• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2007, 2017 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/slab.h>
34 #include <linux/types.h>
35 #include <linux/rbtree.h>
36 #include <linux/bitops.h>
37 #include <linux/export.h>
38 
39 #include "rds.h"
40 
41 /*
42  * This file implements the receive side of the unconventional congestion
43  * management in RDS.
44  *
45  * Messages waiting in the receive queue on the receiving socket are accounted
46  * against the sockets SO_RCVBUF option value.  Only the payload bytes in the
47  * message are accounted for.  If the number of bytes queued equals or exceeds
48  * rcvbuf then the socket is congested.  All sends attempted to this socket's
49  * address should return block or return -EWOULDBLOCK.
50  *
51  * Applications are expected to be reasonably tuned such that this situation
52  * very rarely occurs.  An application encountering this "back-pressure" is
53  * considered a bug.
54  *
55  * This is implemented by having each node maintain bitmaps which indicate
56  * which ports on bound addresses are congested.  As the bitmap changes it is
57  * sent through all the connections which terminate in the local address of the
58  * bitmap which changed.
59  *
60  * The bitmaps are allocated as connections are brought up.  This avoids
61  * allocation in the interrupt handling path which queues messages on sockets.
62  * The dense bitmaps let transports send the entire bitmap on any bitmap change
63  * reasonably efficiently.  This is much easier to implement than some
64  * finer-grained communication of per-port congestion.  The sender does a very
65  * inexpensive bit test to test if the port it's about to send to is congested
66  * or not.
67  */
68 
69 /*
70  * Interaction with poll is a tad tricky. We want all processes stuck in
71  * poll to wake up and check whether a congested destination became uncongested.
72  * The really sad thing is we have no idea which destinations the application
73  * wants to send to - we don't even know which rds_connections are involved.
74  * So until we implement a more flexible rds poll interface, we have to make
75  * do with this:
76  * We maintain a global counter that is incremented each time a congestion map
77  * update is received. Each rds socket tracks this value, and if rds_poll
78  * finds that the saved generation number is smaller than the global generation
79  * number, it wakes up the process.
80  */
81 static atomic_t		rds_cong_generation = ATOMIC_INIT(0);
82 
83 /*
84  * Congestion monitoring
85  */
86 static LIST_HEAD(rds_cong_monitor);
87 static DEFINE_RWLOCK(rds_cong_monitor_lock);
88 
89 /*
90  * Yes, a global lock.  It's used so infrequently that it's worth keeping it
91  * global to simplify the locking.  It's only used in the following
92  * circumstances:
93  *
94  *  - on connection buildup to associate a conn with its maps
95  *  - on map changes to inform conns of a new map to send
96  *
97  *  It's sadly ordered under the socket callback lock and the connection lock.
98  *  Receive paths can mark ports congested from interrupt context so the
99  *  lock masks interrupts.
100  */
101 static DEFINE_SPINLOCK(rds_cong_lock);
102 static struct rb_root rds_cong_tree = RB_ROOT;
103 
rds_cong_tree_walk(const struct in6_addr * addr,struct rds_cong_map * insert)104 static struct rds_cong_map *rds_cong_tree_walk(const struct in6_addr *addr,
105 					       struct rds_cong_map *insert)
106 {
107 	struct rb_node **p = &rds_cong_tree.rb_node;
108 	struct rb_node *parent = NULL;
109 	struct rds_cong_map *map;
110 
111 	while (*p) {
112 		int diff;
113 
114 		parent = *p;
115 		map = rb_entry(parent, struct rds_cong_map, m_rb_node);
116 
117 		diff = rds_addr_cmp(addr, &map->m_addr);
118 		if (diff < 0)
119 			p = &(*p)->rb_left;
120 		else if (diff > 0)
121 			p = &(*p)->rb_right;
122 		else
123 			return map;
124 	}
125 
126 	if (insert) {
127 		rb_link_node(&insert->m_rb_node, parent, p);
128 		rb_insert_color(&insert->m_rb_node, &rds_cong_tree);
129 	}
130 	return NULL;
131 }
132 
133 /*
134  * There is only ever one bitmap for any address.  Connections try and allocate
135  * these bitmaps in the process getting pointers to them.  The bitmaps are only
136  * ever freed as the module is removed after all connections have been freed.
137  */
rds_cong_from_addr(const struct in6_addr * addr)138 static struct rds_cong_map *rds_cong_from_addr(const struct in6_addr *addr)
139 {
140 	struct rds_cong_map *map;
141 	struct rds_cong_map *ret = NULL;
142 	unsigned long zp;
143 	unsigned long i;
144 	unsigned long flags;
145 
146 	map = kzalloc(sizeof(struct rds_cong_map), GFP_KERNEL);
147 	if (!map)
148 		return NULL;
149 
150 	map->m_addr = *addr;
151 	init_waitqueue_head(&map->m_waitq);
152 	INIT_LIST_HEAD(&map->m_conn_list);
153 
154 	for (i = 0; i < RDS_CONG_MAP_PAGES; i++) {
155 		zp = get_zeroed_page(GFP_KERNEL);
156 		if (zp == 0)
157 			goto out;
158 		map->m_page_addrs[i] = zp;
159 	}
160 
161 	spin_lock_irqsave(&rds_cong_lock, flags);
162 	ret = rds_cong_tree_walk(addr, map);
163 	spin_unlock_irqrestore(&rds_cong_lock, flags);
164 
165 	if (!ret) {
166 		ret = map;
167 		map = NULL;
168 	}
169 
170 out:
171 	if (map) {
172 		for (i = 0; i < RDS_CONG_MAP_PAGES && map->m_page_addrs[i]; i++)
173 			free_page(map->m_page_addrs[i]);
174 		kfree(map);
175 	}
176 
177 	rdsdebug("map %p for addr %pI6c\n", ret, addr);
178 
179 	return ret;
180 }
181 
182 /*
183  * Put the conn on its local map's list.  This is called when the conn is
184  * really added to the hash.  It's nested under the rds_conn_lock, sadly.
185  */
rds_cong_add_conn(struct rds_connection * conn)186 void rds_cong_add_conn(struct rds_connection *conn)
187 {
188 	unsigned long flags;
189 
190 	rdsdebug("conn %p now on map %p\n", conn, conn->c_lcong);
191 	spin_lock_irqsave(&rds_cong_lock, flags);
192 	list_add_tail(&conn->c_map_item, &conn->c_lcong->m_conn_list);
193 	spin_unlock_irqrestore(&rds_cong_lock, flags);
194 }
195 
rds_cong_remove_conn(struct rds_connection * conn)196 void rds_cong_remove_conn(struct rds_connection *conn)
197 {
198 	unsigned long flags;
199 
200 	rdsdebug("removing conn %p from map %p\n", conn, conn->c_lcong);
201 	spin_lock_irqsave(&rds_cong_lock, flags);
202 	list_del_init(&conn->c_map_item);
203 	spin_unlock_irqrestore(&rds_cong_lock, flags);
204 }
205 
rds_cong_get_maps(struct rds_connection * conn)206 int rds_cong_get_maps(struct rds_connection *conn)
207 {
208 	conn->c_lcong = rds_cong_from_addr(&conn->c_laddr);
209 	conn->c_fcong = rds_cong_from_addr(&conn->c_faddr);
210 
211 	if (!(conn->c_lcong && conn->c_fcong))
212 		return -ENOMEM;
213 
214 	return 0;
215 }
216 
rds_cong_queue_updates(struct rds_cong_map * map)217 void rds_cong_queue_updates(struct rds_cong_map *map)
218 {
219 	struct rds_connection *conn;
220 	unsigned long flags;
221 
222 	spin_lock_irqsave(&rds_cong_lock, flags);
223 
224 	list_for_each_entry(conn, &map->m_conn_list, c_map_item) {
225 		struct rds_conn_path *cp = &conn->c_path[0];
226 
227 		rcu_read_lock();
228 		if (!test_and_set_bit(0, &conn->c_map_queued) &&
229 		    !rds_destroy_pending(cp->cp_conn)) {
230 			rds_stats_inc(s_cong_update_queued);
231 			/* We cannot inline the call to rds_send_xmit() here
232 			 * for two reasons (both pertaining to a TCP transport):
233 			 * 1. When we get here from the receive path, we
234 			 *    are already holding the sock_lock (held by
235 			 *    tcp_v4_rcv()). So inlining calls to
236 			 *    tcp_setsockopt and/or tcp_sendmsg will deadlock
237 			 *    when it tries to get the sock_lock())
238 			 * 2. Interrupts are masked so that we can mark the
239 			 *    port congested from both send and recv paths.
240 			 *    (See comment around declaration of rdc_cong_lock).
241 			 *    An attempt to get the sock_lock() here will
242 			 *    therefore trigger warnings.
243 			 * Defer the xmit to rds_send_worker() instead.
244 			 */
245 			queue_delayed_work(rds_wq, &cp->cp_send_w, 0);
246 		}
247 		rcu_read_unlock();
248 	}
249 
250 	spin_unlock_irqrestore(&rds_cong_lock, flags);
251 }
252 
rds_cong_map_updated(struct rds_cong_map * map,uint64_t portmask)253 void rds_cong_map_updated(struct rds_cong_map *map, uint64_t portmask)
254 {
255 	rdsdebug("waking map %p for %pI4\n",
256 	  map, &map->m_addr);
257 	rds_stats_inc(s_cong_update_received);
258 	atomic_inc(&rds_cong_generation);
259 	if (waitqueue_active(&map->m_waitq))
260 		wake_up(&map->m_waitq);
261 	if (waitqueue_active(&rds_poll_waitq))
262 		wake_up_all(&rds_poll_waitq);
263 
264 	if (portmask && !list_empty(&rds_cong_monitor)) {
265 		unsigned long flags;
266 		struct rds_sock *rs;
267 
268 		read_lock_irqsave(&rds_cong_monitor_lock, flags);
269 		list_for_each_entry(rs, &rds_cong_monitor, rs_cong_list) {
270 			spin_lock(&rs->rs_lock);
271 			rs->rs_cong_notify |= (rs->rs_cong_mask & portmask);
272 			rs->rs_cong_mask &= ~portmask;
273 			spin_unlock(&rs->rs_lock);
274 			if (rs->rs_cong_notify)
275 				rds_wake_sk_sleep(rs);
276 		}
277 		read_unlock_irqrestore(&rds_cong_monitor_lock, flags);
278 	}
279 }
280 EXPORT_SYMBOL_GPL(rds_cong_map_updated);
281 
rds_cong_updated_since(unsigned long * recent)282 int rds_cong_updated_since(unsigned long *recent)
283 {
284 	unsigned long gen = atomic_read(&rds_cong_generation);
285 
286 	if (likely(*recent == gen))
287 		return 0;
288 	*recent = gen;
289 	return 1;
290 }
291 
292 /*
293  * We're called under the locking that protects the sockets receive buffer
294  * consumption.  This makes it a lot easier for the caller to only call us
295  * when it knows that an existing set bit needs to be cleared, and vice versa.
296  * We can't block and we need to deal with concurrent sockets working against
297  * the same per-address map.
298  */
rds_cong_set_bit(struct rds_cong_map * map,__be16 port)299 void rds_cong_set_bit(struct rds_cong_map *map, __be16 port)
300 {
301 	unsigned long i;
302 	unsigned long off;
303 
304 	rdsdebug("setting congestion for %pI4:%u in map %p\n",
305 	  &map->m_addr, ntohs(port), map);
306 
307 	i = be16_to_cpu(port) / RDS_CONG_MAP_PAGE_BITS;
308 	off = be16_to_cpu(port) % RDS_CONG_MAP_PAGE_BITS;
309 
310 	set_bit_le(off, (void *)map->m_page_addrs[i]);
311 }
312 
rds_cong_clear_bit(struct rds_cong_map * map,__be16 port)313 void rds_cong_clear_bit(struct rds_cong_map *map, __be16 port)
314 {
315 	unsigned long i;
316 	unsigned long off;
317 
318 	rdsdebug("clearing congestion for %pI4:%u in map %p\n",
319 	  &map->m_addr, ntohs(port), map);
320 
321 	i = be16_to_cpu(port) / RDS_CONG_MAP_PAGE_BITS;
322 	off = be16_to_cpu(port) % RDS_CONG_MAP_PAGE_BITS;
323 
324 	clear_bit_le(off, (void *)map->m_page_addrs[i]);
325 }
326 
rds_cong_test_bit(struct rds_cong_map * map,__be16 port)327 static int rds_cong_test_bit(struct rds_cong_map *map, __be16 port)
328 {
329 	unsigned long i;
330 	unsigned long off;
331 
332 	i = be16_to_cpu(port) / RDS_CONG_MAP_PAGE_BITS;
333 	off = be16_to_cpu(port) % RDS_CONG_MAP_PAGE_BITS;
334 
335 	return test_bit_le(off, (void *)map->m_page_addrs[i]);
336 }
337 
rds_cong_add_socket(struct rds_sock * rs)338 void rds_cong_add_socket(struct rds_sock *rs)
339 {
340 	unsigned long flags;
341 
342 	write_lock_irqsave(&rds_cong_monitor_lock, flags);
343 	if (list_empty(&rs->rs_cong_list))
344 		list_add(&rs->rs_cong_list, &rds_cong_monitor);
345 	write_unlock_irqrestore(&rds_cong_monitor_lock, flags);
346 }
347 
rds_cong_remove_socket(struct rds_sock * rs)348 void rds_cong_remove_socket(struct rds_sock *rs)
349 {
350 	unsigned long flags;
351 	struct rds_cong_map *map;
352 
353 	write_lock_irqsave(&rds_cong_monitor_lock, flags);
354 	list_del_init(&rs->rs_cong_list);
355 	write_unlock_irqrestore(&rds_cong_monitor_lock, flags);
356 
357 	/* update congestion map for now-closed port */
358 	spin_lock_irqsave(&rds_cong_lock, flags);
359 	map = rds_cong_tree_walk(&rs->rs_bound_addr, NULL);
360 	spin_unlock_irqrestore(&rds_cong_lock, flags);
361 
362 	if (map && rds_cong_test_bit(map, rs->rs_bound_port)) {
363 		rds_cong_clear_bit(map, rs->rs_bound_port);
364 		rds_cong_queue_updates(map);
365 	}
366 }
367 
rds_cong_wait(struct rds_cong_map * map,__be16 port,int nonblock,struct rds_sock * rs)368 int rds_cong_wait(struct rds_cong_map *map, __be16 port, int nonblock,
369 		  struct rds_sock *rs)
370 {
371 	if (!rds_cong_test_bit(map, port))
372 		return 0;
373 	if (nonblock) {
374 		if (rs && rs->rs_cong_monitor) {
375 			unsigned long flags;
376 
377 			/* It would have been nice to have an atomic set_bit on
378 			 * a uint64_t. */
379 			spin_lock_irqsave(&rs->rs_lock, flags);
380 			rs->rs_cong_mask |= RDS_CONG_MONITOR_MASK(ntohs(port));
381 			spin_unlock_irqrestore(&rs->rs_lock, flags);
382 
383 			/* Test again - a congestion update may have arrived in
384 			 * the meantime. */
385 			if (!rds_cong_test_bit(map, port))
386 				return 0;
387 		}
388 		rds_stats_inc(s_cong_send_error);
389 		return -ENOBUFS;
390 	}
391 
392 	rds_stats_inc(s_cong_send_blocked);
393 	rdsdebug("waiting on map %p for port %u\n", map, be16_to_cpu(port));
394 
395 	return wait_event_interruptible(map->m_waitq,
396 					!rds_cong_test_bit(map, port));
397 }
398 
rds_cong_exit(void)399 void rds_cong_exit(void)
400 {
401 	struct rb_node *node;
402 	struct rds_cong_map *map;
403 	unsigned long i;
404 
405 	while ((node = rb_first(&rds_cong_tree))) {
406 		map = rb_entry(node, struct rds_cong_map, m_rb_node);
407 		rdsdebug("freeing map %p\n", map);
408 		rb_erase(&map->m_rb_node, &rds_cong_tree);
409 		for (i = 0; i < RDS_CONG_MAP_PAGES && map->m_page_addrs[i]; i++)
410 			free_page(map->m_page_addrs[i]);
411 		kfree(map);
412 	}
413 }
414 
415 /*
416  * Allocate a RDS message containing a congestion update.
417  */
rds_cong_update_alloc(struct rds_connection * conn)418 struct rds_message *rds_cong_update_alloc(struct rds_connection *conn)
419 {
420 	struct rds_cong_map *map = conn->c_lcong;
421 	struct rds_message *rm;
422 
423 	rm = rds_message_map_pages(map->m_page_addrs, RDS_CONG_MAP_BYTES);
424 	if (!IS_ERR(rm))
425 		rm->m_inc.i_hdr.h_flags = RDS_FLAG_CONG_BITMAP;
426 
427 	return rm;
428 }
429