1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Scatterlist Cryptographic API.
4 *
5 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
6 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
7 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
8 *
9 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
10 * and Nettle, by Niels Möller.
11 */
12 #ifndef _LINUX_CRYPTO_H
13 #define _LINUX_CRYPTO_H
14
15 #include <linux/atomic.h>
16 #include <linux/kernel.h>
17 #include <linux/list.h>
18 #include <linux/bug.h>
19 #include <linux/refcount.h>
20 #include <linux/slab.h>
21 #include <linux/completion.h>
22
23 /*
24 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
25 * arbitrary modules to be loaded. Loading from userspace may still need the
26 * unprefixed names, so retains those aliases as well.
27 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
28 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
29 * expands twice on the same line. Instead, use a separate base name for the
30 * alias.
31 */
32 #define MODULE_ALIAS_CRYPTO(name) \
33 __MODULE_INFO(alias, alias_userspace, name); \
34 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
35
36 /*
37 * Algorithm masks and types.
38 */
39 #define CRYPTO_ALG_TYPE_MASK 0x0000000f
40 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001
41 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
42 #define CRYPTO_ALG_TYPE_AEAD 0x00000003
43 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005
44 #define CRYPTO_ALG_TYPE_KPP 0x00000008
45 #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a
46 #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b
47 #define CRYPTO_ALG_TYPE_RNG 0x0000000c
48 #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d
49 #define CRYPTO_ALG_TYPE_HASH 0x0000000e
50 #define CRYPTO_ALG_TYPE_SHASH 0x0000000e
51 #define CRYPTO_ALG_TYPE_AHASH 0x0000000f
52
53 #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e
54 #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e
55 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e
56
57 #define CRYPTO_ALG_LARVAL 0x00000010
58 #define CRYPTO_ALG_DEAD 0x00000020
59 #define CRYPTO_ALG_DYING 0x00000040
60 #define CRYPTO_ALG_ASYNC 0x00000080
61
62 /*
63 * Set if the algorithm (or an algorithm which it uses) requires another
64 * algorithm of the same type to handle corner cases.
65 */
66 #define CRYPTO_ALG_NEED_FALLBACK 0x00000100
67
68 /*
69 * Set if the algorithm has passed automated run-time testing. Note that
70 * if there is no run-time testing for a given algorithm it is considered
71 * to have passed.
72 */
73
74 #define CRYPTO_ALG_TESTED 0x00000400
75
76 /*
77 * Set if the algorithm is an instance that is built from templates.
78 */
79 #define CRYPTO_ALG_INSTANCE 0x00000800
80
81 /* Set this bit if the algorithm provided is hardware accelerated but
82 * not available to userspace via instruction set or so.
83 */
84 #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000
85
86 /*
87 * Mark a cipher as a service implementation only usable by another
88 * cipher and never by a normal user of the kernel crypto API
89 */
90 #define CRYPTO_ALG_INTERNAL 0x00002000
91
92 /*
93 * Set if the algorithm has a ->setkey() method but can be used without
94 * calling it first, i.e. there is a default key.
95 */
96 #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000
97
98 /*
99 * Don't trigger module loading
100 */
101 #define CRYPTO_NOLOAD 0x00008000
102
103 /*
104 * The algorithm may allocate memory during request processing, i.e. during
105 * encryption, decryption, or hashing. Users can request an algorithm with this
106 * flag unset if they can't handle memory allocation failures.
107 *
108 * This flag is currently only implemented for algorithms of type "skcipher",
109 * "aead", "ahash", "shash", and "cipher". Algorithms of other types might not
110 * have this flag set even if they allocate memory.
111 *
112 * In some edge cases, algorithms can allocate memory regardless of this flag.
113 * To avoid these cases, users must obey the following usage constraints:
114 * skcipher:
115 * - The IV buffer and all scatterlist elements must be aligned to the
116 * algorithm's alignmask.
117 * - If the data were to be divided into chunks of size
118 * crypto_skcipher_walksize() (with any remainder going at the end), no
119 * chunk can cross a page boundary or a scatterlist element boundary.
120 * aead:
121 * - The IV buffer and all scatterlist elements must be aligned to the
122 * algorithm's alignmask.
123 * - The first scatterlist element must contain all the associated data,
124 * and its pages must be !PageHighMem.
125 * - If the plaintext/ciphertext were to be divided into chunks of size
126 * crypto_aead_walksize() (with the remainder going at the end), no chunk
127 * can cross a page boundary or a scatterlist element boundary.
128 * ahash:
129 * - The result buffer must be aligned to the algorithm's alignmask.
130 * - crypto_ahash_finup() must not be used unless the algorithm implements
131 * ->finup() natively.
132 */
133 #define CRYPTO_ALG_ALLOCATES_MEMORY 0x00010000
134
135 /*
136 * Mark an algorithm as a service implementation only usable by a
137 * template and never by a normal user of the kernel crypto API.
138 * This is intended to be used by algorithms that are themselves
139 * not FIPS-approved but may instead be used to implement parts of
140 * a FIPS-approved algorithm (e.g., dh vs. ffdhe2048(dh)).
141 */
142 #define CRYPTO_ALG_FIPS_INTERNAL 0x00020000
143
144 /*
145 * Transform masks and values (for crt_flags).
146 */
147 #define CRYPTO_TFM_NEED_KEY 0x00000001
148
149 #define CRYPTO_TFM_REQ_MASK 0x000fff00
150 #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100
151 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200
152 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400
153
154 /*
155 * Miscellaneous stuff.
156 */
157 #define CRYPTO_MAX_ALG_NAME 128
158
159 /*
160 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
161 * declaration) is used to ensure that the crypto_tfm context structure is
162 * aligned correctly for the given architecture so that there are no alignment
163 * faults for C data types. On architectures that support non-cache coherent
164 * DMA, such as ARM or arm64, it also takes into account the minimal alignment
165 * that is required to ensure that the context struct member does not share any
166 * cachelines with the rest of the struct. This is needed to ensure that cache
167 * maintenance for non-coherent DMA (cache invalidation in particular) does not
168 * affect data that may be accessed by the CPU concurrently.
169 */
170 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
171
172 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
173
174 struct scatterlist;
175 struct crypto_async_request;
176 struct crypto_tfm;
177 struct crypto_type;
178
179 typedef struct crypto_async_request crypto_completion_data_t;
180 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
181
182 /**
183 * DOC: Block Cipher Context Data Structures
184 *
185 * These data structures define the operating context for each block cipher
186 * type.
187 */
188
189 struct crypto_async_request {
190 struct list_head list;
191 crypto_completion_t complete;
192 void *data;
193 struct crypto_tfm *tfm;
194
195 u32 flags;
196 };
197
198 /**
199 * DOC: Block Cipher Algorithm Definitions
200 *
201 * These data structures define modular crypto algorithm implementations,
202 * managed via crypto_register_alg() and crypto_unregister_alg().
203 */
204
205 /**
206 * struct cipher_alg - single-block symmetric ciphers definition
207 * @cia_min_keysize: Minimum key size supported by the transformation. This is
208 * the smallest key length supported by this transformation
209 * algorithm. This must be set to one of the pre-defined
210 * values as this is not hardware specific. Possible values
211 * for this field can be found via git grep "_MIN_KEY_SIZE"
212 * include/crypto/
213 * @cia_max_keysize: Maximum key size supported by the transformation. This is
214 * the largest key length supported by this transformation
215 * algorithm. This must be set to one of the pre-defined values
216 * as this is not hardware specific. Possible values for this
217 * field can be found via git grep "_MAX_KEY_SIZE"
218 * include/crypto/
219 * @cia_setkey: Set key for the transformation. This function is used to either
220 * program a supplied key into the hardware or store the key in the
221 * transformation context for programming it later. Note that this
222 * function does modify the transformation context. This function
223 * can be called multiple times during the existence of the
224 * transformation object, so one must make sure the key is properly
225 * reprogrammed into the hardware. This function is also
226 * responsible for checking the key length for validity.
227 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
228 * single block of data, which must be @cra_blocksize big. This
229 * always operates on a full @cra_blocksize and it is not possible
230 * to encrypt a block of smaller size. The supplied buffers must
231 * therefore also be at least of @cra_blocksize size. Both the
232 * input and output buffers are always aligned to @cra_alignmask.
233 * In case either of the input or output buffer supplied by user
234 * of the crypto API is not aligned to @cra_alignmask, the crypto
235 * API will re-align the buffers. The re-alignment means that a
236 * new buffer will be allocated, the data will be copied into the
237 * new buffer, then the processing will happen on the new buffer,
238 * then the data will be copied back into the original buffer and
239 * finally the new buffer will be freed. In case a software
240 * fallback was put in place in the @cra_init call, this function
241 * might need to use the fallback if the algorithm doesn't support
242 * all of the key sizes. In case the key was stored in
243 * transformation context, the key might need to be re-programmed
244 * into the hardware in this function. This function shall not
245 * modify the transformation context, as this function may be
246 * called in parallel with the same transformation object.
247 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
248 * @cia_encrypt, and the conditions are exactly the same.
249 *
250 * All fields are mandatory and must be filled.
251 */
252 struct cipher_alg {
253 unsigned int cia_min_keysize;
254 unsigned int cia_max_keysize;
255 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
256 unsigned int keylen);
257 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
258 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
259 };
260
261 /**
262 * struct compress_alg - compression/decompression algorithm
263 * @coa_compress: Compress a buffer of specified length, storing the resulting
264 * data in the specified buffer. Return the length of the
265 * compressed data in dlen.
266 * @coa_decompress: Decompress the source buffer, storing the uncompressed
267 * data in the specified buffer. The length of the data is
268 * returned in dlen.
269 *
270 * All fields are mandatory.
271 */
272 struct compress_alg {
273 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
274 unsigned int slen, u8 *dst, unsigned int *dlen);
275 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
276 unsigned int slen, u8 *dst, unsigned int *dlen);
277 };
278
279 #ifdef CONFIG_CRYPTO_STATS
280 /*
281 * struct crypto_istat_aead - statistics for AEAD algorithm
282 * @encrypt_cnt: number of encrypt requests
283 * @encrypt_tlen: total data size handled by encrypt requests
284 * @decrypt_cnt: number of decrypt requests
285 * @decrypt_tlen: total data size handled by decrypt requests
286 * @err_cnt: number of error for AEAD requests
287 */
288 struct crypto_istat_aead {
289 atomic64_t encrypt_cnt;
290 atomic64_t encrypt_tlen;
291 atomic64_t decrypt_cnt;
292 atomic64_t decrypt_tlen;
293 atomic64_t err_cnt;
294 };
295
296 /*
297 * struct crypto_istat_akcipher - statistics for akcipher algorithm
298 * @encrypt_cnt: number of encrypt requests
299 * @encrypt_tlen: total data size handled by encrypt requests
300 * @decrypt_cnt: number of decrypt requests
301 * @decrypt_tlen: total data size handled by decrypt requests
302 * @verify_cnt: number of verify operation
303 * @sign_cnt: number of sign requests
304 * @err_cnt: number of error for akcipher requests
305 */
306 struct crypto_istat_akcipher {
307 atomic64_t encrypt_cnt;
308 atomic64_t encrypt_tlen;
309 atomic64_t decrypt_cnt;
310 atomic64_t decrypt_tlen;
311 atomic64_t verify_cnt;
312 atomic64_t sign_cnt;
313 atomic64_t err_cnt;
314 };
315
316 /*
317 * struct crypto_istat_cipher - statistics for cipher algorithm
318 * @encrypt_cnt: number of encrypt requests
319 * @encrypt_tlen: total data size handled by encrypt requests
320 * @decrypt_cnt: number of decrypt requests
321 * @decrypt_tlen: total data size handled by decrypt requests
322 * @err_cnt: number of error for cipher requests
323 */
324 struct crypto_istat_cipher {
325 atomic64_t encrypt_cnt;
326 atomic64_t encrypt_tlen;
327 atomic64_t decrypt_cnt;
328 atomic64_t decrypt_tlen;
329 atomic64_t err_cnt;
330 };
331
332 /*
333 * struct crypto_istat_compress - statistics for compress algorithm
334 * @compress_cnt: number of compress requests
335 * @compress_tlen: total data size handled by compress requests
336 * @decompress_cnt: number of decompress requests
337 * @decompress_tlen: total data size handled by decompress requests
338 * @err_cnt: number of error for compress requests
339 */
340 struct crypto_istat_compress {
341 atomic64_t compress_cnt;
342 atomic64_t compress_tlen;
343 atomic64_t decompress_cnt;
344 atomic64_t decompress_tlen;
345 atomic64_t err_cnt;
346 };
347
348 /*
349 * struct crypto_istat_hash - statistics for has algorithm
350 * @hash_cnt: number of hash requests
351 * @hash_tlen: total data size hashed
352 * @err_cnt: number of error for hash requests
353 */
354 struct crypto_istat_hash {
355 atomic64_t hash_cnt;
356 atomic64_t hash_tlen;
357 atomic64_t err_cnt;
358 };
359
360 /*
361 * struct crypto_istat_kpp - statistics for KPP algorithm
362 * @setsecret_cnt: number of setsecrey operation
363 * @generate_public_key_cnt: number of generate_public_key operation
364 * @compute_shared_secret_cnt: number of compute_shared_secret operation
365 * @err_cnt: number of error for KPP requests
366 */
367 struct crypto_istat_kpp {
368 atomic64_t setsecret_cnt;
369 atomic64_t generate_public_key_cnt;
370 atomic64_t compute_shared_secret_cnt;
371 atomic64_t err_cnt;
372 };
373
374 /*
375 * struct crypto_istat_rng: statistics for RNG algorithm
376 * @generate_cnt: number of RNG generate requests
377 * @generate_tlen: total data size of generated data by the RNG
378 * @seed_cnt: number of times the RNG was seeded
379 * @err_cnt: number of error for RNG requests
380 */
381 struct crypto_istat_rng {
382 atomic64_t generate_cnt;
383 atomic64_t generate_tlen;
384 atomic64_t seed_cnt;
385 atomic64_t err_cnt;
386 };
387 #endif /* CONFIG_CRYPTO_STATS */
388
389 #define cra_cipher cra_u.cipher
390 #define cra_compress cra_u.compress
391
392 /**
393 * struct crypto_alg - definition of a cryptograpic cipher algorithm
394 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
395 * CRYPTO_ALG_* flags for the flags which go in here. Those are
396 * used for fine-tuning the description of the transformation
397 * algorithm.
398 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
399 * of the smallest possible unit which can be transformed with
400 * this algorithm. The users must respect this value.
401 * In case of HASH transformation, it is possible for a smaller
402 * block than @cra_blocksize to be passed to the crypto API for
403 * transformation, in case of any other transformation type, an
404 * error will be returned upon any attempt to transform smaller
405 * than @cra_blocksize chunks.
406 * @cra_ctxsize: Size of the operational context of the transformation. This
407 * value informs the kernel crypto API about the memory size
408 * needed to be allocated for the transformation context.
409 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
410 * buffer containing the input data for the algorithm must be
411 * aligned to this alignment mask. The data buffer for the
412 * output data must be aligned to this alignment mask. Note that
413 * the Crypto API will do the re-alignment in software, but
414 * only under special conditions and there is a performance hit.
415 * The re-alignment happens at these occasions for different
416 * @cra_u types: cipher -- For both input data and output data
417 * buffer; ahash -- For output hash destination buf; shash --
418 * For output hash destination buf.
419 * This is needed on hardware which is flawed by design and
420 * cannot pick data from arbitrary addresses.
421 * @cra_priority: Priority of this transformation implementation. In case
422 * multiple transformations with same @cra_name are available to
423 * the Crypto API, the kernel will use the one with highest
424 * @cra_priority.
425 * @cra_name: Generic name (usable by multiple implementations) of the
426 * transformation algorithm. This is the name of the transformation
427 * itself. This field is used by the kernel when looking up the
428 * providers of particular transformation.
429 * @cra_driver_name: Unique name of the transformation provider. This is the
430 * name of the provider of the transformation. This can be any
431 * arbitrary value, but in the usual case, this contains the
432 * name of the chip or provider and the name of the
433 * transformation algorithm.
434 * @cra_type: Type of the cryptographic transformation. This is a pointer to
435 * struct crypto_type, which implements callbacks common for all
436 * transformation types. There are multiple options, such as
437 * &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type.
438 * This field might be empty. In that case, there are no common
439 * callbacks. This is the case for: cipher, compress, shash.
440 * @cra_u: Callbacks implementing the transformation. This is a union of
441 * multiple structures. Depending on the type of transformation selected
442 * by @cra_type and @cra_flags above, the associated structure must be
443 * filled with callbacks. This field might be empty. This is the case
444 * for ahash, shash.
445 * @cra_init: Initialize the cryptographic transformation object. This function
446 * is used to initialize the cryptographic transformation object.
447 * This function is called only once at the instantiation time, right
448 * after the transformation context was allocated. In case the
449 * cryptographic hardware has some special requirements which need to
450 * be handled by software, this function shall check for the precise
451 * requirement of the transformation and put any software fallbacks
452 * in place.
453 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
454 * counterpart to @cra_init, used to remove various changes set in
455 * @cra_init.
456 * @cra_u.cipher: Union member which contains a single-block symmetric cipher
457 * definition. See @struct @cipher_alg.
458 * @cra_u.compress: Union member which contains a (de)compression algorithm.
459 * See @struct @compress_alg.
460 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
461 * @cra_list: internally used
462 * @cra_users: internally used
463 * @cra_refcnt: internally used
464 * @cra_destroy: internally used
465 *
466 * @stats: union of all possible crypto_istat_xxx structures
467 * @stats.aead: statistics for AEAD algorithm
468 * @stats.akcipher: statistics for akcipher algorithm
469 * @stats.cipher: statistics for cipher algorithm
470 * @stats.compress: statistics for compress algorithm
471 * @stats.hash: statistics for hash algorithm
472 * @stats.rng: statistics for rng algorithm
473 * @stats.kpp: statistics for KPP algorithm
474 *
475 * The struct crypto_alg describes a generic Crypto API algorithm and is common
476 * for all of the transformations. Any variable not documented here shall not
477 * be used by a cipher implementation as it is internal to the Crypto API.
478 */
479 struct crypto_alg {
480 struct list_head cra_list;
481 struct list_head cra_users;
482
483 u32 cra_flags;
484 unsigned int cra_blocksize;
485 unsigned int cra_ctxsize;
486 unsigned int cra_alignmask;
487
488 int cra_priority;
489 refcount_t cra_refcnt;
490
491 char cra_name[CRYPTO_MAX_ALG_NAME];
492 char cra_driver_name[CRYPTO_MAX_ALG_NAME];
493
494 const struct crypto_type *cra_type;
495
496 union {
497 struct cipher_alg cipher;
498 struct compress_alg compress;
499 } cra_u;
500
501 int (*cra_init)(struct crypto_tfm *tfm);
502 void (*cra_exit)(struct crypto_tfm *tfm);
503 void (*cra_destroy)(struct crypto_alg *alg);
504
505 struct module *cra_module;
506
507 #ifdef CONFIG_CRYPTO_STATS
508 union {
509 struct crypto_istat_aead aead;
510 struct crypto_istat_akcipher akcipher;
511 struct crypto_istat_cipher cipher;
512 struct crypto_istat_compress compress;
513 struct crypto_istat_hash hash;
514 struct crypto_istat_rng rng;
515 struct crypto_istat_kpp kpp;
516 } stats;
517 #endif /* CONFIG_CRYPTO_STATS */
518
519 } CRYPTO_MINALIGN_ATTR;
520
521 #ifdef CONFIG_CRYPTO_STATS
522 void crypto_stats_init(struct crypto_alg *alg);
523 void crypto_stats_get(struct crypto_alg *alg);
524 void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
525 void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
526 void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg);
527 void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg);
528 void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
529 void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
530 void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg);
531 void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg);
532 void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg);
533 void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg);
534 void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret);
535 void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret);
536 void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret);
537 void crypto_stats_rng_seed(struct crypto_alg *alg, int ret);
538 void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret);
539 void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
540 void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
541 #else
crypto_stats_init(struct crypto_alg * alg)542 static inline void crypto_stats_init(struct crypto_alg *alg)
543 {}
crypto_stats_get(struct crypto_alg * alg)544 static inline void crypto_stats_get(struct crypto_alg *alg)
545 {}
crypto_stats_aead_encrypt(unsigned int cryptlen,struct crypto_alg * alg,int ret)546 static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
547 {}
crypto_stats_aead_decrypt(unsigned int cryptlen,struct crypto_alg * alg,int ret)548 static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
549 {}
crypto_stats_ahash_update(unsigned int nbytes,int ret,struct crypto_alg * alg)550 static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg)
551 {}
crypto_stats_ahash_final(unsigned int nbytes,int ret,struct crypto_alg * alg)552 static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg)
553 {}
crypto_stats_akcipher_encrypt(unsigned int src_len,int ret,struct crypto_alg * alg)554 static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
555 {}
crypto_stats_akcipher_decrypt(unsigned int src_len,int ret,struct crypto_alg * alg)556 static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
557 {}
crypto_stats_akcipher_sign(int ret,struct crypto_alg * alg)558 static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg)
559 {}
crypto_stats_akcipher_verify(int ret,struct crypto_alg * alg)560 static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg)
561 {}
crypto_stats_compress(unsigned int slen,int ret,struct crypto_alg * alg)562 static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg)
563 {}
crypto_stats_decompress(unsigned int slen,int ret,struct crypto_alg * alg)564 static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg)
565 {}
crypto_stats_kpp_set_secret(struct crypto_alg * alg,int ret)566 static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret)
567 {}
crypto_stats_kpp_generate_public_key(struct crypto_alg * alg,int ret)568 static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret)
569 {}
crypto_stats_kpp_compute_shared_secret(struct crypto_alg * alg,int ret)570 static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret)
571 {}
crypto_stats_rng_seed(struct crypto_alg * alg,int ret)572 static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret)
573 {}
crypto_stats_rng_generate(struct crypto_alg * alg,unsigned int dlen,int ret)574 static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret)
575 {}
crypto_stats_skcipher_encrypt(unsigned int cryptlen,int ret,struct crypto_alg * alg)576 static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
577 {}
crypto_stats_skcipher_decrypt(unsigned int cryptlen,int ret,struct crypto_alg * alg)578 static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
579 {}
580 #endif
581 /*
582 * A helper struct for waiting for completion of async crypto ops
583 */
584 struct crypto_wait {
585 struct completion completion;
586 int err;
587 };
588
589 /*
590 * Macro for declaring a crypto op async wait object on stack
591 */
592 #define DECLARE_CRYPTO_WAIT(_wait) \
593 struct crypto_wait _wait = { \
594 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
595
596 /*
597 * Async ops completion helper functioons
598 */
crypto_get_completion_data(crypto_completion_data_t * req)599 static inline void *crypto_get_completion_data(crypto_completion_data_t *req)
600 {
601 return req->data;
602 }
603
604 void crypto_req_done(struct crypto_async_request *req, int err);
605
crypto_wait_req(int err,struct crypto_wait * wait)606 static inline int crypto_wait_req(int err, struct crypto_wait *wait)
607 {
608 switch (err) {
609 case -EINPROGRESS:
610 case -EBUSY:
611 wait_for_completion(&wait->completion);
612 reinit_completion(&wait->completion);
613 err = wait->err;
614 break;
615 }
616
617 return err;
618 }
619
crypto_init_wait(struct crypto_wait * wait)620 static inline void crypto_init_wait(struct crypto_wait *wait)
621 {
622 init_completion(&wait->completion);
623 }
624
625 /*
626 * Algorithm registration interface.
627 */
628 int crypto_register_alg(struct crypto_alg *alg);
629 void crypto_unregister_alg(struct crypto_alg *alg);
630 int crypto_register_algs(struct crypto_alg *algs, int count);
631 void crypto_unregister_algs(struct crypto_alg *algs, int count);
632
633 /*
634 * Algorithm query interface.
635 */
636 int crypto_has_alg(const char *name, u32 type, u32 mask);
637
638 /*
639 * Transforms: user-instantiated objects which encapsulate algorithms
640 * and core processing logic. Managed via crypto_alloc_*() and
641 * crypto_free_*(), as well as the various helpers below.
642 */
643
644 struct crypto_tfm {
645
646 u32 crt_flags;
647
648 int node;
649
650 void (*exit)(struct crypto_tfm *tfm);
651
652 struct crypto_alg *__crt_alg;
653
654 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
655 };
656
657 struct crypto_comp {
658 struct crypto_tfm base;
659 };
660
661 /*
662 * Transform user interface.
663 */
664
665 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
666 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
667
crypto_free_tfm(struct crypto_tfm * tfm)668 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
669 {
670 return crypto_destroy_tfm(tfm, tfm);
671 }
672
673 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
674
675 /*
676 * Transform helpers which query the underlying algorithm.
677 */
crypto_tfm_alg_name(struct crypto_tfm * tfm)678 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
679 {
680 return tfm->__crt_alg->cra_name;
681 }
682
crypto_tfm_alg_driver_name(struct crypto_tfm * tfm)683 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
684 {
685 return tfm->__crt_alg->cra_driver_name;
686 }
687
crypto_tfm_alg_priority(struct crypto_tfm * tfm)688 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
689 {
690 return tfm->__crt_alg->cra_priority;
691 }
692
crypto_tfm_alg_type(struct crypto_tfm * tfm)693 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
694 {
695 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
696 }
697
crypto_tfm_alg_blocksize(struct crypto_tfm * tfm)698 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
699 {
700 return tfm->__crt_alg->cra_blocksize;
701 }
702
crypto_tfm_alg_alignmask(struct crypto_tfm * tfm)703 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
704 {
705 return tfm->__crt_alg->cra_alignmask;
706 }
707
crypto_tfm_get_flags(struct crypto_tfm * tfm)708 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
709 {
710 return tfm->crt_flags;
711 }
712
crypto_tfm_set_flags(struct crypto_tfm * tfm,u32 flags)713 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
714 {
715 tfm->crt_flags |= flags;
716 }
717
crypto_tfm_clear_flags(struct crypto_tfm * tfm,u32 flags)718 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
719 {
720 tfm->crt_flags &= ~flags;
721 }
722
crypto_tfm_ctx(struct crypto_tfm * tfm)723 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
724 {
725 return tfm->__crt_ctx;
726 }
727
crypto_tfm_ctx_alignment(void)728 static inline unsigned int crypto_tfm_ctx_alignment(void)
729 {
730 struct crypto_tfm *tfm;
731 return __alignof__(tfm->__crt_ctx);
732 }
733
__crypto_comp_cast(struct crypto_tfm * tfm)734 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
735 {
736 return (struct crypto_comp *)tfm;
737 }
738
crypto_alloc_comp(const char * alg_name,u32 type,u32 mask)739 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
740 u32 type, u32 mask)
741 {
742 type &= ~CRYPTO_ALG_TYPE_MASK;
743 type |= CRYPTO_ALG_TYPE_COMPRESS;
744 mask |= CRYPTO_ALG_TYPE_MASK;
745
746 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
747 }
748
crypto_comp_tfm(struct crypto_comp * tfm)749 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
750 {
751 return &tfm->base;
752 }
753
crypto_free_comp(struct crypto_comp * tfm)754 static inline void crypto_free_comp(struct crypto_comp *tfm)
755 {
756 crypto_free_tfm(crypto_comp_tfm(tfm));
757 }
758
crypto_has_comp(const char * alg_name,u32 type,u32 mask)759 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
760 {
761 type &= ~CRYPTO_ALG_TYPE_MASK;
762 type |= CRYPTO_ALG_TYPE_COMPRESS;
763 mask |= CRYPTO_ALG_TYPE_MASK;
764
765 return crypto_has_alg(alg_name, type, mask);
766 }
767
crypto_comp_name(struct crypto_comp * tfm)768 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
769 {
770 return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
771 }
772
773 int crypto_comp_compress(struct crypto_comp *tfm,
774 const u8 *src, unsigned int slen,
775 u8 *dst, unsigned int *dlen);
776
777 int crypto_comp_decompress(struct crypto_comp *tfm,
778 const u8 *src, unsigned int slen,
779 u8 *dst, unsigned int *dlen);
780
781 #endif /* _LINUX_CRYPTO_H */
782
783