• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 
11 #include <linux/module.h>
12 #include <linux/vmalloc.h>
13 #include <linux/blkdev.h>
14 #include <linux/blk-integrity.h>
15 #include <linux/namei.h>
16 #include <linux/ctype.h>
17 #include <linux/string.h>
18 #include <linux/slab.h>
19 #include <linux/interrupt.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/atomic.h>
23 #include <linux/blk-mq.h>
24 #include <linux/mount.h>
25 #include <linux/dax.h>
26 
27 #define DM_MSG_PREFIX "table"
28 
29 #define NODE_SIZE L1_CACHE_BYTES
30 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
31 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
32 
33 /*
34  * Similar to ceiling(log_size(n))
35  */
int_log(unsigned int n,unsigned int base)36 static unsigned int int_log(unsigned int n, unsigned int base)
37 {
38 	int result = 0;
39 
40 	while (n > 1) {
41 		n = dm_div_up(n, base);
42 		result++;
43 	}
44 
45 	return result;
46 }
47 
48 /*
49  * Calculate the index of the child node of the n'th node k'th key.
50  */
get_child(unsigned int n,unsigned int k)51 static inline unsigned int get_child(unsigned int n, unsigned int k)
52 {
53 	return (n * CHILDREN_PER_NODE) + k;
54 }
55 
56 /*
57  * Return the n'th node of level l from table t.
58  */
get_node(struct dm_table * t,unsigned int l,unsigned int n)59 static inline sector_t *get_node(struct dm_table *t,
60 				 unsigned int l, unsigned int n)
61 {
62 	return t->index[l] + (n * KEYS_PER_NODE);
63 }
64 
65 /*
66  * Return the highest key that you could lookup from the n'th
67  * node on level l of the btree.
68  */
high(struct dm_table * t,unsigned int l,unsigned int n)69 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
70 {
71 	for (; l < t->depth - 1; l++)
72 		n = get_child(n, CHILDREN_PER_NODE - 1);
73 
74 	if (n >= t->counts[l])
75 		return (sector_t) - 1;
76 
77 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
78 }
79 
80 /*
81  * Fills in a level of the btree based on the highs of the level
82  * below it.
83  */
setup_btree_index(unsigned int l,struct dm_table * t)84 static int setup_btree_index(unsigned int l, struct dm_table *t)
85 {
86 	unsigned int n, k;
87 	sector_t *node;
88 
89 	for (n = 0U; n < t->counts[l]; n++) {
90 		node = get_node(t, l, n);
91 
92 		for (k = 0U; k < KEYS_PER_NODE; k++)
93 			node[k] = high(t, l + 1, get_child(n, k));
94 	}
95 
96 	return 0;
97 }
98 
99 /*
100  * highs, and targets are managed as dynamic arrays during a
101  * table load.
102  */
alloc_targets(struct dm_table * t,unsigned int num)103 static int alloc_targets(struct dm_table *t, unsigned int num)
104 {
105 	sector_t *n_highs;
106 	struct dm_target *n_targets;
107 
108 	/*
109 	 * Allocate both the target array and offset array at once.
110 	 */
111 	n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
112 			   GFP_KERNEL);
113 	if (!n_highs)
114 		return -ENOMEM;
115 
116 	n_targets = (struct dm_target *) (n_highs + num);
117 
118 	memset(n_highs, -1, sizeof(*n_highs) * num);
119 	kvfree(t->highs);
120 
121 	t->num_allocated = num;
122 	t->highs = n_highs;
123 	t->targets = n_targets;
124 
125 	return 0;
126 }
127 
dm_table_create(struct dm_table ** result,fmode_t mode,unsigned int num_targets,struct mapped_device * md)128 int dm_table_create(struct dm_table **result, fmode_t mode,
129 		    unsigned int num_targets, struct mapped_device *md)
130 {
131 	struct dm_table *t;
132 
133 	if (num_targets > DM_MAX_TARGETS)
134 		return -EOVERFLOW;
135 
136 	t = kzalloc(sizeof(*t), GFP_KERNEL);
137 
138 	if (!t)
139 		return -ENOMEM;
140 
141 	INIT_LIST_HEAD(&t->devices);
142 
143 	if (!num_targets)
144 		num_targets = KEYS_PER_NODE;
145 
146 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
147 
148 	if (!num_targets) {
149 		kfree(t);
150 		return -EOVERFLOW;
151 	}
152 
153 	if (alloc_targets(t, num_targets)) {
154 		kfree(t);
155 		return -ENOMEM;
156 	}
157 
158 	t->type = DM_TYPE_NONE;
159 	t->mode = mode;
160 	t->md = md;
161 	*result = t;
162 	return 0;
163 }
164 
free_devices(struct list_head * devices,struct mapped_device * md)165 static void free_devices(struct list_head *devices, struct mapped_device *md)
166 {
167 	struct list_head *tmp, *next;
168 
169 	list_for_each_safe(tmp, next, devices) {
170 		struct dm_dev_internal *dd =
171 		    list_entry(tmp, struct dm_dev_internal, list);
172 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
173 		       dm_device_name(md), dd->dm_dev->name);
174 		dm_put_table_device(md, dd->dm_dev);
175 		kfree(dd);
176 	}
177 }
178 
179 static void dm_table_destroy_crypto_profile(struct dm_table *t);
180 
dm_table_destroy(struct dm_table * t)181 void dm_table_destroy(struct dm_table *t)
182 {
183 	if (!t)
184 		return;
185 
186 	/* free the indexes */
187 	if (t->depth >= 2)
188 		kvfree(t->index[t->depth - 2]);
189 
190 	/* free the targets */
191 	for (unsigned int i = 0; i < t->num_targets; i++) {
192 		struct dm_target *ti = dm_table_get_target(t, i);
193 
194 		if (ti->type->dtr)
195 			ti->type->dtr(ti);
196 
197 		dm_put_target_type(ti->type);
198 	}
199 
200 	kvfree(t->highs);
201 
202 	/* free the device list */
203 	free_devices(&t->devices, t->md);
204 
205 	dm_free_md_mempools(t->mempools);
206 
207 	dm_table_destroy_crypto_profile(t);
208 
209 	kfree(t);
210 }
211 
212 /*
213  * See if we've already got a device in the list.
214  */
find_device(struct list_head * l,dev_t dev)215 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
216 {
217 	struct dm_dev_internal *dd;
218 
219 	list_for_each_entry(dd, l, list)
220 		if (dd->dm_dev->bdev->bd_dev == dev)
221 			return dd;
222 
223 	return NULL;
224 }
225 
226 /*
227  * If possible, this checks an area of a destination device is invalid.
228  */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)229 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
230 				  sector_t start, sector_t len, void *data)
231 {
232 	struct queue_limits *limits = data;
233 	struct block_device *bdev = dev->bdev;
234 	sector_t dev_size = bdev_nr_sectors(bdev);
235 	unsigned short logical_block_size_sectors =
236 		limits->logical_block_size >> SECTOR_SHIFT;
237 
238 	if (!dev_size)
239 		return 0;
240 
241 	if ((start >= dev_size) || (start + len > dev_size)) {
242 		DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
243 		      dm_device_name(ti->table->md), bdev,
244 		      (unsigned long long)start,
245 		      (unsigned long long)len,
246 		      (unsigned long long)dev_size);
247 		return 1;
248 	}
249 
250 	/*
251 	 * If the target is mapped to zoned block device(s), check
252 	 * that the zones are not partially mapped.
253 	 */
254 	if (bdev_is_zoned(bdev)) {
255 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
256 
257 		if (start & (zone_sectors - 1)) {
258 			DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
259 			      dm_device_name(ti->table->md),
260 			      (unsigned long long)start,
261 			      zone_sectors, bdev);
262 			return 1;
263 		}
264 
265 		/*
266 		 * Note: The last zone of a zoned block device may be smaller
267 		 * than other zones. So for a target mapping the end of a
268 		 * zoned block device with such a zone, len would not be zone
269 		 * aligned. We do not allow such last smaller zone to be part
270 		 * of the mapping here to ensure that mappings with multiple
271 		 * devices do not end up with a smaller zone in the middle of
272 		 * the sector range.
273 		 */
274 		if (len & (zone_sectors - 1)) {
275 			DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
276 			      dm_device_name(ti->table->md),
277 			      (unsigned long long)len,
278 			      zone_sectors, bdev);
279 			return 1;
280 		}
281 	}
282 
283 	if (logical_block_size_sectors <= 1)
284 		return 0;
285 
286 	if (start & (logical_block_size_sectors - 1)) {
287 		DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
288 		      dm_device_name(ti->table->md),
289 		      (unsigned long long)start,
290 		      limits->logical_block_size, bdev);
291 		return 1;
292 	}
293 
294 	if (len & (logical_block_size_sectors - 1)) {
295 		DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
296 		      dm_device_name(ti->table->md),
297 		      (unsigned long long)len,
298 		      limits->logical_block_size, bdev);
299 		return 1;
300 	}
301 
302 	return 0;
303 }
304 
305 /*
306  * This upgrades the mode on an already open dm_dev, being
307  * careful to leave things as they were if we fail to reopen the
308  * device and not to touch the existing bdev field in case
309  * it is accessed concurrently.
310  */
upgrade_mode(struct dm_dev_internal * dd,fmode_t new_mode,struct mapped_device * md)311 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
312 			struct mapped_device *md)
313 {
314 	int r;
315 	struct dm_dev *old_dev, *new_dev;
316 
317 	old_dev = dd->dm_dev;
318 
319 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
320 				dd->dm_dev->mode | new_mode, &new_dev);
321 	if (r)
322 		return r;
323 
324 	dd->dm_dev = new_dev;
325 	dm_put_table_device(md, old_dev);
326 
327 	return 0;
328 }
329 
330 /*
331  * Convert the path to a device
332  */
dm_get_dev_t(const char * path)333 dev_t dm_get_dev_t(const char *path)
334 {
335 	dev_t dev;
336 
337 	if (lookup_bdev(path, &dev))
338 		dev = name_to_dev_t(path);
339 	return dev;
340 }
341 EXPORT_SYMBOL_GPL(dm_get_dev_t);
342 
343 /*
344  * Add a device to the list, or just increment the usage count if
345  * it's already present.
346  */
dm_get_device(struct dm_target * ti,const char * path,fmode_t mode,struct dm_dev ** result)347 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
348 		  struct dm_dev **result)
349 {
350 	int r;
351 	dev_t dev;
352 	unsigned int major, minor;
353 	char dummy;
354 	struct dm_dev_internal *dd;
355 	struct dm_table *t = ti->table;
356 
357 	BUG_ON(!t);
358 
359 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
360 		/* Extract the major/minor numbers */
361 		dev = MKDEV(major, minor);
362 		if (MAJOR(dev) != major || MINOR(dev) != minor)
363 			return -EOVERFLOW;
364 	} else {
365 		dev = dm_get_dev_t(path);
366 		if (!dev)
367 			return -ENODEV;
368 	}
369 
370 	dd = find_device(&t->devices, dev);
371 	if (!dd) {
372 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
373 		if (!dd)
374 			return -ENOMEM;
375 
376 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
377 			kfree(dd);
378 			return r;
379 		}
380 
381 		refcount_set(&dd->count, 1);
382 		list_add(&dd->list, &t->devices);
383 		goto out;
384 
385 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
386 		r = upgrade_mode(dd, mode, t->md);
387 		if (r)
388 			return r;
389 	}
390 	refcount_inc(&dd->count);
391 out:
392 	*result = dd->dm_dev;
393 	return 0;
394 }
395 EXPORT_SYMBOL(dm_get_device);
396 
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)397 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
398 				sector_t start, sector_t len, void *data)
399 {
400 	struct queue_limits *limits = data;
401 	struct block_device *bdev = dev->bdev;
402 	struct request_queue *q = bdev_get_queue(bdev);
403 
404 	if (unlikely(!q)) {
405 		DMWARN("%s: Cannot set limits for nonexistent device %pg",
406 		       dm_device_name(ti->table->md), bdev);
407 		return 0;
408 	}
409 
410 	if (blk_stack_limits(limits, &q->limits,
411 			get_start_sect(bdev) + start) < 0)
412 		DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
413 		       "physical_block_size=%u, logical_block_size=%u, "
414 		       "alignment_offset=%u, start=%llu",
415 		       dm_device_name(ti->table->md), bdev,
416 		       q->limits.physical_block_size,
417 		       q->limits.logical_block_size,
418 		       q->limits.alignment_offset,
419 		       (unsigned long long) start << SECTOR_SHIFT);
420 	return 0;
421 }
422 
423 /*
424  * Decrement a device's use count and remove it if necessary.
425  */
dm_put_device(struct dm_target * ti,struct dm_dev * d)426 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
427 {
428 	int found = 0;
429 	struct list_head *devices = &ti->table->devices;
430 	struct dm_dev_internal *dd;
431 
432 	list_for_each_entry(dd, devices, list) {
433 		if (dd->dm_dev == d) {
434 			found = 1;
435 			break;
436 		}
437 	}
438 	if (!found) {
439 		DMERR("%s: device %s not in table devices list",
440 		      dm_device_name(ti->table->md), d->name);
441 		return;
442 	}
443 	if (refcount_dec_and_test(&dd->count)) {
444 		dm_put_table_device(ti->table->md, d);
445 		list_del(&dd->list);
446 		kfree(dd);
447 	}
448 }
449 EXPORT_SYMBOL(dm_put_device);
450 
451 /*
452  * Checks to see if the target joins onto the end of the table.
453  */
adjoin(struct dm_table * t,struct dm_target * ti)454 static int adjoin(struct dm_table *t, struct dm_target *ti)
455 {
456 	struct dm_target *prev;
457 
458 	if (!t->num_targets)
459 		return !ti->begin;
460 
461 	prev = &t->targets[t->num_targets - 1];
462 	return (ti->begin == (prev->begin + prev->len));
463 }
464 
465 /*
466  * Used to dynamically allocate the arg array.
467  *
468  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
469  * process messages even if some device is suspended. These messages have a
470  * small fixed number of arguments.
471  *
472  * On the other hand, dm-switch needs to process bulk data using messages and
473  * excessive use of GFP_NOIO could cause trouble.
474  */
realloc_argv(unsigned int * size,char ** old_argv)475 static char **realloc_argv(unsigned int *size, char **old_argv)
476 {
477 	char **argv;
478 	unsigned int new_size;
479 	gfp_t gfp;
480 
481 	if (*size) {
482 		new_size = *size * 2;
483 		gfp = GFP_KERNEL;
484 	} else {
485 		new_size = 8;
486 		gfp = GFP_NOIO;
487 	}
488 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
489 	if (argv && old_argv) {
490 		memcpy(argv, old_argv, *size * sizeof(*argv));
491 		*size = new_size;
492 	}
493 
494 	kfree(old_argv);
495 	return argv;
496 }
497 
498 /*
499  * Destructively splits up the argument list to pass to ctr.
500  */
dm_split_args(int * argc,char *** argvp,char * input)501 int dm_split_args(int *argc, char ***argvp, char *input)
502 {
503 	char *start, *end = input, *out, **argv = NULL;
504 	unsigned int array_size = 0;
505 
506 	*argc = 0;
507 
508 	if (!input) {
509 		*argvp = NULL;
510 		return 0;
511 	}
512 
513 	argv = realloc_argv(&array_size, argv);
514 	if (!argv)
515 		return -ENOMEM;
516 
517 	while (1) {
518 		/* Skip whitespace */
519 		start = skip_spaces(end);
520 
521 		if (!*start)
522 			break;	/* success, we hit the end */
523 
524 		/* 'out' is used to remove any back-quotes */
525 		end = out = start;
526 		while (*end) {
527 			/* Everything apart from '\0' can be quoted */
528 			if (*end == '\\' && *(end + 1)) {
529 				*out++ = *(end + 1);
530 				end += 2;
531 				continue;
532 			}
533 
534 			if (isspace(*end))
535 				break;	/* end of token */
536 
537 			*out++ = *end++;
538 		}
539 
540 		/* have we already filled the array ? */
541 		if ((*argc + 1) > array_size) {
542 			argv = realloc_argv(&array_size, argv);
543 			if (!argv)
544 				return -ENOMEM;
545 		}
546 
547 		/* we know this is whitespace */
548 		if (*end)
549 			end++;
550 
551 		/* terminate the string and put it in the array */
552 		*out = '\0';
553 		argv[*argc] = start;
554 		(*argc)++;
555 	}
556 
557 	*argvp = argv;
558 	return 0;
559 }
560 
561 /*
562  * Impose necessary and sufficient conditions on a devices's table such
563  * that any incoming bio which respects its logical_block_size can be
564  * processed successfully.  If it falls across the boundary between
565  * two or more targets, the size of each piece it gets split into must
566  * be compatible with the logical_block_size of the target processing it.
567  */
validate_hardware_logical_block_alignment(struct dm_table * t,struct queue_limits * limits)568 static int validate_hardware_logical_block_alignment(struct dm_table *t,
569 						     struct queue_limits *limits)
570 {
571 	/*
572 	 * This function uses arithmetic modulo the logical_block_size
573 	 * (in units of 512-byte sectors).
574 	 */
575 	unsigned short device_logical_block_size_sects =
576 		limits->logical_block_size >> SECTOR_SHIFT;
577 
578 	/*
579 	 * Offset of the start of the next table entry, mod logical_block_size.
580 	 */
581 	unsigned short next_target_start = 0;
582 
583 	/*
584 	 * Given an aligned bio that extends beyond the end of a
585 	 * target, how many sectors must the next target handle?
586 	 */
587 	unsigned short remaining = 0;
588 
589 	struct dm_target *ti;
590 	struct queue_limits ti_limits;
591 	unsigned int i;
592 
593 	/*
594 	 * Check each entry in the table in turn.
595 	 */
596 	for (i = 0; i < t->num_targets; i++) {
597 		ti = dm_table_get_target(t, i);
598 
599 		blk_set_stacking_limits(&ti_limits);
600 
601 		/* combine all target devices' limits */
602 		if (ti->type->iterate_devices)
603 			ti->type->iterate_devices(ti, dm_set_device_limits,
604 						  &ti_limits);
605 
606 		/*
607 		 * If the remaining sectors fall entirely within this
608 		 * table entry are they compatible with its logical_block_size?
609 		 */
610 		if (remaining < ti->len &&
611 		    remaining & ((ti_limits.logical_block_size >>
612 				  SECTOR_SHIFT) - 1))
613 			break;	/* Error */
614 
615 		next_target_start =
616 		    (unsigned short) ((next_target_start + ti->len) &
617 				      (device_logical_block_size_sects - 1));
618 		remaining = next_target_start ?
619 		    device_logical_block_size_sects - next_target_start : 0;
620 	}
621 
622 	if (remaining) {
623 		DMERR("%s: table line %u (start sect %llu len %llu) "
624 		      "not aligned to h/w logical block size %u",
625 		      dm_device_name(t->md), i,
626 		      (unsigned long long) ti->begin,
627 		      (unsigned long long) ti->len,
628 		      limits->logical_block_size);
629 		return -EINVAL;
630 	}
631 
632 	return 0;
633 }
634 
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)635 int dm_table_add_target(struct dm_table *t, const char *type,
636 			sector_t start, sector_t len, char *params)
637 {
638 	int r = -EINVAL, argc;
639 	char **argv;
640 	struct dm_target *ti;
641 
642 	if (t->singleton) {
643 		DMERR("%s: target type %s must appear alone in table",
644 		      dm_device_name(t->md), t->targets->type->name);
645 		return -EINVAL;
646 	}
647 
648 	BUG_ON(t->num_targets >= t->num_allocated);
649 
650 	ti = t->targets + t->num_targets;
651 	memset(ti, 0, sizeof(*ti));
652 
653 	if (!len) {
654 		DMERR("%s: zero-length target", dm_device_name(t->md));
655 		return -EINVAL;
656 	}
657 
658 	ti->type = dm_get_target_type(type);
659 	if (!ti->type) {
660 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
661 		return -EINVAL;
662 	}
663 
664 	if (dm_target_needs_singleton(ti->type)) {
665 		if (t->num_targets) {
666 			ti->error = "singleton target type must appear alone in table";
667 			goto bad;
668 		}
669 		t->singleton = true;
670 	}
671 
672 	if (dm_target_always_writeable(ti->type) && !(t->mode & FMODE_WRITE)) {
673 		ti->error = "target type may not be included in a read-only table";
674 		goto bad;
675 	}
676 
677 	if (t->immutable_target_type) {
678 		if (t->immutable_target_type != ti->type) {
679 			ti->error = "immutable target type cannot be mixed with other target types";
680 			goto bad;
681 		}
682 	} else if (dm_target_is_immutable(ti->type)) {
683 		if (t->num_targets) {
684 			ti->error = "immutable target type cannot be mixed with other target types";
685 			goto bad;
686 		}
687 		t->immutable_target_type = ti->type;
688 	}
689 
690 	if (dm_target_has_integrity(ti->type))
691 		t->integrity_added = 1;
692 
693 	ti->table = t;
694 	ti->begin = start;
695 	ti->len = len;
696 	ti->error = "Unknown error";
697 
698 	/*
699 	 * Does this target adjoin the previous one ?
700 	 */
701 	if (!adjoin(t, ti)) {
702 		ti->error = "Gap in table";
703 		goto bad;
704 	}
705 
706 	r = dm_split_args(&argc, &argv, params);
707 	if (r) {
708 		ti->error = "couldn't split parameters";
709 		goto bad;
710 	}
711 
712 	r = ti->type->ctr(ti, argc, argv);
713 	kfree(argv);
714 	if (r)
715 		goto bad;
716 
717 	t->highs[t->num_targets++] = ti->begin + ti->len - 1;
718 
719 	if (!ti->num_discard_bios && ti->discards_supported)
720 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
721 		       dm_device_name(t->md), type);
722 
723 	if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
724 		static_branch_enable(&swap_bios_enabled);
725 
726 	return 0;
727 
728  bad:
729 	DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
730 	dm_put_target_type(ti->type);
731 	return r;
732 }
733 
734 /*
735  * Target argument parsing helpers.
736  */
validate_next_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error,unsigned int grouped)737 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
738 			     unsigned int *value, char **error, unsigned int grouped)
739 {
740 	const char *arg_str = dm_shift_arg(arg_set);
741 	char dummy;
742 
743 	if (!arg_str ||
744 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
745 	    (*value < arg->min) ||
746 	    (*value > arg->max) ||
747 	    (grouped && arg_set->argc < *value)) {
748 		*error = arg->error;
749 		return -EINVAL;
750 	}
751 
752 	return 0;
753 }
754 
dm_read_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error)755 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
756 		unsigned int *value, char **error)
757 {
758 	return validate_next_arg(arg, arg_set, value, error, 0);
759 }
760 EXPORT_SYMBOL(dm_read_arg);
761 
dm_read_arg_group(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error)762 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
763 		      unsigned int *value, char **error)
764 {
765 	return validate_next_arg(arg, arg_set, value, error, 1);
766 }
767 EXPORT_SYMBOL(dm_read_arg_group);
768 
dm_shift_arg(struct dm_arg_set * as)769 const char *dm_shift_arg(struct dm_arg_set *as)
770 {
771 	char *r;
772 
773 	if (as->argc) {
774 		as->argc--;
775 		r = *as->argv;
776 		as->argv++;
777 		return r;
778 	}
779 
780 	return NULL;
781 }
782 EXPORT_SYMBOL(dm_shift_arg);
783 
dm_consume_args(struct dm_arg_set * as,unsigned int num_args)784 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
785 {
786 	BUG_ON(as->argc < num_args);
787 	as->argc -= num_args;
788 	as->argv += num_args;
789 }
790 EXPORT_SYMBOL(dm_consume_args);
791 
__table_type_bio_based(enum dm_queue_mode table_type)792 static bool __table_type_bio_based(enum dm_queue_mode table_type)
793 {
794 	return (table_type == DM_TYPE_BIO_BASED ||
795 		table_type == DM_TYPE_DAX_BIO_BASED);
796 }
797 
__table_type_request_based(enum dm_queue_mode table_type)798 static bool __table_type_request_based(enum dm_queue_mode table_type)
799 {
800 	return table_type == DM_TYPE_REQUEST_BASED;
801 }
802 
dm_table_set_type(struct dm_table * t,enum dm_queue_mode type)803 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
804 {
805 	t->type = type;
806 }
807 EXPORT_SYMBOL_GPL(dm_table_set_type);
808 
809 /* validate the dax capability of the target device span */
device_not_dax_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)810 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
811 			sector_t start, sector_t len, void *data)
812 {
813 	if (dev->dax_dev)
814 		return false;
815 
816 	DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
817 	return true;
818 }
819 
820 /* Check devices support synchronous DAX */
device_not_dax_synchronous_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)821 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
822 					      sector_t start, sector_t len, void *data)
823 {
824 	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
825 }
826 
dm_table_supports_dax(struct dm_table * t,iterate_devices_callout_fn iterate_fn)827 static bool dm_table_supports_dax(struct dm_table *t,
828 				  iterate_devices_callout_fn iterate_fn)
829 {
830 	/* Ensure that all targets support DAX. */
831 	for (unsigned int i = 0; i < t->num_targets; i++) {
832 		struct dm_target *ti = dm_table_get_target(t, i);
833 
834 		if (!ti->type->direct_access)
835 			return false;
836 
837 		if (!ti->type->iterate_devices ||
838 		    ti->type->iterate_devices(ti, iterate_fn, NULL))
839 			return false;
840 	}
841 
842 	return true;
843 }
844 
device_is_rq_stackable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)845 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
846 				  sector_t start, sector_t len, void *data)
847 {
848 	struct block_device *bdev = dev->bdev;
849 	struct request_queue *q = bdev_get_queue(bdev);
850 
851 	/* request-based cannot stack on partitions! */
852 	if (bdev_is_partition(bdev))
853 		return false;
854 
855 	return queue_is_mq(q);
856 }
857 
dm_table_determine_type(struct dm_table * t)858 static int dm_table_determine_type(struct dm_table *t)
859 {
860 	unsigned int bio_based = 0, request_based = 0, hybrid = 0;
861 	struct dm_target *ti;
862 	struct list_head *devices = dm_table_get_devices(t);
863 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
864 
865 	if (t->type != DM_TYPE_NONE) {
866 		/* target already set the table's type */
867 		if (t->type == DM_TYPE_BIO_BASED) {
868 			/* possibly upgrade to a variant of bio-based */
869 			goto verify_bio_based;
870 		}
871 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
872 		goto verify_rq_based;
873 	}
874 
875 	for (unsigned int i = 0; i < t->num_targets; i++) {
876 		ti = dm_table_get_target(t, i);
877 		if (dm_target_hybrid(ti))
878 			hybrid = 1;
879 		else if (dm_target_request_based(ti))
880 			request_based = 1;
881 		else
882 			bio_based = 1;
883 
884 		if (bio_based && request_based) {
885 			DMERR("Inconsistent table: different target types can't be mixed up");
886 			return -EINVAL;
887 		}
888 	}
889 
890 	if (hybrid && !bio_based && !request_based) {
891 		/*
892 		 * The targets can work either way.
893 		 * Determine the type from the live device.
894 		 * Default to bio-based if device is new.
895 		 */
896 		if (__table_type_request_based(live_md_type))
897 			request_based = 1;
898 		else
899 			bio_based = 1;
900 	}
901 
902 	if (bio_based) {
903 verify_bio_based:
904 		/* We must use this table as bio-based */
905 		t->type = DM_TYPE_BIO_BASED;
906 		if (dm_table_supports_dax(t, device_not_dax_capable) ||
907 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
908 			t->type = DM_TYPE_DAX_BIO_BASED;
909 		}
910 		return 0;
911 	}
912 
913 	BUG_ON(!request_based); /* No targets in this table */
914 
915 	t->type = DM_TYPE_REQUEST_BASED;
916 
917 verify_rq_based:
918 	/*
919 	 * Request-based dm supports only tables that have a single target now.
920 	 * To support multiple targets, request splitting support is needed,
921 	 * and that needs lots of changes in the block-layer.
922 	 * (e.g. request completion process for partial completion.)
923 	 */
924 	if (t->num_targets > 1) {
925 		DMERR("request-based DM doesn't support multiple targets");
926 		return -EINVAL;
927 	}
928 
929 	if (list_empty(devices)) {
930 		int srcu_idx;
931 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
932 
933 		/* inherit live table's type */
934 		if (live_table)
935 			t->type = live_table->type;
936 		dm_put_live_table(t->md, srcu_idx);
937 		return 0;
938 	}
939 
940 	ti = dm_table_get_immutable_target(t);
941 	if (!ti) {
942 		DMERR("table load rejected: immutable target is required");
943 		return -EINVAL;
944 	} else if (ti->max_io_len) {
945 		DMERR("table load rejected: immutable target that splits IO is not supported");
946 		return -EINVAL;
947 	}
948 
949 	/* Non-request-stackable devices can't be used for request-based dm */
950 	if (!ti->type->iterate_devices ||
951 	    !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
952 		DMERR("table load rejected: including non-request-stackable devices");
953 		return -EINVAL;
954 	}
955 
956 	return 0;
957 }
958 
dm_table_get_type(struct dm_table * t)959 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
960 {
961 	return t->type;
962 }
963 
dm_table_get_immutable_target_type(struct dm_table * t)964 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
965 {
966 	return t->immutable_target_type;
967 }
968 
dm_table_get_immutable_target(struct dm_table * t)969 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
970 {
971 	/* Immutable target is implicitly a singleton */
972 	if (t->num_targets > 1 ||
973 	    !dm_target_is_immutable(t->targets[0].type))
974 		return NULL;
975 
976 	return t->targets;
977 }
978 
dm_table_get_wildcard_target(struct dm_table * t)979 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
980 {
981 	for (unsigned int i = 0; i < t->num_targets; i++) {
982 		struct dm_target *ti = dm_table_get_target(t, i);
983 
984 		if (dm_target_is_wildcard(ti->type))
985 			return ti;
986 	}
987 
988 	return NULL;
989 }
990 
dm_table_bio_based(struct dm_table * t)991 bool dm_table_bio_based(struct dm_table *t)
992 {
993 	return __table_type_bio_based(dm_table_get_type(t));
994 }
995 
dm_table_request_based(struct dm_table * t)996 bool dm_table_request_based(struct dm_table *t)
997 {
998 	return __table_type_request_based(dm_table_get_type(t));
999 }
1000 
1001 static bool dm_table_supports_poll(struct dm_table *t);
1002 
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)1003 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1004 {
1005 	enum dm_queue_mode type = dm_table_get_type(t);
1006 	unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1007 	unsigned int min_pool_size = 0, pool_size;
1008 	struct dm_md_mempools *pools;
1009 
1010 	if (unlikely(type == DM_TYPE_NONE)) {
1011 		DMERR("no table type is set, can't allocate mempools");
1012 		return -EINVAL;
1013 	}
1014 
1015 	pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1016 	if (!pools)
1017 		return -ENOMEM;
1018 
1019 	if (type == DM_TYPE_REQUEST_BASED) {
1020 		pool_size = dm_get_reserved_rq_based_ios();
1021 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1022 		goto init_bs;
1023 	}
1024 
1025 	for (unsigned int i = 0; i < t->num_targets; i++) {
1026 		struct dm_target *ti = dm_table_get_target(t, i);
1027 
1028 		per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1029 		min_pool_size = max(min_pool_size, ti->num_flush_bios);
1030 	}
1031 	pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1032 	front_pad = roundup(per_io_data_size,
1033 		__alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1034 
1035 	io_front_pad = roundup(per_io_data_size,
1036 		__alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1037 	if (bioset_init(&pools->io_bs, pool_size, io_front_pad,
1038 			dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0))
1039 		goto out_free_pools;
1040 	if (t->integrity_supported &&
1041 	    bioset_integrity_create(&pools->io_bs, pool_size))
1042 		goto out_free_pools;
1043 init_bs:
1044 	if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1045 		goto out_free_pools;
1046 	if (t->integrity_supported &&
1047 	    bioset_integrity_create(&pools->bs, pool_size))
1048 		goto out_free_pools;
1049 
1050 	t->mempools = pools;
1051 	return 0;
1052 
1053 out_free_pools:
1054 	dm_free_md_mempools(pools);
1055 	return -ENOMEM;
1056 }
1057 
setup_indexes(struct dm_table * t)1058 static int setup_indexes(struct dm_table *t)
1059 {
1060 	int i;
1061 	unsigned int total = 0;
1062 	sector_t *indexes;
1063 
1064 	/* allocate the space for *all* the indexes */
1065 	for (i = t->depth - 2; i >= 0; i--) {
1066 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1067 		total += t->counts[i];
1068 	}
1069 
1070 	indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1071 	if (!indexes)
1072 		return -ENOMEM;
1073 
1074 	/* set up internal nodes, bottom-up */
1075 	for (i = t->depth - 2; i >= 0; i--) {
1076 		t->index[i] = indexes;
1077 		indexes += (KEYS_PER_NODE * t->counts[i]);
1078 		setup_btree_index(i, t);
1079 	}
1080 
1081 	return 0;
1082 }
1083 
1084 /*
1085  * Builds the btree to index the map.
1086  */
dm_table_build_index(struct dm_table * t)1087 static int dm_table_build_index(struct dm_table *t)
1088 {
1089 	int r = 0;
1090 	unsigned int leaf_nodes;
1091 
1092 	/* how many indexes will the btree have ? */
1093 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1094 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1095 
1096 	/* leaf layer has already been set up */
1097 	t->counts[t->depth - 1] = leaf_nodes;
1098 	t->index[t->depth - 1] = t->highs;
1099 
1100 	if (t->depth >= 2)
1101 		r = setup_indexes(t);
1102 
1103 	return r;
1104 }
1105 
integrity_profile_exists(struct gendisk * disk)1106 static bool integrity_profile_exists(struct gendisk *disk)
1107 {
1108 	return !!blk_get_integrity(disk);
1109 }
1110 
1111 /*
1112  * Get a disk whose integrity profile reflects the table's profile.
1113  * Returns NULL if integrity support was inconsistent or unavailable.
1114  */
dm_table_get_integrity_disk(struct dm_table * t)1115 static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t)
1116 {
1117 	struct list_head *devices = dm_table_get_devices(t);
1118 	struct dm_dev_internal *dd = NULL;
1119 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1120 
1121 	for (unsigned int i = 0; i < t->num_targets; i++) {
1122 		struct dm_target *ti = dm_table_get_target(t, i);
1123 
1124 		if (!dm_target_passes_integrity(ti->type))
1125 			goto no_integrity;
1126 	}
1127 
1128 	list_for_each_entry(dd, devices, list) {
1129 		template_disk = dd->dm_dev->bdev->bd_disk;
1130 		if (!integrity_profile_exists(template_disk))
1131 			goto no_integrity;
1132 		else if (prev_disk &&
1133 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1134 			goto no_integrity;
1135 		prev_disk = template_disk;
1136 	}
1137 
1138 	return template_disk;
1139 
1140 no_integrity:
1141 	if (prev_disk)
1142 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1143 		       dm_device_name(t->md),
1144 		       prev_disk->disk_name,
1145 		       template_disk->disk_name);
1146 	return NULL;
1147 }
1148 
1149 /*
1150  * Register the mapped device for blk_integrity support if the
1151  * underlying devices have an integrity profile.  But all devices may
1152  * not have matching profiles (checking all devices isn't reliable
1153  * during table load because this table may use other DM device(s) which
1154  * must be resumed before they will have an initialized integity
1155  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1156  * profile validation: First pass during table load, final pass during
1157  * resume.
1158  */
dm_table_register_integrity(struct dm_table * t)1159 static int dm_table_register_integrity(struct dm_table *t)
1160 {
1161 	struct mapped_device *md = t->md;
1162 	struct gendisk *template_disk = NULL;
1163 
1164 	/* If target handles integrity itself do not register it here. */
1165 	if (t->integrity_added)
1166 		return 0;
1167 
1168 	template_disk = dm_table_get_integrity_disk(t);
1169 	if (!template_disk)
1170 		return 0;
1171 
1172 	if (!integrity_profile_exists(dm_disk(md))) {
1173 		t->integrity_supported = true;
1174 		/*
1175 		 * Register integrity profile during table load; we can do
1176 		 * this because the final profile must match during resume.
1177 		 */
1178 		blk_integrity_register(dm_disk(md),
1179 				       blk_get_integrity(template_disk));
1180 		return 0;
1181 	}
1182 
1183 	/*
1184 	 * If DM device already has an initialized integrity
1185 	 * profile the new profile should not conflict.
1186 	 */
1187 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1188 		DMERR("%s: conflict with existing integrity profile: %s profile mismatch",
1189 		      dm_device_name(t->md),
1190 		      template_disk->disk_name);
1191 		return 1;
1192 	}
1193 
1194 	/* Preserve existing integrity profile */
1195 	t->integrity_supported = true;
1196 	return 0;
1197 }
1198 
1199 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1200 
1201 struct dm_crypto_profile {
1202 	struct blk_crypto_profile profile;
1203 	struct mapped_device *md;
1204 };
1205 
dm_keyslot_evict_callback(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1206 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1207 				     sector_t start, sector_t len, void *data)
1208 {
1209 	const struct blk_crypto_key *key = data;
1210 
1211 	blk_crypto_evict_key(dev->bdev, key);
1212 	return 0;
1213 }
1214 
1215 /*
1216  * When an inline encryption key is evicted from a device-mapper device, evict
1217  * it from all the underlying devices.
1218  */
dm_keyslot_evict(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)1219 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1220 			    const struct blk_crypto_key *key, unsigned int slot)
1221 {
1222 	struct mapped_device *md =
1223 		container_of(profile, struct dm_crypto_profile, profile)->md;
1224 	struct dm_table *t;
1225 	int srcu_idx;
1226 
1227 	t = dm_get_live_table(md, &srcu_idx);
1228 	if (!t)
1229 		return 0;
1230 
1231 	for (unsigned int i = 0; i < t->num_targets; i++) {
1232 		struct dm_target *ti = dm_table_get_target(t, i);
1233 
1234 		if (!ti->type->iterate_devices)
1235 			continue;
1236 		ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1237 					  (void *)key);
1238 	}
1239 
1240 	dm_put_live_table(md, srcu_idx);
1241 	return 0;
1242 }
1243 
1244 struct dm_derive_sw_secret_args {
1245 	const u8 *eph_key;
1246 	size_t eph_key_size;
1247 	u8 *sw_secret;
1248 	int err;
1249 };
1250 
dm_derive_sw_secret_callback(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1251 static int dm_derive_sw_secret_callback(struct dm_target *ti,
1252 					struct dm_dev *dev, sector_t start,
1253 					sector_t len, void *data)
1254 {
1255 	struct dm_derive_sw_secret_args *args = data;
1256 
1257 	if (!args->err)
1258 		return 0;
1259 
1260 	args->err = blk_crypto_derive_sw_secret(dev->bdev,
1261 						args->eph_key,
1262 						args->eph_key_size,
1263 						args->sw_secret);
1264 	/* Try another device in case this fails. */
1265 	return 0;
1266 }
1267 
1268 /*
1269  * Retrieve the sw_secret from the underlying device.  Given that only one
1270  * sw_secret can exist for a particular wrapped key, retrieve it only from the
1271  * first device that supports derive_sw_secret().
1272  */
dm_derive_sw_secret(struct blk_crypto_profile * profile,const u8 * eph_key,size_t eph_key_size,u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE])1273 static int dm_derive_sw_secret(struct blk_crypto_profile *profile,
1274 			       const u8 *eph_key, size_t eph_key_size,
1275 			       u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE])
1276 {
1277 	struct mapped_device *md =
1278 		container_of(profile, struct dm_crypto_profile, profile)->md;
1279 	struct dm_derive_sw_secret_args args = {
1280 		.eph_key = eph_key,
1281 		.eph_key_size = eph_key_size,
1282 		.sw_secret = sw_secret,
1283 		.err = -EOPNOTSUPP,
1284 	};
1285 	struct dm_table *t;
1286 	int srcu_idx;
1287 	int i;
1288 	struct dm_target *ti;
1289 
1290 	t = dm_get_live_table(md, &srcu_idx);
1291 	if (!t)
1292 		return -EOPNOTSUPP;
1293 	for (i = 0; i < t->num_targets; i++) {
1294 		ti = dm_table_get_target(t, i);
1295 		if (!ti->type->iterate_devices)
1296 			continue;
1297 		ti->type->iterate_devices(ti, dm_derive_sw_secret_callback,
1298 					  &args);
1299 		if (!args.err)
1300 			break;
1301 	}
1302 	dm_put_live_table(md, srcu_idx);
1303 	return args.err;
1304 }
1305 
1306 static int
device_intersect_crypto_capabilities(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1307 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1308 				     sector_t start, sector_t len, void *data)
1309 {
1310 	struct blk_crypto_profile *parent = data;
1311 	struct blk_crypto_profile *child =
1312 		bdev_get_queue(dev->bdev)->crypto_profile;
1313 
1314 	blk_crypto_intersect_capabilities(parent, child);
1315 	return 0;
1316 }
1317 
dm_destroy_crypto_profile(struct blk_crypto_profile * profile)1318 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1319 {
1320 	struct dm_crypto_profile *dmcp = container_of(profile,
1321 						      struct dm_crypto_profile,
1322 						      profile);
1323 
1324 	if (!profile)
1325 		return;
1326 
1327 	blk_crypto_profile_destroy(profile);
1328 	kfree(dmcp);
1329 }
1330 
dm_table_destroy_crypto_profile(struct dm_table * t)1331 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1332 {
1333 	dm_destroy_crypto_profile(t->crypto_profile);
1334 	t->crypto_profile = NULL;
1335 }
1336 
1337 /*
1338  * Constructs and initializes t->crypto_profile with a crypto profile that
1339  * represents the common set of crypto capabilities of the devices described by
1340  * the dm_table.  However, if the constructed crypto profile doesn't support all
1341  * crypto capabilities that are supported by the current mapped_device, it
1342  * returns an error instead, since we don't support removing crypto capabilities
1343  * on table changes.  Finally, if the constructed crypto profile is "empty" (has
1344  * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1345  */
dm_table_construct_crypto_profile(struct dm_table * t)1346 static int dm_table_construct_crypto_profile(struct dm_table *t)
1347 {
1348 	struct dm_crypto_profile *dmcp;
1349 	struct blk_crypto_profile *profile;
1350 	unsigned int i;
1351 	bool empty_profile = true;
1352 
1353 	dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1354 	if (!dmcp)
1355 		return -ENOMEM;
1356 	dmcp->md = t->md;
1357 
1358 	profile = &dmcp->profile;
1359 	blk_crypto_profile_init(profile, 0);
1360 	profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1361 	profile->ll_ops.derive_sw_secret = dm_derive_sw_secret;
1362 	profile->max_dun_bytes_supported = UINT_MAX;
1363 	memset(profile->modes_supported, 0xFF,
1364 	       sizeof(profile->modes_supported));
1365 	profile->key_types_supported = ~0;
1366 
1367 	for (i = 0; i < t->num_targets; i++) {
1368 		struct dm_target *ti = dm_table_get_target(t, i);
1369 
1370 		if (!dm_target_passes_crypto(ti->type)) {
1371 			blk_crypto_intersect_capabilities(profile, NULL);
1372 			break;
1373 		}
1374 		if (!ti->type->iterate_devices)
1375 			continue;
1376 		ti->type->iterate_devices(ti,
1377 					  device_intersect_crypto_capabilities,
1378 					  profile);
1379 	}
1380 
1381 	if (t->md->queue &&
1382 	    !blk_crypto_has_capabilities(profile,
1383 					 t->md->queue->crypto_profile)) {
1384 		DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1385 		dm_destroy_crypto_profile(profile);
1386 		return -EINVAL;
1387 	}
1388 
1389 	/*
1390 	 * If the new profile doesn't actually support any crypto capabilities,
1391 	 * we may as well represent it with a NULL profile.
1392 	 */
1393 	for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1394 		if (profile->modes_supported[i]) {
1395 			empty_profile = false;
1396 			break;
1397 		}
1398 	}
1399 
1400 	if (empty_profile) {
1401 		dm_destroy_crypto_profile(profile);
1402 		profile = NULL;
1403 	}
1404 
1405 	/*
1406 	 * t->crypto_profile is only set temporarily while the table is being
1407 	 * set up, and it gets set to NULL after the profile has been
1408 	 * transferred to the request_queue.
1409 	 */
1410 	t->crypto_profile = profile;
1411 
1412 	return 0;
1413 }
1414 
dm_update_crypto_profile(struct request_queue * q,struct dm_table * t)1415 static void dm_update_crypto_profile(struct request_queue *q,
1416 				     struct dm_table *t)
1417 {
1418 	if (!t->crypto_profile)
1419 		return;
1420 
1421 	/* Make the crypto profile less restrictive. */
1422 	if (!q->crypto_profile) {
1423 		blk_crypto_register(t->crypto_profile, q);
1424 	} else {
1425 		blk_crypto_update_capabilities(q->crypto_profile,
1426 					       t->crypto_profile);
1427 		dm_destroy_crypto_profile(t->crypto_profile);
1428 	}
1429 	t->crypto_profile = NULL;
1430 }
1431 
1432 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1433 
dm_table_construct_crypto_profile(struct dm_table * t)1434 static int dm_table_construct_crypto_profile(struct dm_table *t)
1435 {
1436 	return 0;
1437 }
1438 
dm_destroy_crypto_profile(struct blk_crypto_profile * profile)1439 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1440 {
1441 }
1442 
dm_table_destroy_crypto_profile(struct dm_table * t)1443 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1444 {
1445 }
1446 
dm_update_crypto_profile(struct request_queue * q,struct dm_table * t)1447 static void dm_update_crypto_profile(struct request_queue *q,
1448 				     struct dm_table *t)
1449 {
1450 }
1451 
1452 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1453 
1454 /*
1455  * Prepares the table for use by building the indices,
1456  * setting the type, and allocating mempools.
1457  */
dm_table_complete(struct dm_table * t)1458 int dm_table_complete(struct dm_table *t)
1459 {
1460 	int r;
1461 
1462 	r = dm_table_determine_type(t);
1463 	if (r) {
1464 		DMERR("unable to determine table type");
1465 		return r;
1466 	}
1467 
1468 	r = dm_table_build_index(t);
1469 	if (r) {
1470 		DMERR("unable to build btrees");
1471 		return r;
1472 	}
1473 
1474 	r = dm_table_register_integrity(t);
1475 	if (r) {
1476 		DMERR("could not register integrity profile.");
1477 		return r;
1478 	}
1479 
1480 	r = dm_table_construct_crypto_profile(t);
1481 	if (r) {
1482 		DMERR("could not construct crypto profile.");
1483 		return r;
1484 	}
1485 
1486 	r = dm_table_alloc_md_mempools(t, t->md);
1487 	if (r)
1488 		DMERR("unable to allocate mempools");
1489 
1490 	return r;
1491 }
1492 
1493 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1494 void dm_table_event_callback(struct dm_table *t,
1495 			     void (*fn)(void *), void *context)
1496 {
1497 	mutex_lock(&_event_lock);
1498 	t->event_fn = fn;
1499 	t->event_context = context;
1500 	mutex_unlock(&_event_lock);
1501 }
1502 
dm_table_event(struct dm_table * t)1503 void dm_table_event(struct dm_table *t)
1504 {
1505 	mutex_lock(&_event_lock);
1506 	if (t->event_fn)
1507 		t->event_fn(t->event_context);
1508 	mutex_unlock(&_event_lock);
1509 }
1510 EXPORT_SYMBOL(dm_table_event);
1511 
dm_table_get_size(struct dm_table * t)1512 inline sector_t dm_table_get_size(struct dm_table *t)
1513 {
1514 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1515 }
1516 EXPORT_SYMBOL(dm_table_get_size);
1517 
1518 /*
1519  * Search the btree for the correct target.
1520  *
1521  * Caller should check returned pointer for NULL
1522  * to trap I/O beyond end of device.
1523  */
dm_table_find_target(struct dm_table * t,sector_t sector)1524 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1525 {
1526 	unsigned int l, n = 0, k = 0;
1527 	sector_t *node;
1528 
1529 	if (unlikely(sector >= dm_table_get_size(t)))
1530 		return NULL;
1531 
1532 	for (l = 0; l < t->depth; l++) {
1533 		n = get_child(n, k);
1534 		node = get_node(t, l, n);
1535 
1536 		for (k = 0; k < KEYS_PER_NODE; k++)
1537 			if (node[k] >= sector)
1538 				break;
1539 	}
1540 
1541 	return &t->targets[(KEYS_PER_NODE * n) + k];
1542 }
1543 
device_not_poll_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1544 static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1545 				   sector_t start, sector_t len, void *data)
1546 {
1547 	struct request_queue *q = bdev_get_queue(dev->bdev);
1548 
1549 	return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1550 }
1551 
1552 /*
1553  * type->iterate_devices() should be called when the sanity check needs to
1554  * iterate and check all underlying data devices. iterate_devices() will
1555  * iterate all underlying data devices until it encounters a non-zero return
1556  * code, returned by whether the input iterate_devices_callout_fn, or
1557  * iterate_devices() itself internally.
1558  *
1559  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1560  * iterate multiple underlying devices internally, in which case a non-zero
1561  * return code returned by iterate_devices_callout_fn will stop the iteration
1562  * in advance.
1563  *
1564  * Cases requiring _any_ underlying device supporting some kind of attribute,
1565  * should use the iteration structure like dm_table_any_dev_attr(), or call
1566  * it directly. @func should handle semantics of positive examples, e.g.
1567  * capable of something.
1568  *
1569  * Cases requiring _all_ underlying devices supporting some kind of attribute,
1570  * should use the iteration structure like dm_table_supports_nowait() or
1571  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1572  * uses an @anti_func that handle semantics of counter examples, e.g. not
1573  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1574  */
dm_table_any_dev_attr(struct dm_table * t,iterate_devices_callout_fn func,void * data)1575 static bool dm_table_any_dev_attr(struct dm_table *t,
1576 				  iterate_devices_callout_fn func, void *data)
1577 {
1578 	for (unsigned int i = 0; i < t->num_targets; i++) {
1579 		struct dm_target *ti = dm_table_get_target(t, i);
1580 
1581 		if (ti->type->iterate_devices &&
1582 		    ti->type->iterate_devices(ti, func, data))
1583 			return true;
1584         }
1585 
1586 	return false;
1587 }
1588 
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1589 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1590 			sector_t start, sector_t len, void *data)
1591 {
1592 	unsigned int *num_devices = data;
1593 
1594 	(*num_devices)++;
1595 
1596 	return 0;
1597 }
1598 
dm_table_supports_poll(struct dm_table * t)1599 static bool dm_table_supports_poll(struct dm_table *t)
1600 {
1601 	for (unsigned int i = 0; i < t->num_targets; i++) {
1602 		struct dm_target *ti = dm_table_get_target(t, i);
1603 
1604 		if (!ti->type->iterate_devices ||
1605 		    ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1606 			return false;
1607 	}
1608 
1609 	return true;
1610 }
1611 
1612 /*
1613  * Check whether a table has no data devices attached using each
1614  * target's iterate_devices method.
1615  * Returns false if the result is unknown because a target doesn't
1616  * support iterate_devices.
1617  */
dm_table_has_no_data_devices(struct dm_table * t)1618 bool dm_table_has_no_data_devices(struct dm_table *t)
1619 {
1620 	for (unsigned int i = 0; i < t->num_targets; i++) {
1621 		struct dm_target *ti = dm_table_get_target(t, i);
1622 		unsigned int num_devices = 0;
1623 
1624 		if (!ti->type->iterate_devices)
1625 			return false;
1626 
1627 		ti->type->iterate_devices(ti, count_device, &num_devices);
1628 		if (num_devices)
1629 			return false;
1630 	}
1631 
1632 	return true;
1633 }
1634 
device_not_zoned_model(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1635 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1636 				  sector_t start, sector_t len, void *data)
1637 {
1638 	struct request_queue *q = bdev_get_queue(dev->bdev);
1639 	enum blk_zoned_model *zoned_model = data;
1640 
1641 	return blk_queue_zoned_model(q) != *zoned_model;
1642 }
1643 
1644 /*
1645  * Check the device zoned model based on the target feature flag. If the target
1646  * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1647  * also accepted but all devices must have the same zoned model. If the target
1648  * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1649  * zoned model with all zoned devices having the same zone size.
1650  */
dm_table_supports_zoned_model(struct dm_table * t,enum blk_zoned_model zoned_model)1651 static bool dm_table_supports_zoned_model(struct dm_table *t,
1652 					  enum blk_zoned_model zoned_model)
1653 {
1654 	for (unsigned int i = 0; i < t->num_targets; i++) {
1655 		struct dm_target *ti = dm_table_get_target(t, i);
1656 
1657 		if (dm_target_supports_zoned_hm(ti->type)) {
1658 			if (!ti->type->iterate_devices ||
1659 			    ti->type->iterate_devices(ti, device_not_zoned_model,
1660 						      &zoned_model))
1661 				return false;
1662 		} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1663 			if (zoned_model == BLK_ZONED_HM)
1664 				return false;
1665 		}
1666 	}
1667 
1668 	return true;
1669 }
1670 
device_not_matches_zone_sectors(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1671 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1672 					   sector_t start, sector_t len, void *data)
1673 {
1674 	unsigned int *zone_sectors = data;
1675 
1676 	if (!bdev_is_zoned(dev->bdev))
1677 		return 0;
1678 	return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1679 }
1680 
1681 /*
1682  * Check consistency of zoned model and zone sectors across all targets. For
1683  * zone sectors, if the destination device is a zoned block device, it shall
1684  * have the specified zone_sectors.
1685  */
validate_hardware_zoned_model(struct dm_table * t,enum blk_zoned_model zoned_model,unsigned int zone_sectors)1686 static int validate_hardware_zoned_model(struct dm_table *t,
1687 					 enum blk_zoned_model zoned_model,
1688 					 unsigned int zone_sectors)
1689 {
1690 	if (zoned_model == BLK_ZONED_NONE)
1691 		return 0;
1692 
1693 	if (!dm_table_supports_zoned_model(t, zoned_model)) {
1694 		DMERR("%s: zoned model is not consistent across all devices",
1695 		      dm_device_name(t->md));
1696 		return -EINVAL;
1697 	}
1698 
1699 	/* Check zone size validity and compatibility */
1700 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1701 		return -EINVAL;
1702 
1703 	if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1704 		DMERR("%s: zone sectors is not consistent across all zoned devices",
1705 		      dm_device_name(t->md));
1706 		return -EINVAL;
1707 	}
1708 
1709 	return 0;
1710 }
1711 
1712 /*
1713  * Establish the new table's queue_limits and validate them.
1714  */
dm_calculate_queue_limits(struct dm_table * t,struct queue_limits * limits)1715 int dm_calculate_queue_limits(struct dm_table *t,
1716 			      struct queue_limits *limits)
1717 {
1718 	struct queue_limits ti_limits;
1719 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1720 	unsigned int zone_sectors = 0;
1721 
1722 	blk_set_stacking_limits(limits);
1723 
1724 	for (unsigned int i = 0; i < t->num_targets; i++) {
1725 		struct dm_target *ti = dm_table_get_target(t, i);
1726 
1727 		blk_set_stacking_limits(&ti_limits);
1728 
1729 		if (!ti->type->iterate_devices)
1730 			goto combine_limits;
1731 
1732 		/*
1733 		 * Combine queue limits of all the devices this target uses.
1734 		 */
1735 		ti->type->iterate_devices(ti, dm_set_device_limits,
1736 					  &ti_limits);
1737 
1738 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1739 			/*
1740 			 * After stacking all limits, validate all devices
1741 			 * in table support this zoned model and zone sectors.
1742 			 */
1743 			zoned_model = ti_limits.zoned;
1744 			zone_sectors = ti_limits.chunk_sectors;
1745 		}
1746 
1747 		/* Set I/O hints portion of queue limits */
1748 		if (ti->type->io_hints)
1749 			ti->type->io_hints(ti, &ti_limits);
1750 
1751 		/*
1752 		 * Check each device area is consistent with the target's
1753 		 * overall queue limits.
1754 		 */
1755 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1756 					      &ti_limits))
1757 			return -EINVAL;
1758 
1759 combine_limits:
1760 		/*
1761 		 * Merge this target's queue limits into the overall limits
1762 		 * for the table.
1763 		 */
1764 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1765 			DMWARN("%s: adding target device (start sect %llu len %llu) "
1766 			       "caused an alignment inconsistency",
1767 			       dm_device_name(t->md),
1768 			       (unsigned long long) ti->begin,
1769 			       (unsigned long long) ti->len);
1770 	}
1771 
1772 	/*
1773 	 * Verify that the zoned model and zone sectors, as determined before
1774 	 * any .io_hints override, are the same across all devices in the table.
1775 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1776 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1777 	 * BUT...
1778 	 */
1779 	if (limits->zoned != BLK_ZONED_NONE) {
1780 		/*
1781 		 * ...IF the above limits stacking determined a zoned model
1782 		 * validate that all of the table's devices conform to it.
1783 		 */
1784 		zoned_model = limits->zoned;
1785 		zone_sectors = limits->chunk_sectors;
1786 	}
1787 	if (validate_hardware_zoned_model(t, zoned_model, zone_sectors))
1788 		return -EINVAL;
1789 
1790 	return validate_hardware_logical_block_alignment(t, limits);
1791 }
1792 
1793 /*
1794  * Verify that all devices have an integrity profile that matches the
1795  * DM device's registered integrity profile.  If the profiles don't
1796  * match then unregister the DM device's integrity profile.
1797  */
dm_table_verify_integrity(struct dm_table * t)1798 static void dm_table_verify_integrity(struct dm_table *t)
1799 {
1800 	struct gendisk *template_disk = NULL;
1801 
1802 	if (t->integrity_added)
1803 		return;
1804 
1805 	if (t->integrity_supported) {
1806 		/*
1807 		 * Verify that the original integrity profile
1808 		 * matches all the devices in this table.
1809 		 */
1810 		template_disk = dm_table_get_integrity_disk(t);
1811 		if (template_disk &&
1812 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1813 			return;
1814 	}
1815 
1816 	if (integrity_profile_exists(dm_disk(t->md))) {
1817 		DMWARN("%s: unable to establish an integrity profile",
1818 		       dm_device_name(t->md));
1819 		blk_integrity_unregister(dm_disk(t->md));
1820 	}
1821 }
1822 
device_flush_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1823 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1824 				sector_t start, sector_t len, void *data)
1825 {
1826 	unsigned long flush = (unsigned long) data;
1827 	struct request_queue *q = bdev_get_queue(dev->bdev);
1828 
1829 	return (q->queue_flags & flush);
1830 }
1831 
dm_table_supports_flush(struct dm_table * t,unsigned long flush)1832 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1833 {
1834 	/*
1835 	 * Require at least one underlying device to support flushes.
1836 	 * t->devices includes internal dm devices such as mirror logs
1837 	 * so we need to use iterate_devices here, which targets
1838 	 * supporting flushes must provide.
1839 	 */
1840 	for (unsigned int i = 0; i < t->num_targets; i++) {
1841 		struct dm_target *ti = dm_table_get_target(t, i);
1842 
1843 		if (!ti->num_flush_bios)
1844 			continue;
1845 
1846 		if (ti->flush_supported)
1847 			return true;
1848 
1849 		if (ti->type->iterate_devices &&
1850 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1851 			return true;
1852 	}
1853 
1854 	return false;
1855 }
1856 
device_dax_write_cache_enabled(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1857 static int device_dax_write_cache_enabled(struct dm_target *ti,
1858 					  struct dm_dev *dev, sector_t start,
1859 					  sector_t len, void *data)
1860 {
1861 	struct dax_device *dax_dev = dev->dax_dev;
1862 
1863 	if (!dax_dev)
1864 		return false;
1865 
1866 	if (dax_write_cache_enabled(dax_dev))
1867 		return true;
1868 	return false;
1869 }
1870 
device_is_rotational(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1871 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1872 				sector_t start, sector_t len, void *data)
1873 {
1874 	return !bdev_nonrot(dev->bdev);
1875 }
1876 
device_is_not_random(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1877 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1878 			     sector_t start, sector_t len, void *data)
1879 {
1880 	struct request_queue *q = bdev_get_queue(dev->bdev);
1881 
1882 	return !blk_queue_add_random(q);
1883 }
1884 
device_not_write_zeroes_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1885 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1886 					   sector_t start, sector_t len, void *data)
1887 {
1888 	struct request_queue *q = bdev_get_queue(dev->bdev);
1889 
1890 	return !q->limits.max_write_zeroes_sectors;
1891 }
1892 
dm_table_supports_write_zeroes(struct dm_table * t)1893 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1894 {
1895 	for (unsigned int i = 0; i < t->num_targets; i++) {
1896 		struct dm_target *ti = dm_table_get_target(t, i);
1897 
1898 		if (!ti->num_write_zeroes_bios)
1899 			return false;
1900 
1901 		if (!ti->type->iterate_devices ||
1902 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1903 			return false;
1904 	}
1905 
1906 	return true;
1907 }
1908 
device_not_nowait_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1909 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1910 				     sector_t start, sector_t len, void *data)
1911 {
1912 	return !bdev_nowait(dev->bdev);
1913 }
1914 
dm_table_supports_nowait(struct dm_table * t)1915 static bool dm_table_supports_nowait(struct dm_table *t)
1916 {
1917 	for (unsigned int i = 0; i < t->num_targets; i++) {
1918 		struct dm_target *ti = dm_table_get_target(t, i);
1919 
1920 		if (!dm_target_supports_nowait(ti->type))
1921 			return false;
1922 
1923 		if (!ti->type->iterate_devices ||
1924 		    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1925 			return false;
1926 	}
1927 
1928 	return true;
1929 }
1930 
device_not_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1931 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1932 				      sector_t start, sector_t len, void *data)
1933 {
1934 	return !bdev_max_discard_sectors(dev->bdev);
1935 }
1936 
dm_table_supports_discards(struct dm_table * t)1937 static bool dm_table_supports_discards(struct dm_table *t)
1938 {
1939 	for (unsigned int i = 0; i < t->num_targets; i++) {
1940 		struct dm_target *ti = dm_table_get_target(t, i);
1941 
1942 		if (!ti->num_discard_bios)
1943 			return false;
1944 
1945 		/*
1946 		 * Either the target provides discard support (as implied by setting
1947 		 * 'discards_supported') or it relies on _all_ data devices having
1948 		 * discard support.
1949 		 */
1950 		if (!ti->discards_supported &&
1951 		    (!ti->type->iterate_devices ||
1952 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1953 			return false;
1954 	}
1955 
1956 	return true;
1957 }
1958 
device_not_secure_erase_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1959 static int device_not_secure_erase_capable(struct dm_target *ti,
1960 					   struct dm_dev *dev, sector_t start,
1961 					   sector_t len, void *data)
1962 {
1963 	return !bdev_max_secure_erase_sectors(dev->bdev);
1964 }
1965 
dm_table_supports_secure_erase(struct dm_table * t)1966 static bool dm_table_supports_secure_erase(struct dm_table *t)
1967 {
1968 	for (unsigned int i = 0; i < t->num_targets; i++) {
1969 		struct dm_target *ti = dm_table_get_target(t, i);
1970 
1971 		if (!ti->num_secure_erase_bios)
1972 			return false;
1973 
1974 		if (!ti->type->iterate_devices ||
1975 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1976 			return false;
1977 	}
1978 
1979 	return true;
1980 }
1981 
device_requires_stable_pages(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1982 static int device_requires_stable_pages(struct dm_target *ti,
1983 					struct dm_dev *dev, sector_t start,
1984 					sector_t len, void *data)
1985 {
1986 	return bdev_stable_writes(dev->bdev);
1987 }
1988 
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1989 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1990 			      struct queue_limits *limits)
1991 {
1992 	bool wc = false, fua = false;
1993 	int r;
1994 
1995 	/*
1996 	 * Copy table's limits to the DM device's request_queue
1997 	 */
1998 	q->limits = *limits;
1999 
2000 	if (dm_table_supports_nowait(t))
2001 		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
2002 	else
2003 		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
2004 
2005 	if (!dm_table_supports_discards(t)) {
2006 		q->limits.max_discard_sectors = 0;
2007 		q->limits.max_hw_discard_sectors = 0;
2008 		q->limits.discard_granularity = 0;
2009 		q->limits.discard_alignment = 0;
2010 		q->limits.discard_misaligned = 0;
2011 	}
2012 
2013 	if (!dm_table_supports_secure_erase(t))
2014 		q->limits.max_secure_erase_sectors = 0;
2015 
2016 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
2017 		wc = true;
2018 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
2019 			fua = true;
2020 	}
2021 	blk_queue_write_cache(q, wc, fua);
2022 
2023 	if (dm_table_supports_dax(t, device_not_dax_capable)) {
2024 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
2025 		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
2026 			set_dax_synchronous(t->md->dax_dev);
2027 	}
2028 	else
2029 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2030 
2031 	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2032 		dax_write_cache(t->md->dax_dev, true);
2033 
2034 	/* Ensure that all underlying devices are non-rotational. */
2035 	if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2036 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2037 	else
2038 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2039 
2040 	if (!dm_table_supports_write_zeroes(t))
2041 		q->limits.max_write_zeroes_sectors = 0;
2042 
2043 	dm_table_verify_integrity(t);
2044 
2045 	/*
2046 	 * Some devices don't use blk_integrity but still want stable pages
2047 	 * because they do their own checksumming.
2048 	 * If any underlying device requires stable pages, a table must require
2049 	 * them as well.  Only targets that support iterate_devices are considered:
2050 	 * don't want error, zero, etc to require stable pages.
2051 	 */
2052 	if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2053 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2054 	else
2055 		blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2056 
2057 	/*
2058 	 * Determine whether or not this queue's I/O timings contribute
2059 	 * to the entropy pool, Only request-based targets use this.
2060 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2061 	 * have it set.
2062 	 */
2063 	if (blk_queue_add_random(q) &&
2064 	    dm_table_any_dev_attr(t, device_is_not_random, NULL))
2065 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2066 
2067 	/*
2068 	 * For a zoned target, setup the zones related queue attributes
2069 	 * and resources necessary for zone append emulation if necessary.
2070 	 */
2071 	if (blk_queue_is_zoned(q)) {
2072 		r = dm_set_zones_restrictions(t, q);
2073 		if (r)
2074 			return r;
2075 		if (!static_key_enabled(&zoned_enabled.key))
2076 			static_branch_enable(&zoned_enabled);
2077 	}
2078 
2079 	dm_update_crypto_profile(q, t);
2080 	disk_update_readahead(t->md->disk);
2081 
2082 	/*
2083 	 * Check for request-based device is left to
2084 	 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2085 	 *
2086 	 * For bio-based device, only set QUEUE_FLAG_POLL when all
2087 	 * underlying devices supporting polling.
2088 	 */
2089 	if (__table_type_bio_based(t->type)) {
2090 		if (dm_table_supports_poll(t))
2091 			blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2092 		else
2093 			blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2094 	}
2095 
2096 	return 0;
2097 }
2098 
dm_table_get_devices(struct dm_table * t)2099 struct list_head *dm_table_get_devices(struct dm_table *t)
2100 {
2101 	return &t->devices;
2102 }
2103 
dm_table_get_mode(struct dm_table * t)2104 fmode_t dm_table_get_mode(struct dm_table *t)
2105 {
2106 	return t->mode;
2107 }
2108 EXPORT_SYMBOL(dm_table_get_mode);
2109 
2110 enum suspend_mode {
2111 	PRESUSPEND,
2112 	PRESUSPEND_UNDO,
2113 	POSTSUSPEND,
2114 };
2115 
suspend_targets(struct dm_table * t,enum suspend_mode mode)2116 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2117 {
2118 	lockdep_assert_held(&t->md->suspend_lock);
2119 
2120 	for (unsigned int i = 0; i < t->num_targets; i++) {
2121 		struct dm_target *ti = dm_table_get_target(t, i);
2122 
2123 		switch (mode) {
2124 		case PRESUSPEND:
2125 			if (ti->type->presuspend)
2126 				ti->type->presuspend(ti);
2127 			break;
2128 		case PRESUSPEND_UNDO:
2129 			if (ti->type->presuspend_undo)
2130 				ti->type->presuspend_undo(ti);
2131 			break;
2132 		case POSTSUSPEND:
2133 			if (ti->type->postsuspend)
2134 				ti->type->postsuspend(ti);
2135 			break;
2136 		}
2137 	}
2138 }
2139 
dm_table_presuspend_targets(struct dm_table * t)2140 void dm_table_presuspend_targets(struct dm_table *t)
2141 {
2142 	if (!t)
2143 		return;
2144 
2145 	suspend_targets(t, PRESUSPEND);
2146 }
2147 
dm_table_presuspend_undo_targets(struct dm_table * t)2148 void dm_table_presuspend_undo_targets(struct dm_table *t)
2149 {
2150 	if (!t)
2151 		return;
2152 
2153 	suspend_targets(t, PRESUSPEND_UNDO);
2154 }
2155 
dm_table_postsuspend_targets(struct dm_table * t)2156 void dm_table_postsuspend_targets(struct dm_table *t)
2157 {
2158 	if (!t)
2159 		return;
2160 
2161 	suspend_targets(t, POSTSUSPEND);
2162 }
2163 
dm_table_resume_targets(struct dm_table * t)2164 int dm_table_resume_targets(struct dm_table *t)
2165 {
2166 	unsigned int i;
2167 	int r = 0;
2168 
2169 	lockdep_assert_held(&t->md->suspend_lock);
2170 
2171 	for (i = 0; i < t->num_targets; i++) {
2172 		struct dm_target *ti = dm_table_get_target(t, i);
2173 
2174 		if (!ti->type->preresume)
2175 			continue;
2176 
2177 		r = ti->type->preresume(ti);
2178 		if (r) {
2179 			DMERR("%s: %s: preresume failed, error = %d",
2180 			      dm_device_name(t->md), ti->type->name, r);
2181 			return r;
2182 		}
2183 	}
2184 
2185 	for (i = 0; i < t->num_targets; i++) {
2186 		struct dm_target *ti = dm_table_get_target(t, i);
2187 
2188 		if (ti->type->resume)
2189 			ti->type->resume(ti);
2190 	}
2191 
2192 	return 0;
2193 }
2194 
dm_table_get_md(struct dm_table * t)2195 struct mapped_device *dm_table_get_md(struct dm_table *t)
2196 {
2197 	return t->md;
2198 }
2199 EXPORT_SYMBOL(dm_table_get_md);
2200 
dm_table_device_name(struct dm_table * t)2201 const char *dm_table_device_name(struct dm_table *t)
2202 {
2203 	return dm_device_name(t->md);
2204 }
2205 EXPORT_SYMBOL_GPL(dm_table_device_name);
2206 
dm_table_run_md_queue_async(struct dm_table * t)2207 void dm_table_run_md_queue_async(struct dm_table *t)
2208 {
2209 	if (!dm_table_request_based(t))
2210 		return;
2211 
2212 	if (t->md->queue)
2213 		blk_mq_run_hw_queues(t->md->queue, true);
2214 }
2215 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2216 
2217