• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2022 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/iomap.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/blkdev.h>
13 #include <linux/statfs.h>
14 #include <linux/writeback.h>
15 #include <linux/quotaops.h>
16 #include <linux/seq_file.h>
17 #include <linux/parser.h>
18 #include <linux/uio.h>
19 #include <linux/mman.h>
20 #include <linux/sched/mm.h>
21 #include <linux/task_io_accounting_ops.h>
22 
23 #include "zonefs.h"
24 
25 #include "trace.h"
26 
zonefs_read_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)27 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset,
28 				   loff_t length, unsigned int flags,
29 				   struct iomap *iomap, struct iomap *srcmap)
30 {
31 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
32 	struct zonefs_zone *z = zonefs_inode_zone(inode);
33 	struct super_block *sb = inode->i_sb;
34 	loff_t isize;
35 
36 	/*
37 	 * All blocks are always mapped below EOF. If reading past EOF,
38 	 * act as if there is a hole up to the file maximum size.
39 	 */
40 	mutex_lock(&zi->i_truncate_mutex);
41 	iomap->bdev = inode->i_sb->s_bdev;
42 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
43 	isize = i_size_read(inode);
44 	if (iomap->offset >= isize) {
45 		iomap->type = IOMAP_HOLE;
46 		iomap->addr = IOMAP_NULL_ADDR;
47 		iomap->length = length;
48 	} else {
49 		iomap->type = IOMAP_MAPPED;
50 		iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
51 		iomap->length = isize - iomap->offset;
52 	}
53 	mutex_unlock(&zi->i_truncate_mutex);
54 
55 	trace_zonefs_iomap_begin(inode, iomap);
56 
57 	return 0;
58 }
59 
60 static const struct iomap_ops zonefs_read_iomap_ops = {
61 	.iomap_begin	= zonefs_read_iomap_begin,
62 };
63 
zonefs_write_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)64 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset,
65 				    loff_t length, unsigned int flags,
66 				    struct iomap *iomap, struct iomap *srcmap)
67 {
68 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
69 	struct zonefs_zone *z = zonefs_inode_zone(inode);
70 	struct super_block *sb = inode->i_sb;
71 	loff_t isize;
72 
73 	/* All write I/Os should always be within the file maximum size */
74 	if (WARN_ON_ONCE(offset + length > z->z_capacity))
75 		return -EIO;
76 
77 	/*
78 	 * Sequential zones can only accept direct writes. This is already
79 	 * checked when writes are issued, so warn if we see a page writeback
80 	 * operation.
81 	 */
82 	if (WARN_ON_ONCE(zonefs_zone_is_seq(z) && !(flags & IOMAP_DIRECT)))
83 		return -EIO;
84 
85 	/*
86 	 * For conventional zones, all blocks are always mapped. For sequential
87 	 * zones, all blocks after always mapped below the inode size (zone
88 	 * write pointer) and unwriten beyond.
89 	 */
90 	mutex_lock(&zi->i_truncate_mutex);
91 	iomap->bdev = inode->i_sb->s_bdev;
92 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
93 	iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
94 	isize = i_size_read(inode);
95 	if (iomap->offset >= isize) {
96 		iomap->type = IOMAP_UNWRITTEN;
97 		iomap->length = z->z_capacity - iomap->offset;
98 	} else {
99 		iomap->type = IOMAP_MAPPED;
100 		iomap->length = isize - iomap->offset;
101 	}
102 	mutex_unlock(&zi->i_truncate_mutex);
103 
104 	trace_zonefs_iomap_begin(inode, iomap);
105 
106 	return 0;
107 }
108 
109 static const struct iomap_ops zonefs_write_iomap_ops = {
110 	.iomap_begin	= zonefs_write_iomap_begin,
111 };
112 
zonefs_read_folio(struct file * unused,struct folio * folio)113 static int zonefs_read_folio(struct file *unused, struct folio *folio)
114 {
115 	return iomap_read_folio(folio, &zonefs_read_iomap_ops);
116 }
117 
zonefs_readahead(struct readahead_control * rac)118 static void zonefs_readahead(struct readahead_control *rac)
119 {
120 	iomap_readahead(rac, &zonefs_read_iomap_ops);
121 }
122 
123 /*
124  * Map blocks for page writeback. This is used only on conventional zone files,
125  * which implies that the page range can only be within the fixed inode size.
126  */
zonefs_write_map_blocks(struct iomap_writepage_ctx * wpc,struct inode * inode,loff_t offset)127 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc,
128 				   struct inode *inode, loff_t offset)
129 {
130 	struct zonefs_zone *z = zonefs_inode_zone(inode);
131 
132 	if (WARN_ON_ONCE(zonefs_zone_is_seq(z)))
133 		return -EIO;
134 	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
135 		return -EIO;
136 
137 	/* If the mapping is already OK, nothing needs to be done */
138 	if (offset >= wpc->iomap.offset &&
139 	    offset < wpc->iomap.offset + wpc->iomap.length)
140 		return 0;
141 
142 	return zonefs_write_iomap_begin(inode, offset,
143 					z->z_capacity - offset,
144 					IOMAP_WRITE, &wpc->iomap, NULL);
145 }
146 
147 static const struct iomap_writeback_ops zonefs_writeback_ops = {
148 	.map_blocks		= zonefs_write_map_blocks,
149 };
150 
zonefs_writepages(struct address_space * mapping,struct writeback_control * wbc)151 static int zonefs_writepages(struct address_space *mapping,
152 			     struct writeback_control *wbc)
153 {
154 	struct iomap_writepage_ctx wpc = { };
155 
156 	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
157 }
158 
zonefs_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)159 static int zonefs_swap_activate(struct swap_info_struct *sis,
160 				struct file *swap_file, sector_t *span)
161 {
162 	struct inode *inode = file_inode(swap_file);
163 
164 	if (zonefs_inode_is_seq(inode)) {
165 		zonefs_err(inode->i_sb,
166 			   "swap file: not a conventional zone file\n");
167 		return -EINVAL;
168 	}
169 
170 	return iomap_swapfile_activate(sis, swap_file, span,
171 				       &zonefs_read_iomap_ops);
172 }
173 
174 const struct address_space_operations zonefs_file_aops = {
175 	.read_folio		= zonefs_read_folio,
176 	.readahead		= zonefs_readahead,
177 	.writepages		= zonefs_writepages,
178 	.dirty_folio		= filemap_dirty_folio,
179 	.release_folio		= iomap_release_folio,
180 	.invalidate_folio	= iomap_invalidate_folio,
181 	.migrate_folio		= filemap_migrate_folio,
182 	.is_partially_uptodate	= iomap_is_partially_uptodate,
183 	.error_remove_page	= generic_error_remove_page,
184 	.direct_IO		= noop_direct_IO,
185 	.swap_activate		= zonefs_swap_activate,
186 };
187 
zonefs_file_truncate(struct inode * inode,loff_t isize)188 int zonefs_file_truncate(struct inode *inode, loff_t isize)
189 {
190 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
191 	struct zonefs_zone *z = zonefs_inode_zone(inode);
192 	loff_t old_isize;
193 	enum req_op op;
194 	int ret = 0;
195 
196 	/*
197 	 * Only sequential zone files can be truncated and truncation is allowed
198 	 * only down to a 0 size, which is equivalent to a zone reset, and to
199 	 * the maximum file size, which is equivalent to a zone finish.
200 	 */
201 	if (!zonefs_zone_is_seq(z))
202 		return -EPERM;
203 
204 	if (!isize)
205 		op = REQ_OP_ZONE_RESET;
206 	else if (isize == z->z_capacity)
207 		op = REQ_OP_ZONE_FINISH;
208 	else
209 		return -EPERM;
210 
211 	inode_dio_wait(inode);
212 
213 	/* Serialize against page faults */
214 	filemap_invalidate_lock(inode->i_mapping);
215 
216 	/* Serialize against zonefs_iomap_begin() */
217 	mutex_lock(&zi->i_truncate_mutex);
218 
219 	old_isize = i_size_read(inode);
220 	if (isize == old_isize)
221 		goto unlock;
222 
223 	ret = zonefs_inode_zone_mgmt(inode, op);
224 	if (ret)
225 		goto unlock;
226 
227 	/*
228 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
229 	 * take care of open zones.
230 	 */
231 	if (z->z_flags & ZONEFS_ZONE_OPEN) {
232 		/*
233 		 * Truncating a zone to EMPTY or FULL is the equivalent of
234 		 * closing the zone. For a truncation to 0, we need to
235 		 * re-open the zone to ensure new writes can be processed.
236 		 * For a truncation to the maximum file size, the zone is
237 		 * closed and writes cannot be accepted anymore, so clear
238 		 * the open flag.
239 		 */
240 		if (!isize)
241 			ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
242 		else
243 			z->z_flags &= ~ZONEFS_ZONE_OPEN;
244 	}
245 
246 	zonefs_update_stats(inode, isize);
247 	truncate_setsize(inode, isize);
248 	z->z_wpoffset = isize;
249 	zonefs_inode_account_active(inode);
250 
251 unlock:
252 	mutex_unlock(&zi->i_truncate_mutex);
253 	filemap_invalidate_unlock(inode->i_mapping);
254 
255 	return ret;
256 }
257 
zonefs_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)258 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
259 			     int datasync)
260 {
261 	struct inode *inode = file_inode(file);
262 	int ret = 0;
263 
264 	if (unlikely(IS_IMMUTABLE(inode)))
265 		return -EPERM;
266 
267 	/*
268 	 * Since only direct writes are allowed in sequential files, page cache
269 	 * flush is needed only for conventional zone files.
270 	 */
271 	if (zonefs_inode_is_cnv(inode))
272 		ret = file_write_and_wait_range(file, start, end);
273 	if (!ret)
274 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
275 
276 	if (ret)
277 		zonefs_io_error(inode, true);
278 
279 	return ret;
280 }
281 
zonefs_filemap_page_mkwrite(struct vm_fault * vmf)282 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
283 {
284 	struct inode *inode = file_inode(vmf->vma->vm_file);
285 	vm_fault_t ret;
286 
287 	if (unlikely(IS_IMMUTABLE(inode)))
288 		return VM_FAULT_SIGBUS;
289 
290 	/*
291 	 * Sanity check: only conventional zone files can have shared
292 	 * writeable mappings.
293 	 */
294 	if (zonefs_inode_is_seq(inode))
295 		return VM_FAULT_NOPAGE;
296 
297 	sb_start_pagefault(inode->i_sb);
298 	file_update_time(vmf->vma->vm_file);
299 
300 	/* Serialize against truncates */
301 	filemap_invalidate_lock_shared(inode->i_mapping);
302 	ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops);
303 	filemap_invalidate_unlock_shared(inode->i_mapping);
304 
305 	sb_end_pagefault(inode->i_sb);
306 	return ret;
307 }
308 
309 static const struct vm_operations_struct zonefs_file_vm_ops = {
310 	.fault		= filemap_fault,
311 	.map_pages	= filemap_map_pages,
312 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
313 };
314 
zonefs_file_mmap(struct file * file,struct vm_area_struct * vma)315 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
316 {
317 	/*
318 	 * Conventional zones accept random writes, so their files can support
319 	 * shared writable mappings. For sequential zone files, only read
320 	 * mappings are possible since there are no guarantees for write
321 	 * ordering between msync() and page cache writeback.
322 	 */
323 	if (zonefs_inode_is_seq(file_inode(file)) &&
324 	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
325 		return -EINVAL;
326 
327 	file_accessed(file);
328 	vma->vm_ops = &zonefs_file_vm_ops;
329 
330 	return 0;
331 }
332 
zonefs_file_llseek(struct file * file,loff_t offset,int whence)333 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
334 {
335 	loff_t isize = i_size_read(file_inode(file));
336 
337 	/*
338 	 * Seeks are limited to below the zone size for conventional zones
339 	 * and below the zone write pointer for sequential zones. In both
340 	 * cases, this limit is the inode size.
341 	 */
342 	return generic_file_llseek_size(file, offset, whence, isize, isize);
343 }
344 
zonefs_file_write_dio_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)345 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
346 					int error, unsigned int flags)
347 {
348 	struct inode *inode = file_inode(iocb->ki_filp);
349 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
350 
351 	if (error) {
352 		/*
353 		 * For Sync IOs, error recovery is called from
354 		 * zonefs_file_dio_write().
355 		 */
356 		if (!is_sync_kiocb(iocb))
357 			zonefs_io_error(inode, true);
358 		return error;
359 	}
360 
361 	if (size && zonefs_inode_is_seq(inode)) {
362 		/*
363 		 * Note that we may be seeing completions out of order,
364 		 * but that is not a problem since a write completed
365 		 * successfully necessarily means that all preceding writes
366 		 * were also successful. So we can safely increase the inode
367 		 * size to the write end location.
368 		 */
369 		mutex_lock(&zi->i_truncate_mutex);
370 		if (i_size_read(inode) < iocb->ki_pos + size) {
371 			zonefs_update_stats(inode, iocb->ki_pos + size);
372 			zonefs_i_size_write(inode, iocb->ki_pos + size);
373 		}
374 		mutex_unlock(&zi->i_truncate_mutex);
375 	}
376 
377 	return 0;
378 }
379 
380 static const struct iomap_dio_ops zonefs_write_dio_ops = {
381 	.end_io			= zonefs_file_write_dio_end_io,
382 };
383 
zonefs_file_dio_append(struct kiocb * iocb,struct iov_iter * from)384 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from)
385 {
386 	struct inode *inode = file_inode(iocb->ki_filp);
387 	struct zonefs_zone *z = zonefs_inode_zone(inode);
388 	struct block_device *bdev = inode->i_sb->s_bdev;
389 	unsigned int max = bdev_max_zone_append_sectors(bdev);
390 	pgoff_t start, end;
391 	struct bio *bio;
392 	ssize_t size;
393 	int nr_pages;
394 	ssize_t ret;
395 
396 	max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize);
397 	iov_iter_truncate(from, max);
398 
399 	/*
400 	 * If the inode block size (zone write granularity) is smaller than the
401 	 * page size, we may be appending data belonging to the last page of the
402 	 * inode straddling inode->i_size, with that page already cached due to
403 	 * a buffered read or readahead. So make sure to invalidate that page.
404 	 * This will always be a no-op for the case where the block size is
405 	 * equal to the page size.
406 	 */
407 	start = iocb->ki_pos >> PAGE_SHIFT;
408 	end = (iocb->ki_pos + iov_iter_count(from) - 1) >> PAGE_SHIFT;
409 	if (invalidate_inode_pages2_range(inode->i_mapping, start, end))
410 		return -EBUSY;
411 
412 	nr_pages = iov_iter_npages(from, BIO_MAX_VECS);
413 	if (!nr_pages)
414 		return 0;
415 
416 	bio = bio_alloc(bdev, nr_pages,
417 			REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE, GFP_NOFS);
418 	bio->bi_iter.bi_sector = z->z_sector;
419 	bio->bi_ioprio = iocb->ki_ioprio;
420 	if (iocb_is_dsync(iocb))
421 		bio->bi_opf |= REQ_FUA;
422 
423 	ret = bio_iov_iter_get_pages(bio, from);
424 	if (unlikely(ret))
425 		goto out_release;
426 
427 	size = bio->bi_iter.bi_size;
428 	task_io_account_write(size);
429 
430 	if (iocb->ki_flags & IOCB_HIPRI)
431 		bio_set_polled(bio, iocb);
432 
433 	ret = submit_bio_wait(bio);
434 
435 	/*
436 	 * If the file zone was written underneath the file system, the zone
437 	 * write pointer may not be where we expect it to be, but the zone
438 	 * append write can still succeed. So check manually that we wrote where
439 	 * we intended to, that is, at zi->i_wpoffset.
440 	 */
441 	if (!ret) {
442 		sector_t wpsector =
443 			z->z_sector + (z->z_wpoffset >> SECTOR_SHIFT);
444 
445 		if (bio->bi_iter.bi_sector != wpsector) {
446 			zonefs_warn(inode->i_sb,
447 				"Corrupted write pointer %llu for zone at %llu\n",
448 				bio->bi_iter.bi_sector, z->z_sector);
449 			ret = -EIO;
450 		}
451 	}
452 
453 	zonefs_file_write_dio_end_io(iocb, size, ret, 0);
454 	trace_zonefs_file_dio_append(inode, size, ret);
455 
456 out_release:
457 	bio_release_pages(bio, false);
458 	bio_put(bio);
459 
460 	if (ret >= 0) {
461 		iocb->ki_pos += size;
462 		return size;
463 	}
464 
465 	return ret;
466 }
467 
468 /*
469  * Do not exceed the LFS limits nor the file zone size. If pos is under the
470  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
471  */
zonefs_write_check_limits(struct file * file,loff_t pos,loff_t count)472 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
473 					loff_t count)
474 {
475 	struct inode *inode = file_inode(file);
476 	struct zonefs_zone *z = zonefs_inode_zone(inode);
477 	loff_t limit = rlimit(RLIMIT_FSIZE);
478 	loff_t max_size = z->z_capacity;
479 
480 	if (limit != RLIM_INFINITY) {
481 		if (pos >= limit) {
482 			send_sig(SIGXFSZ, current, 0);
483 			return -EFBIG;
484 		}
485 		count = min(count, limit - pos);
486 	}
487 
488 	if (!(file->f_flags & O_LARGEFILE))
489 		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
490 
491 	if (unlikely(pos >= max_size))
492 		return -EFBIG;
493 
494 	return min(count, max_size - pos);
495 }
496 
zonefs_write_checks(struct kiocb * iocb,struct iov_iter * from)497 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
498 {
499 	struct file *file = iocb->ki_filp;
500 	struct inode *inode = file_inode(file);
501 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
502 	struct zonefs_zone *z = zonefs_inode_zone(inode);
503 	loff_t count;
504 
505 	if (IS_SWAPFILE(inode))
506 		return -ETXTBSY;
507 
508 	if (!iov_iter_count(from))
509 		return 0;
510 
511 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
512 		return -EINVAL;
513 
514 	if (iocb->ki_flags & IOCB_APPEND) {
515 		if (zonefs_zone_is_cnv(z))
516 			return -EINVAL;
517 		mutex_lock(&zi->i_truncate_mutex);
518 		iocb->ki_pos = z->z_wpoffset;
519 		mutex_unlock(&zi->i_truncate_mutex);
520 	}
521 
522 	count = zonefs_write_check_limits(file, iocb->ki_pos,
523 					  iov_iter_count(from));
524 	if (count < 0)
525 		return count;
526 
527 	iov_iter_truncate(from, count);
528 	return iov_iter_count(from);
529 }
530 
531 /*
532  * Handle direct writes. For sequential zone files, this is the only possible
533  * write path. For these files, check that the user is issuing writes
534  * sequentially from the end of the file. This code assumes that the block layer
535  * delivers write requests to the device in sequential order. This is always the
536  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
537  * elevator feature is being used (e.g. mq-deadline). The block layer always
538  * automatically select such an elevator for zoned block devices during the
539  * device initialization.
540  */
zonefs_file_dio_write(struct kiocb * iocb,struct iov_iter * from)541 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
542 {
543 	struct inode *inode = file_inode(iocb->ki_filp);
544 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
545 	struct zonefs_zone *z = zonefs_inode_zone(inode);
546 	struct super_block *sb = inode->i_sb;
547 	bool sync = is_sync_kiocb(iocb);
548 	bool append = false;
549 	ssize_t ret, count;
550 
551 	/*
552 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
553 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
554 	 * on the inode lock but the second goes through but is now unaligned).
555 	 */
556 	if (zonefs_zone_is_seq(z) && !sync && (iocb->ki_flags & IOCB_NOWAIT))
557 		return -EOPNOTSUPP;
558 
559 	if (iocb->ki_flags & IOCB_NOWAIT) {
560 		if (!inode_trylock(inode))
561 			return -EAGAIN;
562 	} else {
563 		inode_lock(inode);
564 	}
565 
566 	count = zonefs_write_checks(iocb, from);
567 	if (count <= 0) {
568 		ret = count;
569 		goto inode_unlock;
570 	}
571 
572 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
573 		ret = -EINVAL;
574 		goto inode_unlock;
575 	}
576 
577 	/* Enforce sequential writes (append only) in sequential zones */
578 	if (zonefs_zone_is_seq(z)) {
579 		mutex_lock(&zi->i_truncate_mutex);
580 		if (iocb->ki_pos != z->z_wpoffset) {
581 			mutex_unlock(&zi->i_truncate_mutex);
582 			ret = -EINVAL;
583 			goto inode_unlock;
584 		}
585 		/*
586 		 * Advance the zone write pointer offset. This assumes that the
587 		 * IO will succeed, which is OK to do because we do not allow
588 		 * partial writes (IOMAP_DIO_PARTIAL is not set) and if the IO
589 		 * fails, the error path will correct the write pointer offset.
590 		 */
591 		z->z_wpoffset += count;
592 		zonefs_inode_account_active(inode);
593 		mutex_unlock(&zi->i_truncate_mutex);
594 		append = sync;
595 	}
596 
597 	if (append) {
598 		ret = zonefs_file_dio_append(iocb, from);
599 	} else {
600 		/*
601 		 * iomap_dio_rw() may return ENOTBLK if there was an issue with
602 		 * page invalidation. Overwrite that error code with EBUSY to
603 		 * be consistent with zonefs_file_dio_append() return value for
604 		 * similar issues.
605 		 */
606 		ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops,
607 				   &zonefs_write_dio_ops, 0, NULL, 0);
608 		if (ret == -ENOTBLK)
609 			ret = -EBUSY;
610 	}
611 
612 	/*
613 	 * For a failed IO or partial completion, trigger error recovery
614 	 * to update the zone write pointer offset to a correct value.
615 	 * For asynchronous IOs, zonefs_file_write_dio_end_io() may already
616 	 * have executed error recovery if the IO already completed when we
617 	 * reach here. However, we cannot know that and execute error recovery
618 	 * again (that will not change anything).
619 	 */
620 	if (zonefs_zone_is_seq(z)) {
621 		if (ret > 0 && ret != count)
622 			ret = -EIO;
623 		if (ret < 0 && ret != -EIOCBQUEUED)
624 			zonefs_io_error(inode, true);
625 	}
626 
627 inode_unlock:
628 	inode_unlock(inode);
629 
630 	return ret;
631 }
632 
zonefs_file_buffered_write(struct kiocb * iocb,struct iov_iter * from)633 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
634 					  struct iov_iter *from)
635 {
636 	struct inode *inode = file_inode(iocb->ki_filp);
637 	ssize_t ret;
638 
639 	/*
640 	 * Direct IO writes are mandatory for sequential zone files so that the
641 	 * write IO issuing order is preserved.
642 	 */
643 	if (zonefs_inode_is_seq(inode))
644 		return -EIO;
645 
646 	if (iocb->ki_flags & IOCB_NOWAIT) {
647 		if (!inode_trylock(inode))
648 			return -EAGAIN;
649 	} else {
650 		inode_lock(inode);
651 	}
652 
653 	ret = zonefs_write_checks(iocb, from);
654 	if (ret <= 0)
655 		goto inode_unlock;
656 
657 	ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops);
658 	if (ret > 0)
659 		iocb->ki_pos += ret;
660 	else if (ret == -EIO)
661 		zonefs_io_error(inode, true);
662 
663 inode_unlock:
664 	inode_unlock(inode);
665 	if (ret > 0)
666 		ret = generic_write_sync(iocb, ret);
667 
668 	return ret;
669 }
670 
zonefs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)671 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
672 {
673 	struct inode *inode = file_inode(iocb->ki_filp);
674 	struct zonefs_zone *z = zonefs_inode_zone(inode);
675 
676 	if (unlikely(IS_IMMUTABLE(inode)))
677 		return -EPERM;
678 
679 	if (sb_rdonly(inode->i_sb))
680 		return -EROFS;
681 
682 	/* Write operations beyond the zone capacity are not allowed */
683 	if (iocb->ki_pos >= z->z_capacity)
684 		return -EFBIG;
685 
686 	if (iocb->ki_flags & IOCB_DIRECT) {
687 		ssize_t ret = zonefs_file_dio_write(iocb, from);
688 
689 		if (ret != -ENOTBLK)
690 			return ret;
691 	}
692 
693 	return zonefs_file_buffered_write(iocb, from);
694 }
695 
zonefs_file_read_dio_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)696 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
697 				       int error, unsigned int flags)
698 {
699 	if (error) {
700 		zonefs_io_error(file_inode(iocb->ki_filp), false);
701 		return error;
702 	}
703 
704 	return 0;
705 }
706 
707 static const struct iomap_dio_ops zonefs_read_dio_ops = {
708 	.end_io			= zonefs_file_read_dio_end_io,
709 };
710 
zonefs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)711 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
712 {
713 	struct inode *inode = file_inode(iocb->ki_filp);
714 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
715 	struct zonefs_zone *z = zonefs_inode_zone(inode);
716 	struct super_block *sb = inode->i_sb;
717 	loff_t isize;
718 	ssize_t ret;
719 
720 	/* Offline zones cannot be read */
721 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
722 		return -EPERM;
723 
724 	if (iocb->ki_pos >= z->z_capacity)
725 		return 0;
726 
727 	if (iocb->ki_flags & IOCB_NOWAIT) {
728 		if (!inode_trylock_shared(inode))
729 			return -EAGAIN;
730 	} else {
731 		inode_lock_shared(inode);
732 	}
733 
734 	/* Limit read operations to written data */
735 	mutex_lock(&zi->i_truncate_mutex);
736 	isize = i_size_read(inode);
737 	if (iocb->ki_pos >= isize) {
738 		mutex_unlock(&zi->i_truncate_mutex);
739 		ret = 0;
740 		goto inode_unlock;
741 	}
742 	iov_iter_truncate(to, isize - iocb->ki_pos);
743 	mutex_unlock(&zi->i_truncate_mutex);
744 
745 	if (iocb->ki_flags & IOCB_DIRECT) {
746 		size_t count = iov_iter_count(to);
747 
748 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
749 			ret = -EINVAL;
750 			goto inode_unlock;
751 		}
752 		file_accessed(iocb->ki_filp);
753 		ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops,
754 				   &zonefs_read_dio_ops, 0, NULL, 0);
755 	} else {
756 		ret = generic_file_read_iter(iocb, to);
757 		if (ret == -EIO)
758 			zonefs_io_error(inode, false);
759 	}
760 
761 inode_unlock:
762 	inode_unlock_shared(inode);
763 
764 	return ret;
765 }
766 
767 /*
768  * Write open accounting is done only for sequential files.
769  */
zonefs_seq_file_need_wro(struct inode * inode,struct file * file)770 static inline bool zonefs_seq_file_need_wro(struct inode *inode,
771 					    struct file *file)
772 {
773 	if (zonefs_inode_is_cnv(inode))
774 		return false;
775 
776 	if (!(file->f_mode & FMODE_WRITE))
777 		return false;
778 
779 	return true;
780 }
781 
zonefs_seq_file_write_open(struct inode * inode)782 static int zonefs_seq_file_write_open(struct inode *inode)
783 {
784 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
785 	struct zonefs_zone *z = zonefs_inode_zone(inode);
786 	int ret = 0;
787 
788 	mutex_lock(&zi->i_truncate_mutex);
789 
790 	if (!zi->i_wr_refcnt) {
791 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
792 		unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files);
793 
794 		if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
795 
796 			if (sbi->s_max_wro_seq_files
797 			    && wro > sbi->s_max_wro_seq_files) {
798 				atomic_dec(&sbi->s_wro_seq_files);
799 				ret = -EBUSY;
800 				goto unlock;
801 			}
802 
803 			if (i_size_read(inode) < z->z_capacity) {
804 				ret = zonefs_inode_zone_mgmt(inode,
805 							     REQ_OP_ZONE_OPEN);
806 				if (ret) {
807 					atomic_dec(&sbi->s_wro_seq_files);
808 					goto unlock;
809 				}
810 				z->z_flags |= ZONEFS_ZONE_OPEN;
811 				zonefs_inode_account_active(inode);
812 			}
813 		}
814 	}
815 
816 	zi->i_wr_refcnt++;
817 
818 unlock:
819 	mutex_unlock(&zi->i_truncate_mutex);
820 
821 	return ret;
822 }
823 
zonefs_file_open(struct inode * inode,struct file * file)824 static int zonefs_file_open(struct inode *inode, struct file *file)
825 {
826 	int ret;
827 
828 	ret = generic_file_open(inode, file);
829 	if (ret)
830 		return ret;
831 
832 	if (zonefs_seq_file_need_wro(inode, file))
833 		return zonefs_seq_file_write_open(inode);
834 
835 	return 0;
836 }
837 
zonefs_seq_file_write_close(struct inode * inode)838 static void zonefs_seq_file_write_close(struct inode *inode)
839 {
840 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
841 	struct zonefs_zone *z = zonefs_inode_zone(inode);
842 	struct super_block *sb = inode->i_sb;
843 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
844 	int ret = 0;
845 
846 	mutex_lock(&zi->i_truncate_mutex);
847 
848 	zi->i_wr_refcnt--;
849 	if (zi->i_wr_refcnt)
850 		goto unlock;
851 
852 	/*
853 	 * The file zone may not be open anymore (e.g. the file was truncated to
854 	 * its maximum size or it was fully written). For this case, we only
855 	 * need to decrement the write open count.
856 	 */
857 	if (z->z_flags & ZONEFS_ZONE_OPEN) {
858 		ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
859 		if (ret) {
860 			__zonefs_io_error(inode, false);
861 			/*
862 			 * Leaving zones explicitly open may lead to a state
863 			 * where most zones cannot be written (zone resources
864 			 * exhausted). So take preventive action by remounting
865 			 * read-only.
866 			 */
867 			if (z->z_flags & ZONEFS_ZONE_OPEN &&
868 			    !(sb->s_flags & SB_RDONLY)) {
869 				zonefs_warn(sb,
870 					"closing zone at %llu failed %d\n",
871 					z->z_sector, ret);
872 				zonefs_warn(sb,
873 					"remounting filesystem read-only\n");
874 				sb->s_flags |= SB_RDONLY;
875 			}
876 			goto unlock;
877 		}
878 
879 		z->z_flags &= ~ZONEFS_ZONE_OPEN;
880 		zonefs_inode_account_active(inode);
881 	}
882 
883 	atomic_dec(&sbi->s_wro_seq_files);
884 
885 unlock:
886 	mutex_unlock(&zi->i_truncate_mutex);
887 }
888 
zonefs_file_release(struct inode * inode,struct file * file)889 static int zonefs_file_release(struct inode *inode, struct file *file)
890 {
891 	/*
892 	 * If we explicitly open a zone we must close it again as well, but the
893 	 * zone management operation can fail (either due to an IO error or as
894 	 * the zone has gone offline or read-only). Make sure we don't fail the
895 	 * close(2) for user-space.
896 	 */
897 	if (zonefs_seq_file_need_wro(inode, file))
898 		zonefs_seq_file_write_close(inode);
899 
900 	return 0;
901 }
902 
903 const struct file_operations zonefs_file_operations = {
904 	.open		= zonefs_file_open,
905 	.release	= zonefs_file_release,
906 	.fsync		= zonefs_file_fsync,
907 	.mmap		= zonefs_file_mmap,
908 	.llseek		= zonefs_file_llseek,
909 	.read_iter	= zonefs_file_read_iter,
910 	.write_iter	= zonefs_file_write_iter,
911 	.splice_read	= generic_file_splice_read,
912 	.splice_write	= iter_file_splice_write,
913 	.iopoll		= iocb_bio_iopoll,
914 };
915