mount * mp)1906 xfs_inodegc_stop(
1907 	struct xfs_mount	*mp)
1908 {
1909 	bool			rerun;
1910 
1911 	if (!xfs_clear_inodegc_enabled(mp))
1912 		return;
1913 
1914 	/*
1915 	 * Drain all pending inodegc work, including inodes that could be
1916 	 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan
1917 	 * threads that sample the inodegc state just prior to us clearing it.
1918 	 * The inodegc flag state prevents new threads from queuing more
1919 	 * inodes, so we queue pending work items and flush the workqueue until
1920 	 * all inodegc lists are empty.  IOWs, we cannot use drain_workqueue
1921 	 * here because it does not allow other unserialized mechanisms to
1922 	 * reschedule inodegc work while this draining is in progress.
1923 	 */
1924 	xfs_inodegc_queue_all(mp);
1925 	do {
1926 		flush_workqueue(mp->m_inodegc_wq);
1927 		rerun = xfs_inodegc_queue_all(mp);
1928 	} while (rerun);
1929 
1930 	trace_xfs_inodegc_stop(mp, __return_address);
1931 }
1932 
1933 /*
1934  * Enable the inode inactivation background workers and schedule deferred inode
1935  * inactivation work if there is any.  Caller must hold sb->s_umount to
1936  * coordinate changes in the inodegc_enabled state.
1937  */
1938 void
xfs_inodegc_start(struct xfs_mount * mp)1939 xfs_inodegc_start(
1940 	struct xfs_mount	*mp)
1941 {
1942 	if (xfs_set_inodegc_enabled(mp))
1943 		return;
1944 
1945 	trace_xfs_inodegc_start(mp, __return_address);
1946 	xfs_inodegc_queue_all(mp);
1947 }
1948 
1949 #ifdef CONFIG_XFS_RT
1950 static inline bool
xfs_inodegc_want_queue_rt_file(struct xfs_inode * ip)1951 xfs_inodegc_want_queue_rt_file(
1952 	struct xfs_inode	*ip)
1953 {
1954 	struct xfs_mount	*mp = ip->i_mount;
1955 
1956 	if (!XFS_IS_REALTIME_INODE(ip))
1957 		return false;
1958 
1959 	if (__percpu_counter_compare(&mp->m_frextents,
1960 				mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
1961 				XFS_FDBLOCKS_BATCH) < 0)
1962 		return true;
1963 
1964 	return false;
1965 }
1966 #else
1967 # define xfs_inodegc_want_queue_rt_file(ip)	(false)
1968 #endif /* CONFIG_XFS_RT */
1969 
1970 /*
1971  * Schedule the inactivation worker when:
1972  *
1973  *  - We've accumulated more than one inode cluster buffer's worth of inodes.
1974  *  - There is less than 5% free space left.
1975  *  - Any of the quotas for this inode are near an enforcement limit.
1976  */
1977 static inline bool
xfs_inodegc_want_queue_work(struct xfs_inode * ip,unsigned int items)1978 xfs_inodegc_want_queue_work(
1979 	struct xfs_inode	*ip,
1980 	unsigned int		items)
1981 {
1982 	struct xfs_mount	*mp = ip->i_mount;
1983 
1984 	if (items > mp->m_ino_geo.inodes_per_cluster)
1985 		return true;
1986 
1987 	if (__percpu_counter_compare(&mp->m_fdblocks,
1988 				mp->m_low_space[XFS_LOWSP_5_PCNT],
1989 				XFS_FDBLOCKS_BATCH) < 0)
1990 		return true;
1991 
1992 	if (xfs_inodegc_want_queue_rt_file(ip))
1993 		return true;
1994 
1995 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
1996 		return true;
1997 
1998 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
1999 		return true;
2000 
2001 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
2002 		return true;
2003 
2004 	return false;
2005 }
2006 
2007 /*
2008  * Upper bound on the number of inodes in each AG that can be queued for
2009  * inactivation at any given time, to avoid monopolizing the workqueue.
2010  */
2011 #define XFS_INODEGC_MAX_BACKLOG		(4 * XFS_INODES_PER_CHUNK)
2012 
2013 /*
2014  * Make the frontend wait for inactivations when:
2015  *
2016  *  - Memory shrinkers queued the inactivation worker and it hasn't finished.
2017  *  - The queue depth exceeds the maximum allowable percpu backlog.
2018  *
2019  * Note: If the current thread is running a transaction, we don't ever want to
2020  * wait for other transactions because that could introduce a deadlock.
2021  */
2022 static inline bool
xfs_inodegc_want_flush_work(struct xfs_inode * ip,unsigned int items,unsigned int shrinker_hits)2023 xfs_inodegc_want_flush_work(
2024 	struct xfs_inode	*ip,
2025 	unsigned int		items,
2026 	unsigned int		shrinker_hits)
2027 {
2028 	if (current->journal_info)
2029 		return false;
2030 
2031 	if (shrinker_hits > 0)
2032 		return true;
2033 
2034 	if (items > XFS_INODEGC_MAX_BACKLOG)
2035 		return true;
2036 
2037 	return false;
2038 }
2039 
2040 /*
2041  * Queue a background inactivation worker if there are inodes that need to be
2042  * inactivated and higher level xfs code hasn't disabled the background
2043  * workers.
2044  */
2045 static void
xfs_inodegc_queue(struct xfs_inode * ip)2046 xfs_inodegc_queue(
2047 	struct xfs_inode	*ip)
2048 {
2049 	struct xfs_mount	*mp = ip->i_mount;
2050 	struct xfs_inodegc	*gc;
2051 	int			items;
2052 	unsigned int		shrinker_hits;
2053 	unsigned long		queue_delay = 1;
2054 
2055 	trace_xfs_inode_set_need_inactive(ip);
2056 	spin_lock(&ip->i_flags_lock);
2057 	ip->i_flags |= XFS_NEED_INACTIVE;
2058 	spin_unlock(&ip->i_flags_lock);
2059 
2060 	gc = get_cpu_ptr(mp->m_inodegc);
2061 	llist_add(&ip->i_gclist, &gc->list);
2062 	items = READ_ONCE(gc->items);
2063 	WRITE_ONCE(gc->items, items + 1);
2064 	shrinker_hits = READ_ONCE(gc->shrinker_hits);
2065 
2066 	/*
2067 	 * We queue the work while holding the current CPU so that the work
2068 	 * is scheduled to run on this CPU.
2069 	 */
2070 	if (!xfs_is_inodegc_enabled(mp)) {
2071 		put_cpu_ptr(gc);
2072 		return;
2073 	}
2074 
2075 	if (xfs_inodegc_want_queue_work(ip, items))
2076 		queue_delay = 0;
2077 
2078 	trace_xfs_inodegc_queue(mp, __return_address);
2079 	mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work,
2080 			queue_delay);
2081 	put_cpu_ptr(gc);
2082 
2083 	if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2084 		trace_xfs_inodegc_throttle(mp, __return_address);
2085 		flush_delayed_work(&gc->work);
2086 	}
2087 }
2088 
2089 /*
2090  * Fold the dead CPU inodegc queue into the current CPUs queue.
2091  */
2092 void
xfs_inodegc_cpu_dead(struct xfs_mount * mp,unsigned int dead_cpu)2093 xfs_inodegc_cpu_dead(
2094 	struct xfs_mount	*mp,
2095 	unsigned int		dead_cpu)
2096 {
2097 	struct xfs_inodegc	*dead_gc, *gc;
2098 	struct llist_node	*first, *last;
2099 	unsigned int		count = 0;
2100 
2101 	dead_gc = per_cpu_ptr(mp->m_inodegc, dead_cpu);
2102 	cancel_delayed_work_sync(&dead_gc->work);
2103 
2104 	if (llist_empty(&dead_gc->list))
2105 		return;
2106 
2107 	first = dead_gc->list.first;
2108 	last = first;
2109 	while (last->next) {
2110 		last = last->next;
2111 		count++;
2112 	}
2113 	dead_gc->list.first = NULL;
2114 	dead_gc->items = 0;
2115 
2116 	/* Add pending work to current CPU */
2117 	gc = get_cpu_ptr(mp->m_inodegc);
2118 	llist_add_batch(first, last, &gc->list);
2119 	count += READ_ONCE(gc->items);
2120 	WRITE_ONCE(gc->items, count);
2121 
2122 	if (xfs_is_inodegc_enabled(mp)) {
2123 		trace_xfs_inodegc_queue(mp, __return_address);
2124 		mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work,
2125 				0);
2126 	}
2127 	put_cpu_ptr(gc);
2128 }
2129 
2130 /*
2131  * We set the inode flag atomically with the radix tree tag.  Once we get tag
2132  * lookups on the radix tree, this inode flag can go away.
2133  *
2134  * We always use background reclaim here because even if the inode is clean, it
2135  * still may be under IO and hence we have wait for IO completion to occur
2136  * before we can reclaim the inode. The background reclaim path handles this
2137  * more efficiently than we can here, so simply let background reclaim tear down
2138  * all inodes.
2139  */
2140 void
xfs_inode_mark_reclaimable(struct xfs_inode * ip)2141 xfs_inode_mark_reclaimable(
2142 	struct xfs_inode	*ip)
2143 {
2144 	struct xfs_mount	*mp = ip->i_mount;
2145 	bool			need_inactive;
2146 
2147 	XFS_STATS_INC(mp, vn_reclaim);
2148 
2149 	/*
2150 	 * We should never get here with any of the reclaim flags already set.
2151 	 */
2152 	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2153 
2154 	need_inactive = xfs_inode_needs_inactive(ip);
2155 	if (need_inactive) {
2156 		xfs_inodegc_queue(ip);
2157 		return;
2158 	}
2159 
2160 	/* Going straight to reclaim, so drop the dquots. */
2161 	xfs_qm_dqdetach(ip);
2162 	xfs_inodegc_set_reclaimable(ip);
2163 }
2164 
2165 /*
2166  * Register a phony shrinker so that we can run background inodegc sooner when
2167  * there's memory pressure.  Inactivation does not itself free any memory but
2168  * it does make inodes reclaimable, which eventually frees memory.
2169  *
2170  * The count function, seek value, and batch value are crafted to trigger the
2171  * scan function during the second round of scanning.  Hopefully this means
2172  * that we reclaimed enough memory that initiating metadata transactions won't
2173  * make things worse.
2174  */
2175 #define XFS_INODEGC_SHRINKER_COUNT	(1UL << DEF_PRIORITY)
2176 #define XFS_INODEGC_SHRINKER_BATCH	((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2177 
2178 static unsigned long
xfs_inodegc_shrinker_count(struct shrinker * shrink,struct shrink_control * sc)2179 xfs_inodegc_shrinker_count(
2180 	struct shrinker		*shrink,
2181 	struct shrink_control	*sc)
2182 {
2183 	struct xfs_mount	*mp = container_of(shrink, struct xfs_mount,
2184 						   m_inodegc_shrinker);
2185 	struct xfs_inodegc	*gc;
2186 	int			cpu;
2187 
2188 	if (!xfs_is_inodegc_enabled(mp))
2189 		return 0;
2190 
2191 	for_each_online_cpu(cpu) {
2192 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2193 		if (!llist_empty(&gc->list))
2194 			return XFS_INODEGC_SHRINKER_COUNT;
2195 	}
2196 
2197 	return 0;
2198 }
2199 
2200 static unsigned long
xfs_inodegc_shrinker_scan(struct shrinker * shrink,struct shrink_control * sc)2201 xfs_inodegc_shrinker_scan(
2202 	struct shrinker		*shrink,
2203 	struct shrink_control	*sc)
2204 {
2205 	struct xfs_mount	*mp = container_of(shrink, struct xfs_mount,
2206 						   m_inodegc_shrinker);
2207 	struct xfs_inodegc	*gc;
2208 	int			cpu;
2209 	bool			no_items = true;
2210 
2211 	if (!xfs_is_inodegc_enabled(mp))
2212 		return SHRINK_STOP;
2213 
2214 	trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2215 
2216 	for_each_online_cpu(cpu) {
2217 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2218 		if (!llist_empty(&gc->list)) {
2219 			unsigned int	h = READ_ONCE(gc->shrinker_hits);
2220 
2221 			WRITE_ONCE(gc->shrinker_hits, h + 1);
2222 			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
2223 			no_items = false;
2224 		}
2225 	}
2226 
2227 	/*
2228 	 * If there are no inodes to inactivate, we don't want the shrinker
2229 	 * to think there's deferred work to call us back about.
2230 	 */
2231 	if (no_items)
2232 		return LONG_MAX;
2233 
2234 	return SHRINK_STOP;
2235 }
2236 
2237 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2238 int
xfs_inodegc_register_shrinker(struct xfs_mount * mp)2239 xfs_inodegc_register_shrinker(
2240 	struct xfs_mount	*mp)
2241 {
2242 	struct shrinker		*shrink = &mp->m_inodegc_shrinker;
2243 
2244 	shrink->count_objects = xfs_inodegc_shrinker_count;
2245 	shrink->scan_objects = xfs_inodegc_shrinker_scan;
2246 	shrink->seeks = 0;
2247 	shrink->flags = SHRINKER_NONSLAB;
2248 	shrink->batch = XFS_INODEGC_SHRINKER_BATCH;
2249 
2250 	return register_shrinker(shrink, "xfs-inodegc:%s", mp->m_super->s_id);
2251 }
2252