1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/blkdev.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/swiotlb.h>
31 #include <linux/sysfs.h>
32 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
33
34 #include "base.h"
35 #include "physical_location.h"
36 #include "power/power.h"
37
38 #ifdef CONFIG_SYSFS_DEPRECATED
39 #ifdef CONFIG_SYSFS_DEPRECATED_V2
40 long sysfs_deprecated = 1;
41 #else
42 long sysfs_deprecated = 0;
43 #endif
sysfs_deprecated_setup(char * arg)44 static int __init sysfs_deprecated_setup(char *arg)
45 {
46 return kstrtol(arg, 10, &sysfs_deprecated);
47 }
48 early_param("sysfs.deprecated", sysfs_deprecated_setup);
49 #endif
50
51 /* Device links support. */
52 static LIST_HEAD(deferred_sync);
53 static unsigned int defer_sync_state_count = 1;
54 static DEFINE_MUTEX(fwnode_link_lock);
55 static bool fw_devlink_is_permissive(void);
56 static void __fw_devlink_link_to_consumers(struct device *dev);
57 static bool fw_devlink_drv_reg_done;
58 static bool fw_devlink_best_effort;
59
60 /**
61 * __fwnode_link_add - Create a link between two fwnode_handles.
62 * @con: Consumer end of the link.
63 * @sup: Supplier end of the link.
64 *
65 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
66 * represents the detail that the firmware lists @sup fwnode as supplying a
67 * resource to @con.
68 *
69 * The driver core will use the fwnode link to create a device link between the
70 * two device objects corresponding to @con and @sup when they are created. The
71 * driver core will automatically delete the fwnode link between @con and @sup
72 * after doing that.
73 *
74 * Attempts to create duplicate links between the same pair of fwnode handles
75 * are ignored and there is no reference counting.
76 */
__fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup,u8 flags)77 static int __fwnode_link_add(struct fwnode_handle *con,
78 struct fwnode_handle *sup, u8 flags)
79 {
80 struct fwnode_link *link;
81
82 list_for_each_entry(link, &sup->consumers, s_hook)
83 if (link->consumer == con) {
84 link->flags |= flags;
85 return 0;
86 }
87
88 link = kzalloc(sizeof(*link), GFP_KERNEL);
89 if (!link)
90 return -ENOMEM;
91
92 link->supplier = sup;
93 INIT_LIST_HEAD(&link->s_hook);
94 link->consumer = con;
95 INIT_LIST_HEAD(&link->c_hook);
96 link->flags = flags;
97
98 list_add(&link->s_hook, &sup->consumers);
99 list_add(&link->c_hook, &con->suppliers);
100 pr_debug("%pfwP Linked as a fwnode consumer to %pfwP\n",
101 con, sup);
102
103 return 0;
104 }
105
fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup)106 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
107 {
108 int ret;
109
110 mutex_lock(&fwnode_link_lock);
111 ret = __fwnode_link_add(con, sup, 0);
112 mutex_unlock(&fwnode_link_lock);
113 return ret;
114 }
115
116 /**
117 * __fwnode_link_del - Delete a link between two fwnode_handles.
118 * @link: the fwnode_link to be deleted
119 *
120 * The fwnode_link_lock needs to be held when this function is called.
121 */
__fwnode_link_del(struct fwnode_link * link)122 static void __fwnode_link_del(struct fwnode_link *link)
123 {
124 pr_debug("%pfwP Dropping the fwnode link to %pfwP\n",
125 link->consumer, link->supplier);
126 list_del(&link->s_hook);
127 list_del(&link->c_hook);
128 kfree(link);
129 }
130
131 /**
132 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
133 * @link: the fwnode_link to be marked
134 *
135 * The fwnode_link_lock needs to be held when this function is called.
136 */
__fwnode_link_cycle(struct fwnode_link * link)137 static void __fwnode_link_cycle(struct fwnode_link *link)
138 {
139 pr_debug("%pfwf: Relaxing link with %pfwf\n",
140 link->consumer, link->supplier);
141 link->flags |= FWLINK_FLAG_CYCLE;
142 }
143
144 /**
145 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
146 * @fwnode: fwnode whose supplier links need to be deleted
147 *
148 * Deletes all supplier links connecting directly to @fwnode.
149 */
fwnode_links_purge_suppliers(struct fwnode_handle * fwnode)150 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
151 {
152 struct fwnode_link *link, *tmp;
153
154 mutex_lock(&fwnode_link_lock);
155 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
156 __fwnode_link_del(link);
157 mutex_unlock(&fwnode_link_lock);
158 }
159
160 /**
161 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
162 * @fwnode: fwnode whose consumer links need to be deleted
163 *
164 * Deletes all consumer links connecting directly to @fwnode.
165 */
fwnode_links_purge_consumers(struct fwnode_handle * fwnode)166 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
167 {
168 struct fwnode_link *link, *tmp;
169
170 mutex_lock(&fwnode_link_lock);
171 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
172 __fwnode_link_del(link);
173 mutex_unlock(&fwnode_link_lock);
174 }
175
176 /**
177 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
178 * @fwnode: fwnode whose links needs to be deleted
179 *
180 * Deletes all links connecting directly to a fwnode.
181 */
fwnode_links_purge(struct fwnode_handle * fwnode)182 void fwnode_links_purge(struct fwnode_handle *fwnode)
183 {
184 fwnode_links_purge_suppliers(fwnode);
185 fwnode_links_purge_consumers(fwnode);
186 }
187
fw_devlink_purge_absent_suppliers(struct fwnode_handle * fwnode)188 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
189 {
190 struct fwnode_handle *child;
191
192 /* Don't purge consumer links of an added child */
193 if (fwnode->dev)
194 return;
195
196 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
197 fwnode_links_purge_consumers(fwnode);
198
199 fwnode_for_each_available_child_node(fwnode, child)
200 fw_devlink_purge_absent_suppliers(child);
201 }
202 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
203
204 /**
205 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
206 * @from: move consumers away from this fwnode
207 * @to: move consumers to this fwnode
208 *
209 * Move all consumer links from @from fwnode to @to fwnode.
210 */
__fwnode_links_move_consumers(struct fwnode_handle * from,struct fwnode_handle * to)211 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
212 struct fwnode_handle *to)
213 {
214 struct fwnode_link *link, *tmp;
215
216 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
217 __fwnode_link_add(link->consumer, to, link->flags);
218 __fwnode_link_del(link);
219 }
220 }
221
222 /**
223 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
224 * @fwnode: fwnode from which to pick up dangling consumers
225 * @new_sup: fwnode of new supplier
226 *
227 * If the @fwnode has a corresponding struct device and the device supports
228 * probing (that is, added to a bus), then we want to let fw_devlink create
229 * MANAGED device links to this device, so leave @fwnode and its descendant's
230 * fwnode links alone.
231 *
232 * Otherwise, move its consumers to the new supplier @new_sup.
233 */
__fw_devlink_pickup_dangling_consumers(struct fwnode_handle * fwnode,struct fwnode_handle * new_sup)234 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
235 struct fwnode_handle *new_sup)
236 {
237 struct fwnode_handle *child;
238
239 if (fwnode->dev && fwnode->dev->bus)
240 return;
241
242 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
243 __fwnode_links_move_consumers(fwnode, new_sup);
244
245 fwnode_for_each_available_child_node(fwnode, child)
246 __fw_devlink_pickup_dangling_consumers(child, new_sup);
247 }
248
249 #ifdef CONFIG_SRCU
250 static DEFINE_MUTEX(device_links_lock);
251 DEFINE_STATIC_SRCU(device_links_srcu);
252
device_links_write_lock(void)253 static inline void device_links_write_lock(void)
254 {
255 mutex_lock(&device_links_lock);
256 }
257
device_links_write_unlock(void)258 static inline void device_links_write_unlock(void)
259 {
260 mutex_unlock(&device_links_lock);
261 }
262
device_links_read_lock(void)263 int device_links_read_lock(void) __acquires(&device_links_srcu)
264 {
265 return srcu_read_lock(&device_links_srcu);
266 }
267
device_links_read_unlock(int idx)268 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
269 {
270 srcu_read_unlock(&device_links_srcu, idx);
271 }
272
device_links_read_lock_held(void)273 int device_links_read_lock_held(void)
274 {
275 return srcu_read_lock_held(&device_links_srcu);
276 }
277
device_link_synchronize_removal(void)278 static void device_link_synchronize_removal(void)
279 {
280 synchronize_srcu(&device_links_srcu);
281 }
282
device_link_remove_from_lists(struct device_link * link)283 static void device_link_remove_from_lists(struct device_link *link)
284 {
285 list_del_rcu(&link->s_node);
286 list_del_rcu(&link->c_node);
287 }
288 #else /* !CONFIG_SRCU */
289 static DECLARE_RWSEM(device_links_lock);
290
device_links_write_lock(void)291 static inline void device_links_write_lock(void)
292 {
293 down_write(&device_links_lock);
294 }
295
device_links_write_unlock(void)296 static inline void device_links_write_unlock(void)
297 {
298 up_write(&device_links_lock);
299 }
300
device_links_read_lock(void)301 int device_links_read_lock(void)
302 {
303 down_read(&device_links_lock);
304 return 0;
305 }
306
device_links_read_unlock(int not_used)307 void device_links_read_unlock(int not_used)
308 {
309 up_read(&device_links_lock);
310 }
311
312 #ifdef CONFIG_DEBUG_LOCK_ALLOC
device_links_read_lock_held(void)313 int device_links_read_lock_held(void)
314 {
315 return lockdep_is_held(&device_links_lock);
316 }
317 #endif
318
device_link_synchronize_removal(void)319 static inline void device_link_synchronize_removal(void)
320 {
321 }
322
device_link_remove_from_lists(struct device_link * link)323 static void device_link_remove_from_lists(struct device_link *link)
324 {
325 list_del(&link->s_node);
326 list_del(&link->c_node);
327 }
328 #endif /* !CONFIG_SRCU */
329
device_is_ancestor(struct device * dev,struct device * target)330 static bool device_is_ancestor(struct device *dev, struct device *target)
331 {
332 while (target->parent) {
333 target = target->parent;
334 if (dev == target)
335 return true;
336 }
337 return false;
338 }
339
340 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \
341 DL_FLAG_CYCLE | \
342 DL_FLAG_MANAGED)
device_link_flag_is_sync_state_only(u32 flags)343 static inline bool device_link_flag_is_sync_state_only(u32 flags)
344 {
345 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
346 }
347
348 /**
349 * device_is_dependent - Check if one device depends on another one
350 * @dev: Device to check dependencies for.
351 * @target: Device to check against.
352 *
353 * Check if @target depends on @dev or any device dependent on it (its child or
354 * its consumer etc). Return 1 if that is the case or 0 otherwise.
355 */
device_is_dependent(struct device * dev,void * target)356 int device_is_dependent(struct device *dev, void *target)
357 {
358 struct device_link *link;
359 int ret;
360
361 /*
362 * The "ancestors" check is needed to catch the case when the target
363 * device has not been completely initialized yet and it is still
364 * missing from the list of children of its parent device.
365 */
366 if (dev == target || device_is_ancestor(dev, target))
367 return 1;
368
369 ret = device_for_each_child(dev, target, device_is_dependent);
370 if (ret)
371 return ret;
372
373 list_for_each_entry(link, &dev->links.consumers, s_node) {
374 if (device_link_flag_is_sync_state_only(link->flags))
375 continue;
376
377 if (link->consumer == target)
378 return 1;
379
380 ret = device_is_dependent(link->consumer, target);
381 if (ret)
382 break;
383 }
384 return ret;
385 }
386
device_link_init_status(struct device_link * link,struct device * consumer,struct device * supplier)387 static void device_link_init_status(struct device_link *link,
388 struct device *consumer,
389 struct device *supplier)
390 {
391 switch (supplier->links.status) {
392 case DL_DEV_PROBING:
393 switch (consumer->links.status) {
394 case DL_DEV_PROBING:
395 /*
396 * A consumer driver can create a link to a supplier
397 * that has not completed its probing yet as long as it
398 * knows that the supplier is already functional (for
399 * example, it has just acquired some resources from the
400 * supplier).
401 */
402 link->status = DL_STATE_CONSUMER_PROBE;
403 break;
404 default:
405 link->status = DL_STATE_DORMANT;
406 break;
407 }
408 break;
409 case DL_DEV_DRIVER_BOUND:
410 switch (consumer->links.status) {
411 case DL_DEV_PROBING:
412 link->status = DL_STATE_CONSUMER_PROBE;
413 break;
414 case DL_DEV_DRIVER_BOUND:
415 link->status = DL_STATE_ACTIVE;
416 break;
417 default:
418 link->status = DL_STATE_AVAILABLE;
419 break;
420 }
421 break;
422 case DL_DEV_UNBINDING:
423 link->status = DL_STATE_SUPPLIER_UNBIND;
424 break;
425 default:
426 link->status = DL_STATE_DORMANT;
427 break;
428 }
429 }
430
device_reorder_to_tail(struct device * dev,void * not_used)431 static int device_reorder_to_tail(struct device *dev, void *not_used)
432 {
433 struct device_link *link;
434
435 /*
436 * Devices that have not been registered yet will be put to the ends
437 * of the lists during the registration, so skip them here.
438 */
439 if (device_is_registered(dev))
440 devices_kset_move_last(dev);
441
442 if (device_pm_initialized(dev))
443 device_pm_move_last(dev);
444
445 device_for_each_child(dev, NULL, device_reorder_to_tail);
446 list_for_each_entry(link, &dev->links.consumers, s_node) {
447 if (device_link_flag_is_sync_state_only(link->flags))
448 continue;
449 device_reorder_to_tail(link->consumer, NULL);
450 }
451
452 return 0;
453 }
454
455 /**
456 * device_pm_move_to_tail - Move set of devices to the end of device lists
457 * @dev: Device to move
458 *
459 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
460 *
461 * It moves the @dev along with all of its children and all of its consumers
462 * to the ends of the device_kset and dpm_list, recursively.
463 */
device_pm_move_to_tail(struct device * dev)464 void device_pm_move_to_tail(struct device *dev)
465 {
466 int idx;
467
468 idx = device_links_read_lock();
469 device_pm_lock();
470 device_reorder_to_tail(dev, NULL);
471 device_pm_unlock();
472 device_links_read_unlock(idx);
473 }
474
475 #define to_devlink(dev) container_of((dev), struct device_link, link_dev)
476
status_show(struct device * dev,struct device_attribute * attr,char * buf)477 static ssize_t status_show(struct device *dev,
478 struct device_attribute *attr, char *buf)
479 {
480 const char *output;
481
482 switch (to_devlink(dev)->status) {
483 case DL_STATE_NONE:
484 output = "not tracked";
485 break;
486 case DL_STATE_DORMANT:
487 output = "dormant";
488 break;
489 case DL_STATE_AVAILABLE:
490 output = "available";
491 break;
492 case DL_STATE_CONSUMER_PROBE:
493 output = "consumer probing";
494 break;
495 case DL_STATE_ACTIVE:
496 output = "active";
497 break;
498 case DL_STATE_SUPPLIER_UNBIND:
499 output = "supplier unbinding";
500 break;
501 default:
502 output = "unknown";
503 break;
504 }
505
506 return sysfs_emit(buf, "%s\n", output);
507 }
508 static DEVICE_ATTR_RO(status);
509
auto_remove_on_show(struct device * dev,struct device_attribute * attr,char * buf)510 static ssize_t auto_remove_on_show(struct device *dev,
511 struct device_attribute *attr, char *buf)
512 {
513 struct device_link *link = to_devlink(dev);
514 const char *output;
515
516 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
517 output = "supplier unbind";
518 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
519 output = "consumer unbind";
520 else
521 output = "never";
522
523 return sysfs_emit(buf, "%s\n", output);
524 }
525 static DEVICE_ATTR_RO(auto_remove_on);
526
runtime_pm_show(struct device * dev,struct device_attribute * attr,char * buf)527 static ssize_t runtime_pm_show(struct device *dev,
528 struct device_attribute *attr, char *buf)
529 {
530 struct device_link *link = to_devlink(dev);
531
532 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
533 }
534 static DEVICE_ATTR_RO(runtime_pm);
535
sync_state_only_show(struct device * dev,struct device_attribute * attr,char * buf)536 static ssize_t sync_state_only_show(struct device *dev,
537 struct device_attribute *attr, char *buf)
538 {
539 struct device_link *link = to_devlink(dev);
540
541 return sysfs_emit(buf, "%d\n",
542 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
543 }
544 static DEVICE_ATTR_RO(sync_state_only);
545
546 static struct attribute *devlink_attrs[] = {
547 &dev_attr_status.attr,
548 &dev_attr_auto_remove_on.attr,
549 &dev_attr_runtime_pm.attr,
550 &dev_attr_sync_state_only.attr,
551 NULL,
552 };
553 ATTRIBUTE_GROUPS(devlink);
554
device_link_release_fn(struct work_struct * work)555 static void device_link_release_fn(struct work_struct *work)
556 {
557 struct device_link *link = container_of(work, struct device_link, rm_work);
558
559 /* Ensure that all references to the link object have been dropped. */
560 device_link_synchronize_removal();
561
562 pm_runtime_release_supplier(link);
563 /*
564 * If supplier_preactivated is set, the link has been dropped between
565 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
566 * in __driver_probe_device(). In that case, drop the supplier's
567 * PM-runtime usage counter to remove the reference taken by
568 * pm_runtime_get_suppliers().
569 */
570 if (link->supplier_preactivated)
571 pm_runtime_put_noidle(link->supplier);
572
573 pm_request_idle(link->supplier);
574
575 put_device(link->consumer);
576 put_device(link->supplier);
577 kfree(link);
578 }
579
devlink_dev_release(struct device * dev)580 static void devlink_dev_release(struct device *dev)
581 {
582 struct device_link *link = to_devlink(dev);
583
584 INIT_WORK(&link->rm_work, device_link_release_fn);
585 /*
586 * It may take a while to complete this work because of the SRCU
587 * synchronization in device_link_release_fn() and if the consumer or
588 * supplier devices get deleted when it runs, so put it into the "long"
589 * workqueue.
590 */
591 queue_work(system_long_wq, &link->rm_work);
592 }
593
594 static struct class devlink_class = {
595 .name = "devlink",
596 .owner = THIS_MODULE,
597 .dev_groups = devlink_groups,
598 .dev_release = devlink_dev_release,
599 };
600
devlink_add_symlinks(struct device * dev,struct class_interface * class_intf)601 static int devlink_add_symlinks(struct device *dev,
602 struct class_interface *class_intf)
603 {
604 int ret;
605 size_t len;
606 struct device_link *link = to_devlink(dev);
607 struct device *sup = link->supplier;
608 struct device *con = link->consumer;
609 char *buf;
610
611 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
612 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
613 len += strlen(":");
614 len += strlen("supplier:") + 1;
615 buf = kzalloc(len, GFP_KERNEL);
616 if (!buf)
617 return -ENOMEM;
618
619 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
620 if (ret)
621 goto out;
622
623 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
624 if (ret)
625 goto err_con;
626
627 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
628 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
629 if (ret)
630 goto err_con_dev;
631
632 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
633 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
634 if (ret)
635 goto err_sup_dev;
636
637 goto out;
638
639 err_sup_dev:
640 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
641 sysfs_remove_link(&sup->kobj, buf);
642 err_con_dev:
643 sysfs_remove_link(&link->link_dev.kobj, "consumer");
644 err_con:
645 sysfs_remove_link(&link->link_dev.kobj, "supplier");
646 out:
647 kfree(buf);
648 return ret;
649 }
650
devlink_remove_symlinks(struct device * dev,struct class_interface * class_intf)651 static void devlink_remove_symlinks(struct device *dev,
652 struct class_interface *class_intf)
653 {
654 struct device_link *link = to_devlink(dev);
655 size_t len;
656 struct device *sup = link->supplier;
657 struct device *con = link->consumer;
658 char *buf;
659
660 sysfs_remove_link(&link->link_dev.kobj, "consumer");
661 sysfs_remove_link(&link->link_dev.kobj, "supplier");
662
663 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
664 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
665 len += strlen(":");
666 len += strlen("supplier:") + 1;
667 buf = kzalloc(len, GFP_KERNEL);
668 if (!buf) {
669 WARN(1, "Unable to properly free device link symlinks!\n");
670 return;
671 }
672
673 if (device_is_registered(con)) {
674 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
675 sysfs_remove_link(&con->kobj, buf);
676 }
677 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
678 sysfs_remove_link(&sup->kobj, buf);
679 kfree(buf);
680 }
681
682 static struct class_interface devlink_class_intf = {
683 .class = &devlink_class,
684 .add_dev = devlink_add_symlinks,
685 .remove_dev = devlink_remove_symlinks,
686 };
687
devlink_class_init(void)688 static int __init devlink_class_init(void)
689 {
690 int ret;
691
692 ret = class_register(&devlink_class);
693 if (ret)
694 return ret;
695
696 ret = class_interface_register(&devlink_class_intf);
697 if (ret)
698 class_unregister(&devlink_class);
699
700 return ret;
701 }
702 postcore_initcall(devlink_class_init);
703
704 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
705 DL_FLAG_AUTOREMOVE_SUPPLIER | \
706 DL_FLAG_AUTOPROBE_CONSUMER | \
707 DL_FLAG_SYNC_STATE_ONLY | \
708 DL_FLAG_INFERRED | \
709 DL_FLAG_CYCLE)
710
711 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
712 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
713
714 /**
715 * device_link_add - Create a link between two devices.
716 * @consumer: Consumer end of the link.
717 * @supplier: Supplier end of the link.
718 * @flags: Link flags.
719 *
720 * The caller is responsible for the proper synchronization of the link creation
721 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
722 * runtime PM framework to take the link into account. Second, if the
723 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
724 * be forced into the active meta state and reference-counted upon the creation
725 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
726 * ignored.
727 *
728 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
729 * expected to release the link returned by it directly with the help of either
730 * device_link_del() or device_link_remove().
731 *
732 * If that flag is not set, however, the caller of this function is handing the
733 * management of the link over to the driver core entirely and its return value
734 * can only be used to check whether or not the link is present. In that case,
735 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
736 * flags can be used to indicate to the driver core when the link can be safely
737 * deleted. Namely, setting one of them in @flags indicates to the driver core
738 * that the link is not going to be used (by the given caller of this function)
739 * after unbinding the consumer or supplier driver, respectively, from its
740 * device, so the link can be deleted at that point. If none of them is set,
741 * the link will be maintained until one of the devices pointed to by it (either
742 * the consumer or the supplier) is unregistered.
743 *
744 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
745 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
746 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
747 * be used to request the driver core to automatically probe for a consumer
748 * driver after successfully binding a driver to the supplier device.
749 *
750 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
751 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
752 * the same time is invalid and will cause NULL to be returned upfront.
753 * However, if a device link between the given @consumer and @supplier pair
754 * exists already when this function is called for them, the existing link will
755 * be returned regardless of its current type and status (the link's flags may
756 * be modified then). The caller of this function is then expected to treat
757 * the link as though it has just been created, so (in particular) if
758 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
759 * explicitly when not needed any more (as stated above).
760 *
761 * A side effect of the link creation is re-ordering of dpm_list and the
762 * devices_kset list by moving the consumer device and all devices depending
763 * on it to the ends of these lists (that does not happen to devices that have
764 * not been registered when this function is called).
765 *
766 * The supplier device is required to be registered when this function is called
767 * and NULL will be returned if that is not the case. The consumer device need
768 * not be registered, however.
769 */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)770 struct device_link *device_link_add(struct device *consumer,
771 struct device *supplier, u32 flags)
772 {
773 struct device_link *link;
774
775 if (!consumer || !supplier || consumer == supplier ||
776 flags & ~DL_ADD_VALID_FLAGS ||
777 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
778 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
779 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
780 DL_FLAG_AUTOREMOVE_SUPPLIER)))
781 return NULL;
782
783 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
784 if (pm_runtime_get_sync(supplier) < 0) {
785 pm_runtime_put_noidle(supplier);
786 return NULL;
787 }
788 }
789
790 if (!(flags & DL_FLAG_STATELESS))
791 flags |= DL_FLAG_MANAGED;
792
793 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
794 !device_link_flag_is_sync_state_only(flags))
795 return NULL;
796
797 device_links_write_lock();
798 device_pm_lock();
799
800 /*
801 * If the supplier has not been fully registered yet or there is a
802 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
803 * the supplier already in the graph, return NULL. If the link is a
804 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
805 * because it only affects sync_state() callbacks.
806 */
807 if (!device_pm_initialized(supplier)
808 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
809 device_is_dependent(consumer, supplier))) {
810 link = NULL;
811 goto out;
812 }
813
814 /*
815 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
816 * So, only create it if the consumer hasn't probed yet.
817 */
818 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
819 consumer->links.status != DL_DEV_NO_DRIVER &&
820 consumer->links.status != DL_DEV_PROBING) {
821 link = NULL;
822 goto out;
823 }
824
825 /*
826 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
827 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
828 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
829 */
830 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
831 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
832
833 list_for_each_entry(link, &supplier->links.consumers, s_node) {
834 if (link->consumer != consumer)
835 continue;
836
837 if (link->flags & DL_FLAG_INFERRED &&
838 !(flags & DL_FLAG_INFERRED))
839 link->flags &= ~DL_FLAG_INFERRED;
840
841 if (flags & DL_FLAG_PM_RUNTIME) {
842 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
843 pm_runtime_new_link(consumer);
844 link->flags |= DL_FLAG_PM_RUNTIME;
845 }
846 if (flags & DL_FLAG_RPM_ACTIVE)
847 refcount_inc(&link->rpm_active);
848 }
849
850 if (flags & DL_FLAG_STATELESS) {
851 kref_get(&link->kref);
852 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
853 !(link->flags & DL_FLAG_STATELESS)) {
854 link->flags |= DL_FLAG_STATELESS;
855 goto reorder;
856 } else {
857 link->flags |= DL_FLAG_STATELESS;
858 goto out;
859 }
860 }
861
862 /*
863 * If the life time of the link following from the new flags is
864 * longer than indicated by the flags of the existing link,
865 * update the existing link to stay around longer.
866 */
867 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
868 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
869 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
870 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
871 }
872 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
873 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
874 DL_FLAG_AUTOREMOVE_SUPPLIER);
875 }
876 if (!(link->flags & DL_FLAG_MANAGED)) {
877 kref_get(&link->kref);
878 link->flags |= DL_FLAG_MANAGED;
879 device_link_init_status(link, consumer, supplier);
880 }
881 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
882 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
883 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
884 goto reorder;
885 }
886
887 goto out;
888 }
889
890 link = kzalloc(sizeof(*link), GFP_KERNEL);
891 if (!link)
892 goto out;
893
894 refcount_set(&link->rpm_active, 1);
895
896 get_device(supplier);
897 link->supplier = supplier;
898 INIT_LIST_HEAD(&link->s_node);
899 get_device(consumer);
900 link->consumer = consumer;
901 INIT_LIST_HEAD(&link->c_node);
902 link->flags = flags;
903 kref_init(&link->kref);
904
905 link->link_dev.class = &devlink_class;
906 device_set_pm_not_required(&link->link_dev);
907 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
908 dev_bus_name(supplier), dev_name(supplier),
909 dev_bus_name(consumer), dev_name(consumer));
910 if (device_register(&link->link_dev)) {
911 put_device(&link->link_dev);
912 link = NULL;
913 goto out;
914 }
915
916 if (flags & DL_FLAG_PM_RUNTIME) {
917 if (flags & DL_FLAG_RPM_ACTIVE)
918 refcount_inc(&link->rpm_active);
919
920 pm_runtime_new_link(consumer);
921 }
922
923 /* Determine the initial link state. */
924 if (flags & DL_FLAG_STATELESS)
925 link->status = DL_STATE_NONE;
926 else
927 device_link_init_status(link, consumer, supplier);
928
929 /*
930 * Some callers expect the link creation during consumer driver probe to
931 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
932 */
933 if (link->status == DL_STATE_CONSUMER_PROBE &&
934 flags & DL_FLAG_PM_RUNTIME)
935 pm_runtime_resume(supplier);
936
937 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
938 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
939
940 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
941 dev_dbg(consumer,
942 "Linked as a sync state only consumer to %s\n",
943 dev_name(supplier));
944 goto out;
945 }
946
947 reorder:
948 /*
949 * Move the consumer and all of the devices depending on it to the end
950 * of dpm_list and the devices_kset list.
951 *
952 * It is necessary to hold dpm_list locked throughout all that or else
953 * we may end up suspending with a wrong ordering of it.
954 */
955 device_reorder_to_tail(consumer, NULL);
956
957 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
958
959 out:
960 device_pm_unlock();
961 device_links_write_unlock();
962
963 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
964 pm_runtime_put(supplier);
965
966 return link;
967 }
968 EXPORT_SYMBOL_GPL(device_link_add);
969
__device_link_del(struct kref * kref)970 static void __device_link_del(struct kref *kref)
971 {
972 struct device_link *link = container_of(kref, struct device_link, kref);
973
974 dev_dbg(link->consumer, "Dropping the link to %s\n",
975 dev_name(link->supplier));
976
977 pm_runtime_drop_link(link);
978
979 device_link_remove_from_lists(link);
980 device_unregister(&link->link_dev);
981 }
982
device_link_put_kref(struct device_link * link)983 static void device_link_put_kref(struct device_link *link)
984 {
985 if (link->flags & DL_FLAG_STATELESS)
986 kref_put(&link->kref, __device_link_del);
987 else if (!device_is_registered(link->consumer))
988 __device_link_del(&link->kref);
989 else
990 WARN(1, "Unable to drop a managed device link reference\n");
991 }
992
993 /**
994 * device_link_del - Delete a stateless link between two devices.
995 * @link: Device link to delete.
996 *
997 * The caller must ensure proper synchronization of this function with runtime
998 * PM. If the link was added multiple times, it needs to be deleted as often.
999 * Care is required for hotplugged devices: Their links are purged on removal
1000 * and calling device_link_del() is then no longer allowed.
1001 */
device_link_del(struct device_link * link)1002 void device_link_del(struct device_link *link)
1003 {
1004 device_links_write_lock();
1005 device_link_put_kref(link);
1006 device_links_write_unlock();
1007 }
1008 EXPORT_SYMBOL_GPL(device_link_del);
1009
1010 /**
1011 * device_link_remove - Delete a stateless link between two devices.
1012 * @consumer: Consumer end of the link.
1013 * @supplier: Supplier end of the link.
1014 *
1015 * The caller must ensure proper synchronization of this function with runtime
1016 * PM.
1017 */
device_link_remove(void * consumer,struct device * supplier)1018 void device_link_remove(void *consumer, struct device *supplier)
1019 {
1020 struct device_link *link;
1021
1022 if (WARN_ON(consumer == supplier))
1023 return;
1024
1025 device_links_write_lock();
1026
1027 list_for_each_entry(link, &supplier->links.consumers, s_node) {
1028 if (link->consumer == consumer) {
1029 device_link_put_kref(link);
1030 break;
1031 }
1032 }
1033
1034 device_links_write_unlock();
1035 }
1036 EXPORT_SYMBOL_GPL(device_link_remove);
1037
device_links_missing_supplier(struct device * dev)1038 static void device_links_missing_supplier(struct device *dev)
1039 {
1040 struct device_link *link;
1041
1042 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1043 if (link->status != DL_STATE_CONSUMER_PROBE)
1044 continue;
1045
1046 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1047 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1048 } else {
1049 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1050 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1051 }
1052 }
1053 }
1054
dev_is_best_effort(struct device * dev)1055 static bool dev_is_best_effort(struct device *dev)
1056 {
1057 return (fw_devlink_best_effort && dev->can_match) ||
1058 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1059 }
1060
fwnode_links_check_suppliers(struct fwnode_handle * fwnode)1061 static struct fwnode_handle *fwnode_links_check_suppliers(
1062 struct fwnode_handle *fwnode)
1063 {
1064 struct fwnode_link *link;
1065
1066 if (!fwnode || fw_devlink_is_permissive())
1067 return NULL;
1068
1069 list_for_each_entry(link, &fwnode->suppliers, c_hook)
1070 if (!(link->flags & FWLINK_FLAG_CYCLE))
1071 return link->supplier;
1072
1073 return NULL;
1074 }
1075
1076 /**
1077 * device_links_check_suppliers - Check presence of supplier drivers.
1078 * @dev: Consumer device.
1079 *
1080 * Check links from this device to any suppliers. Walk the list of the device's
1081 * links to suppliers and see if all of them are available. If not, simply
1082 * return -EPROBE_DEFER.
1083 *
1084 * We need to guarantee that the supplier will not go away after the check has
1085 * been positive here. It only can go away in __device_release_driver() and
1086 * that function checks the device's links to consumers. This means we need to
1087 * mark the link as "consumer probe in progress" to make the supplier removal
1088 * wait for us to complete (or bad things may happen).
1089 *
1090 * Links without the DL_FLAG_MANAGED flag set are ignored.
1091 */
device_links_check_suppliers(struct device * dev)1092 int device_links_check_suppliers(struct device *dev)
1093 {
1094 struct device_link *link;
1095 int ret = 0, fwnode_ret = 0;
1096 struct fwnode_handle *sup_fw;
1097
1098 /*
1099 * Device waiting for supplier to become available is not allowed to
1100 * probe.
1101 */
1102 mutex_lock(&fwnode_link_lock);
1103 sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1104 if (sup_fw) {
1105 if (!dev_is_best_effort(dev)) {
1106 fwnode_ret = -EPROBE_DEFER;
1107 dev_err_probe(dev, -EPROBE_DEFER,
1108 "wait for supplier %pfwP\n", sup_fw);
1109 } else {
1110 fwnode_ret = -EAGAIN;
1111 }
1112 }
1113 mutex_unlock(&fwnode_link_lock);
1114 if (fwnode_ret == -EPROBE_DEFER)
1115 return fwnode_ret;
1116
1117 device_links_write_lock();
1118
1119 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1120 if (!(link->flags & DL_FLAG_MANAGED))
1121 continue;
1122
1123 if (link->status != DL_STATE_AVAILABLE &&
1124 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1125
1126 if (dev_is_best_effort(dev) &&
1127 link->flags & DL_FLAG_INFERRED &&
1128 !link->supplier->can_match) {
1129 ret = -EAGAIN;
1130 continue;
1131 }
1132
1133 device_links_missing_supplier(dev);
1134 dev_err_probe(dev, -EPROBE_DEFER,
1135 "supplier %s not ready\n",
1136 dev_name(link->supplier));
1137 ret = -EPROBE_DEFER;
1138 break;
1139 }
1140 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1141 }
1142 dev->links.status = DL_DEV_PROBING;
1143
1144 device_links_write_unlock();
1145
1146 return ret ? ret : fwnode_ret;
1147 }
1148
1149 /**
1150 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1151 * @dev: Device to call sync_state() on
1152 * @list: List head to queue the @dev on
1153 *
1154 * Queues a device for a sync_state() callback when the device links write lock
1155 * isn't held. This allows the sync_state() execution flow to use device links
1156 * APIs. The caller must ensure this function is called with
1157 * device_links_write_lock() held.
1158 *
1159 * This function does a get_device() to make sure the device is not freed while
1160 * on this list.
1161 *
1162 * So the caller must also ensure that device_links_flush_sync_list() is called
1163 * as soon as the caller releases device_links_write_lock(). This is necessary
1164 * to make sure the sync_state() is called in a timely fashion and the
1165 * put_device() is called on this device.
1166 */
__device_links_queue_sync_state(struct device * dev,struct list_head * list)1167 static void __device_links_queue_sync_state(struct device *dev,
1168 struct list_head *list)
1169 {
1170 struct device_link *link;
1171
1172 if (!dev_has_sync_state(dev))
1173 return;
1174 if (dev->state_synced)
1175 return;
1176
1177 list_for_each_entry(link, &dev->links.consumers, s_node) {
1178 if (!(link->flags & DL_FLAG_MANAGED))
1179 continue;
1180 if (link->status != DL_STATE_ACTIVE)
1181 return;
1182 }
1183
1184 /*
1185 * Set the flag here to avoid adding the same device to a list more
1186 * than once. This can happen if new consumers get added to the device
1187 * and probed before the list is flushed.
1188 */
1189 dev->state_synced = true;
1190
1191 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1192 return;
1193
1194 get_device(dev);
1195 list_add_tail(&dev->links.defer_sync, list);
1196 }
1197
1198 /**
1199 * device_links_flush_sync_list - Call sync_state() on a list of devices
1200 * @list: List of devices to call sync_state() on
1201 * @dont_lock_dev: Device for which lock is already held by the caller
1202 *
1203 * Calls sync_state() on all the devices that have been queued for it. This
1204 * function is used in conjunction with __device_links_queue_sync_state(). The
1205 * @dont_lock_dev parameter is useful when this function is called from a
1206 * context where a device lock is already held.
1207 */
device_links_flush_sync_list(struct list_head * list,struct device * dont_lock_dev)1208 static void device_links_flush_sync_list(struct list_head *list,
1209 struct device *dont_lock_dev)
1210 {
1211 struct device *dev, *tmp;
1212
1213 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1214 list_del_init(&dev->links.defer_sync);
1215
1216 if (dev != dont_lock_dev)
1217 device_lock(dev);
1218
1219 if (dev->bus->sync_state)
1220 dev->bus->sync_state(dev);
1221 else if (dev->driver && dev->driver->sync_state)
1222 dev->driver->sync_state(dev);
1223
1224 if (dev != dont_lock_dev)
1225 device_unlock(dev);
1226
1227 put_device(dev);
1228 }
1229 }
1230
device_links_supplier_sync_state_pause(void)1231 void device_links_supplier_sync_state_pause(void)
1232 {
1233 device_links_write_lock();
1234 defer_sync_state_count++;
1235 device_links_write_unlock();
1236 }
1237
device_links_supplier_sync_state_resume(void)1238 void device_links_supplier_sync_state_resume(void)
1239 {
1240 struct device *dev, *tmp;
1241 LIST_HEAD(sync_list);
1242
1243 device_links_write_lock();
1244 if (!defer_sync_state_count) {
1245 WARN(true, "Unmatched sync_state pause/resume!");
1246 goto out;
1247 }
1248 defer_sync_state_count--;
1249 if (defer_sync_state_count)
1250 goto out;
1251
1252 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1253 /*
1254 * Delete from deferred_sync list before queuing it to
1255 * sync_list because defer_sync is used for both lists.
1256 */
1257 list_del_init(&dev->links.defer_sync);
1258 __device_links_queue_sync_state(dev, &sync_list);
1259 }
1260 out:
1261 device_links_write_unlock();
1262
1263 device_links_flush_sync_list(&sync_list, NULL);
1264 }
1265
sync_state_resume_initcall(void)1266 static int sync_state_resume_initcall(void)
1267 {
1268 device_links_supplier_sync_state_resume();
1269 return 0;
1270 }
1271 late_initcall(sync_state_resume_initcall);
1272
__device_links_supplier_defer_sync(struct device * sup)1273 static void __device_links_supplier_defer_sync(struct device *sup)
1274 {
1275 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1276 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1277 }
1278
device_link_drop_managed(struct device_link * link)1279 static void device_link_drop_managed(struct device_link *link)
1280 {
1281 link->flags &= ~DL_FLAG_MANAGED;
1282 WRITE_ONCE(link->status, DL_STATE_NONE);
1283 kref_put(&link->kref, __device_link_del);
1284 }
1285
waiting_for_supplier_show(struct device * dev,struct device_attribute * attr,char * buf)1286 static ssize_t waiting_for_supplier_show(struct device *dev,
1287 struct device_attribute *attr,
1288 char *buf)
1289 {
1290 bool val;
1291
1292 device_lock(dev);
1293 mutex_lock(&fwnode_link_lock);
1294 val = !!fwnode_links_check_suppliers(dev->fwnode);
1295 mutex_unlock(&fwnode_link_lock);
1296 device_unlock(dev);
1297 return sysfs_emit(buf, "%u\n", val);
1298 }
1299 static DEVICE_ATTR_RO(waiting_for_supplier);
1300
1301 /**
1302 * device_links_force_bind - Prepares device to be force bound
1303 * @dev: Consumer device.
1304 *
1305 * device_bind_driver() force binds a device to a driver without calling any
1306 * driver probe functions. So the consumer really isn't going to wait for any
1307 * supplier before it's bound to the driver. We still want the device link
1308 * states to be sensible when this happens.
1309 *
1310 * In preparation for device_bind_driver(), this function goes through each
1311 * supplier device links and checks if the supplier is bound. If it is, then
1312 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1313 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1314 */
device_links_force_bind(struct device * dev)1315 void device_links_force_bind(struct device *dev)
1316 {
1317 struct device_link *link, *ln;
1318
1319 device_links_write_lock();
1320
1321 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1322 if (!(link->flags & DL_FLAG_MANAGED))
1323 continue;
1324
1325 if (link->status != DL_STATE_AVAILABLE) {
1326 device_link_drop_managed(link);
1327 continue;
1328 }
1329 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1330 }
1331 dev->links.status = DL_DEV_PROBING;
1332
1333 device_links_write_unlock();
1334 }
1335
1336 /**
1337 * device_links_driver_bound - Update device links after probing its driver.
1338 * @dev: Device to update the links for.
1339 *
1340 * The probe has been successful, so update links from this device to any
1341 * consumers by changing their status to "available".
1342 *
1343 * Also change the status of @dev's links to suppliers to "active".
1344 *
1345 * Links without the DL_FLAG_MANAGED flag set are ignored.
1346 */
device_links_driver_bound(struct device * dev)1347 void device_links_driver_bound(struct device *dev)
1348 {
1349 struct device_link *link, *ln;
1350 LIST_HEAD(sync_list);
1351
1352 /*
1353 * If a device binds successfully, it's expected to have created all
1354 * the device links it needs to or make new device links as it needs
1355 * them. So, fw_devlink no longer needs to create device links to any
1356 * of the device's suppliers.
1357 *
1358 * Also, if a child firmware node of this bound device is not added as a
1359 * device by now, assume it is never going to be added. Make this bound
1360 * device the fallback supplier to the dangling consumers of the child
1361 * firmware node because this bound device is probably implementing the
1362 * child firmware node functionality and we don't want the dangling
1363 * consumers to defer probe indefinitely waiting for a device for the
1364 * child firmware node.
1365 */
1366 if (dev->fwnode && dev->fwnode->dev == dev) {
1367 struct fwnode_handle *child;
1368 fwnode_links_purge_suppliers(dev->fwnode);
1369 mutex_lock(&fwnode_link_lock);
1370 fwnode_for_each_available_child_node(dev->fwnode, child)
1371 __fw_devlink_pickup_dangling_consumers(child,
1372 dev->fwnode);
1373 __fw_devlink_link_to_consumers(dev);
1374 mutex_unlock(&fwnode_link_lock);
1375 }
1376 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1377
1378 device_links_write_lock();
1379
1380 list_for_each_entry(link, &dev->links.consumers, s_node) {
1381 if (!(link->flags & DL_FLAG_MANAGED))
1382 continue;
1383
1384 /*
1385 * Links created during consumer probe may be in the "consumer
1386 * probe" state to start with if the supplier is still probing
1387 * when they are created and they may become "active" if the
1388 * consumer probe returns first. Skip them here.
1389 */
1390 if (link->status == DL_STATE_CONSUMER_PROBE ||
1391 link->status == DL_STATE_ACTIVE)
1392 continue;
1393
1394 WARN_ON(link->status != DL_STATE_DORMANT);
1395 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1396
1397 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1398 driver_deferred_probe_add(link->consumer);
1399 }
1400
1401 if (defer_sync_state_count)
1402 __device_links_supplier_defer_sync(dev);
1403 else
1404 __device_links_queue_sync_state(dev, &sync_list);
1405
1406 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1407 struct device *supplier;
1408
1409 if (!(link->flags & DL_FLAG_MANAGED))
1410 continue;
1411
1412 supplier = link->supplier;
1413 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1414 /*
1415 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1416 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1417 * save to drop the managed link completely.
1418 */
1419 device_link_drop_managed(link);
1420 } else if (dev_is_best_effort(dev) &&
1421 link->flags & DL_FLAG_INFERRED &&
1422 link->status != DL_STATE_CONSUMER_PROBE &&
1423 !link->supplier->can_match) {
1424 /*
1425 * When dev_is_best_effort() is true, we ignore device
1426 * links to suppliers that don't have a driver. If the
1427 * consumer device still managed to probe, there's no
1428 * point in maintaining a device link in a weird state
1429 * (consumer probed before supplier). So delete it.
1430 */
1431 device_link_drop_managed(link);
1432 } else {
1433 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1434 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1435 }
1436
1437 /*
1438 * This needs to be done even for the deleted
1439 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1440 * device link that was preventing the supplier from getting a
1441 * sync_state() call.
1442 */
1443 if (defer_sync_state_count)
1444 __device_links_supplier_defer_sync(supplier);
1445 else
1446 __device_links_queue_sync_state(supplier, &sync_list);
1447 }
1448
1449 dev->links.status = DL_DEV_DRIVER_BOUND;
1450
1451 device_links_write_unlock();
1452
1453 device_links_flush_sync_list(&sync_list, dev);
1454 }
1455
1456 /**
1457 * __device_links_no_driver - Update links of a device without a driver.
1458 * @dev: Device without a drvier.
1459 *
1460 * Delete all non-persistent links from this device to any suppliers.
1461 *
1462 * Persistent links stay around, but their status is changed to "available",
1463 * unless they already are in the "supplier unbind in progress" state in which
1464 * case they need not be updated.
1465 *
1466 * Links without the DL_FLAG_MANAGED flag set are ignored.
1467 */
__device_links_no_driver(struct device * dev)1468 static void __device_links_no_driver(struct device *dev)
1469 {
1470 struct device_link *link, *ln;
1471
1472 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1473 if (!(link->flags & DL_FLAG_MANAGED))
1474 continue;
1475
1476 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1477 device_link_drop_managed(link);
1478 continue;
1479 }
1480
1481 if (link->status != DL_STATE_CONSUMER_PROBE &&
1482 link->status != DL_STATE_ACTIVE)
1483 continue;
1484
1485 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1486 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1487 } else {
1488 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1489 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1490 }
1491 }
1492
1493 dev->links.status = DL_DEV_NO_DRIVER;
1494 }
1495
1496 /**
1497 * device_links_no_driver - Update links after failing driver probe.
1498 * @dev: Device whose driver has just failed to probe.
1499 *
1500 * Clean up leftover links to consumers for @dev and invoke
1501 * %__device_links_no_driver() to update links to suppliers for it as
1502 * appropriate.
1503 *
1504 * Links without the DL_FLAG_MANAGED flag set are ignored.
1505 */
device_links_no_driver(struct device * dev)1506 void device_links_no_driver(struct device *dev)
1507 {
1508 struct device_link *link;
1509
1510 device_links_write_lock();
1511
1512 list_for_each_entry(link, &dev->links.consumers, s_node) {
1513 if (!(link->flags & DL_FLAG_MANAGED))
1514 continue;
1515
1516 /*
1517 * The probe has failed, so if the status of the link is
1518 * "consumer probe" or "active", it must have been added by
1519 * a probing consumer while this device was still probing.
1520 * Change its state to "dormant", as it represents a valid
1521 * relationship, but it is not functionally meaningful.
1522 */
1523 if (link->status == DL_STATE_CONSUMER_PROBE ||
1524 link->status == DL_STATE_ACTIVE)
1525 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1526 }
1527
1528 __device_links_no_driver(dev);
1529
1530 device_links_write_unlock();
1531 }
1532
1533 /**
1534 * device_links_driver_cleanup - Update links after driver removal.
1535 * @dev: Device whose driver has just gone away.
1536 *
1537 * Update links to consumers for @dev by changing their status to "dormant" and
1538 * invoke %__device_links_no_driver() to update links to suppliers for it as
1539 * appropriate.
1540 *
1541 * Links without the DL_FLAG_MANAGED flag set are ignored.
1542 */
device_links_driver_cleanup(struct device * dev)1543 void device_links_driver_cleanup(struct device *dev)
1544 {
1545 struct device_link *link, *ln;
1546
1547 device_links_write_lock();
1548
1549 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1550 if (!(link->flags & DL_FLAG_MANAGED))
1551 continue;
1552
1553 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1554 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1555
1556 /*
1557 * autoremove the links between this @dev and its consumer
1558 * devices that are not active, i.e. where the link state
1559 * has moved to DL_STATE_SUPPLIER_UNBIND.
1560 */
1561 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1562 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1563 device_link_drop_managed(link);
1564
1565 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1566 }
1567
1568 list_del_init(&dev->links.defer_sync);
1569 __device_links_no_driver(dev);
1570
1571 device_links_write_unlock();
1572 }
1573
1574 /**
1575 * device_links_busy - Check if there are any busy links to consumers.
1576 * @dev: Device to check.
1577 *
1578 * Check each consumer of the device and return 'true' if its link's status
1579 * is one of "consumer probe" or "active" (meaning that the given consumer is
1580 * probing right now or its driver is present). Otherwise, change the link
1581 * state to "supplier unbind" to prevent the consumer from being probed
1582 * successfully going forward.
1583 *
1584 * Return 'false' if there are no probing or active consumers.
1585 *
1586 * Links without the DL_FLAG_MANAGED flag set are ignored.
1587 */
device_links_busy(struct device * dev)1588 bool device_links_busy(struct device *dev)
1589 {
1590 struct device_link *link;
1591 bool ret = false;
1592
1593 device_links_write_lock();
1594
1595 list_for_each_entry(link, &dev->links.consumers, s_node) {
1596 if (!(link->flags & DL_FLAG_MANAGED))
1597 continue;
1598
1599 if (link->status == DL_STATE_CONSUMER_PROBE
1600 || link->status == DL_STATE_ACTIVE) {
1601 ret = true;
1602 break;
1603 }
1604 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1605 }
1606
1607 dev->links.status = DL_DEV_UNBINDING;
1608
1609 device_links_write_unlock();
1610 return ret;
1611 }
1612
1613 /**
1614 * device_links_unbind_consumers - Force unbind consumers of the given device.
1615 * @dev: Device to unbind the consumers of.
1616 *
1617 * Walk the list of links to consumers for @dev and if any of them is in the
1618 * "consumer probe" state, wait for all device probes in progress to complete
1619 * and start over.
1620 *
1621 * If that's not the case, change the status of the link to "supplier unbind"
1622 * and check if the link was in the "active" state. If so, force the consumer
1623 * driver to unbind and start over (the consumer will not re-probe as we have
1624 * changed the state of the link already).
1625 *
1626 * Links without the DL_FLAG_MANAGED flag set are ignored.
1627 */
device_links_unbind_consumers(struct device * dev)1628 void device_links_unbind_consumers(struct device *dev)
1629 {
1630 struct device_link *link;
1631
1632 start:
1633 device_links_write_lock();
1634
1635 list_for_each_entry(link, &dev->links.consumers, s_node) {
1636 enum device_link_state status;
1637
1638 if (!(link->flags & DL_FLAG_MANAGED) ||
1639 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1640 continue;
1641
1642 status = link->status;
1643 if (status == DL_STATE_CONSUMER_PROBE) {
1644 device_links_write_unlock();
1645
1646 wait_for_device_probe();
1647 goto start;
1648 }
1649 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1650 if (status == DL_STATE_ACTIVE) {
1651 struct device *consumer = link->consumer;
1652
1653 get_device(consumer);
1654
1655 device_links_write_unlock();
1656
1657 device_release_driver_internal(consumer, NULL,
1658 consumer->parent);
1659 put_device(consumer);
1660 goto start;
1661 }
1662 }
1663
1664 device_links_write_unlock();
1665 }
1666
1667 /**
1668 * device_links_purge - Delete existing links to other devices.
1669 * @dev: Target device.
1670 */
device_links_purge(struct device * dev)1671 static void device_links_purge(struct device *dev)
1672 {
1673 struct device_link *link, *ln;
1674
1675 if (dev->class == &devlink_class)
1676 return;
1677
1678 /*
1679 * Delete all of the remaining links from this device to any other
1680 * devices (either consumers or suppliers).
1681 */
1682 device_links_write_lock();
1683
1684 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1685 WARN_ON(link->status == DL_STATE_ACTIVE);
1686 __device_link_del(&link->kref);
1687 }
1688
1689 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1690 WARN_ON(link->status != DL_STATE_DORMANT &&
1691 link->status != DL_STATE_NONE);
1692 __device_link_del(&link->kref);
1693 }
1694
1695 device_links_write_unlock();
1696 }
1697
1698 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1699 DL_FLAG_SYNC_STATE_ONLY)
1700 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
1701 DL_FLAG_AUTOPROBE_CONSUMER)
1702 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
1703 DL_FLAG_PM_RUNTIME)
1704
1705 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
fw_devlink_setup(char * arg)1706 static int __init fw_devlink_setup(char *arg)
1707 {
1708 if (!arg)
1709 return -EINVAL;
1710
1711 if (strcmp(arg, "off") == 0) {
1712 fw_devlink_flags = 0;
1713 } else if (strcmp(arg, "permissive") == 0) {
1714 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1715 } else if (strcmp(arg, "on") == 0) {
1716 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1717 } else if (strcmp(arg, "rpm") == 0) {
1718 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1719 }
1720 return 0;
1721 }
1722 early_param("fw_devlink", fw_devlink_setup);
1723
1724 static bool fw_devlink_strict;
fw_devlink_strict_setup(char * arg)1725 static int __init fw_devlink_strict_setup(char *arg)
1726 {
1727 return strtobool(arg, &fw_devlink_strict);
1728 }
1729 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1730
fw_devlink_get_flags(u8 fwlink_flags)1731 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1732 {
1733 if (fwlink_flags & FWLINK_FLAG_CYCLE)
1734 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1735
1736 return fw_devlink_flags;
1737 }
1738
fw_devlink_is_permissive(void)1739 static bool fw_devlink_is_permissive(void)
1740 {
1741 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1742 }
1743
fw_devlink_is_strict(void)1744 bool fw_devlink_is_strict(void)
1745 {
1746 return fw_devlink_strict && !fw_devlink_is_permissive();
1747 }
1748
fw_devlink_parse_fwnode(struct fwnode_handle * fwnode)1749 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1750 {
1751 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1752 return;
1753
1754 fwnode_call_int_op(fwnode, add_links);
1755 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1756 }
1757
fw_devlink_parse_fwtree(struct fwnode_handle * fwnode)1758 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1759 {
1760 struct fwnode_handle *child = NULL;
1761
1762 fw_devlink_parse_fwnode(fwnode);
1763
1764 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1765 fw_devlink_parse_fwtree(child);
1766 }
1767
fw_devlink_relax_link(struct device_link * link)1768 static void fw_devlink_relax_link(struct device_link *link)
1769 {
1770 if (!(link->flags & DL_FLAG_INFERRED))
1771 return;
1772
1773 if (device_link_flag_is_sync_state_only(link->flags))
1774 return;
1775
1776 pm_runtime_drop_link(link);
1777 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1778 dev_dbg(link->consumer, "Relaxing link with %s\n",
1779 dev_name(link->supplier));
1780 }
1781
fw_devlink_no_driver(struct device * dev,void * data)1782 static int fw_devlink_no_driver(struct device *dev, void *data)
1783 {
1784 struct device_link *link = to_devlink(dev);
1785
1786 if (!link->supplier->can_match)
1787 fw_devlink_relax_link(link);
1788
1789 return 0;
1790 }
1791
fw_devlink_drivers_done(void)1792 void fw_devlink_drivers_done(void)
1793 {
1794 fw_devlink_drv_reg_done = true;
1795 device_links_write_lock();
1796 class_for_each_device(&devlink_class, NULL, NULL,
1797 fw_devlink_no_driver);
1798 device_links_write_unlock();
1799 }
1800
1801 /**
1802 * wait_for_init_devices_probe - Try to probe any device needed for init
1803 *
1804 * Some devices might need to be probed and bound successfully before the kernel
1805 * boot sequence can finish and move on to init/userspace. For example, a
1806 * network interface might need to be bound to be able to mount a NFS rootfs.
1807 *
1808 * With fw_devlink=on by default, some of these devices might be blocked from
1809 * probing because they are waiting on a optional supplier that doesn't have a
1810 * driver. While fw_devlink will eventually identify such devices and unblock
1811 * the probing automatically, it might be too late by the time it unblocks the
1812 * probing of devices. For example, the IP4 autoconfig might timeout before
1813 * fw_devlink unblocks probing of the network interface.
1814 *
1815 * This function is available to temporarily try and probe all devices that have
1816 * a driver even if some of their suppliers haven't been added or don't have
1817 * drivers.
1818 *
1819 * The drivers can then decide which of the suppliers are optional vs mandatory
1820 * and probe the device if possible. By the time this function returns, all such
1821 * "best effort" probes are guaranteed to be completed. If a device successfully
1822 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1823 * device where the supplier hasn't yet probed successfully because they have to
1824 * be optional dependencies.
1825 *
1826 * Any devices that didn't successfully probe go back to being treated as if
1827 * this function was never called.
1828 *
1829 * This also means that some devices that aren't needed for init and could have
1830 * waited for their optional supplier to probe (when the supplier's module is
1831 * loaded later on) would end up probing prematurely with limited functionality.
1832 * So call this function only when boot would fail without it.
1833 */
wait_for_init_devices_probe(void)1834 void __init wait_for_init_devices_probe(void)
1835 {
1836 if (!fw_devlink_flags || fw_devlink_is_permissive())
1837 return;
1838
1839 /*
1840 * Wait for all ongoing probes to finish so that the "best effort" is
1841 * only applied to devices that can't probe otherwise.
1842 */
1843 wait_for_device_probe();
1844
1845 pr_info("Trying to probe devices needed for running init ...\n");
1846 fw_devlink_best_effort = true;
1847 driver_deferred_probe_trigger();
1848
1849 /*
1850 * Wait for all "best effort" probes to finish before going back to
1851 * normal enforcement.
1852 */
1853 wait_for_device_probe();
1854 fw_devlink_best_effort = false;
1855 }
1856
fw_devlink_unblock_consumers(struct device * dev)1857 static void fw_devlink_unblock_consumers(struct device *dev)
1858 {
1859 struct device_link *link;
1860
1861 if (!fw_devlink_flags || fw_devlink_is_permissive())
1862 return;
1863
1864 device_links_write_lock();
1865 list_for_each_entry(link, &dev->links.consumers, s_node)
1866 fw_devlink_relax_link(link);
1867 device_links_write_unlock();
1868 }
1869
1870
fwnode_init_without_drv(struct fwnode_handle * fwnode)1871 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1872 {
1873 struct device *dev;
1874 bool ret;
1875
1876 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1877 return false;
1878
1879 dev = get_dev_from_fwnode(fwnode);
1880 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1881 put_device(dev);
1882
1883 return ret;
1884 }
1885
fwnode_ancestor_init_without_drv(struct fwnode_handle * fwnode)1886 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1887 {
1888 struct fwnode_handle *parent;
1889
1890 fwnode_for_each_parent_node(fwnode, parent) {
1891 if (fwnode_init_without_drv(parent)) {
1892 fwnode_handle_put(parent);
1893 return true;
1894 }
1895 }
1896
1897 return false;
1898 }
1899
1900 /**
1901 * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1902 * @con: Potential consumer device.
1903 * @sup_handle: Potential supplier's fwnode.
1904 *
1905 * Needs to be called with fwnode_lock and device link lock held.
1906 *
1907 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1908 * depend on @con. This function can detect multiple cyles between @sup_handle
1909 * and @con. When such dependency cycles are found, convert all device links
1910 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1911 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1912 * converted into a device link in the future, they are created as
1913 * SYNC_STATE_ONLY device links. This is the equivalent of doing
1914 * fw_devlink=permissive just between the devices in the cycle. We need to do
1915 * this because, at this point, fw_devlink can't tell which of these
1916 * dependencies is not a real dependency.
1917 *
1918 * Return true if one or more cycles were found. Otherwise, return false.
1919 */
__fw_devlink_relax_cycles(struct device * con,struct fwnode_handle * sup_handle)1920 static bool __fw_devlink_relax_cycles(struct device *con,
1921 struct fwnode_handle *sup_handle)
1922 {
1923 struct device *sup_dev = NULL, *par_dev = NULL;
1924 struct fwnode_link *link;
1925 struct device_link *dev_link;
1926 bool ret = false;
1927
1928 if (!sup_handle)
1929 return false;
1930
1931 /*
1932 * We aren't trying to find all cycles. Just a cycle between con and
1933 * sup_handle.
1934 */
1935 if (sup_handle->flags & FWNODE_FLAG_VISITED)
1936 return false;
1937
1938 sup_handle->flags |= FWNODE_FLAG_VISITED;
1939
1940 sup_dev = get_dev_from_fwnode(sup_handle);
1941
1942 /* Termination condition. */
1943 if (sup_dev == con) {
1944 ret = true;
1945 goto out;
1946 }
1947
1948 /*
1949 * If sup_dev is bound to a driver and @con hasn't started binding to a
1950 * driver, sup_dev can't be a consumer of @con. So, no need to check
1951 * further.
1952 */
1953 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND &&
1954 con->links.status == DL_DEV_NO_DRIVER) {
1955 ret = false;
1956 goto out;
1957 }
1958
1959 list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
1960 if (__fw_devlink_relax_cycles(con, link->supplier)) {
1961 __fwnode_link_cycle(link);
1962 ret = true;
1963 }
1964 }
1965
1966 /*
1967 * Give priority to device parent over fwnode parent to account for any
1968 * quirks in how fwnodes are converted to devices.
1969 */
1970 if (sup_dev)
1971 par_dev = get_device(sup_dev->parent);
1972 else
1973 par_dev = fwnode_get_next_parent_dev(sup_handle);
1974
1975 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode))
1976 ret = true;
1977
1978 if (!sup_dev)
1979 goto out;
1980
1981 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
1982 /*
1983 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
1984 * such due to a cycle.
1985 */
1986 if (device_link_flag_is_sync_state_only(dev_link->flags) &&
1987 !(dev_link->flags & DL_FLAG_CYCLE))
1988 continue;
1989
1990 if (__fw_devlink_relax_cycles(con,
1991 dev_link->supplier->fwnode)) {
1992 fw_devlink_relax_link(dev_link);
1993 dev_link->flags |= DL_FLAG_CYCLE;
1994 ret = true;
1995 }
1996 }
1997
1998 out:
1999 sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2000 put_device(sup_dev);
2001 put_device(par_dev);
2002 return ret;
2003 }
2004
2005 /**
2006 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2007 * @con: consumer device for the device link
2008 * @sup_handle: fwnode handle of supplier
2009 * @link: fwnode link that's being converted to a device link
2010 *
2011 * This function will try to create a device link between the consumer device
2012 * @con and the supplier device represented by @sup_handle.
2013 *
2014 * The supplier has to be provided as a fwnode because incorrect cycles in
2015 * fwnode links can sometimes cause the supplier device to never be created.
2016 * This function detects such cases and returns an error if it cannot create a
2017 * device link from the consumer to a missing supplier.
2018 *
2019 * Returns,
2020 * 0 on successfully creating a device link
2021 * -EINVAL if the device link cannot be created as expected
2022 * -EAGAIN if the device link cannot be created right now, but it may be
2023 * possible to do that in the future
2024 */
fw_devlink_create_devlink(struct device * con,struct fwnode_handle * sup_handle,struct fwnode_link * link)2025 static int fw_devlink_create_devlink(struct device *con,
2026 struct fwnode_handle *sup_handle,
2027 struct fwnode_link *link)
2028 {
2029 struct device *sup_dev;
2030 int ret = 0;
2031 u32 flags;
2032
2033 if (con->fwnode == link->consumer)
2034 flags = fw_devlink_get_flags(link->flags);
2035 else
2036 flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2037
2038 /*
2039 * In some cases, a device P might also be a supplier to its child node
2040 * C. However, this would defer the probe of C until the probe of P
2041 * completes successfully. This is perfectly fine in the device driver
2042 * model. device_add() doesn't guarantee probe completion of the device
2043 * by the time it returns.
2044 *
2045 * However, there are a few drivers that assume C will finish probing
2046 * as soon as it's added and before P finishes probing. So, we provide
2047 * a flag to let fw_devlink know not to delay the probe of C until the
2048 * probe of P completes successfully.
2049 *
2050 * When such a flag is set, we can't create device links where P is the
2051 * supplier of C as that would delay the probe of C.
2052 */
2053 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2054 fwnode_is_ancestor_of(sup_handle, con->fwnode))
2055 return -EINVAL;
2056
2057 /*
2058 * SYNC_STATE_ONLY device links don't block probing and supports cycles.
2059 * So, one might expect that cycle detection isn't necessary for them.
2060 * However, if the device link was marked as SYNC_STATE_ONLY because
2061 * it's part of a cycle, then we still need to do cycle detection. This
2062 * is because the consumer and supplier might be part of multiple cycles
2063 * and we need to detect all those cycles.
2064 */
2065 if (!device_link_flag_is_sync_state_only(flags) ||
2066 flags & DL_FLAG_CYCLE) {
2067 device_links_write_lock();
2068 if (__fw_devlink_relax_cycles(con, sup_handle)) {
2069 __fwnode_link_cycle(link);
2070 flags = fw_devlink_get_flags(link->flags);
2071 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n",
2072 sup_handle);
2073 }
2074 device_links_write_unlock();
2075 }
2076
2077 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2078 sup_dev = fwnode_get_next_parent_dev(sup_handle);
2079 else
2080 sup_dev = get_dev_from_fwnode(sup_handle);
2081
2082 if (sup_dev) {
2083 /*
2084 * If it's one of those drivers that don't actually bind to
2085 * their device using driver core, then don't wait on this
2086 * supplier device indefinitely.
2087 */
2088 if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2089 sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2090 dev_dbg(con,
2091 "Not linking %pfwf - dev might never probe\n",
2092 sup_handle);
2093 ret = -EINVAL;
2094 goto out;
2095 }
2096
2097 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2098 dev_err(con, "Failed to create device link (0x%x) with %s\n",
2099 flags, dev_name(sup_dev));
2100 ret = -EINVAL;
2101 }
2102
2103 goto out;
2104 }
2105
2106 /*
2107 * Supplier or supplier's ancestor already initialized without a struct
2108 * device or being probed by a driver.
2109 */
2110 if (fwnode_init_without_drv(sup_handle) ||
2111 fwnode_ancestor_init_without_drv(sup_handle)) {
2112 dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2113 sup_handle);
2114 return -EINVAL;
2115 }
2116
2117 ret = -EAGAIN;
2118 out:
2119 put_device(sup_dev);
2120 return ret;
2121 }
2122
2123 /**
2124 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2125 * @dev: Device that needs to be linked to its consumers
2126 *
2127 * This function looks at all the consumer fwnodes of @dev and creates device
2128 * links between the consumer device and @dev (supplier).
2129 *
2130 * If the consumer device has not been added yet, then this function creates a
2131 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2132 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2133 * sync_state() callback before the real consumer device gets to be added and
2134 * then probed.
2135 *
2136 * Once device links are created from the real consumer to @dev (supplier), the
2137 * fwnode links are deleted.
2138 */
__fw_devlink_link_to_consumers(struct device * dev)2139 static void __fw_devlink_link_to_consumers(struct device *dev)
2140 {
2141 struct fwnode_handle *fwnode = dev->fwnode;
2142 struct fwnode_link *link, *tmp;
2143
2144 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2145 struct device *con_dev;
2146 bool own_link = true;
2147 int ret;
2148
2149 con_dev = get_dev_from_fwnode(link->consumer);
2150 /*
2151 * If consumer device is not available yet, make a "proxy"
2152 * SYNC_STATE_ONLY link from the consumer's parent device to
2153 * the supplier device. This is necessary to make sure the
2154 * supplier doesn't get a sync_state() callback before the real
2155 * consumer can create a device link to the supplier.
2156 *
2157 * This proxy link step is needed to handle the case where the
2158 * consumer's parent device is added before the supplier.
2159 */
2160 if (!con_dev) {
2161 con_dev = fwnode_get_next_parent_dev(link->consumer);
2162 /*
2163 * However, if the consumer's parent device is also the
2164 * parent of the supplier, don't create a
2165 * consumer-supplier link from the parent to its child
2166 * device. Such a dependency is impossible.
2167 */
2168 if (con_dev &&
2169 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2170 put_device(con_dev);
2171 con_dev = NULL;
2172 } else {
2173 own_link = false;
2174 }
2175 }
2176
2177 if (!con_dev)
2178 continue;
2179
2180 ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2181 put_device(con_dev);
2182 if (!own_link || ret == -EAGAIN)
2183 continue;
2184
2185 __fwnode_link_del(link);
2186 }
2187 }
2188
2189 /**
2190 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2191 * @dev: The consumer device that needs to be linked to its suppliers
2192 * @fwnode: Root of the fwnode tree that is used to create device links
2193 *
2194 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2195 * @fwnode and creates device links between @dev (consumer) and all the
2196 * supplier devices of the entire fwnode tree at @fwnode.
2197 *
2198 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2199 * and the real suppliers of @dev. Once these device links are created, the
2200 * fwnode links are deleted.
2201 *
2202 * In addition, it also looks at all the suppliers of the entire fwnode tree
2203 * because some of the child devices of @dev that have not been added yet
2204 * (because @dev hasn't probed) might already have their suppliers added to
2205 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2206 * @dev (consumer) and these suppliers to make sure they don't execute their
2207 * sync_state() callbacks before these child devices have a chance to create
2208 * their device links. The fwnode links that correspond to the child devices
2209 * aren't delete because they are needed later to create the device links
2210 * between the real consumer and supplier devices.
2211 */
__fw_devlink_link_to_suppliers(struct device * dev,struct fwnode_handle * fwnode)2212 static void __fw_devlink_link_to_suppliers(struct device *dev,
2213 struct fwnode_handle *fwnode)
2214 {
2215 bool own_link = (dev->fwnode == fwnode);
2216 struct fwnode_link *link, *tmp;
2217 struct fwnode_handle *child = NULL;
2218
2219 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2220 int ret;
2221 struct fwnode_handle *sup = link->supplier;
2222
2223 ret = fw_devlink_create_devlink(dev, sup, link);
2224 if (!own_link || ret == -EAGAIN)
2225 continue;
2226
2227 __fwnode_link_del(link);
2228 }
2229
2230 /*
2231 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2232 * all the descendants. This proxy link step is needed to handle the
2233 * case where the supplier is added before the consumer's parent device
2234 * (@dev).
2235 */
2236 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2237 __fw_devlink_link_to_suppliers(dev, child);
2238 }
2239
fw_devlink_link_device(struct device * dev)2240 static void fw_devlink_link_device(struct device *dev)
2241 {
2242 struct fwnode_handle *fwnode = dev->fwnode;
2243
2244 if (!fw_devlink_flags)
2245 return;
2246
2247 fw_devlink_parse_fwtree(fwnode);
2248
2249 mutex_lock(&fwnode_link_lock);
2250 __fw_devlink_link_to_consumers(dev);
2251 __fw_devlink_link_to_suppliers(dev, fwnode);
2252 mutex_unlock(&fwnode_link_lock);
2253 }
2254
2255 /* Device links support end. */
2256
2257 int (*platform_notify)(struct device *dev) = NULL;
2258 int (*platform_notify_remove)(struct device *dev) = NULL;
2259 static struct kobject *dev_kobj;
2260 struct kobject *sysfs_dev_char_kobj;
2261 struct kobject *sysfs_dev_block_kobj;
2262
2263 static DEFINE_MUTEX(device_hotplug_lock);
2264
lock_device_hotplug(void)2265 void lock_device_hotplug(void)
2266 {
2267 mutex_lock(&device_hotplug_lock);
2268 }
2269
unlock_device_hotplug(void)2270 void unlock_device_hotplug(void)
2271 {
2272 mutex_unlock(&device_hotplug_lock);
2273 }
2274
lock_device_hotplug_sysfs(void)2275 int lock_device_hotplug_sysfs(void)
2276 {
2277 if (mutex_trylock(&device_hotplug_lock))
2278 return 0;
2279
2280 /* Avoid busy looping (5 ms of sleep should do). */
2281 msleep(5);
2282 return restart_syscall();
2283 }
2284
2285 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)2286 static inline int device_is_not_partition(struct device *dev)
2287 {
2288 return !(dev->type == &part_type);
2289 }
2290 #else
device_is_not_partition(struct device * dev)2291 static inline int device_is_not_partition(struct device *dev)
2292 {
2293 return 1;
2294 }
2295 #endif
2296
device_platform_notify(struct device * dev)2297 static void device_platform_notify(struct device *dev)
2298 {
2299 acpi_device_notify(dev);
2300
2301 software_node_notify(dev);
2302
2303 if (platform_notify)
2304 platform_notify(dev);
2305 }
2306
device_platform_notify_remove(struct device * dev)2307 static void device_platform_notify_remove(struct device *dev)
2308 {
2309 acpi_device_notify_remove(dev);
2310
2311 software_node_notify_remove(dev);
2312
2313 if (platform_notify_remove)
2314 platform_notify_remove(dev);
2315 }
2316
2317 /**
2318 * dev_driver_string - Return a device's driver name, if at all possible
2319 * @dev: struct device to get the name of
2320 *
2321 * Will return the device's driver's name if it is bound to a device. If
2322 * the device is not bound to a driver, it will return the name of the bus
2323 * it is attached to. If it is not attached to a bus either, an empty
2324 * string will be returned.
2325 */
dev_driver_string(const struct device * dev)2326 const char *dev_driver_string(const struct device *dev)
2327 {
2328 struct device_driver *drv;
2329
2330 /* dev->driver can change to NULL underneath us because of unbinding,
2331 * so be careful about accessing it. dev->bus and dev->class should
2332 * never change once they are set, so they don't need special care.
2333 */
2334 drv = READ_ONCE(dev->driver);
2335 return drv ? drv->name : dev_bus_name(dev);
2336 }
2337 EXPORT_SYMBOL(dev_driver_string);
2338
2339 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2340
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2341 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2342 char *buf)
2343 {
2344 struct device_attribute *dev_attr = to_dev_attr(attr);
2345 struct device *dev = kobj_to_dev(kobj);
2346 ssize_t ret = -EIO;
2347
2348 if (dev_attr->show)
2349 ret = dev_attr->show(dev, dev_attr, buf);
2350 if (ret >= (ssize_t)PAGE_SIZE) {
2351 printk("dev_attr_show: %pS returned bad count\n",
2352 dev_attr->show);
2353 }
2354 return ret;
2355 }
2356
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)2357 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2358 const char *buf, size_t count)
2359 {
2360 struct device_attribute *dev_attr = to_dev_attr(attr);
2361 struct device *dev = kobj_to_dev(kobj);
2362 ssize_t ret = -EIO;
2363
2364 if (dev_attr->store)
2365 ret = dev_attr->store(dev, dev_attr, buf, count);
2366 return ret;
2367 }
2368
2369 static const struct sysfs_ops dev_sysfs_ops = {
2370 .show = dev_attr_show,
2371 .store = dev_attr_store,
2372 };
2373
2374 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2375
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2376 ssize_t device_store_ulong(struct device *dev,
2377 struct device_attribute *attr,
2378 const char *buf, size_t size)
2379 {
2380 struct dev_ext_attribute *ea = to_ext_attr(attr);
2381 int ret;
2382 unsigned long new;
2383
2384 ret = kstrtoul(buf, 0, &new);
2385 if (ret)
2386 return ret;
2387 *(unsigned long *)(ea->var) = new;
2388 /* Always return full write size even if we didn't consume all */
2389 return size;
2390 }
2391 EXPORT_SYMBOL_GPL(device_store_ulong);
2392
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)2393 ssize_t device_show_ulong(struct device *dev,
2394 struct device_attribute *attr,
2395 char *buf)
2396 {
2397 struct dev_ext_attribute *ea = to_ext_attr(attr);
2398 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2399 }
2400 EXPORT_SYMBOL_GPL(device_show_ulong);
2401
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2402 ssize_t device_store_int(struct device *dev,
2403 struct device_attribute *attr,
2404 const char *buf, size_t size)
2405 {
2406 struct dev_ext_attribute *ea = to_ext_attr(attr);
2407 int ret;
2408 long new;
2409
2410 ret = kstrtol(buf, 0, &new);
2411 if (ret)
2412 return ret;
2413
2414 if (new > INT_MAX || new < INT_MIN)
2415 return -EINVAL;
2416 *(int *)(ea->var) = new;
2417 /* Always return full write size even if we didn't consume all */
2418 return size;
2419 }
2420 EXPORT_SYMBOL_GPL(device_store_int);
2421
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)2422 ssize_t device_show_int(struct device *dev,
2423 struct device_attribute *attr,
2424 char *buf)
2425 {
2426 struct dev_ext_attribute *ea = to_ext_attr(attr);
2427
2428 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2429 }
2430 EXPORT_SYMBOL_GPL(device_show_int);
2431
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2432 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2433 const char *buf, size_t size)
2434 {
2435 struct dev_ext_attribute *ea = to_ext_attr(attr);
2436
2437 if (strtobool(buf, ea->var) < 0)
2438 return -EINVAL;
2439
2440 return size;
2441 }
2442 EXPORT_SYMBOL_GPL(device_store_bool);
2443
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)2444 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2445 char *buf)
2446 {
2447 struct dev_ext_attribute *ea = to_ext_attr(attr);
2448
2449 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2450 }
2451 EXPORT_SYMBOL_GPL(device_show_bool);
2452
2453 /**
2454 * device_release - free device structure.
2455 * @kobj: device's kobject.
2456 *
2457 * This is called once the reference count for the object
2458 * reaches 0. We forward the call to the device's release
2459 * method, which should handle actually freeing the structure.
2460 */
device_release(struct kobject * kobj)2461 static void device_release(struct kobject *kobj)
2462 {
2463 struct device *dev = kobj_to_dev(kobj);
2464 struct device_private *p = dev->p;
2465
2466 /*
2467 * Some platform devices are driven without driver attached
2468 * and managed resources may have been acquired. Make sure
2469 * all resources are released.
2470 *
2471 * Drivers still can add resources into device after device
2472 * is deleted but alive, so release devres here to avoid
2473 * possible memory leak.
2474 */
2475 devres_release_all(dev);
2476
2477 kfree(dev->dma_range_map);
2478
2479 if (dev->release)
2480 dev->release(dev);
2481 else if (dev->type && dev->type->release)
2482 dev->type->release(dev);
2483 else if (dev->class && dev->class->dev_release)
2484 dev->class->dev_release(dev);
2485 else
2486 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2487 dev_name(dev));
2488 kfree(p);
2489 }
2490
device_namespace(struct kobject * kobj)2491 static const void *device_namespace(struct kobject *kobj)
2492 {
2493 struct device *dev = kobj_to_dev(kobj);
2494 const void *ns = NULL;
2495
2496 if (dev->class && dev->class->ns_type)
2497 ns = dev->class->namespace(dev);
2498
2499 return ns;
2500 }
2501
device_get_ownership(struct kobject * kobj,kuid_t * uid,kgid_t * gid)2502 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2503 {
2504 struct device *dev = kobj_to_dev(kobj);
2505
2506 if (dev->class && dev->class->get_ownership)
2507 dev->class->get_ownership(dev, uid, gid);
2508 }
2509
2510 static struct kobj_type device_ktype = {
2511 .release = device_release,
2512 .sysfs_ops = &dev_sysfs_ops,
2513 .namespace = device_namespace,
2514 .get_ownership = device_get_ownership,
2515 };
2516
2517
dev_uevent_filter(struct kobject * kobj)2518 static int dev_uevent_filter(struct kobject *kobj)
2519 {
2520 const struct kobj_type *ktype = get_ktype(kobj);
2521
2522 if (ktype == &device_ktype) {
2523 struct device *dev = kobj_to_dev(kobj);
2524 if (dev->bus)
2525 return 1;
2526 if (dev->class)
2527 return 1;
2528 }
2529 return 0;
2530 }
2531
dev_uevent_name(struct kobject * kobj)2532 static const char *dev_uevent_name(struct kobject *kobj)
2533 {
2534 struct device *dev = kobj_to_dev(kobj);
2535
2536 if (dev->bus)
2537 return dev->bus->name;
2538 if (dev->class)
2539 return dev->class->name;
2540 return NULL;
2541 }
2542
dev_uevent(struct kobject * kobj,struct kobj_uevent_env * env)2543 static int dev_uevent(struct kobject *kobj, struct kobj_uevent_env *env)
2544 {
2545 struct device *dev = kobj_to_dev(kobj);
2546 int retval = 0;
2547
2548 /* add device node properties if present */
2549 if (MAJOR(dev->devt)) {
2550 const char *tmp;
2551 const char *name;
2552 umode_t mode = 0;
2553 kuid_t uid = GLOBAL_ROOT_UID;
2554 kgid_t gid = GLOBAL_ROOT_GID;
2555
2556 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2557 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2558 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2559 if (name) {
2560 add_uevent_var(env, "DEVNAME=%s", name);
2561 if (mode)
2562 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2563 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2564 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2565 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2566 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2567 kfree(tmp);
2568 }
2569 }
2570
2571 if (dev->type && dev->type->name)
2572 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2573
2574 if (dev->driver)
2575 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2576
2577 /* Add common DT information about the device */
2578 of_device_uevent(dev, env);
2579
2580 /* have the bus specific function add its stuff */
2581 if (dev->bus && dev->bus->uevent) {
2582 retval = dev->bus->uevent(dev, env);
2583 if (retval)
2584 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2585 dev_name(dev), __func__, retval);
2586 }
2587
2588 /* have the class specific function add its stuff */
2589 if (dev->class && dev->class->dev_uevent) {
2590 retval = dev->class->dev_uevent(dev, env);
2591 if (retval)
2592 pr_debug("device: '%s': %s: class uevent() "
2593 "returned %d\n", dev_name(dev),
2594 __func__, retval);
2595 }
2596
2597 /* have the device type specific function add its stuff */
2598 if (dev->type && dev->type->uevent) {
2599 retval = dev->type->uevent(dev, env);
2600 if (retval)
2601 pr_debug("device: '%s': %s: dev_type uevent() "
2602 "returned %d\n", dev_name(dev),
2603 __func__, retval);
2604 }
2605
2606 return retval;
2607 }
2608
2609 static const struct kset_uevent_ops device_uevent_ops = {
2610 .filter = dev_uevent_filter,
2611 .name = dev_uevent_name,
2612 .uevent = dev_uevent,
2613 };
2614
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)2615 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2616 char *buf)
2617 {
2618 struct kobject *top_kobj;
2619 struct kset *kset;
2620 struct kobj_uevent_env *env = NULL;
2621 int i;
2622 int len = 0;
2623 int retval;
2624
2625 /* search the kset, the device belongs to */
2626 top_kobj = &dev->kobj;
2627 while (!top_kobj->kset && top_kobj->parent)
2628 top_kobj = top_kobj->parent;
2629 if (!top_kobj->kset)
2630 goto out;
2631
2632 kset = top_kobj->kset;
2633 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2634 goto out;
2635
2636 /* respect filter */
2637 if (kset->uevent_ops && kset->uevent_ops->filter)
2638 if (!kset->uevent_ops->filter(&dev->kobj))
2639 goto out;
2640
2641 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2642 if (!env)
2643 return -ENOMEM;
2644
2645 /* let the kset specific function add its keys */
2646 retval = kset->uevent_ops->uevent(&dev->kobj, env);
2647 if (retval)
2648 goto out;
2649
2650 /* copy keys to file */
2651 for (i = 0; i < env->envp_idx; i++)
2652 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2653 out:
2654 kfree(env);
2655 return len;
2656 }
2657
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2658 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2659 const char *buf, size_t count)
2660 {
2661 int rc;
2662
2663 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2664
2665 if (rc) {
2666 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2667 return rc;
2668 }
2669
2670 return count;
2671 }
2672 static DEVICE_ATTR_RW(uevent);
2673
online_show(struct device * dev,struct device_attribute * attr,char * buf)2674 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2675 char *buf)
2676 {
2677 bool val;
2678
2679 device_lock(dev);
2680 val = !dev->offline;
2681 device_unlock(dev);
2682 return sysfs_emit(buf, "%u\n", val);
2683 }
2684
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2685 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2686 const char *buf, size_t count)
2687 {
2688 bool val;
2689 int ret;
2690
2691 ret = strtobool(buf, &val);
2692 if (ret < 0)
2693 return ret;
2694
2695 ret = lock_device_hotplug_sysfs();
2696 if (ret)
2697 return ret;
2698
2699 ret = val ? device_online(dev) : device_offline(dev);
2700 unlock_device_hotplug();
2701 return ret < 0 ? ret : count;
2702 }
2703 static DEVICE_ATTR_RW(online);
2704
removable_show(struct device * dev,struct device_attribute * attr,char * buf)2705 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2706 char *buf)
2707 {
2708 const char *loc;
2709
2710 switch (dev->removable) {
2711 case DEVICE_REMOVABLE:
2712 loc = "removable";
2713 break;
2714 case DEVICE_FIXED:
2715 loc = "fixed";
2716 break;
2717 default:
2718 loc = "unknown";
2719 }
2720 return sysfs_emit(buf, "%s\n", loc);
2721 }
2722 static DEVICE_ATTR_RO(removable);
2723
device_add_groups(struct device * dev,const struct attribute_group ** groups)2724 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2725 {
2726 return sysfs_create_groups(&dev->kobj, groups);
2727 }
2728 EXPORT_SYMBOL_GPL(device_add_groups);
2729
device_remove_groups(struct device * dev,const struct attribute_group ** groups)2730 void device_remove_groups(struct device *dev,
2731 const struct attribute_group **groups)
2732 {
2733 sysfs_remove_groups(&dev->kobj, groups);
2734 }
2735 EXPORT_SYMBOL_GPL(device_remove_groups);
2736
2737 union device_attr_group_devres {
2738 const struct attribute_group *group;
2739 const struct attribute_group **groups;
2740 };
2741
devm_attr_group_match(struct device * dev,void * res,void * data)2742 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2743 {
2744 return ((union device_attr_group_devres *)res)->group == data;
2745 }
2746
devm_attr_group_remove(struct device * dev,void * res)2747 static void devm_attr_group_remove(struct device *dev, void *res)
2748 {
2749 union device_attr_group_devres *devres = res;
2750 const struct attribute_group *group = devres->group;
2751
2752 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2753 sysfs_remove_group(&dev->kobj, group);
2754 }
2755
devm_attr_groups_remove(struct device * dev,void * res)2756 static void devm_attr_groups_remove(struct device *dev, void *res)
2757 {
2758 union device_attr_group_devres *devres = res;
2759 const struct attribute_group **groups = devres->groups;
2760
2761 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2762 sysfs_remove_groups(&dev->kobj, groups);
2763 }
2764
2765 /**
2766 * devm_device_add_group - given a device, create a managed attribute group
2767 * @dev: The device to create the group for
2768 * @grp: The attribute group to create
2769 *
2770 * This function creates a group for the first time. It will explicitly
2771 * warn and error if any of the attribute files being created already exist.
2772 *
2773 * Returns 0 on success or error code on failure.
2774 */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)2775 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2776 {
2777 union device_attr_group_devres *devres;
2778 int error;
2779
2780 devres = devres_alloc(devm_attr_group_remove,
2781 sizeof(*devres), GFP_KERNEL);
2782 if (!devres)
2783 return -ENOMEM;
2784
2785 error = sysfs_create_group(&dev->kobj, grp);
2786 if (error) {
2787 devres_free(devres);
2788 return error;
2789 }
2790
2791 devres->group = grp;
2792 devres_add(dev, devres);
2793 return 0;
2794 }
2795 EXPORT_SYMBOL_GPL(devm_device_add_group);
2796
2797 /**
2798 * devm_device_remove_group: remove a managed group from a device
2799 * @dev: device to remove the group from
2800 * @grp: group to remove
2801 *
2802 * This function removes a group of attributes from a device. The attributes
2803 * previously have to have been created for this group, otherwise it will fail.
2804 */
devm_device_remove_group(struct device * dev,const struct attribute_group * grp)2805 void devm_device_remove_group(struct device *dev,
2806 const struct attribute_group *grp)
2807 {
2808 WARN_ON(devres_release(dev, devm_attr_group_remove,
2809 devm_attr_group_match,
2810 /* cast away const */ (void *)grp));
2811 }
2812 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2813
2814 /**
2815 * devm_device_add_groups - create a bunch of managed attribute groups
2816 * @dev: The device to create the group for
2817 * @groups: The attribute groups to create, NULL terminated
2818 *
2819 * This function creates a bunch of managed attribute groups. If an error
2820 * occurs when creating a group, all previously created groups will be
2821 * removed, unwinding everything back to the original state when this
2822 * function was called. It will explicitly warn and error if any of the
2823 * attribute files being created already exist.
2824 *
2825 * Returns 0 on success or error code from sysfs_create_group on failure.
2826 */
devm_device_add_groups(struct device * dev,const struct attribute_group ** groups)2827 int devm_device_add_groups(struct device *dev,
2828 const struct attribute_group **groups)
2829 {
2830 union device_attr_group_devres *devres;
2831 int error;
2832
2833 devres = devres_alloc(devm_attr_groups_remove,
2834 sizeof(*devres), GFP_KERNEL);
2835 if (!devres)
2836 return -ENOMEM;
2837
2838 error = sysfs_create_groups(&dev->kobj, groups);
2839 if (error) {
2840 devres_free(devres);
2841 return error;
2842 }
2843
2844 devres->groups = groups;
2845 devres_add(dev, devres);
2846 return 0;
2847 }
2848 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2849
2850 /**
2851 * devm_device_remove_groups - remove a list of managed groups
2852 *
2853 * @dev: The device for the groups to be removed from
2854 * @groups: NULL terminated list of groups to be removed
2855 *
2856 * If groups is not NULL, remove the specified groups from the device.
2857 */
devm_device_remove_groups(struct device * dev,const struct attribute_group ** groups)2858 void devm_device_remove_groups(struct device *dev,
2859 const struct attribute_group **groups)
2860 {
2861 WARN_ON(devres_release(dev, devm_attr_groups_remove,
2862 devm_attr_group_match,
2863 /* cast away const */ (void *)groups));
2864 }
2865 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2866
device_add_attrs(struct device * dev)2867 static int device_add_attrs(struct device *dev)
2868 {
2869 struct class *class = dev->class;
2870 const struct device_type *type = dev->type;
2871 int error;
2872
2873 if (class) {
2874 error = device_add_groups(dev, class->dev_groups);
2875 if (error)
2876 return error;
2877 }
2878
2879 if (type) {
2880 error = device_add_groups(dev, type->groups);
2881 if (error)
2882 goto err_remove_class_groups;
2883 }
2884
2885 error = device_add_groups(dev, dev->groups);
2886 if (error)
2887 goto err_remove_type_groups;
2888
2889 if (device_supports_offline(dev) && !dev->offline_disabled) {
2890 error = device_create_file(dev, &dev_attr_online);
2891 if (error)
2892 goto err_remove_dev_groups;
2893 }
2894
2895 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2896 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2897 if (error)
2898 goto err_remove_dev_online;
2899 }
2900
2901 if (dev_removable_is_valid(dev)) {
2902 error = device_create_file(dev, &dev_attr_removable);
2903 if (error)
2904 goto err_remove_dev_waiting_for_supplier;
2905 }
2906
2907 if (dev_add_physical_location(dev)) {
2908 error = device_add_group(dev,
2909 &dev_attr_physical_location_group);
2910 if (error)
2911 goto err_remove_dev_removable;
2912 }
2913
2914 return 0;
2915
2916 err_remove_dev_removable:
2917 device_remove_file(dev, &dev_attr_removable);
2918 err_remove_dev_waiting_for_supplier:
2919 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2920 err_remove_dev_online:
2921 device_remove_file(dev, &dev_attr_online);
2922 err_remove_dev_groups:
2923 device_remove_groups(dev, dev->groups);
2924 err_remove_type_groups:
2925 if (type)
2926 device_remove_groups(dev, type->groups);
2927 err_remove_class_groups:
2928 if (class)
2929 device_remove_groups(dev, class->dev_groups);
2930
2931 return error;
2932 }
2933
device_remove_attrs(struct device * dev)2934 static void device_remove_attrs(struct device *dev)
2935 {
2936 struct class *class = dev->class;
2937 const struct device_type *type = dev->type;
2938
2939 if (dev->physical_location) {
2940 device_remove_group(dev, &dev_attr_physical_location_group);
2941 kfree(dev->physical_location);
2942 }
2943
2944 device_remove_file(dev, &dev_attr_removable);
2945 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2946 device_remove_file(dev, &dev_attr_online);
2947 device_remove_groups(dev, dev->groups);
2948
2949 if (type)
2950 device_remove_groups(dev, type->groups);
2951
2952 if (class)
2953 device_remove_groups(dev, class->dev_groups);
2954 }
2955
dev_show(struct device * dev,struct device_attribute * attr,char * buf)2956 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2957 char *buf)
2958 {
2959 return print_dev_t(buf, dev->devt);
2960 }
2961 static DEVICE_ATTR_RO(dev);
2962
2963 /* /sys/devices/ */
2964 struct kset *devices_kset;
2965
2966 /**
2967 * devices_kset_move_before - Move device in the devices_kset's list.
2968 * @deva: Device to move.
2969 * @devb: Device @deva should come before.
2970 */
devices_kset_move_before(struct device * deva,struct device * devb)2971 static void devices_kset_move_before(struct device *deva, struct device *devb)
2972 {
2973 if (!devices_kset)
2974 return;
2975 pr_debug("devices_kset: Moving %s before %s\n",
2976 dev_name(deva), dev_name(devb));
2977 spin_lock(&devices_kset->list_lock);
2978 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2979 spin_unlock(&devices_kset->list_lock);
2980 }
2981
2982 /**
2983 * devices_kset_move_after - Move device in the devices_kset's list.
2984 * @deva: Device to move
2985 * @devb: Device @deva should come after.
2986 */
devices_kset_move_after(struct device * deva,struct device * devb)2987 static void devices_kset_move_after(struct device *deva, struct device *devb)
2988 {
2989 if (!devices_kset)
2990 return;
2991 pr_debug("devices_kset: Moving %s after %s\n",
2992 dev_name(deva), dev_name(devb));
2993 spin_lock(&devices_kset->list_lock);
2994 list_move(&deva->kobj.entry, &devb->kobj.entry);
2995 spin_unlock(&devices_kset->list_lock);
2996 }
2997
2998 /**
2999 * devices_kset_move_last - move the device to the end of devices_kset's list.
3000 * @dev: device to move
3001 */
devices_kset_move_last(struct device * dev)3002 void devices_kset_move_last(struct device *dev)
3003 {
3004 if (!devices_kset)
3005 return;
3006 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
3007 spin_lock(&devices_kset->list_lock);
3008 list_move_tail(&dev->kobj.entry, &devices_kset->list);
3009 spin_unlock(&devices_kset->list_lock);
3010 }
3011
3012 /**
3013 * device_create_file - create sysfs attribute file for device.
3014 * @dev: device.
3015 * @attr: device attribute descriptor.
3016 */
device_create_file(struct device * dev,const struct device_attribute * attr)3017 int device_create_file(struct device *dev,
3018 const struct device_attribute *attr)
3019 {
3020 int error = 0;
3021
3022 if (dev) {
3023 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3024 "Attribute %s: write permission without 'store'\n",
3025 attr->attr.name);
3026 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3027 "Attribute %s: read permission without 'show'\n",
3028 attr->attr.name);
3029 error = sysfs_create_file(&dev->kobj, &attr->attr);
3030 }
3031
3032 return error;
3033 }
3034 EXPORT_SYMBOL_GPL(device_create_file);
3035
3036 /**
3037 * device_remove_file - remove sysfs attribute file.
3038 * @dev: device.
3039 * @attr: device attribute descriptor.
3040 */
device_remove_file(struct device * dev,const struct device_attribute * attr)3041 void device_remove_file(struct device *dev,
3042 const struct device_attribute *attr)
3043 {
3044 if (dev)
3045 sysfs_remove_file(&dev->kobj, &attr->attr);
3046 }
3047 EXPORT_SYMBOL_GPL(device_remove_file);
3048
3049 /**
3050 * device_remove_file_self - remove sysfs attribute file from its own method.
3051 * @dev: device.
3052 * @attr: device attribute descriptor.
3053 *
3054 * See kernfs_remove_self() for details.
3055 */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)3056 bool device_remove_file_self(struct device *dev,
3057 const struct device_attribute *attr)
3058 {
3059 if (dev)
3060 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3061 else
3062 return false;
3063 }
3064 EXPORT_SYMBOL_GPL(device_remove_file_self);
3065
3066 /**
3067 * device_create_bin_file - create sysfs binary attribute file for device.
3068 * @dev: device.
3069 * @attr: device binary attribute descriptor.
3070 */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)3071 int device_create_bin_file(struct device *dev,
3072 const struct bin_attribute *attr)
3073 {
3074 int error = -EINVAL;
3075 if (dev)
3076 error = sysfs_create_bin_file(&dev->kobj, attr);
3077 return error;
3078 }
3079 EXPORT_SYMBOL_GPL(device_create_bin_file);
3080
3081 /**
3082 * device_remove_bin_file - remove sysfs binary attribute file
3083 * @dev: device.
3084 * @attr: device binary attribute descriptor.
3085 */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)3086 void device_remove_bin_file(struct device *dev,
3087 const struct bin_attribute *attr)
3088 {
3089 if (dev)
3090 sysfs_remove_bin_file(&dev->kobj, attr);
3091 }
3092 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3093
klist_children_get(struct klist_node * n)3094 static void klist_children_get(struct klist_node *n)
3095 {
3096 struct device_private *p = to_device_private_parent(n);
3097 struct device *dev = p->device;
3098
3099 get_device(dev);
3100 }
3101
klist_children_put(struct klist_node * n)3102 static void klist_children_put(struct klist_node *n)
3103 {
3104 struct device_private *p = to_device_private_parent(n);
3105 struct device *dev = p->device;
3106
3107 put_device(dev);
3108 }
3109
3110 /**
3111 * device_initialize - init device structure.
3112 * @dev: device.
3113 *
3114 * This prepares the device for use by other layers by initializing
3115 * its fields.
3116 * It is the first half of device_register(), if called by
3117 * that function, though it can also be called separately, so one
3118 * may use @dev's fields. In particular, get_device()/put_device()
3119 * may be used for reference counting of @dev after calling this
3120 * function.
3121 *
3122 * All fields in @dev must be initialized by the caller to 0, except
3123 * for those explicitly set to some other value. The simplest
3124 * approach is to use kzalloc() to allocate the structure containing
3125 * @dev.
3126 *
3127 * NOTE: Use put_device() to give up your reference instead of freeing
3128 * @dev directly once you have called this function.
3129 */
device_initialize(struct device * dev)3130 void device_initialize(struct device *dev)
3131 {
3132 dev->kobj.kset = devices_kset;
3133 kobject_init(&dev->kobj, &device_ktype);
3134 INIT_LIST_HEAD(&dev->dma_pools);
3135 mutex_init(&dev->mutex);
3136 lockdep_set_novalidate_class(&dev->mutex);
3137 spin_lock_init(&dev->devres_lock);
3138 INIT_LIST_HEAD(&dev->devres_head);
3139 device_pm_init(dev);
3140 set_dev_node(dev, NUMA_NO_NODE);
3141 INIT_LIST_HEAD(&dev->links.consumers);
3142 INIT_LIST_HEAD(&dev->links.suppliers);
3143 INIT_LIST_HEAD(&dev->links.defer_sync);
3144 dev->links.status = DL_DEV_NO_DRIVER;
3145 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3146 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3147 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3148 dev->dma_coherent = dma_default_coherent;
3149 #endif
3150 #ifdef CONFIG_SWIOTLB
3151 dev->dma_io_tlb_mem = &io_tlb_default_mem;
3152 #endif
3153 }
3154 EXPORT_SYMBOL_GPL(device_initialize);
3155
virtual_device_parent(struct device * dev)3156 struct kobject *virtual_device_parent(struct device *dev)
3157 {
3158 static struct kobject *virtual_dir = NULL;
3159
3160 if (!virtual_dir)
3161 virtual_dir = kobject_create_and_add("virtual",
3162 &devices_kset->kobj);
3163
3164 return virtual_dir;
3165 }
3166
3167 struct class_dir {
3168 struct kobject kobj;
3169 struct class *class;
3170 };
3171
3172 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3173
class_dir_release(struct kobject * kobj)3174 static void class_dir_release(struct kobject *kobj)
3175 {
3176 struct class_dir *dir = to_class_dir(kobj);
3177 kfree(dir);
3178 }
3179
3180 static const
class_dir_child_ns_type(struct kobject * kobj)3181 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
3182 {
3183 struct class_dir *dir = to_class_dir(kobj);
3184 return dir->class->ns_type;
3185 }
3186
3187 static struct kobj_type class_dir_ktype = {
3188 .release = class_dir_release,
3189 .sysfs_ops = &kobj_sysfs_ops,
3190 .child_ns_type = class_dir_child_ns_type
3191 };
3192
3193 static struct kobject *
class_dir_create_and_add(struct class * class,struct kobject * parent_kobj)3194 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
3195 {
3196 struct class_dir *dir;
3197 int retval;
3198
3199 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3200 if (!dir)
3201 return ERR_PTR(-ENOMEM);
3202
3203 dir->class = class;
3204 kobject_init(&dir->kobj, &class_dir_ktype);
3205
3206 dir->kobj.kset = &class->p->glue_dirs;
3207
3208 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
3209 if (retval < 0) {
3210 kobject_put(&dir->kobj);
3211 return ERR_PTR(retval);
3212 }
3213 return &dir->kobj;
3214 }
3215
3216 static DEFINE_MUTEX(gdp_mutex);
3217
get_device_parent(struct device * dev,struct device * parent)3218 static struct kobject *get_device_parent(struct device *dev,
3219 struct device *parent)
3220 {
3221 if (dev->class) {
3222 struct kobject *kobj = NULL;
3223 struct kobject *parent_kobj;
3224 struct kobject *k;
3225
3226 #ifdef CONFIG_BLOCK
3227 /* block disks show up in /sys/block */
3228 if (sysfs_deprecated && dev->class == &block_class) {
3229 if (parent && parent->class == &block_class)
3230 return &parent->kobj;
3231 return &block_class.p->subsys.kobj;
3232 }
3233 #endif
3234
3235 /*
3236 * If we have no parent, we live in "virtual".
3237 * Class-devices with a non class-device as parent, live
3238 * in a "glue" directory to prevent namespace collisions.
3239 */
3240 if (parent == NULL)
3241 parent_kobj = virtual_device_parent(dev);
3242 else if (parent->class && !dev->class->ns_type)
3243 return &parent->kobj;
3244 else
3245 parent_kobj = &parent->kobj;
3246
3247 mutex_lock(&gdp_mutex);
3248
3249 /* find our class-directory at the parent and reference it */
3250 spin_lock(&dev->class->p->glue_dirs.list_lock);
3251 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
3252 if (k->parent == parent_kobj) {
3253 kobj = kobject_get(k);
3254 break;
3255 }
3256 spin_unlock(&dev->class->p->glue_dirs.list_lock);
3257 if (kobj) {
3258 mutex_unlock(&gdp_mutex);
3259 return kobj;
3260 }
3261
3262 /* or create a new class-directory at the parent device */
3263 k = class_dir_create_and_add(dev->class, parent_kobj);
3264 /* do not emit an uevent for this simple "glue" directory */
3265 mutex_unlock(&gdp_mutex);
3266 return k;
3267 }
3268
3269 /* subsystems can specify a default root directory for their devices */
3270 if (!parent && dev->bus && dev->bus->dev_root)
3271 return &dev->bus->dev_root->kobj;
3272
3273 if (parent)
3274 return &parent->kobj;
3275 return NULL;
3276 }
3277
live_in_glue_dir(struct kobject * kobj,struct device * dev)3278 static inline bool live_in_glue_dir(struct kobject *kobj,
3279 struct device *dev)
3280 {
3281 if (!kobj || !dev->class ||
3282 kobj->kset != &dev->class->p->glue_dirs)
3283 return false;
3284 return true;
3285 }
3286
get_glue_dir(struct device * dev)3287 static inline struct kobject *get_glue_dir(struct device *dev)
3288 {
3289 return dev->kobj.parent;
3290 }
3291
3292 /**
3293 * kobject_has_children - Returns whether a kobject has children.
3294 * @kobj: the object to test
3295 *
3296 * This will return whether a kobject has other kobjects as children.
3297 *
3298 * It does NOT account for the presence of attribute files, only sub
3299 * directories. It also assumes there is no concurrent addition or
3300 * removal of such children, and thus relies on external locking.
3301 */
kobject_has_children(struct kobject * kobj)3302 static inline bool kobject_has_children(struct kobject *kobj)
3303 {
3304 WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3305
3306 return kobj->sd && kobj->sd->dir.subdirs;
3307 }
3308
3309 /*
3310 * make sure cleaning up dir as the last step, we need to make
3311 * sure .release handler of kobject is run with holding the
3312 * global lock
3313 */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)3314 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3315 {
3316 unsigned int ref;
3317
3318 /* see if we live in a "glue" directory */
3319 if (!live_in_glue_dir(glue_dir, dev))
3320 return;
3321
3322 mutex_lock(&gdp_mutex);
3323 /**
3324 * There is a race condition between removing glue directory
3325 * and adding a new device under the glue directory.
3326 *
3327 * CPU1: CPU2:
3328 *
3329 * device_add()
3330 * get_device_parent()
3331 * class_dir_create_and_add()
3332 * kobject_add_internal()
3333 * create_dir() // create glue_dir
3334 *
3335 * device_add()
3336 * get_device_parent()
3337 * kobject_get() // get glue_dir
3338 *
3339 * device_del()
3340 * cleanup_glue_dir()
3341 * kobject_del(glue_dir)
3342 *
3343 * kobject_add()
3344 * kobject_add_internal()
3345 * create_dir() // in glue_dir
3346 * sysfs_create_dir_ns()
3347 * kernfs_create_dir_ns(sd)
3348 *
3349 * sysfs_remove_dir() // glue_dir->sd=NULL
3350 * sysfs_put() // free glue_dir->sd
3351 *
3352 * // sd is freed
3353 * kernfs_new_node(sd)
3354 * kernfs_get(glue_dir)
3355 * kernfs_add_one()
3356 * kernfs_put()
3357 *
3358 * Before CPU1 remove last child device under glue dir, if CPU2 add
3359 * a new device under glue dir, the glue_dir kobject reference count
3360 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3361 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3362 * and sysfs_put(). This result in glue_dir->sd is freed.
3363 *
3364 * Then the CPU2 will see a stale "empty" but still potentially used
3365 * glue dir around in kernfs_new_node().
3366 *
3367 * In order to avoid this happening, we also should make sure that
3368 * kernfs_node for glue_dir is released in CPU1 only when refcount
3369 * for glue_dir kobj is 1.
3370 */
3371 ref = kref_read(&glue_dir->kref);
3372 if (!kobject_has_children(glue_dir) && !--ref)
3373 kobject_del(glue_dir);
3374 kobject_put(glue_dir);
3375 mutex_unlock(&gdp_mutex);
3376 }
3377
device_add_class_symlinks(struct device * dev)3378 static int device_add_class_symlinks(struct device *dev)
3379 {
3380 struct device_node *of_node = dev_of_node(dev);
3381 int error;
3382
3383 if (of_node) {
3384 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3385 if (error)
3386 dev_warn(dev, "Error %d creating of_node link\n",error);
3387 /* An error here doesn't warrant bringing down the device */
3388 }
3389
3390 if (!dev->class)
3391 return 0;
3392
3393 error = sysfs_create_link(&dev->kobj,
3394 &dev->class->p->subsys.kobj,
3395 "subsystem");
3396 if (error)
3397 goto out_devnode;
3398
3399 if (dev->parent && device_is_not_partition(dev)) {
3400 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3401 "device");
3402 if (error)
3403 goto out_subsys;
3404 }
3405
3406 #ifdef CONFIG_BLOCK
3407 /* /sys/block has directories and does not need symlinks */
3408 if (sysfs_deprecated && dev->class == &block_class)
3409 return 0;
3410 #endif
3411
3412 /* link in the class directory pointing to the device */
3413 error = sysfs_create_link(&dev->class->p->subsys.kobj,
3414 &dev->kobj, dev_name(dev));
3415 if (error)
3416 goto out_device;
3417
3418 return 0;
3419
3420 out_device:
3421 sysfs_remove_link(&dev->kobj, "device");
3422
3423 out_subsys:
3424 sysfs_remove_link(&dev->kobj, "subsystem");
3425 out_devnode:
3426 sysfs_remove_link(&dev->kobj, "of_node");
3427 return error;
3428 }
3429
device_remove_class_symlinks(struct device * dev)3430 static void device_remove_class_symlinks(struct device *dev)
3431 {
3432 if (dev_of_node(dev))
3433 sysfs_remove_link(&dev->kobj, "of_node");
3434
3435 if (!dev->class)
3436 return;
3437
3438 if (dev->parent && device_is_not_partition(dev))
3439 sysfs_remove_link(&dev->kobj, "device");
3440 sysfs_remove_link(&dev->kobj, "subsystem");
3441 #ifdef CONFIG_BLOCK
3442 if (sysfs_deprecated && dev->class == &block_class)
3443 return;
3444 #endif
3445 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3446 }
3447
3448 /**
3449 * dev_set_name - set a device name
3450 * @dev: device
3451 * @fmt: format string for the device's name
3452 */
dev_set_name(struct device * dev,const char * fmt,...)3453 int dev_set_name(struct device *dev, const char *fmt, ...)
3454 {
3455 va_list vargs;
3456 int err;
3457
3458 va_start(vargs, fmt);
3459 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3460 va_end(vargs);
3461 return err;
3462 }
3463 EXPORT_SYMBOL_GPL(dev_set_name);
3464
3465 /**
3466 * device_to_dev_kobj - select a /sys/dev/ directory for the device
3467 * @dev: device
3468 *
3469 * By default we select char/ for new entries. Setting class->dev_obj
3470 * to NULL prevents an entry from being created. class->dev_kobj must
3471 * be set (or cleared) before any devices are registered to the class
3472 * otherwise device_create_sys_dev_entry() and
3473 * device_remove_sys_dev_entry() will disagree about the presence of
3474 * the link.
3475 */
device_to_dev_kobj(struct device * dev)3476 static struct kobject *device_to_dev_kobj(struct device *dev)
3477 {
3478 struct kobject *kobj;
3479
3480 if (dev->class)
3481 kobj = dev->class->dev_kobj;
3482 else
3483 kobj = sysfs_dev_char_kobj;
3484
3485 return kobj;
3486 }
3487
device_create_sys_dev_entry(struct device * dev)3488 static int device_create_sys_dev_entry(struct device *dev)
3489 {
3490 struct kobject *kobj = device_to_dev_kobj(dev);
3491 int error = 0;
3492 char devt_str[15];
3493
3494 if (kobj) {
3495 format_dev_t(devt_str, dev->devt);
3496 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3497 }
3498
3499 return error;
3500 }
3501
device_remove_sys_dev_entry(struct device * dev)3502 static void device_remove_sys_dev_entry(struct device *dev)
3503 {
3504 struct kobject *kobj = device_to_dev_kobj(dev);
3505 char devt_str[15];
3506
3507 if (kobj) {
3508 format_dev_t(devt_str, dev->devt);
3509 sysfs_remove_link(kobj, devt_str);
3510 }
3511 }
3512
device_private_init(struct device * dev)3513 static int device_private_init(struct device *dev)
3514 {
3515 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3516 if (!dev->p)
3517 return -ENOMEM;
3518 dev->p->device = dev;
3519 klist_init(&dev->p->klist_children, klist_children_get,
3520 klist_children_put);
3521 INIT_LIST_HEAD(&dev->p->deferred_probe);
3522 return 0;
3523 }
3524
3525 /**
3526 * device_add - add device to device hierarchy.
3527 * @dev: device.
3528 *
3529 * This is part 2 of device_register(), though may be called
3530 * separately _iff_ device_initialize() has been called separately.
3531 *
3532 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3533 * to the global and sibling lists for the device, then
3534 * adds it to the other relevant subsystems of the driver model.
3535 *
3536 * Do not call this routine or device_register() more than once for
3537 * any device structure. The driver model core is not designed to work
3538 * with devices that get unregistered and then spring back to life.
3539 * (Among other things, it's very hard to guarantee that all references
3540 * to the previous incarnation of @dev have been dropped.) Allocate
3541 * and register a fresh new struct device instead.
3542 *
3543 * NOTE: _Never_ directly free @dev after calling this function, even
3544 * if it returned an error! Always use put_device() to give up your
3545 * reference instead.
3546 *
3547 * Rule of thumb is: if device_add() succeeds, you should call
3548 * device_del() when you want to get rid of it. If device_add() has
3549 * *not* succeeded, use *only* put_device() to drop the reference
3550 * count.
3551 */
device_add(struct device * dev)3552 int device_add(struct device *dev)
3553 {
3554 struct device *parent;
3555 struct kobject *kobj;
3556 struct class_interface *class_intf;
3557 int error = -EINVAL;
3558 struct kobject *glue_dir = NULL;
3559
3560 dev = get_device(dev);
3561 if (!dev)
3562 goto done;
3563
3564 if (!dev->p) {
3565 error = device_private_init(dev);
3566 if (error)
3567 goto done;
3568 }
3569
3570 /*
3571 * for statically allocated devices, which should all be converted
3572 * some day, we need to initialize the name. We prevent reading back
3573 * the name, and force the use of dev_name()
3574 */
3575 if (dev->init_name) {
3576 dev_set_name(dev, "%s", dev->init_name);
3577 dev->init_name = NULL;
3578 }
3579
3580 /* subsystems can specify simple device enumeration */
3581 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3582 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3583
3584 if (!dev_name(dev)) {
3585 error = -EINVAL;
3586 goto name_error;
3587 }
3588
3589 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3590
3591 parent = get_device(dev->parent);
3592 kobj = get_device_parent(dev, parent);
3593 if (IS_ERR(kobj)) {
3594 error = PTR_ERR(kobj);
3595 goto parent_error;
3596 }
3597 if (kobj)
3598 dev->kobj.parent = kobj;
3599
3600 /* use parent numa_node */
3601 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3602 set_dev_node(dev, dev_to_node(parent));
3603
3604 /* first, register with generic layer. */
3605 /* we require the name to be set before, and pass NULL */
3606 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3607 if (error) {
3608 glue_dir = kobj;
3609 goto Error;
3610 }
3611
3612 /* notify platform of device entry */
3613 device_platform_notify(dev);
3614
3615 error = device_create_file(dev, &dev_attr_uevent);
3616 if (error)
3617 goto attrError;
3618
3619 error = device_add_class_symlinks(dev);
3620 if (error)
3621 goto SymlinkError;
3622 error = device_add_attrs(dev);
3623 if (error)
3624 goto AttrsError;
3625 error = bus_add_device(dev);
3626 if (error)
3627 goto BusError;
3628 error = dpm_sysfs_add(dev);
3629 if (error)
3630 goto DPMError;
3631 device_pm_add(dev);
3632
3633 if (MAJOR(dev->devt)) {
3634 error = device_create_file(dev, &dev_attr_dev);
3635 if (error)
3636 goto DevAttrError;
3637
3638 error = device_create_sys_dev_entry(dev);
3639 if (error)
3640 goto SysEntryError;
3641
3642 devtmpfs_create_node(dev);
3643 }
3644
3645 /* Notify clients of device addition. This call must come
3646 * after dpm_sysfs_add() and before kobject_uevent().
3647 */
3648 if (dev->bus)
3649 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3650 BUS_NOTIFY_ADD_DEVICE, dev);
3651
3652 kobject_uevent(&dev->kobj, KOBJ_ADD);
3653
3654 /*
3655 * Check if any of the other devices (consumers) have been waiting for
3656 * this device (supplier) to be added so that they can create a device
3657 * link to it.
3658 *
3659 * This needs to happen after device_pm_add() because device_link_add()
3660 * requires the supplier be registered before it's called.
3661 *
3662 * But this also needs to happen before bus_probe_device() to make sure
3663 * waiting consumers can link to it before the driver is bound to the
3664 * device and the driver sync_state callback is called for this device.
3665 */
3666 if (dev->fwnode && !dev->fwnode->dev) {
3667 dev->fwnode->dev = dev;
3668 fw_devlink_link_device(dev);
3669 }
3670
3671 bus_probe_device(dev);
3672
3673 /*
3674 * If all driver registration is done and a newly added device doesn't
3675 * match with any driver, don't block its consumers from probing in
3676 * case the consumer device is able to operate without this supplier.
3677 */
3678 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3679 fw_devlink_unblock_consumers(dev);
3680
3681 if (parent)
3682 klist_add_tail(&dev->p->knode_parent,
3683 &parent->p->klist_children);
3684
3685 if (dev->class) {
3686 mutex_lock(&dev->class->p->mutex);
3687 /* tie the class to the device */
3688 klist_add_tail(&dev->p->knode_class,
3689 &dev->class->p->klist_devices);
3690
3691 /* notify any interfaces that the device is here */
3692 list_for_each_entry(class_intf,
3693 &dev->class->p->interfaces, node)
3694 if (class_intf->add_dev)
3695 class_intf->add_dev(dev, class_intf);
3696 mutex_unlock(&dev->class->p->mutex);
3697 }
3698 done:
3699 put_device(dev);
3700 return error;
3701 SysEntryError:
3702 if (MAJOR(dev->devt))
3703 device_remove_file(dev, &dev_attr_dev);
3704 DevAttrError:
3705 device_pm_remove(dev);
3706 dpm_sysfs_remove(dev);
3707 DPMError:
3708 dev->driver = NULL;
3709 bus_remove_device(dev);
3710 BusError:
3711 device_remove_attrs(dev);
3712 AttrsError:
3713 device_remove_class_symlinks(dev);
3714 SymlinkError:
3715 device_remove_file(dev, &dev_attr_uevent);
3716 attrError:
3717 device_platform_notify_remove(dev);
3718 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3719 glue_dir = get_glue_dir(dev);
3720 kobject_del(&dev->kobj);
3721 Error:
3722 cleanup_glue_dir(dev, glue_dir);
3723 parent_error:
3724 put_device(parent);
3725 name_error:
3726 kfree(dev->p);
3727 dev->p = NULL;
3728 goto done;
3729 }
3730 EXPORT_SYMBOL_GPL(device_add);
3731
3732 /**
3733 * device_register - register a device with the system.
3734 * @dev: pointer to the device structure
3735 *
3736 * This happens in two clean steps - initialize the device
3737 * and add it to the system. The two steps can be called
3738 * separately, but this is the easiest and most common.
3739 * I.e. you should only call the two helpers separately if
3740 * have a clearly defined need to use and refcount the device
3741 * before it is added to the hierarchy.
3742 *
3743 * For more information, see the kerneldoc for device_initialize()
3744 * and device_add().
3745 *
3746 * NOTE: _Never_ directly free @dev after calling this function, even
3747 * if it returned an error! Always use put_device() to give up the
3748 * reference initialized in this function instead.
3749 */
device_register(struct device * dev)3750 int device_register(struct device *dev)
3751 {
3752 device_initialize(dev);
3753 return device_add(dev);
3754 }
3755 EXPORT_SYMBOL_GPL(device_register);
3756
3757 /**
3758 * get_device - increment reference count for device.
3759 * @dev: device.
3760 *
3761 * This simply forwards the call to kobject_get(), though
3762 * we do take care to provide for the case that we get a NULL
3763 * pointer passed in.
3764 */
get_device(struct device * dev)3765 struct device *get_device(struct device *dev)
3766 {
3767 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3768 }
3769 EXPORT_SYMBOL_GPL(get_device);
3770
3771 /**
3772 * put_device - decrement reference count.
3773 * @dev: device in question.
3774 */
put_device(struct device * dev)3775 void put_device(struct device *dev)
3776 {
3777 /* might_sleep(); */
3778 if (dev)
3779 kobject_put(&dev->kobj);
3780 }
3781 EXPORT_SYMBOL_GPL(put_device);
3782
kill_device(struct device * dev)3783 bool kill_device(struct device *dev)
3784 {
3785 /*
3786 * Require the device lock and set the "dead" flag to guarantee that
3787 * the update behavior is consistent with the other bitfields near
3788 * it and that we cannot have an asynchronous probe routine trying
3789 * to run while we are tearing out the bus/class/sysfs from
3790 * underneath the device.
3791 */
3792 device_lock_assert(dev);
3793
3794 if (dev->p->dead)
3795 return false;
3796 dev->p->dead = true;
3797 return true;
3798 }
3799 EXPORT_SYMBOL_GPL(kill_device);
3800
3801 /**
3802 * device_del - delete device from system.
3803 * @dev: device.
3804 *
3805 * This is the first part of the device unregistration
3806 * sequence. This removes the device from the lists we control
3807 * from here, has it removed from the other driver model
3808 * subsystems it was added to in device_add(), and removes it
3809 * from the kobject hierarchy.
3810 *
3811 * NOTE: this should be called manually _iff_ device_add() was
3812 * also called manually.
3813 */
device_del(struct device * dev)3814 void device_del(struct device *dev)
3815 {
3816 struct device *parent = dev->parent;
3817 struct kobject *glue_dir = NULL;
3818 struct class_interface *class_intf;
3819 unsigned int noio_flag;
3820
3821 device_lock(dev);
3822 kill_device(dev);
3823 device_unlock(dev);
3824
3825 if (dev->fwnode && dev->fwnode->dev == dev)
3826 dev->fwnode->dev = NULL;
3827
3828 /* Notify clients of device removal. This call must come
3829 * before dpm_sysfs_remove().
3830 */
3831 noio_flag = memalloc_noio_save();
3832 if (dev->bus)
3833 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3834 BUS_NOTIFY_DEL_DEVICE, dev);
3835
3836 dpm_sysfs_remove(dev);
3837 if (parent)
3838 klist_del(&dev->p->knode_parent);
3839 if (MAJOR(dev->devt)) {
3840 devtmpfs_delete_node(dev);
3841 device_remove_sys_dev_entry(dev);
3842 device_remove_file(dev, &dev_attr_dev);
3843 }
3844 if (dev->class) {
3845 device_remove_class_symlinks(dev);
3846
3847 mutex_lock(&dev->class->p->mutex);
3848 /* notify any interfaces that the device is now gone */
3849 list_for_each_entry(class_intf,
3850 &dev->class->p->interfaces, node)
3851 if (class_intf->remove_dev)
3852 class_intf->remove_dev(dev, class_intf);
3853 /* remove the device from the class list */
3854 klist_del(&dev->p->knode_class);
3855 mutex_unlock(&dev->class->p->mutex);
3856 }
3857 device_remove_file(dev, &dev_attr_uevent);
3858 device_remove_attrs(dev);
3859 bus_remove_device(dev);
3860 device_pm_remove(dev);
3861 driver_deferred_probe_del(dev);
3862 device_platform_notify_remove(dev);
3863 device_links_purge(dev);
3864
3865 /*
3866 * If a device does not have a driver attached, we need to clean
3867 * up any managed resources. We do this in device_release(), but
3868 * it's never called (and we leak the device) if a managed
3869 * resource holds a reference to the device. So release all
3870 * managed resources here, like we do in driver_detach(). We
3871 * still need to do so again in device_release() in case someone
3872 * adds a new resource after this point, though.
3873 */
3874 devres_release_all(dev);
3875
3876 if (dev->bus)
3877 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3878 BUS_NOTIFY_REMOVED_DEVICE, dev);
3879 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3880 glue_dir = get_glue_dir(dev);
3881 kobject_del(&dev->kobj);
3882 cleanup_glue_dir(dev, glue_dir);
3883 memalloc_noio_restore(noio_flag);
3884 put_device(parent);
3885 }
3886 EXPORT_SYMBOL_GPL(device_del);
3887
3888 /**
3889 * device_unregister - unregister device from system.
3890 * @dev: device going away.
3891 *
3892 * We do this in two parts, like we do device_register(). First,
3893 * we remove it from all the subsystems with device_del(), then
3894 * we decrement the reference count via put_device(). If that
3895 * is the final reference count, the device will be cleaned up
3896 * via device_release() above. Otherwise, the structure will
3897 * stick around until the final reference to the device is dropped.
3898 */
device_unregister(struct device * dev)3899 void device_unregister(struct device *dev)
3900 {
3901 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3902 device_del(dev);
3903 put_device(dev);
3904 }
3905 EXPORT_SYMBOL_GPL(device_unregister);
3906
prev_device(struct klist_iter * i)3907 static struct device *prev_device(struct klist_iter *i)
3908 {
3909 struct klist_node *n = klist_prev(i);
3910 struct device *dev = NULL;
3911 struct device_private *p;
3912
3913 if (n) {
3914 p = to_device_private_parent(n);
3915 dev = p->device;
3916 }
3917 return dev;
3918 }
3919
next_device(struct klist_iter * i)3920 static struct device *next_device(struct klist_iter *i)
3921 {
3922 struct klist_node *n = klist_next(i);
3923 struct device *dev = NULL;
3924 struct device_private *p;
3925
3926 if (n) {
3927 p = to_device_private_parent(n);
3928 dev = p->device;
3929 }
3930 return dev;
3931 }
3932
3933 /**
3934 * device_get_devnode - path of device node file
3935 * @dev: device
3936 * @mode: returned file access mode
3937 * @uid: returned file owner
3938 * @gid: returned file group
3939 * @tmp: possibly allocated string
3940 *
3941 * Return the relative path of a possible device node.
3942 * Non-default names may need to allocate a memory to compose
3943 * a name. This memory is returned in tmp and needs to be
3944 * freed by the caller.
3945 */
device_get_devnode(struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)3946 const char *device_get_devnode(struct device *dev,
3947 umode_t *mode, kuid_t *uid, kgid_t *gid,
3948 const char **tmp)
3949 {
3950 char *s;
3951
3952 *tmp = NULL;
3953
3954 /* the device type may provide a specific name */
3955 if (dev->type && dev->type->devnode)
3956 *tmp = dev->type->devnode(dev, mode, uid, gid);
3957 if (*tmp)
3958 return *tmp;
3959
3960 /* the class may provide a specific name */
3961 if (dev->class && dev->class->devnode)
3962 *tmp = dev->class->devnode(dev, mode);
3963 if (*tmp)
3964 return *tmp;
3965
3966 /* return name without allocation, tmp == NULL */
3967 if (strchr(dev_name(dev), '!') == NULL)
3968 return dev_name(dev);
3969
3970 /* replace '!' in the name with '/' */
3971 s = kstrdup(dev_name(dev), GFP_KERNEL);
3972 if (!s)
3973 return NULL;
3974 strreplace(s, '!', '/');
3975 return *tmp = s;
3976 }
3977
3978 /**
3979 * device_for_each_child - device child iterator.
3980 * @parent: parent struct device.
3981 * @fn: function to be called for each device.
3982 * @data: data for the callback.
3983 *
3984 * Iterate over @parent's child devices, and call @fn for each,
3985 * passing it @data.
3986 *
3987 * We check the return of @fn each time. If it returns anything
3988 * other than 0, we break out and return that value.
3989 */
device_for_each_child(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3990 int device_for_each_child(struct device *parent, void *data,
3991 int (*fn)(struct device *dev, void *data))
3992 {
3993 struct klist_iter i;
3994 struct device *child;
3995 int error = 0;
3996
3997 if (!parent->p)
3998 return 0;
3999
4000 klist_iter_init(&parent->p->klist_children, &i);
4001 while (!error && (child = next_device(&i)))
4002 error = fn(child, data);
4003 klist_iter_exit(&i);
4004 return error;
4005 }
4006 EXPORT_SYMBOL_GPL(device_for_each_child);
4007
4008 /**
4009 * device_for_each_child_reverse - device child iterator in reversed order.
4010 * @parent: parent struct device.
4011 * @fn: function to be called for each device.
4012 * @data: data for the callback.
4013 *
4014 * Iterate over @parent's child devices, and call @fn for each,
4015 * passing it @data.
4016 *
4017 * We check the return of @fn each time. If it returns anything
4018 * other than 0, we break out and return that value.
4019 */
device_for_each_child_reverse(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))4020 int device_for_each_child_reverse(struct device *parent, void *data,
4021 int (*fn)(struct device *dev, void *data))
4022 {
4023 struct klist_iter i;
4024 struct device *child;
4025 int error = 0;
4026
4027 if (!parent->p)
4028 return 0;
4029
4030 klist_iter_init(&parent->p->klist_children, &i);
4031 while ((child = prev_device(&i)) && !error)
4032 error = fn(child, data);
4033 klist_iter_exit(&i);
4034 return error;
4035 }
4036 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4037
4038 /**
4039 * device_find_child - device iterator for locating a particular device.
4040 * @parent: parent struct device
4041 * @match: Callback function to check device
4042 * @data: Data to pass to match function
4043 *
4044 * This is similar to the device_for_each_child() function above, but it
4045 * returns a reference to a device that is 'found' for later use, as
4046 * determined by the @match callback.
4047 *
4048 * The callback should return 0 if the device doesn't match and non-zero
4049 * if it does. If the callback returns non-zero and a reference to the
4050 * current device can be obtained, this function will return to the caller
4051 * and not iterate over any more devices.
4052 *
4053 * NOTE: you will need to drop the reference with put_device() after use.
4054 */
device_find_child(struct device * parent,void * data,int (* match)(struct device * dev,void * data))4055 struct device *device_find_child(struct device *parent, void *data,
4056 int (*match)(struct device *dev, void *data))
4057 {
4058 struct klist_iter i;
4059 struct device *child;
4060
4061 if (!parent)
4062 return NULL;
4063
4064 klist_iter_init(&parent->p->klist_children, &i);
4065 while ((child = next_device(&i)))
4066 if (match(child, data) && get_device(child))
4067 break;
4068 klist_iter_exit(&i);
4069 return child;
4070 }
4071 EXPORT_SYMBOL_GPL(device_find_child);
4072
4073 /**
4074 * device_find_child_by_name - device iterator for locating a child device.
4075 * @parent: parent struct device
4076 * @name: name of the child device
4077 *
4078 * This is similar to the device_find_child() function above, but it
4079 * returns a reference to a device that has the name @name.
4080 *
4081 * NOTE: you will need to drop the reference with put_device() after use.
4082 */
device_find_child_by_name(struct device * parent,const char * name)4083 struct device *device_find_child_by_name(struct device *parent,
4084 const char *name)
4085 {
4086 struct klist_iter i;
4087 struct device *child;
4088
4089 if (!parent)
4090 return NULL;
4091
4092 klist_iter_init(&parent->p->klist_children, &i);
4093 while ((child = next_device(&i)))
4094 if (sysfs_streq(dev_name(child), name) && get_device(child))
4095 break;
4096 klist_iter_exit(&i);
4097 return child;
4098 }
4099 EXPORT_SYMBOL_GPL(device_find_child_by_name);
4100
match_any(struct device * dev,void * unused)4101 static int match_any(struct device *dev, void *unused)
4102 {
4103 return 1;
4104 }
4105
4106 /**
4107 * device_find_any_child - device iterator for locating a child device, if any.
4108 * @parent: parent struct device
4109 *
4110 * This is similar to the device_find_child() function above, but it
4111 * returns a reference to a child device, if any.
4112 *
4113 * NOTE: you will need to drop the reference with put_device() after use.
4114 */
device_find_any_child(struct device * parent)4115 struct device *device_find_any_child(struct device *parent)
4116 {
4117 return device_find_child(parent, NULL, match_any);
4118 }
4119 EXPORT_SYMBOL_GPL(device_find_any_child);
4120
devices_init(void)4121 int __init devices_init(void)
4122 {
4123 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4124 if (!devices_kset)
4125 return -ENOMEM;
4126 dev_kobj = kobject_create_and_add("dev", NULL);
4127 if (!dev_kobj)
4128 goto dev_kobj_err;
4129 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4130 if (!sysfs_dev_block_kobj)
4131 goto block_kobj_err;
4132 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4133 if (!sysfs_dev_char_kobj)
4134 goto char_kobj_err;
4135
4136 return 0;
4137
4138 char_kobj_err:
4139 kobject_put(sysfs_dev_block_kobj);
4140 block_kobj_err:
4141 kobject_put(dev_kobj);
4142 dev_kobj_err:
4143 kset_unregister(devices_kset);
4144 return -ENOMEM;
4145 }
4146
device_check_offline(struct device * dev,void * not_used)4147 static int device_check_offline(struct device *dev, void *not_used)
4148 {
4149 int ret;
4150
4151 ret = device_for_each_child(dev, NULL, device_check_offline);
4152 if (ret)
4153 return ret;
4154
4155 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4156 }
4157
4158 /**
4159 * device_offline - Prepare the device for hot-removal.
4160 * @dev: Device to be put offline.
4161 *
4162 * Execute the device bus type's .offline() callback, if present, to prepare
4163 * the device for a subsequent hot-removal. If that succeeds, the device must
4164 * not be used until either it is removed or its bus type's .online() callback
4165 * is executed.
4166 *
4167 * Call under device_hotplug_lock.
4168 */
device_offline(struct device * dev)4169 int device_offline(struct device *dev)
4170 {
4171 int ret;
4172
4173 if (dev->offline_disabled)
4174 return -EPERM;
4175
4176 ret = device_for_each_child(dev, NULL, device_check_offline);
4177 if (ret)
4178 return ret;
4179
4180 device_lock(dev);
4181 if (device_supports_offline(dev)) {
4182 if (dev->offline) {
4183 ret = 1;
4184 } else {
4185 ret = dev->bus->offline(dev);
4186 if (!ret) {
4187 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4188 dev->offline = true;
4189 }
4190 }
4191 }
4192 device_unlock(dev);
4193
4194 return ret;
4195 }
4196
4197 /**
4198 * device_online - Put the device back online after successful device_offline().
4199 * @dev: Device to be put back online.
4200 *
4201 * If device_offline() has been successfully executed for @dev, but the device
4202 * has not been removed subsequently, execute its bus type's .online() callback
4203 * to indicate that the device can be used again.
4204 *
4205 * Call under device_hotplug_lock.
4206 */
device_online(struct device * dev)4207 int device_online(struct device *dev)
4208 {
4209 int ret = 0;
4210
4211 device_lock(dev);
4212 if (device_supports_offline(dev)) {
4213 if (dev->offline) {
4214 ret = dev->bus->online(dev);
4215 if (!ret) {
4216 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4217 dev->offline = false;
4218 }
4219 } else {
4220 ret = 1;
4221 }
4222 }
4223 device_unlock(dev);
4224
4225 return ret;
4226 }
4227
4228 struct root_device {
4229 struct device dev;
4230 struct module *owner;
4231 };
4232
to_root_device(struct device * d)4233 static inline struct root_device *to_root_device(struct device *d)
4234 {
4235 return container_of(d, struct root_device, dev);
4236 }
4237
root_device_release(struct device * dev)4238 static void root_device_release(struct device *dev)
4239 {
4240 kfree(to_root_device(dev));
4241 }
4242
4243 /**
4244 * __root_device_register - allocate and register a root device
4245 * @name: root device name
4246 * @owner: owner module of the root device, usually THIS_MODULE
4247 *
4248 * This function allocates a root device and registers it
4249 * using device_register(). In order to free the returned
4250 * device, use root_device_unregister().
4251 *
4252 * Root devices are dummy devices which allow other devices
4253 * to be grouped under /sys/devices. Use this function to
4254 * allocate a root device and then use it as the parent of
4255 * any device which should appear under /sys/devices/{name}
4256 *
4257 * The /sys/devices/{name} directory will also contain a
4258 * 'module' symlink which points to the @owner directory
4259 * in sysfs.
4260 *
4261 * Returns &struct device pointer on success, or ERR_PTR() on error.
4262 *
4263 * Note: You probably want to use root_device_register().
4264 */
__root_device_register(const char * name,struct module * owner)4265 struct device *__root_device_register(const char *name, struct module *owner)
4266 {
4267 struct root_device *root;
4268 int err = -ENOMEM;
4269
4270 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4271 if (!root)
4272 return ERR_PTR(err);
4273
4274 err = dev_set_name(&root->dev, "%s", name);
4275 if (err) {
4276 kfree(root);
4277 return ERR_PTR(err);
4278 }
4279
4280 root->dev.release = root_device_release;
4281
4282 err = device_register(&root->dev);
4283 if (err) {
4284 put_device(&root->dev);
4285 return ERR_PTR(err);
4286 }
4287
4288 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
4289 if (owner) {
4290 struct module_kobject *mk = &owner->mkobj;
4291
4292 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4293 if (err) {
4294 device_unregister(&root->dev);
4295 return ERR_PTR(err);
4296 }
4297 root->owner = owner;
4298 }
4299 #endif
4300
4301 return &root->dev;
4302 }
4303 EXPORT_SYMBOL_GPL(__root_device_register);
4304
4305 /**
4306 * root_device_unregister - unregister and free a root device
4307 * @dev: device going away
4308 *
4309 * This function unregisters and cleans up a device that was created by
4310 * root_device_register().
4311 */
root_device_unregister(struct device * dev)4312 void root_device_unregister(struct device *dev)
4313 {
4314 struct root_device *root = to_root_device(dev);
4315
4316 if (root->owner)
4317 sysfs_remove_link(&root->dev.kobj, "module");
4318
4319 device_unregister(dev);
4320 }
4321 EXPORT_SYMBOL_GPL(root_device_unregister);
4322
4323
device_create_release(struct device * dev)4324 static void device_create_release(struct device *dev)
4325 {
4326 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4327 kfree(dev);
4328 }
4329
4330 static __printf(6, 0) struct device *
device_create_groups_vargs(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)4331 device_create_groups_vargs(struct class *class, struct device *parent,
4332 dev_t devt, void *drvdata,
4333 const struct attribute_group **groups,
4334 const char *fmt, va_list args)
4335 {
4336 struct device *dev = NULL;
4337 int retval = -ENODEV;
4338
4339 if (IS_ERR_OR_NULL(class))
4340 goto error;
4341
4342 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4343 if (!dev) {
4344 retval = -ENOMEM;
4345 goto error;
4346 }
4347
4348 device_initialize(dev);
4349 dev->devt = devt;
4350 dev->class = class;
4351 dev->parent = parent;
4352 dev->groups = groups;
4353 dev->release = device_create_release;
4354 dev_set_drvdata(dev, drvdata);
4355
4356 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4357 if (retval)
4358 goto error;
4359
4360 retval = device_add(dev);
4361 if (retval)
4362 goto error;
4363
4364 return dev;
4365
4366 error:
4367 put_device(dev);
4368 return ERR_PTR(retval);
4369 }
4370
4371 /**
4372 * device_create - creates a device and registers it with sysfs
4373 * @class: pointer to the struct class that this device should be registered to
4374 * @parent: pointer to the parent struct device of this new device, if any
4375 * @devt: the dev_t for the char device to be added
4376 * @drvdata: the data to be added to the device for callbacks
4377 * @fmt: string for the device's name
4378 *
4379 * This function can be used by char device classes. A struct device
4380 * will be created in sysfs, registered to the specified class.
4381 *
4382 * A "dev" file will be created, showing the dev_t for the device, if
4383 * the dev_t is not 0,0.
4384 * If a pointer to a parent struct device is passed in, the newly created
4385 * struct device will be a child of that device in sysfs.
4386 * The pointer to the struct device will be returned from the call.
4387 * Any further sysfs files that might be required can be created using this
4388 * pointer.
4389 *
4390 * Returns &struct device pointer on success, or ERR_PTR() on error.
4391 *
4392 * Note: the struct class passed to this function must have previously
4393 * been created with a call to class_create().
4394 */
device_create(struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)4395 struct device *device_create(struct class *class, struct device *parent,
4396 dev_t devt, void *drvdata, const char *fmt, ...)
4397 {
4398 va_list vargs;
4399 struct device *dev;
4400
4401 va_start(vargs, fmt);
4402 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4403 fmt, vargs);
4404 va_end(vargs);
4405 return dev;
4406 }
4407 EXPORT_SYMBOL_GPL(device_create);
4408
4409 /**
4410 * device_create_with_groups - creates a device and registers it with sysfs
4411 * @class: pointer to the struct class that this device should be registered to
4412 * @parent: pointer to the parent struct device of this new device, if any
4413 * @devt: the dev_t for the char device to be added
4414 * @drvdata: the data to be added to the device for callbacks
4415 * @groups: NULL-terminated list of attribute groups to be created
4416 * @fmt: string for the device's name
4417 *
4418 * This function can be used by char device classes. A struct device
4419 * will be created in sysfs, registered to the specified class.
4420 * Additional attributes specified in the groups parameter will also
4421 * be created automatically.
4422 *
4423 * A "dev" file will be created, showing the dev_t for the device, if
4424 * the dev_t is not 0,0.
4425 * If a pointer to a parent struct device is passed in, the newly created
4426 * struct device will be a child of that device in sysfs.
4427 * The pointer to the struct device will be returned from the call.
4428 * Any further sysfs files that might be required can be created using this
4429 * pointer.
4430 *
4431 * Returns &struct device pointer on success, or ERR_PTR() on error.
4432 *
4433 * Note: the struct class passed to this function must have previously
4434 * been created with a call to class_create().
4435 */
device_create_with_groups(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)4436 struct device *device_create_with_groups(struct class *class,
4437 struct device *parent, dev_t devt,
4438 void *drvdata,
4439 const struct attribute_group **groups,
4440 const char *fmt, ...)
4441 {
4442 va_list vargs;
4443 struct device *dev;
4444
4445 va_start(vargs, fmt);
4446 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4447 fmt, vargs);
4448 va_end(vargs);
4449 return dev;
4450 }
4451 EXPORT_SYMBOL_GPL(device_create_with_groups);
4452
4453 /**
4454 * device_destroy - removes a device that was created with device_create()
4455 * @class: pointer to the struct class that this device was registered with
4456 * @devt: the dev_t of the device that was previously registered
4457 *
4458 * This call unregisters and cleans up a device that was created with a
4459 * call to device_create().
4460 */
device_destroy(struct class * class,dev_t devt)4461 void device_destroy(struct class *class, dev_t devt)
4462 {
4463 struct device *dev;
4464
4465 dev = class_find_device_by_devt(class, devt);
4466 if (dev) {
4467 put_device(dev);
4468 device_unregister(dev);
4469 }
4470 }
4471 EXPORT_SYMBOL_GPL(device_destroy);
4472
4473 /**
4474 * device_rename - renames a device
4475 * @dev: the pointer to the struct device to be renamed
4476 * @new_name: the new name of the device
4477 *
4478 * It is the responsibility of the caller to provide mutual
4479 * exclusion between two different calls of device_rename
4480 * on the same device to ensure that new_name is valid and
4481 * won't conflict with other devices.
4482 *
4483 * Note: Don't call this function. Currently, the networking layer calls this
4484 * function, but that will change. The following text from Kay Sievers offers
4485 * some insight:
4486 *
4487 * Renaming devices is racy at many levels, symlinks and other stuff are not
4488 * replaced atomically, and you get a "move" uevent, but it's not easy to
4489 * connect the event to the old and new device. Device nodes are not renamed at
4490 * all, there isn't even support for that in the kernel now.
4491 *
4492 * In the meantime, during renaming, your target name might be taken by another
4493 * driver, creating conflicts. Or the old name is taken directly after you
4494 * renamed it -- then you get events for the same DEVPATH, before you even see
4495 * the "move" event. It's just a mess, and nothing new should ever rely on
4496 * kernel device renaming. Besides that, it's not even implemented now for
4497 * other things than (driver-core wise very simple) network devices.
4498 *
4499 * We are currently about to change network renaming in udev to completely
4500 * disallow renaming of devices in the same namespace as the kernel uses,
4501 * because we can't solve the problems properly, that arise with swapping names
4502 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4503 * be allowed to some other name than eth[0-9]*, for the aforementioned
4504 * reasons.
4505 *
4506 * Make up a "real" name in the driver before you register anything, or add
4507 * some other attributes for userspace to find the device, or use udev to add
4508 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4509 * don't even want to get into that and try to implement the missing pieces in
4510 * the core. We really have other pieces to fix in the driver core mess. :)
4511 */
device_rename(struct device * dev,const char * new_name)4512 int device_rename(struct device *dev, const char *new_name)
4513 {
4514 struct kobject *kobj = &dev->kobj;
4515 char *old_device_name = NULL;
4516 int error;
4517
4518 dev = get_device(dev);
4519 if (!dev)
4520 return -EINVAL;
4521
4522 dev_dbg(dev, "renaming to %s\n", new_name);
4523
4524 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4525 if (!old_device_name) {
4526 error = -ENOMEM;
4527 goto out;
4528 }
4529
4530 if (dev->class) {
4531 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4532 kobj, old_device_name,
4533 new_name, kobject_namespace(kobj));
4534 if (error)
4535 goto out;
4536 }
4537
4538 error = kobject_rename(kobj, new_name);
4539 if (error)
4540 goto out;
4541
4542 out:
4543 put_device(dev);
4544
4545 kfree(old_device_name);
4546
4547 return error;
4548 }
4549 EXPORT_SYMBOL_GPL(device_rename);
4550
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)4551 static int device_move_class_links(struct device *dev,
4552 struct device *old_parent,
4553 struct device *new_parent)
4554 {
4555 int error = 0;
4556
4557 if (old_parent)
4558 sysfs_remove_link(&dev->kobj, "device");
4559 if (new_parent)
4560 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4561 "device");
4562 return error;
4563 }
4564
4565 /**
4566 * device_move - moves a device to a new parent
4567 * @dev: the pointer to the struct device to be moved
4568 * @new_parent: the new parent of the device (can be NULL)
4569 * @dpm_order: how to reorder the dpm_list
4570 */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)4571 int device_move(struct device *dev, struct device *new_parent,
4572 enum dpm_order dpm_order)
4573 {
4574 int error;
4575 struct device *old_parent;
4576 struct kobject *new_parent_kobj;
4577
4578 dev = get_device(dev);
4579 if (!dev)
4580 return -EINVAL;
4581
4582 device_pm_lock();
4583 new_parent = get_device(new_parent);
4584 new_parent_kobj = get_device_parent(dev, new_parent);
4585 if (IS_ERR(new_parent_kobj)) {
4586 error = PTR_ERR(new_parent_kobj);
4587 put_device(new_parent);
4588 goto out;
4589 }
4590
4591 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4592 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4593 error = kobject_move(&dev->kobj, new_parent_kobj);
4594 if (error) {
4595 cleanup_glue_dir(dev, new_parent_kobj);
4596 put_device(new_parent);
4597 goto out;
4598 }
4599 old_parent = dev->parent;
4600 dev->parent = new_parent;
4601 if (old_parent)
4602 klist_remove(&dev->p->knode_parent);
4603 if (new_parent) {
4604 klist_add_tail(&dev->p->knode_parent,
4605 &new_parent->p->klist_children);
4606 set_dev_node(dev, dev_to_node(new_parent));
4607 }
4608
4609 if (dev->class) {
4610 error = device_move_class_links(dev, old_parent, new_parent);
4611 if (error) {
4612 /* We ignore errors on cleanup since we're hosed anyway... */
4613 device_move_class_links(dev, new_parent, old_parent);
4614 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4615 if (new_parent)
4616 klist_remove(&dev->p->knode_parent);
4617 dev->parent = old_parent;
4618 if (old_parent) {
4619 klist_add_tail(&dev->p->knode_parent,
4620 &old_parent->p->klist_children);
4621 set_dev_node(dev, dev_to_node(old_parent));
4622 }
4623 }
4624 cleanup_glue_dir(dev, new_parent_kobj);
4625 put_device(new_parent);
4626 goto out;
4627 }
4628 }
4629 switch (dpm_order) {
4630 case DPM_ORDER_NONE:
4631 break;
4632 case DPM_ORDER_DEV_AFTER_PARENT:
4633 device_pm_move_after(dev, new_parent);
4634 devices_kset_move_after(dev, new_parent);
4635 break;
4636 case DPM_ORDER_PARENT_BEFORE_DEV:
4637 device_pm_move_before(new_parent, dev);
4638 devices_kset_move_before(new_parent, dev);
4639 break;
4640 case DPM_ORDER_DEV_LAST:
4641 device_pm_move_last(dev);
4642 devices_kset_move_last(dev);
4643 break;
4644 }
4645
4646 put_device(old_parent);
4647 out:
4648 device_pm_unlock();
4649 put_device(dev);
4650 return error;
4651 }
4652 EXPORT_SYMBOL_GPL(device_move);
4653
device_attrs_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4654 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4655 kgid_t kgid)
4656 {
4657 struct kobject *kobj = &dev->kobj;
4658 struct class *class = dev->class;
4659 const struct device_type *type = dev->type;
4660 int error;
4661
4662 if (class) {
4663 /*
4664 * Change the device groups of the device class for @dev to
4665 * @kuid/@kgid.
4666 */
4667 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4668 kgid);
4669 if (error)
4670 return error;
4671 }
4672
4673 if (type) {
4674 /*
4675 * Change the device groups of the device type for @dev to
4676 * @kuid/@kgid.
4677 */
4678 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4679 kgid);
4680 if (error)
4681 return error;
4682 }
4683
4684 /* Change the device groups of @dev to @kuid/@kgid. */
4685 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4686 if (error)
4687 return error;
4688
4689 if (device_supports_offline(dev) && !dev->offline_disabled) {
4690 /* Change online device attributes of @dev to @kuid/@kgid. */
4691 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4692 kuid, kgid);
4693 if (error)
4694 return error;
4695 }
4696
4697 return 0;
4698 }
4699
4700 /**
4701 * device_change_owner - change the owner of an existing device.
4702 * @dev: device.
4703 * @kuid: new owner's kuid
4704 * @kgid: new owner's kgid
4705 *
4706 * This changes the owner of @dev and its corresponding sysfs entries to
4707 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4708 * core.
4709 *
4710 * Returns 0 on success or error code on failure.
4711 */
device_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4712 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4713 {
4714 int error;
4715 struct kobject *kobj = &dev->kobj;
4716
4717 dev = get_device(dev);
4718 if (!dev)
4719 return -EINVAL;
4720
4721 /*
4722 * Change the kobject and the default attributes and groups of the
4723 * ktype associated with it to @kuid/@kgid.
4724 */
4725 error = sysfs_change_owner(kobj, kuid, kgid);
4726 if (error)
4727 goto out;
4728
4729 /*
4730 * Change the uevent file for @dev to the new owner. The uevent file
4731 * was created in a separate step when @dev got added and we mirror
4732 * that step here.
4733 */
4734 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4735 kgid);
4736 if (error)
4737 goto out;
4738
4739 /*
4740 * Change the device groups, the device groups associated with the
4741 * device class, and the groups associated with the device type of @dev
4742 * to @kuid/@kgid.
4743 */
4744 error = device_attrs_change_owner(dev, kuid, kgid);
4745 if (error)
4746 goto out;
4747
4748 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4749 if (error)
4750 goto out;
4751
4752 #ifdef CONFIG_BLOCK
4753 if (sysfs_deprecated && dev->class == &block_class)
4754 goto out;
4755 #endif
4756
4757 /*
4758 * Change the owner of the symlink located in the class directory of
4759 * the device class associated with @dev which points to the actual
4760 * directory entry for @dev to @kuid/@kgid. This ensures that the
4761 * symlink shows the same permissions as its target.
4762 */
4763 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4764 dev_name(dev), kuid, kgid);
4765 if (error)
4766 goto out;
4767
4768 out:
4769 put_device(dev);
4770 return error;
4771 }
4772 EXPORT_SYMBOL_GPL(device_change_owner);
4773
4774 /**
4775 * device_shutdown - call ->shutdown() on each device to shutdown.
4776 */
device_shutdown(void)4777 void device_shutdown(void)
4778 {
4779 struct device *dev, *parent;
4780
4781 wait_for_device_probe();
4782 device_block_probing();
4783
4784 cpufreq_suspend();
4785
4786 spin_lock(&devices_kset->list_lock);
4787 /*
4788 * Walk the devices list backward, shutting down each in turn.
4789 * Beware that device unplug events may also start pulling
4790 * devices offline, even as the system is shutting down.
4791 */
4792 while (!list_empty(&devices_kset->list)) {
4793 dev = list_entry(devices_kset->list.prev, struct device,
4794 kobj.entry);
4795
4796 /*
4797 * hold reference count of device's parent to
4798 * prevent it from being freed because parent's
4799 * lock is to be held
4800 */
4801 parent = get_device(dev->parent);
4802 get_device(dev);
4803 /*
4804 * Make sure the device is off the kset list, in the
4805 * event that dev->*->shutdown() doesn't remove it.
4806 */
4807 list_del_init(&dev->kobj.entry);
4808 spin_unlock(&devices_kset->list_lock);
4809
4810 /* hold lock to avoid race with probe/release */
4811 if (parent)
4812 device_lock(parent);
4813 device_lock(dev);
4814
4815 /* Don't allow any more runtime suspends */
4816 pm_runtime_get_noresume(dev);
4817 pm_runtime_barrier(dev);
4818
4819 if (dev->class && dev->class->shutdown_pre) {
4820 if (initcall_debug)
4821 dev_info(dev, "shutdown_pre\n");
4822 dev->class->shutdown_pre(dev);
4823 }
4824 if (dev->bus && dev->bus->shutdown) {
4825 if (initcall_debug)
4826 dev_info(dev, "shutdown\n");
4827 dev->bus->shutdown(dev);
4828 } else if (dev->driver && dev->driver->shutdown) {
4829 if (initcall_debug)
4830 dev_info(dev, "shutdown\n");
4831 dev->driver->shutdown(dev);
4832 }
4833
4834 device_unlock(dev);
4835 if (parent)
4836 device_unlock(parent);
4837
4838 put_device(dev);
4839 put_device(parent);
4840
4841 spin_lock(&devices_kset->list_lock);
4842 }
4843 spin_unlock(&devices_kset->list_lock);
4844 }
4845
4846 /*
4847 * Device logging functions
4848 */
4849
4850 #ifdef CONFIG_PRINTK
4851 static void
set_dev_info(const struct device * dev,struct dev_printk_info * dev_info)4852 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4853 {
4854 const char *subsys;
4855
4856 memset(dev_info, 0, sizeof(*dev_info));
4857
4858 if (dev->class)
4859 subsys = dev->class->name;
4860 else if (dev->bus)
4861 subsys = dev->bus->name;
4862 else
4863 return;
4864
4865 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4866
4867 /*
4868 * Add device identifier DEVICE=:
4869 * b12:8 block dev_t
4870 * c127:3 char dev_t
4871 * n8 netdev ifindex
4872 * +sound:card0 subsystem:devname
4873 */
4874 if (MAJOR(dev->devt)) {
4875 char c;
4876
4877 if (strcmp(subsys, "block") == 0)
4878 c = 'b';
4879 else
4880 c = 'c';
4881
4882 snprintf(dev_info->device, sizeof(dev_info->device),
4883 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4884 } else if (strcmp(subsys, "net") == 0) {
4885 struct net_device *net = to_net_dev(dev);
4886
4887 snprintf(dev_info->device, sizeof(dev_info->device),
4888 "n%u", net->ifindex);
4889 } else {
4890 snprintf(dev_info->device, sizeof(dev_info->device),
4891 "+%s:%s", subsys, dev_name(dev));
4892 }
4893 }
4894
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)4895 int dev_vprintk_emit(int level, const struct device *dev,
4896 const char *fmt, va_list args)
4897 {
4898 struct dev_printk_info dev_info;
4899
4900 set_dev_info(dev, &dev_info);
4901
4902 return vprintk_emit(0, level, &dev_info, fmt, args);
4903 }
4904 EXPORT_SYMBOL(dev_vprintk_emit);
4905
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)4906 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4907 {
4908 va_list args;
4909 int r;
4910
4911 va_start(args, fmt);
4912
4913 r = dev_vprintk_emit(level, dev, fmt, args);
4914
4915 va_end(args);
4916
4917 return r;
4918 }
4919 EXPORT_SYMBOL(dev_printk_emit);
4920
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)4921 static void __dev_printk(const char *level, const struct device *dev,
4922 struct va_format *vaf)
4923 {
4924 if (dev)
4925 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4926 dev_driver_string(dev), dev_name(dev), vaf);
4927 else
4928 printk("%s(NULL device *): %pV", level, vaf);
4929 }
4930
_dev_printk(const char * level,const struct device * dev,const char * fmt,...)4931 void _dev_printk(const char *level, const struct device *dev,
4932 const char *fmt, ...)
4933 {
4934 struct va_format vaf;
4935 va_list args;
4936
4937 va_start(args, fmt);
4938
4939 vaf.fmt = fmt;
4940 vaf.va = &args;
4941
4942 __dev_printk(level, dev, &vaf);
4943
4944 va_end(args);
4945 }
4946 EXPORT_SYMBOL(_dev_printk);
4947
4948 #define define_dev_printk_level(func, kern_level) \
4949 void func(const struct device *dev, const char *fmt, ...) \
4950 { \
4951 struct va_format vaf; \
4952 va_list args; \
4953 \
4954 va_start(args, fmt); \
4955 \
4956 vaf.fmt = fmt; \
4957 vaf.va = &args; \
4958 \
4959 __dev_printk(kern_level, dev, &vaf); \
4960 \
4961 va_end(args); \
4962 } \
4963 EXPORT_SYMBOL(func);
4964
4965 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4966 define_dev_printk_level(_dev_alert, KERN_ALERT);
4967 define_dev_printk_level(_dev_crit, KERN_CRIT);
4968 define_dev_printk_level(_dev_err, KERN_ERR);
4969 define_dev_printk_level(_dev_warn, KERN_WARNING);
4970 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4971 define_dev_printk_level(_dev_info, KERN_INFO);
4972
4973 #endif
4974
4975 /**
4976 * dev_err_probe - probe error check and log helper
4977 * @dev: the pointer to the struct device
4978 * @err: error value to test
4979 * @fmt: printf-style format string
4980 * @...: arguments as specified in the format string
4981 *
4982 * This helper implements common pattern present in probe functions for error
4983 * checking: print debug or error message depending if the error value is
4984 * -EPROBE_DEFER and propagate error upwards.
4985 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4986 * checked later by reading devices_deferred debugfs attribute.
4987 * It replaces code sequence::
4988 *
4989 * if (err != -EPROBE_DEFER)
4990 * dev_err(dev, ...);
4991 * else
4992 * dev_dbg(dev, ...);
4993 * return err;
4994 *
4995 * with::
4996 *
4997 * return dev_err_probe(dev, err, ...);
4998 *
4999 * Note that it is deemed acceptable to use this function for error
5000 * prints during probe even if the @err is known to never be -EPROBE_DEFER.
5001 * The benefit compared to a normal dev_err() is the standardized format
5002 * of the error code and the fact that the error code is returned.
5003 *
5004 * Returns @err.
5005 *
5006 */
dev_err_probe(const struct device * dev,int err,const char * fmt,...)5007 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
5008 {
5009 struct va_format vaf;
5010 va_list args;
5011
5012 va_start(args, fmt);
5013 vaf.fmt = fmt;
5014 vaf.va = &args;
5015
5016 if (err != -EPROBE_DEFER) {
5017 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5018 } else {
5019 device_set_deferred_probe_reason(dev, &vaf);
5020 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5021 }
5022
5023 va_end(args);
5024
5025 return err;
5026 }
5027 EXPORT_SYMBOL_GPL(dev_err_probe);
5028
fwnode_is_primary(struct fwnode_handle * fwnode)5029 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5030 {
5031 return fwnode && !IS_ERR(fwnode->secondary);
5032 }
5033
5034 /**
5035 * set_primary_fwnode - Change the primary firmware node of a given device.
5036 * @dev: Device to handle.
5037 * @fwnode: New primary firmware node of the device.
5038 *
5039 * Set the device's firmware node pointer to @fwnode, but if a secondary
5040 * firmware node of the device is present, preserve it.
5041 *
5042 * Valid fwnode cases are:
5043 * - primary --> secondary --> -ENODEV
5044 * - primary --> NULL
5045 * - secondary --> -ENODEV
5046 * - NULL
5047 */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5048 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5049 {
5050 struct device *parent = dev->parent;
5051 struct fwnode_handle *fn = dev->fwnode;
5052
5053 if (fwnode) {
5054 if (fwnode_is_primary(fn))
5055 fn = fn->secondary;
5056
5057 if (fn) {
5058 WARN_ON(fwnode->secondary);
5059 fwnode->secondary = fn;
5060 }
5061 dev->fwnode = fwnode;
5062 } else {
5063 if (fwnode_is_primary(fn)) {
5064 dev->fwnode = fn->secondary;
5065 /* Set fn->secondary = NULL, so fn remains the primary fwnode */
5066 if (!(parent && fn == parent->fwnode))
5067 fn->secondary = NULL;
5068 } else {
5069 dev->fwnode = NULL;
5070 }
5071 }
5072 }
5073 EXPORT_SYMBOL_GPL(set_primary_fwnode);
5074
5075 /**
5076 * set_secondary_fwnode - Change the secondary firmware node of a given device.
5077 * @dev: Device to handle.
5078 * @fwnode: New secondary firmware node of the device.
5079 *
5080 * If a primary firmware node of the device is present, set its secondary
5081 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
5082 * @fwnode.
5083 */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5084 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5085 {
5086 if (fwnode)
5087 fwnode->secondary = ERR_PTR(-ENODEV);
5088
5089 if (fwnode_is_primary(dev->fwnode))
5090 dev->fwnode->secondary = fwnode;
5091 else
5092 dev->fwnode = fwnode;
5093 }
5094 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5095
5096 /**
5097 * device_set_of_node_from_dev - reuse device-tree node of another device
5098 * @dev: device whose device-tree node is being set
5099 * @dev2: device whose device-tree node is being reused
5100 *
5101 * Takes another reference to the new device-tree node after first dropping
5102 * any reference held to the old node.
5103 */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)5104 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5105 {
5106 of_node_put(dev->of_node);
5107 dev->of_node = of_node_get(dev2->of_node);
5108 dev->of_node_reused = true;
5109 }
5110 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5111
device_set_node(struct device * dev,struct fwnode_handle * fwnode)5112 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5113 {
5114 dev->fwnode = fwnode;
5115 dev->of_node = to_of_node(fwnode);
5116 }
5117 EXPORT_SYMBOL_GPL(device_set_node);
5118
device_match_name(struct device * dev,const void * name)5119 int device_match_name(struct device *dev, const void *name)
5120 {
5121 return sysfs_streq(dev_name(dev), name);
5122 }
5123 EXPORT_SYMBOL_GPL(device_match_name);
5124
device_match_of_node(struct device * dev,const void * np)5125 int device_match_of_node(struct device *dev, const void *np)
5126 {
5127 return dev->of_node == np;
5128 }
5129 EXPORT_SYMBOL_GPL(device_match_of_node);
5130
device_match_fwnode(struct device * dev,const void * fwnode)5131 int device_match_fwnode(struct device *dev, const void *fwnode)
5132 {
5133 return dev_fwnode(dev) == fwnode;
5134 }
5135 EXPORT_SYMBOL_GPL(device_match_fwnode);
5136
device_match_devt(struct device * dev,const void * pdevt)5137 int device_match_devt(struct device *dev, const void *pdevt)
5138 {
5139 return dev->devt == *(dev_t *)pdevt;
5140 }
5141 EXPORT_SYMBOL_GPL(device_match_devt);
5142
device_match_acpi_dev(struct device * dev,const void * adev)5143 int device_match_acpi_dev(struct device *dev, const void *adev)
5144 {
5145 return ACPI_COMPANION(dev) == adev;
5146 }
5147 EXPORT_SYMBOL(device_match_acpi_dev);
5148
device_match_acpi_handle(struct device * dev,const void * handle)5149 int device_match_acpi_handle(struct device *dev, const void *handle)
5150 {
5151 return ACPI_HANDLE(dev) == handle;
5152 }
5153 EXPORT_SYMBOL(device_match_acpi_handle);
5154
device_match_any(struct device * dev,const void * unused)5155 int device_match_any(struct device *dev, const void *unused)
5156 {
5157 return 1;
5158 }
5159 EXPORT_SYMBOL_GPL(device_match_any);
5160