1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
3 * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
4 */
5
6 #include <linux/delay.h>
7 #include "dpu_hwio.h"
8 #include "dpu_hw_ctl.h"
9 #include "dpu_kms.h"
10 #include "dpu_trace.h"
11
12 #define CTL_LAYER(lm) \
13 (((lm) == LM_5) ? (0x024) : (((lm) - LM_0) * 0x004))
14 #define CTL_LAYER_EXT(lm) \
15 (0x40 + (((lm) - LM_0) * 0x004))
16 #define CTL_LAYER_EXT2(lm) \
17 (0x70 + (((lm) - LM_0) * 0x004))
18 #define CTL_LAYER_EXT3(lm) \
19 (0xA0 + (((lm) - LM_0) * 0x004))
20 #define CTL_TOP 0x014
21 #define CTL_FLUSH 0x018
22 #define CTL_START 0x01C
23 #define CTL_PREPARE 0x0d0
24 #define CTL_SW_RESET 0x030
25 #define CTL_LAYER_EXTN_OFFSET 0x40
26 #define CTL_MERGE_3D_ACTIVE 0x0E4
27 #define CTL_WB_ACTIVE 0x0EC
28 #define CTL_INTF_ACTIVE 0x0F4
29 #define CTL_MERGE_3D_FLUSH 0x100
30 #define CTL_DSC_ACTIVE 0x0E8
31 #define CTL_DSC_FLUSH 0x104
32 #define CTL_WB_FLUSH 0x108
33 #define CTL_INTF_FLUSH 0x110
34 #define CTL_INTF_MASTER 0x134
35 #define CTL_FETCH_PIPE_ACTIVE 0x0FC
36
37 #define CTL_MIXER_BORDER_OUT BIT(24)
38 #define CTL_FLUSH_MASK_CTL BIT(17)
39
40 #define DPU_REG_RESET_TIMEOUT_US 2000
41 #define MERGE_3D_IDX 23
42 #define DSC_IDX 22
43 #define INTF_IDX 31
44 #define WB_IDX 16
45 #define CTL_INVALID_BIT 0xffff
46 #define CTL_DEFAULT_GROUP_ID 0xf
47
48 static const u32 fetch_tbl[SSPP_MAX] = {CTL_INVALID_BIT, 16, 17, 18, 19,
49 CTL_INVALID_BIT, CTL_INVALID_BIT, CTL_INVALID_BIT, CTL_INVALID_BIT, 0,
50 1, 2, 3, CTL_INVALID_BIT, CTL_INVALID_BIT};
51
_ctl_offset(enum dpu_ctl ctl,const struct dpu_mdss_cfg * m,void __iomem * addr,struct dpu_hw_blk_reg_map * b)52 static const struct dpu_ctl_cfg *_ctl_offset(enum dpu_ctl ctl,
53 const struct dpu_mdss_cfg *m,
54 void __iomem *addr,
55 struct dpu_hw_blk_reg_map *b)
56 {
57 int i;
58
59 for (i = 0; i < m->ctl_count; i++) {
60 if (ctl == m->ctl[i].id) {
61 b->blk_addr = addr + m->ctl[i].base;
62 b->log_mask = DPU_DBG_MASK_CTL;
63 return &m->ctl[i];
64 }
65 }
66 return ERR_PTR(-ENOMEM);
67 }
68
_mixer_stages(const struct dpu_lm_cfg * mixer,int count,enum dpu_lm lm)69 static int _mixer_stages(const struct dpu_lm_cfg *mixer, int count,
70 enum dpu_lm lm)
71 {
72 int i;
73 int stages = -EINVAL;
74
75 for (i = 0; i < count; i++) {
76 if (lm == mixer[i].id) {
77 stages = mixer[i].sblk->maxblendstages;
78 break;
79 }
80 }
81
82 return stages;
83 }
84
dpu_hw_ctl_get_flush_register(struct dpu_hw_ctl * ctx)85 static inline u32 dpu_hw_ctl_get_flush_register(struct dpu_hw_ctl *ctx)
86 {
87 struct dpu_hw_blk_reg_map *c = &ctx->hw;
88
89 return DPU_REG_READ(c, CTL_FLUSH);
90 }
91
dpu_hw_ctl_trigger_start(struct dpu_hw_ctl * ctx)92 static inline void dpu_hw_ctl_trigger_start(struct dpu_hw_ctl *ctx)
93 {
94 trace_dpu_hw_ctl_trigger_start(ctx->pending_flush_mask,
95 dpu_hw_ctl_get_flush_register(ctx));
96 DPU_REG_WRITE(&ctx->hw, CTL_START, 0x1);
97 }
98
dpu_hw_ctl_is_started(struct dpu_hw_ctl * ctx)99 static inline bool dpu_hw_ctl_is_started(struct dpu_hw_ctl *ctx)
100 {
101 return !!(DPU_REG_READ(&ctx->hw, CTL_START) & BIT(0));
102 }
103
dpu_hw_ctl_trigger_pending(struct dpu_hw_ctl * ctx)104 static inline void dpu_hw_ctl_trigger_pending(struct dpu_hw_ctl *ctx)
105 {
106 trace_dpu_hw_ctl_trigger_prepare(ctx->pending_flush_mask,
107 dpu_hw_ctl_get_flush_register(ctx));
108 DPU_REG_WRITE(&ctx->hw, CTL_PREPARE, 0x1);
109 }
110
dpu_hw_ctl_clear_pending_flush(struct dpu_hw_ctl * ctx)111 static inline void dpu_hw_ctl_clear_pending_flush(struct dpu_hw_ctl *ctx)
112 {
113 trace_dpu_hw_ctl_clear_pending_flush(ctx->pending_flush_mask,
114 dpu_hw_ctl_get_flush_register(ctx));
115 ctx->pending_flush_mask = 0x0;
116 }
117
dpu_hw_ctl_update_pending_flush(struct dpu_hw_ctl * ctx,u32 flushbits)118 static inline void dpu_hw_ctl_update_pending_flush(struct dpu_hw_ctl *ctx,
119 u32 flushbits)
120 {
121 trace_dpu_hw_ctl_update_pending_flush(flushbits,
122 ctx->pending_flush_mask);
123 ctx->pending_flush_mask |= flushbits;
124 }
125
dpu_hw_ctl_get_pending_flush(struct dpu_hw_ctl * ctx)126 static u32 dpu_hw_ctl_get_pending_flush(struct dpu_hw_ctl *ctx)
127 {
128 return ctx->pending_flush_mask;
129 }
130
dpu_hw_ctl_trigger_flush_v1(struct dpu_hw_ctl * ctx)131 static inline void dpu_hw_ctl_trigger_flush_v1(struct dpu_hw_ctl *ctx)
132 {
133 if (ctx->pending_flush_mask & BIT(MERGE_3D_IDX))
134 DPU_REG_WRITE(&ctx->hw, CTL_MERGE_3D_FLUSH,
135 ctx->pending_merge_3d_flush_mask);
136 if (ctx->pending_flush_mask & BIT(INTF_IDX))
137 DPU_REG_WRITE(&ctx->hw, CTL_INTF_FLUSH,
138 ctx->pending_intf_flush_mask);
139 if (ctx->pending_flush_mask & BIT(WB_IDX))
140 DPU_REG_WRITE(&ctx->hw, CTL_WB_FLUSH,
141 ctx->pending_wb_flush_mask);
142
143 DPU_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->pending_flush_mask);
144 }
145
dpu_hw_ctl_trigger_flush(struct dpu_hw_ctl * ctx)146 static inline void dpu_hw_ctl_trigger_flush(struct dpu_hw_ctl *ctx)
147 {
148 trace_dpu_hw_ctl_trigger_pending_flush(ctx->pending_flush_mask,
149 dpu_hw_ctl_get_flush_register(ctx));
150 DPU_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->pending_flush_mask);
151 }
152
dpu_hw_ctl_update_pending_flush_sspp(struct dpu_hw_ctl * ctx,enum dpu_sspp sspp)153 static void dpu_hw_ctl_update_pending_flush_sspp(struct dpu_hw_ctl *ctx,
154 enum dpu_sspp sspp)
155 {
156 switch (sspp) {
157 case SSPP_VIG0:
158 ctx->pending_flush_mask |= BIT(0);
159 break;
160 case SSPP_VIG1:
161 ctx->pending_flush_mask |= BIT(1);
162 break;
163 case SSPP_VIG2:
164 ctx->pending_flush_mask |= BIT(2);
165 break;
166 case SSPP_VIG3:
167 ctx->pending_flush_mask |= BIT(18);
168 break;
169 case SSPP_RGB0:
170 ctx->pending_flush_mask |= BIT(3);
171 break;
172 case SSPP_RGB1:
173 ctx->pending_flush_mask |= BIT(4);
174 break;
175 case SSPP_RGB2:
176 ctx->pending_flush_mask |= BIT(5);
177 break;
178 case SSPP_RGB3:
179 ctx->pending_flush_mask |= BIT(19);
180 break;
181 case SSPP_DMA0:
182 ctx->pending_flush_mask |= BIT(11);
183 break;
184 case SSPP_DMA1:
185 ctx->pending_flush_mask |= BIT(12);
186 break;
187 case SSPP_DMA2:
188 ctx->pending_flush_mask |= BIT(24);
189 break;
190 case SSPP_DMA3:
191 ctx->pending_flush_mask |= BIT(25);
192 break;
193 case SSPP_CURSOR0:
194 ctx->pending_flush_mask |= BIT(22);
195 break;
196 case SSPP_CURSOR1:
197 ctx->pending_flush_mask |= BIT(23);
198 break;
199 default:
200 break;
201 }
202 }
203
dpu_hw_ctl_update_pending_flush_mixer(struct dpu_hw_ctl * ctx,enum dpu_lm lm)204 static void dpu_hw_ctl_update_pending_flush_mixer(struct dpu_hw_ctl *ctx,
205 enum dpu_lm lm)
206 {
207 switch (lm) {
208 case LM_0:
209 ctx->pending_flush_mask |= BIT(6);
210 break;
211 case LM_1:
212 ctx->pending_flush_mask |= BIT(7);
213 break;
214 case LM_2:
215 ctx->pending_flush_mask |= BIT(8);
216 break;
217 case LM_3:
218 ctx->pending_flush_mask |= BIT(9);
219 break;
220 case LM_4:
221 ctx->pending_flush_mask |= BIT(10);
222 break;
223 case LM_5:
224 ctx->pending_flush_mask |= BIT(20);
225 break;
226 default:
227 break;
228 }
229
230 ctx->pending_flush_mask |= CTL_FLUSH_MASK_CTL;
231 }
232
dpu_hw_ctl_update_pending_flush_intf(struct dpu_hw_ctl * ctx,enum dpu_intf intf)233 static void dpu_hw_ctl_update_pending_flush_intf(struct dpu_hw_ctl *ctx,
234 enum dpu_intf intf)
235 {
236 switch (intf) {
237 case INTF_0:
238 ctx->pending_flush_mask |= BIT(31);
239 break;
240 case INTF_1:
241 ctx->pending_flush_mask |= BIT(30);
242 break;
243 case INTF_2:
244 ctx->pending_flush_mask |= BIT(29);
245 break;
246 case INTF_3:
247 ctx->pending_flush_mask |= BIT(28);
248 break;
249 default:
250 break;
251 }
252 }
253
dpu_hw_ctl_update_pending_flush_wb(struct dpu_hw_ctl * ctx,enum dpu_wb wb)254 static void dpu_hw_ctl_update_pending_flush_wb(struct dpu_hw_ctl *ctx,
255 enum dpu_wb wb)
256 {
257 switch (wb) {
258 case WB_0:
259 case WB_1:
260 case WB_2:
261 ctx->pending_flush_mask |= BIT(WB_IDX);
262 break;
263 default:
264 break;
265 }
266 }
267
dpu_hw_ctl_update_pending_flush_wb_v1(struct dpu_hw_ctl * ctx,enum dpu_wb wb)268 static void dpu_hw_ctl_update_pending_flush_wb_v1(struct dpu_hw_ctl *ctx,
269 enum dpu_wb wb)
270 {
271 ctx->pending_wb_flush_mask |= BIT(wb - WB_0);
272 ctx->pending_flush_mask |= BIT(WB_IDX);
273 }
274
dpu_hw_ctl_update_pending_flush_intf_v1(struct dpu_hw_ctl * ctx,enum dpu_intf intf)275 static void dpu_hw_ctl_update_pending_flush_intf_v1(struct dpu_hw_ctl *ctx,
276 enum dpu_intf intf)
277 {
278 ctx->pending_intf_flush_mask |= BIT(intf - INTF_0);
279 ctx->pending_flush_mask |= BIT(INTF_IDX);
280 }
281
dpu_hw_ctl_update_pending_flush_merge_3d_v1(struct dpu_hw_ctl * ctx,enum dpu_merge_3d merge_3d)282 static void dpu_hw_ctl_update_pending_flush_merge_3d_v1(struct dpu_hw_ctl *ctx,
283 enum dpu_merge_3d merge_3d)
284 {
285 ctx->pending_merge_3d_flush_mask |= BIT(merge_3d - MERGE_3D_0);
286 ctx->pending_flush_mask |= BIT(MERGE_3D_IDX);
287 }
288
dpu_hw_ctl_update_pending_flush_dspp(struct dpu_hw_ctl * ctx,enum dpu_dspp dspp)289 static void dpu_hw_ctl_update_pending_flush_dspp(struct dpu_hw_ctl *ctx,
290 enum dpu_dspp dspp)
291 {
292 switch (dspp) {
293 case DSPP_0:
294 ctx->pending_flush_mask |= BIT(13);
295 break;
296 case DSPP_1:
297 ctx->pending_flush_mask |= BIT(14);
298 break;
299 case DSPP_2:
300 ctx->pending_flush_mask |= BIT(15);
301 break;
302 case DSPP_3:
303 ctx->pending_flush_mask |= BIT(21);
304 break;
305 default:
306 break;
307 }
308 }
309
dpu_hw_ctl_poll_reset_status(struct dpu_hw_ctl * ctx,u32 timeout_us)310 static u32 dpu_hw_ctl_poll_reset_status(struct dpu_hw_ctl *ctx, u32 timeout_us)
311 {
312 struct dpu_hw_blk_reg_map *c = &ctx->hw;
313 ktime_t timeout;
314 u32 status;
315
316 timeout = ktime_add_us(ktime_get(), timeout_us);
317
318 /*
319 * it takes around 30us to have mdp finish resetting its ctl path
320 * poll every 50us so that reset should be completed at 1st poll
321 */
322 do {
323 status = DPU_REG_READ(c, CTL_SW_RESET);
324 status &= 0x1;
325 if (status)
326 usleep_range(20, 50);
327 } while (status && ktime_compare_safe(ktime_get(), timeout) < 0);
328
329 return status;
330 }
331
dpu_hw_ctl_reset_control(struct dpu_hw_ctl * ctx)332 static int dpu_hw_ctl_reset_control(struct dpu_hw_ctl *ctx)
333 {
334 struct dpu_hw_blk_reg_map *c = &ctx->hw;
335
336 pr_debug("issuing hw ctl reset for ctl:%d\n", ctx->idx);
337 DPU_REG_WRITE(c, CTL_SW_RESET, 0x1);
338 if (dpu_hw_ctl_poll_reset_status(ctx, DPU_REG_RESET_TIMEOUT_US))
339 return -EINVAL;
340
341 return 0;
342 }
343
dpu_hw_ctl_wait_reset_status(struct dpu_hw_ctl * ctx)344 static int dpu_hw_ctl_wait_reset_status(struct dpu_hw_ctl *ctx)
345 {
346 struct dpu_hw_blk_reg_map *c = &ctx->hw;
347 u32 status;
348
349 status = DPU_REG_READ(c, CTL_SW_RESET);
350 status &= 0x01;
351 if (!status)
352 return 0;
353
354 pr_debug("hw ctl reset is set for ctl:%d\n", ctx->idx);
355 if (dpu_hw_ctl_poll_reset_status(ctx, DPU_REG_RESET_TIMEOUT_US)) {
356 pr_err("hw recovery is not complete for ctl:%d\n", ctx->idx);
357 return -EINVAL;
358 }
359
360 return 0;
361 }
362
dpu_hw_ctl_clear_all_blendstages(struct dpu_hw_ctl * ctx)363 static void dpu_hw_ctl_clear_all_blendstages(struct dpu_hw_ctl *ctx)
364 {
365 struct dpu_hw_blk_reg_map *c = &ctx->hw;
366 int i;
367
368 for (i = 0; i < ctx->mixer_count; i++) {
369 enum dpu_lm mixer_id = ctx->mixer_hw_caps[i].id;
370
371 DPU_REG_WRITE(c, CTL_LAYER(mixer_id), 0);
372 DPU_REG_WRITE(c, CTL_LAYER_EXT(mixer_id), 0);
373 DPU_REG_WRITE(c, CTL_LAYER_EXT2(mixer_id), 0);
374 DPU_REG_WRITE(c, CTL_LAYER_EXT3(mixer_id), 0);
375 }
376
377 DPU_REG_WRITE(c, CTL_FETCH_PIPE_ACTIVE, 0);
378 }
379
dpu_hw_ctl_setup_blendstage(struct dpu_hw_ctl * ctx,enum dpu_lm lm,struct dpu_hw_stage_cfg * stage_cfg)380 static void dpu_hw_ctl_setup_blendstage(struct dpu_hw_ctl *ctx,
381 enum dpu_lm lm, struct dpu_hw_stage_cfg *stage_cfg)
382 {
383 struct dpu_hw_blk_reg_map *c = &ctx->hw;
384 u32 mixercfg = 0, mixercfg_ext = 0, mix, ext;
385 u32 mixercfg_ext2 = 0, mixercfg_ext3 = 0;
386 int i, j;
387 int stages;
388 int pipes_per_stage;
389
390 stages = _mixer_stages(ctx->mixer_hw_caps, ctx->mixer_count, lm);
391 if (stages < 0)
392 return;
393
394 if (test_bit(DPU_MIXER_SOURCESPLIT,
395 &ctx->mixer_hw_caps->features))
396 pipes_per_stage = PIPES_PER_STAGE;
397 else
398 pipes_per_stage = 1;
399
400 mixercfg = CTL_MIXER_BORDER_OUT; /* always set BORDER_OUT */
401
402 if (!stage_cfg)
403 goto exit;
404
405 for (i = 0; i <= stages; i++) {
406 /* overflow to ext register if 'i + 1 > 7' */
407 mix = (i + 1) & 0x7;
408 ext = i >= 7;
409
410 for (j = 0 ; j < pipes_per_stage; j++) {
411 enum dpu_sspp_multirect_index rect_index =
412 stage_cfg->multirect_index[i][j];
413
414 switch (stage_cfg->stage[i][j]) {
415 case SSPP_VIG0:
416 if (rect_index == DPU_SSPP_RECT_1) {
417 mixercfg_ext3 |= ((i + 1) & 0xF) << 0;
418 } else {
419 mixercfg |= mix << 0;
420 mixercfg_ext |= ext << 0;
421 }
422 break;
423 case SSPP_VIG1:
424 if (rect_index == DPU_SSPP_RECT_1) {
425 mixercfg_ext3 |= ((i + 1) & 0xF) << 4;
426 } else {
427 mixercfg |= mix << 3;
428 mixercfg_ext |= ext << 2;
429 }
430 break;
431 case SSPP_VIG2:
432 if (rect_index == DPU_SSPP_RECT_1) {
433 mixercfg_ext3 |= ((i + 1) & 0xF) << 8;
434 } else {
435 mixercfg |= mix << 6;
436 mixercfg_ext |= ext << 4;
437 }
438 break;
439 case SSPP_VIG3:
440 if (rect_index == DPU_SSPP_RECT_1) {
441 mixercfg_ext3 |= ((i + 1) & 0xF) << 12;
442 } else {
443 mixercfg |= mix << 26;
444 mixercfg_ext |= ext << 6;
445 }
446 break;
447 case SSPP_RGB0:
448 mixercfg |= mix << 9;
449 mixercfg_ext |= ext << 8;
450 break;
451 case SSPP_RGB1:
452 mixercfg |= mix << 12;
453 mixercfg_ext |= ext << 10;
454 break;
455 case SSPP_RGB2:
456 mixercfg |= mix << 15;
457 mixercfg_ext |= ext << 12;
458 break;
459 case SSPP_RGB3:
460 mixercfg |= mix << 29;
461 mixercfg_ext |= ext << 14;
462 break;
463 case SSPP_DMA0:
464 if (rect_index == DPU_SSPP_RECT_1) {
465 mixercfg_ext2 |= ((i + 1) & 0xF) << 8;
466 } else {
467 mixercfg |= mix << 18;
468 mixercfg_ext |= ext << 16;
469 }
470 break;
471 case SSPP_DMA1:
472 if (rect_index == DPU_SSPP_RECT_1) {
473 mixercfg_ext2 |= ((i + 1) & 0xF) << 12;
474 } else {
475 mixercfg |= mix << 21;
476 mixercfg_ext |= ext << 18;
477 }
478 break;
479 case SSPP_DMA2:
480 if (rect_index == DPU_SSPP_RECT_1) {
481 mixercfg_ext2 |= ((i + 1) & 0xF) << 16;
482 } else {
483 mix |= (i + 1) & 0xF;
484 mixercfg_ext2 |= mix << 0;
485 }
486 break;
487 case SSPP_DMA3:
488 if (rect_index == DPU_SSPP_RECT_1) {
489 mixercfg_ext2 |= ((i + 1) & 0xF) << 20;
490 } else {
491 mix |= (i + 1) & 0xF;
492 mixercfg_ext2 |= mix << 4;
493 }
494 break;
495 case SSPP_CURSOR0:
496 mixercfg_ext |= ((i + 1) & 0xF) << 20;
497 break;
498 case SSPP_CURSOR1:
499 mixercfg_ext |= ((i + 1) & 0xF) << 26;
500 break;
501 default:
502 break;
503 }
504 }
505 }
506
507 exit:
508 DPU_REG_WRITE(c, CTL_LAYER(lm), mixercfg);
509 DPU_REG_WRITE(c, CTL_LAYER_EXT(lm), mixercfg_ext);
510 DPU_REG_WRITE(c, CTL_LAYER_EXT2(lm), mixercfg_ext2);
511 DPU_REG_WRITE(c, CTL_LAYER_EXT3(lm), mixercfg_ext3);
512 }
513
514
dpu_hw_ctl_intf_cfg_v1(struct dpu_hw_ctl * ctx,struct dpu_hw_intf_cfg * cfg)515 static void dpu_hw_ctl_intf_cfg_v1(struct dpu_hw_ctl *ctx,
516 struct dpu_hw_intf_cfg *cfg)
517 {
518 struct dpu_hw_blk_reg_map *c = &ctx->hw;
519 u32 intf_active = 0;
520 u32 wb_active = 0;
521 u32 mode_sel = 0;
522
523 /* CTL_TOP[31:28] carries group_id to collate CTL paths
524 * per VM. Explicitly disable it until VM support is
525 * added in SW. Power on reset value is not disable.
526 */
527 if ((test_bit(DPU_CTL_VM_CFG, &ctx->caps->features)))
528 mode_sel = CTL_DEFAULT_GROUP_ID << 28;
529
530 if (cfg->dsc)
531 DPU_REG_WRITE(&ctx->hw, CTL_DSC_FLUSH, cfg->dsc);
532
533 if (cfg->intf_mode_sel == DPU_CTL_MODE_SEL_CMD)
534 mode_sel |= BIT(17);
535
536 intf_active = DPU_REG_READ(c, CTL_INTF_ACTIVE);
537 wb_active = DPU_REG_READ(c, CTL_WB_ACTIVE);
538
539 if (cfg->intf)
540 intf_active |= BIT(cfg->intf - INTF_0);
541
542 if (cfg->wb)
543 wb_active |= BIT(cfg->wb - WB_0);
544
545 DPU_REG_WRITE(c, CTL_TOP, mode_sel);
546 DPU_REG_WRITE(c, CTL_INTF_ACTIVE, intf_active);
547 DPU_REG_WRITE(c, CTL_WB_ACTIVE, wb_active);
548
549 if (cfg->merge_3d)
550 DPU_REG_WRITE(c, CTL_MERGE_3D_ACTIVE,
551 BIT(cfg->merge_3d - MERGE_3D_0));
552 if (cfg->dsc) {
553 DPU_REG_WRITE(&ctx->hw, CTL_FLUSH, BIT(DSC_IDX));
554 DPU_REG_WRITE(c, CTL_DSC_ACTIVE, cfg->dsc);
555 }
556 }
557
dpu_hw_ctl_intf_cfg(struct dpu_hw_ctl * ctx,struct dpu_hw_intf_cfg * cfg)558 static void dpu_hw_ctl_intf_cfg(struct dpu_hw_ctl *ctx,
559 struct dpu_hw_intf_cfg *cfg)
560 {
561 struct dpu_hw_blk_reg_map *c = &ctx->hw;
562 u32 intf_cfg = 0;
563
564 intf_cfg |= (cfg->intf & 0xF) << 4;
565
566 if (cfg->mode_3d) {
567 intf_cfg |= BIT(19);
568 intf_cfg |= (cfg->mode_3d - 0x1) << 20;
569 }
570
571 if (cfg->wb)
572 intf_cfg |= (cfg->wb & 0x3) + 2;
573
574 switch (cfg->intf_mode_sel) {
575 case DPU_CTL_MODE_SEL_VID:
576 intf_cfg &= ~BIT(17);
577 intf_cfg &= ~(0x3 << 15);
578 break;
579 case DPU_CTL_MODE_SEL_CMD:
580 intf_cfg |= BIT(17);
581 intf_cfg |= ((cfg->stream_sel & 0x3) << 15);
582 break;
583 default:
584 pr_err("unknown interface type %d\n", cfg->intf_mode_sel);
585 return;
586 }
587
588 DPU_REG_WRITE(c, CTL_TOP, intf_cfg);
589 }
590
dpu_hw_ctl_reset_intf_cfg_v1(struct dpu_hw_ctl * ctx,struct dpu_hw_intf_cfg * cfg)591 static void dpu_hw_ctl_reset_intf_cfg_v1(struct dpu_hw_ctl *ctx,
592 struct dpu_hw_intf_cfg *cfg)
593 {
594 struct dpu_hw_blk_reg_map *c = &ctx->hw;
595 u32 intf_active = 0;
596 u32 wb_active = 0;
597 u32 merge3d_active = 0;
598
599 /*
600 * This API resets each portion of the CTL path namely,
601 * clearing the sspps staged on the lm, merge_3d block,
602 * interfaces , writeback etc to ensure clean teardown of the pipeline.
603 * This will be used for writeback to begin with to have a
604 * proper teardown of the writeback session but upon further
605 * validation, this can be extended to all interfaces.
606 */
607 if (cfg->merge_3d) {
608 merge3d_active = DPU_REG_READ(c, CTL_MERGE_3D_ACTIVE);
609 merge3d_active &= ~BIT(cfg->merge_3d - MERGE_3D_0);
610 DPU_REG_WRITE(c, CTL_MERGE_3D_ACTIVE,
611 merge3d_active);
612 }
613
614 dpu_hw_ctl_clear_all_blendstages(ctx);
615
616 if (cfg->intf) {
617 intf_active = DPU_REG_READ(c, CTL_INTF_ACTIVE);
618 intf_active &= ~BIT(cfg->intf - INTF_0);
619 DPU_REG_WRITE(c, CTL_INTF_ACTIVE, intf_active);
620 }
621
622 if (cfg->wb) {
623 wb_active = DPU_REG_READ(c, CTL_WB_ACTIVE);
624 wb_active &= ~BIT(cfg->wb - WB_0);
625 DPU_REG_WRITE(c, CTL_WB_ACTIVE, wb_active);
626 }
627 }
628
dpu_hw_ctl_set_fetch_pipe_active(struct dpu_hw_ctl * ctx,unsigned long * fetch_active)629 static void dpu_hw_ctl_set_fetch_pipe_active(struct dpu_hw_ctl *ctx,
630 unsigned long *fetch_active)
631 {
632 int i;
633 u32 val = 0;
634
635 if (fetch_active) {
636 for (i = 0; i < SSPP_MAX; i++) {
637 if (test_bit(i, fetch_active) &&
638 fetch_tbl[i] != CTL_INVALID_BIT)
639 val |= BIT(fetch_tbl[i]);
640 }
641 }
642
643 DPU_REG_WRITE(&ctx->hw, CTL_FETCH_PIPE_ACTIVE, val);
644 }
645
_setup_ctl_ops(struct dpu_hw_ctl_ops * ops,unsigned long cap)646 static void _setup_ctl_ops(struct dpu_hw_ctl_ops *ops,
647 unsigned long cap)
648 {
649 if (cap & BIT(DPU_CTL_ACTIVE_CFG)) {
650 ops->trigger_flush = dpu_hw_ctl_trigger_flush_v1;
651 ops->setup_intf_cfg = dpu_hw_ctl_intf_cfg_v1;
652 ops->reset_intf_cfg = dpu_hw_ctl_reset_intf_cfg_v1;
653 ops->update_pending_flush_intf =
654 dpu_hw_ctl_update_pending_flush_intf_v1;
655 ops->update_pending_flush_merge_3d =
656 dpu_hw_ctl_update_pending_flush_merge_3d_v1;
657 ops->update_pending_flush_wb = dpu_hw_ctl_update_pending_flush_wb_v1;
658 } else {
659 ops->trigger_flush = dpu_hw_ctl_trigger_flush;
660 ops->setup_intf_cfg = dpu_hw_ctl_intf_cfg;
661 ops->update_pending_flush_intf =
662 dpu_hw_ctl_update_pending_flush_intf;
663 ops->update_pending_flush_wb = dpu_hw_ctl_update_pending_flush_wb;
664 }
665 ops->clear_pending_flush = dpu_hw_ctl_clear_pending_flush;
666 ops->update_pending_flush = dpu_hw_ctl_update_pending_flush;
667 ops->get_pending_flush = dpu_hw_ctl_get_pending_flush;
668 ops->get_flush_register = dpu_hw_ctl_get_flush_register;
669 ops->trigger_start = dpu_hw_ctl_trigger_start;
670 ops->is_started = dpu_hw_ctl_is_started;
671 ops->trigger_pending = dpu_hw_ctl_trigger_pending;
672 ops->reset = dpu_hw_ctl_reset_control;
673 ops->wait_reset_status = dpu_hw_ctl_wait_reset_status;
674 ops->clear_all_blendstages = dpu_hw_ctl_clear_all_blendstages;
675 ops->setup_blendstage = dpu_hw_ctl_setup_blendstage;
676 ops->update_pending_flush_sspp = dpu_hw_ctl_update_pending_flush_sspp;
677 ops->update_pending_flush_mixer = dpu_hw_ctl_update_pending_flush_mixer;
678 ops->update_pending_flush_dspp = dpu_hw_ctl_update_pending_flush_dspp;
679 if (cap & BIT(DPU_CTL_FETCH_ACTIVE))
680 ops->set_active_pipes = dpu_hw_ctl_set_fetch_pipe_active;
681 };
682
dpu_hw_ctl_init(enum dpu_ctl idx,void __iomem * addr,const struct dpu_mdss_cfg * m)683 struct dpu_hw_ctl *dpu_hw_ctl_init(enum dpu_ctl idx,
684 void __iomem *addr,
685 const struct dpu_mdss_cfg *m)
686 {
687 struct dpu_hw_ctl *c;
688 const struct dpu_ctl_cfg *cfg;
689
690 c = kzalloc(sizeof(*c), GFP_KERNEL);
691 if (!c)
692 return ERR_PTR(-ENOMEM);
693
694 cfg = _ctl_offset(idx, m, addr, &c->hw);
695 if (IS_ERR_OR_NULL(cfg)) {
696 kfree(c);
697 pr_err("failed to create dpu_hw_ctl %d\n", idx);
698 return ERR_PTR(-EINVAL);
699 }
700
701 c->caps = cfg;
702 _setup_ctl_ops(&c->ops, c->caps->features);
703 c->idx = idx;
704 c->mixer_count = m->mixer_count;
705 c->mixer_hw_caps = m->mixer;
706
707 return c;
708 }
709
dpu_hw_ctl_destroy(struct dpu_hw_ctl * ctx)710 void dpu_hw_ctl_destroy(struct dpu_hw_ctl *ctx)
711 {
712 kfree(ctx);
713 }
714