1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4 */
5 #ifndef __LINUX_BIO_H
6 #define __LINUX_BIO_H
7
8 #include <linux/mempool.h>
9 /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */
10 #include <linux/blk_types.h>
11 #include <linux/uio.h>
12
13 #define BIO_MAX_VECS 256U
14
bio_max_segs(unsigned int nr_segs)15 static inline unsigned int bio_max_segs(unsigned int nr_segs)
16 {
17 return min(nr_segs, BIO_MAX_VECS);
18 }
19
20 #define bio_prio(bio) (bio)->bi_ioprio
21 #define bio_set_prio(bio, prio) ((bio)->bi_ioprio = prio)
22
23 #define bio_iter_iovec(bio, iter) \
24 bvec_iter_bvec((bio)->bi_io_vec, (iter))
25
26 #define bio_iter_page(bio, iter) \
27 bvec_iter_page((bio)->bi_io_vec, (iter))
28 #define bio_iter_len(bio, iter) \
29 bvec_iter_len((bio)->bi_io_vec, (iter))
30 #define bio_iter_offset(bio, iter) \
31 bvec_iter_offset((bio)->bi_io_vec, (iter))
32
33 #define bio_page(bio) bio_iter_page((bio), (bio)->bi_iter)
34 #define bio_offset(bio) bio_iter_offset((bio), (bio)->bi_iter)
35 #define bio_iovec(bio) bio_iter_iovec((bio), (bio)->bi_iter)
36
37 #define bvec_iter_sectors(iter) ((iter).bi_size >> 9)
38 #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter)))
39
40 #define bio_sectors(bio) bvec_iter_sectors((bio)->bi_iter)
41 #define bio_end_sector(bio) bvec_iter_end_sector((bio)->bi_iter)
42
43 /*
44 * Return the data direction, READ or WRITE.
45 */
46 #define bio_data_dir(bio) \
47 (op_is_write(bio_op(bio)) ? WRITE : READ)
48
49 /*
50 * Check whether this bio carries any data or not. A NULL bio is allowed.
51 */
bio_has_data(struct bio * bio)52 static inline bool bio_has_data(struct bio *bio)
53 {
54 if (bio &&
55 bio->bi_iter.bi_size &&
56 bio_op(bio) != REQ_OP_DISCARD &&
57 bio_op(bio) != REQ_OP_SECURE_ERASE &&
58 bio_op(bio) != REQ_OP_WRITE_ZEROES)
59 return true;
60
61 return false;
62 }
63
bio_no_advance_iter(const struct bio * bio)64 static inline bool bio_no_advance_iter(const struct bio *bio)
65 {
66 return bio_op(bio) == REQ_OP_DISCARD ||
67 bio_op(bio) == REQ_OP_SECURE_ERASE ||
68 bio_op(bio) == REQ_OP_WRITE_ZEROES;
69 }
70
bio_data(struct bio * bio)71 static inline void *bio_data(struct bio *bio)
72 {
73 if (bio_has_data(bio))
74 return page_address(bio_page(bio)) + bio_offset(bio);
75
76 return NULL;
77 }
78
bio_next_segment(const struct bio * bio,struct bvec_iter_all * iter)79 static inline bool bio_next_segment(const struct bio *bio,
80 struct bvec_iter_all *iter)
81 {
82 if (iter->idx >= bio->bi_vcnt)
83 return false;
84
85 bvec_advance(&bio->bi_io_vec[iter->idx], iter);
86 return true;
87 }
88
89 /*
90 * drivers should _never_ use the all version - the bio may have been split
91 * before it got to the driver and the driver won't own all of it
92 */
93 #define bio_for_each_segment_all(bvl, bio, iter) \
94 for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); )
95
bio_advance_iter(const struct bio * bio,struct bvec_iter * iter,unsigned int bytes)96 static inline void bio_advance_iter(const struct bio *bio,
97 struct bvec_iter *iter, unsigned int bytes)
98 {
99 iter->bi_sector += bytes >> 9;
100
101 if (bio_no_advance_iter(bio))
102 iter->bi_size -= bytes;
103 else
104 bvec_iter_advance(bio->bi_io_vec, iter, bytes);
105 /* TODO: It is reasonable to complete bio with error here. */
106 }
107
108 /* @bytes should be less or equal to bvec[i->bi_idx].bv_len */
bio_advance_iter_single(const struct bio * bio,struct bvec_iter * iter,unsigned int bytes)109 static inline void bio_advance_iter_single(const struct bio *bio,
110 struct bvec_iter *iter,
111 unsigned int bytes)
112 {
113 iter->bi_sector += bytes >> 9;
114
115 if (bio_no_advance_iter(bio))
116 iter->bi_size -= bytes;
117 else
118 bvec_iter_advance_single(bio->bi_io_vec, iter, bytes);
119 }
120
121 void __bio_advance(struct bio *, unsigned bytes);
122
123 /**
124 * bio_advance - increment/complete a bio by some number of bytes
125 * @bio: bio to advance
126 * @nbytes: number of bytes to complete
127 *
128 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
129 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
130 * be updated on the last bvec as well.
131 *
132 * @bio will then represent the remaining, uncompleted portion of the io.
133 */
bio_advance(struct bio * bio,unsigned int nbytes)134 static inline void bio_advance(struct bio *bio, unsigned int nbytes)
135 {
136 if (nbytes == bio->bi_iter.bi_size) {
137 bio->bi_iter.bi_size = 0;
138 return;
139 }
140 __bio_advance(bio, nbytes);
141 }
142
143 #define __bio_for_each_segment(bvl, bio, iter, start) \
144 for (iter = (start); \
145 (iter).bi_size && \
146 ((bvl = bio_iter_iovec((bio), (iter))), 1); \
147 bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
148
149 #define bio_for_each_segment(bvl, bio, iter) \
150 __bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter)
151
152 #define __bio_for_each_bvec(bvl, bio, iter, start) \
153 for (iter = (start); \
154 (iter).bi_size && \
155 ((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \
156 bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
157
158 /* iterate over multi-page bvec */
159 #define bio_for_each_bvec(bvl, bio, iter) \
160 __bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter)
161
162 /*
163 * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the
164 * same reasons as bio_for_each_segment_all().
165 */
166 #define bio_for_each_bvec_all(bvl, bio, i) \
167 for (i = 0, bvl = bio_first_bvec_all(bio); \
168 i < (bio)->bi_vcnt; i++, bvl++)
169
170 #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len)
171
bio_segments(struct bio * bio)172 static inline unsigned bio_segments(struct bio *bio)
173 {
174 unsigned segs = 0;
175 struct bio_vec bv;
176 struct bvec_iter iter;
177
178 /*
179 * We special case discard/write same/write zeroes, because they
180 * interpret bi_size differently:
181 */
182
183 switch (bio_op(bio)) {
184 case REQ_OP_DISCARD:
185 case REQ_OP_SECURE_ERASE:
186 case REQ_OP_WRITE_ZEROES:
187 return 0;
188 default:
189 break;
190 }
191
192 bio_for_each_segment(bv, bio, iter)
193 segs++;
194
195 return segs;
196 }
197
198 /*
199 * get a reference to a bio, so it won't disappear. the intended use is
200 * something like:
201 *
202 * bio_get(bio);
203 * submit_bio(rw, bio);
204 * if (bio->bi_flags ...)
205 * do_something
206 * bio_put(bio);
207 *
208 * without the bio_get(), it could potentially complete I/O before submit_bio
209 * returns. and then bio would be freed memory when if (bio->bi_flags ...)
210 * runs
211 */
bio_get(struct bio * bio)212 static inline void bio_get(struct bio *bio)
213 {
214 bio->bi_flags |= (1 << BIO_REFFED);
215 smp_mb__before_atomic();
216 atomic_inc(&bio->__bi_cnt);
217 }
218
bio_cnt_set(struct bio * bio,unsigned int count)219 static inline void bio_cnt_set(struct bio *bio, unsigned int count)
220 {
221 if (count != 1) {
222 bio->bi_flags |= (1 << BIO_REFFED);
223 smp_mb();
224 }
225 atomic_set(&bio->__bi_cnt, count);
226 }
227
bio_flagged(struct bio * bio,unsigned int bit)228 static inline bool bio_flagged(struct bio *bio, unsigned int bit)
229 {
230 return (bio->bi_flags & (1U << bit)) != 0;
231 }
232
bio_set_flag(struct bio * bio,unsigned int bit)233 static inline void bio_set_flag(struct bio *bio, unsigned int bit)
234 {
235 bio->bi_flags |= (1U << bit);
236 }
237
bio_clear_flag(struct bio * bio,unsigned int bit)238 static inline void bio_clear_flag(struct bio *bio, unsigned int bit)
239 {
240 bio->bi_flags &= ~(1U << bit);
241 }
242
bio_first_bvec_all(struct bio * bio)243 static inline struct bio_vec *bio_first_bvec_all(struct bio *bio)
244 {
245 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
246 return bio->bi_io_vec;
247 }
248
bio_first_page_all(struct bio * bio)249 static inline struct page *bio_first_page_all(struct bio *bio)
250 {
251 return bio_first_bvec_all(bio)->bv_page;
252 }
253
bio_last_bvec_all(struct bio * bio)254 static inline struct bio_vec *bio_last_bvec_all(struct bio *bio)
255 {
256 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
257 return &bio->bi_io_vec[bio->bi_vcnt - 1];
258 }
259
260 /**
261 * struct folio_iter - State for iterating all folios in a bio.
262 * @folio: The current folio we're iterating. NULL after the last folio.
263 * @offset: The byte offset within the current folio.
264 * @length: The number of bytes in this iteration (will not cross folio
265 * boundary).
266 */
267 struct folio_iter {
268 struct folio *folio;
269 size_t offset;
270 size_t length;
271 /* private: for use by the iterator */
272 struct folio *_next;
273 size_t _seg_count;
274 int _i;
275 };
276
bio_first_folio(struct folio_iter * fi,struct bio * bio,int i)277 static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio,
278 int i)
279 {
280 struct bio_vec *bvec = bio_first_bvec_all(bio) + i;
281
282 if (unlikely(i >= bio->bi_vcnt)) {
283 fi->folio = NULL;
284 return;
285 }
286
287 fi->folio = page_folio(bvec->bv_page);
288 fi->offset = bvec->bv_offset +
289 PAGE_SIZE * (bvec->bv_page - &fi->folio->page);
290 fi->_seg_count = bvec->bv_len;
291 fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count);
292 fi->_next = folio_next(fi->folio);
293 fi->_i = i;
294 }
295
bio_next_folio(struct folio_iter * fi,struct bio * bio)296 static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio)
297 {
298 fi->_seg_count -= fi->length;
299 if (fi->_seg_count) {
300 fi->folio = fi->_next;
301 fi->offset = 0;
302 fi->length = min(folio_size(fi->folio), fi->_seg_count);
303 fi->_next = folio_next(fi->folio);
304 } else {
305 bio_first_folio(fi, bio, fi->_i + 1);
306 }
307 }
308
309 /**
310 * bio_for_each_folio_all - Iterate over each folio in a bio.
311 * @fi: struct folio_iter which is updated for each folio.
312 * @bio: struct bio to iterate over.
313 */
314 #define bio_for_each_folio_all(fi, bio) \
315 for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio))
316
317 enum bip_flags {
318 BIP_BLOCK_INTEGRITY = 1 << 0, /* block layer owns integrity data */
319 BIP_MAPPED_INTEGRITY = 1 << 1, /* ref tag has been remapped */
320 BIP_CTRL_NOCHECK = 1 << 2, /* disable HBA integrity checking */
321 BIP_DISK_NOCHECK = 1 << 3, /* disable disk integrity checking */
322 BIP_IP_CHECKSUM = 1 << 4, /* IP checksum */
323 };
324
325 /*
326 * bio integrity payload
327 */
328 struct bio_integrity_payload {
329 struct bio *bip_bio; /* parent bio */
330
331 struct bvec_iter bip_iter;
332
333 unsigned short bip_vcnt; /* # of integrity bio_vecs */
334 unsigned short bip_max_vcnt; /* integrity bio_vec slots */
335 unsigned short bip_flags; /* control flags */
336
337 struct bvec_iter bio_iter; /* for rewinding parent bio */
338
339 struct work_struct bip_work; /* I/O completion */
340
341 struct bio_vec *bip_vec;
342 struct bio_vec bip_inline_vecs[];/* embedded bvec array */
343 };
344
345 #if defined(CONFIG_BLK_DEV_INTEGRITY)
346
bio_integrity(struct bio * bio)347 static inline struct bio_integrity_payload *bio_integrity(struct bio *bio)
348 {
349 if (bio->bi_opf & REQ_INTEGRITY)
350 return bio->bi_integrity;
351
352 return NULL;
353 }
354
bio_integrity_flagged(struct bio * bio,enum bip_flags flag)355 static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag)
356 {
357 struct bio_integrity_payload *bip = bio_integrity(bio);
358
359 if (bip)
360 return bip->bip_flags & flag;
361
362 return false;
363 }
364
bip_get_seed(struct bio_integrity_payload * bip)365 static inline sector_t bip_get_seed(struct bio_integrity_payload *bip)
366 {
367 return bip->bip_iter.bi_sector;
368 }
369
bip_set_seed(struct bio_integrity_payload * bip,sector_t seed)370 static inline void bip_set_seed(struct bio_integrity_payload *bip,
371 sector_t seed)
372 {
373 bip->bip_iter.bi_sector = seed;
374 }
375
376 #endif /* CONFIG_BLK_DEV_INTEGRITY */
377
378 void bio_trim(struct bio *bio, sector_t offset, sector_t size);
379 extern struct bio *bio_split(struct bio *bio, int sectors,
380 gfp_t gfp, struct bio_set *bs);
381
382 /**
383 * bio_next_split - get next @sectors from a bio, splitting if necessary
384 * @bio: bio to split
385 * @sectors: number of sectors to split from the front of @bio
386 * @gfp: gfp mask
387 * @bs: bio set to allocate from
388 *
389 * Return: a bio representing the next @sectors of @bio - if the bio is smaller
390 * than @sectors, returns the original bio unchanged.
391 */
bio_next_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)392 static inline struct bio *bio_next_split(struct bio *bio, int sectors,
393 gfp_t gfp, struct bio_set *bs)
394 {
395 if (sectors >= bio_sectors(bio))
396 return bio;
397
398 return bio_split(bio, sectors, gfp, bs);
399 }
400
401 enum {
402 BIOSET_NEED_BVECS = BIT(0),
403 BIOSET_NEED_RESCUER = BIT(1),
404 BIOSET_PERCPU_CACHE = BIT(2),
405 };
406 extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags);
407 extern void bioset_exit(struct bio_set *);
408 extern int biovec_init_pool(mempool_t *pool, int pool_entries);
409
410 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
411 blk_opf_t opf, gfp_t gfp_mask,
412 struct bio_set *bs);
413 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask);
414 extern void bio_put(struct bio *);
415
416 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
417 gfp_t gfp, struct bio_set *bs);
418 int bio_init_clone(struct block_device *bdev, struct bio *bio,
419 struct bio *bio_src, gfp_t gfp);
420
421 extern struct bio_set fs_bio_set;
422
bio_alloc(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp_mask)423 static inline struct bio *bio_alloc(struct block_device *bdev,
424 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask)
425 {
426 return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set);
427 }
428
429 void submit_bio(struct bio *bio);
430
431 extern void bio_endio(struct bio *);
432
bio_io_error(struct bio * bio)433 static inline void bio_io_error(struct bio *bio)
434 {
435 bio->bi_status = BLK_STS_IOERR;
436 bio_endio(bio);
437 }
438
bio_wouldblock_error(struct bio * bio)439 static inline void bio_wouldblock_error(struct bio *bio)
440 {
441 bio_set_flag(bio, BIO_QUIET);
442 bio->bi_status = BLK_STS_AGAIN;
443 bio_endio(bio);
444 }
445
446 /*
447 * Calculate number of bvec segments that should be allocated to fit data
448 * pointed by @iter. If @iter is backed by bvec it's going to be reused
449 * instead of allocating a new one.
450 */
bio_iov_vecs_to_alloc(struct iov_iter * iter,int max_segs)451 static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs)
452 {
453 if (iov_iter_is_bvec(iter))
454 return 0;
455 return iov_iter_npages(iter, max_segs);
456 }
457
458 struct request_queue;
459
460 extern int submit_bio_wait(struct bio *bio);
461 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
462 unsigned short max_vecs, blk_opf_t opf);
463 extern void bio_uninit(struct bio *);
464 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf);
465 void bio_chain(struct bio *, struct bio *);
466
467 int bio_add_page(struct bio *, struct page *, unsigned len, unsigned off);
468 bool bio_add_folio(struct bio *, struct folio *, size_t len, size_t off);
469 extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *,
470 unsigned int, unsigned int);
471 int bio_add_zone_append_page(struct bio *bio, struct page *page,
472 unsigned int len, unsigned int offset);
473 void __bio_add_page(struct bio *bio, struct page *page,
474 unsigned int len, unsigned int off);
475 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter);
476 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter);
477 void __bio_release_pages(struct bio *bio, bool mark_dirty);
478 extern void bio_set_pages_dirty(struct bio *bio);
479 extern void bio_check_pages_dirty(struct bio *bio);
480
481 extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
482 struct bio *src, struct bvec_iter *src_iter);
483 extern void bio_copy_data(struct bio *dst, struct bio *src);
484 extern void bio_free_pages(struct bio *bio);
485 void guard_bio_eod(struct bio *bio);
486 void zero_fill_bio(struct bio *bio);
487
bio_release_pages(struct bio * bio,bool mark_dirty)488 static inline void bio_release_pages(struct bio *bio, bool mark_dirty)
489 {
490 if (!bio_flagged(bio, BIO_NO_PAGE_REF))
491 __bio_release_pages(bio, mark_dirty);
492 }
493
494 #define bio_dev(bio) \
495 disk_devt((bio)->bi_bdev->bd_disk)
496
497 #ifdef CONFIG_BLK_CGROUP
498 void bio_associate_blkg(struct bio *bio);
499 void bio_associate_blkg_from_css(struct bio *bio,
500 struct cgroup_subsys_state *css);
501 void bio_clone_blkg_association(struct bio *dst, struct bio *src);
502 #else /* CONFIG_BLK_CGROUP */
bio_associate_blkg(struct bio * bio)503 static inline void bio_associate_blkg(struct bio *bio) { }
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)504 static inline void bio_associate_blkg_from_css(struct bio *bio,
505 struct cgroup_subsys_state *css)
506 { }
bio_clone_blkg_association(struct bio * dst,struct bio * src)507 static inline void bio_clone_blkg_association(struct bio *dst,
508 struct bio *src) { }
509 #endif /* CONFIG_BLK_CGROUP */
510
bio_set_dev(struct bio * bio,struct block_device * bdev)511 static inline void bio_set_dev(struct bio *bio, struct block_device *bdev)
512 {
513 bio_clear_flag(bio, BIO_REMAPPED);
514 if (bio->bi_bdev != bdev)
515 bio_clear_flag(bio, BIO_BPS_THROTTLED);
516 bio->bi_bdev = bdev;
517 bio_associate_blkg(bio);
518 }
519
520 /*
521 * BIO list management for use by remapping drivers (e.g. DM or MD) and loop.
522 *
523 * A bio_list anchors a singly-linked list of bios chained through the bi_next
524 * member of the bio. The bio_list also caches the last list member to allow
525 * fast access to the tail.
526 */
527 struct bio_list {
528 struct bio *head;
529 struct bio *tail;
530 };
531
bio_list_empty(const struct bio_list * bl)532 static inline int bio_list_empty(const struct bio_list *bl)
533 {
534 return bl->head == NULL;
535 }
536
bio_list_init(struct bio_list * bl)537 static inline void bio_list_init(struct bio_list *bl)
538 {
539 bl->head = bl->tail = NULL;
540 }
541
542 #define BIO_EMPTY_LIST { NULL, NULL }
543
544 #define bio_list_for_each(bio, bl) \
545 for (bio = (bl)->head; bio; bio = bio->bi_next)
546
bio_list_size(const struct bio_list * bl)547 static inline unsigned bio_list_size(const struct bio_list *bl)
548 {
549 unsigned sz = 0;
550 struct bio *bio;
551
552 bio_list_for_each(bio, bl)
553 sz++;
554
555 return sz;
556 }
557
bio_list_add(struct bio_list * bl,struct bio * bio)558 static inline void bio_list_add(struct bio_list *bl, struct bio *bio)
559 {
560 bio->bi_next = NULL;
561
562 if (bl->tail)
563 bl->tail->bi_next = bio;
564 else
565 bl->head = bio;
566
567 bl->tail = bio;
568 }
569
bio_list_add_head(struct bio_list * bl,struct bio * bio)570 static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio)
571 {
572 bio->bi_next = bl->head;
573
574 bl->head = bio;
575
576 if (!bl->tail)
577 bl->tail = bio;
578 }
579
bio_list_merge(struct bio_list * bl,struct bio_list * bl2)580 static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2)
581 {
582 if (!bl2->head)
583 return;
584
585 if (bl->tail)
586 bl->tail->bi_next = bl2->head;
587 else
588 bl->head = bl2->head;
589
590 bl->tail = bl2->tail;
591 }
592
bio_list_merge_head(struct bio_list * bl,struct bio_list * bl2)593 static inline void bio_list_merge_head(struct bio_list *bl,
594 struct bio_list *bl2)
595 {
596 if (!bl2->head)
597 return;
598
599 if (bl->head)
600 bl2->tail->bi_next = bl->head;
601 else
602 bl->tail = bl2->tail;
603
604 bl->head = bl2->head;
605 }
606
bio_list_peek(struct bio_list * bl)607 static inline struct bio *bio_list_peek(struct bio_list *bl)
608 {
609 return bl->head;
610 }
611
bio_list_pop(struct bio_list * bl)612 static inline struct bio *bio_list_pop(struct bio_list *bl)
613 {
614 struct bio *bio = bl->head;
615
616 if (bio) {
617 bl->head = bl->head->bi_next;
618 if (!bl->head)
619 bl->tail = NULL;
620
621 bio->bi_next = NULL;
622 }
623
624 return bio;
625 }
626
bio_list_get(struct bio_list * bl)627 static inline struct bio *bio_list_get(struct bio_list *bl)
628 {
629 struct bio *bio = bl->head;
630
631 bl->head = bl->tail = NULL;
632
633 return bio;
634 }
635
636 /*
637 * Increment chain count for the bio. Make sure the CHAIN flag update
638 * is visible before the raised count.
639 */
bio_inc_remaining(struct bio * bio)640 static inline void bio_inc_remaining(struct bio *bio)
641 {
642 bio_set_flag(bio, BIO_CHAIN);
643 smp_mb__before_atomic();
644 atomic_inc(&bio->__bi_remaining);
645 }
646
647 /*
648 * bio_set is used to allow other portions of the IO system to
649 * allocate their own private memory pools for bio and iovec structures.
650 * These memory pools in turn all allocate from the bio_slab
651 * and the bvec_slabs[].
652 */
653 #define BIO_POOL_SIZE 2
654
655 struct bio_set {
656 struct kmem_cache *bio_slab;
657 unsigned int front_pad;
658
659 /*
660 * per-cpu bio alloc cache
661 */
662 struct bio_alloc_cache __percpu *cache;
663
664 mempool_t bio_pool;
665 mempool_t bvec_pool;
666 #if defined(CONFIG_BLK_DEV_INTEGRITY)
667 mempool_t bio_integrity_pool;
668 mempool_t bvec_integrity_pool;
669 #endif
670
671 unsigned int back_pad;
672 /*
673 * Deadlock avoidance for stacking block drivers: see comments in
674 * bio_alloc_bioset() for details
675 */
676 spinlock_t rescue_lock;
677 struct bio_list rescue_list;
678 struct work_struct rescue_work;
679 struct workqueue_struct *rescue_workqueue;
680
681 /*
682 * Hot un-plug notifier for the per-cpu cache, if used
683 */
684 struct hlist_node cpuhp_dead;
685 };
686
bioset_initialized(struct bio_set * bs)687 static inline bool bioset_initialized(struct bio_set *bs)
688 {
689 return bs->bio_slab != NULL;
690 }
691
692 #if defined(CONFIG_BLK_DEV_INTEGRITY)
693
694 #define bip_for_each_vec(bvl, bip, iter) \
695 for_each_bvec(bvl, (bip)->bip_vec, iter, (bip)->bip_iter)
696
697 #define bio_for_each_integrity_vec(_bvl, _bio, _iter) \
698 for_each_bio(_bio) \
699 bip_for_each_vec(_bvl, _bio->bi_integrity, _iter)
700
701 extern struct bio_integrity_payload *bio_integrity_alloc(struct bio *, gfp_t, unsigned int);
702 extern int bio_integrity_add_page(struct bio *, struct page *, unsigned int, unsigned int);
703 extern bool bio_integrity_prep(struct bio *);
704 extern void bio_integrity_advance(struct bio *, unsigned int);
705 extern void bio_integrity_trim(struct bio *);
706 extern int bio_integrity_clone(struct bio *, struct bio *, gfp_t);
707 extern int bioset_integrity_create(struct bio_set *, int);
708 extern void bioset_integrity_free(struct bio_set *);
709 extern void bio_integrity_init(void);
710
711 #else /* CONFIG_BLK_DEV_INTEGRITY */
712
bio_integrity(struct bio * bio)713 static inline void *bio_integrity(struct bio *bio)
714 {
715 return NULL;
716 }
717
bioset_integrity_create(struct bio_set * bs,int pool_size)718 static inline int bioset_integrity_create(struct bio_set *bs, int pool_size)
719 {
720 return 0;
721 }
722
bioset_integrity_free(struct bio_set * bs)723 static inline void bioset_integrity_free (struct bio_set *bs)
724 {
725 return;
726 }
727
bio_integrity_prep(struct bio * bio)728 static inline bool bio_integrity_prep(struct bio *bio)
729 {
730 return true;
731 }
732
bio_integrity_clone(struct bio * bio,struct bio * bio_src,gfp_t gfp_mask)733 static inline int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
734 gfp_t gfp_mask)
735 {
736 return 0;
737 }
738
bio_integrity_advance(struct bio * bio,unsigned int bytes_done)739 static inline void bio_integrity_advance(struct bio *bio,
740 unsigned int bytes_done)
741 {
742 return;
743 }
744
bio_integrity_trim(struct bio * bio)745 static inline void bio_integrity_trim(struct bio *bio)
746 {
747 return;
748 }
749
bio_integrity_init(void)750 static inline void bio_integrity_init(void)
751 {
752 return;
753 }
754
bio_integrity_flagged(struct bio * bio,enum bip_flags flag)755 static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag)
756 {
757 return false;
758 }
759
bio_integrity_alloc(struct bio * bio,gfp_t gfp,unsigned int nr)760 static inline void *bio_integrity_alloc(struct bio * bio, gfp_t gfp,
761 unsigned int nr)
762 {
763 return ERR_PTR(-EINVAL);
764 }
765
bio_integrity_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)766 static inline int bio_integrity_add_page(struct bio *bio, struct page *page,
767 unsigned int len, unsigned int offset)
768 {
769 return 0;
770 }
771
772 #endif /* CONFIG_BLK_DEV_INTEGRITY */
773
774 /*
775 * Mark a bio as polled. Note that for async polled IO, the caller must
776 * expect -EWOULDBLOCK if we cannot allocate a request (or other resources).
777 * We cannot block waiting for requests on polled IO, as those completions
778 * must be found by the caller. This is different than IRQ driven IO, where
779 * it's safe to wait for IO to complete.
780 */
bio_set_polled(struct bio * bio,struct kiocb * kiocb)781 static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb)
782 {
783 bio->bi_opf |= REQ_POLLED;
784 if (!is_sync_kiocb(kiocb))
785 bio->bi_opf |= REQ_NOWAIT;
786 }
787
bio_clear_polled(struct bio * bio)788 static inline void bio_clear_polled(struct bio *bio)
789 {
790 /* can't support alloc cache if we turn off polling */
791 bio->bi_opf &= ~(REQ_POLLED | REQ_ALLOC_CACHE);
792 }
793
794 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
795 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp);
796
797 #endif /* __LINUX_BIO_H */
798