1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5 *
6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst
7 */
8
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24
25 #include "clk.h"
26
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32
33 static int prepare_refcnt;
34 static int enable_refcnt;
35
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39
40 static const struct hlist_head *all_lists[] = {
41 &clk_root_list,
42 &clk_orphan_list,
43 NULL,
44 };
45
46 /*** private data structures ***/
47
48 struct clk_parent_map {
49 const struct clk_hw *hw;
50 struct clk_core *core;
51 const char *fw_name;
52 const char *name;
53 int index;
54 };
55
56 struct clk_core {
57 const char *name;
58 const struct clk_ops *ops;
59 struct clk_hw *hw;
60 struct module *owner;
61 struct device *dev;
62 struct device_node *of_node;
63 struct clk_core *parent;
64 struct clk_parent_map *parents;
65 u8 num_parents;
66 u8 new_parent_index;
67 unsigned long rate;
68 unsigned long req_rate;
69 unsigned long new_rate;
70 struct clk_core *new_parent;
71 struct clk_core *new_child;
72 unsigned long flags;
73 bool orphan;
74 bool rpm_enabled;
75 bool need_sync;
76 bool boot_enabled;
77 unsigned int enable_count;
78 unsigned int prepare_count;
79 unsigned int protect_count;
80 unsigned long min_rate;
81 unsigned long max_rate;
82 unsigned long accuracy;
83 int phase;
84 struct clk_duty duty;
85 struct hlist_head children;
86 struct hlist_node child_node;
87 struct hlist_head clks;
88 unsigned int notifier_count;
89 #ifdef CONFIG_DEBUG_FS
90 struct dentry *dentry;
91 struct hlist_node debug_node;
92 #endif
93 struct kref ref;
94 };
95
96 #define CREATE_TRACE_POINTS
97 #include <trace/events/clk.h>
98
99 struct clk {
100 struct clk_core *core;
101 struct device *dev;
102 const char *dev_id;
103 const char *con_id;
104 unsigned long min_rate;
105 unsigned long max_rate;
106 unsigned int exclusive_count;
107 struct hlist_node clks_node;
108 };
109
110 /*** runtime pm ***/
clk_pm_runtime_get(struct clk_core * core)111 static int clk_pm_runtime_get(struct clk_core *core)
112 {
113 if (!core->rpm_enabled)
114 return 0;
115
116 return pm_runtime_resume_and_get(core->dev);
117 }
118
clk_pm_runtime_put(struct clk_core * core)119 static void clk_pm_runtime_put(struct clk_core *core)
120 {
121 if (!core->rpm_enabled)
122 return;
123
124 pm_runtime_put_sync(core->dev);
125 }
126
127 /*** locking ***/
clk_prepare_lock(void)128 static void clk_prepare_lock(void)
129 {
130 if (!mutex_trylock(&prepare_lock)) {
131 if (prepare_owner == current) {
132 prepare_refcnt++;
133 return;
134 }
135 mutex_lock(&prepare_lock);
136 }
137 WARN_ON_ONCE(prepare_owner != NULL);
138 WARN_ON_ONCE(prepare_refcnt != 0);
139 prepare_owner = current;
140 prepare_refcnt = 1;
141 }
142
clk_prepare_unlock(void)143 static void clk_prepare_unlock(void)
144 {
145 WARN_ON_ONCE(prepare_owner != current);
146 WARN_ON_ONCE(prepare_refcnt == 0);
147
148 if (--prepare_refcnt)
149 return;
150 prepare_owner = NULL;
151 mutex_unlock(&prepare_lock);
152 }
153
clk_enable_lock(void)154 static unsigned long clk_enable_lock(void)
155 __acquires(enable_lock)
156 {
157 unsigned long flags;
158
159 /*
160 * On UP systems, spin_trylock_irqsave() always returns true, even if
161 * we already hold the lock. So, in that case, we rely only on
162 * reference counting.
163 */
164 if (!IS_ENABLED(CONFIG_SMP) ||
165 !spin_trylock_irqsave(&enable_lock, flags)) {
166 if (enable_owner == current) {
167 enable_refcnt++;
168 __acquire(enable_lock);
169 if (!IS_ENABLED(CONFIG_SMP))
170 local_save_flags(flags);
171 return flags;
172 }
173 spin_lock_irqsave(&enable_lock, flags);
174 }
175 WARN_ON_ONCE(enable_owner != NULL);
176 WARN_ON_ONCE(enable_refcnt != 0);
177 enable_owner = current;
178 enable_refcnt = 1;
179 return flags;
180 }
181
clk_enable_unlock(unsigned long flags)182 static void clk_enable_unlock(unsigned long flags)
183 __releases(enable_lock)
184 {
185 WARN_ON_ONCE(enable_owner != current);
186 WARN_ON_ONCE(enable_refcnt == 0);
187
188 if (--enable_refcnt) {
189 __release(enable_lock);
190 return;
191 }
192 enable_owner = NULL;
193 spin_unlock_irqrestore(&enable_lock, flags);
194 }
195
clk_core_rate_is_protected(struct clk_core * core)196 static bool clk_core_rate_is_protected(struct clk_core *core)
197 {
198 return core->protect_count;
199 }
200
clk_core_is_prepared(struct clk_core * core)201 static bool clk_core_is_prepared(struct clk_core *core)
202 {
203 bool ret = false;
204
205 /*
206 * .is_prepared is optional for clocks that can prepare
207 * fall back to software usage counter if it is missing
208 */
209 if (!core->ops->is_prepared)
210 return core->prepare_count;
211
212 if (!clk_pm_runtime_get(core)) {
213 ret = core->ops->is_prepared(core->hw);
214 clk_pm_runtime_put(core);
215 }
216
217 return ret;
218 }
219
clk_core_is_enabled(struct clk_core * core)220 static bool clk_core_is_enabled(struct clk_core *core)
221 {
222 bool ret = false;
223
224 /*
225 * .is_enabled is only mandatory for clocks that gate
226 * fall back to software usage counter if .is_enabled is missing
227 */
228 if (!core->ops->is_enabled)
229 return core->enable_count;
230
231 /*
232 * Check if clock controller's device is runtime active before
233 * calling .is_enabled callback. If not, assume that clock is
234 * disabled, because we might be called from atomic context, from
235 * which pm_runtime_get() is not allowed.
236 * This function is called mainly from clk_disable_unused_subtree,
237 * which ensures proper runtime pm activation of controller before
238 * taking enable spinlock, but the below check is needed if one tries
239 * to call it from other places.
240 */
241 if (core->rpm_enabled) {
242 pm_runtime_get_noresume(core->dev);
243 if (!pm_runtime_active(core->dev)) {
244 ret = false;
245 goto done;
246 }
247 }
248
249 ret = core->ops->is_enabled(core->hw);
250 done:
251 if (core->rpm_enabled)
252 pm_runtime_put(core->dev);
253
254 return ret;
255 }
256
257 /*** helper functions ***/
258
__clk_get_name(const struct clk * clk)259 const char *__clk_get_name(const struct clk *clk)
260 {
261 return !clk ? NULL : clk->core->name;
262 }
263 EXPORT_SYMBOL_GPL(__clk_get_name);
264
clk_hw_get_name(const struct clk_hw * hw)265 const char *clk_hw_get_name(const struct clk_hw *hw)
266 {
267 return hw->core->name;
268 }
269 EXPORT_SYMBOL_GPL(clk_hw_get_name);
270
__clk_get_hw(struct clk * clk)271 struct clk_hw *__clk_get_hw(struct clk *clk)
272 {
273 return !clk ? NULL : clk->core->hw;
274 }
275 EXPORT_SYMBOL_GPL(__clk_get_hw);
276
clk_hw_get_num_parents(const struct clk_hw * hw)277 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
278 {
279 return hw->core->num_parents;
280 }
281 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
282
clk_hw_get_parent(const struct clk_hw * hw)283 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
284 {
285 return hw->core->parent ? hw->core->parent->hw : NULL;
286 }
287 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
288
__clk_lookup_subtree(const char * name,struct clk_core * core)289 static struct clk_core *__clk_lookup_subtree(const char *name,
290 struct clk_core *core)
291 {
292 struct clk_core *child;
293 struct clk_core *ret;
294
295 if (!strcmp(core->name, name))
296 return core;
297
298 hlist_for_each_entry(child, &core->children, child_node) {
299 ret = __clk_lookup_subtree(name, child);
300 if (ret)
301 return ret;
302 }
303
304 return NULL;
305 }
306
clk_core_lookup(const char * name)307 static struct clk_core *clk_core_lookup(const char *name)
308 {
309 struct clk_core *root_clk;
310 struct clk_core *ret;
311
312 if (!name)
313 return NULL;
314
315 /* search the 'proper' clk tree first */
316 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
317 ret = __clk_lookup_subtree(name, root_clk);
318 if (ret)
319 return ret;
320 }
321
322 /* if not found, then search the orphan tree */
323 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
324 ret = __clk_lookup_subtree(name, root_clk);
325 if (ret)
326 return ret;
327 }
328
329 return NULL;
330 }
331
332 #ifdef CONFIG_OF
333 static int of_parse_clkspec(const struct device_node *np, int index,
334 const char *name, struct of_phandle_args *out_args);
335 static struct clk_hw *
336 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
337 #else
of_parse_clkspec(const struct device_node * np,int index,const char * name,struct of_phandle_args * out_args)338 static inline int of_parse_clkspec(const struct device_node *np, int index,
339 const char *name,
340 struct of_phandle_args *out_args)
341 {
342 return -ENOENT;
343 }
344 static inline struct clk_hw *
of_clk_get_hw_from_clkspec(struct of_phandle_args * clkspec)345 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
346 {
347 return ERR_PTR(-ENOENT);
348 }
349 #endif
350
351 /**
352 * clk_core_get - Find the clk_core parent of a clk
353 * @core: clk to find parent of
354 * @p_index: parent index to search for
355 *
356 * This is the preferred method for clk providers to find the parent of a
357 * clk when that parent is external to the clk controller. The parent_names
358 * array is indexed and treated as a local name matching a string in the device
359 * node's 'clock-names' property or as the 'con_id' matching the device's
360 * dev_name() in a clk_lookup. This allows clk providers to use their own
361 * namespace instead of looking for a globally unique parent string.
362 *
363 * For example the following DT snippet would allow a clock registered by the
364 * clock-controller@c001 that has a clk_init_data::parent_data array
365 * with 'xtal' in the 'name' member to find the clock provided by the
366 * clock-controller@f00abcd without needing to get the globally unique name of
367 * the xtal clk.
368 *
369 * parent: clock-controller@f00abcd {
370 * reg = <0xf00abcd 0xabcd>;
371 * #clock-cells = <0>;
372 * };
373 *
374 * clock-controller@c001 {
375 * reg = <0xc001 0xf00d>;
376 * clocks = <&parent>;
377 * clock-names = "xtal";
378 * #clock-cells = <1>;
379 * };
380 *
381 * Returns: -ENOENT when the provider can't be found or the clk doesn't
382 * exist in the provider or the name can't be found in the DT node or
383 * in a clkdev lookup. NULL when the provider knows about the clk but it
384 * isn't provided on this system.
385 * A valid clk_core pointer when the clk can be found in the provider.
386 */
clk_core_get(struct clk_core * core,u8 p_index)387 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
388 {
389 const char *name = core->parents[p_index].fw_name;
390 int index = core->parents[p_index].index;
391 struct clk_hw *hw = ERR_PTR(-ENOENT);
392 struct device *dev = core->dev;
393 const char *dev_id = dev ? dev_name(dev) : NULL;
394 struct device_node *np = core->of_node;
395 struct of_phandle_args clkspec;
396
397 if (np && (name || index >= 0) &&
398 !of_parse_clkspec(np, index, name, &clkspec)) {
399 hw = of_clk_get_hw_from_clkspec(&clkspec);
400 of_node_put(clkspec.np);
401 } else if (name) {
402 /*
403 * If the DT search above couldn't find the provider fallback to
404 * looking up via clkdev based clk_lookups.
405 */
406 hw = clk_find_hw(dev_id, name);
407 }
408
409 if (IS_ERR(hw))
410 return ERR_CAST(hw);
411
412 return hw->core;
413 }
414
clk_core_fill_parent_index(struct clk_core * core,u8 index)415 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
416 {
417 struct clk_parent_map *entry = &core->parents[index];
418 struct clk_core *parent;
419
420 if (entry->hw) {
421 parent = entry->hw->core;
422 } else {
423 parent = clk_core_get(core, index);
424 if (PTR_ERR(parent) == -ENOENT && entry->name)
425 parent = clk_core_lookup(entry->name);
426 }
427
428 /*
429 * We have a direct reference but it isn't registered yet?
430 * Orphan it and let clk_reparent() update the orphan status
431 * when the parent is registered.
432 */
433 if (!parent)
434 parent = ERR_PTR(-EPROBE_DEFER);
435
436 /* Only cache it if it's not an error */
437 if (!IS_ERR(parent))
438 entry->core = parent;
439 }
440
clk_core_get_parent_by_index(struct clk_core * core,u8 index)441 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
442 u8 index)
443 {
444 if (!core || index >= core->num_parents || !core->parents)
445 return NULL;
446
447 if (!core->parents[index].core)
448 clk_core_fill_parent_index(core, index);
449
450 return core->parents[index].core;
451 }
452
453 struct clk_hw *
clk_hw_get_parent_by_index(const struct clk_hw * hw,unsigned int index)454 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
455 {
456 struct clk_core *parent;
457
458 parent = clk_core_get_parent_by_index(hw->core, index);
459
460 return !parent ? NULL : parent->hw;
461 }
462 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
463
__clk_get_enable_count(struct clk * clk)464 unsigned int __clk_get_enable_count(struct clk *clk)
465 {
466 return !clk ? 0 : clk->core->enable_count;
467 }
468
clk_core_get_rate_nolock(struct clk_core * core)469 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
470 {
471 if (!core)
472 return 0;
473
474 if (!core->num_parents || core->parent)
475 return core->rate;
476
477 /*
478 * Clk must have a parent because num_parents > 0 but the parent isn't
479 * known yet. Best to return 0 as the rate of this clk until we can
480 * properly recalc the rate based on the parent's rate.
481 */
482 return 0;
483 }
484
clk_hw_get_rate(const struct clk_hw * hw)485 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
486 {
487 return clk_core_get_rate_nolock(hw->core);
488 }
489 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
490
clk_core_get_accuracy_no_lock(struct clk_core * core)491 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
492 {
493 if (!core)
494 return 0;
495
496 return core->accuracy;
497 }
498
clk_hw_get_flags(const struct clk_hw * hw)499 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
500 {
501 return hw->core->flags;
502 }
503 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
504
clk_hw_is_prepared(const struct clk_hw * hw)505 bool clk_hw_is_prepared(const struct clk_hw *hw)
506 {
507 return clk_core_is_prepared(hw->core);
508 }
509 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
510
clk_hw_rate_is_protected(const struct clk_hw * hw)511 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
512 {
513 return clk_core_rate_is_protected(hw->core);
514 }
515 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
516
clk_hw_is_enabled(const struct clk_hw * hw)517 bool clk_hw_is_enabled(const struct clk_hw *hw)
518 {
519 return clk_core_is_enabled(hw->core);
520 }
521 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
522
__clk_is_enabled(struct clk * clk)523 bool __clk_is_enabled(struct clk *clk)
524 {
525 if (!clk)
526 return false;
527
528 return clk_core_is_enabled(clk->core);
529 }
530 EXPORT_SYMBOL_GPL(__clk_is_enabled);
531
mux_is_better_rate(unsigned long rate,unsigned long now,unsigned long best,unsigned long flags)532 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
533 unsigned long best, unsigned long flags)
534 {
535 if (flags & CLK_MUX_ROUND_CLOSEST)
536 return abs(now - rate) < abs(best - rate);
537
538 return now <= rate && now > best;
539 }
540
541 static void clk_core_init_rate_req(struct clk_core * const core,
542 struct clk_rate_request *req,
543 unsigned long rate);
544
545 static int clk_core_round_rate_nolock(struct clk_core *core,
546 struct clk_rate_request *req);
547
clk_core_has_parent(struct clk_core * core,const struct clk_core * parent)548 static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent)
549 {
550 struct clk_core *tmp;
551 unsigned int i;
552
553 /* Optimize for the case where the parent is already the parent. */
554 if (core->parent == parent)
555 return true;
556
557 for (i = 0; i < core->num_parents; i++) {
558 tmp = clk_core_get_parent_by_index(core, i);
559 if (!tmp)
560 continue;
561
562 if (tmp == parent)
563 return true;
564 }
565
566 return false;
567 }
568
569 static void
clk_core_forward_rate_req(struct clk_core * core,const struct clk_rate_request * old_req,struct clk_core * parent,struct clk_rate_request * req,unsigned long parent_rate)570 clk_core_forward_rate_req(struct clk_core *core,
571 const struct clk_rate_request *old_req,
572 struct clk_core *parent,
573 struct clk_rate_request *req,
574 unsigned long parent_rate)
575 {
576 if (WARN_ON(!clk_core_has_parent(core, parent)))
577 return;
578
579 clk_core_init_rate_req(parent, req, parent_rate);
580
581 if (req->min_rate < old_req->min_rate)
582 req->min_rate = old_req->min_rate;
583
584 if (req->max_rate > old_req->max_rate)
585 req->max_rate = old_req->max_rate;
586 }
587
clk_mux_determine_rate_flags(struct clk_hw * hw,struct clk_rate_request * req,unsigned long flags)588 int clk_mux_determine_rate_flags(struct clk_hw *hw,
589 struct clk_rate_request *req,
590 unsigned long flags)
591 {
592 struct clk_core *core = hw->core, *parent, *best_parent = NULL;
593 int i, num_parents, ret;
594 unsigned long best = 0;
595
596 /* if NO_REPARENT flag set, pass through to current parent */
597 if (core->flags & CLK_SET_RATE_NO_REPARENT) {
598 parent = core->parent;
599 if (core->flags & CLK_SET_RATE_PARENT) {
600 struct clk_rate_request parent_req;
601
602 if (!parent) {
603 req->rate = 0;
604 return 0;
605 }
606
607 clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
608 ret = clk_core_round_rate_nolock(parent, &parent_req);
609 if (ret)
610 return ret;
611
612 best = parent_req.rate;
613 } else if (parent) {
614 best = clk_core_get_rate_nolock(parent);
615 } else {
616 best = clk_core_get_rate_nolock(core);
617 }
618
619 goto out;
620 }
621
622 /* find the parent that can provide the fastest rate <= rate */
623 num_parents = core->num_parents;
624 for (i = 0; i < num_parents; i++) {
625 unsigned long parent_rate;
626
627 parent = clk_core_get_parent_by_index(core, i);
628 if (!parent)
629 continue;
630
631 if (core->flags & CLK_SET_RATE_PARENT) {
632 struct clk_rate_request parent_req;
633
634 clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
635 ret = clk_core_round_rate_nolock(parent, &parent_req);
636 if (ret)
637 continue;
638
639 parent_rate = parent_req.rate;
640 } else {
641 parent_rate = clk_core_get_rate_nolock(parent);
642 }
643
644 if (mux_is_better_rate(req->rate, parent_rate,
645 best, flags)) {
646 best_parent = parent;
647 best = parent_rate;
648 }
649 }
650
651 if (!best_parent)
652 return -EINVAL;
653
654 out:
655 if (best_parent)
656 req->best_parent_hw = best_parent->hw;
657 req->best_parent_rate = best;
658 req->rate = best;
659
660 return 0;
661 }
662 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
663
__clk_lookup(const char * name)664 struct clk *__clk_lookup(const char *name)
665 {
666 struct clk_core *core = clk_core_lookup(name);
667
668 return !core ? NULL : core->hw->clk;
669 }
670
clk_core_get_boundaries(struct clk_core * core,unsigned long * min_rate,unsigned long * max_rate)671 static void clk_core_get_boundaries(struct clk_core *core,
672 unsigned long *min_rate,
673 unsigned long *max_rate)
674 {
675 struct clk *clk_user;
676
677 lockdep_assert_held(&prepare_lock);
678
679 *min_rate = core->min_rate;
680 *max_rate = core->max_rate;
681
682 hlist_for_each_entry(clk_user, &core->clks, clks_node)
683 *min_rate = max(*min_rate, clk_user->min_rate);
684
685 hlist_for_each_entry(clk_user, &core->clks, clks_node)
686 *max_rate = min(*max_rate, clk_user->max_rate);
687 }
688
689 /*
690 * clk_hw_get_rate_range() - returns the clock rate range for a hw clk
691 * @hw: the hw clk we want to get the range from
692 * @min_rate: pointer to the variable that will hold the minimum
693 * @max_rate: pointer to the variable that will hold the maximum
694 *
695 * Fills the @min_rate and @max_rate variables with the minimum and
696 * maximum that clock can reach.
697 */
clk_hw_get_rate_range(struct clk_hw * hw,unsigned long * min_rate,unsigned long * max_rate)698 void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate,
699 unsigned long *max_rate)
700 {
701 clk_core_get_boundaries(hw->core, min_rate, max_rate);
702 }
703 EXPORT_SYMBOL_GPL(clk_hw_get_rate_range);
704
clk_core_check_boundaries(struct clk_core * core,unsigned long min_rate,unsigned long max_rate)705 static bool clk_core_check_boundaries(struct clk_core *core,
706 unsigned long min_rate,
707 unsigned long max_rate)
708 {
709 struct clk *user;
710
711 lockdep_assert_held(&prepare_lock);
712
713 if (min_rate > core->max_rate || max_rate < core->min_rate)
714 return false;
715
716 hlist_for_each_entry(user, &core->clks, clks_node)
717 if (min_rate > user->max_rate || max_rate < user->min_rate)
718 return false;
719
720 return true;
721 }
722
clk_hw_set_rate_range(struct clk_hw * hw,unsigned long min_rate,unsigned long max_rate)723 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
724 unsigned long max_rate)
725 {
726 hw->core->min_rate = min_rate;
727 hw->core->max_rate = max_rate;
728 }
729 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
730
731 /*
732 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
733 * @hw: mux type clk to determine rate on
734 * @req: rate request, also used to return preferred parent and frequencies
735 *
736 * Helper for finding best parent to provide a given frequency. This can be used
737 * directly as a determine_rate callback (e.g. for a mux), or from a more
738 * complex clock that may combine a mux with other operations.
739 *
740 * Returns: 0 on success, -EERROR value on error
741 */
__clk_mux_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)742 int __clk_mux_determine_rate(struct clk_hw *hw,
743 struct clk_rate_request *req)
744 {
745 return clk_mux_determine_rate_flags(hw, req, 0);
746 }
747 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
748
__clk_mux_determine_rate_closest(struct clk_hw * hw,struct clk_rate_request * req)749 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
750 struct clk_rate_request *req)
751 {
752 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
753 }
754 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
755
756 /*** clk api ***/
757
clk_core_rate_unprotect(struct clk_core * core)758 static void clk_core_rate_unprotect(struct clk_core *core)
759 {
760 lockdep_assert_held(&prepare_lock);
761
762 if (!core)
763 return;
764
765 if (WARN(core->protect_count == 0,
766 "%s already unprotected\n", core->name))
767 return;
768
769 if (--core->protect_count > 0)
770 return;
771
772 clk_core_rate_unprotect(core->parent);
773 }
774
clk_core_rate_nuke_protect(struct clk_core * core)775 static int clk_core_rate_nuke_protect(struct clk_core *core)
776 {
777 int ret;
778
779 lockdep_assert_held(&prepare_lock);
780
781 if (!core)
782 return -EINVAL;
783
784 if (core->protect_count == 0)
785 return 0;
786
787 ret = core->protect_count;
788 core->protect_count = 1;
789 clk_core_rate_unprotect(core);
790
791 return ret;
792 }
793
794 /**
795 * clk_rate_exclusive_put - release exclusivity over clock rate control
796 * @clk: the clk over which the exclusivity is released
797 *
798 * clk_rate_exclusive_put() completes a critical section during which a clock
799 * consumer cannot tolerate any other consumer making any operation on the
800 * clock which could result in a rate change or rate glitch. Exclusive clocks
801 * cannot have their rate changed, either directly or indirectly due to changes
802 * further up the parent chain of clocks. As a result, clocks up parent chain
803 * also get under exclusive control of the calling consumer.
804 *
805 * If exlusivity is claimed more than once on clock, even by the same consumer,
806 * the rate effectively gets locked as exclusivity can't be preempted.
807 *
808 * Calls to clk_rate_exclusive_put() must be balanced with calls to
809 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
810 * error status.
811 */
clk_rate_exclusive_put(struct clk * clk)812 void clk_rate_exclusive_put(struct clk *clk)
813 {
814 if (!clk)
815 return;
816
817 clk_prepare_lock();
818
819 /*
820 * if there is something wrong with this consumer protect count, stop
821 * here before messing with the provider
822 */
823 if (WARN_ON(clk->exclusive_count <= 0))
824 goto out;
825
826 clk_core_rate_unprotect(clk->core);
827 clk->exclusive_count--;
828 out:
829 clk_prepare_unlock();
830 }
831 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
832
clk_core_rate_protect(struct clk_core * core)833 static void clk_core_rate_protect(struct clk_core *core)
834 {
835 lockdep_assert_held(&prepare_lock);
836
837 if (!core)
838 return;
839
840 if (core->protect_count == 0)
841 clk_core_rate_protect(core->parent);
842
843 core->protect_count++;
844 }
845
clk_core_rate_restore_protect(struct clk_core * core,int count)846 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
847 {
848 lockdep_assert_held(&prepare_lock);
849
850 if (!core)
851 return;
852
853 if (count == 0)
854 return;
855
856 clk_core_rate_protect(core);
857 core->protect_count = count;
858 }
859
860 /**
861 * clk_rate_exclusive_get - get exclusivity over the clk rate control
862 * @clk: the clk over which the exclusity of rate control is requested
863 *
864 * clk_rate_exclusive_get() begins a critical section during which a clock
865 * consumer cannot tolerate any other consumer making any operation on the
866 * clock which could result in a rate change or rate glitch. Exclusive clocks
867 * cannot have their rate changed, either directly or indirectly due to changes
868 * further up the parent chain of clocks. As a result, clocks up parent chain
869 * also get under exclusive control of the calling consumer.
870 *
871 * If exlusivity is claimed more than once on clock, even by the same consumer,
872 * the rate effectively gets locked as exclusivity can't be preempted.
873 *
874 * Calls to clk_rate_exclusive_get() should be balanced with calls to
875 * clk_rate_exclusive_put(). Calls to this function may sleep.
876 * Returns 0 on success, -EERROR otherwise
877 */
clk_rate_exclusive_get(struct clk * clk)878 int clk_rate_exclusive_get(struct clk *clk)
879 {
880 if (!clk)
881 return 0;
882
883 clk_prepare_lock();
884 clk_core_rate_protect(clk->core);
885 clk->exclusive_count++;
886 clk_prepare_unlock();
887
888 return 0;
889 }
890 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
891
clk_core_unprepare(struct clk_core * core)892 static void clk_core_unprepare(struct clk_core *core)
893 {
894 lockdep_assert_held(&prepare_lock);
895
896 if (!core)
897 return;
898
899 if (WARN(core->prepare_count == 0,
900 "%s already unprepared\n", core->name))
901 return;
902
903 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
904 "Unpreparing critical %s\n", core->name))
905 return;
906
907 if (core->flags & CLK_SET_RATE_GATE)
908 clk_core_rate_unprotect(core);
909
910 if (--core->prepare_count > 0)
911 return;
912
913 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
914
915 trace_clk_unprepare(core);
916
917 if (core->ops->unprepare)
918 core->ops->unprepare(core->hw);
919
920 trace_clk_unprepare_complete(core);
921 clk_core_unprepare(core->parent);
922 clk_pm_runtime_put(core);
923 }
924
clk_core_unprepare_lock(struct clk_core * core)925 static void clk_core_unprepare_lock(struct clk_core *core)
926 {
927 clk_prepare_lock();
928 clk_core_unprepare(core);
929 clk_prepare_unlock();
930 }
931
932 /**
933 * clk_unprepare - undo preparation of a clock source
934 * @clk: the clk being unprepared
935 *
936 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
937 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
938 * if the operation may sleep. One example is a clk which is accessed over
939 * I2c. In the complex case a clk gate operation may require a fast and a slow
940 * part. It is this reason that clk_unprepare and clk_disable are not mutually
941 * exclusive. In fact clk_disable must be called before clk_unprepare.
942 */
clk_unprepare(struct clk * clk)943 void clk_unprepare(struct clk *clk)
944 {
945 if (IS_ERR_OR_NULL(clk))
946 return;
947
948 clk_core_unprepare_lock(clk->core);
949 }
950 EXPORT_SYMBOL_GPL(clk_unprepare);
951
clk_core_prepare(struct clk_core * core)952 static int clk_core_prepare(struct clk_core *core)
953 {
954 int ret = 0;
955
956 lockdep_assert_held(&prepare_lock);
957
958 if (!core)
959 return 0;
960
961 if (core->prepare_count == 0) {
962 ret = clk_pm_runtime_get(core);
963 if (ret)
964 return ret;
965
966 ret = clk_core_prepare(core->parent);
967 if (ret)
968 goto runtime_put;
969
970 trace_clk_prepare(core);
971
972 if (core->ops->prepare)
973 ret = core->ops->prepare(core->hw);
974
975 trace_clk_prepare_complete(core);
976
977 if (ret)
978 goto unprepare;
979 }
980
981 core->prepare_count++;
982
983 /*
984 * CLK_SET_RATE_GATE is a special case of clock protection
985 * Instead of a consumer claiming exclusive rate control, it is
986 * actually the provider which prevents any consumer from making any
987 * operation which could result in a rate change or rate glitch while
988 * the clock is prepared.
989 */
990 if (core->flags & CLK_SET_RATE_GATE)
991 clk_core_rate_protect(core);
992
993 return 0;
994 unprepare:
995 clk_core_unprepare(core->parent);
996 runtime_put:
997 clk_pm_runtime_put(core);
998 return ret;
999 }
1000
clk_core_prepare_lock(struct clk_core * core)1001 static int clk_core_prepare_lock(struct clk_core *core)
1002 {
1003 int ret;
1004
1005 clk_prepare_lock();
1006 ret = clk_core_prepare(core);
1007 clk_prepare_unlock();
1008
1009 return ret;
1010 }
1011
1012 /**
1013 * clk_prepare - prepare a clock source
1014 * @clk: the clk being prepared
1015 *
1016 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
1017 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1018 * operation may sleep. One example is a clk which is accessed over I2c. In
1019 * the complex case a clk ungate operation may require a fast and a slow part.
1020 * It is this reason that clk_prepare and clk_enable are not mutually
1021 * exclusive. In fact clk_prepare must be called before clk_enable.
1022 * Returns 0 on success, -EERROR otherwise.
1023 */
clk_prepare(struct clk * clk)1024 int clk_prepare(struct clk *clk)
1025 {
1026 if (!clk)
1027 return 0;
1028
1029 return clk_core_prepare_lock(clk->core);
1030 }
1031 EXPORT_SYMBOL_GPL(clk_prepare);
1032
clk_core_disable(struct clk_core * core)1033 static void clk_core_disable(struct clk_core *core)
1034 {
1035 lockdep_assert_held(&enable_lock);
1036
1037 if (!core)
1038 return;
1039
1040 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1041 return;
1042
1043 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1044 "Disabling critical %s\n", core->name))
1045 return;
1046
1047 if (--core->enable_count > 0)
1048 return;
1049
1050 trace_clk_disable_rcuidle(core);
1051
1052 if (core->ops->disable)
1053 core->ops->disable(core->hw);
1054
1055 trace_clk_disable_complete_rcuidle(core);
1056
1057 clk_core_disable(core->parent);
1058 }
1059
clk_core_disable_lock(struct clk_core * core)1060 static void clk_core_disable_lock(struct clk_core *core)
1061 {
1062 unsigned long flags;
1063
1064 flags = clk_enable_lock();
1065 clk_core_disable(core);
1066 clk_enable_unlock(flags);
1067 }
1068
1069 /**
1070 * clk_disable - gate a clock
1071 * @clk: the clk being gated
1072 *
1073 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
1074 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1075 * clk if the operation is fast and will never sleep. One example is a
1076 * SoC-internal clk which is controlled via simple register writes. In the
1077 * complex case a clk gate operation may require a fast and a slow part. It is
1078 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1079 * In fact clk_disable must be called before clk_unprepare.
1080 */
clk_disable(struct clk * clk)1081 void clk_disable(struct clk *clk)
1082 {
1083 if (IS_ERR_OR_NULL(clk))
1084 return;
1085
1086 clk_core_disable_lock(clk->core);
1087 }
1088 EXPORT_SYMBOL_GPL(clk_disable);
1089
clk_core_enable(struct clk_core * core)1090 static int clk_core_enable(struct clk_core *core)
1091 {
1092 int ret = 0;
1093
1094 lockdep_assert_held(&enable_lock);
1095
1096 if (!core)
1097 return 0;
1098
1099 if (WARN(core->prepare_count == 0,
1100 "Enabling unprepared %s\n", core->name))
1101 return -ESHUTDOWN;
1102
1103 if (core->enable_count == 0) {
1104 ret = clk_core_enable(core->parent);
1105
1106 if (ret)
1107 return ret;
1108
1109 trace_clk_enable_rcuidle(core);
1110
1111 if (core->ops->enable)
1112 ret = core->ops->enable(core->hw);
1113
1114 trace_clk_enable_complete_rcuidle(core);
1115
1116 if (ret) {
1117 clk_core_disable(core->parent);
1118 return ret;
1119 }
1120 }
1121
1122 core->enable_count++;
1123 return 0;
1124 }
1125
clk_core_enable_lock(struct clk_core * core)1126 static int clk_core_enable_lock(struct clk_core *core)
1127 {
1128 unsigned long flags;
1129 int ret;
1130
1131 flags = clk_enable_lock();
1132 ret = clk_core_enable(core);
1133 clk_enable_unlock(flags);
1134
1135 return ret;
1136 }
1137
1138 /**
1139 * clk_gate_restore_context - restore context for poweroff
1140 * @hw: the clk_hw pointer of clock whose state is to be restored
1141 *
1142 * The clock gate restore context function enables or disables
1143 * the gate clocks based on the enable_count. This is done in cases
1144 * where the clock context is lost and based on the enable_count
1145 * the clock either needs to be enabled/disabled. This
1146 * helps restore the state of gate clocks.
1147 */
clk_gate_restore_context(struct clk_hw * hw)1148 void clk_gate_restore_context(struct clk_hw *hw)
1149 {
1150 struct clk_core *core = hw->core;
1151
1152 if (core->enable_count)
1153 core->ops->enable(hw);
1154 else
1155 core->ops->disable(hw);
1156 }
1157 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1158
clk_core_save_context(struct clk_core * core)1159 static int clk_core_save_context(struct clk_core *core)
1160 {
1161 struct clk_core *child;
1162 int ret = 0;
1163
1164 hlist_for_each_entry(child, &core->children, child_node) {
1165 ret = clk_core_save_context(child);
1166 if (ret < 0)
1167 return ret;
1168 }
1169
1170 if (core->ops && core->ops->save_context)
1171 ret = core->ops->save_context(core->hw);
1172
1173 return ret;
1174 }
1175
clk_core_restore_context(struct clk_core * core)1176 static void clk_core_restore_context(struct clk_core *core)
1177 {
1178 struct clk_core *child;
1179
1180 if (core->ops && core->ops->restore_context)
1181 core->ops->restore_context(core->hw);
1182
1183 hlist_for_each_entry(child, &core->children, child_node)
1184 clk_core_restore_context(child);
1185 }
1186
1187 /**
1188 * clk_save_context - save clock context for poweroff
1189 *
1190 * Saves the context of the clock register for powerstates in which the
1191 * contents of the registers will be lost. Occurs deep within the suspend
1192 * code. Returns 0 on success.
1193 */
clk_save_context(void)1194 int clk_save_context(void)
1195 {
1196 struct clk_core *clk;
1197 int ret;
1198
1199 hlist_for_each_entry(clk, &clk_root_list, child_node) {
1200 ret = clk_core_save_context(clk);
1201 if (ret < 0)
1202 return ret;
1203 }
1204
1205 hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1206 ret = clk_core_save_context(clk);
1207 if (ret < 0)
1208 return ret;
1209 }
1210
1211 return 0;
1212 }
1213 EXPORT_SYMBOL_GPL(clk_save_context);
1214
1215 /**
1216 * clk_restore_context - restore clock context after poweroff
1217 *
1218 * Restore the saved clock context upon resume.
1219 *
1220 */
clk_restore_context(void)1221 void clk_restore_context(void)
1222 {
1223 struct clk_core *core;
1224
1225 hlist_for_each_entry(core, &clk_root_list, child_node)
1226 clk_core_restore_context(core);
1227
1228 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1229 clk_core_restore_context(core);
1230 }
1231 EXPORT_SYMBOL_GPL(clk_restore_context);
1232
1233 /**
1234 * clk_enable - ungate a clock
1235 * @clk: the clk being ungated
1236 *
1237 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
1238 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1239 * if the operation will never sleep. One example is a SoC-internal clk which
1240 * is controlled via simple register writes. In the complex case a clk ungate
1241 * operation may require a fast and a slow part. It is this reason that
1242 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
1243 * must be called before clk_enable. Returns 0 on success, -EERROR
1244 * otherwise.
1245 */
clk_enable(struct clk * clk)1246 int clk_enable(struct clk *clk)
1247 {
1248 if (!clk)
1249 return 0;
1250
1251 return clk_core_enable_lock(clk->core);
1252 }
1253 EXPORT_SYMBOL_GPL(clk_enable);
1254
1255 /**
1256 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1257 * @clk: clock source
1258 *
1259 * Returns true if clk_prepare() implicitly enables the clock, effectively
1260 * making clk_enable()/clk_disable() no-ops, false otherwise.
1261 *
1262 * This is of interest mainly to power management code where actually
1263 * disabling the clock also requires unpreparing it to have any material
1264 * effect.
1265 *
1266 * Regardless of the value returned here, the caller must always invoke
1267 * clk_enable() or clk_prepare_enable() and counterparts for usage counts
1268 * to be right.
1269 */
clk_is_enabled_when_prepared(struct clk * clk)1270 bool clk_is_enabled_when_prepared(struct clk *clk)
1271 {
1272 return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1273 }
1274 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1275
clk_core_prepare_enable(struct clk_core * core)1276 static int clk_core_prepare_enable(struct clk_core *core)
1277 {
1278 int ret;
1279
1280 ret = clk_core_prepare_lock(core);
1281 if (ret)
1282 return ret;
1283
1284 ret = clk_core_enable_lock(core);
1285 if (ret)
1286 clk_core_unprepare_lock(core);
1287
1288 return ret;
1289 }
1290
clk_core_disable_unprepare(struct clk_core * core)1291 static void clk_core_disable_unprepare(struct clk_core *core)
1292 {
1293 clk_core_disable_lock(core);
1294 clk_core_unprepare_lock(core);
1295 }
1296
clk_unprepare_unused_subtree(struct clk_core * core)1297 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1298 {
1299 struct clk_core *child;
1300
1301 lockdep_assert_held(&prepare_lock);
1302
1303 hlist_for_each_entry(child, &core->children, child_node)
1304 clk_unprepare_unused_subtree(child);
1305
1306 if (dev_has_sync_state(core->dev) &&
1307 !(core->flags & CLK_DONT_HOLD_STATE))
1308 return;
1309
1310 if (core->prepare_count)
1311 return;
1312
1313 if (core->flags & CLK_IGNORE_UNUSED)
1314 return;
1315
1316 if (clk_pm_runtime_get(core))
1317 return;
1318
1319 if (clk_core_is_prepared(core)) {
1320 trace_clk_unprepare(core);
1321 if (core->ops->unprepare_unused)
1322 core->ops->unprepare_unused(core->hw);
1323 else if (core->ops->unprepare)
1324 core->ops->unprepare(core->hw);
1325 trace_clk_unprepare_complete(core);
1326 }
1327
1328 clk_pm_runtime_put(core);
1329 }
1330
clk_disable_unused_subtree(struct clk_core * core)1331 static void __init clk_disable_unused_subtree(struct clk_core *core)
1332 {
1333 struct clk_core *child;
1334 unsigned long flags;
1335
1336 lockdep_assert_held(&prepare_lock);
1337
1338 hlist_for_each_entry(child, &core->children, child_node)
1339 clk_disable_unused_subtree(child);
1340
1341 if (dev_has_sync_state(core->dev) &&
1342 !(core->flags & CLK_DONT_HOLD_STATE))
1343 return;
1344
1345 if (core->flags & CLK_OPS_PARENT_ENABLE)
1346 clk_core_prepare_enable(core->parent);
1347
1348 if (clk_pm_runtime_get(core))
1349 goto unprepare_out;
1350
1351 flags = clk_enable_lock();
1352
1353 if (core->enable_count)
1354 goto unlock_out;
1355
1356 if (core->flags & CLK_IGNORE_UNUSED)
1357 goto unlock_out;
1358
1359 /*
1360 * some gate clocks have special needs during the disable-unused
1361 * sequence. call .disable_unused if available, otherwise fall
1362 * back to .disable
1363 */
1364 if (clk_core_is_enabled(core)) {
1365 trace_clk_disable(core);
1366 if (core->ops->disable_unused)
1367 core->ops->disable_unused(core->hw);
1368 else if (core->ops->disable)
1369 core->ops->disable(core->hw);
1370 trace_clk_disable_complete(core);
1371 }
1372
1373 unlock_out:
1374 clk_enable_unlock(flags);
1375 clk_pm_runtime_put(core);
1376 unprepare_out:
1377 if (core->flags & CLK_OPS_PARENT_ENABLE)
1378 clk_core_disable_unprepare(core->parent);
1379 }
1380
1381 static bool clk_ignore_unused __initdata;
clk_ignore_unused_setup(char * __unused)1382 static int __init clk_ignore_unused_setup(char *__unused)
1383 {
1384 clk_ignore_unused = true;
1385 return 1;
1386 }
1387 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1388
clk_disable_unused(void)1389 static int __init clk_disable_unused(void)
1390 {
1391 struct clk_core *core;
1392
1393 if (clk_ignore_unused) {
1394 pr_warn("clk: Not disabling unused clocks\n");
1395 return 0;
1396 }
1397
1398 clk_prepare_lock();
1399
1400 hlist_for_each_entry(core, &clk_root_list, child_node)
1401 clk_disable_unused_subtree(core);
1402
1403 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1404 clk_disable_unused_subtree(core);
1405
1406 hlist_for_each_entry(core, &clk_root_list, child_node)
1407 clk_unprepare_unused_subtree(core);
1408
1409 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1410 clk_unprepare_unused_subtree(core);
1411
1412 clk_prepare_unlock();
1413
1414 return 0;
1415 }
1416 late_initcall_sync(clk_disable_unused);
1417
clk_unprepare_disable_dev_subtree(struct clk_core * core,struct device * dev)1418 static void clk_unprepare_disable_dev_subtree(struct clk_core *core,
1419 struct device *dev)
1420 {
1421 struct clk_core *child;
1422
1423 lockdep_assert_held(&prepare_lock);
1424
1425 hlist_for_each_entry(child, &core->children, child_node)
1426 clk_unprepare_disable_dev_subtree(child, dev);
1427
1428 if (core->dev != dev || !core->need_sync)
1429 return;
1430
1431 clk_core_disable_unprepare(core);
1432 }
1433
clk_sync_state(struct device * dev)1434 void clk_sync_state(struct device *dev)
1435 {
1436 struct clk_core *core;
1437
1438 clk_prepare_lock();
1439
1440 hlist_for_each_entry(core, &clk_root_list, child_node)
1441 clk_unprepare_disable_dev_subtree(core, dev);
1442
1443 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1444 clk_unprepare_disable_dev_subtree(core, dev);
1445
1446 clk_prepare_unlock();
1447 }
1448 EXPORT_SYMBOL_GPL(clk_sync_state);
1449
clk_core_determine_round_nolock(struct clk_core * core,struct clk_rate_request * req)1450 static int clk_core_determine_round_nolock(struct clk_core *core,
1451 struct clk_rate_request *req)
1452 {
1453 long rate;
1454
1455 lockdep_assert_held(&prepare_lock);
1456
1457 if (!core)
1458 return 0;
1459
1460 /*
1461 * Some clock providers hand-craft their clk_rate_requests and
1462 * might not fill min_rate and max_rate.
1463 *
1464 * If it's the case, clamping the rate is equivalent to setting
1465 * the rate to 0 which is bad. Skip the clamping but complain so
1466 * that it gets fixed, hopefully.
1467 */
1468 if (!req->min_rate && !req->max_rate)
1469 pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n",
1470 __func__, core->name);
1471 else
1472 req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1473
1474 /*
1475 * At this point, core protection will be disabled
1476 * - if the provider is not protected at all
1477 * - if the calling consumer is the only one which has exclusivity
1478 * over the provider
1479 */
1480 if (clk_core_rate_is_protected(core)) {
1481 req->rate = core->rate;
1482 } else if (core->ops->determine_rate) {
1483 return core->ops->determine_rate(core->hw, req);
1484 } else if (core->ops->round_rate) {
1485 rate = core->ops->round_rate(core->hw, req->rate,
1486 &req->best_parent_rate);
1487 if (rate < 0)
1488 return rate;
1489
1490 req->rate = rate;
1491 } else {
1492 return -EINVAL;
1493 }
1494
1495 return 0;
1496 }
1497
clk_core_init_rate_req(struct clk_core * const core,struct clk_rate_request * req,unsigned long rate)1498 static void clk_core_init_rate_req(struct clk_core * const core,
1499 struct clk_rate_request *req,
1500 unsigned long rate)
1501 {
1502 struct clk_core *parent;
1503
1504 if (WARN_ON(!req))
1505 return;
1506
1507 memset(req, 0, sizeof(*req));
1508 req->max_rate = ULONG_MAX;
1509
1510 if (!core)
1511 return;
1512
1513 req->rate = rate;
1514 clk_core_get_boundaries(core, &req->min_rate, &req->max_rate);
1515
1516 parent = core->parent;
1517 if (parent) {
1518 req->best_parent_hw = parent->hw;
1519 req->best_parent_rate = parent->rate;
1520 } else {
1521 req->best_parent_hw = NULL;
1522 req->best_parent_rate = 0;
1523 }
1524 }
1525
1526 /**
1527 * clk_hw_init_rate_request - Initializes a clk_rate_request
1528 * @hw: the clk for which we want to submit a rate request
1529 * @req: the clk_rate_request structure we want to initialise
1530 * @rate: the rate which is to be requested
1531 *
1532 * Initializes a clk_rate_request structure to submit to
1533 * __clk_determine_rate() or similar functions.
1534 */
clk_hw_init_rate_request(const struct clk_hw * hw,struct clk_rate_request * req,unsigned long rate)1535 void clk_hw_init_rate_request(const struct clk_hw *hw,
1536 struct clk_rate_request *req,
1537 unsigned long rate)
1538 {
1539 if (WARN_ON(!hw || !req))
1540 return;
1541
1542 clk_core_init_rate_req(hw->core, req, rate);
1543 }
1544 EXPORT_SYMBOL_GPL(clk_hw_init_rate_request);
1545
1546 /**
1547 * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent
1548 * @hw: the original clock that got the rate request
1549 * @old_req: the original clk_rate_request structure we want to forward
1550 * @parent: the clk we want to forward @old_req to
1551 * @req: the clk_rate_request structure we want to initialise
1552 * @parent_rate: The rate which is to be requested to @parent
1553 *
1554 * Initializes a clk_rate_request structure to submit to a clock parent
1555 * in __clk_determine_rate() or similar functions.
1556 */
clk_hw_forward_rate_request(const struct clk_hw * hw,const struct clk_rate_request * old_req,const struct clk_hw * parent,struct clk_rate_request * req,unsigned long parent_rate)1557 void clk_hw_forward_rate_request(const struct clk_hw *hw,
1558 const struct clk_rate_request *old_req,
1559 const struct clk_hw *parent,
1560 struct clk_rate_request *req,
1561 unsigned long parent_rate)
1562 {
1563 if (WARN_ON(!hw || !old_req || !parent || !req))
1564 return;
1565
1566 clk_core_forward_rate_req(hw->core, old_req,
1567 parent->core, req,
1568 parent_rate);
1569 }
1570 EXPORT_SYMBOL_GPL(clk_hw_forward_rate_request);
1571
clk_core_can_round(struct clk_core * const core)1572 static bool clk_core_can_round(struct clk_core * const core)
1573 {
1574 return core->ops->determine_rate || core->ops->round_rate;
1575 }
1576
clk_core_round_rate_nolock(struct clk_core * core,struct clk_rate_request * req)1577 static int clk_core_round_rate_nolock(struct clk_core *core,
1578 struct clk_rate_request *req)
1579 {
1580 int ret;
1581
1582 lockdep_assert_held(&prepare_lock);
1583
1584 if (!core) {
1585 req->rate = 0;
1586 return 0;
1587 }
1588
1589 if (clk_core_can_round(core))
1590 return clk_core_determine_round_nolock(core, req);
1591
1592 if (core->flags & CLK_SET_RATE_PARENT) {
1593 struct clk_rate_request parent_req;
1594
1595 clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate);
1596 ret = clk_core_round_rate_nolock(core->parent, &parent_req);
1597 if (ret)
1598 return ret;
1599
1600 req->best_parent_rate = parent_req.rate;
1601 req->rate = parent_req.rate;
1602
1603 return 0;
1604 }
1605
1606 req->rate = core->rate;
1607 return 0;
1608 }
1609
1610 /**
1611 * __clk_determine_rate - get the closest rate actually supported by a clock
1612 * @hw: determine the rate of this clock
1613 * @req: target rate request
1614 *
1615 * Useful for clk_ops such as .set_rate and .determine_rate.
1616 */
__clk_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)1617 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1618 {
1619 if (!hw) {
1620 req->rate = 0;
1621 return 0;
1622 }
1623
1624 return clk_core_round_rate_nolock(hw->core, req);
1625 }
1626 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1627
1628 /**
1629 * clk_hw_round_rate() - round the given rate for a hw clk
1630 * @hw: the hw clk for which we are rounding a rate
1631 * @rate: the rate which is to be rounded
1632 *
1633 * Takes in a rate as input and rounds it to a rate that the clk can actually
1634 * use.
1635 *
1636 * Context: prepare_lock must be held.
1637 * For clk providers to call from within clk_ops such as .round_rate,
1638 * .determine_rate.
1639 *
1640 * Return: returns rounded rate of hw clk if clk supports round_rate operation
1641 * else returns the parent rate.
1642 */
clk_hw_round_rate(struct clk_hw * hw,unsigned long rate)1643 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1644 {
1645 int ret;
1646 struct clk_rate_request req;
1647
1648 clk_core_init_rate_req(hw->core, &req, rate);
1649
1650 ret = clk_core_round_rate_nolock(hw->core, &req);
1651 if (ret)
1652 return 0;
1653
1654 return req.rate;
1655 }
1656 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1657
1658 /**
1659 * clk_round_rate - round the given rate for a clk
1660 * @clk: the clk for which we are rounding a rate
1661 * @rate: the rate which is to be rounded
1662 *
1663 * Takes in a rate as input and rounds it to a rate that the clk can actually
1664 * use which is then returned. If clk doesn't support round_rate operation
1665 * then the parent rate is returned.
1666 */
clk_round_rate(struct clk * clk,unsigned long rate)1667 long clk_round_rate(struct clk *clk, unsigned long rate)
1668 {
1669 struct clk_rate_request req;
1670 int ret;
1671
1672 if (!clk)
1673 return 0;
1674
1675 clk_prepare_lock();
1676
1677 if (clk->exclusive_count)
1678 clk_core_rate_unprotect(clk->core);
1679
1680 clk_core_init_rate_req(clk->core, &req, rate);
1681
1682 ret = clk_core_round_rate_nolock(clk->core, &req);
1683
1684 if (clk->exclusive_count)
1685 clk_core_rate_protect(clk->core);
1686
1687 clk_prepare_unlock();
1688
1689 if (ret)
1690 return ret;
1691
1692 return req.rate;
1693 }
1694 EXPORT_SYMBOL_GPL(clk_round_rate);
1695
1696 /**
1697 * __clk_notify - call clk notifier chain
1698 * @core: clk that is changing rate
1699 * @msg: clk notifier type (see include/linux/clk.h)
1700 * @old_rate: old clk rate
1701 * @new_rate: new clk rate
1702 *
1703 * Triggers a notifier call chain on the clk rate-change notification
1704 * for 'clk'. Passes a pointer to the struct clk and the previous
1705 * and current rates to the notifier callback. Intended to be called by
1706 * internal clock code only. Returns NOTIFY_DONE from the last driver
1707 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1708 * a driver returns that.
1709 */
__clk_notify(struct clk_core * core,unsigned long msg,unsigned long old_rate,unsigned long new_rate)1710 static int __clk_notify(struct clk_core *core, unsigned long msg,
1711 unsigned long old_rate, unsigned long new_rate)
1712 {
1713 struct clk_notifier *cn;
1714 struct clk_notifier_data cnd;
1715 int ret = NOTIFY_DONE;
1716
1717 cnd.old_rate = old_rate;
1718 cnd.new_rate = new_rate;
1719
1720 list_for_each_entry(cn, &clk_notifier_list, node) {
1721 if (cn->clk->core == core) {
1722 cnd.clk = cn->clk;
1723 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1724 &cnd);
1725 if (ret & NOTIFY_STOP_MASK)
1726 return ret;
1727 }
1728 }
1729
1730 return ret;
1731 }
1732
1733 /**
1734 * __clk_recalc_accuracies
1735 * @core: first clk in the subtree
1736 *
1737 * Walks the subtree of clks starting with clk and recalculates accuracies as
1738 * it goes. Note that if a clk does not implement the .recalc_accuracy
1739 * callback then it is assumed that the clock will take on the accuracy of its
1740 * parent.
1741 */
__clk_recalc_accuracies(struct clk_core * core)1742 static void __clk_recalc_accuracies(struct clk_core *core)
1743 {
1744 unsigned long parent_accuracy = 0;
1745 struct clk_core *child;
1746
1747 lockdep_assert_held(&prepare_lock);
1748
1749 if (core->parent)
1750 parent_accuracy = core->parent->accuracy;
1751
1752 if (core->ops->recalc_accuracy)
1753 core->accuracy = core->ops->recalc_accuracy(core->hw,
1754 parent_accuracy);
1755 else
1756 core->accuracy = parent_accuracy;
1757
1758 hlist_for_each_entry(child, &core->children, child_node)
1759 __clk_recalc_accuracies(child);
1760 }
1761
clk_core_get_accuracy_recalc(struct clk_core * core)1762 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1763 {
1764 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1765 __clk_recalc_accuracies(core);
1766
1767 return clk_core_get_accuracy_no_lock(core);
1768 }
1769
1770 /**
1771 * clk_get_accuracy - return the accuracy of clk
1772 * @clk: the clk whose accuracy is being returned
1773 *
1774 * Simply returns the cached accuracy of the clk, unless
1775 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1776 * issued.
1777 * If clk is NULL then returns 0.
1778 */
clk_get_accuracy(struct clk * clk)1779 long clk_get_accuracy(struct clk *clk)
1780 {
1781 long accuracy;
1782
1783 if (!clk)
1784 return 0;
1785
1786 clk_prepare_lock();
1787 accuracy = clk_core_get_accuracy_recalc(clk->core);
1788 clk_prepare_unlock();
1789
1790 return accuracy;
1791 }
1792 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1793
clk_recalc(struct clk_core * core,unsigned long parent_rate)1794 static unsigned long clk_recalc(struct clk_core *core,
1795 unsigned long parent_rate)
1796 {
1797 unsigned long rate = parent_rate;
1798
1799 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1800 rate = core->ops->recalc_rate(core->hw, parent_rate);
1801 clk_pm_runtime_put(core);
1802 }
1803 return rate;
1804 }
1805
1806 /**
1807 * __clk_recalc_rates
1808 * @core: first clk in the subtree
1809 * @update_req: Whether req_rate should be updated with the new rate
1810 * @msg: notification type (see include/linux/clk.h)
1811 *
1812 * Walks the subtree of clks starting with clk and recalculates rates as it
1813 * goes. Note that if a clk does not implement the .recalc_rate callback then
1814 * it is assumed that the clock will take on the rate of its parent.
1815 *
1816 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1817 * if necessary.
1818 */
__clk_recalc_rates(struct clk_core * core,bool update_req,unsigned long msg)1819 static void __clk_recalc_rates(struct clk_core *core, bool update_req,
1820 unsigned long msg)
1821 {
1822 unsigned long old_rate;
1823 unsigned long parent_rate = 0;
1824 struct clk_core *child;
1825
1826 lockdep_assert_held(&prepare_lock);
1827
1828 old_rate = core->rate;
1829
1830 if (core->parent)
1831 parent_rate = core->parent->rate;
1832
1833 core->rate = clk_recalc(core, parent_rate);
1834 if (update_req)
1835 core->req_rate = core->rate;
1836
1837 /*
1838 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1839 * & ABORT_RATE_CHANGE notifiers
1840 */
1841 if (core->notifier_count && msg)
1842 __clk_notify(core, msg, old_rate, core->rate);
1843
1844 hlist_for_each_entry(child, &core->children, child_node)
1845 __clk_recalc_rates(child, update_req, msg);
1846 }
1847
clk_core_get_rate_recalc(struct clk_core * core)1848 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1849 {
1850 if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1851 __clk_recalc_rates(core, false, 0);
1852
1853 return clk_core_get_rate_nolock(core);
1854 }
1855
1856 /**
1857 * clk_get_rate - return the rate of clk
1858 * @clk: the clk whose rate is being returned
1859 *
1860 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1861 * is set, which means a recalc_rate will be issued. Can be called regardless of
1862 * the clock enabledness. If clk is NULL, or if an error occurred, then returns
1863 * 0.
1864 */
clk_get_rate(struct clk * clk)1865 unsigned long clk_get_rate(struct clk *clk)
1866 {
1867 unsigned long rate;
1868
1869 if (!clk)
1870 return 0;
1871
1872 clk_prepare_lock();
1873 rate = clk_core_get_rate_recalc(clk->core);
1874 clk_prepare_unlock();
1875
1876 return rate;
1877 }
1878 EXPORT_SYMBOL_GPL(clk_get_rate);
1879
clk_fetch_parent_index(struct clk_core * core,struct clk_core * parent)1880 static int clk_fetch_parent_index(struct clk_core *core,
1881 struct clk_core *parent)
1882 {
1883 int i;
1884
1885 if (!parent)
1886 return -EINVAL;
1887
1888 for (i = 0; i < core->num_parents; i++) {
1889 /* Found it first try! */
1890 if (core->parents[i].core == parent)
1891 return i;
1892
1893 /* Something else is here, so keep looking */
1894 if (core->parents[i].core)
1895 continue;
1896
1897 /* Maybe core hasn't been cached but the hw is all we know? */
1898 if (core->parents[i].hw) {
1899 if (core->parents[i].hw == parent->hw)
1900 break;
1901
1902 /* Didn't match, but we're expecting a clk_hw */
1903 continue;
1904 }
1905
1906 /* Maybe it hasn't been cached (clk_set_parent() path) */
1907 if (parent == clk_core_get(core, i))
1908 break;
1909
1910 /* Fallback to comparing globally unique names */
1911 if (core->parents[i].name &&
1912 !strcmp(parent->name, core->parents[i].name))
1913 break;
1914 }
1915
1916 if (i == core->num_parents)
1917 return -EINVAL;
1918
1919 core->parents[i].core = parent;
1920 return i;
1921 }
1922
1923 /**
1924 * clk_hw_get_parent_index - return the index of the parent clock
1925 * @hw: clk_hw associated with the clk being consumed
1926 *
1927 * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1928 * clock does not have a current parent.
1929 */
clk_hw_get_parent_index(struct clk_hw * hw)1930 int clk_hw_get_parent_index(struct clk_hw *hw)
1931 {
1932 struct clk_hw *parent = clk_hw_get_parent(hw);
1933
1934 if (WARN_ON(parent == NULL))
1935 return -EINVAL;
1936
1937 return clk_fetch_parent_index(hw->core, parent->core);
1938 }
1939 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1940
clk_core_hold_state(struct clk_core * core)1941 static void clk_core_hold_state(struct clk_core *core)
1942 {
1943 if (core->need_sync || !core->boot_enabled)
1944 return;
1945
1946 if (core->orphan || !dev_has_sync_state(core->dev))
1947 return;
1948
1949 if (core->flags & CLK_DONT_HOLD_STATE)
1950 return;
1951
1952 core->need_sync = !clk_core_prepare_enable(core);
1953 }
1954
__clk_core_update_orphan_hold_state(struct clk_core * core)1955 static void __clk_core_update_orphan_hold_state(struct clk_core *core)
1956 {
1957 struct clk_core *child;
1958
1959 if (core->orphan)
1960 return;
1961
1962 clk_core_hold_state(core);
1963
1964 hlist_for_each_entry(child, &core->children, child_node)
1965 __clk_core_update_orphan_hold_state(child);
1966 }
1967
1968 /*
1969 * Update the orphan status of @core and all its children.
1970 */
clk_core_update_orphan_status(struct clk_core * core,bool is_orphan)1971 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1972 {
1973 struct clk_core *child;
1974
1975 core->orphan = is_orphan;
1976
1977 hlist_for_each_entry(child, &core->children, child_node)
1978 clk_core_update_orphan_status(child, is_orphan);
1979 }
1980
clk_reparent(struct clk_core * core,struct clk_core * new_parent)1981 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1982 {
1983 bool was_orphan = core->orphan;
1984
1985 hlist_del(&core->child_node);
1986
1987 if (new_parent) {
1988 bool becomes_orphan = new_parent->orphan;
1989
1990 /* avoid duplicate POST_RATE_CHANGE notifications */
1991 if (new_parent->new_child == core)
1992 new_parent->new_child = NULL;
1993
1994 hlist_add_head(&core->child_node, &new_parent->children);
1995
1996 if (was_orphan != becomes_orphan)
1997 clk_core_update_orphan_status(core, becomes_orphan);
1998 } else {
1999 hlist_add_head(&core->child_node, &clk_orphan_list);
2000 if (!was_orphan)
2001 clk_core_update_orphan_status(core, true);
2002 }
2003
2004 core->parent = new_parent;
2005 }
2006
__clk_set_parent_before(struct clk_core * core,struct clk_core * parent)2007 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
2008 struct clk_core *parent)
2009 {
2010 unsigned long flags;
2011 struct clk_core *old_parent = core->parent;
2012
2013 /*
2014 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
2015 *
2016 * 2. Migrate prepare state between parents and prevent race with
2017 * clk_enable().
2018 *
2019 * If the clock is not prepared, then a race with
2020 * clk_enable/disable() is impossible since we already have the
2021 * prepare lock (future calls to clk_enable() need to be preceded by
2022 * a clk_prepare()).
2023 *
2024 * If the clock is prepared, migrate the prepared state to the new
2025 * parent and also protect against a race with clk_enable() by
2026 * forcing the clock and the new parent on. This ensures that all
2027 * future calls to clk_enable() are practically NOPs with respect to
2028 * hardware and software states.
2029 *
2030 * See also: Comment for clk_set_parent() below.
2031 */
2032
2033 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
2034 if (core->flags & CLK_OPS_PARENT_ENABLE) {
2035 clk_core_prepare_enable(old_parent);
2036 clk_core_prepare_enable(parent);
2037 }
2038
2039 /* migrate prepare count if > 0 */
2040 if (core->prepare_count) {
2041 clk_core_prepare_enable(parent);
2042 clk_core_enable_lock(core);
2043 }
2044
2045 /* update the clk tree topology */
2046 flags = clk_enable_lock();
2047 clk_reparent(core, parent);
2048 clk_enable_unlock(flags);
2049
2050 return old_parent;
2051 }
2052
__clk_set_parent_after(struct clk_core * core,struct clk_core * parent,struct clk_core * old_parent)2053 static void __clk_set_parent_after(struct clk_core *core,
2054 struct clk_core *parent,
2055 struct clk_core *old_parent)
2056 {
2057 /*
2058 * Finish the migration of prepare state and undo the changes done
2059 * for preventing a race with clk_enable().
2060 */
2061 if (core->prepare_count) {
2062 clk_core_disable_lock(core);
2063 clk_core_disable_unprepare(old_parent);
2064 }
2065
2066 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
2067 if (core->flags & CLK_OPS_PARENT_ENABLE) {
2068 clk_core_disable_unprepare(parent);
2069 clk_core_disable_unprepare(old_parent);
2070 }
2071 }
2072
__clk_set_parent(struct clk_core * core,struct clk_core * parent,u8 p_index)2073 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
2074 u8 p_index)
2075 {
2076 unsigned long flags;
2077 int ret = 0;
2078 struct clk_core *old_parent;
2079
2080 old_parent = __clk_set_parent_before(core, parent);
2081
2082 trace_clk_set_parent(core, parent);
2083
2084 /* change clock input source */
2085 if (parent && core->ops->set_parent)
2086 ret = core->ops->set_parent(core->hw, p_index);
2087
2088 trace_clk_set_parent_complete(core, parent);
2089
2090 if (ret) {
2091 flags = clk_enable_lock();
2092 clk_reparent(core, old_parent);
2093 clk_enable_unlock(flags);
2094
2095 __clk_set_parent_after(core, old_parent, parent);
2096
2097 return ret;
2098 }
2099
2100 __clk_set_parent_after(core, parent, old_parent);
2101
2102 return 0;
2103 }
2104
2105 /**
2106 * __clk_speculate_rates
2107 * @core: first clk in the subtree
2108 * @parent_rate: the "future" rate of clk's parent
2109 *
2110 * Walks the subtree of clks starting with clk, speculating rates as it
2111 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
2112 *
2113 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
2114 * pre-rate change notifications and returns early if no clks in the
2115 * subtree have subscribed to the notifications. Note that if a clk does not
2116 * implement the .recalc_rate callback then it is assumed that the clock will
2117 * take on the rate of its parent.
2118 */
__clk_speculate_rates(struct clk_core * core,unsigned long parent_rate)2119 static int __clk_speculate_rates(struct clk_core *core,
2120 unsigned long parent_rate)
2121 {
2122 struct clk_core *child;
2123 unsigned long new_rate;
2124 int ret = NOTIFY_DONE;
2125
2126 lockdep_assert_held(&prepare_lock);
2127
2128 new_rate = clk_recalc(core, parent_rate);
2129
2130 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
2131 if (core->notifier_count)
2132 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
2133
2134 if (ret & NOTIFY_STOP_MASK) {
2135 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
2136 __func__, core->name, ret);
2137 goto out;
2138 }
2139
2140 hlist_for_each_entry(child, &core->children, child_node) {
2141 ret = __clk_speculate_rates(child, new_rate);
2142 if (ret & NOTIFY_STOP_MASK)
2143 break;
2144 }
2145
2146 out:
2147 return ret;
2148 }
2149
clk_calc_subtree(struct clk_core * core,unsigned long new_rate,struct clk_core * new_parent,u8 p_index)2150 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2151 struct clk_core *new_parent, u8 p_index)
2152 {
2153 struct clk_core *child;
2154
2155 core->new_rate = new_rate;
2156 core->new_parent = new_parent;
2157 core->new_parent_index = p_index;
2158 /* include clk in new parent's PRE_RATE_CHANGE notifications */
2159 core->new_child = NULL;
2160 if (new_parent && new_parent != core->parent)
2161 new_parent->new_child = core;
2162
2163 hlist_for_each_entry(child, &core->children, child_node) {
2164 child->new_rate = clk_recalc(child, new_rate);
2165 clk_calc_subtree(child, child->new_rate, NULL, 0);
2166 }
2167 }
2168
2169 /*
2170 * calculate the new rates returning the topmost clock that has to be
2171 * changed.
2172 */
clk_calc_new_rates(struct clk_core * core,unsigned long rate)2173 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2174 unsigned long rate)
2175 {
2176 struct clk_core *top = core;
2177 struct clk_core *old_parent, *parent;
2178 unsigned long best_parent_rate = 0;
2179 unsigned long new_rate;
2180 unsigned long min_rate;
2181 unsigned long max_rate;
2182 int p_index = 0;
2183 long ret;
2184
2185 /* sanity */
2186 if (IS_ERR_OR_NULL(core))
2187 return NULL;
2188
2189 /* save parent rate, if it exists */
2190 parent = old_parent = core->parent;
2191 if (parent)
2192 best_parent_rate = parent->rate;
2193
2194 clk_core_get_boundaries(core, &min_rate, &max_rate);
2195
2196 /* find the closest rate and parent clk/rate */
2197 if (clk_core_can_round(core)) {
2198 struct clk_rate_request req;
2199
2200 clk_core_init_rate_req(core, &req, rate);
2201
2202 ret = clk_core_determine_round_nolock(core, &req);
2203 if (ret < 0)
2204 return NULL;
2205
2206 best_parent_rate = req.best_parent_rate;
2207 new_rate = req.rate;
2208 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2209
2210 if (new_rate < min_rate || new_rate > max_rate)
2211 return NULL;
2212 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2213 /* pass-through clock without adjustable parent */
2214 core->new_rate = core->rate;
2215 return NULL;
2216 } else {
2217 /* pass-through clock with adjustable parent */
2218 top = clk_calc_new_rates(parent, rate);
2219 new_rate = parent->new_rate;
2220 goto out;
2221 }
2222
2223 /* some clocks must be gated to change parent */
2224 if (parent != old_parent &&
2225 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2226 pr_debug("%s: %s not gated but wants to reparent\n",
2227 __func__, core->name);
2228 return NULL;
2229 }
2230
2231 /* try finding the new parent index */
2232 if (parent && core->num_parents > 1) {
2233 p_index = clk_fetch_parent_index(core, parent);
2234 if (p_index < 0) {
2235 pr_debug("%s: clk %s can not be parent of clk %s\n",
2236 __func__, parent->name, core->name);
2237 return NULL;
2238 }
2239 }
2240
2241 if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2242 best_parent_rate != parent->rate)
2243 top = clk_calc_new_rates(parent, best_parent_rate);
2244
2245 out:
2246 clk_calc_subtree(core, new_rate, parent, p_index);
2247
2248 return top;
2249 }
2250
2251 /*
2252 * Notify about rate changes in a subtree. Always walk down the whole tree
2253 * so that in case of an error we can walk down the whole tree again and
2254 * abort the change.
2255 */
clk_propagate_rate_change(struct clk_core * core,unsigned long event)2256 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2257 unsigned long event)
2258 {
2259 struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2260 int ret = NOTIFY_DONE;
2261
2262 if (core->rate == core->new_rate)
2263 return NULL;
2264
2265 if (core->notifier_count) {
2266 ret = __clk_notify(core, event, core->rate, core->new_rate);
2267 if (ret & NOTIFY_STOP_MASK)
2268 fail_clk = core;
2269 }
2270
2271 if (core->ops->pre_rate_change) {
2272 ret = core->ops->pre_rate_change(core->hw, core->rate,
2273 core->new_rate);
2274 if (ret)
2275 fail_clk = core;
2276 }
2277
2278 hlist_for_each_entry(child, &core->children, child_node) {
2279 /* Skip children who will be reparented to another clock */
2280 if (child->new_parent && child->new_parent != core)
2281 continue;
2282 tmp_clk = clk_propagate_rate_change(child, event);
2283 if (tmp_clk)
2284 fail_clk = tmp_clk;
2285 }
2286
2287 /* handle the new child who might not be in core->children yet */
2288 if (core->new_child) {
2289 tmp_clk = clk_propagate_rate_change(core->new_child, event);
2290 if (tmp_clk)
2291 fail_clk = tmp_clk;
2292 }
2293
2294 return fail_clk;
2295 }
2296
2297 /*
2298 * walk down a subtree and set the new rates notifying the rate
2299 * change on the way
2300 */
clk_change_rate(struct clk_core * core)2301 static void clk_change_rate(struct clk_core *core)
2302 {
2303 struct clk_core *child;
2304 struct hlist_node *tmp;
2305 unsigned long old_rate;
2306 unsigned long best_parent_rate = 0;
2307 bool skip_set_rate = false;
2308 struct clk_core *old_parent;
2309 struct clk_core *parent = NULL;
2310
2311 old_rate = core->rate;
2312
2313 if (core->new_parent) {
2314 parent = core->new_parent;
2315 best_parent_rate = core->new_parent->rate;
2316 } else if (core->parent) {
2317 parent = core->parent;
2318 best_parent_rate = core->parent->rate;
2319 }
2320
2321 if (clk_pm_runtime_get(core))
2322 return;
2323
2324 if (core->flags & CLK_SET_RATE_UNGATE) {
2325 clk_core_prepare(core);
2326 clk_core_enable_lock(core);
2327 }
2328
2329 if (core->new_parent && core->new_parent != core->parent) {
2330 old_parent = __clk_set_parent_before(core, core->new_parent);
2331 trace_clk_set_parent(core, core->new_parent);
2332
2333 if (core->ops->set_rate_and_parent) {
2334 skip_set_rate = true;
2335 core->ops->set_rate_and_parent(core->hw, core->new_rate,
2336 best_parent_rate,
2337 core->new_parent_index);
2338 } else if (core->ops->set_parent) {
2339 core->ops->set_parent(core->hw, core->new_parent_index);
2340 }
2341
2342 trace_clk_set_parent_complete(core, core->new_parent);
2343 __clk_set_parent_after(core, core->new_parent, old_parent);
2344 }
2345
2346 if (core->flags & CLK_OPS_PARENT_ENABLE)
2347 clk_core_prepare_enable(parent);
2348
2349 trace_clk_set_rate(core, core->new_rate);
2350
2351 if (!skip_set_rate && core->ops->set_rate)
2352 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2353
2354 trace_clk_set_rate_complete(core, core->new_rate);
2355
2356 core->rate = clk_recalc(core, best_parent_rate);
2357
2358 if (core->flags & CLK_SET_RATE_UNGATE) {
2359 clk_core_disable_lock(core);
2360 clk_core_unprepare(core);
2361 }
2362
2363 if (core->flags & CLK_OPS_PARENT_ENABLE)
2364 clk_core_disable_unprepare(parent);
2365
2366 if (core->notifier_count && old_rate != core->rate)
2367 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2368
2369 if (core->flags & CLK_RECALC_NEW_RATES)
2370 (void)clk_calc_new_rates(core, core->new_rate);
2371
2372 if (core->ops->post_rate_change)
2373 core->ops->post_rate_change(core->hw, old_rate, core->rate);
2374
2375 /*
2376 * Use safe iteration, as change_rate can actually swap parents
2377 * for certain clock types.
2378 */
2379 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2380 /* Skip children who will be reparented to another clock */
2381 if (child->new_parent && child->new_parent != core)
2382 continue;
2383 clk_change_rate(child);
2384 }
2385
2386 /* handle the new child who might not be in core->children yet */
2387 if (core->new_child)
2388 clk_change_rate(core->new_child);
2389
2390 clk_pm_runtime_put(core);
2391 }
2392
clk_core_req_round_rate_nolock(struct clk_core * core,unsigned long req_rate)2393 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2394 unsigned long req_rate)
2395 {
2396 int ret, cnt;
2397 struct clk_rate_request req;
2398
2399 lockdep_assert_held(&prepare_lock);
2400
2401 if (!core)
2402 return 0;
2403
2404 /* simulate what the rate would be if it could be freely set */
2405 cnt = clk_core_rate_nuke_protect(core);
2406 if (cnt < 0)
2407 return cnt;
2408
2409 clk_core_init_rate_req(core, &req, req_rate);
2410
2411 ret = clk_core_round_rate_nolock(core, &req);
2412
2413 /* restore the protection */
2414 clk_core_rate_restore_protect(core, cnt);
2415
2416 return ret ? 0 : req.rate;
2417 }
2418
clk_core_set_rate_nolock(struct clk_core * core,unsigned long req_rate)2419 static int clk_core_set_rate_nolock(struct clk_core *core,
2420 unsigned long req_rate)
2421 {
2422 struct clk_core *top, *fail_clk;
2423 unsigned long rate;
2424 int ret;
2425
2426 if (!core)
2427 return 0;
2428
2429 rate = clk_core_req_round_rate_nolock(core, req_rate);
2430
2431 /* bail early if nothing to do */
2432 if (rate == clk_core_get_rate_nolock(core))
2433 return 0;
2434
2435 /* fail on a direct rate set of a protected provider */
2436 if (clk_core_rate_is_protected(core))
2437 return -EBUSY;
2438
2439 /* calculate new rates and get the topmost changed clock */
2440 top = clk_calc_new_rates(core, req_rate);
2441 if (!top)
2442 return -EINVAL;
2443
2444 ret = clk_pm_runtime_get(core);
2445 if (ret)
2446 return ret;
2447
2448 /* notify that we are about to change rates */
2449 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2450 if (fail_clk) {
2451 pr_debug("%s: failed to set %s rate\n", __func__,
2452 fail_clk->name);
2453 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2454 ret = -EBUSY;
2455 goto err;
2456 }
2457
2458 /* change the rates */
2459 clk_change_rate(top);
2460
2461 core->req_rate = req_rate;
2462 err:
2463 clk_pm_runtime_put(core);
2464
2465 return ret;
2466 }
2467
2468 /**
2469 * clk_set_rate - specify a new rate for clk
2470 * @clk: the clk whose rate is being changed
2471 * @rate: the new rate for clk
2472 *
2473 * In the simplest case clk_set_rate will only adjust the rate of clk.
2474 *
2475 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2476 * propagate up to clk's parent; whether or not this happens depends on the
2477 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
2478 * after calling .round_rate then upstream parent propagation is ignored. If
2479 * *parent_rate comes back with a new rate for clk's parent then we propagate
2480 * up to clk's parent and set its rate. Upward propagation will continue
2481 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2482 * .round_rate stops requesting changes to clk's parent_rate.
2483 *
2484 * Rate changes are accomplished via tree traversal that also recalculates the
2485 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2486 *
2487 * Returns 0 on success, -EERROR otherwise.
2488 */
clk_set_rate(struct clk * clk,unsigned long rate)2489 int clk_set_rate(struct clk *clk, unsigned long rate)
2490 {
2491 int ret;
2492
2493 if (!clk)
2494 return 0;
2495
2496 /* prevent racing with updates to the clock topology */
2497 clk_prepare_lock();
2498
2499 if (clk->exclusive_count)
2500 clk_core_rate_unprotect(clk->core);
2501
2502 ret = clk_core_set_rate_nolock(clk->core, rate);
2503
2504 if (clk->exclusive_count)
2505 clk_core_rate_protect(clk->core);
2506
2507 clk_prepare_unlock();
2508
2509 return ret;
2510 }
2511 EXPORT_SYMBOL_GPL(clk_set_rate);
2512
2513 /**
2514 * clk_set_rate_exclusive - specify a new rate and get exclusive control
2515 * @clk: the clk whose rate is being changed
2516 * @rate: the new rate for clk
2517 *
2518 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2519 * within a critical section
2520 *
2521 * This can be used initially to ensure that at least 1 consumer is
2522 * satisfied when several consumers are competing for exclusivity over the
2523 * same clock provider.
2524 *
2525 * The exclusivity is not applied if setting the rate failed.
2526 *
2527 * Calls to clk_rate_exclusive_get() should be balanced with calls to
2528 * clk_rate_exclusive_put().
2529 *
2530 * Returns 0 on success, -EERROR otherwise.
2531 */
clk_set_rate_exclusive(struct clk * clk,unsigned long rate)2532 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2533 {
2534 int ret;
2535
2536 if (!clk)
2537 return 0;
2538
2539 /* prevent racing with updates to the clock topology */
2540 clk_prepare_lock();
2541
2542 /*
2543 * The temporary protection removal is not here, on purpose
2544 * This function is meant to be used instead of clk_rate_protect,
2545 * so before the consumer code path protect the clock provider
2546 */
2547
2548 ret = clk_core_set_rate_nolock(clk->core, rate);
2549 if (!ret) {
2550 clk_core_rate_protect(clk->core);
2551 clk->exclusive_count++;
2552 }
2553
2554 clk_prepare_unlock();
2555
2556 return ret;
2557 }
2558 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2559
clk_set_rate_range_nolock(struct clk * clk,unsigned long min,unsigned long max)2560 static int clk_set_rate_range_nolock(struct clk *clk,
2561 unsigned long min,
2562 unsigned long max)
2563 {
2564 int ret = 0;
2565 unsigned long old_min, old_max, rate;
2566
2567 lockdep_assert_held(&prepare_lock);
2568
2569 if (!clk)
2570 return 0;
2571
2572 trace_clk_set_rate_range(clk->core, min, max);
2573
2574 if (min > max) {
2575 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2576 __func__, clk->core->name, clk->dev_id, clk->con_id,
2577 min, max);
2578 return -EINVAL;
2579 }
2580
2581 if (clk->exclusive_count)
2582 clk_core_rate_unprotect(clk->core);
2583
2584 /* Save the current values in case we need to rollback the change */
2585 old_min = clk->min_rate;
2586 old_max = clk->max_rate;
2587 clk->min_rate = min;
2588 clk->max_rate = max;
2589
2590 if (!clk_core_check_boundaries(clk->core, min, max)) {
2591 ret = -EINVAL;
2592 goto out;
2593 }
2594
2595 rate = clk->core->req_rate;
2596 if (clk->core->flags & CLK_GET_RATE_NOCACHE)
2597 rate = clk_core_get_rate_recalc(clk->core);
2598
2599 /*
2600 * Since the boundaries have been changed, let's give the
2601 * opportunity to the provider to adjust the clock rate based on
2602 * the new boundaries.
2603 *
2604 * We also need to handle the case where the clock is currently
2605 * outside of the boundaries. Clamping the last requested rate
2606 * to the current minimum and maximum will also handle this.
2607 *
2608 * FIXME:
2609 * There is a catch. It may fail for the usual reason (clock
2610 * broken, clock protected, etc) but also because:
2611 * - round_rate() was not favorable and fell on the wrong
2612 * side of the boundary
2613 * - the determine_rate() callback does not really check for
2614 * this corner case when determining the rate
2615 */
2616 rate = clamp(rate, min, max);
2617 ret = clk_core_set_rate_nolock(clk->core, rate);
2618 if (ret) {
2619 /* rollback the changes */
2620 clk->min_rate = old_min;
2621 clk->max_rate = old_max;
2622 }
2623
2624 out:
2625 if (clk->exclusive_count)
2626 clk_core_rate_protect(clk->core);
2627
2628 return ret;
2629 }
2630
2631 /**
2632 * clk_set_rate_range - set a rate range for a clock source
2633 * @clk: clock source
2634 * @min: desired minimum clock rate in Hz, inclusive
2635 * @max: desired maximum clock rate in Hz, inclusive
2636 *
2637 * Return: 0 for success or negative errno on failure.
2638 */
clk_set_rate_range(struct clk * clk,unsigned long min,unsigned long max)2639 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2640 {
2641 int ret;
2642
2643 if (!clk)
2644 return 0;
2645
2646 clk_prepare_lock();
2647
2648 ret = clk_set_rate_range_nolock(clk, min, max);
2649
2650 clk_prepare_unlock();
2651
2652 return ret;
2653 }
2654 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2655
2656 /**
2657 * clk_set_min_rate - set a minimum clock rate for a clock source
2658 * @clk: clock source
2659 * @rate: desired minimum clock rate in Hz, inclusive
2660 *
2661 * Returns success (0) or negative errno.
2662 */
clk_set_min_rate(struct clk * clk,unsigned long rate)2663 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2664 {
2665 if (!clk)
2666 return 0;
2667
2668 trace_clk_set_min_rate(clk->core, rate);
2669
2670 return clk_set_rate_range(clk, rate, clk->max_rate);
2671 }
2672 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2673
2674 /**
2675 * clk_set_max_rate - set a maximum clock rate for a clock source
2676 * @clk: clock source
2677 * @rate: desired maximum clock rate in Hz, inclusive
2678 *
2679 * Returns success (0) or negative errno.
2680 */
clk_set_max_rate(struct clk * clk,unsigned long rate)2681 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2682 {
2683 if (!clk)
2684 return 0;
2685
2686 trace_clk_set_max_rate(clk->core, rate);
2687
2688 return clk_set_rate_range(clk, clk->min_rate, rate);
2689 }
2690 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2691
2692 /**
2693 * clk_get_parent - return the parent of a clk
2694 * @clk: the clk whose parent gets returned
2695 *
2696 * Simply returns clk->parent. Returns NULL if clk is NULL.
2697 */
clk_get_parent(struct clk * clk)2698 struct clk *clk_get_parent(struct clk *clk)
2699 {
2700 struct clk *parent;
2701
2702 if (!clk)
2703 return NULL;
2704
2705 clk_prepare_lock();
2706 /* TODO: Create a per-user clk and change callers to call clk_put */
2707 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2708 clk_prepare_unlock();
2709
2710 return parent;
2711 }
2712 EXPORT_SYMBOL_GPL(clk_get_parent);
2713
__clk_init_parent(struct clk_core * core)2714 static struct clk_core *__clk_init_parent(struct clk_core *core)
2715 {
2716 u8 index = 0;
2717
2718 if (core->num_parents > 1 && core->ops->get_parent)
2719 index = core->ops->get_parent(core->hw);
2720
2721 return clk_core_get_parent_by_index(core, index);
2722 }
2723
clk_core_reparent(struct clk_core * core,struct clk_core * new_parent)2724 static void clk_core_reparent(struct clk_core *core,
2725 struct clk_core *new_parent)
2726 {
2727 clk_reparent(core, new_parent);
2728 __clk_recalc_accuracies(core);
2729 __clk_recalc_rates(core, true, POST_RATE_CHANGE);
2730 }
2731
clk_hw_reparent(struct clk_hw * hw,struct clk_hw * new_parent)2732 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2733 {
2734 if (!hw)
2735 return;
2736
2737 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2738 }
2739
2740 /**
2741 * clk_has_parent - check if a clock is a possible parent for another
2742 * @clk: clock source
2743 * @parent: parent clock source
2744 *
2745 * This function can be used in drivers that need to check that a clock can be
2746 * the parent of another without actually changing the parent.
2747 *
2748 * Returns true if @parent is a possible parent for @clk, false otherwise.
2749 */
clk_has_parent(const struct clk * clk,const struct clk * parent)2750 bool clk_has_parent(const struct clk *clk, const struct clk *parent)
2751 {
2752 /* NULL clocks should be nops, so return success if either is NULL. */
2753 if (!clk || !parent)
2754 return true;
2755
2756 return clk_core_has_parent(clk->core, parent->core);
2757 }
2758 EXPORT_SYMBOL_GPL(clk_has_parent);
2759
clk_core_set_parent_nolock(struct clk_core * core,struct clk_core * parent)2760 static int clk_core_set_parent_nolock(struct clk_core *core,
2761 struct clk_core *parent)
2762 {
2763 int ret = 0;
2764 int p_index = 0;
2765 unsigned long p_rate = 0;
2766
2767 lockdep_assert_held(&prepare_lock);
2768
2769 if (!core)
2770 return 0;
2771
2772 if (core->parent == parent)
2773 return 0;
2774
2775 /* verify ops for multi-parent clks */
2776 if (core->num_parents > 1 && !core->ops->set_parent)
2777 return -EPERM;
2778
2779 /* check that we are allowed to re-parent if the clock is in use */
2780 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2781 return -EBUSY;
2782
2783 if (clk_core_rate_is_protected(core))
2784 return -EBUSY;
2785
2786 /* try finding the new parent index */
2787 if (parent) {
2788 p_index = clk_fetch_parent_index(core, parent);
2789 if (p_index < 0) {
2790 pr_debug("%s: clk %s can not be parent of clk %s\n",
2791 __func__, parent->name, core->name);
2792 return p_index;
2793 }
2794 p_rate = parent->rate;
2795 }
2796
2797 ret = clk_pm_runtime_get(core);
2798 if (ret)
2799 return ret;
2800
2801 /* propagate PRE_RATE_CHANGE notifications */
2802 ret = __clk_speculate_rates(core, p_rate);
2803
2804 /* abort if a driver objects */
2805 if (ret & NOTIFY_STOP_MASK)
2806 goto runtime_put;
2807
2808 /* do the re-parent */
2809 ret = __clk_set_parent(core, parent, p_index);
2810
2811 /* propagate rate an accuracy recalculation accordingly */
2812 if (ret) {
2813 __clk_recalc_rates(core, true, ABORT_RATE_CHANGE);
2814 } else {
2815 __clk_recalc_rates(core, true, POST_RATE_CHANGE);
2816 __clk_recalc_accuracies(core);
2817 }
2818
2819 runtime_put:
2820 clk_pm_runtime_put(core);
2821
2822 return ret;
2823 }
2824
clk_hw_set_parent(struct clk_hw * hw,struct clk_hw * parent)2825 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2826 {
2827 return clk_core_set_parent_nolock(hw->core, parent->core);
2828 }
2829 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2830
2831 /**
2832 * clk_set_parent - switch the parent of a mux clk
2833 * @clk: the mux clk whose input we are switching
2834 * @parent: the new input to clk
2835 *
2836 * Re-parent clk to use parent as its new input source. If clk is in
2837 * prepared state, the clk will get enabled for the duration of this call. If
2838 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2839 * that, the reparenting is glitchy in hardware, etc), use the
2840 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2841 *
2842 * After successfully changing clk's parent clk_set_parent will update the
2843 * clk topology, sysfs topology and propagate rate recalculation via
2844 * __clk_recalc_rates.
2845 *
2846 * Returns 0 on success, -EERROR otherwise.
2847 */
clk_set_parent(struct clk * clk,struct clk * parent)2848 int clk_set_parent(struct clk *clk, struct clk *parent)
2849 {
2850 int ret;
2851
2852 if (!clk)
2853 return 0;
2854
2855 clk_prepare_lock();
2856
2857 if (clk->exclusive_count)
2858 clk_core_rate_unprotect(clk->core);
2859
2860 ret = clk_core_set_parent_nolock(clk->core,
2861 parent ? parent->core : NULL);
2862
2863 if (clk->exclusive_count)
2864 clk_core_rate_protect(clk->core);
2865
2866 clk_prepare_unlock();
2867
2868 return ret;
2869 }
2870 EXPORT_SYMBOL_GPL(clk_set_parent);
2871
clk_core_set_phase_nolock(struct clk_core * core,int degrees)2872 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2873 {
2874 int ret = -EINVAL;
2875
2876 lockdep_assert_held(&prepare_lock);
2877
2878 if (!core)
2879 return 0;
2880
2881 if (clk_core_rate_is_protected(core))
2882 return -EBUSY;
2883
2884 trace_clk_set_phase(core, degrees);
2885
2886 if (core->ops->set_phase) {
2887 ret = core->ops->set_phase(core->hw, degrees);
2888 if (!ret)
2889 core->phase = degrees;
2890 }
2891
2892 trace_clk_set_phase_complete(core, degrees);
2893
2894 return ret;
2895 }
2896
2897 /**
2898 * clk_set_phase - adjust the phase shift of a clock signal
2899 * @clk: clock signal source
2900 * @degrees: number of degrees the signal is shifted
2901 *
2902 * Shifts the phase of a clock signal by the specified
2903 * degrees. Returns 0 on success, -EERROR otherwise.
2904 *
2905 * This function makes no distinction about the input or reference
2906 * signal that we adjust the clock signal phase against. For example
2907 * phase locked-loop clock signal generators we may shift phase with
2908 * respect to feedback clock signal input, but for other cases the
2909 * clock phase may be shifted with respect to some other, unspecified
2910 * signal.
2911 *
2912 * Additionally the concept of phase shift does not propagate through
2913 * the clock tree hierarchy, which sets it apart from clock rates and
2914 * clock accuracy. A parent clock phase attribute does not have an
2915 * impact on the phase attribute of a child clock.
2916 */
clk_set_phase(struct clk * clk,int degrees)2917 int clk_set_phase(struct clk *clk, int degrees)
2918 {
2919 int ret;
2920
2921 if (!clk)
2922 return 0;
2923
2924 /* sanity check degrees */
2925 degrees %= 360;
2926 if (degrees < 0)
2927 degrees += 360;
2928
2929 clk_prepare_lock();
2930
2931 if (clk->exclusive_count)
2932 clk_core_rate_unprotect(clk->core);
2933
2934 ret = clk_core_set_phase_nolock(clk->core, degrees);
2935
2936 if (clk->exclusive_count)
2937 clk_core_rate_protect(clk->core);
2938
2939 clk_prepare_unlock();
2940
2941 return ret;
2942 }
2943 EXPORT_SYMBOL_GPL(clk_set_phase);
2944
clk_core_get_phase(struct clk_core * core)2945 static int clk_core_get_phase(struct clk_core *core)
2946 {
2947 int ret;
2948
2949 lockdep_assert_held(&prepare_lock);
2950 if (!core->ops->get_phase)
2951 return 0;
2952
2953 /* Always try to update cached phase if possible */
2954 ret = core->ops->get_phase(core->hw);
2955 if (ret >= 0)
2956 core->phase = ret;
2957
2958 return ret;
2959 }
2960
2961 /**
2962 * clk_get_phase - return the phase shift of a clock signal
2963 * @clk: clock signal source
2964 *
2965 * Returns the phase shift of a clock node in degrees, otherwise returns
2966 * -EERROR.
2967 */
clk_get_phase(struct clk * clk)2968 int clk_get_phase(struct clk *clk)
2969 {
2970 int ret;
2971
2972 if (!clk)
2973 return 0;
2974
2975 clk_prepare_lock();
2976 ret = clk_core_get_phase(clk->core);
2977 clk_prepare_unlock();
2978
2979 return ret;
2980 }
2981 EXPORT_SYMBOL_GPL(clk_get_phase);
2982
clk_core_reset_duty_cycle_nolock(struct clk_core * core)2983 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2984 {
2985 /* Assume a default value of 50% */
2986 core->duty.num = 1;
2987 core->duty.den = 2;
2988 }
2989
2990 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2991
clk_core_update_duty_cycle_nolock(struct clk_core * core)2992 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2993 {
2994 struct clk_duty *duty = &core->duty;
2995 int ret = 0;
2996
2997 if (!core->ops->get_duty_cycle)
2998 return clk_core_update_duty_cycle_parent_nolock(core);
2999
3000 ret = core->ops->get_duty_cycle(core->hw, duty);
3001 if (ret)
3002 goto reset;
3003
3004 /* Don't trust the clock provider too much */
3005 if (duty->den == 0 || duty->num > duty->den) {
3006 ret = -EINVAL;
3007 goto reset;
3008 }
3009
3010 return 0;
3011
3012 reset:
3013 clk_core_reset_duty_cycle_nolock(core);
3014 return ret;
3015 }
3016
clk_core_update_duty_cycle_parent_nolock(struct clk_core * core)3017 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
3018 {
3019 int ret = 0;
3020
3021 if (core->parent &&
3022 core->flags & CLK_DUTY_CYCLE_PARENT) {
3023 ret = clk_core_update_duty_cycle_nolock(core->parent);
3024 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3025 } else {
3026 clk_core_reset_duty_cycle_nolock(core);
3027 }
3028
3029 return ret;
3030 }
3031
3032 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3033 struct clk_duty *duty);
3034
clk_core_set_duty_cycle_nolock(struct clk_core * core,struct clk_duty * duty)3035 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
3036 struct clk_duty *duty)
3037 {
3038 int ret;
3039
3040 lockdep_assert_held(&prepare_lock);
3041
3042 if (clk_core_rate_is_protected(core))
3043 return -EBUSY;
3044
3045 trace_clk_set_duty_cycle(core, duty);
3046
3047 if (!core->ops->set_duty_cycle)
3048 return clk_core_set_duty_cycle_parent_nolock(core, duty);
3049
3050 ret = core->ops->set_duty_cycle(core->hw, duty);
3051 if (!ret)
3052 memcpy(&core->duty, duty, sizeof(*duty));
3053
3054 trace_clk_set_duty_cycle_complete(core, duty);
3055
3056 return ret;
3057 }
3058
clk_core_set_duty_cycle_parent_nolock(struct clk_core * core,struct clk_duty * duty)3059 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3060 struct clk_duty *duty)
3061 {
3062 int ret = 0;
3063
3064 if (core->parent &&
3065 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
3066 ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
3067 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3068 }
3069
3070 return ret;
3071 }
3072
3073 /**
3074 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
3075 * @clk: clock signal source
3076 * @num: numerator of the duty cycle ratio to be applied
3077 * @den: denominator of the duty cycle ratio to be applied
3078 *
3079 * Apply the duty cycle ratio if the ratio is valid and the clock can
3080 * perform this operation
3081 *
3082 * Returns (0) on success, a negative errno otherwise.
3083 */
clk_set_duty_cycle(struct clk * clk,unsigned int num,unsigned int den)3084 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
3085 {
3086 int ret;
3087 struct clk_duty duty;
3088
3089 if (!clk)
3090 return 0;
3091
3092 /* sanity check the ratio */
3093 if (den == 0 || num > den)
3094 return -EINVAL;
3095
3096 duty.num = num;
3097 duty.den = den;
3098
3099 clk_prepare_lock();
3100
3101 if (clk->exclusive_count)
3102 clk_core_rate_unprotect(clk->core);
3103
3104 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
3105
3106 if (clk->exclusive_count)
3107 clk_core_rate_protect(clk->core);
3108
3109 clk_prepare_unlock();
3110
3111 return ret;
3112 }
3113 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
3114
clk_core_get_scaled_duty_cycle(struct clk_core * core,unsigned int scale)3115 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
3116 unsigned int scale)
3117 {
3118 struct clk_duty *duty = &core->duty;
3119 int ret;
3120
3121 clk_prepare_lock();
3122
3123 ret = clk_core_update_duty_cycle_nolock(core);
3124 if (!ret)
3125 ret = mult_frac(scale, duty->num, duty->den);
3126
3127 clk_prepare_unlock();
3128
3129 return ret;
3130 }
3131
3132 /**
3133 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
3134 * @clk: clock signal source
3135 * @scale: scaling factor to be applied to represent the ratio as an integer
3136 *
3137 * Returns the duty cycle ratio of a clock node multiplied by the provided
3138 * scaling factor, or negative errno on error.
3139 */
clk_get_scaled_duty_cycle(struct clk * clk,unsigned int scale)3140 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
3141 {
3142 if (!clk)
3143 return 0;
3144
3145 return clk_core_get_scaled_duty_cycle(clk->core, scale);
3146 }
3147 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3148
3149 /**
3150 * clk_is_match - check if two clk's point to the same hardware clock
3151 * @p: clk compared against q
3152 * @q: clk compared against p
3153 *
3154 * Returns true if the two struct clk pointers both point to the same hardware
3155 * clock node. Put differently, returns true if struct clk *p and struct clk *q
3156 * share the same struct clk_core object.
3157 *
3158 * Returns false otherwise. Note that two NULL clks are treated as matching.
3159 */
clk_is_match(const struct clk * p,const struct clk * q)3160 bool clk_is_match(const struct clk *p, const struct clk *q)
3161 {
3162 /* trivial case: identical struct clk's or both NULL */
3163 if (p == q)
3164 return true;
3165
3166 /* true if clk->core pointers match. Avoid dereferencing garbage */
3167 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3168 if (p->core == q->core)
3169 return true;
3170
3171 return false;
3172 }
3173 EXPORT_SYMBOL_GPL(clk_is_match);
3174
3175 /*** debugfs support ***/
3176
3177 #ifdef CONFIG_DEBUG_FS
3178 #include <linux/debugfs.h>
3179
3180 static struct dentry *rootdir;
3181 static int inited = 0;
3182 static DEFINE_MUTEX(clk_debug_lock);
3183 static HLIST_HEAD(clk_debug_list);
3184
3185 static struct hlist_head *orphan_list[] = {
3186 &clk_orphan_list,
3187 NULL,
3188 };
3189
clk_summary_show_one(struct seq_file * s,struct clk_core * c,int level)3190 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3191 int level)
3192 {
3193 int phase;
3194
3195 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
3196 level * 3 + 1, "",
3197 30 - level * 3, c->name,
3198 c->enable_count, c->prepare_count, c->protect_count,
3199 clk_core_get_rate_recalc(c),
3200 clk_core_get_accuracy_recalc(c));
3201
3202 phase = clk_core_get_phase(c);
3203 if (phase >= 0)
3204 seq_printf(s, "%5d", phase);
3205 else
3206 seq_puts(s, "-----");
3207
3208 seq_printf(s, " %6d", clk_core_get_scaled_duty_cycle(c, 100000));
3209
3210 if (c->ops->is_enabled)
3211 seq_printf(s, " %9c\n", clk_core_is_enabled(c) ? 'Y' : 'N');
3212 else if (!c->ops->enable)
3213 seq_printf(s, " %9c\n", 'Y');
3214 else
3215 seq_printf(s, " %9c\n", '?');
3216 }
3217
clk_summary_show_subtree(struct seq_file * s,struct clk_core * c,int level)3218 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3219 int level)
3220 {
3221 struct clk_core *child;
3222
3223 clk_pm_runtime_get(c);
3224 clk_summary_show_one(s, c, level);
3225 clk_pm_runtime_put(c);
3226
3227 hlist_for_each_entry(child, &c->children, child_node)
3228 clk_summary_show_subtree(s, child, level + 1);
3229 }
3230
clk_summary_show(struct seq_file * s,void * data)3231 static int clk_summary_show(struct seq_file *s, void *data)
3232 {
3233 struct clk_core *c;
3234 struct hlist_head **lists = (struct hlist_head **)s->private;
3235
3236 seq_puts(s, " enable prepare protect duty hardware\n");
3237 seq_puts(s, " clock count count count rate accuracy phase cycle enable\n");
3238 seq_puts(s, "-------------------------------------------------------------------------------------------------------\n");
3239
3240 clk_prepare_lock();
3241
3242 for (; *lists; lists++)
3243 hlist_for_each_entry(c, *lists, child_node)
3244 clk_summary_show_subtree(s, c, 0);
3245
3246 clk_prepare_unlock();
3247
3248 return 0;
3249 }
3250 DEFINE_SHOW_ATTRIBUTE(clk_summary);
3251
clk_dump_one(struct seq_file * s,struct clk_core * c,int level)3252 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3253 {
3254 int phase;
3255 unsigned long min_rate, max_rate;
3256
3257 clk_core_get_boundaries(c, &min_rate, &max_rate);
3258
3259 /* This should be JSON format, i.e. elements separated with a comma */
3260 seq_printf(s, "\"%s\": { ", c->name);
3261 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3262 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3263 seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3264 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3265 seq_printf(s, "\"min_rate\": %lu,", min_rate);
3266 seq_printf(s, "\"max_rate\": %lu,", max_rate);
3267 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3268 phase = clk_core_get_phase(c);
3269 if (phase >= 0)
3270 seq_printf(s, "\"phase\": %d,", phase);
3271 seq_printf(s, "\"duty_cycle\": %u",
3272 clk_core_get_scaled_duty_cycle(c, 100000));
3273 }
3274
clk_dump_subtree(struct seq_file * s,struct clk_core * c,int level)3275 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3276 {
3277 struct clk_core *child;
3278
3279 clk_dump_one(s, c, level);
3280
3281 hlist_for_each_entry(child, &c->children, child_node) {
3282 seq_putc(s, ',');
3283 clk_dump_subtree(s, child, level + 1);
3284 }
3285
3286 seq_putc(s, '}');
3287 }
3288
clk_dump_show(struct seq_file * s,void * data)3289 static int clk_dump_show(struct seq_file *s, void *data)
3290 {
3291 struct clk_core *c;
3292 bool first_node = true;
3293 struct hlist_head **lists = (struct hlist_head **)s->private;
3294
3295 seq_putc(s, '{');
3296 clk_prepare_lock();
3297
3298 for (; *lists; lists++) {
3299 hlist_for_each_entry(c, *lists, child_node) {
3300 if (!first_node)
3301 seq_putc(s, ',');
3302 first_node = false;
3303 clk_dump_subtree(s, c, 0);
3304 }
3305 }
3306
3307 clk_prepare_unlock();
3308
3309 seq_puts(s, "}\n");
3310 return 0;
3311 }
3312 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3313
3314 #define CLOCK_ALLOW_WRITE_DEBUGFS
3315 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3316 /*
3317 * This can be dangerous, therefore don't provide any real compile time
3318 * configuration option for this feature.
3319 * People who want to use this will need to modify the source code directly.
3320 */
clk_rate_set(void * data,u64 val)3321 static int clk_rate_set(void *data, u64 val)
3322 {
3323 struct clk_core *core = data;
3324 int ret;
3325
3326 clk_prepare_lock();
3327 ret = clk_core_set_rate_nolock(core, val);
3328 clk_prepare_unlock();
3329
3330 return ret;
3331 }
3332
3333 #define clk_rate_mode 0644
3334
clk_prepare_enable_set(void * data,u64 val)3335 static int clk_prepare_enable_set(void *data, u64 val)
3336 {
3337 struct clk_core *core = data;
3338 int ret = 0;
3339
3340 if (val)
3341 ret = clk_prepare_enable(core->hw->clk);
3342 else
3343 clk_disable_unprepare(core->hw->clk);
3344
3345 return ret;
3346 }
3347
clk_prepare_enable_get(void * data,u64 * val)3348 static int clk_prepare_enable_get(void *data, u64 *val)
3349 {
3350 struct clk_core *core = data;
3351
3352 *val = core->enable_count && core->prepare_count;
3353 return 0;
3354 }
3355
3356 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3357 clk_prepare_enable_set, "%llu\n");
3358
3359 #else
3360 #define clk_rate_set NULL
3361 #define clk_rate_mode 0444
3362 #endif
3363
clk_rate_get(void * data,u64 * val)3364 static int clk_rate_get(void *data, u64 *val)
3365 {
3366 struct clk_core *core = data;
3367
3368 clk_prepare_lock();
3369 *val = clk_core_get_rate_recalc(core);
3370 clk_prepare_unlock();
3371
3372 return 0;
3373 }
3374
3375 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3376
3377 static const struct {
3378 unsigned long flag;
3379 const char *name;
3380 } clk_flags[] = {
3381 #define ENTRY(f) { f, #f }
3382 ENTRY(CLK_SET_RATE_GATE),
3383 ENTRY(CLK_SET_PARENT_GATE),
3384 ENTRY(CLK_SET_RATE_PARENT),
3385 ENTRY(CLK_IGNORE_UNUSED),
3386 ENTRY(CLK_GET_RATE_NOCACHE),
3387 ENTRY(CLK_SET_RATE_NO_REPARENT),
3388 ENTRY(CLK_GET_ACCURACY_NOCACHE),
3389 ENTRY(CLK_RECALC_NEW_RATES),
3390 ENTRY(CLK_SET_RATE_UNGATE),
3391 ENTRY(CLK_IS_CRITICAL),
3392 ENTRY(CLK_OPS_PARENT_ENABLE),
3393 ENTRY(CLK_DUTY_CYCLE_PARENT),
3394 #undef ENTRY
3395 };
3396
clk_flags_show(struct seq_file * s,void * data)3397 static int clk_flags_show(struct seq_file *s, void *data)
3398 {
3399 struct clk_core *core = s->private;
3400 unsigned long flags = core->flags;
3401 unsigned int i;
3402
3403 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3404 if (flags & clk_flags[i].flag) {
3405 seq_printf(s, "%s\n", clk_flags[i].name);
3406 flags &= ~clk_flags[i].flag;
3407 }
3408 }
3409 if (flags) {
3410 /* Unknown flags */
3411 seq_printf(s, "0x%lx\n", flags);
3412 }
3413
3414 return 0;
3415 }
3416 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3417
possible_parent_show(struct seq_file * s,struct clk_core * core,unsigned int i,char terminator)3418 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3419 unsigned int i, char terminator)
3420 {
3421 struct clk_core *parent;
3422 const char *name = NULL;
3423
3424 /*
3425 * Go through the following options to fetch a parent's name.
3426 *
3427 * 1. Fetch the registered parent clock and use its name
3428 * 2. Use the global (fallback) name if specified
3429 * 3. Use the local fw_name if provided
3430 * 4. Fetch parent clock's clock-output-name if DT index was set
3431 *
3432 * This may still fail in some cases, such as when the parent is
3433 * specified directly via a struct clk_hw pointer, but it isn't
3434 * registered (yet).
3435 */
3436 parent = clk_core_get_parent_by_index(core, i);
3437 if (parent) {
3438 seq_puts(s, parent->name);
3439 } else if (core->parents[i].name) {
3440 seq_puts(s, core->parents[i].name);
3441 } else if (core->parents[i].fw_name) {
3442 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3443 } else {
3444 if (core->parents[i].index >= 0)
3445 name = of_clk_get_parent_name(core->of_node, core->parents[i].index);
3446 if (!name)
3447 name = "(missing)";
3448
3449 seq_puts(s, name);
3450 }
3451
3452 seq_putc(s, terminator);
3453 }
3454
possible_parents_show(struct seq_file * s,void * data)3455 static int possible_parents_show(struct seq_file *s, void *data)
3456 {
3457 struct clk_core *core = s->private;
3458 int i;
3459
3460 for (i = 0; i < core->num_parents - 1; i++)
3461 possible_parent_show(s, core, i, ' ');
3462
3463 possible_parent_show(s, core, i, '\n');
3464
3465 return 0;
3466 }
3467 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3468
current_parent_show(struct seq_file * s,void * data)3469 static int current_parent_show(struct seq_file *s, void *data)
3470 {
3471 struct clk_core *core = s->private;
3472
3473 if (core->parent)
3474 seq_printf(s, "%s\n", core->parent->name);
3475
3476 return 0;
3477 }
3478 DEFINE_SHOW_ATTRIBUTE(current_parent);
3479
3480 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
current_parent_write(struct file * file,const char __user * ubuf,size_t count,loff_t * ppos)3481 static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3482 size_t count, loff_t *ppos)
3483 {
3484 struct seq_file *s = file->private_data;
3485 struct clk_core *core = s->private;
3486 struct clk_core *parent;
3487 u8 idx;
3488 int err;
3489
3490 err = kstrtou8_from_user(ubuf, count, 0, &idx);
3491 if (err < 0)
3492 return err;
3493
3494 parent = clk_core_get_parent_by_index(core, idx);
3495 if (!parent)
3496 return -ENOENT;
3497
3498 clk_prepare_lock();
3499 err = clk_core_set_parent_nolock(core, parent);
3500 clk_prepare_unlock();
3501 if (err)
3502 return err;
3503
3504 return count;
3505 }
3506
3507 static const struct file_operations current_parent_rw_fops = {
3508 .open = current_parent_open,
3509 .write = current_parent_write,
3510 .read = seq_read,
3511 .llseek = seq_lseek,
3512 .release = single_release,
3513 };
3514 #endif
3515
clk_duty_cycle_show(struct seq_file * s,void * data)3516 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3517 {
3518 struct clk_core *core = s->private;
3519 struct clk_duty *duty = &core->duty;
3520
3521 seq_printf(s, "%u/%u\n", duty->num, duty->den);
3522
3523 return 0;
3524 }
3525 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3526
clk_min_rate_show(struct seq_file * s,void * data)3527 static int clk_min_rate_show(struct seq_file *s, void *data)
3528 {
3529 struct clk_core *core = s->private;
3530 unsigned long min_rate, max_rate;
3531
3532 clk_prepare_lock();
3533 clk_core_get_boundaries(core, &min_rate, &max_rate);
3534 clk_prepare_unlock();
3535 seq_printf(s, "%lu\n", min_rate);
3536
3537 return 0;
3538 }
3539 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3540
clk_max_rate_show(struct seq_file * s,void * data)3541 static int clk_max_rate_show(struct seq_file *s, void *data)
3542 {
3543 struct clk_core *core = s->private;
3544 unsigned long min_rate, max_rate;
3545
3546 clk_prepare_lock();
3547 clk_core_get_boundaries(core, &min_rate, &max_rate);
3548 clk_prepare_unlock();
3549 seq_printf(s, "%lu\n", max_rate);
3550
3551 return 0;
3552 }
3553 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3554
clk_debug_create_one(struct clk_core * core,struct dentry * pdentry)3555 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3556 {
3557 struct dentry *root;
3558
3559 if (!core || !pdentry)
3560 return;
3561
3562 root = debugfs_create_dir(core->name, pdentry);
3563 core->dentry = root;
3564
3565 debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3566 &clk_rate_fops);
3567 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3568 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3569 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3570 debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3571 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3572 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3573 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3574 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3575 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3576 debugfs_create_file("clk_duty_cycle", 0444, root, core,
3577 &clk_duty_cycle_fops);
3578 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3579 debugfs_create_file("clk_prepare_enable", 0644, root, core,
3580 &clk_prepare_enable_fops);
3581
3582 if (core->num_parents > 1)
3583 debugfs_create_file("clk_parent", 0644, root, core,
3584 ¤t_parent_rw_fops);
3585 else
3586 #endif
3587 if (core->num_parents > 0)
3588 debugfs_create_file("clk_parent", 0444, root, core,
3589 ¤t_parent_fops);
3590
3591 if (core->num_parents > 1)
3592 debugfs_create_file("clk_possible_parents", 0444, root, core,
3593 &possible_parents_fops);
3594
3595 if (core->ops->debug_init)
3596 core->ops->debug_init(core->hw, core->dentry);
3597 }
3598
3599 /**
3600 * clk_debug_register - add a clk node to the debugfs clk directory
3601 * @core: the clk being added to the debugfs clk directory
3602 *
3603 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3604 * initialized. Otherwise it bails out early since the debugfs clk directory
3605 * will be created lazily by clk_debug_init as part of a late_initcall.
3606 */
clk_debug_register(struct clk_core * core)3607 static void clk_debug_register(struct clk_core *core)
3608 {
3609 mutex_lock(&clk_debug_lock);
3610 hlist_add_head(&core->debug_node, &clk_debug_list);
3611 if (inited)
3612 clk_debug_create_one(core, rootdir);
3613 mutex_unlock(&clk_debug_lock);
3614 }
3615
3616 /**
3617 * clk_debug_unregister - remove a clk node from the debugfs clk directory
3618 * @core: the clk being removed from the debugfs clk directory
3619 *
3620 * Dynamically removes a clk and all its child nodes from the
3621 * debugfs clk directory if clk->dentry points to debugfs created by
3622 * clk_debug_register in __clk_core_init.
3623 */
clk_debug_unregister(struct clk_core * core)3624 static void clk_debug_unregister(struct clk_core *core)
3625 {
3626 mutex_lock(&clk_debug_lock);
3627 hlist_del_init(&core->debug_node);
3628 debugfs_remove_recursive(core->dentry);
3629 core->dentry = NULL;
3630 mutex_unlock(&clk_debug_lock);
3631 }
3632
3633 /**
3634 * clk_debug_init - lazily populate the debugfs clk directory
3635 *
3636 * clks are often initialized very early during boot before memory can be
3637 * dynamically allocated and well before debugfs is setup. This function
3638 * populates the debugfs clk directory once at boot-time when we know that
3639 * debugfs is setup. It should only be called once at boot-time, all other clks
3640 * added dynamically will be done so with clk_debug_register.
3641 */
clk_debug_init(void)3642 static int __init clk_debug_init(void)
3643 {
3644 struct clk_core *core;
3645
3646 rootdir = debugfs_create_dir("clk", NULL);
3647
3648 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3649 &clk_summary_fops);
3650 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3651 &clk_dump_fops);
3652 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3653 &clk_summary_fops);
3654 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3655 &clk_dump_fops);
3656
3657 mutex_lock(&clk_debug_lock);
3658 hlist_for_each_entry(core, &clk_debug_list, debug_node)
3659 clk_debug_create_one(core, rootdir);
3660
3661 inited = 1;
3662 mutex_unlock(&clk_debug_lock);
3663
3664 return 0;
3665 }
3666 late_initcall(clk_debug_init);
3667 #else
clk_debug_register(struct clk_core * core)3668 static inline void clk_debug_register(struct clk_core *core) { }
clk_debug_unregister(struct clk_core * core)3669 static inline void clk_debug_unregister(struct clk_core *core)
3670 {
3671 }
3672 #endif
3673
clk_core_reparent_orphans_nolock(void)3674 static void clk_core_reparent_orphans_nolock(void)
3675 {
3676 struct clk_core *orphan;
3677 struct hlist_node *tmp2;
3678
3679 /*
3680 * walk the list of orphan clocks and reparent any that newly finds a
3681 * parent.
3682 */
3683 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3684 struct clk_core *parent = __clk_init_parent(orphan);
3685
3686 /*
3687 * We need to use __clk_set_parent_before() and _after() to
3688 * properly migrate any prepare/enable count of the orphan
3689 * clock. This is important for CLK_IS_CRITICAL clocks, which
3690 * are enabled during init but might not have a parent yet.
3691 */
3692 if (parent) {
3693 /* update the clk tree topology */
3694 __clk_set_parent_before(orphan, parent);
3695 __clk_set_parent_after(orphan, parent, NULL);
3696 __clk_recalc_accuracies(orphan);
3697 __clk_recalc_rates(orphan, true, 0);
3698 __clk_core_update_orphan_hold_state(orphan);
3699
3700 /*
3701 * __clk_init_parent() will set the initial req_rate to
3702 * 0 if the clock doesn't have clk_ops::recalc_rate and
3703 * is an orphan when it's registered.
3704 *
3705 * 'req_rate' is used by clk_set_rate_range() and
3706 * clk_put() to trigger a clk_set_rate() call whenever
3707 * the boundaries are modified. Let's make sure
3708 * 'req_rate' is set to something non-zero so that
3709 * clk_set_rate_range() doesn't drop the frequency.
3710 */
3711 orphan->req_rate = orphan->rate;
3712 }
3713 }
3714 }
3715
3716 /**
3717 * __clk_core_init - initialize the data structures in a struct clk_core
3718 * @core: clk_core being initialized
3719 *
3720 * Initializes the lists in struct clk_core, queries the hardware for the
3721 * parent and rate and sets them both.
3722 */
__clk_core_init(struct clk_core * core)3723 static int __clk_core_init(struct clk_core *core)
3724 {
3725 int ret;
3726 struct clk_core *parent;
3727 unsigned long rate;
3728 int phase;
3729
3730 clk_prepare_lock();
3731
3732 /*
3733 * Set hw->core after grabbing the prepare_lock to synchronize with
3734 * callers of clk_core_fill_parent_index() where we treat hw->core
3735 * being NULL as the clk not being registered yet. This is crucial so
3736 * that clks aren't parented until their parent is fully registered.
3737 */
3738 core->hw->core = core;
3739
3740 ret = clk_pm_runtime_get(core);
3741 if (ret)
3742 goto unlock;
3743
3744 /* check to see if a clock with this name is already registered */
3745 if (clk_core_lookup(core->name)) {
3746 pr_debug("%s: clk %s already initialized\n",
3747 __func__, core->name);
3748 ret = -EEXIST;
3749 goto out;
3750 }
3751
3752 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */
3753 if (core->ops->set_rate &&
3754 !((core->ops->round_rate || core->ops->determine_rate) &&
3755 core->ops->recalc_rate)) {
3756 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3757 __func__, core->name);
3758 ret = -EINVAL;
3759 goto out;
3760 }
3761
3762 if (core->ops->set_parent && !core->ops->get_parent) {
3763 pr_err("%s: %s must implement .get_parent & .set_parent\n",
3764 __func__, core->name);
3765 ret = -EINVAL;
3766 goto out;
3767 }
3768
3769 if (core->num_parents > 1 && !core->ops->get_parent) {
3770 pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3771 __func__, core->name);
3772 ret = -EINVAL;
3773 goto out;
3774 }
3775
3776 if (core->ops->set_rate_and_parent &&
3777 !(core->ops->set_parent && core->ops->set_rate)) {
3778 pr_err("%s: %s must implement .set_parent & .set_rate\n",
3779 __func__, core->name);
3780 ret = -EINVAL;
3781 goto out;
3782 }
3783
3784 /*
3785 * optional platform-specific magic
3786 *
3787 * The .init callback is not used by any of the basic clock types, but
3788 * exists for weird hardware that must perform initialization magic for
3789 * CCF to get an accurate view of clock for any other callbacks. It may
3790 * also be used needs to perform dynamic allocations. Such allocation
3791 * must be freed in the terminate() callback.
3792 * This callback shall not be used to initialize the parameters state,
3793 * such as rate, parent, etc ...
3794 *
3795 * If it exist, this callback should called before any other callback of
3796 * the clock
3797 */
3798 if (core->ops->init) {
3799 ret = core->ops->init(core->hw);
3800 if (ret)
3801 goto out;
3802 }
3803
3804 parent = core->parent = __clk_init_parent(core);
3805
3806 /*
3807 * Populate core->parent if parent has already been clk_core_init'd. If
3808 * parent has not yet been clk_core_init'd then place clk in the orphan
3809 * list. If clk doesn't have any parents then place it in the root
3810 * clk list.
3811 *
3812 * Every time a new clk is clk_init'd then we walk the list of orphan
3813 * clocks and re-parent any that are children of the clock currently
3814 * being clk_init'd.
3815 */
3816 if (parent) {
3817 hlist_add_head(&core->child_node, &parent->children);
3818 core->orphan = parent->orphan;
3819 } else if (!core->num_parents) {
3820 hlist_add_head(&core->child_node, &clk_root_list);
3821 core->orphan = false;
3822 } else {
3823 hlist_add_head(&core->child_node, &clk_orphan_list);
3824 core->orphan = true;
3825 }
3826
3827 /*
3828 * Set clk's accuracy. The preferred method is to use
3829 * .recalc_accuracy. For simple clocks and lazy developers the default
3830 * fallback is to use the parent's accuracy. If a clock doesn't have a
3831 * parent (or is orphaned) then accuracy is set to zero (perfect
3832 * clock).
3833 */
3834 if (core->ops->recalc_accuracy)
3835 core->accuracy = core->ops->recalc_accuracy(core->hw,
3836 clk_core_get_accuracy_no_lock(parent));
3837 else if (parent)
3838 core->accuracy = parent->accuracy;
3839 else
3840 core->accuracy = 0;
3841
3842 /*
3843 * Set clk's phase by clk_core_get_phase() caching the phase.
3844 * Since a phase is by definition relative to its parent, just
3845 * query the current clock phase, or just assume it's in phase.
3846 */
3847 phase = clk_core_get_phase(core);
3848 if (phase < 0) {
3849 ret = phase;
3850 pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3851 core->name);
3852 goto out;
3853 }
3854
3855 /*
3856 * Set clk's duty cycle.
3857 */
3858 clk_core_update_duty_cycle_nolock(core);
3859
3860 /*
3861 * Set clk's rate. The preferred method is to use .recalc_rate. For
3862 * simple clocks and lazy developers the default fallback is to use the
3863 * parent's rate. If a clock doesn't have a parent (or is orphaned)
3864 * then rate is set to zero.
3865 */
3866 if (core->ops->recalc_rate)
3867 rate = core->ops->recalc_rate(core->hw,
3868 clk_core_get_rate_nolock(parent));
3869 else if (parent)
3870 rate = parent->rate;
3871 else
3872 rate = 0;
3873 core->rate = core->req_rate = rate;
3874
3875 core->boot_enabled = clk_core_is_enabled(core);
3876
3877 /*
3878 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3879 * don't get accidentally disabled when walking the orphan tree and
3880 * reparenting clocks
3881 */
3882 if (core->flags & CLK_IS_CRITICAL) {
3883 ret = clk_core_prepare(core);
3884 if (ret) {
3885 pr_warn("%s: critical clk '%s' failed to prepare\n",
3886 __func__, core->name);
3887 goto out;
3888 }
3889
3890 ret = clk_core_enable_lock(core);
3891 if (ret) {
3892 pr_warn("%s: critical clk '%s' failed to enable\n",
3893 __func__, core->name);
3894 clk_core_unprepare(core);
3895 goto out;
3896 }
3897 }
3898
3899 clk_core_hold_state(core);
3900 clk_core_reparent_orphans_nolock();
3901
3902 kref_init(&core->ref);
3903 out:
3904 clk_pm_runtime_put(core);
3905 unlock:
3906 if (ret) {
3907 hlist_del_init(&core->child_node);
3908 core->hw->core = NULL;
3909 }
3910
3911 clk_prepare_unlock();
3912
3913 if (!ret)
3914 clk_debug_register(core);
3915
3916 return ret;
3917 }
3918
3919 /**
3920 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3921 * @core: clk to add consumer to
3922 * @clk: consumer to link to a clk
3923 */
clk_core_link_consumer(struct clk_core * core,struct clk * clk)3924 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3925 {
3926 clk_prepare_lock();
3927 hlist_add_head(&clk->clks_node, &core->clks);
3928 clk_prepare_unlock();
3929 }
3930
3931 /**
3932 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3933 * @clk: consumer to unlink
3934 */
clk_core_unlink_consumer(struct clk * clk)3935 static void clk_core_unlink_consumer(struct clk *clk)
3936 {
3937 lockdep_assert_held(&prepare_lock);
3938 hlist_del(&clk->clks_node);
3939 }
3940
3941 /**
3942 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3943 * @core: clk to allocate a consumer for
3944 * @dev_id: string describing device name
3945 * @con_id: connection ID string on device
3946 *
3947 * Returns: clk consumer left unlinked from the consumer list
3948 */
alloc_clk(struct clk_core * core,const char * dev_id,const char * con_id)3949 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3950 const char *con_id)
3951 {
3952 struct clk *clk;
3953
3954 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3955 if (!clk)
3956 return ERR_PTR(-ENOMEM);
3957
3958 clk->core = core;
3959 clk->dev_id = dev_id;
3960 clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3961 clk->max_rate = ULONG_MAX;
3962
3963 return clk;
3964 }
3965
3966 /**
3967 * free_clk - Free a clk consumer
3968 * @clk: clk consumer to free
3969 *
3970 * Note, this assumes the clk has been unlinked from the clk_core consumer
3971 * list.
3972 */
free_clk(struct clk * clk)3973 static void free_clk(struct clk *clk)
3974 {
3975 kfree_const(clk->con_id);
3976 kfree(clk);
3977 }
3978
3979 /**
3980 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3981 * a clk_hw
3982 * @dev: clk consumer device
3983 * @hw: clk_hw associated with the clk being consumed
3984 * @dev_id: string describing device name
3985 * @con_id: connection ID string on device
3986 *
3987 * This is the main function used to create a clk pointer for use by clk
3988 * consumers. It connects a consumer to the clk_core and clk_hw structures
3989 * used by the framework and clk provider respectively.
3990 */
clk_hw_create_clk(struct device * dev,struct clk_hw * hw,const char * dev_id,const char * con_id)3991 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3992 const char *dev_id, const char *con_id)
3993 {
3994 struct clk *clk;
3995 struct clk_core *core;
3996
3997 /* This is to allow this function to be chained to others */
3998 if (IS_ERR_OR_NULL(hw))
3999 return ERR_CAST(hw);
4000
4001 core = hw->core;
4002 clk = alloc_clk(core, dev_id, con_id);
4003 if (IS_ERR(clk))
4004 return clk;
4005 clk->dev = dev;
4006
4007 if (!try_module_get(core->owner)) {
4008 free_clk(clk);
4009 return ERR_PTR(-ENOENT);
4010 }
4011
4012 kref_get(&core->ref);
4013 clk_core_link_consumer(core, clk);
4014
4015 return clk;
4016 }
4017
4018 /**
4019 * clk_hw_get_clk - get clk consumer given an clk_hw
4020 * @hw: clk_hw associated with the clk being consumed
4021 * @con_id: connection ID string on device
4022 *
4023 * Returns: new clk consumer
4024 * This is the function to be used by providers which need
4025 * to get a consumer clk and act on the clock element
4026 * Calls to this function must be balanced with calls clk_put()
4027 */
clk_hw_get_clk(struct clk_hw * hw,const char * con_id)4028 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
4029 {
4030 struct device *dev = hw->core->dev;
4031 const char *name = dev ? dev_name(dev) : NULL;
4032
4033 return clk_hw_create_clk(dev, hw, name, con_id);
4034 }
4035 EXPORT_SYMBOL(clk_hw_get_clk);
4036
clk_cpy_name(const char ** dst_p,const char * src,bool must_exist)4037 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
4038 {
4039 const char *dst;
4040
4041 if (!src) {
4042 if (must_exist)
4043 return -EINVAL;
4044 return 0;
4045 }
4046
4047 *dst_p = dst = kstrdup_const(src, GFP_KERNEL);
4048 if (!dst)
4049 return -ENOMEM;
4050
4051 return 0;
4052 }
4053
clk_core_populate_parent_map(struct clk_core * core,const struct clk_init_data * init)4054 static int clk_core_populate_parent_map(struct clk_core *core,
4055 const struct clk_init_data *init)
4056 {
4057 u8 num_parents = init->num_parents;
4058 const char * const *parent_names = init->parent_names;
4059 const struct clk_hw **parent_hws = init->parent_hws;
4060 const struct clk_parent_data *parent_data = init->parent_data;
4061 int i, ret = 0;
4062 struct clk_parent_map *parents, *parent;
4063
4064 if (!num_parents)
4065 return 0;
4066
4067 /*
4068 * Avoid unnecessary string look-ups of clk_core's possible parents by
4069 * having a cache of names/clk_hw pointers to clk_core pointers.
4070 */
4071 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
4072 core->parents = parents;
4073 if (!parents)
4074 return -ENOMEM;
4075
4076 /* Copy everything over because it might be __initdata */
4077 for (i = 0, parent = parents; i < num_parents; i++, parent++) {
4078 parent->index = -1;
4079 if (parent_names) {
4080 /* throw a WARN if any entries are NULL */
4081 WARN(!parent_names[i],
4082 "%s: invalid NULL in %s's .parent_names\n",
4083 __func__, core->name);
4084 ret = clk_cpy_name(&parent->name, parent_names[i],
4085 true);
4086 } else if (parent_data) {
4087 parent->hw = parent_data[i].hw;
4088 parent->index = parent_data[i].index;
4089 ret = clk_cpy_name(&parent->fw_name,
4090 parent_data[i].fw_name, false);
4091 if (!ret)
4092 ret = clk_cpy_name(&parent->name,
4093 parent_data[i].name,
4094 false);
4095 } else if (parent_hws) {
4096 parent->hw = parent_hws[i];
4097 } else {
4098 ret = -EINVAL;
4099 WARN(1, "Must specify parents if num_parents > 0\n");
4100 }
4101
4102 if (ret) {
4103 do {
4104 kfree_const(parents[i].name);
4105 kfree_const(parents[i].fw_name);
4106 } while (--i >= 0);
4107 kfree(parents);
4108
4109 return ret;
4110 }
4111 }
4112
4113 return 0;
4114 }
4115
clk_core_free_parent_map(struct clk_core * core)4116 static void clk_core_free_parent_map(struct clk_core *core)
4117 {
4118 int i = core->num_parents;
4119
4120 if (!core->num_parents)
4121 return;
4122
4123 while (--i >= 0) {
4124 kfree_const(core->parents[i].name);
4125 kfree_const(core->parents[i].fw_name);
4126 }
4127
4128 kfree(core->parents);
4129 }
4130
4131 static struct clk *
__clk_register(struct device * dev,struct device_node * np,struct clk_hw * hw)4132 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
4133 {
4134 int ret;
4135 struct clk_core *core;
4136 const struct clk_init_data *init = hw->init;
4137
4138 /*
4139 * The init data is not supposed to be used outside of registration path.
4140 * Set it to NULL so that provider drivers can't use it either and so that
4141 * we catch use of hw->init early on in the core.
4142 */
4143 hw->init = NULL;
4144
4145 core = kzalloc(sizeof(*core), GFP_KERNEL);
4146 if (!core) {
4147 ret = -ENOMEM;
4148 goto fail_out;
4149 }
4150
4151 core->name = kstrdup_const(init->name, GFP_KERNEL);
4152 if (!core->name) {
4153 ret = -ENOMEM;
4154 goto fail_name;
4155 }
4156
4157 if (WARN_ON(!init->ops)) {
4158 ret = -EINVAL;
4159 goto fail_ops;
4160 }
4161 core->ops = init->ops;
4162
4163 if (dev && pm_runtime_enabled(dev))
4164 core->rpm_enabled = true;
4165 core->dev = dev;
4166 core->of_node = np;
4167 if (dev && dev->driver)
4168 core->owner = dev->driver->owner;
4169 core->hw = hw;
4170 core->flags = init->flags;
4171 core->num_parents = init->num_parents;
4172 core->min_rate = 0;
4173 core->max_rate = ULONG_MAX;
4174
4175 ret = clk_core_populate_parent_map(core, init);
4176 if (ret)
4177 goto fail_parents;
4178
4179 INIT_HLIST_HEAD(&core->clks);
4180
4181 /*
4182 * Don't call clk_hw_create_clk() here because that would pin the
4183 * provider module to itself and prevent it from ever being removed.
4184 */
4185 hw->clk = alloc_clk(core, NULL, NULL);
4186 if (IS_ERR(hw->clk)) {
4187 ret = PTR_ERR(hw->clk);
4188 goto fail_create_clk;
4189 }
4190
4191 clk_core_link_consumer(core, hw->clk);
4192
4193 ret = __clk_core_init(core);
4194 if (!ret)
4195 return hw->clk;
4196
4197 clk_prepare_lock();
4198 clk_core_unlink_consumer(hw->clk);
4199 clk_prepare_unlock();
4200
4201 free_clk(hw->clk);
4202 hw->clk = NULL;
4203
4204 fail_create_clk:
4205 clk_core_free_parent_map(core);
4206 fail_parents:
4207 fail_ops:
4208 kfree_const(core->name);
4209 fail_name:
4210 kfree(core);
4211 fail_out:
4212 return ERR_PTR(ret);
4213 }
4214
4215 /**
4216 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4217 * @dev: Device to get device node of
4218 *
4219 * Return: device node pointer of @dev, or the device node pointer of
4220 * @dev->parent if dev doesn't have a device node, or NULL if neither
4221 * @dev or @dev->parent have a device node.
4222 */
dev_or_parent_of_node(struct device * dev)4223 static struct device_node *dev_or_parent_of_node(struct device *dev)
4224 {
4225 struct device_node *np;
4226
4227 if (!dev)
4228 return NULL;
4229
4230 np = dev_of_node(dev);
4231 if (!np)
4232 np = dev_of_node(dev->parent);
4233
4234 return np;
4235 }
4236
4237 /**
4238 * clk_register - allocate a new clock, register it and return an opaque cookie
4239 * @dev: device that is registering this clock
4240 * @hw: link to hardware-specific clock data
4241 *
4242 * clk_register is the *deprecated* interface for populating the clock tree with
4243 * new clock nodes. Use clk_hw_register() instead.
4244 *
4245 * Returns: a pointer to the newly allocated struct clk which
4246 * cannot be dereferenced by driver code but may be used in conjunction with the
4247 * rest of the clock API. In the event of an error clk_register will return an
4248 * error code; drivers must test for an error code after calling clk_register.
4249 */
clk_register(struct device * dev,struct clk_hw * hw)4250 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4251 {
4252 return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4253 }
4254 EXPORT_SYMBOL_GPL(clk_register);
4255
4256 /**
4257 * clk_hw_register - register a clk_hw and return an error code
4258 * @dev: device that is registering this clock
4259 * @hw: link to hardware-specific clock data
4260 *
4261 * clk_hw_register is the primary interface for populating the clock tree with
4262 * new clock nodes. It returns an integer equal to zero indicating success or
4263 * less than zero indicating failure. Drivers must test for an error code after
4264 * calling clk_hw_register().
4265 */
clk_hw_register(struct device * dev,struct clk_hw * hw)4266 int clk_hw_register(struct device *dev, struct clk_hw *hw)
4267 {
4268 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4269 hw));
4270 }
4271 EXPORT_SYMBOL_GPL(clk_hw_register);
4272
4273 /*
4274 * of_clk_hw_register - register a clk_hw and return an error code
4275 * @node: device_node of device that is registering this clock
4276 * @hw: link to hardware-specific clock data
4277 *
4278 * of_clk_hw_register() is the primary interface for populating the clock tree
4279 * with new clock nodes when a struct device is not available, but a struct
4280 * device_node is. It returns an integer equal to zero indicating success or
4281 * less than zero indicating failure. Drivers must test for an error code after
4282 * calling of_clk_hw_register().
4283 */
of_clk_hw_register(struct device_node * node,struct clk_hw * hw)4284 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4285 {
4286 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4287 }
4288 EXPORT_SYMBOL_GPL(of_clk_hw_register);
4289
4290 /* Free memory allocated for a clock. */
__clk_release(struct kref * ref)4291 static void __clk_release(struct kref *ref)
4292 {
4293 struct clk_core *core = container_of(ref, struct clk_core, ref);
4294
4295 lockdep_assert_held(&prepare_lock);
4296
4297 clk_core_free_parent_map(core);
4298 kfree_const(core->name);
4299 kfree(core);
4300 }
4301
4302 /*
4303 * Empty clk_ops for unregistered clocks. These are used temporarily
4304 * after clk_unregister() was called on a clock and until last clock
4305 * consumer calls clk_put() and the struct clk object is freed.
4306 */
clk_nodrv_prepare_enable(struct clk_hw * hw)4307 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4308 {
4309 return -ENXIO;
4310 }
4311
clk_nodrv_disable_unprepare(struct clk_hw * hw)4312 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4313 {
4314 WARN_ON_ONCE(1);
4315 }
4316
clk_nodrv_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)4317 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4318 unsigned long parent_rate)
4319 {
4320 return -ENXIO;
4321 }
4322
clk_nodrv_set_parent(struct clk_hw * hw,u8 index)4323 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4324 {
4325 return -ENXIO;
4326 }
4327
4328 static const struct clk_ops clk_nodrv_ops = {
4329 .enable = clk_nodrv_prepare_enable,
4330 .disable = clk_nodrv_disable_unprepare,
4331 .prepare = clk_nodrv_prepare_enable,
4332 .unprepare = clk_nodrv_disable_unprepare,
4333 .set_rate = clk_nodrv_set_rate,
4334 .set_parent = clk_nodrv_set_parent,
4335 };
4336
clk_core_evict_parent_cache_subtree(struct clk_core * root,const struct clk_core * target)4337 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4338 const struct clk_core *target)
4339 {
4340 int i;
4341 struct clk_core *child;
4342
4343 for (i = 0; i < root->num_parents; i++)
4344 if (root->parents[i].core == target)
4345 root->parents[i].core = NULL;
4346
4347 hlist_for_each_entry(child, &root->children, child_node)
4348 clk_core_evict_parent_cache_subtree(child, target);
4349 }
4350
4351 /* Remove this clk from all parent caches */
clk_core_evict_parent_cache(struct clk_core * core)4352 static void clk_core_evict_parent_cache(struct clk_core *core)
4353 {
4354 const struct hlist_head **lists;
4355 struct clk_core *root;
4356
4357 lockdep_assert_held(&prepare_lock);
4358
4359 for (lists = all_lists; *lists; lists++)
4360 hlist_for_each_entry(root, *lists, child_node)
4361 clk_core_evict_parent_cache_subtree(root, core);
4362
4363 }
4364
4365 /**
4366 * clk_unregister - unregister a currently registered clock
4367 * @clk: clock to unregister
4368 */
clk_unregister(struct clk * clk)4369 void clk_unregister(struct clk *clk)
4370 {
4371 unsigned long flags;
4372 const struct clk_ops *ops;
4373
4374 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4375 return;
4376
4377 clk_debug_unregister(clk->core);
4378
4379 clk_prepare_lock();
4380
4381 ops = clk->core->ops;
4382 if (ops == &clk_nodrv_ops) {
4383 pr_err("%s: unregistered clock: %s\n", __func__,
4384 clk->core->name);
4385 goto unlock;
4386 }
4387 /*
4388 * Assign empty clock ops for consumers that might still hold
4389 * a reference to this clock.
4390 */
4391 flags = clk_enable_lock();
4392 clk->core->ops = &clk_nodrv_ops;
4393 clk_enable_unlock(flags);
4394
4395 if (ops->terminate)
4396 ops->terminate(clk->core->hw);
4397
4398 if (!hlist_empty(&clk->core->children)) {
4399 struct clk_core *child;
4400 struct hlist_node *t;
4401
4402 /* Reparent all children to the orphan list. */
4403 hlist_for_each_entry_safe(child, t, &clk->core->children,
4404 child_node)
4405 clk_core_set_parent_nolock(child, NULL);
4406 }
4407
4408 clk_core_evict_parent_cache(clk->core);
4409
4410 hlist_del_init(&clk->core->child_node);
4411
4412 if (clk->core->prepare_count)
4413 pr_warn("%s: unregistering prepared clock: %s\n",
4414 __func__, clk->core->name);
4415
4416 if (clk->core->protect_count)
4417 pr_warn("%s: unregistering protected clock: %s\n",
4418 __func__, clk->core->name);
4419
4420 kref_put(&clk->core->ref, __clk_release);
4421 free_clk(clk);
4422 unlock:
4423 clk_prepare_unlock();
4424 }
4425 EXPORT_SYMBOL_GPL(clk_unregister);
4426
4427 /**
4428 * clk_hw_unregister - unregister a currently registered clk_hw
4429 * @hw: hardware-specific clock data to unregister
4430 */
clk_hw_unregister(struct clk_hw * hw)4431 void clk_hw_unregister(struct clk_hw *hw)
4432 {
4433 clk_unregister(hw->clk);
4434 }
4435 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4436
devm_clk_unregister_cb(struct device * dev,void * res)4437 static void devm_clk_unregister_cb(struct device *dev, void *res)
4438 {
4439 clk_unregister(*(struct clk **)res);
4440 }
4441
devm_clk_hw_unregister_cb(struct device * dev,void * res)4442 static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4443 {
4444 clk_hw_unregister(*(struct clk_hw **)res);
4445 }
4446
4447 /**
4448 * devm_clk_register - resource managed clk_register()
4449 * @dev: device that is registering this clock
4450 * @hw: link to hardware-specific clock data
4451 *
4452 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4453 *
4454 * Clocks returned from this function are automatically clk_unregister()ed on
4455 * driver detach. See clk_register() for more information.
4456 */
devm_clk_register(struct device * dev,struct clk_hw * hw)4457 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4458 {
4459 struct clk *clk;
4460 struct clk **clkp;
4461
4462 clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4463 if (!clkp)
4464 return ERR_PTR(-ENOMEM);
4465
4466 clk = clk_register(dev, hw);
4467 if (!IS_ERR(clk)) {
4468 *clkp = clk;
4469 devres_add(dev, clkp);
4470 } else {
4471 devres_free(clkp);
4472 }
4473
4474 return clk;
4475 }
4476 EXPORT_SYMBOL_GPL(devm_clk_register);
4477
4478 /**
4479 * devm_clk_hw_register - resource managed clk_hw_register()
4480 * @dev: device that is registering this clock
4481 * @hw: link to hardware-specific clock data
4482 *
4483 * Managed clk_hw_register(). Clocks registered by this function are
4484 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4485 * for more information.
4486 */
devm_clk_hw_register(struct device * dev,struct clk_hw * hw)4487 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4488 {
4489 struct clk_hw **hwp;
4490 int ret;
4491
4492 hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4493 if (!hwp)
4494 return -ENOMEM;
4495
4496 ret = clk_hw_register(dev, hw);
4497 if (!ret) {
4498 *hwp = hw;
4499 devres_add(dev, hwp);
4500 } else {
4501 devres_free(hwp);
4502 }
4503
4504 return ret;
4505 }
4506 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4507
devm_clk_release(struct device * dev,void * res)4508 static void devm_clk_release(struct device *dev, void *res)
4509 {
4510 clk_put(*(struct clk **)res);
4511 }
4512
4513 /**
4514 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4515 * @dev: device that is registering this clock
4516 * @hw: clk_hw associated with the clk being consumed
4517 * @con_id: connection ID string on device
4518 *
4519 * Managed clk_hw_get_clk(). Clocks got with this function are
4520 * automatically clk_put() on driver detach. See clk_put()
4521 * for more information.
4522 */
devm_clk_hw_get_clk(struct device * dev,struct clk_hw * hw,const char * con_id)4523 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4524 const char *con_id)
4525 {
4526 struct clk *clk;
4527 struct clk **clkp;
4528
4529 /* This should not happen because it would mean we have drivers
4530 * passing around clk_hw pointers instead of having the caller use
4531 * proper clk_get() style APIs
4532 */
4533 WARN_ON_ONCE(dev != hw->core->dev);
4534
4535 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4536 if (!clkp)
4537 return ERR_PTR(-ENOMEM);
4538
4539 clk = clk_hw_get_clk(hw, con_id);
4540 if (!IS_ERR(clk)) {
4541 *clkp = clk;
4542 devres_add(dev, clkp);
4543 } else {
4544 devres_free(clkp);
4545 }
4546
4547 return clk;
4548 }
4549 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4550
4551 /*
4552 * clkdev helpers
4553 */
4554
__clk_put(struct clk * clk)4555 void __clk_put(struct clk *clk)
4556 {
4557 struct module *owner;
4558
4559 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4560 return;
4561
4562 clk_prepare_lock();
4563
4564 /*
4565 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4566 * given user should be balanced with calls to clk_rate_exclusive_put()
4567 * and by that same consumer
4568 */
4569 if (WARN_ON(clk->exclusive_count)) {
4570 /* We voiced our concern, let's sanitize the situation */
4571 clk->core->protect_count -= (clk->exclusive_count - 1);
4572 clk_core_rate_unprotect(clk->core);
4573 clk->exclusive_count = 0;
4574 }
4575
4576 hlist_del(&clk->clks_node);
4577
4578 /* If we had any boundaries on that clock, let's drop them. */
4579 if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX)
4580 clk_set_rate_range_nolock(clk, 0, ULONG_MAX);
4581
4582 owner = clk->core->owner;
4583 kref_put(&clk->core->ref, __clk_release);
4584
4585 clk_prepare_unlock();
4586
4587 module_put(owner);
4588
4589 free_clk(clk);
4590 }
4591
4592 /*** clk rate change notifiers ***/
4593
4594 /**
4595 * clk_notifier_register - add a clk rate change notifier
4596 * @clk: struct clk * to watch
4597 * @nb: struct notifier_block * with callback info
4598 *
4599 * Request notification when clk's rate changes. This uses an SRCU
4600 * notifier because we want it to block and notifier unregistrations are
4601 * uncommon. The callbacks associated with the notifier must not
4602 * re-enter into the clk framework by calling any top-level clk APIs;
4603 * this will cause a nested prepare_lock mutex.
4604 *
4605 * In all notification cases (pre, post and abort rate change) the original
4606 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4607 * and the new frequency is passed via struct clk_notifier_data.new_rate.
4608 *
4609 * clk_notifier_register() must be called from non-atomic context.
4610 * Returns -EINVAL if called with null arguments, -ENOMEM upon
4611 * allocation failure; otherwise, passes along the return value of
4612 * srcu_notifier_chain_register().
4613 */
clk_notifier_register(struct clk * clk,struct notifier_block * nb)4614 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4615 {
4616 struct clk_notifier *cn;
4617 int ret = -ENOMEM;
4618
4619 if (!clk || !nb)
4620 return -EINVAL;
4621
4622 clk_prepare_lock();
4623
4624 /* search the list of notifiers for this clk */
4625 list_for_each_entry(cn, &clk_notifier_list, node)
4626 if (cn->clk == clk)
4627 goto found;
4628
4629 /* if clk wasn't in the notifier list, allocate new clk_notifier */
4630 cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4631 if (!cn)
4632 goto out;
4633
4634 cn->clk = clk;
4635 srcu_init_notifier_head(&cn->notifier_head);
4636
4637 list_add(&cn->node, &clk_notifier_list);
4638
4639 found:
4640 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4641
4642 clk->core->notifier_count++;
4643
4644 out:
4645 clk_prepare_unlock();
4646
4647 return ret;
4648 }
4649 EXPORT_SYMBOL_GPL(clk_notifier_register);
4650
4651 /**
4652 * clk_notifier_unregister - remove a clk rate change notifier
4653 * @clk: struct clk *
4654 * @nb: struct notifier_block * with callback info
4655 *
4656 * Request no further notification for changes to 'clk' and frees memory
4657 * allocated in clk_notifier_register.
4658 *
4659 * Returns -EINVAL if called with null arguments; otherwise, passes
4660 * along the return value of srcu_notifier_chain_unregister().
4661 */
clk_notifier_unregister(struct clk * clk,struct notifier_block * nb)4662 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4663 {
4664 struct clk_notifier *cn;
4665 int ret = -ENOENT;
4666
4667 if (!clk || !nb)
4668 return -EINVAL;
4669
4670 clk_prepare_lock();
4671
4672 list_for_each_entry(cn, &clk_notifier_list, node) {
4673 if (cn->clk == clk) {
4674 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4675
4676 clk->core->notifier_count--;
4677
4678 /* XXX the notifier code should handle this better */
4679 if (!cn->notifier_head.head) {
4680 srcu_cleanup_notifier_head(&cn->notifier_head);
4681 list_del(&cn->node);
4682 kfree(cn);
4683 }
4684 break;
4685 }
4686 }
4687
4688 clk_prepare_unlock();
4689
4690 return ret;
4691 }
4692 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4693
4694 struct clk_notifier_devres {
4695 struct clk *clk;
4696 struct notifier_block *nb;
4697 };
4698
devm_clk_notifier_release(struct device * dev,void * res)4699 static void devm_clk_notifier_release(struct device *dev, void *res)
4700 {
4701 struct clk_notifier_devres *devres = res;
4702
4703 clk_notifier_unregister(devres->clk, devres->nb);
4704 }
4705
devm_clk_notifier_register(struct device * dev,struct clk * clk,struct notifier_block * nb)4706 int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4707 struct notifier_block *nb)
4708 {
4709 struct clk_notifier_devres *devres;
4710 int ret;
4711
4712 devres = devres_alloc(devm_clk_notifier_release,
4713 sizeof(*devres), GFP_KERNEL);
4714
4715 if (!devres)
4716 return -ENOMEM;
4717
4718 ret = clk_notifier_register(clk, nb);
4719 if (!ret) {
4720 devres->clk = clk;
4721 devres->nb = nb;
4722 devres_add(dev, devres);
4723 } else {
4724 devres_free(devres);
4725 }
4726
4727 return ret;
4728 }
4729 EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4730
4731 #ifdef CONFIG_OF
clk_core_reparent_orphans(void)4732 static void clk_core_reparent_orphans(void)
4733 {
4734 clk_prepare_lock();
4735 clk_core_reparent_orphans_nolock();
4736 clk_prepare_unlock();
4737 }
4738
4739 /**
4740 * struct of_clk_provider - Clock provider registration structure
4741 * @link: Entry in global list of clock providers
4742 * @node: Pointer to device tree node of clock provider
4743 * @get: Get clock callback. Returns NULL or a struct clk for the
4744 * given clock specifier
4745 * @get_hw: Get clk_hw callback. Returns NULL, ERR_PTR or a
4746 * struct clk_hw for the given clock specifier
4747 * @data: context pointer to be passed into @get callback
4748 */
4749 struct of_clk_provider {
4750 struct list_head link;
4751
4752 struct device_node *node;
4753 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4754 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4755 void *data;
4756 };
4757
4758 extern struct of_device_id __clk_of_table;
4759 static const struct of_device_id __clk_of_table_sentinel
4760 __used __section("__clk_of_table_end");
4761
4762 static LIST_HEAD(of_clk_providers);
4763 static DEFINE_MUTEX(of_clk_mutex);
4764
of_clk_src_simple_get(struct of_phandle_args * clkspec,void * data)4765 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4766 void *data)
4767 {
4768 return data;
4769 }
4770 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4771
of_clk_hw_simple_get(struct of_phandle_args * clkspec,void * data)4772 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4773 {
4774 return data;
4775 }
4776 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4777
of_clk_src_onecell_get(struct of_phandle_args * clkspec,void * data)4778 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4779 {
4780 struct clk_onecell_data *clk_data = data;
4781 unsigned int idx = clkspec->args[0];
4782
4783 if (idx >= clk_data->clk_num) {
4784 pr_err("%s: invalid clock index %u\n", __func__, idx);
4785 return ERR_PTR(-EINVAL);
4786 }
4787
4788 return clk_data->clks[idx];
4789 }
4790 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4791
4792 struct clk_hw *
of_clk_hw_onecell_get(struct of_phandle_args * clkspec,void * data)4793 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4794 {
4795 struct clk_hw_onecell_data *hw_data = data;
4796 unsigned int idx = clkspec->args[0];
4797
4798 if (idx >= hw_data->num) {
4799 pr_err("%s: invalid index %u\n", __func__, idx);
4800 return ERR_PTR(-EINVAL);
4801 }
4802
4803 return hw_data->hws[idx];
4804 }
4805 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4806
4807 /**
4808 * of_clk_add_provider() - Register a clock provider for a node
4809 * @np: Device node pointer associated with clock provider
4810 * @clk_src_get: callback for decoding clock
4811 * @data: context pointer for @clk_src_get callback.
4812 *
4813 * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4814 */
of_clk_add_provider(struct device_node * np,struct clk * (* clk_src_get)(struct of_phandle_args * clkspec,void * data),void * data)4815 int of_clk_add_provider(struct device_node *np,
4816 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4817 void *data),
4818 void *data)
4819 {
4820 struct of_clk_provider *cp;
4821 int ret;
4822
4823 if (!np)
4824 return 0;
4825
4826 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4827 if (!cp)
4828 return -ENOMEM;
4829
4830 cp->node = of_node_get(np);
4831 cp->data = data;
4832 cp->get = clk_src_get;
4833
4834 mutex_lock(&of_clk_mutex);
4835 list_add(&cp->link, &of_clk_providers);
4836 mutex_unlock(&of_clk_mutex);
4837 pr_debug("Added clock from %pOF\n", np);
4838
4839 clk_core_reparent_orphans();
4840
4841 ret = of_clk_set_defaults(np, true);
4842 if (ret < 0)
4843 of_clk_del_provider(np);
4844
4845 fwnode_dev_initialized(&np->fwnode, true);
4846
4847 return ret;
4848 }
4849 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4850
4851 /**
4852 * of_clk_add_hw_provider() - Register a clock provider for a node
4853 * @np: Device node pointer associated with clock provider
4854 * @get: callback for decoding clk_hw
4855 * @data: context pointer for @get callback.
4856 */
of_clk_add_hw_provider(struct device_node * np,struct clk_hw * (* get)(struct of_phandle_args * clkspec,void * data),void * data)4857 int of_clk_add_hw_provider(struct device_node *np,
4858 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4859 void *data),
4860 void *data)
4861 {
4862 struct of_clk_provider *cp;
4863 int ret;
4864
4865 if (!np)
4866 return 0;
4867
4868 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4869 if (!cp)
4870 return -ENOMEM;
4871
4872 cp->node = of_node_get(np);
4873 cp->data = data;
4874 cp->get_hw = get;
4875
4876 mutex_lock(&of_clk_mutex);
4877 list_add(&cp->link, &of_clk_providers);
4878 mutex_unlock(&of_clk_mutex);
4879 pr_debug("Added clk_hw provider from %pOF\n", np);
4880
4881 clk_core_reparent_orphans();
4882
4883 ret = of_clk_set_defaults(np, true);
4884 if (ret < 0)
4885 of_clk_del_provider(np);
4886
4887 fwnode_dev_initialized(&np->fwnode, true);
4888
4889 return ret;
4890 }
4891 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4892
devm_of_clk_release_provider(struct device * dev,void * res)4893 static void devm_of_clk_release_provider(struct device *dev, void *res)
4894 {
4895 of_clk_del_provider(*(struct device_node **)res);
4896 }
4897
4898 /*
4899 * We allow a child device to use its parent device as the clock provider node
4900 * for cases like MFD sub-devices where the child device driver wants to use
4901 * devm_*() APIs but not list the device in DT as a sub-node.
4902 */
get_clk_provider_node(struct device * dev)4903 static struct device_node *get_clk_provider_node(struct device *dev)
4904 {
4905 struct device_node *np, *parent_np;
4906
4907 np = dev->of_node;
4908 parent_np = dev->parent ? dev->parent->of_node : NULL;
4909
4910 if (!of_find_property(np, "#clock-cells", NULL))
4911 if (of_find_property(parent_np, "#clock-cells", NULL))
4912 np = parent_np;
4913
4914 return np;
4915 }
4916
4917 /**
4918 * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4919 * @dev: Device acting as the clock provider (used for DT node and lifetime)
4920 * @get: callback for decoding clk_hw
4921 * @data: context pointer for @get callback
4922 *
4923 * Registers clock provider for given device's node. If the device has no DT
4924 * node or if the device node lacks of clock provider information (#clock-cells)
4925 * then the parent device's node is scanned for this information. If parent node
4926 * has the #clock-cells then it is used in registration. Provider is
4927 * automatically released at device exit.
4928 *
4929 * Return: 0 on success or an errno on failure.
4930 */
devm_of_clk_add_hw_provider(struct device * dev,struct clk_hw * (* get)(struct of_phandle_args * clkspec,void * data),void * data)4931 int devm_of_clk_add_hw_provider(struct device *dev,
4932 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4933 void *data),
4934 void *data)
4935 {
4936 struct device_node **ptr, *np;
4937 int ret;
4938
4939 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4940 GFP_KERNEL);
4941 if (!ptr)
4942 return -ENOMEM;
4943
4944 np = get_clk_provider_node(dev);
4945 ret = of_clk_add_hw_provider(np, get, data);
4946 if (!ret) {
4947 *ptr = np;
4948 devres_add(dev, ptr);
4949 } else {
4950 devres_free(ptr);
4951 }
4952
4953 return ret;
4954 }
4955 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4956
4957 /**
4958 * of_clk_del_provider() - Remove a previously registered clock provider
4959 * @np: Device node pointer associated with clock provider
4960 */
of_clk_del_provider(struct device_node * np)4961 void of_clk_del_provider(struct device_node *np)
4962 {
4963 struct of_clk_provider *cp;
4964
4965 if (!np)
4966 return;
4967
4968 mutex_lock(&of_clk_mutex);
4969 list_for_each_entry(cp, &of_clk_providers, link) {
4970 if (cp->node == np) {
4971 list_del(&cp->link);
4972 fwnode_dev_initialized(&np->fwnode, false);
4973 of_node_put(cp->node);
4974 kfree(cp);
4975 break;
4976 }
4977 }
4978 mutex_unlock(&of_clk_mutex);
4979 }
4980 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4981
4982 /**
4983 * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4984 * @np: device node to parse clock specifier from
4985 * @index: index of phandle to parse clock out of. If index < 0, @name is used
4986 * @name: clock name to find and parse. If name is NULL, the index is used
4987 * @out_args: Result of parsing the clock specifier
4988 *
4989 * Parses a device node's "clocks" and "clock-names" properties to find the
4990 * phandle and cells for the index or name that is desired. The resulting clock
4991 * specifier is placed into @out_args, or an errno is returned when there's a
4992 * parsing error. The @index argument is ignored if @name is non-NULL.
4993 *
4994 * Example:
4995 *
4996 * phandle1: clock-controller@1 {
4997 * #clock-cells = <2>;
4998 * }
4999 *
5000 * phandle2: clock-controller@2 {
5001 * #clock-cells = <1>;
5002 * }
5003 *
5004 * clock-consumer@3 {
5005 * clocks = <&phandle1 1 2 &phandle2 3>;
5006 * clock-names = "name1", "name2";
5007 * }
5008 *
5009 * To get a device_node for `clock-controller@2' node you may call this
5010 * function a few different ways:
5011 *
5012 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
5013 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
5014 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
5015 *
5016 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
5017 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
5018 * the "clock-names" property of @np.
5019 */
of_parse_clkspec(const struct device_node * np,int index,const char * name,struct of_phandle_args * out_args)5020 static int of_parse_clkspec(const struct device_node *np, int index,
5021 const char *name, struct of_phandle_args *out_args)
5022 {
5023 int ret = -ENOENT;
5024
5025 /* Walk up the tree of devices looking for a clock property that matches */
5026 while (np) {
5027 /*
5028 * For named clocks, first look up the name in the
5029 * "clock-names" property. If it cannot be found, then index
5030 * will be an error code and of_parse_phandle_with_args() will
5031 * return -EINVAL.
5032 */
5033 if (name)
5034 index = of_property_match_string(np, "clock-names", name);
5035 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
5036 index, out_args);
5037 if (!ret)
5038 break;
5039 if (name && index >= 0)
5040 break;
5041
5042 /*
5043 * No matching clock found on this node. If the parent node
5044 * has a "clock-ranges" property, then we can try one of its
5045 * clocks.
5046 */
5047 np = np->parent;
5048 if (np && !of_get_property(np, "clock-ranges", NULL))
5049 break;
5050 index = 0;
5051 }
5052
5053 return ret;
5054 }
5055
5056 static struct clk_hw *
__of_clk_get_hw_from_provider(struct of_clk_provider * provider,struct of_phandle_args * clkspec)5057 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
5058 struct of_phandle_args *clkspec)
5059 {
5060 struct clk *clk;
5061
5062 if (provider->get_hw)
5063 return provider->get_hw(clkspec, provider->data);
5064
5065 clk = provider->get(clkspec, provider->data);
5066 if (IS_ERR(clk))
5067 return ERR_CAST(clk);
5068 return __clk_get_hw(clk);
5069 }
5070
5071 static struct clk_hw *
of_clk_get_hw_from_clkspec(struct of_phandle_args * clkspec)5072 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
5073 {
5074 struct of_clk_provider *provider;
5075 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
5076
5077 if (!clkspec)
5078 return ERR_PTR(-EINVAL);
5079
5080 mutex_lock(&of_clk_mutex);
5081 list_for_each_entry(provider, &of_clk_providers, link) {
5082 if (provider->node == clkspec->np) {
5083 hw = __of_clk_get_hw_from_provider(provider, clkspec);
5084 if (!IS_ERR(hw))
5085 break;
5086 }
5087 }
5088 mutex_unlock(&of_clk_mutex);
5089
5090 return hw;
5091 }
5092
5093 /**
5094 * of_clk_get_from_provider() - Lookup a clock from a clock provider
5095 * @clkspec: pointer to a clock specifier data structure
5096 *
5097 * This function looks up a struct clk from the registered list of clock
5098 * providers, an input is a clock specifier data structure as returned
5099 * from the of_parse_phandle_with_args() function call.
5100 */
of_clk_get_from_provider(struct of_phandle_args * clkspec)5101 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
5102 {
5103 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
5104
5105 return clk_hw_create_clk(NULL, hw, NULL, __func__);
5106 }
5107 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
5108
of_clk_get_hw(struct device_node * np,int index,const char * con_id)5109 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
5110 const char *con_id)
5111 {
5112 int ret;
5113 struct clk_hw *hw;
5114 struct of_phandle_args clkspec;
5115
5116 ret = of_parse_clkspec(np, index, con_id, &clkspec);
5117 if (ret)
5118 return ERR_PTR(ret);
5119
5120 hw = of_clk_get_hw_from_clkspec(&clkspec);
5121 of_node_put(clkspec.np);
5122
5123 return hw;
5124 }
5125
__of_clk_get(struct device_node * np,int index,const char * dev_id,const char * con_id)5126 static struct clk *__of_clk_get(struct device_node *np,
5127 int index, const char *dev_id,
5128 const char *con_id)
5129 {
5130 struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5131
5132 return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5133 }
5134
of_clk_get(struct device_node * np,int index)5135 struct clk *of_clk_get(struct device_node *np, int index)
5136 {
5137 return __of_clk_get(np, index, np->full_name, NULL);
5138 }
5139 EXPORT_SYMBOL(of_clk_get);
5140
5141 /**
5142 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5143 * @np: pointer to clock consumer node
5144 * @name: name of consumer's clock input, or NULL for the first clock reference
5145 *
5146 * This function parses the clocks and clock-names properties,
5147 * and uses them to look up the struct clk from the registered list of clock
5148 * providers.
5149 */
of_clk_get_by_name(struct device_node * np,const char * name)5150 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5151 {
5152 if (!np)
5153 return ERR_PTR(-ENOENT);
5154
5155 return __of_clk_get(np, 0, np->full_name, name);
5156 }
5157 EXPORT_SYMBOL(of_clk_get_by_name);
5158
5159 /**
5160 * of_clk_get_parent_count() - Count the number of clocks a device node has
5161 * @np: device node to count
5162 *
5163 * Returns: The number of clocks that are possible parents of this node
5164 */
of_clk_get_parent_count(const struct device_node * np)5165 unsigned int of_clk_get_parent_count(const struct device_node *np)
5166 {
5167 int count;
5168
5169 count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5170 if (count < 0)
5171 return 0;
5172
5173 return count;
5174 }
5175 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5176
of_clk_get_parent_name(const struct device_node * np,int index)5177 const char *of_clk_get_parent_name(const struct device_node *np, int index)
5178 {
5179 struct of_phandle_args clkspec;
5180 struct property *prop;
5181 const char *clk_name;
5182 const __be32 *vp;
5183 u32 pv;
5184 int rc;
5185 int count;
5186 struct clk *clk;
5187
5188 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5189 &clkspec);
5190 if (rc)
5191 return NULL;
5192
5193 index = clkspec.args_count ? clkspec.args[0] : 0;
5194 count = 0;
5195
5196 /* if there is an indices property, use it to transfer the index
5197 * specified into an array offset for the clock-output-names property.
5198 */
5199 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
5200 if (index == pv) {
5201 index = count;
5202 break;
5203 }
5204 count++;
5205 }
5206 /* We went off the end of 'clock-indices' without finding it */
5207 if (prop && !vp)
5208 return NULL;
5209
5210 if (of_property_read_string_index(clkspec.np, "clock-output-names",
5211 index,
5212 &clk_name) < 0) {
5213 /*
5214 * Best effort to get the name if the clock has been
5215 * registered with the framework. If the clock isn't
5216 * registered, we return the node name as the name of
5217 * the clock as long as #clock-cells = 0.
5218 */
5219 clk = of_clk_get_from_provider(&clkspec);
5220 if (IS_ERR(clk)) {
5221 if (clkspec.args_count == 0)
5222 clk_name = clkspec.np->name;
5223 else
5224 clk_name = NULL;
5225 } else {
5226 clk_name = __clk_get_name(clk);
5227 clk_put(clk);
5228 }
5229 }
5230
5231
5232 of_node_put(clkspec.np);
5233 return clk_name;
5234 }
5235 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5236
5237 /**
5238 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5239 * number of parents
5240 * @np: Device node pointer associated with clock provider
5241 * @parents: pointer to char array that hold the parents' names
5242 * @size: size of the @parents array
5243 *
5244 * Return: number of parents for the clock node.
5245 */
of_clk_parent_fill(struct device_node * np,const char ** parents,unsigned int size)5246 int of_clk_parent_fill(struct device_node *np, const char **parents,
5247 unsigned int size)
5248 {
5249 unsigned int i = 0;
5250
5251 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5252 i++;
5253
5254 return i;
5255 }
5256 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5257
5258 struct clock_provider {
5259 void (*clk_init_cb)(struct device_node *);
5260 struct device_node *np;
5261 struct list_head node;
5262 };
5263
5264 /*
5265 * This function looks for a parent clock. If there is one, then it
5266 * checks that the provider for this parent clock was initialized, in
5267 * this case the parent clock will be ready.
5268 */
parent_ready(struct device_node * np)5269 static int parent_ready(struct device_node *np)
5270 {
5271 int i = 0;
5272
5273 while (true) {
5274 struct clk *clk = of_clk_get(np, i);
5275
5276 /* this parent is ready we can check the next one */
5277 if (!IS_ERR(clk)) {
5278 clk_put(clk);
5279 i++;
5280 continue;
5281 }
5282
5283 /* at least one parent is not ready, we exit now */
5284 if (PTR_ERR(clk) == -EPROBE_DEFER)
5285 return 0;
5286
5287 /*
5288 * Here we make assumption that the device tree is
5289 * written correctly. So an error means that there is
5290 * no more parent. As we didn't exit yet, then the
5291 * previous parent are ready. If there is no clock
5292 * parent, no need to wait for them, then we can
5293 * consider their absence as being ready
5294 */
5295 return 1;
5296 }
5297 }
5298
5299 /**
5300 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5301 * @np: Device node pointer associated with clock provider
5302 * @index: clock index
5303 * @flags: pointer to top-level framework flags
5304 *
5305 * Detects if the clock-critical property exists and, if so, sets the
5306 * corresponding CLK_IS_CRITICAL flag.
5307 *
5308 * Do not use this function. It exists only for legacy Device Tree
5309 * bindings, such as the one-clock-per-node style that are outdated.
5310 * Those bindings typically put all clock data into .dts and the Linux
5311 * driver has no clock data, thus making it impossible to set this flag
5312 * correctly from the driver. Only those drivers may call
5313 * of_clk_detect_critical from their setup functions.
5314 *
5315 * Return: error code or zero on success
5316 */
of_clk_detect_critical(struct device_node * np,int index,unsigned long * flags)5317 int of_clk_detect_critical(struct device_node *np, int index,
5318 unsigned long *flags)
5319 {
5320 struct property *prop;
5321 const __be32 *cur;
5322 uint32_t idx;
5323
5324 if (!np || !flags)
5325 return -EINVAL;
5326
5327 of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5328 if (index == idx)
5329 *flags |= CLK_IS_CRITICAL;
5330
5331 return 0;
5332 }
5333
5334 /**
5335 * of_clk_init() - Scan and init clock providers from the DT
5336 * @matches: array of compatible values and init functions for providers.
5337 *
5338 * This function scans the device tree for matching clock providers
5339 * and calls their initialization functions. It also does it by trying
5340 * to follow the dependencies.
5341 */
of_clk_init(const struct of_device_id * matches)5342 void __init of_clk_init(const struct of_device_id *matches)
5343 {
5344 const struct of_device_id *match;
5345 struct device_node *np;
5346 struct clock_provider *clk_provider, *next;
5347 bool is_init_done;
5348 bool force = false;
5349 LIST_HEAD(clk_provider_list);
5350
5351 if (!matches)
5352 matches = &__clk_of_table;
5353
5354 /* First prepare the list of the clocks providers */
5355 for_each_matching_node_and_match(np, matches, &match) {
5356 struct clock_provider *parent;
5357
5358 if (!of_device_is_available(np))
5359 continue;
5360
5361 parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5362 if (!parent) {
5363 list_for_each_entry_safe(clk_provider, next,
5364 &clk_provider_list, node) {
5365 list_del(&clk_provider->node);
5366 of_node_put(clk_provider->np);
5367 kfree(clk_provider);
5368 }
5369 of_node_put(np);
5370 return;
5371 }
5372
5373 parent->clk_init_cb = match->data;
5374 parent->np = of_node_get(np);
5375 list_add_tail(&parent->node, &clk_provider_list);
5376 }
5377
5378 while (!list_empty(&clk_provider_list)) {
5379 is_init_done = false;
5380 list_for_each_entry_safe(clk_provider, next,
5381 &clk_provider_list, node) {
5382 if (force || parent_ready(clk_provider->np)) {
5383
5384 /* Don't populate platform devices */
5385 of_node_set_flag(clk_provider->np,
5386 OF_POPULATED);
5387
5388 clk_provider->clk_init_cb(clk_provider->np);
5389 of_clk_set_defaults(clk_provider->np, true);
5390
5391 list_del(&clk_provider->node);
5392 of_node_put(clk_provider->np);
5393 kfree(clk_provider);
5394 is_init_done = true;
5395 }
5396 }
5397
5398 /*
5399 * We didn't manage to initialize any of the
5400 * remaining providers during the last loop, so now we
5401 * initialize all the remaining ones unconditionally
5402 * in case the clock parent was not mandatory
5403 */
5404 if (!is_init_done)
5405 force = true;
5406 }
5407 }
5408 #endif
5409