• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
5  * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
6  *
7  * Author: Rob Clark <robdclark@gmail.com>
8  */
9 
10 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
11 #include <linux/debugfs.h>
12 #include <linux/kthread.h>
13 #include <linux/seq_file.h>
14 
15 #include <drm/drm_crtc.h>
16 #include <drm/drm_file.h>
17 #include <drm/drm_probe_helper.h>
18 
19 #include "msm_drv.h"
20 #include "dpu_kms.h"
21 #include "dpu_hwio.h"
22 #include "dpu_hw_catalog.h"
23 #include "dpu_hw_intf.h"
24 #include "dpu_hw_ctl.h"
25 #include "dpu_hw_dspp.h"
26 #include "dpu_hw_dsc.h"
27 #include "dpu_hw_merge3d.h"
28 #include "dpu_formats.h"
29 #include "dpu_encoder_phys.h"
30 #include "dpu_crtc.h"
31 #include "dpu_trace.h"
32 #include "dpu_core_irq.h"
33 #include "disp/msm_disp_snapshot.h"
34 
35 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
36 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
37 
38 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
39 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
40 
41 #define DPU_ERROR_ENC_RATELIMITED(e, fmt, ...) DPU_ERROR_RATELIMITED("enc%d " fmt,\
42 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
43 
44 /*
45  * Two to anticipate panels that can do cmd/vid dynamic switching
46  * plan is to create all possible physical encoder types, and switch between
47  * them at runtime
48  */
49 #define NUM_PHYS_ENCODER_TYPES 2
50 
51 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
52 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
53 
54 #define MAX_CHANNELS_PER_ENC 2
55 
56 #define IDLE_SHORT_TIMEOUT	1
57 
58 #define MAX_HDISPLAY_SPLIT 1080
59 
60 /* timeout in frames waiting for frame done */
61 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
62 
63 /**
64  * enum dpu_enc_rc_events - events for resource control state machine
65  * @DPU_ENC_RC_EVENT_KICKOFF:
66  *	This event happens at NORMAL priority.
67  *	Event that signals the start of the transfer. When this event is
68  *	received, enable MDP/DSI core clocks. Regardless of the previous
69  *	state, the resource should be in ON state at the end of this event.
70  * @DPU_ENC_RC_EVENT_FRAME_DONE:
71  *	This event happens at INTERRUPT level.
72  *	Event signals the end of the data transfer after the PP FRAME_DONE
73  *	event. At the end of this event, a delayed work is scheduled to go to
74  *	IDLE_PC state after IDLE_TIMEOUT time.
75  * @DPU_ENC_RC_EVENT_PRE_STOP:
76  *	This event happens at NORMAL priority.
77  *	This event, when received during the ON state, leave the RC STATE
78  *	in the PRE_OFF state. It should be followed by the STOP event as
79  *	part of encoder disable.
80  *	If received during IDLE or OFF states, it will do nothing.
81  * @DPU_ENC_RC_EVENT_STOP:
82  *	This event happens at NORMAL priority.
83  *	When this event is received, disable all the MDP/DSI core clocks, and
84  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
85  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
86  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
87  *	Resource state should be in OFF at the end of the event.
88  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
89  *	This event happens at NORMAL priority from a work item.
90  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
91  *	This would disable MDP/DSI core clocks and change the resource state
92  *	to IDLE.
93  */
94 enum dpu_enc_rc_events {
95 	DPU_ENC_RC_EVENT_KICKOFF = 1,
96 	DPU_ENC_RC_EVENT_FRAME_DONE,
97 	DPU_ENC_RC_EVENT_PRE_STOP,
98 	DPU_ENC_RC_EVENT_STOP,
99 	DPU_ENC_RC_EVENT_ENTER_IDLE
100 };
101 
102 /*
103  * enum dpu_enc_rc_states - states that the resource control maintains
104  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
105  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
106  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
107  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
108  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
109  */
110 enum dpu_enc_rc_states {
111 	DPU_ENC_RC_STATE_OFF,
112 	DPU_ENC_RC_STATE_PRE_OFF,
113 	DPU_ENC_RC_STATE_ON,
114 	DPU_ENC_RC_STATE_IDLE
115 };
116 
117 /**
118  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
119  *	encoders. Virtual encoder manages one "logical" display. Physical
120  *	encoders manage one intf block, tied to a specific panel/sub-panel.
121  *	Virtual encoder defers as much as possible to the physical encoders.
122  *	Virtual encoder registers itself with the DRM Framework as the encoder.
123  * @base:		drm_encoder base class for registration with DRM
124  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
125  * @enabled:		True if the encoder is active, protected by enc_lock
126  * @num_phys_encs:	Actual number of physical encoders contained.
127  * @phys_encs:		Container of physical encoders managed.
128  * @cur_master:		Pointer to the current master in this mode. Optimization
129  *			Only valid after enable. Cleared as disable.
130  * @cur_slave:		As above but for the slave encoder.
131  * @hw_pp:		Handle to the pingpong blocks used for the display. No.
132  *			pingpong blocks can be different than num_phys_encs.
133  * @hw_dsc:		Handle to the DSC blocks used for the display.
134  * @dsc_mask:		Bitmask of used DSC blocks.
135  * @intfs_swapped:	Whether or not the phys_enc interfaces have been swapped
136  *			for partial update right-only cases, such as pingpong
137  *			split where virtual pingpong does not generate IRQs
138  * @crtc:		Pointer to the currently assigned crtc. Normally you
139  *			would use crtc->state->encoder_mask to determine the
140  *			link between encoder/crtc. However in this case we need
141  *			to track crtc in the disable() hook which is called
142  *			_after_ encoder_mask is cleared.
143  * @connector:		If a mode is set, cached pointer to the active connector
144  * @crtc_kickoff_cb:		Callback into CRTC that will flush & start
145  *				all CTL paths
146  * @crtc_kickoff_cb_data:	Opaque user data given to crtc_kickoff_cb
147  * @debugfs_root:		Debug file system root file node
148  * @enc_lock:			Lock around physical encoder
149  *				create/destroy/enable/disable
150  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
151  *				busy processing current command.
152  *				Bit0 = phys_encs[0] etc.
153  * @crtc_frame_event_cb:	callback handler for frame event
154  * @crtc_frame_event_cb_data:	callback handler private data
155  * @frame_done_timeout_ms:	frame done timeout in ms
156  * @frame_done_timer:		watchdog timer for frame done event
157  * @vsync_event_timer:		vsync timer
158  * @disp_info:			local copy of msm_display_info struct
159  * @idle_pc_supported:		indicate if idle power collaps is supported
160  * @rc_lock:			resource control mutex lock to protect
161  *				virt encoder over various state changes
162  * @rc_state:			resource controller state
163  * @delayed_off_work:		delayed worker to schedule disabling of
164  *				clks and resources after IDLE_TIMEOUT time.
165  * @vsync_event_work:		worker to handle vsync event for autorefresh
166  * @topology:                   topology of the display
167  * @idle_timeout:		idle timeout duration in milliseconds
168  * @dsc:			drm_dsc_config pointer, for DSC-enabled encoders
169  */
170 struct dpu_encoder_virt {
171 	struct drm_encoder base;
172 	spinlock_t enc_spinlock;
173 
174 	bool enabled;
175 
176 	unsigned int num_phys_encs;
177 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
178 	struct dpu_encoder_phys *cur_master;
179 	struct dpu_encoder_phys *cur_slave;
180 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
181 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
182 
183 	unsigned int dsc_mask;
184 
185 	bool intfs_swapped;
186 
187 	struct drm_crtc *crtc;
188 	struct drm_connector *connector;
189 
190 	struct dentry *debugfs_root;
191 	struct mutex enc_lock;
192 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
193 	void (*crtc_frame_event_cb)(void *, u32 event);
194 	void *crtc_frame_event_cb_data;
195 
196 	atomic_t frame_done_timeout_ms;
197 	struct timer_list frame_done_timer;
198 	struct timer_list vsync_event_timer;
199 
200 	struct msm_display_info disp_info;
201 
202 	bool idle_pc_supported;
203 	struct mutex rc_lock;
204 	enum dpu_enc_rc_states rc_state;
205 	struct delayed_work delayed_off_work;
206 	struct kthread_work vsync_event_work;
207 	struct msm_display_topology topology;
208 
209 	u32 idle_timeout;
210 
211 	bool wide_bus_en;
212 
213 	/* DSC configuration */
214 	struct drm_dsc_config *dsc;
215 };
216 
217 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
218 
219 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
220 	15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
221 };
222 
223 
dpu_encoder_is_widebus_enabled(const struct drm_encoder * drm_enc)224 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc)
225 {
226 	const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
227 
228 	return dpu_enc->wide_bus_en;
229 }
230 
dpu_encoder_get_crc_values_cnt(const struct drm_encoder * drm_enc)231 int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc)
232 {
233 	struct dpu_encoder_virt *dpu_enc;
234 	int i, num_intf = 0;
235 
236 	dpu_enc = to_dpu_encoder_virt(drm_enc);
237 
238 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
239 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
240 
241 		if (phys->hw_intf && phys->hw_intf->ops.setup_misr
242 				&& phys->hw_intf->ops.collect_misr)
243 			num_intf++;
244 	}
245 
246 	return num_intf;
247 }
248 
dpu_encoder_setup_misr(const struct drm_encoder * drm_enc)249 void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc)
250 {
251 	struct dpu_encoder_virt *dpu_enc;
252 
253 	int i;
254 
255 	dpu_enc = to_dpu_encoder_virt(drm_enc);
256 
257 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
258 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
259 
260 		if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr)
261 			continue;
262 
263 		phys->hw_intf->ops.setup_misr(phys->hw_intf);
264 	}
265 }
266 
dpu_encoder_get_crc(const struct drm_encoder * drm_enc,u32 * crcs,int pos)267 int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos)
268 {
269 	struct dpu_encoder_virt *dpu_enc;
270 
271 	int i, rc = 0, entries_added = 0;
272 
273 	if (!drm_enc->crtc) {
274 		DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index);
275 		return -EINVAL;
276 	}
277 
278 	dpu_enc = to_dpu_encoder_virt(drm_enc);
279 
280 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
281 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
282 
283 		if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr)
284 			continue;
285 
286 		rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]);
287 		if (rc)
288 			return rc;
289 		entries_added++;
290 	}
291 
292 	return entries_added;
293 }
294 
_dpu_encoder_setup_dither(struct dpu_hw_pingpong * hw_pp,unsigned bpc)295 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
296 {
297 	struct dpu_hw_dither_cfg dither_cfg = { 0 };
298 
299 	if (!hw_pp->ops.setup_dither)
300 		return;
301 
302 	switch (bpc) {
303 	case 6:
304 		dither_cfg.c0_bitdepth = 6;
305 		dither_cfg.c1_bitdepth = 6;
306 		dither_cfg.c2_bitdepth = 6;
307 		dither_cfg.c3_bitdepth = 6;
308 		dither_cfg.temporal_en = 0;
309 		break;
310 	default:
311 		hw_pp->ops.setup_dither(hw_pp, NULL);
312 		return;
313 	}
314 
315 	memcpy(&dither_cfg.matrix, dither_matrix,
316 			sizeof(u32) * DITHER_MATRIX_SZ);
317 
318 	hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
319 }
320 
dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)321 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)
322 {
323 	switch (intf_mode) {
324 	case INTF_MODE_VIDEO:
325 		return "INTF_MODE_VIDEO";
326 	case INTF_MODE_CMD:
327 		return "INTF_MODE_CMD";
328 	case INTF_MODE_WB_BLOCK:
329 		return "INTF_MODE_WB_BLOCK";
330 	case INTF_MODE_WB_LINE:
331 		return "INTF_MODE_WB_LINE";
332 	default:
333 		return "INTF_MODE_UNKNOWN";
334 	}
335 }
336 
dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx)337 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
338 		enum dpu_intr_idx intr_idx)
339 {
340 	DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n",
341 			DRMID(phys_enc->parent),
342 			dpu_encoder_helper_get_intf_type(phys_enc->intf_mode),
343 			phys_enc->intf_idx - INTF_0, phys_enc->wb_idx - WB_0,
344 			phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
345 
346 	if (phys_enc->parent_ops->handle_frame_done)
347 		phys_enc->parent_ops->handle_frame_done(
348 				phys_enc->parent, phys_enc,
349 				DPU_ENCODER_FRAME_EVENT_ERROR);
350 }
351 
352 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
353 		u32 irq_idx, struct dpu_encoder_wait_info *info);
354 
dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys * phys_enc,int irq,void (* func)(void * arg,int irq_idx),struct dpu_encoder_wait_info * wait_info)355 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
356 		int irq,
357 		void (*func)(void *arg, int irq_idx),
358 		struct dpu_encoder_wait_info *wait_info)
359 {
360 	u32 irq_status;
361 	int ret;
362 
363 	if (!wait_info) {
364 		DPU_ERROR("invalid params\n");
365 		return -EINVAL;
366 	}
367 	/* note: do master / slave checking outside */
368 
369 	/* return EWOULDBLOCK since we know the wait isn't necessary */
370 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
371 		DRM_ERROR("encoder is disabled id=%u, callback=%ps, irq=%d\n",
372 			  DRMID(phys_enc->parent), func,
373 			  irq);
374 		return -EWOULDBLOCK;
375 	}
376 
377 	if (irq < 0) {
378 		DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n",
379 			      DRMID(phys_enc->parent), func);
380 		return 0;
381 	}
382 
383 	DRM_DEBUG_KMS("id=%u, callback=%ps, irq=%d, pp=%d, pending_cnt=%d\n",
384 		      DRMID(phys_enc->parent), func,
385 		      irq, phys_enc->hw_pp->idx - PINGPONG_0,
386 		      atomic_read(wait_info->atomic_cnt));
387 
388 	ret = dpu_encoder_helper_wait_event_timeout(
389 			DRMID(phys_enc->parent),
390 			irq,
391 			wait_info);
392 
393 	if (ret <= 0) {
394 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq);
395 		if (irq_status) {
396 			unsigned long flags;
397 
398 			DRM_DEBUG_KMS("irq not triggered id=%u, callback=%ps, irq=%d, pp=%d, atomic_cnt=%d\n",
399 				      DRMID(phys_enc->parent), func,
400 				      irq,
401 				      phys_enc->hw_pp->idx - PINGPONG_0,
402 				      atomic_read(wait_info->atomic_cnt));
403 			local_irq_save(flags);
404 			func(phys_enc, irq);
405 			local_irq_restore(flags);
406 			ret = 0;
407 		} else {
408 			ret = -ETIMEDOUT;
409 			DRM_DEBUG_KMS("irq timeout id=%u, callback=%ps, irq=%d, pp=%d, atomic_cnt=%d\n",
410 				      DRMID(phys_enc->parent), func,
411 				      irq,
412 				      phys_enc->hw_pp->idx - PINGPONG_0,
413 				      atomic_read(wait_info->atomic_cnt));
414 		}
415 	} else {
416 		ret = 0;
417 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
418 			func, irq,
419 			phys_enc->hw_pp->idx - PINGPONG_0,
420 			atomic_read(wait_info->atomic_cnt));
421 	}
422 
423 	return ret;
424 }
425 
dpu_encoder_get_vsync_count(struct drm_encoder * drm_enc)426 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
427 {
428 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
429 	struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
430 	return phys ? atomic_read(&phys->vsync_cnt) : 0;
431 }
432 
dpu_encoder_get_linecount(struct drm_encoder * drm_enc)433 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
434 {
435 	struct dpu_encoder_virt *dpu_enc;
436 	struct dpu_encoder_phys *phys;
437 	int linecount = 0;
438 
439 	dpu_enc = to_dpu_encoder_virt(drm_enc);
440 	phys = dpu_enc ? dpu_enc->cur_master : NULL;
441 
442 	if (phys && phys->ops.get_line_count)
443 		linecount = phys->ops.get_line_count(phys);
444 
445 	return linecount;
446 }
447 
dpu_encoder_destroy(struct drm_encoder * drm_enc)448 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
449 {
450 	struct dpu_encoder_virt *dpu_enc = NULL;
451 	int i = 0;
452 
453 	if (!drm_enc) {
454 		DPU_ERROR("invalid encoder\n");
455 		return;
456 	}
457 
458 	dpu_enc = to_dpu_encoder_virt(drm_enc);
459 	DPU_DEBUG_ENC(dpu_enc, "\n");
460 
461 	mutex_lock(&dpu_enc->enc_lock);
462 
463 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
464 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
465 
466 		if (phys->ops.destroy) {
467 			phys->ops.destroy(phys);
468 			--dpu_enc->num_phys_encs;
469 			dpu_enc->phys_encs[i] = NULL;
470 		}
471 	}
472 
473 	if (dpu_enc->num_phys_encs)
474 		DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
475 				dpu_enc->num_phys_encs);
476 	dpu_enc->num_phys_encs = 0;
477 	mutex_unlock(&dpu_enc->enc_lock);
478 
479 	drm_encoder_cleanup(drm_enc);
480 	mutex_destroy(&dpu_enc->enc_lock);
481 }
482 
dpu_encoder_helper_split_config(struct dpu_encoder_phys * phys_enc,enum dpu_intf interface)483 void dpu_encoder_helper_split_config(
484 		struct dpu_encoder_phys *phys_enc,
485 		enum dpu_intf interface)
486 {
487 	struct dpu_encoder_virt *dpu_enc;
488 	struct split_pipe_cfg cfg = { 0 };
489 	struct dpu_hw_mdp *hw_mdptop;
490 	struct msm_display_info *disp_info;
491 
492 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
493 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
494 		return;
495 	}
496 
497 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
498 	hw_mdptop = phys_enc->hw_mdptop;
499 	disp_info = &dpu_enc->disp_info;
500 
501 	if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
502 		return;
503 
504 	/**
505 	 * disable split modes since encoder will be operating in as the only
506 	 * encoder, either for the entire use case in the case of, for example,
507 	 * single DSI, or for this frame in the case of left/right only partial
508 	 * update.
509 	 */
510 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
511 		if (hw_mdptop->ops.setup_split_pipe)
512 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
513 		return;
514 	}
515 
516 	cfg.en = true;
517 	cfg.mode = phys_enc->intf_mode;
518 	cfg.intf = interface;
519 
520 	if (cfg.en && phys_enc->ops.needs_single_flush &&
521 			phys_enc->ops.needs_single_flush(phys_enc))
522 		cfg.split_flush_en = true;
523 
524 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
525 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
526 
527 		if (hw_mdptop->ops.setup_split_pipe)
528 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
529 	}
530 }
531 
dpu_encoder_use_dsc_merge(struct drm_encoder * drm_enc)532 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc)
533 {
534 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
535 	int i, intf_count = 0, num_dsc = 0;
536 
537 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
538 		if (dpu_enc->phys_encs[i])
539 			intf_count++;
540 
541 	/* See dpu_encoder_get_topology, we only support 2:2:1 topology */
542 	if (dpu_enc->dsc)
543 		num_dsc = 2;
544 
545 	return (num_dsc > 0) && (num_dsc > intf_count);
546 }
547 
dpu_encoder_get_topology(struct dpu_encoder_virt * dpu_enc,struct dpu_kms * dpu_kms,struct drm_display_mode * mode)548 static struct msm_display_topology dpu_encoder_get_topology(
549 			struct dpu_encoder_virt *dpu_enc,
550 			struct dpu_kms *dpu_kms,
551 			struct drm_display_mode *mode)
552 {
553 	struct msm_display_topology topology = {0};
554 	int i, intf_count = 0;
555 
556 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
557 		if (dpu_enc->phys_encs[i])
558 			intf_count++;
559 
560 	/* Datapath topology selection
561 	 *
562 	 * Dual display
563 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
564 	 *
565 	 * Single display
566 	 * 1 LM, 1 INTF
567 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
568 	 *
569 	 * Adding color blocks only to primary interface if available in
570 	 * sufficient number
571 	 */
572 	if (intf_count == 2)
573 		topology.num_lm = 2;
574 	else if (!dpu_kms->catalog->caps->has_3d_merge)
575 		topology.num_lm = 1;
576 	else
577 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
578 
579 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI) {
580 		if (dpu_kms->catalog->dspp &&
581 			(dpu_kms->catalog->dspp_count >= topology.num_lm))
582 			topology.num_dspp = topology.num_lm;
583 	}
584 
585 	topology.num_enc = 0;
586 	topology.num_intf = intf_count;
587 
588 	if (dpu_enc->dsc) {
589 		/* In case of Display Stream Compression (DSC), we would use
590 		 * 2 encoders, 2 layer mixers and 1 interface
591 		 * this is power optimal and can drive up to (including) 4k
592 		 * screens
593 		 */
594 		topology.num_enc = 2;
595 		topology.num_dsc = 2;
596 		topology.num_intf = 1;
597 		topology.num_lm = 2;
598 	}
599 
600 	return topology;
601 }
602 
dpu_encoder_virt_atomic_check(struct drm_encoder * drm_enc,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)603 static int dpu_encoder_virt_atomic_check(
604 		struct drm_encoder *drm_enc,
605 		struct drm_crtc_state *crtc_state,
606 		struct drm_connector_state *conn_state)
607 {
608 	struct dpu_encoder_virt *dpu_enc;
609 	struct msm_drm_private *priv;
610 	struct dpu_kms *dpu_kms;
611 	struct drm_display_mode *adj_mode;
612 	struct msm_display_topology topology;
613 	struct dpu_global_state *global_state;
614 	int i = 0;
615 	int ret = 0;
616 
617 	if (!drm_enc || !crtc_state || !conn_state) {
618 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
619 				drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
620 		return -EINVAL;
621 	}
622 
623 	dpu_enc = to_dpu_encoder_virt(drm_enc);
624 	DPU_DEBUG_ENC(dpu_enc, "\n");
625 
626 	priv = drm_enc->dev->dev_private;
627 	dpu_kms = to_dpu_kms(priv->kms);
628 	adj_mode = &crtc_state->adjusted_mode;
629 	global_state = dpu_kms_get_global_state(crtc_state->state);
630 	if (IS_ERR(global_state))
631 		return PTR_ERR(global_state);
632 
633 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
634 
635 	/* perform atomic check on the first physical encoder (master) */
636 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
637 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
638 
639 		if (phys->ops.atomic_check)
640 			ret = phys->ops.atomic_check(phys, crtc_state,
641 					conn_state);
642 		if (ret) {
643 			DPU_ERROR_ENC(dpu_enc,
644 					"mode unsupported, phys idx %d\n", i);
645 			break;
646 		}
647 	}
648 
649 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
650 
651 	/* Reserve dynamic resources now. */
652 	if (!ret) {
653 		/*
654 		 * Release and Allocate resources on every modeset
655 		 * Dont allocate when active is false.
656 		 */
657 		if (drm_atomic_crtc_needs_modeset(crtc_state)) {
658 			dpu_rm_release(global_state, drm_enc);
659 
660 			if (!crtc_state->active_changed || crtc_state->enable)
661 				ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
662 						drm_enc, crtc_state, topology);
663 		}
664 	}
665 
666 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
667 
668 	return ret;
669 }
670 
_dpu_encoder_update_vsync_source(struct dpu_encoder_virt * dpu_enc,struct msm_display_info * disp_info)671 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
672 			struct msm_display_info *disp_info)
673 {
674 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
675 	struct msm_drm_private *priv;
676 	struct dpu_kms *dpu_kms;
677 	struct dpu_hw_mdp *hw_mdptop;
678 	struct drm_encoder *drm_enc;
679 	int i;
680 
681 	if (!dpu_enc || !disp_info) {
682 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
683 					dpu_enc != NULL, disp_info != NULL);
684 		return;
685 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
686 		DPU_ERROR("invalid num phys enc %d/%d\n",
687 				dpu_enc->num_phys_encs,
688 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
689 		return;
690 	}
691 
692 	drm_enc = &dpu_enc->base;
693 	/* this pointers are checked in virt_enable_helper */
694 	priv = drm_enc->dev->dev_private;
695 
696 	dpu_kms = to_dpu_kms(priv->kms);
697 	hw_mdptop = dpu_kms->hw_mdp;
698 	if (!hw_mdptop) {
699 		DPU_ERROR("invalid mdptop\n");
700 		return;
701 	}
702 
703 	if (hw_mdptop->ops.setup_vsync_source &&
704 			disp_info->is_cmd_mode) {
705 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
706 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
707 
708 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
709 		if (disp_info->is_te_using_watchdog_timer)
710 			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
711 		else
712 			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
713 
714 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
715 	}
716 }
717 
_dpu_encoder_irq_control(struct drm_encoder * drm_enc,bool enable)718 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
719 {
720 	struct dpu_encoder_virt *dpu_enc;
721 	int i;
722 
723 	if (!drm_enc) {
724 		DPU_ERROR("invalid encoder\n");
725 		return;
726 	}
727 
728 	dpu_enc = to_dpu_encoder_virt(drm_enc);
729 
730 	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
731 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
732 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
733 
734 		if (phys->ops.irq_control)
735 			phys->ops.irq_control(phys, enable);
736 	}
737 
738 }
739 
_dpu_encoder_resource_control_helper(struct drm_encoder * drm_enc,bool enable)740 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
741 		bool enable)
742 {
743 	struct msm_drm_private *priv;
744 	struct dpu_kms *dpu_kms;
745 	struct dpu_encoder_virt *dpu_enc;
746 
747 	dpu_enc = to_dpu_encoder_virt(drm_enc);
748 	priv = drm_enc->dev->dev_private;
749 	dpu_kms = to_dpu_kms(priv->kms);
750 
751 	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
752 
753 	if (!dpu_enc->cur_master) {
754 		DPU_ERROR("encoder master not set\n");
755 		return;
756 	}
757 
758 	if (enable) {
759 		/* enable DPU core clks */
760 		pm_runtime_get_sync(&dpu_kms->pdev->dev);
761 
762 		/* enable all the irq */
763 		_dpu_encoder_irq_control(drm_enc, true);
764 
765 	} else {
766 		/* disable all the irq */
767 		_dpu_encoder_irq_control(drm_enc, false);
768 
769 		/* disable DPU core clks */
770 		pm_runtime_put_sync(&dpu_kms->pdev->dev);
771 	}
772 
773 }
774 
dpu_encoder_resource_control(struct drm_encoder * drm_enc,u32 sw_event)775 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
776 		u32 sw_event)
777 {
778 	struct dpu_encoder_virt *dpu_enc;
779 	struct msm_drm_private *priv;
780 	bool is_vid_mode = false;
781 
782 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
783 		DPU_ERROR("invalid parameters\n");
784 		return -EINVAL;
785 	}
786 	dpu_enc = to_dpu_encoder_virt(drm_enc);
787 	priv = drm_enc->dev->dev_private;
788 	is_vid_mode = !dpu_enc->disp_info.is_cmd_mode;
789 
790 	/*
791 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
792 	 * events and return early for other events (ie wb display).
793 	 */
794 	if (!dpu_enc->idle_pc_supported &&
795 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
796 			sw_event != DPU_ENC_RC_EVENT_STOP &&
797 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
798 		return 0;
799 
800 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
801 			 dpu_enc->rc_state, "begin");
802 
803 	switch (sw_event) {
804 	case DPU_ENC_RC_EVENT_KICKOFF:
805 		/* cancel delayed off work, if any */
806 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
807 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
808 					sw_event);
809 
810 		mutex_lock(&dpu_enc->rc_lock);
811 
812 		/* return if the resource control is already in ON state */
813 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
814 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
815 				      DRMID(drm_enc), sw_event);
816 			mutex_unlock(&dpu_enc->rc_lock);
817 			return 0;
818 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
819 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
820 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
821 				      DRMID(drm_enc), sw_event,
822 				      dpu_enc->rc_state);
823 			mutex_unlock(&dpu_enc->rc_lock);
824 			return -EINVAL;
825 		}
826 
827 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
828 			_dpu_encoder_irq_control(drm_enc, true);
829 		else
830 			_dpu_encoder_resource_control_helper(drm_enc, true);
831 
832 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
833 
834 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
835 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
836 				 "kickoff");
837 
838 		mutex_unlock(&dpu_enc->rc_lock);
839 		break;
840 
841 	case DPU_ENC_RC_EVENT_FRAME_DONE:
842 		/*
843 		 * mutex lock is not used as this event happens at interrupt
844 		 * context. And locking is not required as, the other events
845 		 * like KICKOFF and STOP does a wait-for-idle before executing
846 		 * the resource_control
847 		 */
848 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
849 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
850 				      DRMID(drm_enc), sw_event,
851 				      dpu_enc->rc_state);
852 			return -EINVAL;
853 		}
854 
855 		/*
856 		 * schedule off work item only when there are no
857 		 * frames pending
858 		 */
859 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
860 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
861 				      DRMID(drm_enc));
862 			return 0;
863 		}
864 
865 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
866 				   msecs_to_jiffies(dpu_enc->idle_timeout));
867 
868 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
869 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
870 				 "frame done");
871 		break;
872 
873 	case DPU_ENC_RC_EVENT_PRE_STOP:
874 		/* cancel delayed off work, if any */
875 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
876 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
877 					sw_event);
878 
879 		mutex_lock(&dpu_enc->rc_lock);
880 
881 		if (is_vid_mode &&
882 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
883 			_dpu_encoder_irq_control(drm_enc, true);
884 		}
885 		/* skip if is already OFF or IDLE, resources are off already */
886 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
887 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
888 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
889 				      DRMID(drm_enc), sw_event,
890 				      dpu_enc->rc_state);
891 			mutex_unlock(&dpu_enc->rc_lock);
892 			return 0;
893 		}
894 
895 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
896 
897 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
898 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
899 				 "pre stop");
900 
901 		mutex_unlock(&dpu_enc->rc_lock);
902 		break;
903 
904 	case DPU_ENC_RC_EVENT_STOP:
905 		mutex_lock(&dpu_enc->rc_lock);
906 
907 		/* return if the resource control is already in OFF state */
908 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
909 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
910 				      DRMID(drm_enc), sw_event);
911 			mutex_unlock(&dpu_enc->rc_lock);
912 			return 0;
913 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
914 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
915 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
916 			mutex_unlock(&dpu_enc->rc_lock);
917 			return -EINVAL;
918 		}
919 
920 		/**
921 		 * expect to arrive here only if in either idle state or pre-off
922 		 * and in IDLE state the resources are already disabled
923 		 */
924 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
925 			_dpu_encoder_resource_control_helper(drm_enc, false);
926 
927 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
928 
929 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
930 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
931 				 "stop");
932 
933 		mutex_unlock(&dpu_enc->rc_lock);
934 		break;
935 
936 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
937 		mutex_lock(&dpu_enc->rc_lock);
938 
939 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
940 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
941 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
942 			mutex_unlock(&dpu_enc->rc_lock);
943 			return 0;
944 		}
945 
946 		/*
947 		 * if we are in ON but a frame was just kicked off,
948 		 * ignore the IDLE event, it's probably a stale timer event
949 		 */
950 		if (dpu_enc->frame_busy_mask[0]) {
951 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
952 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
953 			mutex_unlock(&dpu_enc->rc_lock);
954 			return 0;
955 		}
956 
957 		if (is_vid_mode)
958 			_dpu_encoder_irq_control(drm_enc, false);
959 		else
960 			_dpu_encoder_resource_control_helper(drm_enc, false);
961 
962 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
963 
964 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
965 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
966 				 "idle");
967 
968 		mutex_unlock(&dpu_enc->rc_lock);
969 		break;
970 
971 	default:
972 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
973 			  sw_event);
974 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
975 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
976 				 "error");
977 		break;
978 	}
979 
980 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
981 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
982 			 "end");
983 	return 0;
984 }
985 
dpu_encoder_prepare_wb_job(struct drm_encoder * drm_enc,struct drm_writeback_job * job)986 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc,
987 		struct drm_writeback_job *job)
988 {
989 	struct dpu_encoder_virt *dpu_enc;
990 	int i;
991 
992 	dpu_enc = to_dpu_encoder_virt(drm_enc);
993 
994 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
995 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
996 
997 		if (phys->ops.prepare_wb_job)
998 			phys->ops.prepare_wb_job(phys, job);
999 
1000 	}
1001 }
1002 
dpu_encoder_cleanup_wb_job(struct drm_encoder * drm_enc,struct drm_writeback_job * job)1003 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc,
1004 		struct drm_writeback_job *job)
1005 {
1006 	struct dpu_encoder_virt *dpu_enc;
1007 	int i;
1008 
1009 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1010 
1011 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1012 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1013 
1014 		if (phys->ops.cleanup_wb_job)
1015 			phys->ops.cleanup_wb_job(phys, job);
1016 
1017 	}
1018 }
1019 
dpu_encoder_virt_atomic_mode_set(struct drm_encoder * drm_enc,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)1020 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
1021 					     struct drm_crtc_state *crtc_state,
1022 					     struct drm_connector_state *conn_state)
1023 {
1024 	struct dpu_encoder_virt *dpu_enc;
1025 	struct msm_drm_private *priv;
1026 	struct dpu_kms *dpu_kms;
1027 	struct dpu_crtc_state *cstate;
1028 	struct dpu_global_state *global_state;
1029 	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
1030 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
1031 	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
1032 	struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
1033 	struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC];
1034 	int num_lm, num_ctl, num_pp, num_dsc;
1035 	unsigned int dsc_mask = 0;
1036 	int i;
1037 
1038 	if (!drm_enc) {
1039 		DPU_ERROR("invalid encoder\n");
1040 		return;
1041 	}
1042 
1043 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1044 	DPU_DEBUG_ENC(dpu_enc, "\n");
1045 
1046 	priv = drm_enc->dev->dev_private;
1047 	dpu_kms = to_dpu_kms(priv->kms);
1048 
1049 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
1050 	if (IS_ERR_OR_NULL(global_state)) {
1051 		DPU_ERROR("Failed to get global state");
1052 		return;
1053 	}
1054 
1055 	trace_dpu_enc_mode_set(DRMID(drm_enc));
1056 
1057 	/* Query resource that have been reserved in atomic check step. */
1058 	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1059 		drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1060 		ARRAY_SIZE(hw_pp));
1061 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1062 		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1063 	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1064 		drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1065 	dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1066 		drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
1067 		ARRAY_SIZE(hw_dspp));
1068 
1069 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1070 		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1071 						: NULL;
1072 
1073 	if (dpu_enc->dsc) {
1074 		num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1075 							drm_enc->base.id, DPU_HW_BLK_DSC,
1076 							hw_dsc, ARRAY_SIZE(hw_dsc));
1077 		for (i = 0; i < num_dsc; i++) {
1078 			dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]);
1079 			dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0);
1080 		}
1081 	}
1082 
1083 	dpu_enc->dsc_mask = dsc_mask;
1084 
1085 	cstate = to_dpu_crtc_state(crtc_state);
1086 
1087 	for (i = 0; i < num_lm; i++) {
1088 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1089 
1090 		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1091 		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1092 		cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1093 	}
1094 
1095 	cstate->num_mixers = num_lm;
1096 
1097 	dpu_enc->connector = conn_state->connector;
1098 
1099 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1100 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1101 
1102 		if (!dpu_enc->hw_pp[i]) {
1103 			DPU_ERROR_ENC(dpu_enc,
1104 				"no pp block assigned at idx: %d\n", i);
1105 			return;
1106 		}
1107 
1108 		if (!hw_ctl[i]) {
1109 			DPU_ERROR_ENC(dpu_enc,
1110 				"no ctl block assigned at idx: %d\n", i);
1111 			return;
1112 		}
1113 
1114 		phys->hw_pp = dpu_enc->hw_pp[i];
1115 		phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
1116 
1117 		phys->cached_mode = crtc_state->adjusted_mode;
1118 		if (phys->ops.atomic_mode_set)
1119 			phys->ops.atomic_mode_set(phys, crtc_state, conn_state);
1120 	}
1121 }
1122 
_dpu_encoder_virt_enable_helper(struct drm_encoder * drm_enc)1123 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1124 {
1125 	struct dpu_encoder_virt *dpu_enc = NULL;
1126 	int i;
1127 
1128 	if (!drm_enc || !drm_enc->dev) {
1129 		DPU_ERROR("invalid parameters\n");
1130 		return;
1131 	}
1132 
1133 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1134 	if (!dpu_enc || !dpu_enc->cur_master) {
1135 		DPU_ERROR("invalid dpu encoder/master\n");
1136 		return;
1137 	}
1138 
1139 
1140 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_TMDS &&
1141 		dpu_enc->cur_master->hw_mdptop &&
1142 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1143 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1144 			dpu_enc->cur_master->hw_mdptop);
1145 
1146 	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1147 
1148 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1149 			!WARN_ON(dpu_enc->num_phys_encs == 0)) {
1150 		unsigned bpc = dpu_enc->connector->display_info.bpc;
1151 		for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1152 			if (!dpu_enc->hw_pp[i])
1153 				continue;
1154 			_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1155 		}
1156 	}
1157 }
1158 
dpu_encoder_virt_runtime_resume(struct drm_encoder * drm_enc)1159 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1160 {
1161 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1162 
1163 	mutex_lock(&dpu_enc->enc_lock);
1164 
1165 	if (!dpu_enc->enabled)
1166 		goto out;
1167 
1168 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1169 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1170 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1171 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1172 
1173 	_dpu_encoder_virt_enable_helper(drm_enc);
1174 
1175 out:
1176 	mutex_unlock(&dpu_enc->enc_lock);
1177 }
1178 
dpu_encoder_virt_enable(struct drm_encoder * drm_enc)1179 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1180 {
1181 	struct dpu_encoder_virt *dpu_enc = NULL;
1182 	int ret = 0;
1183 	struct drm_display_mode *cur_mode = NULL;
1184 
1185 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1186 
1187 	mutex_lock(&dpu_enc->enc_lock);
1188 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1189 
1190 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1191 			     cur_mode->vdisplay);
1192 
1193 	/* always enable slave encoder before master */
1194 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1195 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1196 
1197 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1198 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1199 
1200 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1201 	if (ret) {
1202 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1203 				ret);
1204 		goto out;
1205 	}
1206 
1207 	_dpu_encoder_virt_enable_helper(drm_enc);
1208 
1209 	dpu_enc->enabled = true;
1210 
1211 out:
1212 	mutex_unlock(&dpu_enc->enc_lock);
1213 }
1214 
dpu_encoder_virt_disable(struct drm_encoder * drm_enc)1215 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1216 {
1217 	struct dpu_encoder_virt *dpu_enc = NULL;
1218 	int i = 0;
1219 
1220 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1221 	DPU_DEBUG_ENC(dpu_enc, "\n");
1222 
1223 	mutex_lock(&dpu_enc->enc_lock);
1224 	dpu_enc->enabled = false;
1225 
1226 	trace_dpu_enc_disable(DRMID(drm_enc));
1227 
1228 	/* wait for idle */
1229 	dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1230 
1231 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1232 
1233 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1234 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1235 
1236 		if (phys->ops.disable)
1237 			phys->ops.disable(phys);
1238 	}
1239 
1240 
1241 	/* after phys waits for frame-done, should be no more frames pending */
1242 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1243 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1244 		del_timer_sync(&dpu_enc->frame_done_timer);
1245 	}
1246 
1247 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1248 
1249 	dpu_enc->connector = NULL;
1250 
1251 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1252 
1253 	mutex_unlock(&dpu_enc->enc_lock);
1254 }
1255 
dpu_encoder_get_intf(const struct dpu_mdss_cfg * catalog,enum dpu_intf_type type,u32 controller_id)1256 static enum dpu_intf dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog,
1257 		enum dpu_intf_type type, u32 controller_id)
1258 {
1259 	int i = 0;
1260 
1261 	if (type == INTF_WB)
1262 		return INTF_MAX;
1263 
1264 	for (i = 0; i < catalog->intf_count; i++) {
1265 		if (catalog->intf[i].type == type
1266 		    && catalog->intf[i].controller_id == controller_id) {
1267 			return catalog->intf[i].id;
1268 		}
1269 	}
1270 
1271 	return INTF_MAX;
1272 }
1273 
dpu_encoder_get_wb(const struct dpu_mdss_cfg * catalog,enum dpu_intf_type type,u32 controller_id)1274 static enum dpu_wb dpu_encoder_get_wb(const struct dpu_mdss_cfg *catalog,
1275 		enum dpu_intf_type type, u32 controller_id)
1276 {
1277 	int i = 0;
1278 
1279 	if (type != INTF_WB)
1280 		return WB_MAX;
1281 
1282 	for (i = 0; i < catalog->wb_count; i++) {
1283 		if (catalog->wb[i].id == controller_id)
1284 			return catalog->wb[i].id;
1285 	}
1286 
1287 	return WB_MAX;
1288 }
1289 
dpu_encoder_vblank_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1290 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1291 		struct dpu_encoder_phys *phy_enc)
1292 {
1293 	struct dpu_encoder_virt *dpu_enc = NULL;
1294 	unsigned long lock_flags;
1295 
1296 	if (!drm_enc || !phy_enc)
1297 		return;
1298 
1299 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1300 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1301 
1302 	atomic_inc(&phy_enc->vsync_cnt);
1303 
1304 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1305 	if (dpu_enc->crtc)
1306 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1307 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1308 
1309 	DPU_ATRACE_END("encoder_vblank_callback");
1310 }
1311 
dpu_encoder_underrun_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1312 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1313 		struct dpu_encoder_phys *phy_enc)
1314 {
1315 	if (!phy_enc)
1316 		return;
1317 
1318 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1319 	atomic_inc(&phy_enc->underrun_cnt);
1320 
1321 	/* trigger dump only on the first underrun */
1322 	if (atomic_read(&phy_enc->underrun_cnt) == 1)
1323 		msm_disp_snapshot_state(drm_enc->dev);
1324 
1325 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1326 				  atomic_read(&phy_enc->underrun_cnt));
1327 	DPU_ATRACE_END("encoder_underrun_callback");
1328 }
1329 
dpu_encoder_assign_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc)1330 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1331 {
1332 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1333 	unsigned long lock_flags;
1334 
1335 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1336 	/* crtc should always be cleared before re-assigning */
1337 	WARN_ON(crtc && dpu_enc->crtc);
1338 	dpu_enc->crtc = crtc;
1339 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1340 }
1341 
dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc,bool enable)1342 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1343 					struct drm_crtc *crtc, bool enable)
1344 {
1345 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1346 	unsigned long lock_flags;
1347 	int i;
1348 
1349 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1350 
1351 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1352 	if (dpu_enc->crtc != crtc) {
1353 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1354 		return;
1355 	}
1356 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1357 
1358 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1359 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1360 
1361 		if (phys->ops.control_vblank_irq)
1362 			phys->ops.control_vblank_irq(phys, enable);
1363 	}
1364 }
1365 
dpu_encoder_register_frame_event_callback(struct drm_encoder * drm_enc,void (* frame_event_cb)(void *,u32 event),void * frame_event_cb_data)1366 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1367 		void (*frame_event_cb)(void *, u32 event),
1368 		void *frame_event_cb_data)
1369 {
1370 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1371 	unsigned long lock_flags;
1372 	bool enable;
1373 
1374 	enable = frame_event_cb ? true : false;
1375 
1376 	if (!drm_enc) {
1377 		DPU_ERROR("invalid encoder\n");
1378 		return;
1379 	}
1380 	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1381 
1382 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1383 	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1384 	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1385 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1386 }
1387 
dpu_encoder_frame_done_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * ready_phys,u32 event)1388 static void dpu_encoder_frame_done_callback(
1389 		struct drm_encoder *drm_enc,
1390 		struct dpu_encoder_phys *ready_phys, u32 event)
1391 {
1392 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1393 	unsigned int i;
1394 
1395 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1396 			| DPU_ENCODER_FRAME_EVENT_ERROR
1397 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1398 
1399 		if (!dpu_enc->frame_busy_mask[0]) {
1400 			/**
1401 			 * suppress frame_done without waiter,
1402 			 * likely autorefresh
1403 			 */
1404 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event,
1405 					dpu_encoder_helper_get_intf_type(ready_phys->intf_mode),
1406 					ready_phys->intf_idx, ready_phys->wb_idx);
1407 			return;
1408 		}
1409 
1410 		/* One of the physical encoders has become idle */
1411 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1412 			if (dpu_enc->phys_encs[i] == ready_phys) {
1413 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1414 						dpu_enc->frame_busy_mask[0]);
1415 				clear_bit(i, dpu_enc->frame_busy_mask);
1416 			}
1417 		}
1418 
1419 		if (!dpu_enc->frame_busy_mask[0]) {
1420 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1421 			del_timer(&dpu_enc->frame_done_timer);
1422 
1423 			dpu_encoder_resource_control(drm_enc,
1424 					DPU_ENC_RC_EVENT_FRAME_DONE);
1425 
1426 			if (dpu_enc->crtc_frame_event_cb)
1427 				dpu_enc->crtc_frame_event_cb(
1428 					dpu_enc->crtc_frame_event_cb_data,
1429 					event);
1430 		}
1431 	} else {
1432 		if (dpu_enc->crtc_frame_event_cb)
1433 			dpu_enc->crtc_frame_event_cb(
1434 				dpu_enc->crtc_frame_event_cb_data, event);
1435 	}
1436 }
1437 
dpu_encoder_off_work(struct work_struct * work)1438 static void dpu_encoder_off_work(struct work_struct *work)
1439 {
1440 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1441 			struct dpu_encoder_virt, delayed_off_work.work);
1442 
1443 	dpu_encoder_resource_control(&dpu_enc->base,
1444 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1445 
1446 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1447 				DPU_ENCODER_FRAME_EVENT_IDLE);
1448 }
1449 
1450 /**
1451  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1452  * @drm_enc: Pointer to drm encoder structure
1453  * @phys: Pointer to physical encoder structure
1454  * @extra_flush_bits: Additional bit mask to include in flush trigger
1455  */
_dpu_encoder_trigger_flush(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phys,uint32_t extra_flush_bits)1456 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1457 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1458 {
1459 	struct dpu_hw_ctl *ctl;
1460 	int pending_kickoff_cnt;
1461 	u32 ret = UINT_MAX;
1462 
1463 	if (!phys->hw_pp) {
1464 		DPU_ERROR("invalid pingpong hw\n");
1465 		return;
1466 	}
1467 
1468 	ctl = phys->hw_ctl;
1469 	if (!ctl->ops.trigger_flush) {
1470 		DPU_ERROR("missing trigger cb\n");
1471 		return;
1472 	}
1473 
1474 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1475 
1476 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1477 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1478 
1479 	ctl->ops.trigger_flush(ctl);
1480 
1481 	if (ctl->ops.get_pending_flush)
1482 		ret = ctl->ops.get_pending_flush(ctl);
1483 
1484 	trace_dpu_enc_trigger_flush(DRMID(drm_enc),
1485 			dpu_encoder_helper_get_intf_type(phys->intf_mode),
1486 			phys->intf_idx, phys->wb_idx,
1487 			pending_kickoff_cnt, ctl->idx,
1488 			extra_flush_bits, ret);
1489 }
1490 
1491 /**
1492  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1493  * @phys: Pointer to physical encoder structure
1494  */
_dpu_encoder_trigger_start(struct dpu_encoder_phys * phys)1495 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1496 {
1497 	if (!phys) {
1498 		DPU_ERROR("invalid argument(s)\n");
1499 		return;
1500 	}
1501 
1502 	if (!phys->hw_pp) {
1503 		DPU_ERROR("invalid pingpong hw\n");
1504 		return;
1505 	}
1506 
1507 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1508 		phys->ops.trigger_start(phys);
1509 }
1510 
dpu_encoder_helper_trigger_start(struct dpu_encoder_phys * phys_enc)1511 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1512 {
1513 	struct dpu_hw_ctl *ctl;
1514 
1515 	ctl = phys_enc->hw_ctl;
1516 	if (ctl->ops.trigger_start) {
1517 		ctl->ops.trigger_start(ctl);
1518 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1519 	}
1520 }
1521 
dpu_encoder_helper_wait_event_timeout(int32_t drm_id,u32 irq_idx,struct dpu_encoder_wait_info * info)1522 static int dpu_encoder_helper_wait_event_timeout(
1523 		int32_t drm_id,
1524 		u32 irq_idx,
1525 		struct dpu_encoder_wait_info *info)
1526 {
1527 	int rc = 0;
1528 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1529 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1530 	s64 time;
1531 
1532 	do {
1533 		rc = wait_event_timeout(*(info->wq),
1534 				atomic_read(info->atomic_cnt) == 0, jiffies);
1535 		time = ktime_to_ms(ktime_get());
1536 
1537 		trace_dpu_enc_wait_event_timeout(drm_id, irq_idx, rc, time,
1538 						 expected_time,
1539 						 atomic_read(info->atomic_cnt));
1540 	/* If we timed out, counter is valid and time is less, wait again */
1541 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1542 			(time < expected_time));
1543 
1544 	return rc;
1545 }
1546 
dpu_encoder_helper_hw_reset(struct dpu_encoder_phys * phys_enc)1547 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1548 {
1549 	struct dpu_encoder_virt *dpu_enc;
1550 	struct dpu_hw_ctl *ctl;
1551 	int rc;
1552 	struct drm_encoder *drm_enc;
1553 
1554 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1555 	ctl = phys_enc->hw_ctl;
1556 	drm_enc = phys_enc->parent;
1557 
1558 	if (!ctl->ops.reset)
1559 		return;
1560 
1561 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1562 		      ctl->idx);
1563 
1564 	rc = ctl->ops.reset(ctl);
1565 	if (rc) {
1566 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1567 		msm_disp_snapshot_state(drm_enc->dev);
1568 	}
1569 
1570 	phys_enc->enable_state = DPU_ENC_ENABLED;
1571 }
1572 
1573 /**
1574  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1575  *	Iterate through the physical encoders and perform consolidated flush
1576  *	and/or control start triggering as needed. This is done in the virtual
1577  *	encoder rather than the individual physical ones in order to handle
1578  *	use cases that require visibility into multiple physical encoders at
1579  *	a time.
1580  * @dpu_enc: Pointer to virtual encoder structure
1581  */
_dpu_encoder_kickoff_phys(struct dpu_encoder_virt * dpu_enc)1582 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1583 {
1584 	struct dpu_hw_ctl *ctl;
1585 	uint32_t i, pending_flush;
1586 	unsigned long lock_flags;
1587 
1588 	pending_flush = 0x0;
1589 
1590 	/* update pending counts and trigger kickoff ctl flush atomically */
1591 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1592 
1593 	/* don't perform flush/start operations for slave encoders */
1594 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1595 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1596 
1597 		if (phys->enable_state == DPU_ENC_DISABLED)
1598 			continue;
1599 
1600 		ctl = phys->hw_ctl;
1601 
1602 		/*
1603 		 * This is cleared in frame_done worker, which isn't invoked
1604 		 * for async commits. So don't set this for async, since it'll
1605 		 * roll over to the next commit.
1606 		 */
1607 		if (phys->split_role != ENC_ROLE_SLAVE)
1608 			set_bit(i, dpu_enc->frame_busy_mask);
1609 
1610 		if (!phys->ops.needs_single_flush ||
1611 				!phys->ops.needs_single_flush(phys))
1612 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1613 		else if (ctl->ops.get_pending_flush)
1614 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1615 	}
1616 
1617 	/* for split flush, combine pending flush masks and send to master */
1618 	if (pending_flush && dpu_enc->cur_master) {
1619 		_dpu_encoder_trigger_flush(
1620 				&dpu_enc->base,
1621 				dpu_enc->cur_master,
1622 				pending_flush);
1623 	}
1624 
1625 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1626 
1627 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1628 }
1629 
dpu_encoder_trigger_kickoff_pending(struct drm_encoder * drm_enc)1630 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1631 {
1632 	struct dpu_encoder_virt *dpu_enc;
1633 	struct dpu_encoder_phys *phys;
1634 	unsigned int i;
1635 	struct dpu_hw_ctl *ctl;
1636 	struct msm_display_info *disp_info;
1637 
1638 	if (!drm_enc) {
1639 		DPU_ERROR("invalid encoder\n");
1640 		return;
1641 	}
1642 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1643 	disp_info = &dpu_enc->disp_info;
1644 
1645 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1646 		phys = dpu_enc->phys_encs[i];
1647 
1648 		ctl = phys->hw_ctl;
1649 		if (ctl->ops.clear_pending_flush)
1650 			ctl->ops.clear_pending_flush(ctl);
1651 
1652 		/* update only for command mode primary ctl */
1653 		if ((phys == dpu_enc->cur_master) &&
1654 		    disp_info->is_cmd_mode
1655 		    && ctl->ops.trigger_pending)
1656 			ctl->ops.trigger_pending(ctl);
1657 	}
1658 }
1659 
_dpu_encoder_calculate_linetime(struct dpu_encoder_virt * dpu_enc,struct drm_display_mode * mode)1660 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1661 		struct drm_display_mode *mode)
1662 {
1663 	u64 pclk_rate;
1664 	u32 pclk_period;
1665 	u32 line_time;
1666 
1667 	/*
1668 	 * For linetime calculation, only operate on master encoder.
1669 	 */
1670 	if (!dpu_enc->cur_master)
1671 		return 0;
1672 
1673 	if (!dpu_enc->cur_master->ops.get_line_count) {
1674 		DPU_ERROR("get_line_count function not defined\n");
1675 		return 0;
1676 	}
1677 
1678 	pclk_rate = mode->clock; /* pixel clock in kHz */
1679 	if (pclk_rate == 0) {
1680 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1681 		return 0;
1682 	}
1683 
1684 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1685 	if (pclk_period == 0) {
1686 		DPU_ERROR("pclk period is 0\n");
1687 		return 0;
1688 	}
1689 
1690 	/*
1691 	 * Line time calculation based on Pixel clock and HTOTAL.
1692 	 * Final unit is in ns.
1693 	 */
1694 	line_time = (pclk_period * mode->htotal) / 1000;
1695 	if (line_time == 0) {
1696 		DPU_ERROR("line time calculation is 0\n");
1697 		return 0;
1698 	}
1699 
1700 	DPU_DEBUG_ENC(dpu_enc,
1701 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1702 			pclk_rate, pclk_period, line_time);
1703 
1704 	return line_time;
1705 }
1706 
dpu_encoder_vsync_time(struct drm_encoder * drm_enc,ktime_t * wakeup_time)1707 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1708 {
1709 	struct drm_display_mode *mode;
1710 	struct dpu_encoder_virt *dpu_enc;
1711 	u32 cur_line;
1712 	u32 line_time;
1713 	u32 vtotal, time_to_vsync;
1714 	ktime_t cur_time;
1715 
1716 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1717 
1718 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1719 		DPU_ERROR("crtc/crtc state object is NULL\n");
1720 		return -EINVAL;
1721 	}
1722 	mode = &drm_enc->crtc->state->adjusted_mode;
1723 
1724 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1725 	if (!line_time)
1726 		return -EINVAL;
1727 
1728 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1729 
1730 	vtotal = mode->vtotal;
1731 	if (cur_line >= vtotal)
1732 		time_to_vsync = line_time * vtotal;
1733 	else
1734 		time_to_vsync = line_time * (vtotal - cur_line);
1735 
1736 	if (time_to_vsync == 0) {
1737 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1738 				vtotal);
1739 		return -EINVAL;
1740 	}
1741 
1742 	cur_time = ktime_get();
1743 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1744 
1745 	DPU_DEBUG_ENC(dpu_enc,
1746 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1747 			cur_line, vtotal, time_to_vsync,
1748 			ktime_to_ms(cur_time),
1749 			ktime_to_ms(*wakeup_time));
1750 	return 0;
1751 }
1752 
dpu_encoder_vsync_event_handler(struct timer_list * t)1753 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1754 {
1755 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1756 			vsync_event_timer);
1757 	struct drm_encoder *drm_enc = &dpu_enc->base;
1758 	struct msm_drm_private *priv;
1759 	struct msm_drm_thread *event_thread;
1760 
1761 	if (!drm_enc->dev || !drm_enc->crtc) {
1762 		DPU_ERROR("invalid parameters\n");
1763 		return;
1764 	}
1765 
1766 	priv = drm_enc->dev->dev_private;
1767 
1768 	if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1769 		DPU_ERROR("invalid crtc index\n");
1770 		return;
1771 	}
1772 	event_thread = &priv->event_thread[drm_enc->crtc->index];
1773 	if (!event_thread) {
1774 		DPU_ERROR("event_thread not found for crtc:%d\n",
1775 				drm_enc->crtc->index);
1776 		return;
1777 	}
1778 
1779 	del_timer(&dpu_enc->vsync_event_timer);
1780 }
1781 
dpu_encoder_vsync_event_work_handler(struct kthread_work * work)1782 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1783 {
1784 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1785 			struct dpu_encoder_virt, vsync_event_work);
1786 	ktime_t wakeup_time;
1787 
1788 	if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time))
1789 		return;
1790 
1791 	trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1792 	mod_timer(&dpu_enc->vsync_event_timer,
1793 			nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1794 }
1795 
1796 static u32
dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config * dsc,u32 enc_ip_width)1797 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc,
1798 				  u32 enc_ip_width)
1799 {
1800 	int ssm_delay, total_pixels, soft_slice_per_enc;
1801 
1802 	soft_slice_per_enc = enc_ip_width / dsc->slice_width;
1803 
1804 	/*
1805 	 * minimum number of initial line pixels is a sum of:
1806 	 * 1. sub-stream multiplexer delay (83 groups for 8bpc,
1807 	 *    91 for 10 bpc) * 3
1808 	 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3
1809 	 * 3. the initial xmit delay
1810 	 * 4. total pipeline delay through the "lock step" of encoder (47)
1811 	 * 5. 6 additional pixels as the output of the rate buffer is
1812 	 *    48 bits wide
1813 	 */
1814 	ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92);
1815 	total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47;
1816 	if (soft_slice_per_enc > 1)
1817 		total_pixels += (ssm_delay * 3);
1818 	return DIV_ROUND_UP(total_pixels, dsc->slice_width);
1819 }
1820 
dpu_encoder_dsc_pipe_cfg(struct dpu_hw_dsc * hw_dsc,struct dpu_hw_pingpong * hw_pp,struct drm_dsc_config * dsc,u32 common_mode,u32 initial_lines)1821 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_dsc *hw_dsc,
1822 				     struct dpu_hw_pingpong *hw_pp,
1823 				     struct drm_dsc_config *dsc,
1824 				     u32 common_mode,
1825 				     u32 initial_lines)
1826 {
1827 	if (hw_dsc->ops.dsc_config)
1828 		hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines);
1829 
1830 	if (hw_dsc->ops.dsc_config_thresh)
1831 		hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
1832 
1833 	if (hw_pp->ops.setup_dsc)
1834 		hw_pp->ops.setup_dsc(hw_pp);
1835 
1836 	if (hw_pp->ops.enable_dsc)
1837 		hw_pp->ops.enable_dsc(hw_pp);
1838 }
1839 
dpu_encoder_prep_dsc(struct dpu_encoder_virt * dpu_enc,struct drm_dsc_config * dsc)1840 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc,
1841 				 struct drm_dsc_config *dsc)
1842 {
1843 	/* coding only for 2LM, 2enc, 1 dsc config */
1844 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
1845 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
1846 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
1847 	int this_frame_slices;
1848 	int intf_ip_w, enc_ip_w;
1849 	int dsc_common_mode;
1850 	int pic_width;
1851 	u32 initial_lines;
1852 	int i;
1853 
1854 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1855 		hw_pp[i] = dpu_enc->hw_pp[i];
1856 		hw_dsc[i] = dpu_enc->hw_dsc[i];
1857 
1858 		if (!hw_pp[i] || !hw_dsc[i]) {
1859 			DPU_ERROR_ENC(dpu_enc, "invalid params for DSC\n");
1860 			return;
1861 		}
1862 	}
1863 
1864 	dsc_common_mode = 0;
1865 	pic_width = dsc->pic_width;
1866 
1867 	dsc_common_mode = DSC_MODE_MULTIPLEX | DSC_MODE_SPLIT_PANEL;
1868 	if (enc_master->intf_mode == INTF_MODE_VIDEO)
1869 		dsc_common_mode |= DSC_MODE_VIDEO;
1870 
1871 	this_frame_slices = pic_width / dsc->slice_width;
1872 	intf_ip_w = this_frame_slices * dsc->slice_width;
1873 
1874 	/*
1875 	 * dsc merge case: when using 2 encoders for the same stream,
1876 	 * no. of slices need to be same on both the encoders.
1877 	 */
1878 	enc_ip_w = intf_ip_w / 2;
1879 	initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
1880 
1881 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1882 		dpu_encoder_dsc_pipe_cfg(hw_dsc[i], hw_pp[i], dsc, dsc_common_mode, initial_lines);
1883 }
1884 
dpu_encoder_prepare_for_kickoff(struct drm_encoder * drm_enc)1885 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1886 {
1887 	struct dpu_encoder_virt *dpu_enc;
1888 	struct dpu_encoder_phys *phys;
1889 	bool needs_hw_reset = false;
1890 	unsigned int i;
1891 
1892 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1893 
1894 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1895 
1896 	/* prepare for next kickoff, may include waiting on previous kickoff */
1897 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1898 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1899 		phys = dpu_enc->phys_encs[i];
1900 		if (phys->ops.prepare_for_kickoff)
1901 			phys->ops.prepare_for_kickoff(phys);
1902 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1903 			needs_hw_reset = true;
1904 	}
1905 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1906 
1907 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1908 
1909 	/* if any phys needs reset, reset all phys, in-order */
1910 	if (needs_hw_reset) {
1911 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1912 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1913 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1914 		}
1915 	}
1916 
1917 	if (dpu_enc->dsc)
1918 		dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc);
1919 }
1920 
dpu_encoder_is_valid_for_commit(struct drm_encoder * drm_enc)1921 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc)
1922 {
1923 	struct dpu_encoder_virt *dpu_enc;
1924 	unsigned int i;
1925 	struct dpu_encoder_phys *phys;
1926 
1927 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1928 
1929 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1930 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1931 			phys = dpu_enc->phys_encs[i];
1932 			if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) {
1933 				DPU_DEBUG("invalid FB not kicking off\n");
1934 				return false;
1935 			}
1936 		}
1937 	}
1938 
1939 	return true;
1940 }
1941 
dpu_encoder_kickoff(struct drm_encoder * drm_enc)1942 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1943 {
1944 	struct dpu_encoder_virt *dpu_enc;
1945 	struct dpu_encoder_phys *phys;
1946 	ktime_t wakeup_time;
1947 	unsigned long timeout_ms;
1948 	unsigned int i;
1949 
1950 	DPU_ATRACE_BEGIN("encoder_kickoff");
1951 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1952 
1953 	trace_dpu_enc_kickoff(DRMID(drm_enc));
1954 
1955 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1956 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1957 
1958 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1959 	mod_timer(&dpu_enc->frame_done_timer,
1960 			jiffies + msecs_to_jiffies(timeout_ms));
1961 
1962 	/* All phys encs are ready to go, trigger the kickoff */
1963 	_dpu_encoder_kickoff_phys(dpu_enc);
1964 
1965 	/* allow phys encs to handle any post-kickoff business */
1966 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1967 		phys = dpu_enc->phys_encs[i];
1968 		if (phys->ops.handle_post_kickoff)
1969 			phys->ops.handle_post_kickoff(phys);
1970 	}
1971 
1972 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1973 			!dpu_encoder_vsync_time(drm_enc, &wakeup_time)) {
1974 		trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1975 					    ktime_to_ms(wakeup_time));
1976 		mod_timer(&dpu_enc->vsync_event_timer,
1977 				nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1978 	}
1979 
1980 	DPU_ATRACE_END("encoder_kickoff");
1981 }
1982 
dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys * phys_enc)1983 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc)
1984 {
1985 	struct dpu_hw_mixer_cfg mixer;
1986 	int i, num_lm;
1987 	struct dpu_global_state *global_state;
1988 	struct dpu_hw_blk *hw_lm[2];
1989 	struct dpu_hw_mixer *hw_mixer[2];
1990 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
1991 
1992 	memset(&mixer, 0, sizeof(mixer));
1993 
1994 	/* reset all mixers for this encoder */
1995 	if (phys_enc->hw_ctl->ops.clear_all_blendstages)
1996 		phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl);
1997 
1998 	global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms);
1999 
2000 	num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state,
2001 		phys_enc->parent->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
2002 
2003 	for (i = 0; i < num_lm; i++) {
2004 		hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]);
2005 		if (phys_enc->hw_ctl->ops.update_pending_flush_mixer)
2006 			phys_enc->hw_ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx);
2007 
2008 		/* clear all blendstages */
2009 		if (phys_enc->hw_ctl->ops.setup_blendstage)
2010 			phys_enc->hw_ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL);
2011 	}
2012 }
2013 
dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys * phys_enc)2014 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc)
2015 {
2016 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2017 	struct dpu_hw_intf_cfg intf_cfg = { 0 };
2018 	int i;
2019 	struct dpu_encoder_virt *dpu_enc;
2020 
2021 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2022 
2023 	phys_enc->hw_ctl->ops.reset(ctl);
2024 
2025 	dpu_encoder_helper_reset_mixers(phys_enc);
2026 
2027 	/*
2028 	 * TODO: move the once-only operation like CTL flush/trigger
2029 	 * into dpu_encoder_virt_disable() and all operations which need
2030 	 * to be done per phys encoder into the phys_disable() op.
2031 	 */
2032 	if (phys_enc->hw_wb) {
2033 		/* disable the PP block */
2034 		if (phys_enc->hw_wb->ops.bind_pingpong_blk)
2035 			phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, false,
2036 					phys_enc->hw_pp->idx);
2037 
2038 		/* mark WB flush as pending */
2039 		if (phys_enc->hw_ctl->ops.update_pending_flush_wb)
2040 			phys_enc->hw_ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx);
2041 	} else {
2042 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2043 			if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk)
2044 				phys_enc->hw_intf->ops.bind_pingpong_blk(
2045 						dpu_enc->phys_encs[i]->hw_intf, false,
2046 						dpu_enc->phys_encs[i]->hw_pp->idx);
2047 
2048 			/* mark INTF flush as pending */
2049 			if (phys_enc->hw_ctl->ops.update_pending_flush_intf)
2050 				phys_enc->hw_ctl->ops.update_pending_flush_intf(phys_enc->hw_ctl,
2051 						dpu_enc->phys_encs[i]->hw_intf->idx);
2052 		}
2053 	}
2054 
2055 	/* reset the merge 3D HW block */
2056 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d) {
2057 		phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d,
2058 				BLEND_3D_NONE);
2059 		if (phys_enc->hw_ctl->ops.update_pending_flush_merge_3d)
2060 			phys_enc->hw_ctl->ops.update_pending_flush_merge_3d(ctl,
2061 					phys_enc->hw_pp->merge_3d->idx);
2062 	}
2063 
2064 	intf_cfg.stream_sel = 0; /* Don't care value for video mode */
2065 	intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
2066 
2067 	if (phys_enc->hw_intf)
2068 		intf_cfg.intf = phys_enc->hw_intf->idx;
2069 	if (phys_enc->hw_wb)
2070 		intf_cfg.wb = phys_enc->hw_wb->idx;
2071 
2072 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d)
2073 		intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
2074 
2075 	if (ctl->ops.reset_intf_cfg)
2076 		ctl->ops.reset_intf_cfg(ctl, &intf_cfg);
2077 
2078 	ctl->ops.trigger_flush(ctl);
2079 	ctl->ops.trigger_start(ctl);
2080 	ctl->ops.clear_pending_flush(ctl);
2081 }
2082 
dpu_encoder_prepare_commit(struct drm_encoder * drm_enc)2083 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
2084 {
2085 	struct dpu_encoder_virt *dpu_enc;
2086 	struct dpu_encoder_phys *phys;
2087 	int i;
2088 
2089 	if (!drm_enc) {
2090 		DPU_ERROR("invalid encoder\n");
2091 		return;
2092 	}
2093 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2094 
2095 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2096 		phys = dpu_enc->phys_encs[i];
2097 		if (phys->ops.prepare_commit)
2098 			phys->ops.prepare_commit(phys);
2099 	}
2100 }
2101 
2102 #ifdef CONFIG_DEBUG_FS
_dpu_encoder_status_show(struct seq_file * s,void * data)2103 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
2104 {
2105 	struct dpu_encoder_virt *dpu_enc = s->private;
2106 	int i;
2107 
2108 	mutex_lock(&dpu_enc->enc_lock);
2109 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2110 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2111 
2112 		seq_printf(s, "intf:%d  wb:%d  vsync:%8d     underrun:%8d    ",
2113 				phys->intf_idx - INTF_0, phys->wb_idx - WB_0,
2114 				atomic_read(&phys->vsync_cnt),
2115 				atomic_read(&phys->underrun_cnt));
2116 
2117 		seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode));
2118 	}
2119 	mutex_unlock(&dpu_enc->enc_lock);
2120 
2121 	return 0;
2122 }
2123 
2124 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
2125 
_dpu_encoder_init_debugfs(struct drm_encoder * drm_enc)2126 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
2127 {
2128 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
2129 	int i;
2130 
2131 	char name[DPU_NAME_SIZE];
2132 
2133 	if (!drm_enc->dev) {
2134 		DPU_ERROR("invalid encoder or kms\n");
2135 		return -EINVAL;
2136 	}
2137 
2138 	snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
2139 
2140 	/* create overall sub-directory for the encoder */
2141 	dpu_enc->debugfs_root = debugfs_create_dir(name,
2142 			drm_enc->dev->primary->debugfs_root);
2143 
2144 	/* don't error check these */
2145 	debugfs_create_file("status", 0600,
2146 		dpu_enc->debugfs_root, dpu_enc, &_dpu_encoder_status_fops);
2147 
2148 	for (i = 0; i < dpu_enc->num_phys_encs; i++)
2149 		if (dpu_enc->phys_encs[i]->ops.late_register)
2150 			dpu_enc->phys_encs[i]->ops.late_register(
2151 					dpu_enc->phys_encs[i],
2152 					dpu_enc->debugfs_root);
2153 
2154 	return 0;
2155 }
2156 #else
_dpu_encoder_init_debugfs(struct drm_encoder * drm_enc)2157 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
2158 {
2159 	return 0;
2160 }
2161 #endif
2162 
dpu_encoder_late_register(struct drm_encoder * encoder)2163 static int dpu_encoder_late_register(struct drm_encoder *encoder)
2164 {
2165 	return _dpu_encoder_init_debugfs(encoder);
2166 }
2167 
dpu_encoder_early_unregister(struct drm_encoder * encoder)2168 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
2169 {
2170 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2171 
2172 	debugfs_remove_recursive(dpu_enc->debugfs_root);
2173 }
2174 
dpu_encoder_virt_add_phys_encs(struct msm_display_info * disp_info,struct dpu_encoder_virt * dpu_enc,struct dpu_enc_phys_init_params * params)2175 static int dpu_encoder_virt_add_phys_encs(
2176 		struct msm_display_info *disp_info,
2177 		struct dpu_encoder_virt *dpu_enc,
2178 		struct dpu_enc_phys_init_params *params)
2179 {
2180 	struct dpu_encoder_phys *enc = NULL;
2181 
2182 	DPU_DEBUG_ENC(dpu_enc, "\n");
2183 
2184 	/*
2185 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2186 	 * in this function, check up-front.
2187 	 */
2188 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2189 			ARRAY_SIZE(dpu_enc->phys_encs)) {
2190 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2191 			  dpu_enc->num_phys_encs);
2192 		return -EINVAL;
2193 	}
2194 
2195 
2196 	if (disp_info->intf_type == DRM_MODE_ENCODER_VIRTUAL) {
2197 		enc = dpu_encoder_phys_wb_init(params);
2198 
2199 		if (IS_ERR(enc)) {
2200 			DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n",
2201 				PTR_ERR(enc));
2202 			return PTR_ERR(enc);
2203 		}
2204 
2205 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2206 		++dpu_enc->num_phys_encs;
2207 	} else if (disp_info->is_cmd_mode) {
2208 		enc = dpu_encoder_phys_cmd_init(params);
2209 
2210 		if (IS_ERR(enc)) {
2211 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2212 				PTR_ERR(enc));
2213 			return PTR_ERR(enc);
2214 		}
2215 
2216 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2217 		++dpu_enc->num_phys_encs;
2218 	} else {
2219 		enc = dpu_encoder_phys_vid_init(params);
2220 
2221 		if (IS_ERR(enc)) {
2222 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2223 				PTR_ERR(enc));
2224 			return PTR_ERR(enc);
2225 		}
2226 
2227 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2228 		++dpu_enc->num_phys_encs;
2229 	}
2230 
2231 	if (params->split_role == ENC_ROLE_SLAVE)
2232 		dpu_enc->cur_slave = enc;
2233 	else
2234 		dpu_enc->cur_master = enc;
2235 
2236 	return 0;
2237 }
2238 
2239 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
2240 	.handle_vblank_virt = dpu_encoder_vblank_callback,
2241 	.handle_underrun_virt = dpu_encoder_underrun_callback,
2242 	.handle_frame_done = dpu_encoder_frame_done_callback,
2243 };
2244 
dpu_encoder_setup_display(struct dpu_encoder_virt * dpu_enc,struct dpu_kms * dpu_kms,struct msm_display_info * disp_info)2245 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2246 				 struct dpu_kms *dpu_kms,
2247 				 struct msm_display_info *disp_info)
2248 {
2249 	int ret = 0;
2250 	int i = 0;
2251 	enum dpu_intf_type intf_type = INTF_NONE;
2252 	struct dpu_enc_phys_init_params phys_params;
2253 
2254 	if (!dpu_enc) {
2255 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2256 		return -EINVAL;
2257 	}
2258 
2259 	dpu_enc->cur_master = NULL;
2260 
2261 	memset(&phys_params, 0, sizeof(phys_params));
2262 	phys_params.dpu_kms = dpu_kms;
2263 	phys_params.parent = &dpu_enc->base;
2264 	phys_params.parent_ops = &dpu_encoder_parent_ops;
2265 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2266 
2267 	switch (disp_info->intf_type) {
2268 	case DRM_MODE_ENCODER_DSI:
2269 		intf_type = INTF_DSI;
2270 		break;
2271 	case DRM_MODE_ENCODER_TMDS:
2272 		intf_type = INTF_DP;
2273 		break;
2274 	case DRM_MODE_ENCODER_VIRTUAL:
2275 		intf_type = INTF_WB;
2276 		break;
2277 	}
2278 
2279 	WARN_ON(disp_info->num_of_h_tiles < 1);
2280 
2281 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2282 
2283 	if (disp_info->intf_type != DRM_MODE_ENCODER_VIRTUAL)
2284 		dpu_enc->idle_pc_supported =
2285 				dpu_kms->catalog->caps->has_idle_pc;
2286 
2287 	dpu_enc->dsc = disp_info->dsc;
2288 
2289 	mutex_lock(&dpu_enc->enc_lock);
2290 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2291 		/*
2292 		 * Left-most tile is at index 0, content is controller id
2293 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2294 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2295 		 */
2296 		u32 controller_id = disp_info->h_tile_instance[i];
2297 
2298 		if (disp_info->num_of_h_tiles > 1) {
2299 			if (i == 0)
2300 				phys_params.split_role = ENC_ROLE_MASTER;
2301 			else
2302 				phys_params.split_role = ENC_ROLE_SLAVE;
2303 		} else {
2304 			phys_params.split_role = ENC_ROLE_SOLO;
2305 		}
2306 
2307 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2308 				i, controller_id, phys_params.split_role);
2309 
2310 		phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2311 													intf_type,
2312 													controller_id);
2313 
2314 		phys_params.wb_idx = dpu_encoder_get_wb(dpu_kms->catalog,
2315 				intf_type, controller_id);
2316 		/*
2317 		 * The phys_params might represent either an INTF or a WB unit, but not
2318 		 * both of them at the same time.
2319 		 */
2320 		if ((phys_params.intf_idx == INTF_MAX) &&
2321 				(phys_params.wb_idx == WB_MAX)) {
2322 			DPU_ERROR_ENC(dpu_enc, "could not get intf or wb: type %d, id %d\n",
2323 						  intf_type, controller_id);
2324 			ret = -EINVAL;
2325 		}
2326 
2327 		if ((phys_params.intf_idx != INTF_MAX) &&
2328 				(phys_params.wb_idx != WB_MAX)) {
2329 			DPU_ERROR_ENC(dpu_enc, "both intf and wb present: type %d, id %d\n",
2330 						  intf_type, controller_id);
2331 			ret = -EINVAL;
2332 		}
2333 
2334 		if (!ret) {
2335 			ret = dpu_encoder_virt_add_phys_encs(disp_info,
2336 					dpu_enc, &phys_params);
2337 			if (ret)
2338 				DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2339 		}
2340 	}
2341 
2342 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2343 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2344 		atomic_set(&phys->vsync_cnt, 0);
2345 		atomic_set(&phys->underrun_cnt, 0);
2346 
2347 		if (phys->intf_idx >= INTF_0 && phys->intf_idx < INTF_MAX)
2348 			phys->hw_intf = dpu_rm_get_intf(&dpu_kms->rm, phys->intf_idx);
2349 
2350 		if (phys->wb_idx >= WB_0 && phys->wb_idx < WB_MAX)
2351 			phys->hw_wb = dpu_rm_get_wb(&dpu_kms->rm, phys->wb_idx);
2352 
2353 		if (!phys->hw_intf && !phys->hw_wb) {
2354 			DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i);
2355 			ret = -EINVAL;
2356 		}
2357 
2358 		if (phys->hw_intf && phys->hw_wb) {
2359 			DPU_ERROR_ENC(dpu_enc,
2360 					"invalid phys both intf and wb block at idx: %d\n", i);
2361 			ret = -EINVAL;
2362 		}
2363 	}
2364 
2365 	mutex_unlock(&dpu_enc->enc_lock);
2366 
2367 	return ret;
2368 }
2369 
dpu_encoder_frame_done_timeout(struct timer_list * t)2370 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2371 {
2372 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2373 			frame_done_timer);
2374 	struct drm_encoder *drm_enc = &dpu_enc->base;
2375 	u32 event;
2376 
2377 	if (!drm_enc->dev) {
2378 		DPU_ERROR("invalid parameters\n");
2379 		return;
2380 	}
2381 
2382 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2383 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2384 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2385 		return;
2386 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2387 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2388 		return;
2389 	}
2390 
2391 	DPU_ERROR_ENC_RATELIMITED(dpu_enc, "frame done timeout\n");
2392 
2393 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2394 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2395 	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2396 }
2397 
2398 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2399 	.atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
2400 	.disable = dpu_encoder_virt_disable,
2401 	.enable = dpu_encoder_virt_enable,
2402 	.atomic_check = dpu_encoder_virt_atomic_check,
2403 };
2404 
2405 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2406 		.destroy = dpu_encoder_destroy,
2407 		.late_register = dpu_encoder_late_register,
2408 		.early_unregister = dpu_encoder_early_unregister,
2409 };
2410 
dpu_encoder_setup(struct drm_device * dev,struct drm_encoder * enc,struct msm_display_info * disp_info)2411 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2412 		struct msm_display_info *disp_info)
2413 {
2414 	struct msm_drm_private *priv = dev->dev_private;
2415 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2416 	struct drm_encoder *drm_enc = NULL;
2417 	struct dpu_encoder_virt *dpu_enc = NULL;
2418 	int ret = 0;
2419 
2420 	dpu_enc = to_dpu_encoder_virt(enc);
2421 
2422 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2423 	if (ret)
2424 		goto fail;
2425 
2426 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2427 	timer_setup(&dpu_enc->frame_done_timer,
2428 			dpu_encoder_frame_done_timeout, 0);
2429 
2430 	if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2431 		timer_setup(&dpu_enc->vsync_event_timer,
2432 				dpu_encoder_vsync_event_handler,
2433 				0);
2434 	else if (disp_info->intf_type == DRM_MODE_ENCODER_TMDS)
2435 		dpu_enc->wide_bus_en = msm_dp_wide_bus_available(
2436 				priv->dp[disp_info->h_tile_instance[0]]);
2437 
2438 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2439 			dpu_encoder_off_work);
2440 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2441 
2442 	kthread_init_work(&dpu_enc->vsync_event_work,
2443 			dpu_encoder_vsync_event_work_handler);
2444 
2445 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2446 
2447 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2448 
2449 	return ret;
2450 
2451 fail:
2452 	DPU_ERROR("failed to create encoder\n");
2453 	if (drm_enc)
2454 		dpu_encoder_destroy(drm_enc);
2455 
2456 	return ret;
2457 
2458 
2459 }
2460 
dpu_encoder_init(struct drm_device * dev,int drm_enc_mode)2461 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2462 		int drm_enc_mode)
2463 {
2464 	struct dpu_encoder_virt *dpu_enc = NULL;
2465 	int rc = 0;
2466 
2467 	dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2468 	if (!dpu_enc)
2469 		return ERR_PTR(-ENOMEM);
2470 
2471 
2472 	rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2473 							  drm_enc_mode, NULL);
2474 	if (rc) {
2475 		devm_kfree(dev->dev, dpu_enc);
2476 		return ERR_PTR(rc);
2477 	}
2478 
2479 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2480 
2481 	spin_lock_init(&dpu_enc->enc_spinlock);
2482 	dpu_enc->enabled = false;
2483 	mutex_init(&dpu_enc->enc_lock);
2484 	mutex_init(&dpu_enc->rc_lock);
2485 
2486 	return &dpu_enc->base;
2487 }
2488 
dpu_encoder_wait_for_event(struct drm_encoder * drm_enc,enum msm_event_wait event)2489 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2490 	enum msm_event_wait event)
2491 {
2492 	int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2493 	struct dpu_encoder_virt *dpu_enc = NULL;
2494 	int i, ret = 0;
2495 
2496 	if (!drm_enc) {
2497 		DPU_ERROR("invalid encoder\n");
2498 		return -EINVAL;
2499 	}
2500 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2501 	DPU_DEBUG_ENC(dpu_enc, "\n");
2502 
2503 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2504 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2505 
2506 		switch (event) {
2507 		case MSM_ENC_COMMIT_DONE:
2508 			fn_wait = phys->ops.wait_for_commit_done;
2509 			break;
2510 		case MSM_ENC_TX_COMPLETE:
2511 			fn_wait = phys->ops.wait_for_tx_complete;
2512 			break;
2513 		case MSM_ENC_VBLANK:
2514 			fn_wait = phys->ops.wait_for_vblank;
2515 			break;
2516 		default:
2517 			DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2518 					event);
2519 			return -EINVAL;
2520 		}
2521 
2522 		if (fn_wait) {
2523 			DPU_ATRACE_BEGIN("wait_for_completion_event");
2524 			ret = fn_wait(phys);
2525 			DPU_ATRACE_END("wait_for_completion_event");
2526 			if (ret)
2527 				return ret;
2528 		}
2529 	}
2530 
2531 	return ret;
2532 }
2533 
dpu_encoder_get_intf_mode(struct drm_encoder * encoder)2534 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2535 {
2536 	struct dpu_encoder_virt *dpu_enc = NULL;
2537 
2538 	if (!encoder) {
2539 		DPU_ERROR("invalid encoder\n");
2540 		return INTF_MODE_NONE;
2541 	}
2542 	dpu_enc = to_dpu_encoder_virt(encoder);
2543 
2544 	if (dpu_enc->cur_master)
2545 		return dpu_enc->cur_master->intf_mode;
2546 
2547 	if (dpu_enc->num_phys_encs)
2548 		return dpu_enc->phys_encs[0]->intf_mode;
2549 
2550 	return INTF_MODE_NONE;
2551 }
2552 
dpu_encoder_helper_get_dsc(struct dpu_encoder_phys * phys_enc)2553 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc)
2554 {
2555 	struct drm_encoder *encoder = phys_enc->parent;
2556 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2557 
2558 	return dpu_enc->dsc_mask;
2559 }
2560