1 // SPDX-License-Identifier: GPL-2.0
2
3 #define pr_fmt(fmt) "DMAR-IR: " fmt
4
5 #include <linux/interrupt.h>
6 #include <linux/dmar.h>
7 #include <linux/spinlock.h>
8 #include <linux/slab.h>
9 #include <linux/jiffies.h>
10 #include <linux/hpet.h>
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/acpi.h>
14 #include <linux/irqdomain.h>
15 #include <linux/crash_dump.h>
16 #include <asm/io_apic.h>
17 #include <asm/apic.h>
18 #include <asm/smp.h>
19 #include <asm/cpu.h>
20 #include <asm/irq_remapping.h>
21 #include <asm/pci-direct.h>
22
23 #include "iommu.h"
24 #include "../irq_remapping.h"
25 #include "cap_audit.h"
26
27 enum irq_mode {
28 IRQ_REMAPPING,
29 IRQ_POSTING,
30 };
31
32 struct ioapic_scope {
33 struct intel_iommu *iommu;
34 unsigned int id;
35 unsigned int bus; /* PCI bus number */
36 unsigned int devfn; /* PCI devfn number */
37 };
38
39 struct hpet_scope {
40 struct intel_iommu *iommu;
41 u8 id;
42 unsigned int bus;
43 unsigned int devfn;
44 };
45
46 struct irq_2_iommu {
47 struct intel_iommu *iommu;
48 u16 irte_index;
49 u16 sub_handle;
50 u8 irte_mask;
51 enum irq_mode mode;
52 };
53
54 struct intel_ir_data {
55 struct irq_2_iommu irq_2_iommu;
56 struct irte irte_entry;
57 union {
58 struct msi_msg msi_entry;
59 };
60 };
61
62 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
63 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
64
65 static int __read_mostly eim_mode;
66 static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
67 static struct hpet_scope ir_hpet[MAX_HPET_TBS];
68
69 /*
70 * Lock ordering:
71 * ->dmar_global_lock
72 * ->irq_2_ir_lock
73 * ->qi->q_lock
74 * ->iommu->register_lock
75 * Note:
76 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
77 * in single-threaded environment with interrupt disabled, so no need to tabke
78 * the dmar_global_lock.
79 */
80 DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
81 static const struct irq_domain_ops intel_ir_domain_ops;
82
83 static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
84 static int __init parse_ioapics_under_ir(void);
85
ir_pre_enabled(struct intel_iommu * iommu)86 static bool ir_pre_enabled(struct intel_iommu *iommu)
87 {
88 return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
89 }
90
clear_ir_pre_enabled(struct intel_iommu * iommu)91 static void clear_ir_pre_enabled(struct intel_iommu *iommu)
92 {
93 iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
94 }
95
init_ir_status(struct intel_iommu * iommu)96 static void init_ir_status(struct intel_iommu *iommu)
97 {
98 u32 gsts;
99
100 gsts = readl(iommu->reg + DMAR_GSTS_REG);
101 if (gsts & DMA_GSTS_IRES)
102 iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
103 }
104
alloc_irte(struct intel_iommu * iommu,struct irq_2_iommu * irq_iommu,u16 count)105 static int alloc_irte(struct intel_iommu *iommu,
106 struct irq_2_iommu *irq_iommu, u16 count)
107 {
108 struct ir_table *table = iommu->ir_table;
109 unsigned int mask = 0;
110 unsigned long flags;
111 int index;
112
113 if (!count || !irq_iommu)
114 return -1;
115
116 if (count > 1) {
117 count = __roundup_pow_of_two(count);
118 mask = ilog2(count);
119 }
120
121 if (mask > ecap_max_handle_mask(iommu->ecap)) {
122 pr_err("Requested mask %x exceeds the max invalidation handle"
123 " mask value %Lx\n", mask,
124 ecap_max_handle_mask(iommu->ecap));
125 return -1;
126 }
127
128 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
129 index = bitmap_find_free_region(table->bitmap,
130 INTR_REMAP_TABLE_ENTRIES, mask);
131 if (index < 0) {
132 pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
133 } else {
134 irq_iommu->iommu = iommu;
135 irq_iommu->irte_index = index;
136 irq_iommu->sub_handle = 0;
137 irq_iommu->irte_mask = mask;
138 irq_iommu->mode = IRQ_REMAPPING;
139 }
140 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
141
142 return index;
143 }
144
qi_flush_iec(struct intel_iommu * iommu,int index,int mask)145 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
146 {
147 struct qi_desc desc;
148
149 desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
150 | QI_IEC_SELECTIVE;
151 desc.qw1 = 0;
152 desc.qw2 = 0;
153 desc.qw3 = 0;
154
155 return qi_submit_sync(iommu, &desc, 1, 0);
156 }
157
modify_irte(struct irq_2_iommu * irq_iommu,struct irte * irte_modified)158 static int modify_irte(struct irq_2_iommu *irq_iommu,
159 struct irte *irte_modified)
160 {
161 struct intel_iommu *iommu;
162 unsigned long flags;
163 struct irte *irte;
164 int rc, index;
165
166 if (!irq_iommu)
167 return -1;
168
169 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
170
171 iommu = irq_iommu->iommu;
172
173 index = irq_iommu->irte_index + irq_iommu->sub_handle;
174 irte = &iommu->ir_table->base[index];
175
176 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
177 if ((irte->pst == 1) || (irte_modified->pst == 1)) {
178 bool ret;
179
180 ret = cmpxchg_double(&irte->low, &irte->high,
181 irte->low, irte->high,
182 irte_modified->low, irte_modified->high);
183 /*
184 * We use cmpxchg16 to atomically update the 128-bit IRTE,
185 * and it cannot be updated by the hardware or other processors
186 * behind us, so the return value of cmpxchg16 should be the
187 * same as the old value.
188 */
189 WARN_ON(!ret);
190 } else
191 #endif
192 {
193 set_64bit(&irte->low, irte_modified->low);
194 set_64bit(&irte->high, irte_modified->high);
195 }
196 __iommu_flush_cache(iommu, irte, sizeof(*irte));
197
198 rc = qi_flush_iec(iommu, index, 0);
199
200 /* Update iommu mode according to the IRTE mode */
201 irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
202 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
203
204 return rc;
205 }
206
map_hpet_to_iommu(u8 hpet_id)207 static struct intel_iommu *map_hpet_to_iommu(u8 hpet_id)
208 {
209 int i;
210
211 for (i = 0; i < MAX_HPET_TBS; i++) {
212 if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
213 return ir_hpet[i].iommu;
214 }
215 return NULL;
216 }
217
map_ioapic_to_iommu(int apic)218 static struct intel_iommu *map_ioapic_to_iommu(int apic)
219 {
220 int i;
221
222 for (i = 0; i < MAX_IO_APICS; i++) {
223 if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
224 return ir_ioapic[i].iommu;
225 }
226 return NULL;
227 }
228
map_dev_to_ir(struct pci_dev * dev)229 static struct irq_domain *map_dev_to_ir(struct pci_dev *dev)
230 {
231 struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev);
232
233 return drhd ? drhd->iommu->ir_msi_domain : NULL;
234 }
235
clear_entries(struct irq_2_iommu * irq_iommu)236 static int clear_entries(struct irq_2_iommu *irq_iommu)
237 {
238 struct irte *start, *entry, *end;
239 struct intel_iommu *iommu;
240 int index;
241
242 if (irq_iommu->sub_handle)
243 return 0;
244
245 iommu = irq_iommu->iommu;
246 index = irq_iommu->irte_index;
247
248 start = iommu->ir_table->base + index;
249 end = start + (1 << irq_iommu->irte_mask);
250
251 for (entry = start; entry < end; entry++) {
252 set_64bit(&entry->low, 0);
253 set_64bit(&entry->high, 0);
254 }
255 bitmap_release_region(iommu->ir_table->bitmap, index,
256 irq_iommu->irte_mask);
257
258 return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
259 }
260
261 /*
262 * source validation type
263 */
264 #define SVT_NO_VERIFY 0x0 /* no verification is required */
265 #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */
266 #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */
267
268 /*
269 * source-id qualifier
270 */
271 #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */
272 #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore
273 * the third least significant bit
274 */
275 #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore
276 * the second and third least significant bits
277 */
278 #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore
279 * the least three significant bits
280 */
281
282 /*
283 * set SVT, SQ and SID fields of irte to verify
284 * source ids of interrupt requests
285 */
set_irte_sid(struct irte * irte,unsigned int svt,unsigned int sq,unsigned int sid)286 static void set_irte_sid(struct irte *irte, unsigned int svt,
287 unsigned int sq, unsigned int sid)
288 {
289 if (disable_sourceid_checking)
290 svt = SVT_NO_VERIFY;
291 irte->svt = svt;
292 irte->sq = sq;
293 irte->sid = sid;
294 }
295
296 /*
297 * Set an IRTE to match only the bus number. Interrupt requests that reference
298 * this IRTE must have a requester-id whose bus number is between or equal
299 * to the start_bus and end_bus arguments.
300 */
set_irte_verify_bus(struct irte * irte,unsigned int start_bus,unsigned int end_bus)301 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
302 unsigned int end_bus)
303 {
304 set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
305 (start_bus << 8) | end_bus);
306 }
307
set_ioapic_sid(struct irte * irte,int apic)308 static int set_ioapic_sid(struct irte *irte, int apic)
309 {
310 int i;
311 u16 sid = 0;
312
313 if (!irte)
314 return -1;
315
316 down_read(&dmar_global_lock);
317 for (i = 0; i < MAX_IO_APICS; i++) {
318 if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
319 sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
320 break;
321 }
322 }
323 up_read(&dmar_global_lock);
324
325 if (sid == 0) {
326 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
327 return -1;
328 }
329
330 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
331
332 return 0;
333 }
334
set_hpet_sid(struct irte * irte,u8 id)335 static int set_hpet_sid(struct irte *irte, u8 id)
336 {
337 int i;
338 u16 sid = 0;
339
340 if (!irte)
341 return -1;
342
343 down_read(&dmar_global_lock);
344 for (i = 0; i < MAX_HPET_TBS; i++) {
345 if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
346 sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
347 break;
348 }
349 }
350 up_read(&dmar_global_lock);
351
352 if (sid == 0) {
353 pr_warn("Failed to set source-id of HPET block (%d)\n", id);
354 return -1;
355 }
356
357 /*
358 * Should really use SQ_ALL_16. Some platforms are broken.
359 * While we figure out the right quirks for these broken platforms, use
360 * SQ_13_IGNORE_3 for now.
361 */
362 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
363
364 return 0;
365 }
366
367 struct set_msi_sid_data {
368 struct pci_dev *pdev;
369 u16 alias;
370 int count;
371 int busmatch_count;
372 };
373
set_msi_sid_cb(struct pci_dev * pdev,u16 alias,void * opaque)374 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
375 {
376 struct set_msi_sid_data *data = opaque;
377
378 if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
379 data->busmatch_count++;
380
381 data->pdev = pdev;
382 data->alias = alias;
383 data->count++;
384
385 return 0;
386 }
387
set_msi_sid(struct irte * irte,struct pci_dev * dev)388 static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
389 {
390 struct set_msi_sid_data data;
391
392 if (!irte || !dev)
393 return -1;
394
395 data.count = 0;
396 data.busmatch_count = 0;
397 pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
398
399 /*
400 * DMA alias provides us with a PCI device and alias. The only case
401 * where the it will return an alias on a different bus than the
402 * device is the case of a PCIe-to-PCI bridge, where the alias is for
403 * the subordinate bus. In this case we can only verify the bus.
404 *
405 * If there are multiple aliases, all with the same bus number,
406 * then all we can do is verify the bus. This is typical in NTB
407 * hardware which use proxy IDs where the device will generate traffic
408 * from multiple devfn numbers on the same bus.
409 *
410 * If the alias device is on a different bus than our source device
411 * then we have a topology based alias, use it.
412 *
413 * Otherwise, the alias is for a device DMA quirk and we cannot
414 * assume that MSI uses the same requester ID. Therefore use the
415 * original device.
416 */
417 if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
418 set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
419 dev->bus->number);
420 else if (data.count >= 2 && data.busmatch_count == data.count)
421 set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
422 else if (data.pdev->bus->number != dev->bus->number)
423 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
424 else
425 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
426 pci_dev_id(dev));
427
428 return 0;
429 }
430
iommu_load_old_irte(struct intel_iommu * iommu)431 static int iommu_load_old_irte(struct intel_iommu *iommu)
432 {
433 struct irte *old_ir_table;
434 phys_addr_t irt_phys;
435 unsigned int i;
436 size_t size;
437 u64 irta;
438
439 /* Check whether the old ir-table has the same size as ours */
440 irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
441 if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
442 != INTR_REMAP_TABLE_REG_SIZE)
443 return -EINVAL;
444
445 irt_phys = irta & VTD_PAGE_MASK;
446 size = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
447
448 /* Map the old IR table */
449 old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
450 if (!old_ir_table)
451 return -ENOMEM;
452
453 /* Copy data over */
454 memcpy(iommu->ir_table->base, old_ir_table, size);
455
456 __iommu_flush_cache(iommu, iommu->ir_table->base, size);
457
458 /*
459 * Now check the table for used entries and mark those as
460 * allocated in the bitmap
461 */
462 for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
463 if (iommu->ir_table->base[i].present)
464 bitmap_set(iommu->ir_table->bitmap, i, 1);
465 }
466
467 memunmap(old_ir_table);
468
469 return 0;
470 }
471
472
iommu_set_irq_remapping(struct intel_iommu * iommu,int mode)473 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
474 {
475 unsigned long flags;
476 u64 addr;
477 u32 sts;
478
479 addr = virt_to_phys((void *)iommu->ir_table->base);
480
481 raw_spin_lock_irqsave(&iommu->register_lock, flags);
482
483 dmar_writeq(iommu->reg + DMAR_IRTA_REG,
484 (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
485
486 /* Set interrupt-remapping table pointer */
487 writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
488
489 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
490 readl, (sts & DMA_GSTS_IRTPS), sts);
491 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
492
493 /*
494 * Global invalidation of interrupt entry cache to make sure the
495 * hardware uses the new irq remapping table.
496 */
497 if (!cap_esirtps(iommu->cap))
498 qi_global_iec(iommu);
499 }
500
iommu_enable_irq_remapping(struct intel_iommu * iommu)501 static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
502 {
503 unsigned long flags;
504 u32 sts;
505
506 raw_spin_lock_irqsave(&iommu->register_lock, flags);
507
508 /* Enable interrupt-remapping */
509 iommu->gcmd |= DMA_GCMD_IRE;
510 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
511 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
512 readl, (sts & DMA_GSTS_IRES), sts);
513
514 /* Block compatibility-format MSIs */
515 if (sts & DMA_GSTS_CFIS) {
516 iommu->gcmd &= ~DMA_GCMD_CFI;
517 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
518 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
519 readl, !(sts & DMA_GSTS_CFIS), sts);
520 }
521
522 /*
523 * With CFI clear in the Global Command register, we should be
524 * protected from dangerous (i.e. compatibility) interrupts
525 * regardless of x2apic status. Check just to be sure.
526 */
527 if (sts & DMA_GSTS_CFIS)
528 WARN(1, KERN_WARNING
529 "Compatibility-format IRQs enabled despite intr remapping;\n"
530 "you are vulnerable to IRQ injection.\n");
531
532 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
533 }
534
intel_setup_irq_remapping(struct intel_iommu * iommu)535 static int intel_setup_irq_remapping(struct intel_iommu *iommu)
536 {
537 struct ir_table *ir_table;
538 struct fwnode_handle *fn;
539 unsigned long *bitmap;
540 struct page *pages;
541
542 if (iommu->ir_table)
543 return 0;
544
545 ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
546 if (!ir_table)
547 return -ENOMEM;
548
549 pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
550 INTR_REMAP_PAGE_ORDER);
551 if (!pages) {
552 pr_err("IR%d: failed to allocate pages of order %d\n",
553 iommu->seq_id, INTR_REMAP_PAGE_ORDER);
554 goto out_free_table;
555 }
556
557 bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC);
558 if (bitmap == NULL) {
559 pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
560 goto out_free_pages;
561 }
562
563 fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
564 if (!fn)
565 goto out_free_bitmap;
566
567 iommu->ir_domain =
568 irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
569 0, INTR_REMAP_TABLE_ENTRIES,
570 fn, &intel_ir_domain_ops,
571 iommu);
572 if (!iommu->ir_domain) {
573 pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
574 goto out_free_fwnode;
575 }
576 iommu->ir_msi_domain =
577 arch_create_remap_msi_irq_domain(iommu->ir_domain,
578 "INTEL-IR-MSI",
579 iommu->seq_id);
580
581 ir_table->base = page_address(pages);
582 ir_table->bitmap = bitmap;
583 iommu->ir_table = ir_table;
584
585 /*
586 * If the queued invalidation is already initialized,
587 * shouldn't disable it.
588 */
589 if (!iommu->qi) {
590 /*
591 * Clear previous faults.
592 */
593 dmar_fault(-1, iommu);
594 dmar_disable_qi(iommu);
595
596 if (dmar_enable_qi(iommu)) {
597 pr_err("Failed to enable queued invalidation\n");
598 goto out_free_ir_domain;
599 }
600 }
601
602 init_ir_status(iommu);
603
604 if (ir_pre_enabled(iommu)) {
605 if (!is_kdump_kernel()) {
606 pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
607 iommu->name);
608 clear_ir_pre_enabled(iommu);
609 iommu_disable_irq_remapping(iommu);
610 } else if (iommu_load_old_irte(iommu))
611 pr_err("Failed to copy IR table for %s from previous kernel\n",
612 iommu->name);
613 else
614 pr_info("Copied IR table for %s from previous kernel\n",
615 iommu->name);
616 }
617
618 iommu_set_irq_remapping(iommu, eim_mode);
619
620 return 0;
621
622 out_free_ir_domain:
623 if (iommu->ir_msi_domain)
624 irq_domain_remove(iommu->ir_msi_domain);
625 iommu->ir_msi_domain = NULL;
626 irq_domain_remove(iommu->ir_domain);
627 iommu->ir_domain = NULL;
628 out_free_fwnode:
629 irq_domain_free_fwnode(fn);
630 out_free_bitmap:
631 bitmap_free(bitmap);
632 out_free_pages:
633 __free_pages(pages, INTR_REMAP_PAGE_ORDER);
634 out_free_table:
635 kfree(ir_table);
636
637 iommu->ir_table = NULL;
638
639 return -ENOMEM;
640 }
641
intel_teardown_irq_remapping(struct intel_iommu * iommu)642 static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
643 {
644 struct fwnode_handle *fn;
645
646 if (iommu && iommu->ir_table) {
647 if (iommu->ir_msi_domain) {
648 fn = iommu->ir_msi_domain->fwnode;
649
650 irq_domain_remove(iommu->ir_msi_domain);
651 irq_domain_free_fwnode(fn);
652 iommu->ir_msi_domain = NULL;
653 }
654 if (iommu->ir_domain) {
655 fn = iommu->ir_domain->fwnode;
656
657 irq_domain_remove(iommu->ir_domain);
658 irq_domain_free_fwnode(fn);
659 iommu->ir_domain = NULL;
660 }
661 free_pages((unsigned long)iommu->ir_table->base,
662 INTR_REMAP_PAGE_ORDER);
663 bitmap_free(iommu->ir_table->bitmap);
664 kfree(iommu->ir_table);
665 iommu->ir_table = NULL;
666 }
667 }
668
669 /*
670 * Disable Interrupt Remapping.
671 */
iommu_disable_irq_remapping(struct intel_iommu * iommu)672 static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
673 {
674 unsigned long flags;
675 u32 sts;
676
677 if (!ecap_ir_support(iommu->ecap))
678 return;
679
680 /*
681 * global invalidation of interrupt entry cache before disabling
682 * interrupt-remapping.
683 */
684 if (!cap_esirtps(iommu->cap))
685 qi_global_iec(iommu);
686
687 raw_spin_lock_irqsave(&iommu->register_lock, flags);
688
689 sts = readl(iommu->reg + DMAR_GSTS_REG);
690 if (!(sts & DMA_GSTS_IRES))
691 goto end;
692
693 iommu->gcmd &= ~DMA_GCMD_IRE;
694 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
695
696 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
697 readl, !(sts & DMA_GSTS_IRES), sts);
698
699 end:
700 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
701 }
702
dmar_x2apic_optout(void)703 static int __init dmar_x2apic_optout(void)
704 {
705 struct acpi_table_dmar *dmar;
706 dmar = (struct acpi_table_dmar *)dmar_tbl;
707 if (!dmar || no_x2apic_optout)
708 return 0;
709 return dmar->flags & DMAR_X2APIC_OPT_OUT;
710 }
711
intel_cleanup_irq_remapping(void)712 static void __init intel_cleanup_irq_remapping(void)
713 {
714 struct dmar_drhd_unit *drhd;
715 struct intel_iommu *iommu;
716
717 for_each_iommu(iommu, drhd) {
718 if (ecap_ir_support(iommu->ecap)) {
719 iommu_disable_irq_remapping(iommu);
720 intel_teardown_irq_remapping(iommu);
721 }
722 }
723
724 if (x2apic_supported())
725 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
726 }
727
intel_prepare_irq_remapping(void)728 static int __init intel_prepare_irq_remapping(void)
729 {
730 struct dmar_drhd_unit *drhd;
731 struct intel_iommu *iommu;
732 int eim = 0;
733
734 if (irq_remap_broken) {
735 pr_warn("This system BIOS has enabled interrupt remapping\n"
736 "on a chipset that contains an erratum making that\n"
737 "feature unstable. To maintain system stability\n"
738 "interrupt remapping is being disabled. Please\n"
739 "contact your BIOS vendor for an update\n");
740 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
741 return -ENODEV;
742 }
743
744 if (dmar_table_init() < 0)
745 return -ENODEV;
746
747 if (intel_cap_audit(CAP_AUDIT_STATIC_IRQR, NULL))
748 return -ENODEV;
749
750 if (!dmar_ir_support())
751 return -ENODEV;
752
753 if (parse_ioapics_under_ir()) {
754 pr_info("Not enabling interrupt remapping\n");
755 goto error;
756 }
757
758 /* First make sure all IOMMUs support IRQ remapping */
759 for_each_iommu(iommu, drhd)
760 if (!ecap_ir_support(iommu->ecap))
761 goto error;
762
763 /* Detect remapping mode: lapic or x2apic */
764 if (x2apic_supported()) {
765 eim = !dmar_x2apic_optout();
766 if (!eim) {
767 pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
768 pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
769 }
770 }
771
772 for_each_iommu(iommu, drhd) {
773 if (eim && !ecap_eim_support(iommu->ecap)) {
774 pr_info("%s does not support EIM\n", iommu->name);
775 eim = 0;
776 }
777 }
778
779 eim_mode = eim;
780 if (eim)
781 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
782
783 /* Do the initializations early */
784 for_each_iommu(iommu, drhd) {
785 if (intel_setup_irq_remapping(iommu)) {
786 pr_err("Failed to setup irq remapping for %s\n",
787 iommu->name);
788 goto error;
789 }
790 }
791
792 return 0;
793
794 error:
795 intel_cleanup_irq_remapping();
796 return -ENODEV;
797 }
798
799 /*
800 * Set Posted-Interrupts capability.
801 */
set_irq_posting_cap(void)802 static inline void set_irq_posting_cap(void)
803 {
804 struct dmar_drhd_unit *drhd;
805 struct intel_iommu *iommu;
806
807 if (!disable_irq_post) {
808 /*
809 * If IRTE is in posted format, the 'pda' field goes across the
810 * 64-bit boundary, we need use cmpxchg16b to atomically update
811 * it. We only expose posted-interrupt when X86_FEATURE_CX16
812 * is supported. Actually, hardware platforms supporting PI
813 * should have X86_FEATURE_CX16 support, this has been confirmed
814 * with Intel hardware guys.
815 */
816 if (boot_cpu_has(X86_FEATURE_CX16))
817 intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
818
819 for_each_iommu(iommu, drhd)
820 if (!cap_pi_support(iommu->cap)) {
821 intel_irq_remap_ops.capability &=
822 ~(1 << IRQ_POSTING_CAP);
823 break;
824 }
825 }
826 }
827
intel_enable_irq_remapping(void)828 static int __init intel_enable_irq_remapping(void)
829 {
830 struct dmar_drhd_unit *drhd;
831 struct intel_iommu *iommu;
832 bool setup = false;
833
834 /*
835 * Setup Interrupt-remapping for all the DRHD's now.
836 */
837 for_each_iommu(iommu, drhd) {
838 if (!ir_pre_enabled(iommu))
839 iommu_enable_irq_remapping(iommu);
840 setup = true;
841 }
842
843 if (!setup)
844 goto error;
845
846 irq_remapping_enabled = 1;
847
848 set_irq_posting_cap();
849
850 pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
851
852 return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
853
854 error:
855 intel_cleanup_irq_remapping();
856 return -1;
857 }
858
ir_parse_one_hpet_scope(struct acpi_dmar_device_scope * scope,struct intel_iommu * iommu,struct acpi_dmar_hardware_unit * drhd)859 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
860 struct intel_iommu *iommu,
861 struct acpi_dmar_hardware_unit *drhd)
862 {
863 struct acpi_dmar_pci_path *path;
864 u8 bus;
865 int count, free = -1;
866
867 bus = scope->bus;
868 path = (struct acpi_dmar_pci_path *)(scope + 1);
869 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
870 / sizeof(struct acpi_dmar_pci_path);
871
872 while (--count > 0) {
873 /*
874 * Access PCI directly due to the PCI
875 * subsystem isn't initialized yet.
876 */
877 bus = read_pci_config_byte(bus, path->device, path->function,
878 PCI_SECONDARY_BUS);
879 path++;
880 }
881
882 for (count = 0; count < MAX_HPET_TBS; count++) {
883 if (ir_hpet[count].iommu == iommu &&
884 ir_hpet[count].id == scope->enumeration_id)
885 return 0;
886 else if (ir_hpet[count].iommu == NULL && free == -1)
887 free = count;
888 }
889 if (free == -1) {
890 pr_warn("Exceeded Max HPET blocks\n");
891 return -ENOSPC;
892 }
893
894 ir_hpet[free].iommu = iommu;
895 ir_hpet[free].id = scope->enumeration_id;
896 ir_hpet[free].bus = bus;
897 ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
898 pr_info("HPET id %d under DRHD base 0x%Lx\n",
899 scope->enumeration_id, drhd->address);
900
901 return 0;
902 }
903
ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope * scope,struct intel_iommu * iommu,struct acpi_dmar_hardware_unit * drhd)904 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
905 struct intel_iommu *iommu,
906 struct acpi_dmar_hardware_unit *drhd)
907 {
908 struct acpi_dmar_pci_path *path;
909 u8 bus;
910 int count, free = -1;
911
912 bus = scope->bus;
913 path = (struct acpi_dmar_pci_path *)(scope + 1);
914 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
915 / sizeof(struct acpi_dmar_pci_path);
916
917 while (--count > 0) {
918 /*
919 * Access PCI directly due to the PCI
920 * subsystem isn't initialized yet.
921 */
922 bus = read_pci_config_byte(bus, path->device, path->function,
923 PCI_SECONDARY_BUS);
924 path++;
925 }
926
927 for (count = 0; count < MAX_IO_APICS; count++) {
928 if (ir_ioapic[count].iommu == iommu &&
929 ir_ioapic[count].id == scope->enumeration_id)
930 return 0;
931 else if (ir_ioapic[count].iommu == NULL && free == -1)
932 free = count;
933 }
934 if (free == -1) {
935 pr_warn("Exceeded Max IO APICS\n");
936 return -ENOSPC;
937 }
938
939 ir_ioapic[free].bus = bus;
940 ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
941 ir_ioapic[free].iommu = iommu;
942 ir_ioapic[free].id = scope->enumeration_id;
943 pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n",
944 scope->enumeration_id, drhd->address, iommu->seq_id);
945
946 return 0;
947 }
948
ir_parse_ioapic_hpet_scope(struct acpi_dmar_header * header,struct intel_iommu * iommu)949 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
950 struct intel_iommu *iommu)
951 {
952 int ret = 0;
953 struct acpi_dmar_hardware_unit *drhd;
954 struct acpi_dmar_device_scope *scope;
955 void *start, *end;
956
957 drhd = (struct acpi_dmar_hardware_unit *)header;
958 start = (void *)(drhd + 1);
959 end = ((void *)drhd) + header->length;
960
961 while (start < end && ret == 0) {
962 scope = start;
963 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
964 ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
965 else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
966 ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
967 start += scope->length;
968 }
969
970 return ret;
971 }
972
ir_remove_ioapic_hpet_scope(struct intel_iommu * iommu)973 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
974 {
975 int i;
976
977 for (i = 0; i < MAX_HPET_TBS; i++)
978 if (ir_hpet[i].iommu == iommu)
979 ir_hpet[i].iommu = NULL;
980
981 for (i = 0; i < MAX_IO_APICS; i++)
982 if (ir_ioapic[i].iommu == iommu)
983 ir_ioapic[i].iommu = NULL;
984 }
985
986 /*
987 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
988 * hardware unit.
989 */
parse_ioapics_under_ir(void)990 static int __init parse_ioapics_under_ir(void)
991 {
992 struct dmar_drhd_unit *drhd;
993 struct intel_iommu *iommu;
994 bool ir_supported = false;
995 int ioapic_idx;
996
997 for_each_iommu(iommu, drhd) {
998 int ret;
999
1000 if (!ecap_ir_support(iommu->ecap))
1001 continue;
1002
1003 ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
1004 if (ret)
1005 return ret;
1006
1007 ir_supported = true;
1008 }
1009
1010 if (!ir_supported)
1011 return -ENODEV;
1012
1013 for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
1014 int ioapic_id = mpc_ioapic_id(ioapic_idx);
1015 if (!map_ioapic_to_iommu(ioapic_id)) {
1016 pr_err(FW_BUG "ioapic %d has no mapping iommu, "
1017 "interrupt remapping will be disabled\n",
1018 ioapic_id);
1019 return -1;
1020 }
1021 }
1022
1023 return 0;
1024 }
1025
ir_dev_scope_init(void)1026 static int __init ir_dev_scope_init(void)
1027 {
1028 int ret;
1029
1030 if (!irq_remapping_enabled)
1031 return 0;
1032
1033 down_write(&dmar_global_lock);
1034 ret = dmar_dev_scope_init();
1035 up_write(&dmar_global_lock);
1036
1037 return ret;
1038 }
1039 rootfs_initcall(ir_dev_scope_init);
1040
disable_irq_remapping(void)1041 static void disable_irq_remapping(void)
1042 {
1043 struct dmar_drhd_unit *drhd;
1044 struct intel_iommu *iommu = NULL;
1045
1046 /*
1047 * Disable Interrupt-remapping for all the DRHD's now.
1048 */
1049 for_each_iommu(iommu, drhd) {
1050 if (!ecap_ir_support(iommu->ecap))
1051 continue;
1052
1053 iommu_disable_irq_remapping(iommu);
1054 }
1055
1056 /*
1057 * Clear Posted-Interrupts capability.
1058 */
1059 if (!disable_irq_post)
1060 intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1061 }
1062
reenable_irq_remapping(int eim)1063 static int reenable_irq_remapping(int eim)
1064 {
1065 struct dmar_drhd_unit *drhd;
1066 bool setup = false;
1067 struct intel_iommu *iommu = NULL;
1068
1069 for_each_iommu(iommu, drhd)
1070 if (iommu->qi)
1071 dmar_reenable_qi(iommu);
1072
1073 /*
1074 * Setup Interrupt-remapping for all the DRHD's now.
1075 */
1076 for_each_iommu(iommu, drhd) {
1077 if (!ecap_ir_support(iommu->ecap))
1078 continue;
1079
1080 /* Set up interrupt remapping for iommu.*/
1081 iommu_set_irq_remapping(iommu, eim);
1082 iommu_enable_irq_remapping(iommu);
1083 setup = true;
1084 }
1085
1086 if (!setup)
1087 goto error;
1088
1089 set_irq_posting_cap();
1090
1091 return 0;
1092
1093 error:
1094 /*
1095 * handle error condition gracefully here!
1096 */
1097 return -1;
1098 }
1099
1100 /*
1101 * Store the MSI remapping domain pointer in the device if enabled.
1102 *
1103 * This is called from dmar_pci_bus_add_dev() so it works even when DMA
1104 * remapping is disabled. Only update the pointer if the device is not
1105 * already handled by a non default PCI/MSI interrupt domain. This protects
1106 * e.g. VMD devices.
1107 */
intel_irq_remap_add_device(struct dmar_pci_notify_info * info)1108 void intel_irq_remap_add_device(struct dmar_pci_notify_info *info)
1109 {
1110 if (!irq_remapping_enabled || pci_dev_has_special_msi_domain(info->dev))
1111 return;
1112
1113 dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev));
1114 }
1115
prepare_irte(struct irte * irte,int vector,unsigned int dest)1116 static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1117 {
1118 memset(irte, 0, sizeof(*irte));
1119
1120 irte->present = 1;
1121 irte->dst_mode = apic->dest_mode_logical;
1122 /*
1123 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1124 * actual level or edge trigger will be setup in the IO-APIC
1125 * RTE. This will help simplify level triggered irq migration.
1126 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1127 * irq migration in the presence of interrupt-remapping.
1128 */
1129 irte->trigger_mode = 0;
1130 irte->dlvry_mode = apic->delivery_mode;
1131 irte->vector = vector;
1132 irte->dest_id = IRTE_DEST(dest);
1133 irte->redir_hint = 1;
1134 }
1135
1136 struct irq_remap_ops intel_irq_remap_ops = {
1137 .prepare = intel_prepare_irq_remapping,
1138 .enable = intel_enable_irq_remapping,
1139 .disable = disable_irq_remapping,
1140 .reenable = reenable_irq_remapping,
1141 .enable_faulting = enable_drhd_fault_handling,
1142 };
1143
intel_ir_reconfigure_irte(struct irq_data * irqd,bool force)1144 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
1145 {
1146 struct intel_ir_data *ir_data = irqd->chip_data;
1147 struct irte *irte = &ir_data->irte_entry;
1148 struct irq_cfg *cfg = irqd_cfg(irqd);
1149
1150 /*
1151 * Atomically updates the IRTE with the new destination, vector
1152 * and flushes the interrupt entry cache.
1153 */
1154 irte->vector = cfg->vector;
1155 irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1156
1157 /* Update the hardware only if the interrupt is in remapped mode. */
1158 if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1159 modify_irte(&ir_data->irq_2_iommu, irte);
1160 }
1161
1162 /*
1163 * Migrate the IO-APIC irq in the presence of intr-remapping.
1164 *
1165 * For both level and edge triggered, irq migration is a simple atomic
1166 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1167 *
1168 * For level triggered, we eliminate the io-apic RTE modification (with the
1169 * updated vector information), by using a virtual vector (io-apic pin number).
1170 * Real vector that is used for interrupting cpu will be coming from
1171 * the interrupt-remapping table entry.
1172 *
1173 * As the migration is a simple atomic update of IRTE, the same mechanism
1174 * is used to migrate MSI irq's in the presence of interrupt-remapping.
1175 */
1176 static int
intel_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)1177 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1178 bool force)
1179 {
1180 struct irq_data *parent = data->parent_data;
1181 struct irq_cfg *cfg = irqd_cfg(data);
1182 int ret;
1183
1184 ret = parent->chip->irq_set_affinity(parent, mask, force);
1185 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1186 return ret;
1187
1188 intel_ir_reconfigure_irte(data, false);
1189 /*
1190 * After this point, all the interrupts will start arriving
1191 * at the new destination. So, time to cleanup the previous
1192 * vector allocation.
1193 */
1194 send_cleanup_vector(cfg);
1195
1196 return IRQ_SET_MASK_OK_DONE;
1197 }
1198
intel_ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)1199 static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1200 struct msi_msg *msg)
1201 {
1202 struct intel_ir_data *ir_data = irq_data->chip_data;
1203
1204 *msg = ir_data->msi_entry;
1205 }
1206
intel_ir_set_vcpu_affinity(struct irq_data * data,void * info)1207 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1208 {
1209 struct intel_ir_data *ir_data = data->chip_data;
1210 struct vcpu_data *vcpu_pi_info = info;
1211
1212 /* stop posting interrupts, back to remapping mode */
1213 if (!vcpu_pi_info) {
1214 modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1215 } else {
1216 struct irte irte_pi;
1217
1218 /*
1219 * We are not caching the posted interrupt entry. We
1220 * copy the data from the remapped entry and modify
1221 * the fields which are relevant for posted mode. The
1222 * cached remapped entry is used for switching back to
1223 * remapped mode.
1224 */
1225 memset(&irte_pi, 0, sizeof(irte_pi));
1226 dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1227
1228 /* Update the posted mode fields */
1229 irte_pi.p_pst = 1;
1230 irte_pi.p_urgent = 0;
1231 irte_pi.p_vector = vcpu_pi_info->vector;
1232 irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1233 (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1234 irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1235 ~(-1UL << PDA_HIGH_BIT);
1236
1237 modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1238 }
1239
1240 return 0;
1241 }
1242
1243 static struct irq_chip intel_ir_chip = {
1244 .name = "INTEL-IR",
1245 .irq_ack = apic_ack_irq,
1246 .irq_set_affinity = intel_ir_set_affinity,
1247 .irq_compose_msi_msg = intel_ir_compose_msi_msg,
1248 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity,
1249 };
1250
fill_msi_msg(struct msi_msg * msg,u32 index,u32 subhandle)1251 static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle)
1252 {
1253 memset(msg, 0, sizeof(*msg));
1254
1255 msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW;
1256 msg->arch_addr_lo.dmar_subhandle_valid = true;
1257 msg->arch_addr_lo.dmar_format = true;
1258 msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF;
1259 msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000);
1260
1261 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
1262
1263 msg->arch_data.dmar_subhandle = subhandle;
1264 }
1265
intel_irq_remapping_prepare_irte(struct intel_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int index,int sub_handle)1266 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1267 struct irq_cfg *irq_cfg,
1268 struct irq_alloc_info *info,
1269 int index, int sub_handle)
1270 {
1271 struct irte *irte = &data->irte_entry;
1272
1273 prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1274
1275 switch (info->type) {
1276 case X86_IRQ_ALLOC_TYPE_IOAPIC:
1277 /* Set source-id of interrupt request */
1278 set_ioapic_sid(irte, info->devid);
1279 apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1280 info->devid, irte->present, irte->fpd,
1281 irte->dst_mode, irte->redir_hint,
1282 irte->trigger_mode, irte->dlvry_mode,
1283 irte->avail, irte->vector, irte->dest_id,
1284 irte->sid, irte->sq, irte->svt);
1285 sub_handle = info->ioapic.pin;
1286 break;
1287 case X86_IRQ_ALLOC_TYPE_HPET:
1288 set_hpet_sid(irte, info->devid);
1289 break;
1290 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
1291 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
1292 set_msi_sid(irte,
1293 pci_real_dma_dev(msi_desc_to_pci_dev(info->desc)));
1294 break;
1295 default:
1296 BUG_ON(1);
1297 break;
1298 }
1299 fill_msi_msg(&data->msi_entry, index, sub_handle);
1300 }
1301
intel_free_irq_resources(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1302 static void intel_free_irq_resources(struct irq_domain *domain,
1303 unsigned int virq, unsigned int nr_irqs)
1304 {
1305 struct irq_data *irq_data;
1306 struct intel_ir_data *data;
1307 struct irq_2_iommu *irq_iommu;
1308 unsigned long flags;
1309 int i;
1310 for (i = 0; i < nr_irqs; i++) {
1311 irq_data = irq_domain_get_irq_data(domain, virq + i);
1312 if (irq_data && irq_data->chip_data) {
1313 data = irq_data->chip_data;
1314 irq_iommu = &data->irq_2_iommu;
1315 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1316 clear_entries(irq_iommu);
1317 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1318 irq_domain_reset_irq_data(irq_data);
1319 kfree(data);
1320 }
1321 }
1322 }
1323
intel_irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1324 static int intel_irq_remapping_alloc(struct irq_domain *domain,
1325 unsigned int virq, unsigned int nr_irqs,
1326 void *arg)
1327 {
1328 struct intel_iommu *iommu = domain->host_data;
1329 struct irq_alloc_info *info = arg;
1330 struct intel_ir_data *data, *ird;
1331 struct irq_data *irq_data;
1332 struct irq_cfg *irq_cfg;
1333 int i, ret, index;
1334
1335 if (!info || !iommu)
1336 return -EINVAL;
1337 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI &&
1338 info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX)
1339 return -EINVAL;
1340
1341 /*
1342 * With IRQ remapping enabled, don't need contiguous CPU vectors
1343 * to support multiple MSI interrupts.
1344 */
1345 if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
1346 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
1347
1348 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1349 if (ret < 0)
1350 return ret;
1351
1352 ret = -ENOMEM;
1353 data = kzalloc(sizeof(*data), GFP_KERNEL);
1354 if (!data)
1355 goto out_free_parent;
1356
1357 down_read(&dmar_global_lock);
1358 index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1359 up_read(&dmar_global_lock);
1360 if (index < 0) {
1361 pr_warn("Failed to allocate IRTE\n");
1362 kfree(data);
1363 goto out_free_parent;
1364 }
1365
1366 for (i = 0; i < nr_irqs; i++) {
1367 irq_data = irq_domain_get_irq_data(domain, virq + i);
1368 irq_cfg = irqd_cfg(irq_data);
1369 if (!irq_data || !irq_cfg) {
1370 if (!i)
1371 kfree(data);
1372 ret = -EINVAL;
1373 goto out_free_data;
1374 }
1375
1376 if (i > 0) {
1377 ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1378 if (!ird)
1379 goto out_free_data;
1380 /* Initialize the common data */
1381 ird->irq_2_iommu = data->irq_2_iommu;
1382 ird->irq_2_iommu.sub_handle = i;
1383 } else {
1384 ird = data;
1385 }
1386
1387 irq_data->hwirq = (index << 16) + i;
1388 irq_data->chip_data = ird;
1389 irq_data->chip = &intel_ir_chip;
1390 intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1391 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
1392 }
1393 return 0;
1394
1395 out_free_data:
1396 intel_free_irq_resources(domain, virq, i);
1397 out_free_parent:
1398 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1399 return ret;
1400 }
1401
intel_irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1402 static void intel_irq_remapping_free(struct irq_domain *domain,
1403 unsigned int virq, unsigned int nr_irqs)
1404 {
1405 intel_free_irq_resources(domain, virq, nr_irqs);
1406 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1407 }
1408
intel_irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)1409 static int intel_irq_remapping_activate(struct irq_domain *domain,
1410 struct irq_data *irq_data, bool reserve)
1411 {
1412 intel_ir_reconfigure_irte(irq_data, true);
1413 return 0;
1414 }
1415
intel_irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)1416 static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1417 struct irq_data *irq_data)
1418 {
1419 struct intel_ir_data *data = irq_data->chip_data;
1420 struct irte entry;
1421
1422 memset(&entry, 0, sizeof(entry));
1423 modify_irte(&data->irq_2_iommu, &entry);
1424 }
1425
intel_irq_remapping_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)1426 static int intel_irq_remapping_select(struct irq_domain *d,
1427 struct irq_fwspec *fwspec,
1428 enum irq_domain_bus_token bus_token)
1429 {
1430 struct intel_iommu *iommu = NULL;
1431
1432 if (x86_fwspec_is_ioapic(fwspec))
1433 iommu = map_ioapic_to_iommu(fwspec->param[0]);
1434 else if (x86_fwspec_is_hpet(fwspec))
1435 iommu = map_hpet_to_iommu(fwspec->param[0]);
1436
1437 return iommu && d == iommu->ir_domain;
1438 }
1439
1440 static const struct irq_domain_ops intel_ir_domain_ops = {
1441 .select = intel_irq_remapping_select,
1442 .alloc = intel_irq_remapping_alloc,
1443 .free = intel_irq_remapping_free,
1444 .activate = intel_irq_remapping_activate,
1445 .deactivate = intel_irq_remapping_deactivate,
1446 };
1447
1448 /*
1449 * Support of Interrupt Remapping Unit Hotplug
1450 */
dmar_ir_add(struct dmar_drhd_unit * dmaru,struct intel_iommu * iommu)1451 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1452 {
1453 int ret;
1454 int eim = x2apic_enabled();
1455
1456 ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_IRQR, iommu);
1457 if (ret)
1458 return ret;
1459
1460 if (eim && !ecap_eim_support(iommu->ecap)) {
1461 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1462 iommu->reg_phys, iommu->ecap);
1463 return -ENODEV;
1464 }
1465
1466 if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1467 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1468 iommu->reg_phys);
1469 return -ENODEV;
1470 }
1471
1472 /* TODO: check all IOAPICs are covered by IOMMU */
1473
1474 /* Setup Interrupt-remapping now. */
1475 ret = intel_setup_irq_remapping(iommu);
1476 if (ret) {
1477 pr_err("Failed to setup irq remapping for %s\n",
1478 iommu->name);
1479 intel_teardown_irq_remapping(iommu);
1480 ir_remove_ioapic_hpet_scope(iommu);
1481 } else {
1482 iommu_enable_irq_remapping(iommu);
1483 }
1484
1485 return ret;
1486 }
1487
dmar_ir_hotplug(struct dmar_drhd_unit * dmaru,bool insert)1488 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1489 {
1490 int ret = 0;
1491 struct intel_iommu *iommu = dmaru->iommu;
1492
1493 if (!irq_remapping_enabled)
1494 return 0;
1495 if (iommu == NULL)
1496 return -EINVAL;
1497 if (!ecap_ir_support(iommu->ecap))
1498 return 0;
1499 if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1500 !cap_pi_support(iommu->cap))
1501 return -EBUSY;
1502
1503 if (insert) {
1504 if (!iommu->ir_table)
1505 ret = dmar_ir_add(dmaru, iommu);
1506 } else {
1507 if (iommu->ir_table) {
1508 if (!bitmap_empty(iommu->ir_table->bitmap,
1509 INTR_REMAP_TABLE_ENTRIES)) {
1510 ret = -EBUSY;
1511 } else {
1512 iommu_disable_irq_remapping(iommu);
1513 intel_teardown_irq_remapping(iommu);
1514 ir_remove_ioapic_hpet_scope(iommu);
1515 }
1516 }
1517 }
1518
1519 return ret;
1520 }
1521