1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Portions Copyright (C) 1992 Drew Eckhardt
4 */
5 #ifndef _LINUX_BLKDEV_H
6 #define _LINUX_BLKDEV_H
7
8 #include <linux/types.h>
9 #include <linux/blk_types.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/minmax.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/wait.h>
17 #include <linux/bio.h>
18 #include <linux/gfp.h>
19 #include <linux/kdev_t.h>
20 #include <linux/rcupdate.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/blkzoned.h>
23 #include <linux/sched.h>
24 #include <linux/sbitmap.h>
25 #include <linux/srcu.h>
26 #include <linux/uuid.h>
27 #include <linux/xarray.h>
28 #include <linux/android_kabi.h>
29
30 struct module;
31 struct request_queue;
32 struct elevator_queue;
33 struct blk_trace;
34 struct request;
35 struct sg_io_hdr;
36 struct blkcg_gq;
37 struct blk_flush_queue;
38 struct kiocb;
39 struct pr_ops;
40 struct rq_qos;
41 struct blk_queue_stats;
42 struct blk_stat_callback;
43 struct blk_crypto_profile;
44
45 extern const struct device_type disk_type;
46 extern struct device_type part_type;
47 extern struct class block_class;
48
49 /* Must be consistent with blk_mq_poll_stats_bkt() */
50 #define BLK_MQ_POLL_STATS_BKTS 16
51
52 /* Doing classic polling */
53 #define BLK_MQ_POLL_CLASSIC -1
54
55 /*
56 * Maximum number of blkcg policies allowed to be registered concurrently.
57 * Defined here to simplify include dependency.
58 */
59 #define BLKCG_MAX_POLS 6
60
61 #define DISK_MAX_PARTS 256
62 #define DISK_NAME_LEN 32
63
64 #define PARTITION_META_INFO_VOLNAMELTH 64
65 /*
66 * Enough for the string representation of any kind of UUID plus NULL.
67 * EFI UUID is 36 characters. MSDOS UUID is 11 characters.
68 */
69 #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1)
70
71 struct partition_meta_info {
72 char uuid[PARTITION_META_INFO_UUIDLTH];
73 u8 volname[PARTITION_META_INFO_VOLNAMELTH];
74 };
75
76 /**
77 * DOC: genhd capability flags
78 *
79 * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
80 * removable media. When set, the device remains present even when media is not
81 * inserted. Shall not be set for devices which are removed entirely when the
82 * media is removed.
83 *
84 * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
85 * doesn't appear in sysfs, and can't be opened from userspace or using
86 * blkdev_get*. Used for the underlying components of multipath devices.
87 *
88 * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not
89 * scan for partitions from add_disk, and users can't add partitions manually.
90 *
91 */
92 enum {
93 GENHD_FL_REMOVABLE = 1 << 0,
94 GENHD_FL_HIDDEN = 1 << 1,
95 GENHD_FL_NO_PART = 1 << 2,
96 };
97
98 enum {
99 DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */
100 DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */
101 };
102
103 enum {
104 /* Poll even if events_poll_msecs is unset */
105 DISK_EVENT_FLAG_POLL = 1 << 0,
106 /* Forward events to udev */
107 DISK_EVENT_FLAG_UEVENT = 1 << 1,
108 /* Block event polling when open for exclusive write */
109 DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2,
110 };
111
112 struct disk_events;
113 struct badblocks;
114
115 struct blk_integrity {
116 const struct blk_integrity_profile *profile;
117 unsigned char flags;
118 unsigned char tuple_size;
119 unsigned char interval_exp;
120 unsigned char tag_size;
121
122 ANDROID_KABI_RESERVE(1);
123 ANDROID_KABI_RESERVE(2);
124 };
125
126 struct gendisk {
127 /*
128 * major/first_minor/minors should not be set by any new driver, the
129 * block core will take care of allocating them automatically.
130 */
131 int major;
132 int first_minor;
133 int minors;
134
135 char disk_name[DISK_NAME_LEN]; /* name of major driver */
136
137 unsigned short events; /* supported events */
138 unsigned short event_flags; /* flags related to event processing */
139
140 struct xarray part_tbl;
141 struct block_device *part0;
142
143 const struct block_device_operations *fops;
144 struct request_queue *queue;
145 void *private_data;
146
147 struct bio_set bio_split;
148
149 int flags;
150 unsigned long state;
151 #define GD_NEED_PART_SCAN 0
152 #define GD_READ_ONLY 1
153 #define GD_DEAD 2
154 #define GD_NATIVE_CAPACITY 3
155 #define GD_ADDED 4
156 #define GD_SUPPRESS_PART_SCAN 5
157 #define GD_OWNS_QUEUE 6
158
159 struct mutex open_mutex; /* open/close mutex */
160 unsigned open_partitions; /* number of open partitions */
161
162 struct backing_dev_info *bdi;
163 struct kobject *slave_dir;
164 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
165 struct list_head slave_bdevs;
166 #endif
167 struct timer_rand_state *random;
168 atomic_t sync_io; /* RAID */
169 struct disk_events *ev;
170 #ifdef CONFIG_BLK_DEV_INTEGRITY
171 struct kobject integrity_kobj;
172 #endif /* CONFIG_BLK_DEV_INTEGRITY */
173
174 #ifdef CONFIG_BLK_DEV_ZONED
175 /*
176 * Zoned block device information for request dispatch control.
177 * nr_zones is the total number of zones of the device. This is always
178 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones
179 * bits which indicates if a zone is conventional (bit set) or
180 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones
181 * bits which indicates if a zone is write locked, that is, if a write
182 * request targeting the zone was dispatched.
183 *
184 * Reads of this information must be protected with blk_queue_enter() /
185 * blk_queue_exit(). Modifying this information is only allowed while
186 * no requests are being processed. See also blk_mq_freeze_queue() and
187 * blk_mq_unfreeze_queue().
188 */
189 unsigned int nr_zones;
190 unsigned int max_open_zones;
191 unsigned int max_active_zones;
192 unsigned long *conv_zones_bitmap;
193 unsigned long *seq_zones_wlock;
194 #endif /* CONFIG_BLK_DEV_ZONED */
195
196 #if IS_ENABLED(CONFIG_CDROM)
197 struct cdrom_device_info *cdi;
198 #endif
199 int node_id;
200 struct badblocks *bb;
201 struct lockdep_map lockdep_map;
202 u64 diskseq;
203
204 /*
205 * Independent sector access ranges. This is always NULL for
206 * devices that do not have multiple independent access ranges.
207 */
208 struct blk_independent_access_ranges *ia_ranges;
209
210 ANDROID_KABI_RESERVE(1);
211 ANDROID_KABI_RESERVE(2);
212 ANDROID_KABI_RESERVE(3);
213 ANDROID_KABI_RESERVE(4);
214 };
215
disk_live(struct gendisk * disk)216 static inline bool disk_live(struct gendisk *disk)
217 {
218 return !inode_unhashed(disk->part0->bd_inode);
219 }
220
221 /**
222 * disk_openers - returns how many openers are there for a disk
223 * @disk: disk to check
224 *
225 * This returns the number of openers for a disk. Note that this value is only
226 * stable if disk->open_mutex is held.
227 *
228 * Note: Due to a quirk in the block layer open code, each open partition is
229 * only counted once even if there are multiple openers.
230 */
disk_openers(struct gendisk * disk)231 static inline unsigned int disk_openers(struct gendisk *disk)
232 {
233 return atomic_read(&disk->part0->bd_openers);
234 }
235
236 /*
237 * The gendisk is refcounted by the part0 block_device, and the bd_device
238 * therein is also used for device model presentation in sysfs.
239 */
240 #define dev_to_disk(device) \
241 (dev_to_bdev(device)->bd_disk)
242 #define disk_to_dev(disk) \
243 (&((disk)->part0->bd_device))
244
245 #if IS_REACHABLE(CONFIG_CDROM)
246 #define disk_to_cdi(disk) ((disk)->cdi)
247 #else
248 #define disk_to_cdi(disk) NULL
249 #endif
250
disk_devt(struct gendisk * disk)251 static inline dev_t disk_devt(struct gendisk *disk)
252 {
253 return MKDEV(disk->major, disk->first_minor);
254 }
255
blk_validate_block_size(unsigned long bsize)256 static inline int blk_validate_block_size(unsigned long bsize)
257 {
258 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
259 return -EINVAL;
260
261 return 0;
262 }
263
blk_op_is_passthrough(blk_opf_t op)264 static inline bool blk_op_is_passthrough(blk_opf_t op)
265 {
266 op &= REQ_OP_MASK;
267 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
268 }
269
270 /*
271 * Zoned block device models (zoned limit).
272 *
273 * Note: This needs to be ordered from the least to the most severe
274 * restrictions for the inheritance in blk_stack_limits() to work.
275 */
276 enum blk_zoned_model {
277 BLK_ZONED_NONE = 0, /* Regular block device */
278 BLK_ZONED_HA, /* Host-aware zoned block device */
279 BLK_ZONED_HM, /* Host-managed zoned block device */
280 };
281
282 /*
283 * BLK_BOUNCE_NONE: never bounce (default)
284 * BLK_BOUNCE_HIGH: bounce all highmem pages
285 */
286 enum blk_bounce {
287 BLK_BOUNCE_NONE,
288 BLK_BOUNCE_HIGH,
289 };
290
291 struct queue_limits {
292 enum blk_bounce bounce;
293 unsigned long seg_boundary_mask;
294 unsigned long virt_boundary_mask;
295
296 unsigned int max_hw_sectors;
297 unsigned int max_dev_sectors;
298 unsigned int chunk_sectors;
299 unsigned int max_sectors;
300 unsigned int max_segment_size;
301 unsigned int physical_block_size;
302 unsigned int logical_block_size;
303 unsigned int alignment_offset;
304 unsigned int io_min;
305 unsigned int io_opt;
306 unsigned int max_discard_sectors;
307 unsigned int max_hw_discard_sectors;
308 unsigned int max_secure_erase_sectors;
309 unsigned int max_write_zeroes_sectors;
310 unsigned int max_zone_append_sectors;
311 unsigned int discard_granularity;
312 unsigned int discard_alignment;
313 unsigned int zone_write_granularity;
314
315 unsigned short max_segments;
316 unsigned short max_integrity_segments;
317 unsigned short max_discard_segments;
318
319 unsigned char misaligned;
320 unsigned char discard_misaligned;
321 unsigned char raid_partial_stripes_expensive;
322
323 #ifndef __GENKSYMS__
324 bool sub_page_limits;
325 #endif
326
327 enum blk_zoned_model zoned;
328
329 /*
330 * Drivers that set dma_alignment to less than 511 must be prepared to
331 * handle individual bvec's that are not a multiple of a SECTOR_SIZE
332 * due to possible offsets.
333 */
334 unsigned int dma_alignment;
335
336 ANDROID_OEM_DATA(1);
337 ANDROID_KABI_RESERVE(1);
338 };
339
340 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
341 void *data);
342
343 void disk_set_zoned(struct gendisk *disk, enum blk_zoned_model model);
344
345 #ifdef CONFIG_BLK_DEV_ZONED
346
347 #define BLK_ALL_ZONES ((unsigned int)-1)
348 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
349 unsigned int nr_zones, report_zones_cb cb, void *data);
350 unsigned int bdev_nr_zones(struct block_device *bdev);
351 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
352 sector_t sectors, sector_t nr_sectors,
353 gfp_t gfp_mask);
354 int blk_revalidate_disk_zones(struct gendisk *disk,
355 void (*update_driver_data)(struct gendisk *disk));
356
357 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
358 unsigned int cmd, unsigned long arg);
359 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode,
360 unsigned int cmd, unsigned long arg);
361
362 #else /* CONFIG_BLK_DEV_ZONED */
363
bdev_nr_zones(struct block_device * bdev)364 static inline unsigned int bdev_nr_zones(struct block_device *bdev)
365 {
366 return 0;
367 }
368
blkdev_report_zones_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)369 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
370 fmode_t mode, unsigned int cmd,
371 unsigned long arg)
372 {
373 return -ENOTTY;
374 }
375
blkdev_zone_mgmt_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)376 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
377 fmode_t mode, unsigned int cmd,
378 unsigned long arg)
379 {
380 return -ENOTTY;
381 }
382
383 #endif /* CONFIG_BLK_DEV_ZONED */
384
385 /*
386 * Independent access ranges: struct blk_independent_access_range describes
387 * a range of contiguous sectors that can be accessed using device command
388 * execution resources that are independent from the resources used for
389 * other access ranges. This is typically found with single-LUN multi-actuator
390 * HDDs where each access range is served by a different set of heads.
391 * The set of independent ranges supported by the device is defined using
392 * struct blk_independent_access_ranges. The independent ranges must not overlap
393 * and must include all sectors within the disk capacity (no sector holes
394 * allowed).
395 * For a device with multiple ranges, requests targeting sectors in different
396 * ranges can be executed in parallel. A request can straddle an access range
397 * boundary.
398 */
399 struct blk_independent_access_range {
400 struct kobject kobj;
401 sector_t sector;
402 sector_t nr_sectors;
403 };
404
405 struct blk_independent_access_ranges {
406 struct kobject kobj;
407 bool sysfs_registered;
408 unsigned int nr_ia_ranges;
409 struct blk_independent_access_range ia_range[];
410 };
411
412 struct request_queue {
413 struct request *last_merge;
414 struct elevator_queue *elevator;
415
416 struct percpu_ref q_usage_counter;
417
418 struct blk_queue_stats *stats;
419 struct rq_qos *rq_qos;
420
421 const struct blk_mq_ops *mq_ops;
422
423 /* sw queues */
424 struct blk_mq_ctx __percpu *queue_ctx;
425
426 unsigned int queue_depth;
427
428 /* hw dispatch queues */
429 struct xarray hctx_table;
430 unsigned int nr_hw_queues;
431
432 /*
433 * The queue owner gets to use this for whatever they like.
434 * ll_rw_blk doesn't touch it.
435 */
436 void *queuedata;
437
438 /*
439 * various queue flags, see QUEUE_* below
440 */
441 unsigned long queue_flags;
442 /*
443 * Number of contexts that have called blk_set_pm_only(). If this
444 * counter is above zero then only RQF_PM requests are processed.
445 */
446 atomic_t pm_only;
447
448 /*
449 * ida allocated id for this queue. Used to index queues from
450 * ioctx.
451 */
452 int id;
453
454 spinlock_t queue_lock;
455
456 struct gendisk *disk;
457
458 /*
459 * queue kobject
460 */
461 struct kobject kobj;
462
463 /*
464 * mq queue kobject
465 */
466 struct kobject *mq_kobj;
467
468 #ifdef CONFIG_BLK_DEV_INTEGRITY
469 struct blk_integrity integrity;
470 #endif /* CONFIG_BLK_DEV_INTEGRITY */
471
472 #ifdef CONFIG_PM
473 struct device *dev;
474 enum rpm_status rpm_status;
475 #endif
476
477 /*
478 * queue settings
479 */
480 unsigned long nr_requests; /* Max # of requests */
481
482 unsigned int dma_pad_mask;
483
484 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
485 struct blk_crypto_profile *crypto_profile;
486 struct kobject *crypto_kobject;
487 #endif
488
489 unsigned int rq_timeout;
490 int poll_nsec;
491
492 struct blk_stat_callback *poll_cb;
493 struct blk_rq_stat *poll_stat;
494
495 struct timer_list timeout;
496 struct work_struct timeout_work;
497
498 atomic_t nr_active_requests_shared_tags;
499
500 struct blk_mq_tags *sched_shared_tags;
501
502 struct list_head icq_list;
503 #ifdef CONFIG_BLK_CGROUP
504 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
505 struct blkcg_gq *root_blkg;
506 struct list_head blkg_list;
507 #endif
508
509 struct queue_limits limits;
510
511 unsigned int required_elevator_features;
512
513 int node;
514 #ifdef CONFIG_BLK_DEV_IO_TRACE
515 struct blk_trace __rcu *blk_trace;
516 #endif
517 /*
518 * for flush operations
519 */
520 struct blk_flush_queue *fq;
521
522 struct list_head requeue_list;
523 spinlock_t requeue_lock;
524 struct delayed_work requeue_work;
525
526 struct mutex sysfs_lock;
527 struct mutex sysfs_dir_lock;
528
529 /*
530 * for reusing dead hctx instance in case of updating
531 * nr_hw_queues
532 */
533 struct list_head unused_hctx_list;
534 spinlock_t unused_hctx_lock;
535
536 int mq_freeze_depth;
537
538 #ifdef CONFIG_BLK_DEV_THROTTLING
539 /* Throttle data */
540 struct throtl_data *td;
541 #endif
542 struct rcu_head rcu_head;
543 wait_queue_head_t mq_freeze_wq;
544 /*
545 * Protect concurrent access to q_usage_counter by
546 * percpu_ref_kill() and percpu_ref_reinit().
547 */
548 struct mutex mq_freeze_lock;
549
550 int quiesce_depth;
551
552 struct blk_mq_tag_set *tag_set;
553 struct list_head tag_set_list;
554
555 struct dentry *debugfs_dir;
556 struct dentry *sched_debugfs_dir;
557 struct dentry *rqos_debugfs_dir;
558 /*
559 * Serializes all debugfs metadata operations using the above dentries.
560 */
561 struct mutex debugfs_mutex;
562
563 bool mq_sysfs_init_done;
564 ANDROID_OEM_DATA(1);
565
566 ANDROID_KABI_RESERVE(1);
567 ANDROID_KABI_RESERVE(2);
568 ANDROID_KABI_RESERVE(3);
569 ANDROID_KABI_RESERVE(4);
570
571 /**
572 * @srcu: Sleepable RCU. Use as lock when type of the request queue
573 * is blocking (BLK_MQ_F_BLOCKING). Must be the last member
574 */
575 struct srcu_struct srcu[];
576 };
577
578 /* Keep blk_queue_flag_name[] in sync with the definitions below */
579 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */
580 #define QUEUE_FLAG_DYING 1 /* queue being torn down */
581 #define QUEUE_FLAG_HAS_SRCU 2 /* SRCU is allocated */
582 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */
583 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */
584 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */
585 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */
586 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
587 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */
588 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */
589 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */
590 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */
591 #define QUEUE_FLAG_HW_WC 13 /* Write back caching supported */
592 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */
593 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */
594 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */
595 #define QUEUE_FLAG_WC 17 /* Write back caching */
596 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */
597 #define QUEUE_FLAG_DAX 19 /* device supports DAX */
598 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */
599 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */
600 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */
601 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */
602 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */
603 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */
604 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */
605 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */
606 #define QUEUE_FLAG_SQ_SCHED 30 /* single queue style io dispatch */
607
608 #define QUEUE_FLAG_MQ_DEFAULT ((1UL << QUEUE_FLAG_IO_STAT) | \
609 (1UL << QUEUE_FLAG_SAME_COMP) | \
610 (1UL << QUEUE_FLAG_NOWAIT))
611
612 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
613 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
614 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
615
616 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
617 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
618 #define blk_queue_has_srcu(q) test_bit(QUEUE_FLAG_HAS_SRCU, &(q)->queue_flags)
619 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
620 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
621 #define blk_queue_noxmerges(q) \
622 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
623 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
624 #define blk_queue_stable_writes(q) \
625 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags)
626 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
627 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
628 #define blk_queue_zone_resetall(q) \
629 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
630 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
631 #define blk_queue_pci_p2pdma(q) \
632 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
633 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
634 #define blk_queue_rq_alloc_time(q) \
635 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
636 #else
637 #define blk_queue_rq_alloc_time(q) false
638 #endif
639
640 #define blk_noretry_request(rq) \
641 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
642 REQ_FAILFAST_DRIVER))
643 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
644 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
645 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
646 #define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
647
648 extern void blk_set_pm_only(struct request_queue *q);
649 extern void blk_clear_pm_only(struct request_queue *q);
650
651 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
652
653 #define dma_map_bvec(dev, bv, dir, attrs) \
654 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
655 (dir), (attrs))
656
queue_is_mq(struct request_queue * q)657 static inline bool queue_is_mq(struct request_queue *q)
658 {
659 return q->mq_ops;
660 }
661
662 #ifdef CONFIG_PM
queue_rpm_status(struct request_queue * q)663 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
664 {
665 return q->rpm_status;
666 }
667 #else
queue_rpm_status(struct request_queue * q)668 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
669 {
670 return RPM_ACTIVE;
671 }
672 #endif
673
674 static inline enum blk_zoned_model
blk_queue_zoned_model(struct request_queue * q)675 blk_queue_zoned_model(struct request_queue *q)
676 {
677 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
678 return q->limits.zoned;
679 return BLK_ZONED_NONE;
680 }
681
blk_queue_is_zoned(struct request_queue * q)682 static inline bool blk_queue_is_zoned(struct request_queue *q)
683 {
684 switch (blk_queue_zoned_model(q)) {
685 case BLK_ZONED_HA:
686 case BLK_ZONED_HM:
687 return true;
688 default:
689 return false;
690 }
691 }
692
693 #ifdef CONFIG_BLK_DEV_ZONED
disk_nr_zones(struct gendisk * disk)694 static inline unsigned int disk_nr_zones(struct gendisk *disk)
695 {
696 return blk_queue_is_zoned(disk->queue) ? disk->nr_zones : 0;
697 }
698
disk_zone_no(struct gendisk * disk,sector_t sector)699 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
700 {
701 if (!blk_queue_is_zoned(disk->queue))
702 return 0;
703 return sector >> ilog2(disk->queue->limits.chunk_sectors);
704 }
705
disk_zone_is_seq(struct gendisk * disk,sector_t sector)706 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector)
707 {
708 if (!blk_queue_is_zoned(disk->queue))
709 return false;
710 if (!disk->conv_zones_bitmap)
711 return true;
712 return !test_bit(disk_zone_no(disk, sector), disk->conv_zones_bitmap);
713 }
714
disk_set_max_open_zones(struct gendisk * disk,unsigned int max_open_zones)715 static inline void disk_set_max_open_zones(struct gendisk *disk,
716 unsigned int max_open_zones)
717 {
718 disk->max_open_zones = max_open_zones;
719 }
720
disk_set_max_active_zones(struct gendisk * disk,unsigned int max_active_zones)721 static inline void disk_set_max_active_zones(struct gendisk *disk,
722 unsigned int max_active_zones)
723 {
724 disk->max_active_zones = max_active_zones;
725 }
726
bdev_max_open_zones(struct block_device * bdev)727 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
728 {
729 return bdev->bd_disk->max_open_zones;
730 }
731
bdev_max_active_zones(struct block_device * bdev)732 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
733 {
734 return bdev->bd_disk->max_active_zones;
735 }
736
737 #else /* CONFIG_BLK_DEV_ZONED */
disk_nr_zones(struct gendisk * disk)738 static inline unsigned int disk_nr_zones(struct gendisk *disk)
739 {
740 return 0;
741 }
disk_zone_is_seq(struct gendisk * disk,sector_t sector)742 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector)
743 {
744 return false;
745 }
disk_zone_no(struct gendisk * disk,sector_t sector)746 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
747 {
748 return 0;
749 }
bdev_max_open_zones(struct block_device * bdev)750 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
751 {
752 return 0;
753 }
754
bdev_max_active_zones(struct block_device * bdev)755 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
756 {
757 return 0;
758 }
759 #endif /* CONFIG_BLK_DEV_ZONED */
760
blk_queue_depth(struct request_queue * q)761 static inline unsigned int blk_queue_depth(struct request_queue *q)
762 {
763 if (q->queue_depth)
764 return q->queue_depth;
765
766 return q->nr_requests;
767 }
768
769 /*
770 * default timeout for SG_IO if none specified
771 */
772 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
773 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
774
775 /* This should not be used directly - use rq_for_each_segment */
776 #define for_each_bio(_bio) \
777 for (; _bio; _bio = _bio->bi_next)
778
779 int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
780 const struct attribute_group **groups);
add_disk(struct gendisk * disk)781 static inline int __must_check add_disk(struct gendisk *disk)
782 {
783 return device_add_disk(NULL, disk, NULL);
784 }
785 void del_gendisk(struct gendisk *gp);
786 void invalidate_disk(struct gendisk *disk);
787 void set_disk_ro(struct gendisk *disk, bool read_only);
788 void disk_uevent(struct gendisk *disk, enum kobject_action action);
789
get_disk_ro(struct gendisk * disk)790 static inline int get_disk_ro(struct gendisk *disk)
791 {
792 return disk->part0->bd_read_only ||
793 test_bit(GD_READ_ONLY, &disk->state);
794 }
795
bdev_read_only(struct block_device * bdev)796 static inline int bdev_read_only(struct block_device *bdev)
797 {
798 return bdev->bd_read_only || get_disk_ro(bdev->bd_disk);
799 }
800
801 bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
802 bool disk_force_media_change(struct gendisk *disk, unsigned int events);
803
804 void add_disk_randomness(struct gendisk *disk) __latent_entropy;
805 void rand_initialize_disk(struct gendisk *disk);
806
get_start_sect(struct block_device * bdev)807 static inline sector_t get_start_sect(struct block_device *bdev)
808 {
809 return bdev->bd_start_sect;
810 }
811
bdev_nr_sectors(struct block_device * bdev)812 static inline sector_t bdev_nr_sectors(struct block_device *bdev)
813 {
814 return bdev->bd_nr_sectors;
815 }
816
bdev_nr_bytes(struct block_device * bdev)817 static inline loff_t bdev_nr_bytes(struct block_device *bdev)
818 {
819 return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
820 }
821
get_capacity(struct gendisk * disk)822 static inline sector_t get_capacity(struct gendisk *disk)
823 {
824 return bdev_nr_sectors(disk->part0);
825 }
826
sb_bdev_nr_blocks(struct super_block * sb)827 static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
828 {
829 return bdev_nr_sectors(sb->s_bdev) >>
830 (sb->s_blocksize_bits - SECTOR_SHIFT);
831 }
832
833 int bdev_disk_changed(struct gendisk *disk, bool invalidate);
834
835 void put_disk(struct gendisk *disk);
836 struct gendisk *__blk_alloc_disk(int node, struct lock_class_key *lkclass);
837
838 /**
839 * blk_alloc_disk - allocate a gendisk structure
840 * @node_id: numa node to allocate on
841 *
842 * Allocate and pre-initialize a gendisk structure for use with BIO based
843 * drivers.
844 *
845 * Context: can sleep
846 */
847 #define blk_alloc_disk(node_id) \
848 ({ \
849 static struct lock_class_key __key; \
850 \
851 __blk_alloc_disk(node_id, &__key); \
852 })
853
854 int __register_blkdev(unsigned int major, const char *name,
855 void (*probe)(dev_t devt));
856 #define register_blkdev(major, name) \
857 __register_blkdev(major, name, NULL)
858 void unregister_blkdev(unsigned int major, const char *name);
859
860 bool bdev_check_media_change(struct block_device *bdev);
861 int __invalidate_device(struct block_device *bdev, bool kill_dirty);
862 void set_capacity(struct gendisk *disk, sector_t size);
863
864 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
865 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
866 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
867 int bd_register_pending_holders(struct gendisk *disk);
868 #else
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)869 static inline int bd_link_disk_holder(struct block_device *bdev,
870 struct gendisk *disk)
871 {
872 return 0;
873 }
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)874 static inline void bd_unlink_disk_holder(struct block_device *bdev,
875 struct gendisk *disk)
876 {
877 }
bd_register_pending_holders(struct gendisk * disk)878 static inline int bd_register_pending_holders(struct gendisk *disk)
879 {
880 return 0;
881 }
882 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
883
884 dev_t part_devt(struct gendisk *disk, u8 partno);
885 void inc_diskseq(struct gendisk *disk);
886 dev_t blk_lookup_devt(const char *name, int partno);
887 void blk_request_module(dev_t devt);
888
889 extern int blk_register_queue(struct gendisk *disk);
890 extern void blk_unregister_queue(struct gendisk *disk);
891 void submit_bio_noacct(struct bio *bio);
892 struct bio *bio_split_to_limits(struct bio *bio);
893
894 extern int blk_lld_busy(struct request_queue *q);
895 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
896 extern void blk_queue_exit(struct request_queue *q);
897 extern void blk_sync_queue(struct request_queue *q);
898
899 /* Helper to convert REQ_OP_XXX to its string format XXX */
900 extern const char *blk_op_str(enum req_op op);
901
902 int blk_status_to_errno(blk_status_t status);
903 blk_status_t errno_to_blk_status(int errno);
904
905 /* only poll the hardware once, don't continue until a completion was found */
906 #define BLK_POLL_ONESHOT (1 << 0)
907 /* do not sleep to wait for the expected completion time */
908 #define BLK_POLL_NOSLEEP (1 << 1)
909 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
910 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
911 unsigned int flags);
912
bdev_get_queue(struct block_device * bdev)913 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
914 {
915 return bdev->bd_queue; /* this is never NULL */
916 }
917
918 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
919 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
920
bio_zone_no(struct bio * bio)921 static inline unsigned int bio_zone_no(struct bio *bio)
922 {
923 return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
924 }
925
bio_zone_is_seq(struct bio * bio)926 static inline unsigned int bio_zone_is_seq(struct bio *bio)
927 {
928 return disk_zone_is_seq(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
929 }
930
931 /*
932 * Return how much of the chunk is left to be used for I/O at a given offset.
933 */
blk_chunk_sectors_left(sector_t offset,unsigned int chunk_sectors)934 static inline unsigned int blk_chunk_sectors_left(sector_t offset,
935 unsigned int chunk_sectors)
936 {
937 if (unlikely(!is_power_of_2(chunk_sectors)))
938 return chunk_sectors - sector_div(offset, chunk_sectors);
939 return chunk_sectors - (offset & (chunk_sectors - 1));
940 }
941
942 /*
943 * Access functions for manipulating queue properties
944 */
945 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit);
946 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
947 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
948 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
949 extern void blk_queue_max_discard_segments(struct request_queue *,
950 unsigned short);
951 void blk_queue_max_secure_erase_sectors(struct request_queue *q,
952 unsigned int max_sectors);
953 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
954 extern void blk_queue_max_discard_sectors(struct request_queue *q,
955 unsigned int max_discard_sectors);
956 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
957 unsigned int max_write_same_sectors);
958 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
959 extern void blk_queue_max_zone_append_sectors(struct request_queue *q,
960 unsigned int max_zone_append_sectors);
961 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
962 void blk_queue_zone_write_granularity(struct request_queue *q,
963 unsigned int size);
964 extern void blk_queue_alignment_offset(struct request_queue *q,
965 unsigned int alignment);
966 void disk_update_readahead(struct gendisk *disk);
967 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
968 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
969 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
970 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
971 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
972 extern void blk_set_stacking_limits(struct queue_limits *lim);
973 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
974 sector_t offset);
975 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
976 sector_t offset);
977 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
978 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
979 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
980 extern void blk_queue_dma_alignment(struct request_queue *, int);
981 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
982 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
983 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
984
985 struct blk_independent_access_ranges *
986 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
987 void disk_set_independent_access_ranges(struct gendisk *disk,
988 struct blk_independent_access_ranges *iars);
989
990 /*
991 * Elevator features for blk_queue_required_elevator_features:
992 */
993 /* Supports zoned block devices sequential write constraint */
994 #define ELEVATOR_F_ZBD_SEQ_WRITE (1U << 0)
995
996 extern void blk_queue_required_elevator_features(struct request_queue *q,
997 unsigned int features);
998 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
999 struct device *dev);
1000
1001 bool __must_check blk_get_queue(struct request_queue *);
1002 extern void blk_put_queue(struct request_queue *);
1003
1004 void blk_mark_disk_dead(struct gendisk *disk);
1005
1006 #ifdef CONFIG_BLOCK
1007 /*
1008 * blk_plug permits building a queue of related requests by holding the I/O
1009 * fragments for a short period. This allows merging of sequential requests
1010 * into single larger request. As the requests are moved from a per-task list to
1011 * the device's request_queue in a batch, this results in improved scalability
1012 * as the lock contention for request_queue lock is reduced.
1013 *
1014 * It is ok not to disable preemption when adding the request to the plug list
1015 * or when attempting a merge. For details, please see schedule() where
1016 * blk_flush_plug() is called.
1017 */
1018 struct blk_plug {
1019 struct request *mq_list; /* blk-mq requests */
1020
1021 /* if ios_left is > 1, we can batch tag/rq allocations */
1022 struct request *cached_rq;
1023 unsigned short nr_ios;
1024
1025 unsigned short rq_count;
1026
1027 bool multiple_queues;
1028 bool has_elevator;
1029 bool nowait;
1030
1031 struct list_head cb_list; /* md requires an unplug callback */
1032 };
1033
1034 struct blk_plug_cb;
1035 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1036 struct blk_plug_cb {
1037 struct list_head list;
1038 blk_plug_cb_fn callback;
1039 void *data;
1040 };
1041 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1042 void *data, int size);
1043 extern void blk_start_plug(struct blk_plug *);
1044 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
1045 extern void blk_finish_plug(struct blk_plug *);
1046
1047 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
blk_flush_plug(struct blk_plug * plug,bool async)1048 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1049 {
1050 if (plug)
1051 __blk_flush_plug(plug, async);
1052 }
1053
1054 int blkdev_issue_flush(struct block_device *bdev);
1055 long nr_blockdev_pages(void);
1056 #else /* CONFIG_BLOCK */
1057 struct blk_plug {
1058 };
1059
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1060 static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
1061 unsigned short nr_ios)
1062 {
1063 }
1064
blk_start_plug(struct blk_plug * plug)1065 static inline void blk_start_plug(struct blk_plug *plug)
1066 {
1067 }
1068
blk_finish_plug(struct blk_plug * plug)1069 static inline void blk_finish_plug(struct blk_plug *plug)
1070 {
1071 }
1072
blk_flush_plug(struct blk_plug * plug,bool async)1073 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1074 {
1075 }
1076
blkdev_issue_flush(struct block_device * bdev)1077 static inline int blkdev_issue_flush(struct block_device *bdev)
1078 {
1079 return 0;
1080 }
1081
nr_blockdev_pages(void)1082 static inline long nr_blockdev_pages(void)
1083 {
1084 return 0;
1085 }
1086 #endif /* CONFIG_BLOCK */
1087
1088 extern void blk_io_schedule(void);
1089
1090 int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1091 sector_t nr_sects, gfp_t gfp_mask);
1092 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1093 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
1094 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
1095 sector_t nr_sects, gfp_t gfp);
1096
1097 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1098 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1099
1100 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1101 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1102 unsigned flags);
1103 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1104 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1105
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1106 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1107 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1108 {
1109 return blkdev_issue_discard(sb->s_bdev,
1110 block << (sb->s_blocksize_bits -
1111 SECTOR_SHIFT),
1112 nr_blocks << (sb->s_blocksize_bits -
1113 SECTOR_SHIFT),
1114 gfp_mask);
1115 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1116 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1117 sector_t nr_blocks, gfp_t gfp_mask)
1118 {
1119 return blkdev_issue_zeroout(sb->s_bdev,
1120 block << (sb->s_blocksize_bits -
1121 SECTOR_SHIFT),
1122 nr_blocks << (sb->s_blocksize_bits -
1123 SECTOR_SHIFT),
1124 gfp_mask, 0);
1125 }
1126
bdev_is_partition(struct block_device * bdev)1127 static inline bool bdev_is_partition(struct block_device *bdev)
1128 {
1129 return bdev->bd_partno;
1130 }
1131
1132 enum blk_default_limits {
1133 BLK_MAX_SEGMENTS = 128,
1134 BLK_SAFE_MAX_SECTORS = 255,
1135 BLK_MAX_SEGMENT_SIZE = 65536,
1136 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1137 };
1138
1139 #define BLK_DEF_MAX_SECTORS 2560u
1140
queue_segment_boundary(const struct request_queue * q)1141 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1142 {
1143 return q->limits.seg_boundary_mask;
1144 }
1145
queue_virt_boundary(const struct request_queue * q)1146 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1147 {
1148 return q->limits.virt_boundary_mask;
1149 }
1150
queue_max_sectors(const struct request_queue * q)1151 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1152 {
1153 return q->limits.max_sectors;
1154 }
1155
queue_max_bytes(struct request_queue * q)1156 static inline unsigned int queue_max_bytes(struct request_queue *q)
1157 {
1158 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1159 }
1160
queue_max_hw_sectors(const struct request_queue * q)1161 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1162 {
1163 return q->limits.max_hw_sectors;
1164 }
1165
queue_max_segments(const struct request_queue * q)1166 static inline unsigned short queue_max_segments(const struct request_queue *q)
1167 {
1168 return q->limits.max_segments;
1169 }
1170
queue_max_discard_segments(const struct request_queue * q)1171 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1172 {
1173 return q->limits.max_discard_segments;
1174 }
1175
queue_max_segment_size(const struct request_queue * q)1176 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1177 {
1178 return q->limits.max_segment_size;
1179 }
1180
queue_max_zone_append_sectors(const struct request_queue * q)1181 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q)
1182 {
1183
1184 const struct queue_limits *l = &q->limits;
1185
1186 return min(l->max_zone_append_sectors, l->max_sectors);
1187 }
1188
1189 static inline unsigned int
bdev_max_zone_append_sectors(struct block_device * bdev)1190 bdev_max_zone_append_sectors(struct block_device *bdev)
1191 {
1192 return queue_max_zone_append_sectors(bdev_get_queue(bdev));
1193 }
1194
bdev_max_segments(struct block_device * bdev)1195 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1196 {
1197 return queue_max_segments(bdev_get_queue(bdev));
1198 }
1199
queue_logical_block_size(const struct request_queue * q)1200 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1201 {
1202 int retval = 512;
1203
1204 if (q && q->limits.logical_block_size)
1205 retval = q->limits.logical_block_size;
1206
1207 return retval;
1208 }
1209
bdev_logical_block_size(struct block_device * bdev)1210 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1211 {
1212 return queue_logical_block_size(bdev_get_queue(bdev));
1213 }
1214
queue_physical_block_size(const struct request_queue * q)1215 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1216 {
1217 return q->limits.physical_block_size;
1218 }
1219
bdev_physical_block_size(struct block_device * bdev)1220 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1221 {
1222 return queue_physical_block_size(bdev_get_queue(bdev));
1223 }
1224
queue_io_min(const struct request_queue * q)1225 static inline unsigned int queue_io_min(const struct request_queue *q)
1226 {
1227 return q->limits.io_min;
1228 }
1229
bdev_io_min(struct block_device * bdev)1230 static inline int bdev_io_min(struct block_device *bdev)
1231 {
1232 return queue_io_min(bdev_get_queue(bdev));
1233 }
1234
queue_io_opt(const struct request_queue * q)1235 static inline unsigned int queue_io_opt(const struct request_queue *q)
1236 {
1237 return q->limits.io_opt;
1238 }
1239
bdev_io_opt(struct block_device * bdev)1240 static inline int bdev_io_opt(struct block_device *bdev)
1241 {
1242 return queue_io_opt(bdev_get_queue(bdev));
1243 }
1244
1245 static inline unsigned int
queue_zone_write_granularity(const struct request_queue * q)1246 queue_zone_write_granularity(const struct request_queue *q)
1247 {
1248 return q->limits.zone_write_granularity;
1249 }
1250
1251 static inline unsigned int
bdev_zone_write_granularity(struct block_device * bdev)1252 bdev_zone_write_granularity(struct block_device *bdev)
1253 {
1254 return queue_zone_write_granularity(bdev_get_queue(bdev));
1255 }
1256
1257 int bdev_alignment_offset(struct block_device *bdev);
1258 unsigned int bdev_discard_alignment(struct block_device *bdev);
1259
bdev_max_discard_sectors(struct block_device * bdev)1260 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
1261 {
1262 return bdev_get_queue(bdev)->limits.max_discard_sectors;
1263 }
1264
bdev_discard_granularity(struct block_device * bdev)1265 static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
1266 {
1267 return bdev_get_queue(bdev)->limits.discard_granularity;
1268 }
1269
1270 static inline unsigned int
bdev_max_secure_erase_sectors(struct block_device * bdev)1271 bdev_max_secure_erase_sectors(struct block_device *bdev)
1272 {
1273 return bdev_get_queue(bdev)->limits.max_secure_erase_sectors;
1274 }
1275
bdev_write_zeroes_sectors(struct block_device * bdev)1276 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1277 {
1278 struct request_queue *q = bdev_get_queue(bdev);
1279
1280 if (q)
1281 return q->limits.max_write_zeroes_sectors;
1282
1283 return 0;
1284 }
1285
bdev_nonrot(struct block_device * bdev)1286 static inline bool bdev_nonrot(struct block_device *bdev)
1287 {
1288 return blk_queue_nonrot(bdev_get_queue(bdev));
1289 }
1290
bdev_stable_writes(struct block_device * bdev)1291 static inline bool bdev_stable_writes(struct block_device *bdev)
1292 {
1293 return test_bit(QUEUE_FLAG_STABLE_WRITES,
1294 &bdev_get_queue(bdev)->queue_flags);
1295 }
1296
bdev_write_cache(struct block_device * bdev)1297 static inline bool bdev_write_cache(struct block_device *bdev)
1298 {
1299 return test_bit(QUEUE_FLAG_WC, &bdev_get_queue(bdev)->queue_flags);
1300 }
1301
bdev_fua(struct block_device * bdev)1302 static inline bool bdev_fua(struct block_device *bdev)
1303 {
1304 return test_bit(QUEUE_FLAG_FUA, &bdev_get_queue(bdev)->queue_flags);
1305 }
1306
bdev_nowait(struct block_device * bdev)1307 static inline bool bdev_nowait(struct block_device *bdev)
1308 {
1309 return test_bit(QUEUE_FLAG_NOWAIT, &bdev_get_queue(bdev)->queue_flags);
1310 }
1311
bdev_zoned_model(struct block_device * bdev)1312 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1313 {
1314 struct request_queue *q = bdev_get_queue(bdev);
1315
1316 if (q)
1317 return blk_queue_zoned_model(q);
1318
1319 return BLK_ZONED_NONE;
1320 }
1321
bdev_is_zoned(struct block_device * bdev)1322 static inline bool bdev_is_zoned(struct block_device *bdev)
1323 {
1324 struct request_queue *q = bdev_get_queue(bdev);
1325
1326 if (q)
1327 return blk_queue_is_zoned(q);
1328
1329 return false;
1330 }
1331
bdev_op_is_zoned_write(struct block_device * bdev,enum req_op op)1332 static inline bool bdev_op_is_zoned_write(struct block_device *bdev,
1333 enum req_op op)
1334 {
1335 if (!bdev_is_zoned(bdev))
1336 return false;
1337
1338 return op == REQ_OP_WRITE || op == REQ_OP_WRITE_ZEROES;
1339 }
1340
bdev_zone_sectors(struct block_device * bdev)1341 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1342 {
1343 struct request_queue *q = bdev_get_queue(bdev);
1344
1345 if (!blk_queue_is_zoned(q))
1346 return 0;
1347 return q->limits.chunk_sectors;
1348 }
1349
queue_dma_alignment(const struct request_queue * q)1350 static inline int queue_dma_alignment(const struct request_queue *q)
1351 {
1352 return q ? q->limits.dma_alignment : 511;
1353 }
1354
bdev_dma_alignment(struct block_device * bdev)1355 static inline unsigned int bdev_dma_alignment(struct block_device *bdev)
1356 {
1357 return queue_dma_alignment(bdev_get_queue(bdev));
1358 }
1359
bdev_iter_is_aligned(struct block_device * bdev,struct iov_iter * iter)1360 static inline bool bdev_iter_is_aligned(struct block_device *bdev,
1361 struct iov_iter *iter)
1362 {
1363 return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev),
1364 bdev_logical_block_size(bdev) - 1);
1365 }
1366
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1367 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1368 unsigned int len)
1369 {
1370 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1371 return !(addr & alignment) && !(len & alignment);
1372 }
1373
1374 /* assumes size > 256 */
blksize_bits(unsigned int size)1375 static inline unsigned int blksize_bits(unsigned int size)
1376 {
1377 unsigned int bits = 8;
1378 do {
1379 bits++;
1380 size >>= 1;
1381 } while (size > 256);
1382 return bits;
1383 }
1384
block_size(struct block_device * bdev)1385 static inline unsigned int block_size(struct block_device *bdev)
1386 {
1387 return 1 << bdev->bd_inode->i_blkbits;
1388 }
1389
1390 int kblockd_schedule_work(struct work_struct *work);
1391 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1392
1393 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1394 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1395 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1396 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1397
1398 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1399
1400 bool blk_crypto_register(struct blk_crypto_profile *profile,
1401 struct request_queue *q);
1402
1403 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1404
blk_crypto_register(struct blk_crypto_profile * profile,struct request_queue * q)1405 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1406 struct request_queue *q)
1407 {
1408 return true;
1409 }
1410
1411 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1412
1413 enum blk_unique_id {
1414 /* these match the Designator Types specified in SPC */
1415 BLK_UID_T10 = 1,
1416 BLK_UID_EUI64 = 2,
1417 BLK_UID_NAA = 3,
1418 };
1419
1420 #define NFL4_UFLG_MASK 0x0000003F
1421
1422 struct block_device_operations {
1423 void (*submit_bio)(struct bio *bio);
1424 int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
1425 unsigned int flags);
1426 int (*open) (struct block_device *, fmode_t);
1427 void (*release) (struct gendisk *, fmode_t);
1428 int (*rw_page)(struct block_device *, sector_t, struct page *, enum req_op);
1429 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1430 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1431 unsigned int (*check_events) (struct gendisk *disk,
1432 unsigned int clearing);
1433 void (*unlock_native_capacity) (struct gendisk *);
1434 int (*getgeo)(struct block_device *, struct hd_geometry *);
1435 int (*set_read_only)(struct block_device *bdev, bool ro);
1436 void (*free_disk)(struct gendisk *disk);
1437 /* this callback is with swap_lock and sometimes page table lock held */
1438 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1439 int (*report_zones)(struct gendisk *, sector_t sector,
1440 unsigned int nr_zones, report_zones_cb cb, void *data);
1441 char *(*devnode)(struct gendisk *disk, umode_t *mode);
1442 /* returns the length of the identifier or a negative errno: */
1443 int (*get_unique_id)(struct gendisk *disk, u8 id[16],
1444 enum blk_unique_id id_type);
1445 struct module *owner;
1446 const struct pr_ops *pr_ops;
1447
1448 /*
1449 * Special callback for probing GPT entry at a given sector.
1450 * Needed by Android devices, used by GPT scanner and MMC blk
1451 * driver.
1452 */
1453 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1454
1455 ANDROID_KABI_RESERVE(1);
1456 ANDROID_KABI_RESERVE(2);
1457 };
1458
1459 #ifdef CONFIG_COMPAT
1460 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t,
1461 unsigned int, unsigned long);
1462 #else
1463 #define blkdev_compat_ptr_ioctl NULL
1464 #endif
1465
1466 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1467 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1468 struct writeback_control *);
1469
blk_wake_io_task(struct task_struct * waiter)1470 static inline void blk_wake_io_task(struct task_struct *waiter)
1471 {
1472 /*
1473 * If we're polling, the task itself is doing the completions. For
1474 * that case, we don't need to signal a wakeup, it's enough to just
1475 * mark us as RUNNING.
1476 */
1477 if (waiter == current)
1478 __set_current_state(TASK_RUNNING);
1479 else
1480 wake_up_process(waiter);
1481 }
1482
1483 unsigned long bdev_start_io_acct(struct block_device *bdev,
1484 unsigned int sectors, enum req_op op,
1485 unsigned long start_time);
1486 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1487 unsigned long start_time);
1488
1489 void bio_start_io_acct_time(struct bio *bio, unsigned long start_time);
1490 unsigned long bio_start_io_acct(struct bio *bio);
1491 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1492 struct block_device *orig_bdev);
1493
1494 /**
1495 * bio_end_io_acct - end I/O accounting for bio based drivers
1496 * @bio: bio to end account for
1497 * @start_time: start time returned by bio_start_io_acct()
1498 */
bio_end_io_acct(struct bio * bio,unsigned long start_time)1499 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1500 {
1501 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1502 }
1503
1504 int bdev_read_only(struct block_device *bdev);
1505 int set_blocksize(struct block_device *bdev, int size);
1506
1507 int lookup_bdev(const char *pathname, dev_t *dev);
1508
1509 void blkdev_show(struct seq_file *seqf, off_t offset);
1510
1511 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */
1512 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */
1513 #ifdef CONFIG_BLOCK
1514 #define BLKDEV_MAJOR_MAX 512
1515 #else
1516 #define BLKDEV_MAJOR_MAX 0
1517 #endif
1518
1519 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1520 void *holder);
1521 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder);
1522 int bd_prepare_to_claim(struct block_device *bdev, void *holder);
1523 void bd_abort_claiming(struct block_device *bdev, void *holder);
1524 void blkdev_put(struct block_device *bdev, fmode_t mode);
1525
1526 /* just for blk-cgroup, don't use elsewhere */
1527 struct block_device *blkdev_get_no_open(dev_t dev);
1528 void blkdev_put_no_open(struct block_device *bdev);
1529
1530 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
1531 void bdev_add(struct block_device *bdev, dev_t dev);
1532 struct block_device *I_BDEV(struct inode *inode);
1533 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart,
1534 loff_t lend);
1535
1536 #ifdef CONFIG_BLOCK
1537 void invalidate_bdev(struct block_device *bdev);
1538 int sync_blockdev(struct block_device *bdev);
1539 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
1540 int sync_blockdev_nowait(struct block_device *bdev);
1541 void sync_bdevs(bool wait);
1542 void bdev_statx_dioalign(struct inode *inode, struct kstat *stat);
1543 void printk_all_partitions(void);
1544 #else
invalidate_bdev(struct block_device * bdev)1545 static inline void invalidate_bdev(struct block_device *bdev)
1546 {
1547 }
sync_blockdev(struct block_device * bdev)1548 static inline int sync_blockdev(struct block_device *bdev)
1549 {
1550 return 0;
1551 }
sync_blockdev_nowait(struct block_device * bdev)1552 static inline int sync_blockdev_nowait(struct block_device *bdev)
1553 {
1554 return 0;
1555 }
sync_bdevs(bool wait)1556 static inline void sync_bdevs(bool wait)
1557 {
1558 }
bdev_statx_dioalign(struct inode * inode,struct kstat * stat)1559 static inline void bdev_statx_dioalign(struct inode *inode, struct kstat *stat)
1560 {
1561 }
printk_all_partitions(void)1562 static inline void printk_all_partitions(void)
1563 {
1564 }
1565 #endif /* CONFIG_BLOCK */
1566
1567 int fsync_bdev(struct block_device *bdev);
1568
1569 int freeze_bdev(struct block_device *bdev);
1570 int thaw_bdev(struct block_device *bdev);
1571
1572 struct io_comp_batch {
1573 struct request *req_list;
1574 bool need_ts;
1575 void (*complete)(struct io_comp_batch *);
1576 };
1577
1578 #define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { }
1579
1580 #endif /* _LINUX_BLKDEV_H */
1581