• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * Copyright 2020-2022 HabanaLabs, Ltd.
4  * All Rights Reserved.
5  *
6  */
7 
8 #ifndef CPUCP_IF_H
9 #define CPUCP_IF_H
10 
11 #include <linux/types.h>
12 #include <linux/if_ether.h>
13 
14 #include "hl_boot_if.h"
15 
16 #define NUM_HBM_PSEUDO_CH				2
17 #define NUM_HBM_CH_PER_DEV				8
18 #define CPUCP_PKT_HBM_ECC_INFO_WR_PAR_SHIFT		0
19 #define CPUCP_PKT_HBM_ECC_INFO_WR_PAR_MASK		0x00000001
20 #define CPUCP_PKT_HBM_ECC_INFO_RD_PAR_SHIFT		1
21 #define CPUCP_PKT_HBM_ECC_INFO_RD_PAR_MASK		0x00000002
22 #define CPUCP_PKT_HBM_ECC_INFO_CA_PAR_SHIFT		2
23 #define CPUCP_PKT_HBM_ECC_INFO_CA_PAR_MASK		0x00000004
24 #define CPUCP_PKT_HBM_ECC_INFO_DERR_SHIFT		3
25 #define CPUCP_PKT_HBM_ECC_INFO_DERR_MASK		0x00000008
26 #define CPUCP_PKT_HBM_ECC_INFO_SERR_SHIFT		4
27 #define CPUCP_PKT_HBM_ECC_INFO_SERR_MASK		0x00000010
28 #define CPUCP_PKT_HBM_ECC_INFO_TYPE_SHIFT		5
29 #define CPUCP_PKT_HBM_ECC_INFO_TYPE_MASK		0x00000020
30 #define CPUCP_PKT_HBM_ECC_INFO_HBM_CH_SHIFT		6
31 #define CPUCP_PKT_HBM_ECC_INFO_HBM_CH_MASK		0x000007C0
32 
33 #define PLL_MAP_MAX_BITS	128
34 #define PLL_MAP_LEN		(PLL_MAP_MAX_BITS / 8)
35 
36 /*
37  * info of the pkt queue pointers in the first async occurrence
38  */
39 struct cpucp_pkt_sync_err {
40 	__le32 pi;
41 	__le32 ci;
42 };
43 
44 struct hl_eq_hbm_ecc_data {
45 	/* SERR counter */
46 	__le32 sec_cnt;
47 	/* DERR counter */
48 	__le32 dec_cnt;
49 	/* Supplemental Information according to the mask bits */
50 	__le32 hbm_ecc_info;
51 	/* Address in hbm where the ecc happened */
52 	__le32 first_addr;
53 	/* SERR continuous address counter */
54 	__le32 sec_cont_cnt;
55 	__le32 pad;
56 };
57 
58 /*
59  * EVENT QUEUE
60  */
61 
62 struct hl_eq_header {
63 	__le32 reserved;
64 	__le32 ctl;
65 };
66 
67 struct hl_eq_ecc_data {
68 	__le64 ecc_address;
69 	__le64 ecc_syndrom;
70 	__u8 memory_wrapper_idx;
71 	__u8 is_critical;
72 	__u8 pad[6];
73 };
74 
75 enum hl_sm_sei_cause {
76 	SM_SEI_SO_OVERFLOW,
77 	SM_SEI_LBW_4B_UNALIGNED,
78 	SM_SEI_AXI_RESPONSE_ERR
79 };
80 
81 struct hl_eq_sm_sei_data {
82 	__le32 sei_log;
83 	/* enum hl_sm_sei_cause */
84 	__u8 sei_cause;
85 	__u8 pad[3];
86 };
87 
88 enum hl_fw_alive_severity {
89 	FW_ALIVE_SEVERITY_MINOR,
90 	FW_ALIVE_SEVERITY_CRITICAL
91 };
92 
93 struct hl_eq_fw_alive {
94 	__le64 uptime_seconds;
95 	__le32 process_id;
96 	__le32 thread_id;
97 	/* enum hl_fw_alive_severity */
98 	__u8 severity;
99 	__u8 pad[7];
100 };
101 
102 struct hl_eq_intr_cause {
103 	__le64 intr_cause_data;
104 };
105 
106 struct hl_eq_pcie_drain_ind_data {
107 	struct hl_eq_intr_cause intr_cause;
108 	__le64 drain_wr_addr_lbw;
109 	__le64 drain_rd_addr_lbw;
110 	__le64 drain_wr_addr_hbw;
111 	__le64 drain_rd_addr_hbw;
112 };
113 
114 struct hl_eq_razwi_lbw_info_regs {
115 	__le32 rr_aw_razwi_reg;
116 	__le32 rr_aw_razwi_id_reg;
117 	__le32 rr_ar_razwi_reg;
118 	__le32 rr_ar_razwi_id_reg;
119 };
120 
121 struct hl_eq_razwi_hbw_info_regs {
122 	__le32 rr_aw_razwi_hi_reg;
123 	__le32 rr_aw_razwi_lo_reg;
124 	__le32 rr_aw_razwi_id_reg;
125 	__le32 rr_ar_razwi_hi_reg;
126 	__le32 rr_ar_razwi_lo_reg;
127 	__le32 rr_ar_razwi_id_reg;
128 };
129 
130 /* razwi_happened masks */
131 #define RAZWI_HAPPENED_HBW	0x1
132 #define RAZWI_HAPPENED_LBW	0x2
133 #define RAZWI_HAPPENED_AW	0x4
134 #define RAZWI_HAPPENED_AR	0x8
135 
136 struct hl_eq_razwi_info {
137 	__le32 razwi_happened_mask;
138 	union {
139 		struct hl_eq_razwi_lbw_info_regs lbw;
140 		struct hl_eq_razwi_hbw_info_regs hbw;
141 	};
142 	__le32 pad;
143 };
144 
145 struct hl_eq_razwi_with_intr_cause {
146 	struct hl_eq_razwi_info razwi_info;
147 	struct hl_eq_intr_cause intr_cause;
148 };
149 
150 #define HBM_CA_ERR_CMD_LIFO_LEN		8
151 #define HBM_RD_ERR_DATA_LIFO_LEN	8
152 #define HBM_WR_PAR_CMD_LIFO_LEN		11
153 
154 enum hl_hbm_sei_cause {
155 	/* Command/address parity error event is split into 2 events due to
156 	 * size limitation: ODD suffix for odd HBM CK_t cycles and EVEN  suffix
157 	 * for even HBM CK_t cycles
158 	 */
159 	HBM_SEI_CMD_PARITY_EVEN,
160 	HBM_SEI_CMD_PARITY_ODD,
161 	/* Read errors can be reflected as a combination of SERR/DERR/parity
162 	 * errors. Therefore, we define one event for all read error types.
163 	 * LKD will perform further proccessing.
164 	 */
165 	HBM_SEI_READ_ERR,
166 	HBM_SEI_WRITE_DATA_PARITY_ERR,
167 	HBM_SEI_CATTRIP,
168 	HBM_SEI_MEM_BIST_FAIL,
169 	HBM_SEI_DFI,
170 	HBM_SEI_INV_TEMP_READ_OUT,
171 	HBM_SEI_BIST_FAIL,
172 };
173 
174 /* Masks for parsing hl_hbm_sei_headr fields */
175 #define HBM_ECC_SERR_CNTR_MASK		0xFF
176 #define HBM_ECC_DERR_CNTR_MASK		0xFF00
177 #define HBM_RD_PARITY_CNTR_MASK		0xFF0000
178 
179 /* HBM index and MC index are known by the event_id */
180 struct hl_hbm_sei_header {
181 	union {
182 		/* relevant only in case of HBM read error */
183 		struct {
184 			__u8 ecc_serr_cnt;
185 			__u8 ecc_derr_cnt;
186 			__u8 read_par_cnt;
187 			__u8 reserved;
188 		};
189 		/* All other cases */
190 		__le32 cnt;
191 	};
192 	__u8 sei_cause;		/* enum hl_hbm_sei_cause */
193 	__u8 mc_channel;		/* range: 0-3 */
194 	__u8 mc_pseudo_channel;	/* range: 0-7 */
195 	__u8 is_critical;
196 };
197 
198 #define HBM_RD_ADDR_SID_SHIFT		0
199 #define HBM_RD_ADDR_SID_MASK		0x1
200 #define HBM_RD_ADDR_BG_SHIFT		1
201 #define HBM_RD_ADDR_BG_MASK		0x6
202 #define HBM_RD_ADDR_BA_SHIFT		3
203 #define HBM_RD_ADDR_BA_MASK		0x18
204 #define HBM_RD_ADDR_COL_SHIFT		5
205 #define HBM_RD_ADDR_COL_MASK		0x7E0
206 #define HBM_RD_ADDR_ROW_SHIFT		11
207 #define HBM_RD_ADDR_ROW_MASK		0x3FFF800
208 
209 struct hbm_rd_addr {
210 	union {
211 		/* bit fields are only for FW use */
212 		struct {
213 			u32 dbg_rd_err_addr_sid:1;
214 			u32 dbg_rd_err_addr_bg:2;
215 			u32 dbg_rd_err_addr_ba:2;
216 			u32 dbg_rd_err_addr_col:6;
217 			u32 dbg_rd_err_addr_row:15;
218 			u32 reserved:6;
219 		};
220 		__le32 rd_addr_val;
221 	};
222 };
223 
224 #define HBM_RD_ERR_BEAT_SHIFT		2
225 /* dbg_rd_err_misc fields: */
226 /* Read parity is calculated per DW on every beat */
227 #define HBM_RD_ERR_PAR_ERR_BEAT0_SHIFT	0
228 #define HBM_RD_ERR_PAR_ERR_BEAT0_MASK	0x3
229 #define HBM_RD_ERR_PAR_DATA_BEAT0_SHIFT	8
230 #define HBM_RD_ERR_PAR_DATA_BEAT0_MASK	0x300
231 /* ECC is calculated per PC on every beat */
232 #define HBM_RD_ERR_SERR_BEAT0_SHIFT	16
233 #define HBM_RD_ERR_SERR_BEAT0_MASK	0x10000
234 #define HBM_RD_ERR_DERR_BEAT0_SHIFT	24
235 #define HBM_RD_ERR_DERR_BEAT0_MASK	0x100000
236 
237 struct hl_eq_hbm_sei_read_err_intr_info {
238 	/* DFI_RD_ERR_REP_ADDR */
239 	struct hbm_rd_addr dbg_rd_err_addr;
240 	/* DFI_RD_ERR_REP_ERR */
241 	union {
242 		struct {
243 			/* bit fields are only for FW use */
244 			u32 dbg_rd_err_par:8;
245 			u32 dbg_rd_err_par_data:8;
246 			u32 dbg_rd_err_serr:4;
247 			u32 dbg_rd_err_derr:4;
248 			u32 reserved:8;
249 		};
250 		__le32 dbg_rd_err_misc;
251 	};
252 	/* DFI_RD_ERR_REP_DM */
253 	__le32 dbg_rd_err_dm;
254 	/* DFI_RD_ERR_REP_SYNDROME */
255 	__le32 dbg_rd_err_syndrome;
256 	/* DFI_RD_ERR_REP_DATA */
257 	__le32 dbg_rd_err_data[HBM_RD_ERR_DATA_LIFO_LEN];
258 };
259 
260 struct hl_eq_hbm_sei_ca_par_intr_info {
261 	/* 14 LSBs */
262 	__le16 dbg_row[HBM_CA_ERR_CMD_LIFO_LEN];
263 	/* 18 LSBs */
264 	__le32 dbg_col[HBM_CA_ERR_CMD_LIFO_LEN];
265 };
266 
267 #define WR_PAR_LAST_CMD_COL_SHIFT	0
268 #define WR_PAR_LAST_CMD_COL_MASK	0x3F
269 #define WR_PAR_LAST_CMD_BG_SHIFT	6
270 #define WR_PAR_LAST_CMD_BG_MASK		0xC0
271 #define WR_PAR_LAST_CMD_BA_SHIFT	8
272 #define WR_PAR_LAST_CMD_BA_MASK		0x300
273 #define WR_PAR_LAST_CMD_SID_SHIFT	10
274 #define WR_PAR_LAST_CMD_SID_MASK	0x400
275 
276 /* Row address isn't latched */
277 struct hbm_sei_wr_cmd_address {
278 	/* DFI_DERR_LAST_CMD */
279 	union {
280 		struct {
281 			/* bit fields are only for FW use */
282 			u32 col:6;
283 			u32 bg:2;
284 			u32 ba:2;
285 			u32 sid:1;
286 			u32 reserved:21;
287 		};
288 		__le32 dbg_wr_cmd_addr;
289 	};
290 };
291 
292 struct hl_eq_hbm_sei_wr_par_intr_info {
293 	/* entry 0: WR command address from the 1st cycle prior to the error
294 	 * entry 1: WR command address from the 2nd cycle prior to the error
295 	 * and so on...
296 	 */
297 	struct hbm_sei_wr_cmd_address dbg_last_wr_cmds[HBM_WR_PAR_CMD_LIFO_LEN];
298 	/* derr[0:1] - 1st HBM cycle DERR output
299 	 * derr[2:3] - 2nd HBM cycle DERR output
300 	 */
301 	__u8 dbg_derr;
302 	/* extend to reach 8B */
303 	__u8 pad[3];
304 };
305 
306 /*
307  * this struct represents the following sei causes:
308  * command parity, ECC double error, ECC single error, dfi error, cattrip,
309  * temperature read-out, read parity error and write parity error.
310  * some only use the header while some have extra data.
311  */
312 struct hl_eq_hbm_sei_data {
313 	struct hl_hbm_sei_header hdr;
314 	union {
315 		struct hl_eq_hbm_sei_ca_par_intr_info ca_parity_even_info;
316 		struct hl_eq_hbm_sei_ca_par_intr_info ca_parity_odd_info;
317 		struct hl_eq_hbm_sei_read_err_intr_info read_err_info;
318 		struct hl_eq_hbm_sei_wr_par_intr_info wr_parity_info;
319 	};
320 };
321 
322 /* Engine/farm arc interrupt type */
323 enum hl_engine_arc_interrupt_type {
324 	/* Qman/farm ARC DCCM QUEUE FULL interrupt type */
325 	ENGINE_ARC_DCCM_QUEUE_FULL_IRQ = 1
326 };
327 
328 /* Data structure specifies details of payload of DCCM QUEUE FULL interrupt */
329 struct hl_engine_arc_dccm_queue_full_irq {
330 	/* Queue index value which caused DCCM QUEUE FULL */
331 	__le32 queue_index;
332 	__le32 pad;
333 };
334 
335 /* Data structure specifies details of QM/FARM ARC interrupt */
336 struct hl_eq_engine_arc_intr_data {
337 	/* ARC engine id e.g.  DCORE0_TPC0_QM_ARC, DCORE0_TCP1_QM_ARC */
338 	__le32 engine_id;
339 	__le32 intr_type; /* enum hl_engine_arc_interrupt_type */
340 	/* More info related to the interrupt e.g. queue index
341 	 * incase of DCCM_QUEUE_FULL interrupt.
342 	 */
343 	__le64 payload;
344 	__le64 pad[5];
345 };
346 
347 struct hl_eq_entry {
348 	struct hl_eq_header hdr;
349 	union {
350 		struct hl_eq_ecc_data ecc_data;
351 		struct hl_eq_hbm_ecc_data hbm_ecc_data;	/* Gaudi1 HBM */
352 		struct hl_eq_sm_sei_data sm_sei_data;
353 		struct cpucp_pkt_sync_err pkt_sync_err;
354 		struct hl_eq_fw_alive fw_alive;
355 		struct hl_eq_intr_cause intr_cause;
356 		struct hl_eq_pcie_drain_ind_data pcie_drain_ind_data;
357 		struct hl_eq_razwi_info razwi_info;
358 		struct hl_eq_razwi_with_intr_cause razwi_with_intr_cause;
359 		struct hl_eq_hbm_sei_data sei_data;	/* Gaudi2 HBM */
360 		struct hl_eq_engine_arc_intr_data arc_data;
361 		__le64 data[7];
362 	};
363 };
364 
365 #define HL_EQ_ENTRY_SIZE		sizeof(struct hl_eq_entry)
366 
367 #define EQ_CTL_READY_SHIFT		31
368 #define EQ_CTL_READY_MASK		0x80000000
369 
370 #define EQ_CTL_EVENT_TYPE_SHIFT		16
371 #define EQ_CTL_EVENT_TYPE_MASK		0x0FFF0000
372 
373 #define EQ_CTL_INDEX_SHIFT		0
374 #define EQ_CTL_INDEX_MASK		0x0000FFFF
375 
376 enum pq_init_status {
377 	PQ_INIT_STATUS_NA = 0,
378 	PQ_INIT_STATUS_READY_FOR_CP,
379 	PQ_INIT_STATUS_READY_FOR_HOST,
380 	PQ_INIT_STATUS_READY_FOR_CP_SINGLE_MSI,
381 	PQ_INIT_STATUS_LEN_NOT_POWER_OF_TWO_ERR,
382 	PQ_INIT_STATUS_ILLEGAL_Q_ADDR_ERR
383 };
384 
385 /*
386  * CpuCP Primary Queue Packets
387  *
388  * During normal operation, the host's kernel driver needs to send various
389  * messages to CpuCP, usually either to SET some value into a H/W periphery or
390  * to GET the current value of some H/W periphery. For example, SET the
391  * frequency of MME/TPC and GET the value of the thermal sensor.
392  *
393  * These messages can be initiated either by the User application or by the
394  * host's driver itself, e.g. power management code. In either case, the
395  * communication from the host's driver to CpuCP will *always* be in
396  * synchronous mode, meaning that the host will send a single message and poll
397  * until the message was acknowledged and the results are ready (if results are
398  * needed).
399  *
400  * This means that only a single message can be sent at a time and the host's
401  * driver must wait for its result before sending the next message. Having said
402  * that, because these are control messages which are sent in a relatively low
403  * frequency, this limitation seems acceptable. It's important to note that
404  * in case of multiple devices, messages to different devices *can* be sent
405  * at the same time.
406  *
407  * The message, inputs/outputs (if relevant) and fence object will be located
408  * on the device DDR at an address that will be determined by the host's driver.
409  * During device initialization phase, the host will pass to CpuCP that address.
410  * Most of the message types will contain inputs/outputs inside the message
411  * itself. The common part of each message will contain the opcode of the
412  * message (its type) and a field representing a fence object.
413  *
414  * When the host's driver wishes to send a message to CPU CP, it will write the
415  * message contents to the device DDR, clear the fence object and then write to
416  * the PSOC_ARC1_AUX_SW_INTR, to issue interrupt 121 to ARC Management CPU.
417  *
418  * Upon receiving the interrupt (#121), CpuCP will read the message from the
419  * DDR. In case the message is a SET operation, CpuCP will first perform the
420  * operation and then write to the fence object on the device DDR. In case the
421  * message is a GET operation, CpuCP will first fill the results section on the
422  * device DDR and then write to the fence object. If an error occurred, CpuCP
423  * will fill the rc field with the right error code.
424  *
425  * In the meantime, the host's driver will poll on the fence object. Once the
426  * host sees that the fence object is signaled, it will read the results from
427  * the device DDR (if relevant) and resume the code execution in the host's
428  * driver.
429  *
430  * To use QMAN packets, the opcode must be the QMAN opcode, shifted by 8
431  * so the value being put by the host's driver matches the value read by CpuCP
432  *
433  * Non-QMAN packets should be limited to values 1 through (2^8 - 1)
434  *
435  * Detailed description:
436  *
437  * CPUCP_PACKET_DISABLE_PCI_ACCESS -
438  *       After receiving this packet the embedded CPU must NOT issue PCI
439  *       transactions (read/write) towards the Host CPU. This also include
440  *       sending MSI-X interrupts.
441  *       This packet is usually sent before the device is moved to D3Hot state.
442  *
443  * CPUCP_PACKET_ENABLE_PCI_ACCESS -
444  *       After receiving this packet the embedded CPU is allowed to issue PCI
445  *       transactions towards the Host CPU, including sending MSI-X interrupts.
446  *       This packet is usually send after the device is moved to D0 state.
447  *
448  * CPUCP_PACKET_TEMPERATURE_GET -
449  *       Fetch the current temperature / Max / Max Hyst / Critical /
450  *       Critical Hyst of a specified thermal sensor. The packet's
451  *       arguments specify the desired sensor and the field to get.
452  *
453  * CPUCP_PACKET_VOLTAGE_GET -
454  *       Fetch the voltage / Max / Min of a specified sensor. The packet's
455  *       arguments specify the sensor and type.
456  *
457  * CPUCP_PACKET_CURRENT_GET -
458  *       Fetch the current / Max / Min of a specified sensor. The packet's
459  *       arguments specify the sensor and type.
460  *
461  * CPUCP_PACKET_FAN_SPEED_GET -
462  *       Fetch the speed / Max / Min of a specified fan. The packet's
463  *       arguments specify the sensor and type.
464  *
465  * CPUCP_PACKET_PWM_GET -
466  *       Fetch the pwm value / mode of a specified pwm. The packet's
467  *       arguments specify the sensor and type.
468  *
469  * CPUCP_PACKET_PWM_SET -
470  *       Set the pwm value / mode of a specified pwm. The packet's
471  *       arguments specify the sensor, type and value.
472  *
473  * CPUCP_PACKET_FREQUENCY_SET -
474  *       Set the frequency of a specified PLL. The packet's arguments specify
475  *       the PLL and the desired frequency. The actual frequency in the device
476  *       might differ from the requested frequency.
477  *
478  * CPUCP_PACKET_FREQUENCY_GET -
479  *       Fetch the frequency of a specified PLL. The packet's arguments specify
480  *       the PLL.
481  *
482  * CPUCP_PACKET_LED_SET -
483  *       Set the state of a specified led. The packet's arguments
484  *       specify the led and the desired state.
485  *
486  * CPUCP_PACKET_I2C_WR -
487  *       Write 32-bit value to I2C device. The packet's arguments specify the
488  *       I2C bus, address and value.
489  *
490  * CPUCP_PACKET_I2C_RD -
491  *       Read 32-bit value from I2C device. The packet's arguments specify the
492  *       I2C bus and address.
493  *
494  * CPUCP_PACKET_INFO_GET -
495  *       Fetch information from the device as specified in the packet's
496  *       structure. The host's driver passes the max size it allows the CpuCP to
497  *       write to the structure, to prevent data corruption in case of
498  *       mismatched driver/FW versions.
499  *
500  * CPUCP_PACKET_FLASH_PROGRAM_REMOVED - this packet was removed
501  *
502  * CPUCP_PACKET_UNMASK_RAZWI_IRQ -
503  *       Unmask the given IRQ. The IRQ number is specified in the value field.
504  *       The packet is sent after receiving an interrupt and printing its
505  *       relevant information.
506  *
507  * CPUCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY -
508  *       Unmask the given IRQs. The IRQs numbers are specified in an array right
509  *       after the cpucp_packet structure, where its first element is the array
510  *       length. The packet is sent after a soft reset was done in order to
511  *       handle any interrupts that were sent during the reset process.
512  *
513  * CPUCP_PACKET_TEST -
514  *       Test packet for CpuCP connectivity. The CPU will put the fence value
515  *       in the result field.
516  *
517  * CPUCP_PACKET_FREQUENCY_CURR_GET -
518  *       Fetch the current frequency of a specified PLL. The packet's arguments
519  *       specify the PLL.
520  *
521  * CPUCP_PACKET_MAX_POWER_GET -
522  *       Fetch the maximal power of the device.
523  *
524  * CPUCP_PACKET_MAX_POWER_SET -
525  *       Set the maximal power of the device. The packet's arguments specify
526  *       the power.
527  *
528  * CPUCP_PACKET_EEPROM_DATA_GET -
529  *       Get EEPROM data from the CpuCP kernel. The buffer is specified in the
530  *       addr field. The CPU will put the returned data size in the result
531  *       field. In addition, the host's driver passes the max size it allows the
532  *       CpuCP to write to the structure, to prevent data corruption in case of
533  *       mismatched driver/FW versions.
534  *
535  * CPUCP_PACKET_NIC_INFO_GET -
536  *       Fetch information from the device regarding the NIC. the host's driver
537  *       passes the max size it allows the CpuCP to write to the structure, to
538  *       prevent data corruption in case of mismatched driver/FW versions.
539  *
540  * CPUCP_PACKET_TEMPERATURE_SET -
541  *       Set the value of the offset property of a specified thermal sensor.
542  *       The packet's arguments specify the desired sensor and the field to
543  *       set.
544  *
545  * CPUCP_PACKET_VOLTAGE_SET -
546  *       Trigger the reset_history property of a specified voltage sensor.
547  *       The packet's arguments specify the desired sensor and the field to
548  *       set.
549  *
550  * CPUCP_PACKET_CURRENT_SET -
551  *       Trigger the reset_history property of a specified current sensor.
552  *       The packet's arguments specify the desired sensor and the field to
553  *       set.
554  *
555  * CPUCP_PACKET_PCIE_THROUGHPUT_GET -
556  *       Get throughput of PCIe.
557  *       The packet's arguments specify the transaction direction (TX/RX).
558  *       The window measurement is 10[msec], and the return value is in KB/sec.
559  *
560  * CPUCP_PACKET_PCIE_REPLAY_CNT_GET
561  *       Replay count measures number of "replay" events, which is basicly
562  *       number of retries done by PCIe.
563  *
564  * CPUCP_PACKET_TOTAL_ENERGY_GET -
565  *       Total Energy is measurement of energy from the time FW Linux
566  *       is loaded. It is calculated by multiplying the average power
567  *       by time (passed from armcp start). The units are in MilliJouls.
568  *
569  * CPUCP_PACKET_PLL_INFO_GET -
570  *       Fetch frequencies of PLL from the required PLL IP.
571  *       The packet's arguments specify the device PLL type
572  *       Pll type is the PLL from device pll_index enum.
573  *       The result is composed of 4 outputs, each is 16-bit
574  *       frequency in MHz.
575  *
576  * CPUCP_PACKET_POWER_GET -
577  *       Fetch the present power consumption of the device (Current * Voltage).
578  *
579  * CPUCP_PACKET_NIC_PFC_SET -
580  *       Enable/Disable the NIC PFC feature. The packet's arguments specify the
581  *       NIC port, relevant lanes to configure and one bit indication for
582  *       enable/disable.
583  *
584  * CPUCP_PACKET_NIC_FAULT_GET -
585  *       Fetch the current indication for local/remote faults from the NIC MAC.
586  *       The result is 32-bit value of the relevant register.
587  *
588  * CPUCP_PACKET_NIC_LPBK_SET -
589  *       Enable/Disable the MAC loopback feature. The packet's arguments specify
590  *       the NIC port, relevant lanes to configure and one bit indication for
591  *       enable/disable.
592  *
593  * CPUCP_PACKET_NIC_MAC_INIT -
594  *       Configure the NIC MAC channels. The packet's arguments specify the
595  *       NIC port and the speed.
596  *
597  * CPUCP_PACKET_MSI_INFO_SET -
598  *       set the index number for each supported msi type going from
599  *       host to device
600  *
601  * CPUCP_PACKET_NIC_XPCS91_REGS_GET -
602  *       Fetch the un/correctable counters values from the NIC MAC.
603  *
604  * CPUCP_PACKET_NIC_STAT_REGS_GET -
605  *       Fetch various NIC MAC counters from the NIC STAT.
606  *
607  * CPUCP_PACKET_NIC_STAT_REGS_CLR -
608  *       Clear the various NIC MAC counters in the NIC STAT.
609  *
610  * CPUCP_PACKET_NIC_STAT_REGS_ALL_GET -
611  *       Fetch all NIC MAC counters from the NIC STAT.
612  *
613  * CPUCP_PACKET_IS_IDLE_CHECK -
614  *       Check if the device is IDLE in regard to the DMA/compute engines
615  *       and QMANs. The f/w will return a bitmask where each bit represents
616  *       a different engine or QMAN according to enum cpucp_idle_mask.
617  *       The bit will be 1 if the engine is NOT idle.
618  *
619  * CPUCP_PACKET_HBM_REPLACED_ROWS_INFO_GET -
620  *       Fetch all HBM replaced-rows and prending to be replaced rows data.
621  *
622  * CPUCP_PACKET_HBM_PENDING_ROWS_STATUS -
623  *       Fetch status of HBM rows pending replacement and need a reboot to
624  *       be replaced.
625  *
626  * CPUCP_PACKET_POWER_SET -
627  *       Resets power history of device to 0
628  *
629  * CPUCP_PACKET_ENGINE_CORE_ASID_SET -
630  *       Packet to perform engine core ASID configuration
631  *
632  * CPUCP_PACKET_SEC_ATTEST_GET -
633  *       Get the attestaion data that is collected during various stages of the
634  *       boot sequence. the attestation data is also hashed with some unique
635  *       number (nonce) provided by the host to prevent replay attacks.
636  *       public key and certificate also provided as part of the FW response.
637  *
638  * CPUCP_PACKET_MONITOR_DUMP_GET -
639  *       Get monitors registers dump from the CpuCP kernel.
640  *       The CPU will put the registers dump in the a buffer allocated by the driver
641  *       which address is passed via the CpuCp packet. In addition, the host's driver
642  *       passes the max size it allows the CpuCP to write to the structure, to prevent
643  *       data corruption in case of mismatched driver/FW versions.
644  *       Relevant only to Gaudi.
645  *
646  * CPUCP_PACKET_ACTIVE_STATUS_SET -
647  *       LKD sends FW indication whether device is free or in use, this indication is reported
648  *       also to the BMC.
649  */
650 
651 enum cpucp_packet_id {
652 	CPUCP_PACKET_DISABLE_PCI_ACCESS = 1,	/* internal */
653 	CPUCP_PACKET_ENABLE_PCI_ACCESS,		/* internal */
654 	CPUCP_PACKET_TEMPERATURE_GET,		/* sysfs */
655 	CPUCP_PACKET_VOLTAGE_GET,		/* sysfs */
656 	CPUCP_PACKET_CURRENT_GET,		/* sysfs */
657 	CPUCP_PACKET_FAN_SPEED_GET,		/* sysfs */
658 	CPUCP_PACKET_PWM_GET,			/* sysfs */
659 	CPUCP_PACKET_PWM_SET,			/* sysfs */
660 	CPUCP_PACKET_FREQUENCY_SET,		/* sysfs */
661 	CPUCP_PACKET_FREQUENCY_GET,		/* sysfs */
662 	CPUCP_PACKET_LED_SET,			/* debugfs */
663 	CPUCP_PACKET_I2C_WR,			/* debugfs */
664 	CPUCP_PACKET_I2C_RD,			/* debugfs */
665 	CPUCP_PACKET_INFO_GET,			/* IOCTL */
666 	CPUCP_PACKET_FLASH_PROGRAM_REMOVED,
667 	CPUCP_PACKET_UNMASK_RAZWI_IRQ,		/* internal */
668 	CPUCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY,	/* internal */
669 	CPUCP_PACKET_TEST,			/* internal */
670 	CPUCP_PACKET_FREQUENCY_CURR_GET,	/* sysfs */
671 	CPUCP_PACKET_MAX_POWER_GET,		/* sysfs */
672 	CPUCP_PACKET_MAX_POWER_SET,		/* sysfs */
673 	CPUCP_PACKET_EEPROM_DATA_GET,		/* sysfs */
674 	CPUCP_PACKET_NIC_INFO_GET,		/* internal */
675 	CPUCP_PACKET_TEMPERATURE_SET,		/* sysfs */
676 	CPUCP_PACKET_VOLTAGE_SET,		/* sysfs */
677 	CPUCP_PACKET_CURRENT_SET,		/* sysfs */
678 	CPUCP_PACKET_PCIE_THROUGHPUT_GET,	/* internal */
679 	CPUCP_PACKET_PCIE_REPLAY_CNT_GET,	/* internal */
680 	CPUCP_PACKET_TOTAL_ENERGY_GET,		/* internal */
681 	CPUCP_PACKET_PLL_INFO_GET,		/* internal */
682 	CPUCP_PACKET_NIC_STATUS,		/* internal */
683 	CPUCP_PACKET_POWER_GET,			/* internal */
684 	CPUCP_PACKET_NIC_PFC_SET,		/* internal */
685 	CPUCP_PACKET_NIC_FAULT_GET,		/* internal */
686 	CPUCP_PACKET_NIC_LPBK_SET,		/* internal */
687 	CPUCP_PACKET_NIC_MAC_CFG,		/* internal */
688 	CPUCP_PACKET_MSI_INFO_SET,		/* internal */
689 	CPUCP_PACKET_NIC_XPCS91_REGS_GET,	/* internal */
690 	CPUCP_PACKET_NIC_STAT_REGS_GET,		/* internal */
691 	CPUCP_PACKET_NIC_STAT_REGS_CLR,		/* internal */
692 	CPUCP_PACKET_NIC_STAT_REGS_ALL_GET,	/* internal */
693 	CPUCP_PACKET_IS_IDLE_CHECK,		/* internal */
694 	CPUCP_PACKET_HBM_REPLACED_ROWS_INFO_GET,/* internal */
695 	CPUCP_PACKET_HBM_PENDING_ROWS_STATUS,	/* internal */
696 	CPUCP_PACKET_POWER_SET,			/* internal */
697 	CPUCP_PACKET_RESERVED,			/* not used */
698 	CPUCP_PACKET_ENGINE_CORE_ASID_SET,	/* internal */
699 	CPUCP_PACKET_RESERVED2,			/* not used */
700 	CPUCP_PACKET_SEC_ATTEST_GET,		/* internal */
701 	CPUCP_PACKET_RESERVED3,			/* not used */
702 	CPUCP_PACKET_RESERVED4,			/* not used */
703 	CPUCP_PACKET_MONITOR_DUMP_GET,		/* debugfs */
704 	CPUCP_PACKET_RESERVED5,			/* not used */
705 	CPUCP_PACKET_RESERVED6,			/* not used */
706 	CPUCP_PACKET_RESERVED7,			/* not used */
707 	CPUCP_PACKET_RESERVED8,			/* not used */
708 	CPUCP_PACKET_RESERVED9,			/* not used */
709 	CPUCP_PACKET_ACTIVE_STATUS_SET,		/* internal */
710 	CPUCP_PACKET_ID_MAX			/* must be last */
711 };
712 
713 #define CPUCP_PACKET_FENCE_VAL	0xFE8CE7A5
714 
715 #define CPUCP_PKT_CTL_RC_SHIFT		12
716 #define CPUCP_PKT_CTL_RC_MASK		0x0000F000
717 
718 #define CPUCP_PKT_CTL_OPCODE_SHIFT	16
719 #define CPUCP_PKT_CTL_OPCODE_MASK	0x1FFF0000
720 
721 #define CPUCP_PKT_RES_PLL_OUT0_SHIFT	0
722 #define CPUCP_PKT_RES_PLL_OUT0_MASK	0x000000000000FFFFull
723 #define CPUCP_PKT_RES_PLL_OUT1_SHIFT	16
724 #define CPUCP_PKT_RES_PLL_OUT1_MASK	0x00000000FFFF0000ull
725 #define CPUCP_PKT_RES_PLL_OUT2_SHIFT	32
726 #define CPUCP_PKT_RES_PLL_OUT2_MASK	0x0000FFFF00000000ull
727 #define CPUCP_PKT_RES_PLL_OUT3_SHIFT	48
728 #define CPUCP_PKT_RES_PLL_OUT3_MASK	0xFFFF000000000000ull
729 
730 #define CPUCP_PKT_VAL_PFC_IN1_SHIFT	0
731 #define CPUCP_PKT_VAL_PFC_IN1_MASK	0x0000000000000001ull
732 #define CPUCP_PKT_VAL_PFC_IN2_SHIFT	1
733 #define CPUCP_PKT_VAL_PFC_IN2_MASK	0x000000000000001Eull
734 
735 #define CPUCP_PKT_VAL_LPBK_IN1_SHIFT	0
736 #define CPUCP_PKT_VAL_LPBK_IN1_MASK	0x0000000000000001ull
737 #define CPUCP_PKT_VAL_LPBK_IN2_SHIFT	1
738 #define CPUCP_PKT_VAL_LPBK_IN2_MASK	0x000000000000001Eull
739 
740 #define CPUCP_PKT_VAL_MAC_CNT_IN1_SHIFT	0
741 #define CPUCP_PKT_VAL_MAC_CNT_IN1_MASK	0x0000000000000001ull
742 #define CPUCP_PKT_VAL_MAC_CNT_IN2_SHIFT	1
743 #define CPUCP_PKT_VAL_MAC_CNT_IN2_MASK	0x00000000FFFFFFFEull
744 
745 /* heartbeat status bits */
746 #define CPUCP_PKT_HB_STATUS_EQ_FAULT_SHIFT		0
747 #define CPUCP_PKT_HB_STATUS_EQ_FAULT_MASK		0x00000001
748 
749 struct cpucp_packet {
750 	union {
751 		__le64 value;	/* For SET packets */
752 		__le64 result;	/* For GET packets */
753 		__le64 addr;	/* For PQ */
754 	};
755 
756 	__le32 ctl;
757 
758 	__le32 fence;		/* Signal to host that message is completed */
759 
760 	union {
761 		struct {/* For temperature/current/voltage/fan/pwm get/set */
762 			__le16 sensor_index;
763 			__le16 type;
764 		};
765 
766 		struct {	/* For I2C read/write */
767 			__u8 i2c_bus;
768 			__u8 i2c_addr;
769 			__u8 i2c_reg;
770 			/*
771 			 * In legacy implemetations, i2c_len was not present,
772 			 * was unused and just added as pad.
773 			 * So if i2c_len is 0, it is treated as legacy
774 			 * and r/w 1 Byte, else if i2c_len is specified,
775 			 * its treated as new multibyte r/w support.
776 			 */
777 			__u8 i2c_len;
778 		};
779 
780 		struct {/* For PLL info fetch */
781 			__le16 pll_type;
782 			/* TODO pll_reg is kept temporary before removal */
783 			__le16 pll_reg;
784 		};
785 
786 		/* For any general request */
787 		__le32 index;
788 
789 		/* For frequency get/set */
790 		__le32 pll_index;
791 
792 		/* For led set */
793 		__le32 led_index;
794 
795 		/* For get CpuCP info/EEPROM data/NIC info */
796 		__le32 data_max_size;
797 
798 		/*
799 		 * For any general status bitmask. Shall be used whenever the
800 		 * result cannot be used to hold general purpose data.
801 		 */
802 		__le32 status_mask;
803 
804 		/* random, used once number, for security packets */
805 		__le32 nonce;
806 	};
807 
808 	/* For NIC requests */
809 	__le32 port_index;
810 };
811 
812 struct cpucp_unmask_irq_arr_packet {
813 	struct cpucp_packet cpucp_pkt;
814 	__le32 length;
815 	__le32 irqs[];
816 };
817 
818 struct cpucp_nic_status_packet {
819 	struct cpucp_packet cpucp_pkt;
820 	__le32 length;
821 	__le32 data[];
822 };
823 
824 struct cpucp_array_data_packet {
825 	struct cpucp_packet cpucp_pkt;
826 	__le32 length;
827 	__le32 data[];
828 };
829 
830 enum cpucp_led_index {
831 	CPUCP_LED0_INDEX = 0,
832 	CPUCP_LED1_INDEX,
833 	CPUCP_LED2_INDEX
834 };
835 
836 /*
837  * enum cpucp_packet_rc - Error return code
838  * @cpucp_packet_success	-> in case of success.
839  * @cpucp_packet_invalid	-> this is to support Goya and Gaudi platform.
840  * @cpucp_packet_fault		-> in case of processing error like failing to
841  *                                 get device binding or semaphore etc.
842  * @cpucp_packet_invalid_pkt	-> when cpucp packet is un-supported. This is
843  *                                 supported Greco onwards.
844  * @cpucp_packet_invalid_params	-> when checking parameter like length of buffer
845  *				   or attribute value etc. Supported Greco onwards.
846  * @cpucp_packet_rc_max		-> It indicates size of enum so should be at last.
847  */
848 enum cpucp_packet_rc {
849 	cpucp_packet_success,
850 	cpucp_packet_invalid,
851 	cpucp_packet_fault,
852 	cpucp_packet_invalid_pkt,
853 	cpucp_packet_invalid_params,
854 	cpucp_packet_rc_max
855 };
856 
857 /*
858  * cpucp_temp_type should adhere to hwmon_temp_attributes
859  * defined in Linux kernel hwmon.h file
860  */
861 enum cpucp_temp_type {
862 	cpucp_temp_input,
863 	cpucp_temp_min = 4,
864 	cpucp_temp_min_hyst,
865 	cpucp_temp_max = 6,
866 	cpucp_temp_max_hyst,
867 	cpucp_temp_crit,
868 	cpucp_temp_crit_hyst,
869 	cpucp_temp_offset = 19,
870 	cpucp_temp_lowest = 21,
871 	cpucp_temp_highest = 22,
872 	cpucp_temp_reset_history = 23,
873 	cpucp_temp_warn = 24,
874 	cpucp_temp_max_crit = 25,
875 	cpucp_temp_max_warn = 26,
876 };
877 
878 enum cpucp_in_attributes {
879 	cpucp_in_input,
880 	cpucp_in_min,
881 	cpucp_in_max,
882 	cpucp_in_lowest = 6,
883 	cpucp_in_highest = 7,
884 	cpucp_in_reset_history
885 };
886 
887 enum cpucp_curr_attributes {
888 	cpucp_curr_input,
889 	cpucp_curr_min,
890 	cpucp_curr_max,
891 	cpucp_curr_lowest = 6,
892 	cpucp_curr_highest = 7,
893 	cpucp_curr_reset_history
894 };
895 
896 enum cpucp_fan_attributes {
897 	cpucp_fan_input,
898 	cpucp_fan_min = 2,
899 	cpucp_fan_max
900 };
901 
902 enum cpucp_pwm_attributes {
903 	cpucp_pwm_input,
904 	cpucp_pwm_enable
905 };
906 
907 enum cpucp_pcie_throughput_attributes {
908 	cpucp_pcie_throughput_tx,
909 	cpucp_pcie_throughput_rx
910 };
911 
912 /* TODO temporary kept before removal */
913 enum cpucp_pll_reg_attributes {
914 	cpucp_pll_nr_reg,
915 	cpucp_pll_nf_reg,
916 	cpucp_pll_od_reg,
917 	cpucp_pll_div_factor_reg,
918 	cpucp_pll_div_sel_reg
919 };
920 
921 /* TODO temporary kept before removal */
922 enum cpucp_pll_type_attributes {
923 	cpucp_pll_cpu,
924 	cpucp_pll_pci,
925 };
926 
927 /*
928  * cpucp_power_type aligns with hwmon_power_attributes
929  * defined in Linux kernel hwmon.h file
930  */
931 enum cpucp_power_type {
932 	CPUCP_POWER_INPUT = 8,
933 	CPUCP_POWER_INPUT_HIGHEST = 9,
934 	CPUCP_POWER_RESET_INPUT_HISTORY = 11
935 };
936 
937 /*
938  * MSI type enumeration table for all ASICs and future SW versions.
939  * For future ASIC-LKD compatibility, we can only add new enumerations.
940  * at the end of the table (before CPUCP_NUM_OF_MSI_TYPES).
941  * Changing the order of entries or removing entries is not allowed.
942  */
943 enum cpucp_msi_type {
944 	CPUCP_EVENT_QUEUE_MSI_TYPE,
945 	CPUCP_NIC_PORT1_MSI_TYPE,
946 	CPUCP_NIC_PORT3_MSI_TYPE,
947 	CPUCP_NIC_PORT5_MSI_TYPE,
948 	CPUCP_NIC_PORT7_MSI_TYPE,
949 	CPUCP_NIC_PORT9_MSI_TYPE,
950 	CPUCP_NUM_OF_MSI_TYPES
951 };
952 
953 /*
954  * PLL enumeration table used for all ASICs and future SW versions.
955  * For future ASIC-LKD compatibility, we can only add new enumerations.
956  * at the end of the table.
957  * Changing the order of entries or removing entries is not allowed.
958  */
959 enum pll_index {
960 	CPU_PLL = 0,
961 	PCI_PLL = 1,
962 	NIC_PLL = 2,
963 	DMA_PLL = 3,
964 	MESH_PLL = 4,
965 	MME_PLL = 5,
966 	TPC_PLL = 6,
967 	IF_PLL = 7,
968 	SRAM_PLL = 8,
969 	NS_PLL = 9,
970 	HBM_PLL = 10,
971 	MSS_PLL = 11,
972 	DDR_PLL = 12,
973 	VID_PLL = 13,
974 	BANK_PLL = 14,
975 	MMU_PLL = 15,
976 	IC_PLL = 16,
977 	MC_PLL = 17,
978 	EMMC_PLL = 18,
979 	PLL_MAX
980 };
981 
982 enum rl_index {
983 	TPC_RL = 0,
984 	MME_RL,
985 	EDMA_RL,
986 };
987 
988 enum pvt_index {
989 	PVT_SW,
990 	PVT_SE,
991 	PVT_NW,
992 	PVT_NE
993 };
994 
995 /* Event Queue Packets */
996 
997 struct eq_generic_event {
998 	__le64 data[7];
999 };
1000 
1001 /*
1002  * CpuCP info
1003  */
1004 
1005 #define CARD_NAME_MAX_LEN		16
1006 #define CPUCP_MAX_SENSORS		128
1007 #define CPUCP_MAX_NICS			128
1008 #define CPUCP_LANES_PER_NIC		4
1009 #define CPUCP_NIC_QSFP_EEPROM_MAX_LEN	1024
1010 #define CPUCP_MAX_NIC_LANES		(CPUCP_MAX_NICS * CPUCP_LANES_PER_NIC)
1011 #define CPUCP_NIC_MASK_ARR_LEN		((CPUCP_MAX_NICS + 63) / 64)
1012 #define CPUCP_NIC_POLARITY_ARR_LEN	((CPUCP_MAX_NIC_LANES + 63) / 64)
1013 #define CPUCP_HBM_ROW_REPLACE_MAX	32
1014 
1015 struct cpucp_sensor {
1016 	__le32 type;
1017 	__le32 flags;
1018 };
1019 
1020 /**
1021  * struct cpucp_card_types - ASIC card type.
1022  * @cpucp_card_type_pci: PCI card.
1023  * @cpucp_card_type_pmc: PCI Mezzanine Card.
1024  */
1025 enum cpucp_card_types {
1026 	cpucp_card_type_pci,
1027 	cpucp_card_type_pmc
1028 };
1029 
1030 #define CPUCP_SEC_CONF_ENABLED_SHIFT	0
1031 #define CPUCP_SEC_CONF_ENABLED_MASK	0x00000001
1032 
1033 #define CPUCP_SEC_CONF_FLASH_WP_SHIFT	1
1034 #define CPUCP_SEC_CONF_FLASH_WP_MASK	0x00000002
1035 
1036 #define CPUCP_SEC_CONF_EEPROM_WP_SHIFT	2
1037 #define CPUCP_SEC_CONF_EEPROM_WP_MASK	0x00000004
1038 
1039 /**
1040  * struct cpucp_security_info - Security information.
1041  * @config: configuration bit field
1042  * @keys_num: number of stored keys
1043  * @revoked_keys: revoked keys bit field
1044  * @min_svn: minimal security version
1045  */
1046 struct cpucp_security_info {
1047 	__u8 config;
1048 	__u8 keys_num;
1049 	__u8 revoked_keys;
1050 	__u8 min_svn;
1051 };
1052 
1053 /**
1054  * struct cpucp_info - Info from CpuCP that is necessary to the host's driver
1055  * @sensors: available sensors description.
1056  * @kernel_version: CpuCP linux kernel version.
1057  * @reserved: reserved field.
1058  * @card_type: card configuration type.
1059  * @card_location: in a server, each card has different connections topology
1060  *                 depending on its location (relevant for PMC card type)
1061  * @cpld_version: CPLD programmed F/W version.
1062  * @infineon_version: Infineon main DC-DC version.
1063  * @fuse_version: silicon production FUSE information.
1064  * @thermal_version: thermald S/W version.
1065  * @cpucp_version: CpuCP S/W version.
1066  * @infineon_second_stage_version: Infineon 2nd stage DC-DC version.
1067  * @dram_size: available DRAM size.
1068  * @card_name: card name that will be displayed in HWMON subsystem on the host
1069  * @tpc_binning_mask: TPC binning mask, 1 bit per TPC instance
1070  *                    (0 = functional, 1 = binned)
1071  * @decoder_binning_mask: Decoder binning mask, 1 bit per decoder instance
1072  *                        (0 = functional, 1 = binned), maximum 1 per dcore
1073  * @sram_binning: Categorize SRAM functionality
1074  *                (0 = fully functional, 1 = lower-half is not functional,
1075  *                 2 = upper-half is not functional)
1076  * @sec_info: security information
1077  * @pll_map: Bit map of supported PLLs for current ASIC version.
1078  * @mme_binning_mask: MME binning mask,
1079  *                    bits [0:6]   <==> dcore0 mme fma
1080  *                    bits [7:13]  <==> dcore1 mme fma
1081  *                    bits [14:20] <==> dcore0 mme ima
1082  *                    bits [21:27] <==> dcore1 mme ima
1083  *                    For each group, if the 6th bit is set then first 5 bits
1084  *                    represent the col's idx [0-31], otherwise these bits are
1085  *                    ignored, and col idx 32 is binned. 7th bit is don't care.
1086  * @dram_binning_mask: DRAM binning mask, 1 bit per dram instance
1087  *                     (0 = functional 1 = binned)
1088  * @memory_repair_flag: eFuse flag indicating memory repair
1089  * @edma_binning_mask: EDMA binning mask, 1 bit per EDMA instance
1090  *                     (0 = functional 1 = binned)
1091  * @xbar_binning_mask: Xbar binning mask, 1 bit per Xbar instance
1092  *                     (0 = functional 1 = binned)
1093  * @interposer_version: Interposer version programmed in eFuse
1094  * @substrate_version: Substrate version programmed in eFuse
1095  * @fw_os_version: Firmware OS Version
1096  */
1097 struct cpucp_info {
1098 	struct cpucp_sensor sensors[CPUCP_MAX_SENSORS];
1099 	__u8 kernel_version[VERSION_MAX_LEN];
1100 	__le32 reserved;
1101 	__le32 card_type;
1102 	__le32 card_location;
1103 	__le32 cpld_version;
1104 	__le32 infineon_version;
1105 	__u8 fuse_version[VERSION_MAX_LEN];
1106 	__u8 thermal_version[VERSION_MAX_LEN];
1107 	__u8 cpucp_version[VERSION_MAX_LEN];
1108 	__le32 infineon_second_stage_version;
1109 	__le64 dram_size;
1110 	char card_name[CARD_NAME_MAX_LEN];
1111 	__le64 tpc_binning_mask;
1112 	__le64 decoder_binning_mask;
1113 	__u8 sram_binning;
1114 	__u8 dram_binning_mask;
1115 	__u8 memory_repair_flag;
1116 	__u8 edma_binning_mask;
1117 	__u8 xbar_binning_mask;
1118 	__u8 interposer_version;
1119 	__u8 substrate_version;
1120 	__u8 reserved2;
1121 	struct cpucp_security_info sec_info;
1122 	__le32 reserved3;
1123 	__u8 pll_map[PLL_MAP_LEN];
1124 	__le64 mme_binning_mask;
1125 	__u8 fw_os_version[VERSION_MAX_LEN];
1126 };
1127 
1128 struct cpucp_mac_addr {
1129 	__u8 mac_addr[ETH_ALEN];
1130 };
1131 
1132 enum cpucp_serdes_type {
1133 	TYPE_1_SERDES_TYPE,
1134 	TYPE_2_SERDES_TYPE,
1135 	HLS1_SERDES_TYPE,
1136 	HLS1H_SERDES_TYPE,
1137 	HLS2_SERDES_TYPE,
1138 	UNKNOWN_SERDES_TYPE,
1139 	MAX_NUM_SERDES_TYPE = UNKNOWN_SERDES_TYPE
1140 };
1141 
1142 struct cpucp_nic_info {
1143 	struct cpucp_mac_addr mac_addrs[CPUCP_MAX_NICS];
1144 	__le64 link_mask[CPUCP_NIC_MASK_ARR_LEN];
1145 	__le64 pol_tx_mask[CPUCP_NIC_POLARITY_ARR_LEN];
1146 	__le64 pol_rx_mask[CPUCP_NIC_POLARITY_ARR_LEN];
1147 	__le64 link_ext_mask[CPUCP_NIC_MASK_ARR_LEN];
1148 	__u8 qsfp_eeprom[CPUCP_NIC_QSFP_EEPROM_MAX_LEN];
1149 	__le64 auto_neg_mask[CPUCP_NIC_MASK_ARR_LEN];
1150 	__le16 serdes_type; /* enum cpucp_serdes_type */
1151 	__le16 tx_swap_map[CPUCP_MAX_NICS];
1152 	__u8 reserved[6];
1153 };
1154 
1155 #define PAGE_DISCARD_MAX	64
1156 
1157 struct page_discard_info {
1158 	__u8 num_entries;
1159 	__u8 reserved[7];
1160 	__le32 mmu_page_idx[PAGE_DISCARD_MAX];
1161 };
1162 
1163 /*
1164  * struct ser_val - the SER (symbol error rate) value is represented by "integer * 10 ^ -exp".
1165  * @integer: the integer part of the SER value;
1166  * @exp: the exponent part of the SER value.
1167  */
1168 struct ser_val {
1169 	__le16 integer;
1170 	__le16 exp;
1171 };
1172 
1173 /*
1174  * struct cpucp_nic_status - describes the status of a NIC port.
1175  * @port: NIC port index.
1176  * @bad_format_cnt: e.g. CRC.
1177  * @responder_out_of_sequence_psn_cnt: e.g NAK.
1178  * @high_ber_reinit_cnt: link reinit due to high BER.
1179  * @correctable_err_cnt: e.g. bit-flip.
1180  * @uncorrectable_err_cnt: e.g. MAC errors.
1181  * @retraining_cnt: re-training counter.
1182  * @up: is port up.
1183  * @pcs_link: has PCS link.
1184  * @phy_ready: is PHY ready.
1185  * @auto_neg: is Autoneg enabled.
1186  * @timeout_retransmission_cnt: timeout retransmission events
1187  * @high_ber_cnt: high ber events
1188  */
1189 struct cpucp_nic_status {
1190 	__le32 port;
1191 	__le32 bad_format_cnt;
1192 	__le32 responder_out_of_sequence_psn_cnt;
1193 	__le32 high_ber_reinit;
1194 	__le32 correctable_err_cnt;
1195 	__le32 uncorrectable_err_cnt;
1196 	__le32 retraining_cnt;
1197 	__u8 up;
1198 	__u8 pcs_link;
1199 	__u8 phy_ready;
1200 	__u8 auto_neg;
1201 	__le32 timeout_retransmission_cnt;
1202 	__le32 high_ber_cnt;
1203 };
1204 
1205 enum cpucp_hbm_row_replace_cause {
1206 	REPLACE_CAUSE_DOUBLE_ECC_ERR,
1207 	REPLACE_CAUSE_MULTI_SINGLE_ECC_ERR,
1208 };
1209 
1210 struct cpucp_hbm_row_info {
1211 	__u8 hbm_idx;
1212 	__u8 pc;
1213 	__u8 sid;
1214 	__u8 bank_idx;
1215 	__le16 row_addr;
1216 	__u8 replaced_row_cause; /* enum cpucp_hbm_row_replace_cause */
1217 	__u8 pad;
1218 };
1219 
1220 struct cpucp_hbm_row_replaced_rows_info {
1221 	__le16 num_replaced_rows;
1222 	__u8 pad[6];
1223 	struct cpucp_hbm_row_info replaced_rows[CPUCP_HBM_ROW_REPLACE_MAX];
1224 };
1225 
1226 enum cpu_reset_status {
1227 	CPU_RST_STATUS_NA = 0,
1228 	CPU_RST_STATUS_SOFT_RST_DONE = 1,
1229 };
1230 
1231 #define SEC_PCR_DATA_BUF_SZ	256
1232 #define SEC_PCR_QUOTE_BUF_SZ	510	/* (512 - 2) 2 bytes used for size */
1233 #define SEC_SIGNATURE_BUF_SZ	255	/* (256 - 1) 1 byte used for size */
1234 #define SEC_PUB_DATA_BUF_SZ	510	/* (512 - 2) 2 bytes used for size */
1235 #define SEC_CERTIFICATE_BUF_SZ	2046	/* (2048 - 2) 2 bytes used for size */
1236 
1237 /*
1238  * struct cpucp_sec_attest_info - attestation report of the boot
1239  * @pcr_data: raw values of the PCR registers
1240  * @pcr_num_reg: number of PCR registers in the pcr_data array
1241  * @pcr_reg_len: length of each PCR register in the pcr_data array (bytes)
1242  * @nonce: number only used once. random number provided by host. this also
1243  *	    passed to the quote command as a qualifying data.
1244  * @pcr_quote_len: length of the attestation quote data (bytes)
1245  * @pcr_quote: attestation report data structure
1246  * @quote_sig_len: length of the attestation report signature (bytes)
1247  * @quote_sig: signature structure of the attestation report
1248  * @pub_data_len: length of the public data (bytes)
1249  * @public_data: public key for the signed attestation
1250  *		 (outPublic + name + qualifiedName)
1251  * @certificate_len: length of the certificate (bytes)
1252  * @certificate: certificate for the attestation signing key
1253  */
1254 struct cpucp_sec_attest_info {
1255 	__u8 pcr_data[SEC_PCR_DATA_BUF_SZ];
1256 	__u8 pcr_num_reg;
1257 	__u8 pcr_reg_len;
1258 	__le16 pad0;
1259 	__le32 nonce;
1260 	__le16 pcr_quote_len;
1261 	__u8 pcr_quote[SEC_PCR_QUOTE_BUF_SZ];
1262 	__u8 quote_sig_len;
1263 	__u8 quote_sig[SEC_SIGNATURE_BUF_SZ];
1264 	__le16 pub_data_len;
1265 	__u8 public_data[SEC_PUB_DATA_BUF_SZ];
1266 	__le16 certificate_len;
1267 	__u8 certificate[SEC_CERTIFICATE_BUF_SZ];
1268 };
1269 
1270 /*
1271  * struct cpucp_dev_info_signed - device information signed by a secured device
1272  * @info: device information structure as defined above
1273  * @nonce: number only used once. random number provided by host. this number is
1274  *	   hashed and signed along with the device information.
1275  * @info_sig_len: length of the attestation signature (bytes)
1276  * @info_sig: signature of the info + nonce data.
1277  * @pub_data_len: length of the public data (bytes)
1278  * @public_data: public key info signed info data
1279  *		 (outPublic + name + qualifiedName)
1280  * @certificate_len: length of the certificate (bytes)
1281  * @certificate: certificate for the signing key
1282  */
1283 struct cpucp_dev_info_signed {
1284 	struct cpucp_info info;	/* assumed to be 64bit aligned */
1285 	__le32 nonce;
1286 	__le32 pad0;
1287 	__u8 info_sig_len;
1288 	__u8 info_sig[SEC_SIGNATURE_BUF_SZ];
1289 	__le16 pub_data_len;
1290 	__u8 public_data[SEC_PUB_DATA_BUF_SZ];
1291 	__le16 certificate_len;
1292 	__u8 certificate[SEC_CERTIFICATE_BUF_SZ];
1293 };
1294 
1295 /*
1296  * struct dcore_monitor_regs_data - DCORE monitor regs data.
1297  * the structure follows sync manager block layout. relevant only to Gaudi.
1298  * @mon_pay_addrl: array of payload address low bits.
1299  * @mon_pay_addrh: array of payload address high bits.
1300  * @mon_pay_data: array of payload data.
1301  * @mon_arm: array of monitor arm.
1302  * @mon_status: array of monitor status.
1303  */
1304 struct dcore_monitor_regs_data {
1305 	__le32 mon_pay_addrl[512];
1306 	__le32 mon_pay_addrh[512];
1307 	__le32 mon_pay_data[512];
1308 	__le32 mon_arm[512];
1309 	__le32 mon_status[512];
1310 };
1311 
1312 /* contains SM data for each SYNC_MNGR (relevant only to Gaudi) */
1313 struct cpucp_monitor_dump {
1314 	struct dcore_monitor_regs_data sync_mngr_w_s;
1315 	struct dcore_monitor_regs_data sync_mngr_e_s;
1316 	struct dcore_monitor_regs_data sync_mngr_w_n;
1317 	struct dcore_monitor_regs_data sync_mngr_e_n;
1318 };
1319 
1320 #endif /* CPUCP_IF_H */
1321