1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Simple file system for zoned block devices exposing zones as files.
4 *
5 * Copyright (C) 2022 Western Digital Corporation or its affiliates.
6 */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/iomap.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/blkdev.h>
13 #include <linux/statfs.h>
14 #include <linux/writeback.h>
15 #include <linux/quotaops.h>
16 #include <linux/seq_file.h>
17 #include <linux/parser.h>
18 #include <linux/uio.h>
19 #include <linux/mman.h>
20 #include <linux/sched/mm.h>
21 #include <linux/task_io_accounting_ops.h>
22
23 #include "zonefs.h"
24
25 #include "trace.h"
26
zonefs_read_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)27 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset,
28 loff_t length, unsigned int flags,
29 struct iomap *iomap, struct iomap *srcmap)
30 {
31 struct zonefs_inode_info *zi = ZONEFS_I(inode);
32 struct zonefs_zone *z = zonefs_inode_zone(inode);
33 struct super_block *sb = inode->i_sb;
34 loff_t isize;
35
36 /*
37 * All blocks are always mapped below EOF. If reading past EOF,
38 * act as if there is a hole up to the file maximum size.
39 */
40 mutex_lock(&zi->i_truncate_mutex);
41 iomap->bdev = inode->i_sb->s_bdev;
42 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
43 isize = i_size_read(inode);
44 if (iomap->offset >= isize) {
45 iomap->type = IOMAP_HOLE;
46 iomap->addr = IOMAP_NULL_ADDR;
47 iomap->length = length;
48 } else {
49 iomap->type = IOMAP_MAPPED;
50 iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
51 iomap->length = isize - iomap->offset;
52 }
53 mutex_unlock(&zi->i_truncate_mutex);
54
55 trace_zonefs_iomap_begin(inode, iomap);
56
57 return 0;
58 }
59
60 static const struct iomap_ops zonefs_read_iomap_ops = {
61 .iomap_begin = zonefs_read_iomap_begin,
62 };
63
zonefs_write_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)64 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset,
65 loff_t length, unsigned int flags,
66 struct iomap *iomap, struct iomap *srcmap)
67 {
68 struct zonefs_inode_info *zi = ZONEFS_I(inode);
69 struct zonefs_zone *z = zonefs_inode_zone(inode);
70 struct super_block *sb = inode->i_sb;
71 loff_t isize;
72
73 /* All write I/Os should always be within the file maximum size */
74 if (WARN_ON_ONCE(offset + length > z->z_capacity))
75 return -EIO;
76
77 /*
78 * Sequential zones can only accept direct writes. This is already
79 * checked when writes are issued, so warn if we see a page writeback
80 * operation.
81 */
82 if (WARN_ON_ONCE(zonefs_zone_is_seq(z) && !(flags & IOMAP_DIRECT)))
83 return -EIO;
84
85 /*
86 * For conventional zones, all blocks are always mapped. For sequential
87 * zones, all blocks after always mapped below the inode size (zone
88 * write pointer) and unwriten beyond.
89 */
90 mutex_lock(&zi->i_truncate_mutex);
91 iomap->bdev = inode->i_sb->s_bdev;
92 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
93 iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
94 isize = i_size_read(inode);
95 if (iomap->offset >= isize) {
96 iomap->type = IOMAP_UNWRITTEN;
97 iomap->length = z->z_capacity - iomap->offset;
98 } else {
99 iomap->type = IOMAP_MAPPED;
100 iomap->length = isize - iomap->offset;
101 }
102 mutex_unlock(&zi->i_truncate_mutex);
103
104 trace_zonefs_iomap_begin(inode, iomap);
105
106 return 0;
107 }
108
109 static const struct iomap_ops zonefs_write_iomap_ops = {
110 .iomap_begin = zonefs_write_iomap_begin,
111 };
112
zonefs_read_folio(struct file * unused,struct folio * folio)113 static int zonefs_read_folio(struct file *unused, struct folio *folio)
114 {
115 return iomap_read_folio(folio, &zonefs_read_iomap_ops);
116 }
117
zonefs_readahead(struct readahead_control * rac)118 static void zonefs_readahead(struct readahead_control *rac)
119 {
120 iomap_readahead(rac, &zonefs_read_iomap_ops);
121 }
122
123 /*
124 * Map blocks for page writeback. This is used only on conventional zone files,
125 * which implies that the page range can only be within the fixed inode size.
126 */
zonefs_write_map_blocks(struct iomap_writepage_ctx * wpc,struct inode * inode,loff_t offset)127 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc,
128 struct inode *inode, loff_t offset)
129 {
130 struct zonefs_zone *z = zonefs_inode_zone(inode);
131
132 if (WARN_ON_ONCE(zonefs_zone_is_seq(z)))
133 return -EIO;
134 if (WARN_ON_ONCE(offset >= i_size_read(inode)))
135 return -EIO;
136
137 /* If the mapping is already OK, nothing needs to be done */
138 if (offset >= wpc->iomap.offset &&
139 offset < wpc->iomap.offset + wpc->iomap.length)
140 return 0;
141
142 return zonefs_write_iomap_begin(inode, offset,
143 z->z_capacity - offset,
144 IOMAP_WRITE, &wpc->iomap, NULL);
145 }
146
147 static const struct iomap_writeback_ops zonefs_writeback_ops = {
148 .map_blocks = zonefs_write_map_blocks,
149 };
150
zonefs_writepages(struct address_space * mapping,struct writeback_control * wbc)151 static int zonefs_writepages(struct address_space *mapping,
152 struct writeback_control *wbc)
153 {
154 struct iomap_writepage_ctx wpc = { };
155
156 return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
157 }
158
zonefs_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)159 static int zonefs_swap_activate(struct swap_info_struct *sis,
160 struct file *swap_file, sector_t *span)
161 {
162 struct inode *inode = file_inode(swap_file);
163
164 if (zonefs_inode_is_seq(inode)) {
165 zonefs_err(inode->i_sb,
166 "swap file: not a conventional zone file\n");
167 return -EINVAL;
168 }
169
170 return iomap_swapfile_activate(sis, swap_file, span,
171 &zonefs_read_iomap_ops);
172 }
173
174 const struct address_space_operations zonefs_file_aops = {
175 .read_folio = zonefs_read_folio,
176 .readahead = zonefs_readahead,
177 .writepages = zonefs_writepages,
178 .dirty_folio = filemap_dirty_folio,
179 .release_folio = iomap_release_folio,
180 .invalidate_folio = iomap_invalidate_folio,
181 .migrate_folio = filemap_migrate_folio,
182 .is_partially_uptodate = iomap_is_partially_uptodate,
183 .error_remove_page = generic_error_remove_page,
184 .direct_IO = noop_direct_IO,
185 .swap_activate = zonefs_swap_activate,
186 };
187
zonefs_file_truncate(struct inode * inode,loff_t isize)188 int zonefs_file_truncate(struct inode *inode, loff_t isize)
189 {
190 struct zonefs_inode_info *zi = ZONEFS_I(inode);
191 struct zonefs_zone *z = zonefs_inode_zone(inode);
192 loff_t old_isize;
193 enum req_op op;
194 int ret = 0;
195
196 /*
197 * Only sequential zone files can be truncated and truncation is allowed
198 * only down to a 0 size, which is equivalent to a zone reset, and to
199 * the maximum file size, which is equivalent to a zone finish.
200 */
201 if (!zonefs_zone_is_seq(z))
202 return -EPERM;
203
204 if (!isize)
205 op = REQ_OP_ZONE_RESET;
206 else if (isize == z->z_capacity)
207 op = REQ_OP_ZONE_FINISH;
208 else
209 return -EPERM;
210
211 inode_dio_wait(inode);
212
213 /* Serialize against page faults */
214 filemap_invalidate_lock(inode->i_mapping);
215
216 /* Serialize against zonefs_iomap_begin() */
217 mutex_lock(&zi->i_truncate_mutex);
218
219 old_isize = i_size_read(inode);
220 if (isize == old_isize)
221 goto unlock;
222
223 ret = zonefs_inode_zone_mgmt(inode, op);
224 if (ret)
225 goto unlock;
226
227 /*
228 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
229 * take care of open zones.
230 */
231 if (z->z_flags & ZONEFS_ZONE_OPEN) {
232 /*
233 * Truncating a zone to EMPTY or FULL is the equivalent of
234 * closing the zone. For a truncation to 0, we need to
235 * re-open the zone to ensure new writes can be processed.
236 * For a truncation to the maximum file size, the zone is
237 * closed and writes cannot be accepted anymore, so clear
238 * the open flag.
239 */
240 if (!isize)
241 ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
242 else
243 z->z_flags &= ~ZONEFS_ZONE_OPEN;
244 }
245
246 zonefs_update_stats(inode, isize);
247 truncate_setsize(inode, isize);
248 z->z_wpoffset = isize;
249 zonefs_inode_account_active(inode);
250
251 unlock:
252 mutex_unlock(&zi->i_truncate_mutex);
253 filemap_invalidate_unlock(inode->i_mapping);
254
255 return ret;
256 }
257
zonefs_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)258 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
259 int datasync)
260 {
261 struct inode *inode = file_inode(file);
262 int ret = 0;
263
264 if (unlikely(IS_IMMUTABLE(inode)))
265 return -EPERM;
266
267 /*
268 * Since only direct writes are allowed in sequential files, page cache
269 * flush is needed only for conventional zone files.
270 */
271 if (zonefs_inode_is_cnv(inode))
272 ret = file_write_and_wait_range(file, start, end);
273 if (!ret)
274 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
275
276 if (ret)
277 zonefs_io_error(inode, true);
278
279 return ret;
280 }
281
zonefs_filemap_page_mkwrite(struct vm_fault * vmf)282 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
283 {
284 struct inode *inode = file_inode(vmf->vma->vm_file);
285 vm_fault_t ret;
286
287 if (unlikely(IS_IMMUTABLE(inode)))
288 return VM_FAULT_SIGBUS;
289
290 /*
291 * Sanity check: only conventional zone files can have shared
292 * writeable mappings.
293 */
294 if (zonefs_inode_is_seq(inode))
295 return VM_FAULT_NOPAGE;
296
297 sb_start_pagefault(inode->i_sb);
298 file_update_time(vmf->vma->vm_file);
299
300 /* Serialize against truncates */
301 filemap_invalidate_lock_shared(inode->i_mapping);
302 ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops);
303 filemap_invalidate_unlock_shared(inode->i_mapping);
304
305 sb_end_pagefault(inode->i_sb);
306 return ret;
307 }
308
309 static const struct vm_operations_struct zonefs_file_vm_ops = {
310 .fault = filemap_fault,
311 .map_pages = filemap_map_pages,
312 .page_mkwrite = zonefs_filemap_page_mkwrite,
313 };
314
zonefs_file_mmap(struct file * file,struct vm_area_struct * vma)315 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
316 {
317 /*
318 * Conventional zones accept random writes, so their files can support
319 * shared writable mappings. For sequential zone files, only read
320 * mappings are possible since there are no guarantees for write
321 * ordering between msync() and page cache writeback.
322 */
323 if (zonefs_inode_is_seq(file_inode(file)) &&
324 (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
325 return -EINVAL;
326
327 file_accessed(file);
328 vma->vm_ops = &zonefs_file_vm_ops;
329
330 return 0;
331 }
332
zonefs_file_llseek(struct file * file,loff_t offset,int whence)333 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
334 {
335 loff_t isize = i_size_read(file_inode(file));
336
337 /*
338 * Seeks are limited to below the zone size for conventional zones
339 * and below the zone write pointer for sequential zones. In both
340 * cases, this limit is the inode size.
341 */
342 return generic_file_llseek_size(file, offset, whence, isize, isize);
343 }
344
zonefs_file_write_dio_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)345 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
346 int error, unsigned int flags)
347 {
348 struct inode *inode = file_inode(iocb->ki_filp);
349 struct zonefs_inode_info *zi = ZONEFS_I(inode);
350
351 if (error) {
352 /*
353 * For Sync IOs, error recovery is called from
354 * zonefs_file_dio_write().
355 */
356 if (!is_sync_kiocb(iocb))
357 zonefs_io_error(inode, true);
358 return error;
359 }
360
361 if (size && zonefs_inode_is_seq(inode)) {
362 /*
363 * Note that we may be seeing completions out of order,
364 * but that is not a problem since a write completed
365 * successfully necessarily means that all preceding writes
366 * were also successful. So we can safely increase the inode
367 * size to the write end location.
368 */
369 mutex_lock(&zi->i_truncate_mutex);
370 if (i_size_read(inode) < iocb->ki_pos + size) {
371 zonefs_update_stats(inode, iocb->ki_pos + size);
372 zonefs_i_size_write(inode, iocb->ki_pos + size);
373 }
374 mutex_unlock(&zi->i_truncate_mutex);
375 }
376
377 return 0;
378 }
379
380 static const struct iomap_dio_ops zonefs_write_dio_ops = {
381 .end_io = zonefs_file_write_dio_end_io,
382 };
383
zonefs_file_dio_append(struct kiocb * iocb,struct iov_iter * from)384 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from)
385 {
386 struct inode *inode = file_inode(iocb->ki_filp);
387 struct zonefs_zone *z = zonefs_inode_zone(inode);
388 struct block_device *bdev = inode->i_sb->s_bdev;
389 unsigned int max = bdev_max_zone_append_sectors(bdev);
390 pgoff_t start, end;
391 struct bio *bio;
392 ssize_t size;
393 int nr_pages;
394 ssize_t ret;
395
396 max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize);
397 iov_iter_truncate(from, max);
398
399 /*
400 * If the inode block size (zone write granularity) is smaller than the
401 * page size, we may be appending data belonging to the last page of the
402 * inode straddling inode->i_size, with that page already cached due to
403 * a buffered read or readahead. So make sure to invalidate that page.
404 * This will always be a no-op for the case where the block size is
405 * equal to the page size.
406 */
407 start = iocb->ki_pos >> PAGE_SHIFT;
408 end = (iocb->ki_pos + iov_iter_count(from) - 1) >> PAGE_SHIFT;
409 if (invalidate_inode_pages2_range(inode->i_mapping, start, end))
410 return -EBUSY;
411
412 nr_pages = iov_iter_npages(from, BIO_MAX_VECS);
413 if (!nr_pages)
414 return 0;
415
416 bio = bio_alloc(bdev, nr_pages,
417 REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE, GFP_NOFS);
418 bio->bi_iter.bi_sector = z->z_sector;
419 bio->bi_ioprio = iocb->ki_ioprio;
420 if (iocb_is_dsync(iocb))
421 bio->bi_opf |= REQ_FUA;
422
423 ret = bio_iov_iter_get_pages(bio, from);
424 if (unlikely(ret))
425 goto out_release;
426
427 size = bio->bi_iter.bi_size;
428 task_io_account_write(size);
429
430 if (iocb->ki_flags & IOCB_HIPRI)
431 bio_set_polled(bio, iocb);
432
433 ret = submit_bio_wait(bio);
434
435 /*
436 * If the file zone was written underneath the file system, the zone
437 * write pointer may not be where we expect it to be, but the zone
438 * append write can still succeed. So check manually that we wrote where
439 * we intended to, that is, at zi->i_wpoffset.
440 */
441 if (!ret) {
442 sector_t wpsector =
443 z->z_sector + (z->z_wpoffset >> SECTOR_SHIFT);
444
445 if (bio->bi_iter.bi_sector != wpsector) {
446 zonefs_warn(inode->i_sb,
447 "Corrupted write pointer %llu for zone at %llu\n",
448 bio->bi_iter.bi_sector, z->z_sector);
449 ret = -EIO;
450 }
451 }
452
453 zonefs_file_write_dio_end_io(iocb, size, ret, 0);
454 trace_zonefs_file_dio_append(inode, size, ret);
455
456 out_release:
457 bio_release_pages(bio, false);
458 bio_put(bio);
459
460 if (ret >= 0) {
461 iocb->ki_pos += size;
462 return size;
463 }
464
465 return ret;
466 }
467
468 /*
469 * Do not exceed the LFS limits nor the file zone size. If pos is under the
470 * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
471 */
zonefs_write_check_limits(struct file * file,loff_t pos,loff_t count)472 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
473 loff_t count)
474 {
475 struct inode *inode = file_inode(file);
476 struct zonefs_zone *z = zonefs_inode_zone(inode);
477 loff_t limit = rlimit(RLIMIT_FSIZE);
478 loff_t max_size = z->z_capacity;
479
480 if (limit != RLIM_INFINITY) {
481 if (pos >= limit) {
482 send_sig(SIGXFSZ, current, 0);
483 return -EFBIG;
484 }
485 count = min(count, limit - pos);
486 }
487
488 if (!(file->f_flags & O_LARGEFILE))
489 max_size = min_t(loff_t, MAX_NON_LFS, max_size);
490
491 if (unlikely(pos >= max_size))
492 return -EFBIG;
493
494 return min(count, max_size - pos);
495 }
496
zonefs_write_checks(struct kiocb * iocb,struct iov_iter * from)497 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
498 {
499 struct file *file = iocb->ki_filp;
500 struct inode *inode = file_inode(file);
501 struct zonefs_inode_info *zi = ZONEFS_I(inode);
502 struct zonefs_zone *z = zonefs_inode_zone(inode);
503 loff_t count;
504
505 if (IS_SWAPFILE(inode))
506 return -ETXTBSY;
507
508 if (!iov_iter_count(from))
509 return 0;
510
511 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
512 return -EINVAL;
513
514 if (iocb->ki_flags & IOCB_APPEND) {
515 if (zonefs_zone_is_cnv(z))
516 return -EINVAL;
517 mutex_lock(&zi->i_truncate_mutex);
518 iocb->ki_pos = z->z_wpoffset;
519 mutex_unlock(&zi->i_truncate_mutex);
520 }
521
522 count = zonefs_write_check_limits(file, iocb->ki_pos,
523 iov_iter_count(from));
524 if (count < 0)
525 return count;
526
527 iov_iter_truncate(from, count);
528 return iov_iter_count(from);
529 }
530
531 /*
532 * Handle direct writes. For sequential zone files, this is the only possible
533 * write path. For these files, check that the user is issuing writes
534 * sequentially from the end of the file. This code assumes that the block layer
535 * delivers write requests to the device in sequential order. This is always the
536 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
537 * elevator feature is being used (e.g. mq-deadline). The block layer always
538 * automatically select such an elevator for zoned block devices during the
539 * device initialization.
540 */
zonefs_file_dio_write(struct kiocb * iocb,struct iov_iter * from)541 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
542 {
543 struct inode *inode = file_inode(iocb->ki_filp);
544 struct zonefs_inode_info *zi = ZONEFS_I(inode);
545 struct zonefs_zone *z = zonefs_inode_zone(inode);
546 struct super_block *sb = inode->i_sb;
547 bool sync = is_sync_kiocb(iocb);
548 bool append = false;
549 ssize_t ret, count;
550
551 /*
552 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
553 * as this can cause write reordering (e.g. the first aio gets EAGAIN
554 * on the inode lock but the second goes through but is now unaligned).
555 */
556 if (zonefs_zone_is_seq(z) && !sync && (iocb->ki_flags & IOCB_NOWAIT))
557 return -EOPNOTSUPP;
558
559 if (iocb->ki_flags & IOCB_NOWAIT) {
560 if (!inode_trylock(inode))
561 return -EAGAIN;
562 } else {
563 inode_lock(inode);
564 }
565
566 count = zonefs_write_checks(iocb, from);
567 if (count <= 0) {
568 ret = count;
569 goto inode_unlock;
570 }
571
572 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
573 ret = -EINVAL;
574 goto inode_unlock;
575 }
576
577 /* Enforce sequential writes (append only) in sequential zones */
578 if (zonefs_zone_is_seq(z)) {
579 mutex_lock(&zi->i_truncate_mutex);
580 if (iocb->ki_pos != z->z_wpoffset) {
581 mutex_unlock(&zi->i_truncate_mutex);
582 ret = -EINVAL;
583 goto inode_unlock;
584 }
585 /*
586 * Advance the zone write pointer offset. This assumes that the
587 * IO will succeed, which is OK to do because we do not allow
588 * partial writes (IOMAP_DIO_PARTIAL is not set) and if the IO
589 * fails, the error path will correct the write pointer offset.
590 */
591 z->z_wpoffset += count;
592 zonefs_inode_account_active(inode);
593 mutex_unlock(&zi->i_truncate_mutex);
594 append = sync;
595 }
596
597 if (append) {
598 ret = zonefs_file_dio_append(iocb, from);
599 } else {
600 /*
601 * iomap_dio_rw() may return ENOTBLK if there was an issue with
602 * page invalidation. Overwrite that error code with EBUSY to
603 * be consistent with zonefs_file_dio_append() return value for
604 * similar issues.
605 */
606 ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops,
607 &zonefs_write_dio_ops, 0, NULL, 0);
608 if (ret == -ENOTBLK)
609 ret = -EBUSY;
610 }
611
612 /*
613 * For a failed IO or partial completion, trigger error recovery
614 * to update the zone write pointer offset to a correct value.
615 * For asynchronous IOs, zonefs_file_write_dio_end_io() may already
616 * have executed error recovery if the IO already completed when we
617 * reach here. However, we cannot know that and execute error recovery
618 * again (that will not change anything).
619 */
620 if (zonefs_zone_is_seq(z)) {
621 if (ret > 0 && ret != count)
622 ret = -EIO;
623 if (ret < 0 && ret != -EIOCBQUEUED)
624 zonefs_io_error(inode, true);
625 }
626
627 inode_unlock:
628 inode_unlock(inode);
629
630 return ret;
631 }
632
zonefs_file_buffered_write(struct kiocb * iocb,struct iov_iter * from)633 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
634 struct iov_iter *from)
635 {
636 struct inode *inode = file_inode(iocb->ki_filp);
637 ssize_t ret;
638
639 /*
640 * Direct IO writes are mandatory for sequential zone files so that the
641 * write IO issuing order is preserved.
642 */
643 if (zonefs_inode_is_seq(inode))
644 return -EIO;
645
646 if (iocb->ki_flags & IOCB_NOWAIT) {
647 if (!inode_trylock(inode))
648 return -EAGAIN;
649 } else {
650 inode_lock(inode);
651 }
652
653 ret = zonefs_write_checks(iocb, from);
654 if (ret <= 0)
655 goto inode_unlock;
656
657 ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops);
658 if (ret > 0)
659 iocb->ki_pos += ret;
660 else if (ret == -EIO)
661 zonefs_io_error(inode, true);
662
663 inode_unlock:
664 inode_unlock(inode);
665 if (ret > 0)
666 ret = generic_write_sync(iocb, ret);
667
668 return ret;
669 }
670
zonefs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)671 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
672 {
673 struct inode *inode = file_inode(iocb->ki_filp);
674 struct zonefs_zone *z = zonefs_inode_zone(inode);
675
676 if (unlikely(IS_IMMUTABLE(inode)))
677 return -EPERM;
678
679 if (sb_rdonly(inode->i_sb))
680 return -EROFS;
681
682 /* Write operations beyond the zone capacity are not allowed */
683 if (iocb->ki_pos >= z->z_capacity)
684 return -EFBIG;
685
686 if (iocb->ki_flags & IOCB_DIRECT) {
687 ssize_t ret = zonefs_file_dio_write(iocb, from);
688
689 if (ret != -ENOTBLK)
690 return ret;
691 }
692
693 return zonefs_file_buffered_write(iocb, from);
694 }
695
zonefs_file_read_dio_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)696 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
697 int error, unsigned int flags)
698 {
699 if (error) {
700 zonefs_io_error(file_inode(iocb->ki_filp), false);
701 return error;
702 }
703
704 return 0;
705 }
706
707 static const struct iomap_dio_ops zonefs_read_dio_ops = {
708 .end_io = zonefs_file_read_dio_end_io,
709 };
710
zonefs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)711 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
712 {
713 struct inode *inode = file_inode(iocb->ki_filp);
714 struct zonefs_inode_info *zi = ZONEFS_I(inode);
715 struct zonefs_zone *z = zonefs_inode_zone(inode);
716 struct super_block *sb = inode->i_sb;
717 loff_t isize;
718 ssize_t ret;
719
720 /* Offline zones cannot be read */
721 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
722 return -EPERM;
723
724 if (iocb->ki_pos >= z->z_capacity)
725 return 0;
726
727 if (iocb->ki_flags & IOCB_NOWAIT) {
728 if (!inode_trylock_shared(inode))
729 return -EAGAIN;
730 } else {
731 inode_lock_shared(inode);
732 }
733
734 /* Limit read operations to written data */
735 mutex_lock(&zi->i_truncate_mutex);
736 isize = i_size_read(inode);
737 if (iocb->ki_pos >= isize) {
738 mutex_unlock(&zi->i_truncate_mutex);
739 ret = 0;
740 goto inode_unlock;
741 }
742 iov_iter_truncate(to, isize - iocb->ki_pos);
743 mutex_unlock(&zi->i_truncate_mutex);
744
745 if (iocb->ki_flags & IOCB_DIRECT) {
746 size_t count = iov_iter_count(to);
747
748 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
749 ret = -EINVAL;
750 goto inode_unlock;
751 }
752 file_accessed(iocb->ki_filp);
753 ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops,
754 &zonefs_read_dio_ops, 0, NULL, 0);
755 } else {
756 ret = generic_file_read_iter(iocb, to);
757 if (ret == -EIO)
758 zonefs_io_error(inode, false);
759 }
760
761 inode_unlock:
762 inode_unlock_shared(inode);
763
764 return ret;
765 }
766
767 /*
768 * Write open accounting is done only for sequential files.
769 */
zonefs_seq_file_need_wro(struct inode * inode,struct file * file)770 static inline bool zonefs_seq_file_need_wro(struct inode *inode,
771 struct file *file)
772 {
773 if (zonefs_inode_is_cnv(inode))
774 return false;
775
776 if (!(file->f_mode & FMODE_WRITE))
777 return false;
778
779 return true;
780 }
781
zonefs_seq_file_write_open(struct inode * inode)782 static int zonefs_seq_file_write_open(struct inode *inode)
783 {
784 struct zonefs_inode_info *zi = ZONEFS_I(inode);
785 struct zonefs_zone *z = zonefs_inode_zone(inode);
786 int ret = 0;
787
788 mutex_lock(&zi->i_truncate_mutex);
789
790 if (!zi->i_wr_refcnt) {
791 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
792 unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files);
793
794 if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
795
796 if (sbi->s_max_wro_seq_files
797 && wro > sbi->s_max_wro_seq_files) {
798 atomic_dec(&sbi->s_wro_seq_files);
799 ret = -EBUSY;
800 goto unlock;
801 }
802
803 if (i_size_read(inode) < z->z_capacity) {
804 ret = zonefs_inode_zone_mgmt(inode,
805 REQ_OP_ZONE_OPEN);
806 if (ret) {
807 atomic_dec(&sbi->s_wro_seq_files);
808 goto unlock;
809 }
810 z->z_flags |= ZONEFS_ZONE_OPEN;
811 zonefs_inode_account_active(inode);
812 }
813 }
814 }
815
816 zi->i_wr_refcnt++;
817
818 unlock:
819 mutex_unlock(&zi->i_truncate_mutex);
820
821 return ret;
822 }
823
zonefs_file_open(struct inode * inode,struct file * file)824 static int zonefs_file_open(struct inode *inode, struct file *file)
825 {
826 int ret;
827
828 ret = generic_file_open(inode, file);
829 if (ret)
830 return ret;
831
832 if (zonefs_seq_file_need_wro(inode, file))
833 return zonefs_seq_file_write_open(inode);
834
835 return 0;
836 }
837
zonefs_seq_file_write_close(struct inode * inode)838 static void zonefs_seq_file_write_close(struct inode *inode)
839 {
840 struct zonefs_inode_info *zi = ZONEFS_I(inode);
841 struct zonefs_zone *z = zonefs_inode_zone(inode);
842 struct super_block *sb = inode->i_sb;
843 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
844 int ret = 0;
845
846 mutex_lock(&zi->i_truncate_mutex);
847
848 zi->i_wr_refcnt--;
849 if (zi->i_wr_refcnt)
850 goto unlock;
851
852 /*
853 * The file zone may not be open anymore (e.g. the file was truncated to
854 * its maximum size or it was fully written). For this case, we only
855 * need to decrement the write open count.
856 */
857 if (z->z_flags & ZONEFS_ZONE_OPEN) {
858 ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
859 if (ret) {
860 __zonefs_io_error(inode, false);
861 /*
862 * Leaving zones explicitly open may lead to a state
863 * where most zones cannot be written (zone resources
864 * exhausted). So take preventive action by remounting
865 * read-only.
866 */
867 if (z->z_flags & ZONEFS_ZONE_OPEN &&
868 !(sb->s_flags & SB_RDONLY)) {
869 zonefs_warn(sb,
870 "closing zone at %llu failed %d\n",
871 z->z_sector, ret);
872 zonefs_warn(sb,
873 "remounting filesystem read-only\n");
874 sb->s_flags |= SB_RDONLY;
875 }
876 goto unlock;
877 }
878
879 z->z_flags &= ~ZONEFS_ZONE_OPEN;
880 zonefs_inode_account_active(inode);
881 }
882
883 atomic_dec(&sbi->s_wro_seq_files);
884
885 unlock:
886 mutex_unlock(&zi->i_truncate_mutex);
887 }
888
zonefs_file_release(struct inode * inode,struct file * file)889 static int zonefs_file_release(struct inode *inode, struct file *file)
890 {
891 /*
892 * If we explicitly open a zone we must close it again as well, but the
893 * zone management operation can fail (either due to an IO error or as
894 * the zone has gone offline or read-only). Make sure we don't fail the
895 * close(2) for user-space.
896 */
897 if (zonefs_seq_file_need_wro(inode, file))
898 zonefs_seq_file_write_close(inode);
899
900 return 0;
901 }
902
903 const struct file_operations zonefs_file_operations = {
904 .open = zonefs_file_open,
905 .release = zonefs_file_release,
906 .fsync = zonefs_file_fsync,
907 .mmap = zonefs_file_mmap,
908 .llseek = zonefs_file_llseek,
909 .read_iter = zonefs_file_read_iter,
910 .write_iter = zonefs_file_write_iter,
911 .splice_read = generic_file_splice_read,
912 .splice_write = iter_file_splice_write,
913 .iopoll = iocb_bio_iopoll,
914 };
915