• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16 
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
20 
21 /*
22  * Allocates a generic ring segment from the ring pool, sets the dma address,
23  * initializes the segment to zero, and sets the private next pointer to NULL.
24  *
25  * Section 4.11.1.1:
26  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27  */
xhci_segment_alloc(struct xhci_hcd * xhci,unsigned int cycle_state,unsigned int max_packet,gfp_t flags)28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29 					       unsigned int cycle_state,
30 					       unsigned int max_packet,
31 					       gfp_t flags)
32 {
33 	struct xhci_segment *seg;
34 	dma_addr_t	dma;
35 	int		i;
36 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37 
38 	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39 	if (!seg)
40 		return NULL;
41 
42 	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43 	if (!seg->trbs) {
44 		kfree(seg);
45 		return NULL;
46 	}
47 
48 	if (max_packet) {
49 		seg->bounce_buf = kzalloc_node(max_packet, flags,
50 					dev_to_node(dev));
51 		if (!seg->bounce_buf) {
52 			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53 			kfree(seg);
54 			return NULL;
55 		}
56 	}
57 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 	if (cycle_state == 0) {
59 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 			seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
61 	}
62 	seg->dma = dma;
63 	seg->next = NULL;
64 
65 	return seg;
66 }
67 
xhci_segment_free(struct xhci_hcd * xhci,struct xhci_segment * seg)68 void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70 	if (seg->trbs) {
71 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 		seg->trbs = NULL;
73 	}
74 	kfree(seg->bounce_buf);
75 	kfree(seg);
76 }
77 EXPORT_SYMBOL_GPL(xhci_segment_free);
78 
xhci_free_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment * first)79 void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
80 				struct xhci_segment *first)
81 {
82 	struct xhci_segment *seg;
83 
84 	seg = first->next;
85 	while (seg != first) {
86 		struct xhci_segment *next = seg->next;
87 		xhci_segment_free(xhci, seg);
88 		seg = next;
89 	}
90 	xhci_segment_free(xhci, first);
91 }
92 
93 /*
94  * Make the prev segment point to the next segment.
95  *
96  * Change the last TRB in the prev segment to be a Link TRB which points to the
97  * DMA address of the next segment.  The caller needs to set any Link TRB
98  * related flags, such as End TRB, Toggle Cycle, and no snoop.
99  */
xhci_link_segments(struct xhci_segment * prev,struct xhci_segment * next,enum xhci_ring_type type,bool chain_links)100 void xhci_link_segments(struct xhci_segment *prev,
101 			struct xhci_segment *next,
102 			enum xhci_ring_type type, bool chain_links)
103 {
104 	u32 val;
105 
106 	if (!prev || !next)
107 		return;
108 	prev->next = next;
109 	if (type != TYPE_EVENT) {
110 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
111 			cpu_to_le64(next->dma);
112 
113 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
114 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
115 		val &= ~TRB_TYPE_BITMASK;
116 		val |= TRB_TYPE(TRB_LINK);
117 		if (chain_links)
118 			val |= TRB_CHAIN;
119 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
120 	}
121 }
122 EXPORT_SYMBOL_GPL(xhci_link_segments);
123 
124 /*
125  * Link the ring to the new segments.
126  * Set Toggle Cycle for the new ring if needed.
127  */
xhci_link_rings(struct xhci_hcd * xhci,struct xhci_ring * ring,struct xhci_segment * first,struct xhci_segment * last,unsigned int num_segs)128 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
129 		struct xhci_segment *first, struct xhci_segment *last,
130 		unsigned int num_segs)
131 {
132 	struct xhci_segment *next;
133 	bool chain_links;
134 
135 	if (!ring || !first || !last)
136 		return;
137 
138 	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
139 	chain_links = !!(xhci_link_trb_quirk(xhci) ||
140 			 (ring->type == TYPE_ISOC &&
141 			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
142 
143 	next = ring->enq_seg->next;
144 	xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
145 	xhci_link_segments(last, next, ring->type, chain_links);
146 	ring->num_segs += num_segs;
147 	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
148 
149 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
150 		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
151 			&= ~cpu_to_le32(LINK_TOGGLE);
152 		last->trbs[TRBS_PER_SEGMENT-1].link.control
153 			|= cpu_to_le32(LINK_TOGGLE);
154 		ring->last_seg = last;
155 	}
156 }
157 
158 /*
159  * We need a radix tree for mapping physical addresses of TRBs to which stream
160  * ID they belong to.  We need to do this because the host controller won't tell
161  * us which stream ring the TRB came from.  We could store the stream ID in an
162  * event data TRB, but that doesn't help us for the cancellation case, since the
163  * endpoint may stop before it reaches that event data TRB.
164  *
165  * The radix tree maps the upper portion of the TRB DMA address to a ring
166  * segment that has the same upper portion of DMA addresses.  For example, say I
167  * have segments of size 1KB, that are always 1KB aligned.  A segment may
168  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
169  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
170  * pass the radix tree a key to get the right stream ID:
171  *
172  *	0x10c90fff >> 10 = 0x43243
173  *	0x10c912c0 >> 10 = 0x43244
174  *	0x10c91400 >> 10 = 0x43245
175  *
176  * Obviously, only those TRBs with DMA addresses that are within the segment
177  * will make the radix tree return the stream ID for that ring.
178  *
179  * Caveats for the radix tree:
180  *
181  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
182  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
183  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
184  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
185  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
186  * extended systems (where the DMA address can be bigger than 32-bits),
187  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
188  */
xhci_insert_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * seg,gfp_t mem_flags)189 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
190 		struct xhci_ring *ring,
191 		struct xhci_segment *seg,
192 		gfp_t mem_flags)
193 {
194 	unsigned long key;
195 	int ret;
196 
197 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
198 	/* Skip any segments that were already added. */
199 	if (radix_tree_lookup(trb_address_map, key))
200 		return 0;
201 
202 	ret = radix_tree_maybe_preload(mem_flags);
203 	if (ret)
204 		return ret;
205 	ret = radix_tree_insert(trb_address_map,
206 			key, ring);
207 	radix_tree_preload_end();
208 	return ret;
209 }
210 
xhci_remove_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_segment * seg)211 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
212 		struct xhci_segment *seg)
213 {
214 	unsigned long key;
215 
216 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
217 	if (radix_tree_lookup(trb_address_map, key))
218 		radix_tree_delete(trb_address_map, key);
219 }
220 
xhci_update_stream_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * first_seg,struct xhci_segment * last_seg,gfp_t mem_flags)221 static int xhci_update_stream_segment_mapping(
222 		struct radix_tree_root *trb_address_map,
223 		struct xhci_ring *ring,
224 		struct xhci_segment *first_seg,
225 		struct xhci_segment *last_seg,
226 		gfp_t mem_flags)
227 {
228 	struct xhci_segment *seg;
229 	struct xhci_segment *failed_seg;
230 	int ret;
231 
232 	if (WARN_ON_ONCE(trb_address_map == NULL))
233 		return 0;
234 
235 	seg = first_seg;
236 	do {
237 		ret = xhci_insert_segment_mapping(trb_address_map,
238 				ring, seg, mem_flags);
239 		if (ret)
240 			goto remove_streams;
241 		if (seg == last_seg)
242 			return 0;
243 		seg = seg->next;
244 	} while (seg != first_seg);
245 
246 	return 0;
247 
248 remove_streams:
249 	failed_seg = seg;
250 	seg = first_seg;
251 	do {
252 		xhci_remove_segment_mapping(trb_address_map, seg);
253 		if (seg == failed_seg)
254 			return ret;
255 		seg = seg->next;
256 	} while (seg != first_seg);
257 
258 	return ret;
259 }
260 
xhci_remove_stream_mapping(struct xhci_ring * ring)261 void xhci_remove_stream_mapping(struct xhci_ring *ring)
262 {
263 	struct xhci_segment *seg;
264 
265 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
266 		return;
267 
268 	seg = ring->first_seg;
269 	do {
270 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
271 		seg = seg->next;
272 	} while (seg != ring->first_seg);
273 }
274 EXPORT_SYMBOL_GPL(xhci_remove_stream_mapping);
275 
xhci_update_stream_mapping(struct xhci_ring * ring,gfp_t mem_flags)276 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
277 {
278 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
279 			ring->first_seg, ring->last_seg, mem_flags);
280 }
281 
282 /* XXX: Do we need the hcd structure in all these functions? */
xhci_ring_free(struct xhci_hcd * xhci,struct xhci_ring * ring)283 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
284 {
285 	if (!ring)
286 		return;
287 
288 	trace_xhci_ring_free(ring);
289 
290 	if (ring->first_seg) {
291 		if (ring->type == TYPE_STREAM)
292 			xhci_remove_stream_mapping(ring);
293 		xhci_free_segments_for_ring(xhci, ring->first_seg);
294 	}
295 
296 	kfree(ring);
297 }
298 EXPORT_SYMBOL_GPL(xhci_ring_free);
299 
xhci_initialize_ring_info(struct xhci_ring * ring,unsigned int cycle_state)300 void xhci_initialize_ring_info(struct xhci_ring *ring,
301 			       unsigned int cycle_state)
302 {
303 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
304 	ring->enqueue = ring->first_seg->trbs;
305 	ring->enq_seg = ring->first_seg;
306 	ring->dequeue = ring->enqueue;
307 	ring->deq_seg = ring->first_seg;
308 	/* The ring is initialized to 0. The producer must write 1 to the cycle
309 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
310 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
311 	 *
312 	 * New rings are initialized with cycle state equal to 1; if we are
313 	 * handling ring expansion, set the cycle state equal to the old ring.
314 	 */
315 	ring->cycle_state = cycle_state;
316 
317 	/*
318 	 * Each segment has a link TRB, and leave an extra TRB for SW
319 	 * accounting purpose
320 	 */
321 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
322 }
323 EXPORT_SYMBOL_GPL(xhci_initialize_ring_info);
324 
325 /* Allocate segments and link them for a ring */
xhci_alloc_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment ** first,struct xhci_segment ** last,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)326 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
327 		struct xhci_segment **first, struct xhci_segment **last,
328 		unsigned int num_segs, unsigned int cycle_state,
329 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
330 {
331 	struct xhci_segment *prev;
332 	bool chain_links;
333 
334 	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
335 	chain_links = !!(xhci_link_trb_quirk(xhci) ||
336 			 (type == TYPE_ISOC &&
337 			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
338 
339 	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
340 	if (!prev)
341 		return -ENOMEM;
342 	num_segs--;
343 
344 	*first = prev;
345 	while (num_segs > 0) {
346 		struct xhci_segment	*next;
347 
348 		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
349 		if (!next) {
350 			prev = *first;
351 			while (prev) {
352 				next = prev->next;
353 				xhci_segment_free(xhci, prev);
354 				prev = next;
355 			}
356 			return -ENOMEM;
357 		}
358 		xhci_link_segments(prev, next, type, chain_links);
359 
360 		prev = next;
361 		num_segs--;
362 	}
363 	xhci_link_segments(prev, *first, type, chain_links);
364 	*last = prev;
365 
366 	return 0;
367 }
368 
xhci_vendor_free_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)369 static void xhci_vendor_free_container_ctx(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx)
370 {
371 	struct xhci_vendor_ops *ops = xhci_vendor_get_ops(xhci);
372 
373 	if (ops && ops->free_container_ctx)
374 		ops->free_container_ctx(xhci, ctx);
375 }
376 
xhci_vendor_alloc_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,int type,gfp_t flags)377 static void xhci_vendor_alloc_container_ctx(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx,
378 					    int type, gfp_t flags)
379 {
380 	struct xhci_vendor_ops *ops = xhci_vendor_get_ops(xhci);
381 
382 	if (ops && ops->alloc_container_ctx)
383 		ops->alloc_container_ctx(xhci, ctx, type, flags);
384 }
385 
xhci_vendor_alloc_transfer_ring(struct xhci_hcd * xhci,u32 endpoint_type,enum xhci_ring_type ring_type,unsigned int max_packet,gfp_t mem_flags)386 static struct xhci_ring *xhci_vendor_alloc_transfer_ring(struct xhci_hcd *xhci,
387 		u32 endpoint_type, enum xhci_ring_type ring_type,
388 		unsigned int max_packet, gfp_t mem_flags)
389 {
390 	struct xhci_vendor_ops *ops = xhci_vendor_get_ops(xhci);
391 
392 	if (ops && ops->alloc_transfer_ring)
393 		return ops->alloc_transfer_ring(xhci, endpoint_type, ring_type,
394 				max_packet, mem_flags);
395 	return 0;
396 }
397 
xhci_vendor_free_transfer_ring(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)398 void xhci_vendor_free_transfer_ring(struct xhci_hcd *xhci,
399 		struct xhci_virt_device *virt_dev, unsigned int ep_index)
400 {
401 	struct xhci_vendor_ops *ops = xhci_vendor_get_ops(xhci);
402 
403 	if (ops && ops->free_transfer_ring)
404 		ops->free_transfer_ring(xhci, virt_dev, ep_index);
405 }
406 
xhci_vendor_is_usb_offload_enabled(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)407 bool xhci_vendor_is_usb_offload_enabled(struct xhci_hcd *xhci,
408 		struct xhci_virt_device *virt_dev, unsigned int ep_index)
409 {
410 	struct xhci_vendor_ops *ops = xhci_vendor_get_ops(xhci);
411 
412 	if (ops && ops->is_usb_offload_enabled)
413 		return ops->is_usb_offload_enabled(xhci, virt_dev, ep_index);
414 	return false;
415 }
416 
417 /*
418  * Create a new ring with zero or more segments.
419  *
420  * Link each segment together into a ring.
421  * Set the end flag and the cycle toggle bit on the last segment.
422  * See section 4.9.1 and figures 15 and 16.
423  */
xhci_ring_alloc(struct xhci_hcd * xhci,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)424 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
425 		unsigned int num_segs, unsigned int cycle_state,
426 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
427 {
428 	struct xhci_ring	*ring;
429 	int ret;
430 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
431 
432 	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
433 	if (!ring)
434 		return NULL;
435 
436 	ring->num_segs = num_segs;
437 	ring->bounce_buf_len = max_packet;
438 	INIT_LIST_HEAD(&ring->td_list);
439 	ring->type = type;
440 	if (num_segs == 0)
441 		return ring;
442 
443 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
444 			&ring->last_seg, num_segs, cycle_state, type,
445 			max_packet, flags);
446 	if (ret)
447 		goto fail;
448 
449 	/* Only event ring does not use link TRB */
450 	if (type != TYPE_EVENT) {
451 		/* See section 4.9.2.1 and 6.4.4.1 */
452 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
453 			cpu_to_le32(LINK_TOGGLE);
454 	}
455 	xhci_initialize_ring_info(ring, cycle_state);
456 	trace_xhci_ring_alloc(ring);
457 	return ring;
458 
459 fail:
460 	kfree(ring);
461 	return NULL;
462 }
463 EXPORT_SYMBOL_GPL(xhci_ring_alloc);
464 
xhci_free_endpoint_ring(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)465 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
466 		struct xhci_virt_device *virt_dev,
467 		unsigned int ep_index)
468 {
469 	if (xhci_vendor_is_usb_offload_enabled(xhci, virt_dev, ep_index))
470 		xhci_vendor_free_transfer_ring(xhci, virt_dev, ep_index);
471 	else
472 		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
473 
474 	virt_dev->eps[ep_index].ring = NULL;
475 }
476 
477 /*
478  * Expand an existing ring.
479  * Allocate a new ring which has same segment numbers and link the two rings.
480  */
xhci_ring_expansion(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int num_trbs,gfp_t flags)481 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
482 				unsigned int num_trbs, gfp_t flags)
483 {
484 	struct xhci_segment	*first;
485 	struct xhci_segment	*last;
486 	unsigned int		num_segs;
487 	unsigned int		num_segs_needed;
488 	int			ret;
489 
490 	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
491 				(TRBS_PER_SEGMENT - 1);
492 
493 	/* Allocate number of segments we needed, or double the ring size */
494 	num_segs = max(ring->num_segs, num_segs_needed);
495 
496 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
497 			num_segs, ring->cycle_state, ring->type,
498 			ring->bounce_buf_len, flags);
499 	if (ret)
500 		return -ENOMEM;
501 
502 	if (ring->type == TYPE_STREAM)
503 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
504 						ring, first, last, flags);
505 	if (ret) {
506 		struct xhci_segment *next;
507 		do {
508 			next = first->next;
509 			xhci_segment_free(xhci, first);
510 			if (first == last)
511 				break;
512 			first = next;
513 		} while (true);
514 		return ret;
515 	}
516 
517 	xhci_link_rings(xhci, ring, first, last, num_segs);
518 	trace_xhci_ring_expansion(ring);
519 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
520 			"ring expansion succeed, now has %d segments",
521 			ring->num_segs);
522 
523 	return 0;
524 }
525 
xhci_alloc_container_ctx(struct xhci_hcd * xhci,int type,gfp_t flags)526 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
527 						    int type, gfp_t flags)
528 {
529 	struct xhci_container_ctx *ctx;
530 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
531 	struct xhci_vendor_ops *ops = xhci_vendor_get_ops(xhci);
532 
533 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
534 		return NULL;
535 
536 	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
537 	if (!ctx)
538 		return NULL;
539 
540 	ctx->type = type;
541 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
542 	if (type == XHCI_CTX_TYPE_INPUT)
543 		ctx->size += CTX_SIZE(xhci->hcc_params);
544 
545 	if (xhci_vendor_is_usb_offload_enabled(xhci, NULL, 0) &&
546 	    (ops && ops->alloc_container_ctx))
547 		xhci_vendor_alloc_container_ctx(xhci, ctx, type, flags);
548 	else
549 		ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
550 
551 	if (!ctx->bytes) {
552 		kfree(ctx);
553 		return NULL;
554 	}
555 	return ctx;
556 }
557 
xhci_free_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)558 void xhci_free_container_ctx(struct xhci_hcd *xhci,
559 			     struct xhci_container_ctx *ctx)
560 {
561 	struct xhci_vendor_ops *ops = xhci_vendor_get_ops(xhci);
562 
563 	if (!ctx)
564 		return;
565 	if (xhci_vendor_is_usb_offload_enabled(xhci, NULL, 0) &&
566 	    (ops && ops->free_container_ctx))
567 		xhci_vendor_free_container_ctx(xhci, ctx);
568 	else
569 		dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
570 
571 	kfree(ctx);
572 }
573 
xhci_get_input_control_ctx(struct xhci_container_ctx * ctx)574 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
575 					      struct xhci_container_ctx *ctx)
576 {
577 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
578 		return NULL;
579 
580 	return (struct xhci_input_control_ctx *)ctx->bytes;
581 }
582 
xhci_get_slot_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)583 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
584 					struct xhci_container_ctx *ctx)
585 {
586 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
587 		return (struct xhci_slot_ctx *)ctx->bytes;
588 
589 	return (struct xhci_slot_ctx *)
590 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
591 }
592 EXPORT_SYMBOL_GPL(xhci_get_slot_ctx);
593 
xhci_get_ep_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,unsigned int ep_index)594 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
595 				    struct xhci_container_ctx *ctx,
596 				    unsigned int ep_index)
597 {
598 	/* increment ep index by offset of start of ep ctx array */
599 	ep_index++;
600 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
601 		ep_index++;
602 
603 	return (struct xhci_ep_ctx *)
604 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
605 }
606 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
607 
608 /***************** Streams structures manipulation *************************/
609 
xhci_free_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,struct xhci_stream_ctx * stream_ctx,dma_addr_t dma)610 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
611 		unsigned int num_stream_ctxs,
612 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
613 {
614 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
615 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
616 
617 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
618 		dma_free_coherent(dev, size,
619 				stream_ctx, dma);
620 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
621 		return dma_pool_free(xhci->small_streams_pool,
622 				stream_ctx, dma);
623 	else
624 		return dma_pool_free(xhci->medium_streams_pool,
625 				stream_ctx, dma);
626 }
627 
628 /*
629  * The stream context array for each endpoint with bulk streams enabled can
630  * vary in size, based on:
631  *  - how many streams the endpoint supports,
632  *  - the maximum primary stream array size the host controller supports,
633  *  - and how many streams the device driver asks for.
634  *
635  * The stream context array must be a power of 2, and can be as small as
636  * 64 bytes or as large as 1MB.
637  */
xhci_alloc_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,dma_addr_t * dma,gfp_t mem_flags)638 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
639 		unsigned int num_stream_ctxs, dma_addr_t *dma,
640 		gfp_t mem_flags)
641 {
642 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
643 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
644 
645 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
646 		return dma_alloc_coherent(dev, size,
647 				dma, mem_flags);
648 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
649 		return dma_pool_alloc(xhci->small_streams_pool,
650 				mem_flags, dma);
651 	else
652 		return dma_pool_alloc(xhci->medium_streams_pool,
653 				mem_flags, dma);
654 }
655 
xhci_dma_to_transfer_ring(struct xhci_virt_ep * ep,u64 address)656 struct xhci_ring *xhci_dma_to_transfer_ring(
657 		struct xhci_virt_ep *ep,
658 		u64 address)
659 {
660 	if (ep->ep_state & EP_HAS_STREAMS)
661 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
662 				address >> TRB_SEGMENT_SHIFT);
663 	return ep->ring;
664 }
665 
666 /*
667  * Change an endpoint's internal structure so it supports stream IDs.  The
668  * number of requested streams includes stream 0, which cannot be used by device
669  * drivers.
670  *
671  * The number of stream contexts in the stream context array may be bigger than
672  * the number of streams the driver wants to use.  This is because the number of
673  * stream context array entries must be a power of two.
674  */
xhci_alloc_stream_info(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,unsigned int num_streams,unsigned int max_packet,gfp_t mem_flags)675 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
676 		unsigned int num_stream_ctxs,
677 		unsigned int num_streams,
678 		unsigned int max_packet, gfp_t mem_flags)
679 {
680 	struct xhci_stream_info *stream_info;
681 	u32 cur_stream;
682 	struct xhci_ring *cur_ring;
683 	u64 addr;
684 	int ret;
685 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
686 
687 	xhci_dbg(xhci, "Allocating %u streams and %u "
688 			"stream context array entries.\n",
689 			num_streams, num_stream_ctxs);
690 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
691 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
692 		return NULL;
693 	}
694 	xhci->cmd_ring_reserved_trbs++;
695 
696 	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
697 			dev_to_node(dev));
698 	if (!stream_info)
699 		goto cleanup_trbs;
700 
701 	stream_info->num_streams = num_streams;
702 	stream_info->num_stream_ctxs = num_stream_ctxs;
703 
704 	/* Initialize the array of virtual pointers to stream rings. */
705 	stream_info->stream_rings = kcalloc_node(
706 			num_streams, sizeof(struct xhci_ring *), mem_flags,
707 			dev_to_node(dev));
708 	if (!stream_info->stream_rings)
709 		goto cleanup_info;
710 
711 	/* Initialize the array of DMA addresses for stream rings for the HW. */
712 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
713 			num_stream_ctxs, &stream_info->ctx_array_dma,
714 			mem_flags);
715 	if (!stream_info->stream_ctx_array)
716 		goto cleanup_ring_array;
717 	memset(stream_info->stream_ctx_array, 0,
718 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
719 
720 	/* Allocate everything needed to free the stream rings later */
721 	stream_info->free_streams_command =
722 		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
723 	if (!stream_info->free_streams_command)
724 		goto cleanup_ctx;
725 
726 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
727 
728 	/* Allocate rings for all the streams that the driver will use,
729 	 * and add their segment DMA addresses to the radix tree.
730 	 * Stream 0 is reserved.
731 	 */
732 
733 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
734 		stream_info->stream_rings[cur_stream] =
735 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
736 					mem_flags);
737 		cur_ring = stream_info->stream_rings[cur_stream];
738 		if (!cur_ring)
739 			goto cleanup_rings;
740 		cur_ring->stream_id = cur_stream;
741 		cur_ring->trb_address_map = &stream_info->trb_address_map;
742 		/* Set deq ptr, cycle bit, and stream context type */
743 		addr = cur_ring->first_seg->dma |
744 			SCT_FOR_CTX(SCT_PRI_TR) |
745 			cur_ring->cycle_state;
746 		stream_info->stream_ctx_array[cur_stream].stream_ring =
747 			cpu_to_le64(addr);
748 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
749 				cur_stream, (unsigned long long) addr);
750 
751 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
752 		if (ret) {
753 			xhci_ring_free(xhci, cur_ring);
754 			stream_info->stream_rings[cur_stream] = NULL;
755 			goto cleanup_rings;
756 		}
757 	}
758 	/* Leave the other unused stream ring pointers in the stream context
759 	 * array initialized to zero.  This will cause the xHC to give us an
760 	 * error if the device asks for a stream ID we don't have setup (if it
761 	 * was any other way, the host controller would assume the ring is
762 	 * "empty" and wait forever for data to be queued to that stream ID).
763 	 */
764 
765 	return stream_info;
766 
767 cleanup_rings:
768 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
769 		cur_ring = stream_info->stream_rings[cur_stream];
770 		if (cur_ring) {
771 			xhci_ring_free(xhci, cur_ring);
772 			stream_info->stream_rings[cur_stream] = NULL;
773 		}
774 	}
775 	xhci_free_command(xhci, stream_info->free_streams_command);
776 cleanup_ctx:
777 	xhci_free_stream_ctx(xhci,
778 		stream_info->num_stream_ctxs,
779 		stream_info->stream_ctx_array,
780 		stream_info->ctx_array_dma);
781 cleanup_ring_array:
782 	kfree(stream_info->stream_rings);
783 cleanup_info:
784 	kfree(stream_info);
785 cleanup_trbs:
786 	xhci->cmd_ring_reserved_trbs--;
787 	return NULL;
788 }
789 /*
790  * Sets the MaxPStreams field and the Linear Stream Array field.
791  * Sets the dequeue pointer to the stream context array.
792  */
xhci_setup_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_stream_info * stream_info)793 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
794 		struct xhci_ep_ctx *ep_ctx,
795 		struct xhci_stream_info *stream_info)
796 {
797 	u32 max_primary_streams;
798 	/* MaxPStreams is the number of stream context array entries, not the
799 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
800 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
801 	 */
802 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
803 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
804 			"Setting number of stream ctx array entries to %u",
805 			1 << (max_primary_streams + 1));
806 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
807 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
808 				       | EP_HAS_LSA);
809 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
810 }
811 
812 /*
813  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
814  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
815  * not at the beginning of the ring).
816  */
xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx * ep_ctx,struct xhci_virt_ep * ep)817 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
818 		struct xhci_virt_ep *ep)
819 {
820 	dma_addr_t addr;
821 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
822 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
823 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
824 }
825 
826 /* Frees all stream contexts associated with the endpoint,
827  *
828  * Caller should fix the endpoint context streams fields.
829  */
xhci_free_stream_info(struct xhci_hcd * xhci,struct xhci_stream_info * stream_info)830 void xhci_free_stream_info(struct xhci_hcd *xhci,
831 		struct xhci_stream_info *stream_info)
832 {
833 	int cur_stream;
834 	struct xhci_ring *cur_ring;
835 
836 	if (!stream_info)
837 		return;
838 
839 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
840 			cur_stream++) {
841 		cur_ring = stream_info->stream_rings[cur_stream];
842 		if (cur_ring) {
843 			xhci_ring_free(xhci, cur_ring);
844 			stream_info->stream_rings[cur_stream] = NULL;
845 		}
846 	}
847 	xhci_free_command(xhci, stream_info->free_streams_command);
848 	xhci->cmd_ring_reserved_trbs--;
849 	if (stream_info->stream_ctx_array)
850 		xhci_free_stream_ctx(xhci,
851 				stream_info->num_stream_ctxs,
852 				stream_info->stream_ctx_array,
853 				stream_info->ctx_array_dma);
854 
855 	kfree(stream_info->stream_rings);
856 	kfree(stream_info);
857 }
858 
859 
860 /***************** Device context manipulation *************************/
861 
xhci_free_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int slot_id)862 static void xhci_free_tt_info(struct xhci_hcd *xhci,
863 		struct xhci_virt_device *virt_dev,
864 		int slot_id)
865 {
866 	struct list_head *tt_list_head;
867 	struct xhci_tt_bw_info *tt_info, *next;
868 	bool slot_found = false;
869 
870 	/* If the device never made it past the Set Address stage,
871 	 * it may not have the real_port set correctly.
872 	 */
873 	if (virt_dev->real_port == 0 ||
874 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
875 		xhci_dbg(xhci, "Bad real port.\n");
876 		return;
877 	}
878 
879 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
880 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
881 		/* Multi-TT hubs will have more than one entry */
882 		if (tt_info->slot_id == slot_id) {
883 			slot_found = true;
884 			list_del(&tt_info->tt_list);
885 			kfree(tt_info);
886 		} else if (slot_found) {
887 			break;
888 		}
889 	}
890 }
891 
xhci_alloc_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)892 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
893 		struct xhci_virt_device *virt_dev,
894 		struct usb_device *hdev,
895 		struct usb_tt *tt, gfp_t mem_flags)
896 {
897 	struct xhci_tt_bw_info		*tt_info;
898 	unsigned int			num_ports;
899 	int				i, j;
900 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
901 
902 	if (!tt->multi)
903 		num_ports = 1;
904 	else
905 		num_ports = hdev->maxchild;
906 
907 	for (i = 0; i < num_ports; i++, tt_info++) {
908 		struct xhci_interval_bw_table *bw_table;
909 
910 		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
911 				dev_to_node(dev));
912 		if (!tt_info)
913 			goto free_tts;
914 		INIT_LIST_HEAD(&tt_info->tt_list);
915 		list_add(&tt_info->tt_list,
916 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
917 		tt_info->slot_id = virt_dev->udev->slot_id;
918 		if (tt->multi)
919 			tt_info->ttport = i+1;
920 		bw_table = &tt_info->bw_table;
921 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
922 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
923 	}
924 	return 0;
925 
926 free_tts:
927 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
928 	return -ENOMEM;
929 }
930 
931 
932 /* All the xhci_tds in the ring's TD list should be freed at this point.
933  * Should be called with xhci->lock held if there is any chance the TT lists
934  * will be manipulated by the configure endpoint, allocate device, or update
935  * hub functions while this function is removing the TT entries from the list.
936  */
xhci_free_virt_device(struct xhci_hcd * xhci,int slot_id)937 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
938 {
939 	struct xhci_virt_device *dev;
940 	int i;
941 	int old_active_eps = 0;
942 
943 	/* Slot ID 0 is reserved */
944 	if (slot_id == 0 || !xhci->devs[slot_id])
945 		return;
946 
947 	dev = xhci->devs[slot_id];
948 
949 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
950 	if (!dev)
951 		return;
952 
953 	trace_xhci_free_virt_device(dev);
954 
955 	if (dev->tt_info)
956 		old_active_eps = dev->tt_info->active_eps;
957 
958 	for (i = 0; i < 31; i++) {
959 		if (dev->eps[i].ring)
960 			xhci_free_endpoint_ring(xhci, dev, i);
961 		if (dev->eps[i].stream_info)
962 			xhci_free_stream_info(xhci,
963 					dev->eps[i].stream_info);
964 		/*
965 		 * Endpoints are normally deleted from the bandwidth list when
966 		 * endpoints are dropped, before device is freed.
967 		 * If host is dying or being removed then endpoints aren't
968 		 * dropped cleanly, so delete the endpoint from list here.
969 		 * Only applicable for hosts with software bandwidth checking.
970 		 */
971 
972 		if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
973 			list_del_init(&dev->eps[i].bw_endpoint_list);
974 			xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
975 				 slot_id, i);
976 		}
977 	}
978 	/* If this is a hub, free the TT(s) from the TT list */
979 	xhci_free_tt_info(xhci, dev, slot_id);
980 	/* If necessary, update the number of active TTs on this root port */
981 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
982 
983 	if (dev->in_ctx)
984 		xhci_free_container_ctx(xhci, dev->in_ctx);
985 	if (dev->out_ctx)
986 		xhci_free_container_ctx(xhci, dev->out_ctx);
987 
988 	if (dev->udev && dev->udev->slot_id)
989 		dev->udev->slot_id = 0;
990 	kfree(xhci->devs[slot_id]);
991 	xhci->devs[slot_id] = NULL;
992 }
993 
994 /*
995  * Free a virt_device structure.
996  * If the virt_device added a tt_info (a hub) and has children pointing to
997  * that tt_info, then free the child first. Recursive.
998  * We can't rely on udev at this point to find child-parent relationships.
999  */
xhci_free_virt_devices_depth_first(struct xhci_hcd * xhci,int slot_id)1000 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
1001 {
1002 	struct xhci_virt_device *vdev;
1003 	struct list_head *tt_list_head;
1004 	struct xhci_tt_bw_info *tt_info, *next;
1005 	int i;
1006 
1007 	vdev = xhci->devs[slot_id];
1008 	if (!vdev)
1009 		return;
1010 
1011 	if (vdev->real_port == 0 ||
1012 			vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
1013 		xhci_dbg(xhci, "Bad vdev->real_port.\n");
1014 		goto out;
1015 	}
1016 
1017 	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
1018 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
1019 		/* is this a hub device that added a tt_info to the tts list */
1020 		if (tt_info->slot_id == slot_id) {
1021 			/* are any devices using this tt_info? */
1022 			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
1023 				vdev = xhci->devs[i];
1024 				if (vdev && (vdev->tt_info == tt_info))
1025 					xhci_free_virt_devices_depth_first(
1026 						xhci, i);
1027 			}
1028 		}
1029 	}
1030 out:
1031 	/* we are now at a leaf device */
1032 	xhci_debugfs_remove_slot(xhci, slot_id);
1033 	xhci_free_virt_device(xhci, slot_id);
1034 }
1035 
xhci_alloc_virt_device(struct xhci_hcd * xhci,int slot_id,struct usb_device * udev,gfp_t flags)1036 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
1037 		struct usb_device *udev, gfp_t flags)
1038 {
1039 	struct xhci_virt_device *dev;
1040 	int i;
1041 
1042 	/* Slot ID 0 is reserved */
1043 	if (slot_id == 0 || xhci->devs[slot_id]) {
1044 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
1045 		return 0;
1046 	}
1047 
1048 	dev = kzalloc(sizeof(*dev), flags);
1049 	if (!dev)
1050 		return 0;
1051 
1052 	dev->slot_id = slot_id;
1053 
1054 	/* Allocate the (output) device context that will be used in the HC. */
1055 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1056 	if (!dev->out_ctx)
1057 		goto fail;
1058 
1059 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1060 			(unsigned long long)dev->out_ctx->dma);
1061 
1062 	/* Allocate the (input) device context for address device command */
1063 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1064 	if (!dev->in_ctx)
1065 		goto fail;
1066 
1067 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1068 			(unsigned long long)dev->in_ctx->dma);
1069 
1070 	/* Initialize the cancellation and bandwidth list for each ep */
1071 	for (i = 0; i < 31; i++) {
1072 		dev->eps[i].ep_index = i;
1073 		dev->eps[i].vdev = dev;
1074 		dev->eps[i].xhci = xhci;
1075 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1076 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1077 	}
1078 
1079 	/* Allocate endpoint 0 ring */
1080 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1081 	if (!dev->eps[0].ring)
1082 		goto fail;
1083 
1084 	dev->udev = udev;
1085 
1086 	/* Point to output device context in dcbaa. */
1087 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1088 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1089 		 slot_id,
1090 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1091 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1092 
1093 	trace_xhci_alloc_virt_device(dev);
1094 
1095 	xhci->devs[slot_id] = dev;
1096 
1097 	return 1;
1098 fail:
1099 
1100 	if (dev->in_ctx)
1101 		xhci_free_container_ctx(xhci, dev->in_ctx);
1102 	if (dev->out_ctx)
1103 		xhci_free_container_ctx(xhci, dev->out_ctx);
1104 	kfree(dev);
1105 
1106 	return 0;
1107 }
1108 
xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd * xhci,struct usb_device * udev)1109 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1110 		struct usb_device *udev)
1111 {
1112 	struct xhci_virt_device *virt_dev;
1113 	struct xhci_ep_ctx	*ep0_ctx;
1114 	struct xhci_ring	*ep_ring;
1115 
1116 	virt_dev = xhci->devs[udev->slot_id];
1117 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1118 	ep_ring = virt_dev->eps[0].ring;
1119 	/*
1120 	 * FIXME we don't keep track of the dequeue pointer very well after a
1121 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1122 	 * host to our enqueue pointer.  This should only be called after a
1123 	 * configured device has reset, so all control transfers should have
1124 	 * been completed or cancelled before the reset.
1125 	 */
1126 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1127 							ep_ring->enqueue)
1128 				   | ep_ring->cycle_state);
1129 }
1130 
1131 /*
1132  * The xHCI roothub may have ports of differing speeds in any order in the port
1133  * status registers.
1134  *
1135  * The xHCI hardware wants to know the roothub port number that the USB device
1136  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1137  * know is the index of that port under either the USB 2.0 or the USB 3.0
1138  * roothub, but that doesn't give us the real index into the HW port status
1139  * registers. Call xhci_find_raw_port_number() to get real index.
1140  */
xhci_find_real_port_number(struct xhci_hcd * xhci,struct usb_device * udev)1141 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1142 		struct usb_device *udev)
1143 {
1144 	struct usb_device *top_dev;
1145 	struct usb_hcd *hcd;
1146 
1147 	if (udev->speed >= USB_SPEED_SUPER)
1148 		hcd = xhci_get_usb3_hcd(xhci);
1149 	else
1150 		hcd = xhci->main_hcd;
1151 
1152 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1153 			top_dev = top_dev->parent)
1154 		/* Found device below root hub */;
1155 
1156 	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1157 }
1158 
1159 /* Setup an xHCI virtual device for a Set Address command */
xhci_setup_addressable_virt_dev(struct xhci_hcd * xhci,struct usb_device * udev)1160 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1161 {
1162 	struct xhci_virt_device *dev;
1163 	struct xhci_ep_ctx	*ep0_ctx;
1164 	struct xhci_slot_ctx    *slot_ctx;
1165 	u32			port_num;
1166 	u32			max_packets;
1167 	struct usb_device *top_dev;
1168 
1169 	dev = xhci->devs[udev->slot_id];
1170 	/* Slot ID 0 is reserved */
1171 	if (udev->slot_id == 0 || !dev) {
1172 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1173 				udev->slot_id);
1174 		return -EINVAL;
1175 	}
1176 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1177 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1178 
1179 	/* 3) Only the control endpoint is valid - one endpoint context */
1180 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1181 	switch (udev->speed) {
1182 	case USB_SPEED_SUPER_PLUS:
1183 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1184 		max_packets = MAX_PACKET(512);
1185 		break;
1186 	case USB_SPEED_SUPER:
1187 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1188 		max_packets = MAX_PACKET(512);
1189 		break;
1190 	case USB_SPEED_HIGH:
1191 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1192 		max_packets = MAX_PACKET(64);
1193 		break;
1194 	/* USB core guesses at a 64-byte max packet first for FS devices */
1195 	case USB_SPEED_FULL:
1196 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1197 		max_packets = MAX_PACKET(64);
1198 		break;
1199 	case USB_SPEED_LOW:
1200 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1201 		max_packets = MAX_PACKET(8);
1202 		break;
1203 	case USB_SPEED_WIRELESS:
1204 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1205 		return -EINVAL;
1206 	default:
1207 		/* Speed was set earlier, this shouldn't happen. */
1208 		return -EINVAL;
1209 	}
1210 	/* Find the root hub port this device is under */
1211 	port_num = xhci_find_real_port_number(xhci, udev);
1212 	if (!port_num)
1213 		return -EINVAL;
1214 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1215 	/* Set the port number in the virtual_device to the faked port number */
1216 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1217 			top_dev = top_dev->parent)
1218 		/* Found device below root hub */;
1219 	dev->fake_port = top_dev->portnum;
1220 	dev->real_port = port_num;
1221 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1222 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1223 
1224 	/* Find the right bandwidth table that this device will be a part of.
1225 	 * If this is a full speed device attached directly to a root port (or a
1226 	 * decendent of one), it counts as a primary bandwidth domain, not a
1227 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1228 	 * will never be created for the HS root hub.
1229 	 */
1230 	if (!udev->tt || !udev->tt->hub->parent) {
1231 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1232 	} else {
1233 		struct xhci_root_port_bw_info *rh_bw;
1234 		struct xhci_tt_bw_info *tt_bw;
1235 
1236 		rh_bw = &xhci->rh_bw[port_num - 1];
1237 		/* Find the right TT. */
1238 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1239 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1240 				continue;
1241 
1242 			if (!dev->udev->tt->multi ||
1243 					(udev->tt->multi &&
1244 					 tt_bw->ttport == dev->udev->ttport)) {
1245 				dev->bw_table = &tt_bw->bw_table;
1246 				dev->tt_info = tt_bw;
1247 				break;
1248 			}
1249 		}
1250 		if (!dev->tt_info)
1251 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1252 	}
1253 
1254 	/* Is this a LS/FS device under an external HS hub? */
1255 	if (udev->tt && udev->tt->hub->parent) {
1256 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1257 						(udev->ttport << 8));
1258 		if (udev->tt->multi)
1259 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1260 	}
1261 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1262 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1263 
1264 	/* Step 4 - ring already allocated */
1265 	/* Step 5 */
1266 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1267 
1268 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1269 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1270 					 max_packets);
1271 
1272 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1273 				   dev->eps[0].ring->cycle_state);
1274 
1275 	trace_xhci_setup_addressable_virt_device(dev);
1276 
1277 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1278 
1279 	return 0;
1280 }
1281 
1282 /*
1283  * Convert interval expressed as 2^(bInterval - 1) == interval into
1284  * straight exponent value 2^n == interval.
1285  *
1286  */
xhci_parse_exponent_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1287 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1288 		struct usb_host_endpoint *ep)
1289 {
1290 	unsigned int interval;
1291 
1292 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1293 	if (interval != ep->desc.bInterval - 1)
1294 		dev_warn(&udev->dev,
1295 			 "ep %#x - rounding interval to %d %sframes\n",
1296 			 ep->desc.bEndpointAddress,
1297 			 1 << interval,
1298 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1299 
1300 	if (udev->speed == USB_SPEED_FULL) {
1301 		/*
1302 		 * Full speed isoc endpoints specify interval in frames,
1303 		 * not microframes. We are using microframes everywhere,
1304 		 * so adjust accordingly.
1305 		 */
1306 		interval += 3;	/* 1 frame = 2^3 uframes */
1307 	}
1308 
1309 	return interval;
1310 }
1311 
1312 /*
1313  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1314  * microframes, rounded down to nearest power of 2.
1315  */
xhci_microframes_to_exponent(struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int desc_interval,unsigned int min_exponent,unsigned int max_exponent)1316 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1317 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1318 		unsigned int min_exponent, unsigned int max_exponent)
1319 {
1320 	unsigned int interval;
1321 
1322 	interval = fls(desc_interval) - 1;
1323 	interval = clamp_val(interval, min_exponent, max_exponent);
1324 	if ((1 << interval) != desc_interval)
1325 		dev_dbg(&udev->dev,
1326 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1327 			 ep->desc.bEndpointAddress,
1328 			 1 << interval,
1329 			 desc_interval);
1330 
1331 	return interval;
1332 }
1333 
xhci_parse_microframe_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1334 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1335 		struct usb_host_endpoint *ep)
1336 {
1337 	if (ep->desc.bInterval == 0)
1338 		return 0;
1339 	return xhci_microframes_to_exponent(udev, ep,
1340 			ep->desc.bInterval, 0, 15);
1341 }
1342 
1343 
xhci_parse_frame_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1344 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1345 		struct usb_host_endpoint *ep)
1346 {
1347 	return xhci_microframes_to_exponent(udev, ep,
1348 			ep->desc.bInterval * 8, 3, 10);
1349 }
1350 
1351 /* Return the polling or NAK interval.
1352  *
1353  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1354  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1355  *
1356  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1357  * is set to 0.
1358  */
xhci_get_endpoint_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1359 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1360 		struct usb_host_endpoint *ep)
1361 {
1362 	unsigned int interval = 0;
1363 
1364 	switch (udev->speed) {
1365 	case USB_SPEED_HIGH:
1366 		/* Max NAK rate */
1367 		if (usb_endpoint_xfer_control(&ep->desc) ||
1368 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1369 			interval = xhci_parse_microframe_interval(udev, ep);
1370 			break;
1371 		}
1372 		fallthrough;	/* SS and HS isoc/int have same decoding */
1373 
1374 	case USB_SPEED_SUPER_PLUS:
1375 	case USB_SPEED_SUPER:
1376 		if (usb_endpoint_xfer_int(&ep->desc) ||
1377 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1378 			interval = xhci_parse_exponent_interval(udev, ep);
1379 		}
1380 		break;
1381 
1382 	case USB_SPEED_FULL:
1383 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1384 			interval = xhci_parse_exponent_interval(udev, ep);
1385 			break;
1386 		}
1387 		/*
1388 		 * Fall through for interrupt endpoint interval decoding
1389 		 * since it uses the same rules as low speed interrupt
1390 		 * endpoints.
1391 		 */
1392 		fallthrough;
1393 
1394 	case USB_SPEED_LOW:
1395 		if (usb_endpoint_xfer_int(&ep->desc) ||
1396 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1397 
1398 			interval = xhci_parse_frame_interval(udev, ep);
1399 		}
1400 		break;
1401 
1402 	default:
1403 		BUG();
1404 	}
1405 	return interval;
1406 }
1407 
1408 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1409  * High speed endpoint descriptors can define "the number of additional
1410  * transaction opportunities per microframe", but that goes in the Max Burst
1411  * endpoint context field.
1412  */
xhci_get_endpoint_mult(struct usb_device * udev,struct usb_host_endpoint * ep)1413 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1414 		struct usb_host_endpoint *ep)
1415 {
1416 	if (udev->speed < USB_SPEED_SUPER ||
1417 			!usb_endpoint_xfer_isoc(&ep->desc))
1418 		return 0;
1419 	return ep->ss_ep_comp.bmAttributes;
1420 }
1421 
xhci_get_endpoint_max_burst(struct usb_device * udev,struct usb_host_endpoint * ep)1422 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1423 				       struct usb_host_endpoint *ep)
1424 {
1425 	/* Super speed and Plus have max burst in ep companion desc */
1426 	if (udev->speed >= USB_SPEED_SUPER)
1427 		return ep->ss_ep_comp.bMaxBurst;
1428 
1429 	if (udev->speed == USB_SPEED_HIGH &&
1430 	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1431 	     usb_endpoint_xfer_int(&ep->desc)))
1432 		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1433 
1434 	return 0;
1435 }
1436 
xhci_get_endpoint_type(struct usb_host_endpoint * ep)1437 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1438 {
1439 	int in;
1440 
1441 	in = usb_endpoint_dir_in(&ep->desc);
1442 
1443 	switch (usb_endpoint_type(&ep->desc)) {
1444 	case USB_ENDPOINT_XFER_CONTROL:
1445 		return CTRL_EP;
1446 	case USB_ENDPOINT_XFER_BULK:
1447 		return in ? BULK_IN_EP : BULK_OUT_EP;
1448 	case USB_ENDPOINT_XFER_ISOC:
1449 		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1450 	case USB_ENDPOINT_XFER_INT:
1451 		return in ? INT_IN_EP : INT_OUT_EP;
1452 	}
1453 	return 0;
1454 }
1455 
1456 /* Return the maximum endpoint service interval time (ESIT) payload.
1457  * Basically, this is the maxpacket size, multiplied by the burst size
1458  * and mult size.
1459  */
xhci_get_max_esit_payload(struct usb_device * udev,struct usb_host_endpoint * ep)1460 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1461 		struct usb_host_endpoint *ep)
1462 {
1463 	int max_burst;
1464 	int max_packet;
1465 
1466 	/* Only applies for interrupt or isochronous endpoints */
1467 	if (usb_endpoint_xfer_control(&ep->desc) ||
1468 			usb_endpoint_xfer_bulk(&ep->desc))
1469 		return 0;
1470 
1471 	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1472 	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1473 	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1474 		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1475 	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1476 	else if (udev->speed >= USB_SPEED_SUPER)
1477 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1478 
1479 	max_packet = usb_endpoint_maxp(&ep->desc);
1480 	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1481 	/* A 0 in max burst means 1 transfer per ESIT */
1482 	return max_packet * max_burst;
1483 }
1484 
1485 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1486  * Drivers will have to call usb_alloc_streams() to do that.
1487  */
xhci_endpoint_init(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * udev,struct usb_host_endpoint * ep,gfp_t mem_flags)1488 int xhci_endpoint_init(struct xhci_hcd *xhci,
1489 		struct xhci_virt_device *virt_dev,
1490 		struct usb_device *udev,
1491 		struct usb_host_endpoint *ep,
1492 		gfp_t mem_flags)
1493 {
1494 	unsigned int ep_index;
1495 	struct xhci_ep_ctx *ep_ctx;
1496 	struct xhci_ring *ep_ring;
1497 	unsigned int max_packet;
1498 	enum xhci_ring_type ring_type;
1499 	u32 max_esit_payload;
1500 	u32 endpoint_type;
1501 	unsigned int max_burst;
1502 	unsigned int interval;
1503 	unsigned int mult;
1504 	unsigned int avg_trb_len;
1505 	unsigned int err_count = 0;
1506 
1507 	ep_index = xhci_get_endpoint_index(&ep->desc);
1508 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1509 
1510 	endpoint_type = xhci_get_endpoint_type(ep);
1511 	if (!endpoint_type)
1512 		return -EINVAL;
1513 
1514 	ring_type = usb_endpoint_type(&ep->desc);
1515 
1516 	/*
1517 	 * Get values to fill the endpoint context, mostly from ep descriptor.
1518 	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1519 	 * have no clue on scatter gather list entry size. For Isoc and Int,
1520 	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1521 	 */
1522 	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1523 	interval = xhci_get_endpoint_interval(udev, ep);
1524 
1525 	/* Periodic endpoint bInterval limit quirk */
1526 	if (usb_endpoint_xfer_int(&ep->desc) ||
1527 	    usb_endpoint_xfer_isoc(&ep->desc)) {
1528 		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1529 		    udev->speed >= USB_SPEED_HIGH &&
1530 		    interval >= 7) {
1531 			interval = 6;
1532 		}
1533 	}
1534 
1535 	mult = xhci_get_endpoint_mult(udev, ep);
1536 	max_packet = usb_endpoint_maxp(&ep->desc);
1537 	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1538 	avg_trb_len = max_esit_payload;
1539 
1540 	/* FIXME dig Mult and streams info out of ep companion desc */
1541 
1542 	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1543 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1544 		err_count = 3;
1545 	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1546 	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1547 		if (udev->speed == USB_SPEED_HIGH)
1548 			max_packet = 512;
1549 		if (udev->speed == USB_SPEED_FULL) {
1550 			max_packet = rounddown_pow_of_two(max_packet);
1551 			max_packet = clamp_val(max_packet, 8, 64);
1552 		}
1553 	}
1554 	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1555 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1556 		avg_trb_len = 8;
1557 	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1558 	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1559 		mult = 0;
1560 
1561 	/* Set up the endpoint ring */
1562 	if (xhci_vendor_is_usb_offload_enabled(xhci, virt_dev, ep_index) &&
1563 	    usb_endpoint_xfer_isoc(&ep->desc)) {
1564 		virt_dev->eps[ep_index].new_ring =
1565 			xhci_vendor_alloc_transfer_ring(xhci, endpoint_type, ring_type,
1566 							max_packet, mem_flags);
1567 	} else {
1568 		virt_dev->eps[ep_index].new_ring =
1569 			xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1570 	}
1571 
1572 	if (!virt_dev->eps[ep_index].new_ring)
1573 		return -ENOMEM;
1574 
1575 	virt_dev->eps[ep_index].skip = false;
1576 	ep_ring = virt_dev->eps[ep_index].new_ring;
1577 
1578 	/* Fill the endpoint context */
1579 	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1580 				      EP_INTERVAL(interval) |
1581 				      EP_MULT(mult));
1582 	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1583 				       MAX_PACKET(max_packet) |
1584 				       MAX_BURST(max_burst) |
1585 				       ERROR_COUNT(err_count));
1586 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1587 				  ep_ring->cycle_state);
1588 
1589 	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1590 				      EP_AVG_TRB_LENGTH(avg_trb_len));
1591 
1592 	return 0;
1593 }
1594 
xhci_endpoint_zero(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_host_endpoint * ep)1595 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1596 		struct xhci_virt_device *virt_dev,
1597 		struct usb_host_endpoint *ep)
1598 {
1599 	unsigned int ep_index;
1600 	struct xhci_ep_ctx *ep_ctx;
1601 
1602 	ep_index = xhci_get_endpoint_index(&ep->desc);
1603 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1604 
1605 	ep_ctx->ep_info = 0;
1606 	ep_ctx->ep_info2 = 0;
1607 	ep_ctx->deq = 0;
1608 	ep_ctx->tx_info = 0;
1609 	/* Don't free the endpoint ring until the set interface or configuration
1610 	 * request succeeds.
1611 	 */
1612 }
1613 
xhci_clear_endpoint_bw_info(struct xhci_bw_info * bw_info)1614 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1615 {
1616 	bw_info->ep_interval = 0;
1617 	bw_info->mult = 0;
1618 	bw_info->num_packets = 0;
1619 	bw_info->max_packet_size = 0;
1620 	bw_info->type = 0;
1621 	bw_info->max_esit_payload = 0;
1622 }
1623 
xhci_update_bw_info(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_input_control_ctx * ctrl_ctx,struct xhci_virt_device * virt_dev)1624 void xhci_update_bw_info(struct xhci_hcd *xhci,
1625 		struct xhci_container_ctx *in_ctx,
1626 		struct xhci_input_control_ctx *ctrl_ctx,
1627 		struct xhci_virt_device *virt_dev)
1628 {
1629 	struct xhci_bw_info *bw_info;
1630 	struct xhci_ep_ctx *ep_ctx;
1631 	unsigned int ep_type;
1632 	int i;
1633 
1634 	for (i = 1; i < 31; i++) {
1635 		bw_info = &virt_dev->eps[i].bw_info;
1636 
1637 		/* We can't tell what endpoint type is being dropped, but
1638 		 * unconditionally clearing the bandwidth info for non-periodic
1639 		 * endpoints should be harmless because the info will never be
1640 		 * set in the first place.
1641 		 */
1642 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1643 			/* Dropped endpoint */
1644 			xhci_clear_endpoint_bw_info(bw_info);
1645 			continue;
1646 		}
1647 
1648 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1649 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1650 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1651 
1652 			/* Ignore non-periodic endpoints */
1653 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1654 					ep_type != ISOC_IN_EP &&
1655 					ep_type != INT_IN_EP)
1656 				continue;
1657 
1658 			/* Added or changed endpoint */
1659 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1660 					le32_to_cpu(ep_ctx->ep_info));
1661 			/* Number of packets and mult are zero-based in the
1662 			 * input context, but we want one-based for the
1663 			 * interval table.
1664 			 */
1665 			bw_info->mult = CTX_TO_EP_MULT(
1666 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1667 			bw_info->num_packets = CTX_TO_MAX_BURST(
1668 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1669 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1670 					le32_to_cpu(ep_ctx->ep_info2));
1671 			bw_info->type = ep_type;
1672 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1673 					le32_to_cpu(ep_ctx->tx_info));
1674 		}
1675 	}
1676 }
1677 
1678 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1679  * Useful when you want to change one particular aspect of the endpoint and then
1680  * issue a configure endpoint command.
1681  */
xhci_endpoint_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,unsigned int ep_index)1682 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1683 		struct xhci_container_ctx *in_ctx,
1684 		struct xhci_container_ctx *out_ctx,
1685 		unsigned int ep_index)
1686 {
1687 	struct xhci_ep_ctx *out_ep_ctx;
1688 	struct xhci_ep_ctx *in_ep_ctx;
1689 
1690 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1691 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1692 
1693 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1694 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1695 	in_ep_ctx->deq = out_ep_ctx->deq;
1696 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1697 	if (xhci->quirks & XHCI_MTK_HOST) {
1698 		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1699 		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1700 	}
1701 }
1702 
1703 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1704  * Useful when you want to change one particular aspect of the endpoint and then
1705  * issue a configure endpoint command.  Only the context entries field matters,
1706  * but we'll copy the whole thing anyway.
1707  */
xhci_slot_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx)1708 void xhci_slot_copy(struct xhci_hcd *xhci,
1709 		struct xhci_container_ctx *in_ctx,
1710 		struct xhci_container_ctx *out_ctx)
1711 {
1712 	struct xhci_slot_ctx *in_slot_ctx;
1713 	struct xhci_slot_ctx *out_slot_ctx;
1714 
1715 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1716 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1717 
1718 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1719 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1720 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1721 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1722 }
1723 
1724 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
scratchpad_alloc(struct xhci_hcd * xhci,gfp_t flags)1725 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1726 {
1727 	int i;
1728 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1729 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1730 
1731 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1732 			"Allocating %d scratchpad buffers", num_sp);
1733 
1734 	if (!num_sp)
1735 		return 0;
1736 
1737 	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1738 				dev_to_node(dev));
1739 	if (!xhci->scratchpad)
1740 		goto fail_sp;
1741 
1742 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1743 				     num_sp * sizeof(u64),
1744 				     &xhci->scratchpad->sp_dma, flags);
1745 	if (!xhci->scratchpad->sp_array)
1746 		goto fail_sp2;
1747 
1748 	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1749 					flags, dev_to_node(dev));
1750 	if (!xhci->scratchpad->sp_buffers)
1751 		goto fail_sp3;
1752 
1753 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1754 	for (i = 0; i < num_sp; i++) {
1755 		dma_addr_t dma;
1756 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1757 					       flags);
1758 		if (!buf)
1759 			goto fail_sp4;
1760 
1761 		xhci->scratchpad->sp_array[i] = dma;
1762 		xhci->scratchpad->sp_buffers[i] = buf;
1763 	}
1764 
1765 	return 0;
1766 
1767  fail_sp4:
1768 	for (i = i - 1; i >= 0; i--) {
1769 		dma_free_coherent(dev, xhci->page_size,
1770 				    xhci->scratchpad->sp_buffers[i],
1771 				    xhci->scratchpad->sp_array[i]);
1772 	}
1773 
1774 	kfree(xhci->scratchpad->sp_buffers);
1775 
1776  fail_sp3:
1777 	dma_free_coherent(dev, num_sp * sizeof(u64),
1778 			    xhci->scratchpad->sp_array,
1779 			    xhci->scratchpad->sp_dma);
1780 
1781  fail_sp2:
1782 	kfree(xhci->scratchpad);
1783 	xhci->scratchpad = NULL;
1784 
1785  fail_sp:
1786 	return -ENOMEM;
1787 }
1788 
scratchpad_free(struct xhci_hcd * xhci)1789 static void scratchpad_free(struct xhci_hcd *xhci)
1790 {
1791 	int num_sp;
1792 	int i;
1793 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1794 
1795 	if (!xhci->scratchpad)
1796 		return;
1797 
1798 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1799 
1800 	for (i = 0; i < num_sp; i++) {
1801 		dma_free_coherent(dev, xhci->page_size,
1802 				    xhci->scratchpad->sp_buffers[i],
1803 				    xhci->scratchpad->sp_array[i]);
1804 	}
1805 	kfree(xhci->scratchpad->sp_buffers);
1806 	dma_free_coherent(dev, num_sp * sizeof(u64),
1807 			    xhci->scratchpad->sp_array,
1808 			    xhci->scratchpad->sp_dma);
1809 	kfree(xhci->scratchpad);
1810 	xhci->scratchpad = NULL;
1811 }
1812 
xhci_alloc_command(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1813 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1814 		bool allocate_completion, gfp_t mem_flags)
1815 {
1816 	struct xhci_command *command;
1817 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1818 
1819 	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1820 	if (!command)
1821 		return NULL;
1822 
1823 	if (allocate_completion) {
1824 		command->completion =
1825 			kzalloc_node(sizeof(struct completion), mem_flags,
1826 				dev_to_node(dev));
1827 		if (!command->completion) {
1828 			kfree(command);
1829 			return NULL;
1830 		}
1831 		init_completion(command->completion);
1832 	}
1833 
1834 	command->status = 0;
1835 	INIT_LIST_HEAD(&command->cmd_list);
1836 	return command;
1837 }
1838 EXPORT_SYMBOL_GPL(xhci_alloc_command);
1839 
xhci_alloc_command_with_ctx(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1840 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1841 		bool allocate_completion, gfp_t mem_flags)
1842 {
1843 	struct xhci_command *command;
1844 
1845 	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1846 	if (!command)
1847 		return NULL;
1848 
1849 	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1850 						   mem_flags);
1851 	if (!command->in_ctx) {
1852 		kfree(command->completion);
1853 		kfree(command);
1854 		return NULL;
1855 	}
1856 	return command;
1857 }
1858 
xhci_urb_free_priv(struct urb_priv * urb_priv)1859 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1860 {
1861 	kfree(urb_priv);
1862 }
1863 
xhci_free_command(struct xhci_hcd * xhci,struct xhci_command * command)1864 void xhci_free_command(struct xhci_hcd *xhci,
1865 		struct xhci_command *command)
1866 {
1867 	xhci_free_container_ctx(xhci,
1868 			command->in_ctx);
1869 	kfree(command->completion);
1870 	kfree(command);
1871 }
1872 EXPORT_SYMBOL_GPL(xhci_free_command);
1873 
xhci_alloc_erst(struct xhci_hcd * xhci,struct xhci_ring * evt_ring,struct xhci_erst * erst,gfp_t flags)1874 int xhci_alloc_erst(struct xhci_hcd *xhci,
1875 		    struct xhci_ring *evt_ring,
1876 		    struct xhci_erst *erst,
1877 		    gfp_t flags)
1878 {
1879 	size_t size;
1880 	unsigned int val;
1881 	struct xhci_segment *seg;
1882 	struct xhci_erst_entry *entry;
1883 
1884 	size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1885 	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1886 					   size, &erst->erst_dma_addr, flags);
1887 	if (!erst->entries)
1888 		return -ENOMEM;
1889 
1890 	erst->num_entries = evt_ring->num_segs;
1891 
1892 	seg = evt_ring->first_seg;
1893 	for (val = 0; val < evt_ring->num_segs; val++) {
1894 		entry = &erst->entries[val];
1895 		entry->seg_addr = cpu_to_le64(seg->dma);
1896 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1897 		entry->rsvd = 0;
1898 		seg = seg->next;
1899 	}
1900 
1901 	return 0;
1902 }
1903 EXPORT_SYMBOL_GPL(xhci_alloc_erst);
1904 
xhci_free_erst(struct xhci_hcd * xhci,struct xhci_erst * erst)1905 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1906 {
1907 	size_t size;
1908 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1909 
1910 	size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1911 	if (erst->entries)
1912 		dma_free_coherent(dev, size,
1913 				erst->entries,
1914 				erst->erst_dma_addr);
1915 	erst->entries = NULL;
1916 }
1917 EXPORT_SYMBOL_GPL(xhci_free_erst);
1918 
xhci_vendor_alloc_dcbaa(struct xhci_hcd * xhci,gfp_t flags)1919 static struct xhci_device_context_array *xhci_vendor_alloc_dcbaa(
1920 		struct xhci_hcd *xhci, gfp_t flags)
1921 {
1922 	struct xhci_vendor_ops *ops = xhci_vendor_get_ops(xhci);
1923 
1924 	if (ops && ops->alloc_dcbaa)
1925 		return ops->alloc_dcbaa(xhci, flags);
1926 	return 0;
1927 }
1928 
xhci_vendor_free_dcbaa(struct xhci_hcd * xhci)1929 static void xhci_vendor_free_dcbaa(struct xhci_hcd *xhci)
1930 {
1931 	struct xhci_vendor_ops *ops = xhci_vendor_get_ops(xhci);
1932 
1933 	if (ops && ops->free_dcbaa)
1934 		ops->free_dcbaa(xhci);
1935 }
1936 
xhci_mem_cleanup(struct xhci_hcd * xhci)1937 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1938 {
1939 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1940 	int i, j, num_ports;
1941 
1942 	cancel_delayed_work_sync(&xhci->cmd_timer);
1943 
1944 	xhci_free_erst(xhci, &xhci->erst);
1945 
1946 	if (xhci->event_ring)
1947 		xhci_ring_free(xhci, xhci->event_ring);
1948 	xhci->event_ring = NULL;
1949 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1950 
1951 	if (xhci->cmd_ring)
1952 		xhci_ring_free(xhci, xhci->cmd_ring);
1953 	xhci->cmd_ring = NULL;
1954 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1955 	xhci_cleanup_command_queue(xhci);
1956 
1957 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1958 	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1959 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1960 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1961 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1962 			while (!list_empty(ep))
1963 				list_del_init(ep->next);
1964 		}
1965 	}
1966 
1967 	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1968 		xhci_free_virt_devices_depth_first(xhci, i);
1969 
1970 	dma_pool_destroy(xhci->segment_pool);
1971 	xhci->segment_pool = NULL;
1972 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1973 
1974 	dma_pool_destroy(xhci->device_pool);
1975 	xhci->device_pool = NULL;
1976 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1977 
1978 	dma_pool_destroy(xhci->small_streams_pool);
1979 	xhci->small_streams_pool = NULL;
1980 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1981 			"Freed small stream array pool");
1982 
1983 	dma_pool_destroy(xhci->medium_streams_pool);
1984 	xhci->medium_streams_pool = NULL;
1985 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1986 			"Freed medium stream array pool");
1987 
1988 	if (xhci_vendor_is_usb_offload_enabled(xhci, NULL, 0)) {
1989 		xhci_vendor_free_dcbaa(xhci);
1990 	} else {
1991 		if (xhci->dcbaa)
1992 			dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1993 					xhci->dcbaa, xhci->dcbaa->dma);
1994 	}
1995 	xhci->dcbaa = NULL;
1996 
1997 	scratchpad_free(xhci);
1998 
1999 	if (!xhci->rh_bw)
2000 		goto no_bw;
2001 
2002 	for (i = 0; i < num_ports; i++) {
2003 		struct xhci_tt_bw_info *tt, *n;
2004 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
2005 			list_del(&tt->tt_list);
2006 			kfree(tt);
2007 		}
2008 	}
2009 
2010 no_bw:
2011 	xhci->cmd_ring_reserved_trbs = 0;
2012 	xhci->usb2_rhub.num_ports = 0;
2013 	xhci->usb3_rhub.num_ports = 0;
2014 	xhci->num_active_eps = 0;
2015 	kfree(xhci->usb2_rhub.ports);
2016 	kfree(xhci->usb3_rhub.ports);
2017 	kfree(xhci->hw_ports);
2018 	kfree(xhci->rh_bw);
2019 	kfree(xhci->ext_caps);
2020 	for (i = 0; i < xhci->num_port_caps; i++)
2021 		kfree(xhci->port_caps[i].psi);
2022 	kfree(xhci->port_caps);
2023 	xhci->num_port_caps = 0;
2024 
2025 	xhci->usb2_rhub.ports = NULL;
2026 	xhci->usb3_rhub.ports = NULL;
2027 	xhci->hw_ports = NULL;
2028 	xhci->rh_bw = NULL;
2029 	xhci->ext_caps = NULL;
2030 	xhci->port_caps = NULL;
2031 
2032 	xhci->page_size = 0;
2033 	xhci->page_shift = 0;
2034 	xhci->usb2_rhub.bus_state.bus_suspended = 0;
2035 	xhci->usb3_rhub.bus_state.bus_suspended = 0;
2036 }
2037 
xhci_test_trb_in_td(struct xhci_hcd * xhci,struct xhci_segment * input_seg,union xhci_trb * start_trb,union xhci_trb * end_trb,dma_addr_t input_dma,struct xhci_segment * result_seg,char * test_name,int test_number)2038 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
2039 		struct xhci_segment *input_seg,
2040 		union xhci_trb *start_trb,
2041 		union xhci_trb *end_trb,
2042 		dma_addr_t input_dma,
2043 		struct xhci_segment *result_seg,
2044 		char *test_name, int test_number)
2045 {
2046 	unsigned long long start_dma;
2047 	unsigned long long end_dma;
2048 	struct xhci_segment *seg;
2049 
2050 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
2051 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
2052 
2053 	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
2054 	if (seg != result_seg) {
2055 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
2056 				test_name, test_number);
2057 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
2058 				"input DMA 0x%llx\n",
2059 				input_seg,
2060 				(unsigned long long) input_dma);
2061 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
2062 				"ending TRB %p (0x%llx DMA)\n",
2063 				start_trb, start_dma,
2064 				end_trb, end_dma);
2065 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
2066 				result_seg, seg);
2067 		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
2068 			  true);
2069 		return -1;
2070 	}
2071 	return 0;
2072 }
2073 
2074 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
xhci_check_trb_in_td_math(struct xhci_hcd * xhci)2075 int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
2076 {
2077 	struct {
2078 		dma_addr_t		input_dma;
2079 		struct xhci_segment	*result_seg;
2080 	} simple_test_vector [] = {
2081 		/* A zeroed DMA field should fail */
2082 		{ 0, NULL },
2083 		/* One TRB before the ring start should fail */
2084 		{ xhci->event_ring->first_seg->dma - 16, NULL },
2085 		/* One byte before the ring start should fail */
2086 		{ xhci->event_ring->first_seg->dma - 1, NULL },
2087 		/* Starting TRB should succeed */
2088 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
2089 		/* Ending TRB should succeed */
2090 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
2091 			xhci->event_ring->first_seg },
2092 		/* One byte after the ring end should fail */
2093 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
2094 		/* One TRB after the ring end should fail */
2095 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
2096 		/* An address of all ones should fail */
2097 		{ (dma_addr_t) (~0), NULL },
2098 	};
2099 	struct {
2100 		struct xhci_segment	*input_seg;
2101 		union xhci_trb		*start_trb;
2102 		union xhci_trb		*end_trb;
2103 		dma_addr_t		input_dma;
2104 		struct xhci_segment	*result_seg;
2105 	} complex_test_vector [] = {
2106 		/* Test feeding a valid DMA address from a different ring */
2107 		{	.input_seg = xhci->event_ring->first_seg,
2108 			.start_trb = xhci->event_ring->first_seg->trbs,
2109 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2110 			.input_dma = xhci->cmd_ring->first_seg->dma,
2111 			.result_seg = NULL,
2112 		},
2113 		/* Test feeding a valid end TRB from a different ring */
2114 		{	.input_seg = xhci->event_ring->first_seg,
2115 			.start_trb = xhci->event_ring->first_seg->trbs,
2116 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2117 			.input_dma = xhci->cmd_ring->first_seg->dma,
2118 			.result_seg = NULL,
2119 		},
2120 		/* Test feeding a valid start and end TRB from a different ring */
2121 		{	.input_seg = xhci->event_ring->first_seg,
2122 			.start_trb = xhci->cmd_ring->first_seg->trbs,
2123 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2124 			.input_dma = xhci->cmd_ring->first_seg->dma,
2125 			.result_seg = NULL,
2126 		},
2127 		/* TRB in this ring, but after this TD */
2128 		{	.input_seg = xhci->event_ring->first_seg,
2129 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
2130 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
2131 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
2132 			.result_seg = NULL,
2133 		},
2134 		/* TRB in this ring, but before this TD */
2135 		{	.input_seg = xhci->event_ring->first_seg,
2136 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
2137 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
2138 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2139 			.result_seg = NULL,
2140 		},
2141 		/* TRB in this ring, but after this wrapped TD */
2142 		{	.input_seg = xhci->event_ring->first_seg,
2143 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2144 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2145 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2146 			.result_seg = NULL,
2147 		},
2148 		/* TRB in this ring, but before this wrapped TD */
2149 		{	.input_seg = xhci->event_ring->first_seg,
2150 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2151 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2152 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2153 			.result_seg = NULL,
2154 		},
2155 		/* TRB not in this ring, and we have a wrapped TD */
2156 		{	.input_seg = xhci->event_ring->first_seg,
2157 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2158 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2159 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2160 			.result_seg = NULL,
2161 		},
2162 	};
2163 
2164 	unsigned int num_tests;
2165 	int i, ret;
2166 
2167 	num_tests = ARRAY_SIZE(simple_test_vector);
2168 	for (i = 0; i < num_tests; i++) {
2169 		ret = xhci_test_trb_in_td(xhci,
2170 				xhci->event_ring->first_seg,
2171 				xhci->event_ring->first_seg->trbs,
2172 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2173 				simple_test_vector[i].input_dma,
2174 				simple_test_vector[i].result_seg,
2175 				"Simple", i);
2176 		if (ret < 0)
2177 			return ret;
2178 	}
2179 
2180 	num_tests = ARRAY_SIZE(complex_test_vector);
2181 	for (i = 0; i < num_tests; i++) {
2182 		ret = xhci_test_trb_in_td(xhci,
2183 				complex_test_vector[i].input_seg,
2184 				complex_test_vector[i].start_trb,
2185 				complex_test_vector[i].end_trb,
2186 				complex_test_vector[i].input_dma,
2187 				complex_test_vector[i].result_seg,
2188 				"Complex", i);
2189 		if (ret < 0)
2190 			return ret;
2191 	}
2192 	xhci_dbg(xhci, "TRB math tests passed.\n");
2193 	return 0;
2194 }
2195 EXPORT_SYMBOL_GPL(xhci_check_trb_in_td_math);
2196 
xhci_set_hc_event_deq(struct xhci_hcd * xhci)2197 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2198 {
2199 	u64 temp;
2200 	dma_addr_t deq;
2201 
2202 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2203 			xhci->event_ring->dequeue);
2204 	if (!deq)
2205 		xhci_warn(xhci, "WARN something wrong with SW event ring "
2206 				"dequeue ptr.\n");
2207 	/* Update HC event ring dequeue pointer */
2208 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2209 	temp &= ERST_PTR_MASK;
2210 	/* Don't clear the EHB bit (which is RW1C) because
2211 	 * there might be more events to service.
2212 	 */
2213 	temp &= ~ERST_EHB;
2214 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2215 			"// Write event ring dequeue pointer, "
2216 			"preserving EHB bit");
2217 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2218 			&xhci->ir_set->erst_dequeue);
2219 }
2220 
xhci_add_in_port(struct xhci_hcd * xhci,unsigned int num_ports,__le32 __iomem * addr,int max_caps)2221 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2222 		__le32 __iomem *addr, int max_caps)
2223 {
2224 	u32 temp, port_offset, port_count;
2225 	int i;
2226 	u8 major_revision, minor_revision, tmp_minor_revision;
2227 	struct xhci_hub *rhub;
2228 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2229 	struct xhci_port_cap *port_cap;
2230 
2231 	temp = readl(addr);
2232 	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2233 	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2234 
2235 	if (major_revision == 0x03) {
2236 		rhub = &xhci->usb3_rhub;
2237 		/*
2238 		 * Some hosts incorrectly use sub-minor version for minor
2239 		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2240 		 * for bcdUSB 0x310). Since there is no USB release with sub
2241 		 * minor version 0x301 to 0x309, we can assume that they are
2242 		 * incorrect and fix it here.
2243 		 */
2244 		if (minor_revision > 0x00 && minor_revision < 0x10)
2245 			minor_revision <<= 4;
2246 		/*
2247 		 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2248 		 * but only support Gen1.
2249 		 */
2250 		if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2251 			tmp_minor_revision = minor_revision;
2252 			minor_revision = 0;
2253 		}
2254 
2255 	} else if (major_revision <= 0x02) {
2256 		rhub = &xhci->usb2_rhub;
2257 	} else {
2258 		xhci_warn(xhci, "Ignoring unknown port speed, "
2259 				"Ext Cap %p, revision = 0x%x\n",
2260 				addr, major_revision);
2261 		/* Ignoring port protocol we can't understand. FIXME */
2262 		return;
2263 	}
2264 
2265 	/* Port offset and count in the third dword, see section 7.2 */
2266 	temp = readl(addr + 2);
2267 	port_offset = XHCI_EXT_PORT_OFF(temp);
2268 	port_count = XHCI_EXT_PORT_COUNT(temp);
2269 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2270 			"Ext Cap %p, port offset = %u, "
2271 			"count = %u, revision = 0x%x",
2272 			addr, port_offset, port_count, major_revision);
2273 	/* Port count includes the current port offset */
2274 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2275 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2276 		return;
2277 
2278 	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2279 	if (xhci->num_port_caps > max_caps)
2280 		return;
2281 
2282 	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2283 
2284 	if (port_cap->psi_count) {
2285 		port_cap->psi = kcalloc_node(port_cap->psi_count,
2286 					     sizeof(*port_cap->psi),
2287 					     GFP_KERNEL, dev_to_node(dev));
2288 		if (!port_cap->psi)
2289 			port_cap->psi_count = 0;
2290 
2291 		port_cap->psi_uid_count++;
2292 		for (i = 0; i < port_cap->psi_count; i++) {
2293 			port_cap->psi[i] = readl(addr + 4 + i);
2294 
2295 			/* count unique ID values, two consecutive entries can
2296 			 * have the same ID if link is assymetric
2297 			 */
2298 			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2299 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2300 				port_cap->psi_uid_count++;
2301 
2302 			if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2303 			    major_revision == 0x03 &&
2304 			    XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2305 				minor_revision = tmp_minor_revision;
2306 
2307 			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2308 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2309 				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2310 				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2311 				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2312 				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2313 				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2314 		}
2315 	}
2316 
2317 	rhub->maj_rev = major_revision;
2318 
2319 	if (rhub->min_rev < minor_revision)
2320 		rhub->min_rev = minor_revision;
2321 
2322 	port_cap->maj_rev = major_revision;
2323 	port_cap->min_rev = minor_revision;
2324 
2325 	/* cache usb2 port capabilities */
2326 	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2327 		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2328 
2329 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2330 		 (temp & XHCI_HLC)) {
2331 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2332 			       "xHCI 1.0: support USB2 hardware lpm");
2333 		xhci->hw_lpm_support = 1;
2334 	}
2335 
2336 	port_offset--;
2337 	for (i = port_offset; i < (port_offset + port_count); i++) {
2338 		struct xhci_port *hw_port = &xhci->hw_ports[i];
2339 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2340 		if (hw_port->rhub) {
2341 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2342 					" port %u\n", addr, i);
2343 			xhci_warn(xhci, "Port was marked as USB %u, "
2344 					"duplicated as USB %u\n",
2345 					hw_port->rhub->maj_rev, major_revision);
2346 			/* Only adjust the roothub port counts if we haven't
2347 			 * found a similar duplicate.
2348 			 */
2349 			if (hw_port->rhub != rhub &&
2350 				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2351 				hw_port->rhub->num_ports--;
2352 				hw_port->hcd_portnum = DUPLICATE_ENTRY;
2353 			}
2354 			continue;
2355 		}
2356 		hw_port->rhub = rhub;
2357 		hw_port->port_cap = port_cap;
2358 		rhub->num_ports++;
2359 	}
2360 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2361 }
2362 
xhci_create_rhub_port_array(struct xhci_hcd * xhci,struct xhci_hub * rhub,gfp_t flags)2363 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2364 					struct xhci_hub *rhub, gfp_t flags)
2365 {
2366 	int port_index = 0;
2367 	int i;
2368 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2369 
2370 	if (!rhub->num_ports)
2371 		return;
2372 	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2373 			flags, dev_to_node(dev));
2374 	if (!rhub->ports)
2375 		return;
2376 
2377 	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2378 		if (xhci->hw_ports[i].rhub != rhub ||
2379 		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2380 			continue;
2381 		xhci->hw_ports[i].hcd_portnum = port_index;
2382 		rhub->ports[port_index] = &xhci->hw_ports[i];
2383 		port_index++;
2384 		if (port_index == rhub->num_ports)
2385 			break;
2386 	}
2387 }
2388 
2389 /*
2390  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2391  * specify what speeds each port is supposed to be.  We can't count on the port
2392  * speed bits in the PORTSC register being correct until a device is connected,
2393  * but we need to set up the two fake roothubs with the correct number of USB
2394  * 3.0 and USB 2.0 ports at host controller initialization time.
2395  */
xhci_setup_port_arrays(struct xhci_hcd * xhci,gfp_t flags)2396 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2397 {
2398 	void __iomem *base;
2399 	u32 offset;
2400 	unsigned int num_ports;
2401 	int i, j;
2402 	int cap_count = 0;
2403 	u32 cap_start;
2404 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2405 
2406 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2407 	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2408 				flags, dev_to_node(dev));
2409 	if (!xhci->hw_ports)
2410 		return -ENOMEM;
2411 
2412 	for (i = 0; i < num_ports; i++) {
2413 		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2414 			NUM_PORT_REGS * i;
2415 		xhci->hw_ports[i].hw_portnum = i;
2416 	}
2417 
2418 	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2419 				   dev_to_node(dev));
2420 	if (!xhci->rh_bw)
2421 		return -ENOMEM;
2422 	for (i = 0; i < num_ports; i++) {
2423 		struct xhci_interval_bw_table *bw_table;
2424 
2425 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2426 		bw_table = &xhci->rh_bw[i].bw_table;
2427 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2428 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2429 	}
2430 	base = &xhci->cap_regs->hc_capbase;
2431 
2432 	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2433 	if (!cap_start) {
2434 		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2435 		return -ENODEV;
2436 	}
2437 
2438 	offset = cap_start;
2439 	/* count extended protocol capability entries for later caching */
2440 	while (offset) {
2441 		cap_count++;
2442 		offset = xhci_find_next_ext_cap(base, offset,
2443 						      XHCI_EXT_CAPS_PROTOCOL);
2444 	}
2445 
2446 	xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2447 				flags, dev_to_node(dev));
2448 	if (!xhci->ext_caps)
2449 		return -ENOMEM;
2450 
2451 	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2452 				flags, dev_to_node(dev));
2453 	if (!xhci->port_caps)
2454 		return -ENOMEM;
2455 
2456 	offset = cap_start;
2457 
2458 	while (offset) {
2459 		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2460 		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2461 		    num_ports)
2462 			break;
2463 		offset = xhci_find_next_ext_cap(base, offset,
2464 						XHCI_EXT_CAPS_PROTOCOL);
2465 	}
2466 	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2467 		xhci_warn(xhci, "No ports on the roothubs?\n");
2468 		return -ENODEV;
2469 	}
2470 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2471 		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2472 		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2473 
2474 	/* Place limits on the number of roothub ports so that the hub
2475 	 * descriptors aren't longer than the USB core will allocate.
2476 	 */
2477 	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2478 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2479 				"Limiting USB 3.0 roothub ports to %u.",
2480 				USB_SS_MAXPORTS);
2481 		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2482 	}
2483 	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2484 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2485 				"Limiting USB 2.0 roothub ports to %u.",
2486 				USB_MAXCHILDREN);
2487 		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2488 	}
2489 
2490 	if (!xhci->usb2_rhub.num_ports)
2491 		xhci_info(xhci, "USB2 root hub has no ports\n");
2492 
2493 	if (!xhci->usb3_rhub.num_ports)
2494 		xhci_info(xhci, "USB3 root hub has no ports\n");
2495 
2496 	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2497 	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2498 
2499 	return 0;
2500 }
2501 
xhci_mem_init(struct xhci_hcd * xhci,gfp_t flags)2502 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2503 {
2504 	dma_addr_t	dma;
2505 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2506 	unsigned int	val, val2;
2507 	u64		val_64;
2508 	u32		page_size, temp;
2509 	int		i, ret;
2510 
2511 	INIT_LIST_HEAD(&xhci->cmd_list);
2512 
2513 	/* init command timeout work */
2514 	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2515 	init_completion(&xhci->cmd_ring_stop_completion);
2516 
2517 	page_size = readl(&xhci->op_regs->page_size);
2518 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2519 			"Supported page size register = 0x%x", page_size);
2520 	i = ffs(page_size);
2521 	if (i < 16)
2522 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2523 			"Supported page size of %iK", (1 << (i+12)) / 1024);
2524 	else
2525 		xhci_warn(xhci, "WARN: no supported page size\n");
2526 	/* Use 4K pages, since that's common and the minimum the HC supports */
2527 	xhci->page_shift = 12;
2528 	xhci->page_size = 1 << xhci->page_shift;
2529 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2530 			"HCD page size set to %iK", xhci->page_size / 1024);
2531 
2532 	/*
2533 	 * Program the Number of Device Slots Enabled field in the CONFIG
2534 	 * register with the max value of slots the HC can handle.
2535 	 */
2536 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2537 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2538 			"// xHC can handle at most %d device slots.", val);
2539 	val2 = readl(&xhci->op_regs->config_reg);
2540 	val |= (val2 & ~HCS_SLOTS_MASK);
2541 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2542 			"// Setting Max device slots reg = 0x%x.", val);
2543 	writel(val, &xhci->op_regs->config_reg);
2544 
2545 	/*
2546 	 * xHCI section 5.4.6 - Device Context array must be
2547 	 * "physically contiguous and 64-byte (cache line) aligned".
2548 	 */
2549 	if (xhci_vendor_is_usb_offload_enabled(xhci, NULL, 0)) {
2550 		xhci->dcbaa = xhci_vendor_alloc_dcbaa(xhci, flags);
2551 		if (!xhci->dcbaa)
2552 			goto fail;
2553 	} else {
2554 		xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2555 				flags);
2556 		if (!xhci->dcbaa)
2557 			goto fail;
2558 		xhci->dcbaa->dma = dma;
2559 	}
2560 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2561 			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2562 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2563 	xhci_write_64(xhci, xhci->dcbaa->dma, &xhci->op_regs->dcbaa_ptr);
2564 
2565 	/*
2566 	 * Initialize the ring segment pool.  The ring must be a contiguous
2567 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2568 	 * however, the command ring segment needs 64-byte aligned segments
2569 	 * and our use of dma addresses in the trb_address_map radix tree needs
2570 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2571 	 */
2572 	if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH)
2573 		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2574 				TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2575 	else
2576 		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2577 				TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2578 
2579 	/* See Table 46 and Note on Figure 55 */
2580 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2581 			2112, 64, xhci->page_size);
2582 	if (!xhci->segment_pool || !xhci->device_pool)
2583 		goto fail;
2584 
2585 	/* Linear stream context arrays don't have any boundary restrictions,
2586 	 * and only need to be 16-byte aligned.
2587 	 */
2588 	xhci->small_streams_pool =
2589 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2590 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2591 	xhci->medium_streams_pool =
2592 		dma_pool_create("xHCI 1KB stream ctx arrays",
2593 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2594 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2595 	 * will be allocated with dma_alloc_coherent()
2596 	 */
2597 
2598 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2599 		goto fail;
2600 
2601 	/* Set up the command ring to have one segments for now. */
2602 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2603 	if (!xhci->cmd_ring)
2604 		goto fail;
2605 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2606 			"Allocated command ring at %p", xhci->cmd_ring);
2607 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2608 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2609 
2610 	/* Set the address in the Command Ring Control register */
2611 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2612 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2613 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2614 		xhci->cmd_ring->cycle_state;
2615 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2616 			"// Setting command ring address to 0x%016llx", val_64);
2617 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2618 
2619 	/* Reserve one command ring TRB for disabling LPM.
2620 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2621 	 * disabling LPM, we only need to reserve one TRB for all devices.
2622 	 */
2623 	xhci->cmd_ring_reserved_trbs++;
2624 
2625 	val = readl(&xhci->cap_regs->db_off);
2626 	val &= DBOFF_MASK;
2627 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2628 			"// Doorbell array is located at offset 0x%x"
2629 			" from cap regs base addr", val);
2630 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2631 	/* Set ir_set to interrupt register set 0 */
2632 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2633 
2634 	/*
2635 	 * Event ring setup: Allocate a normal ring, but also setup
2636 	 * the event ring segment table (ERST).  Section 4.9.3.
2637 	 */
2638 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2639 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2640 					0, flags);
2641 	if (!xhci->event_ring)
2642 		goto fail;
2643 	if (xhci_check_trb_in_td_math(xhci) < 0)
2644 		goto fail;
2645 
2646 	ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2647 	if (ret)
2648 		goto fail;
2649 
2650 	/* set ERST count with the number of entries in the segment table */
2651 	val = readl(&xhci->ir_set->erst_size);
2652 	val &= ERST_SIZE_MASK;
2653 	val |= ERST_NUM_SEGS;
2654 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2655 			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2656 			val);
2657 	writel(val, &xhci->ir_set->erst_size);
2658 
2659 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2660 			"// Set ERST entries to point to event ring.");
2661 	/* set the segment table base address */
2662 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2663 			"// Set ERST base address for ir_set 0 = 0x%llx",
2664 			(unsigned long long)xhci->erst.erst_dma_addr);
2665 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2666 	val_64 &= ERST_PTR_MASK;
2667 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2668 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2669 
2670 	/* Set the event ring dequeue address */
2671 	xhci_set_hc_event_deq(xhci);
2672 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2673 			"Wrote ERST address to ir_set 0.");
2674 
2675 	xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2676 
2677 	/*
2678 	 * XXX: Might need to set the Interrupter Moderation Register to
2679 	 * something other than the default (~1ms minimum between interrupts).
2680 	 * See section 5.5.1.2.
2681 	 */
2682 	for (i = 0; i < MAX_HC_SLOTS; i++)
2683 		xhci->devs[i] = NULL;
2684 	for (i = 0; i < USB_MAXCHILDREN; i++) {
2685 		xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2686 		xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2687 		/* Only the USB 2.0 completions will ever be used. */
2688 		init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2689 		init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2690 	}
2691 
2692 	if (scratchpad_alloc(xhci, flags))
2693 		goto fail;
2694 	if (xhci_setup_port_arrays(xhci, flags))
2695 		goto fail;
2696 
2697 	/* Enable USB 3.0 device notifications for function remote wake, which
2698 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2699 	 * U3 (device suspend).
2700 	 */
2701 	temp = readl(&xhci->op_regs->dev_notification);
2702 	temp &= ~DEV_NOTE_MASK;
2703 	temp |= DEV_NOTE_FWAKE;
2704 	writel(temp, &xhci->op_regs->dev_notification);
2705 
2706 	return 0;
2707 
2708 fail:
2709 	xhci_halt(xhci);
2710 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2711 	xhci_mem_cleanup(xhci);
2712 	return -ENOMEM;
2713 }
2714