1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/cpufreq/cpufreq.c
4 *
5 * Copyright (C) 2001 Russell King
6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10 * Added handling for CPU hotplug
11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12 * Fix handling for CPU hotplug -- affected CPUs
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpufreq_times.h>
20 #include <linux/cpu_cooling.h>
21 #include <linux/delay.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/pm_qos.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <linux/units.h>
33 #include <trace/events/power.h>
34 #include <trace/hooks/cpufreq.h>
35 #include <trace/hooks/thermal.h>
36
37 static LIST_HEAD(cpufreq_policy_list);
38
39 /* Macros to iterate over CPU policies */
40 #define for_each_suitable_policy(__policy, __active) \
41 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
42 if ((__active) == !policy_is_inactive(__policy))
43
44 #define for_each_active_policy(__policy) \
45 for_each_suitable_policy(__policy, true)
46 #define for_each_inactive_policy(__policy) \
47 for_each_suitable_policy(__policy, false)
48
49 /* Iterate over governors */
50 static LIST_HEAD(cpufreq_governor_list);
51 #define for_each_governor(__governor) \
52 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
53
54 static char default_governor[CPUFREQ_NAME_LEN];
55
56 /*
57 * The "cpufreq driver" - the arch- or hardware-dependent low
58 * level driver of CPUFreq support, and its spinlock. This lock
59 * also protects the cpufreq_cpu_data array.
60 */
61 static struct cpufreq_driver *cpufreq_driver;
62 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
63 static DEFINE_RWLOCK(cpufreq_driver_lock);
64
65 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
cpufreq_supports_freq_invariance(void)66 bool cpufreq_supports_freq_invariance(void)
67 {
68 return static_branch_likely(&cpufreq_freq_invariance);
69 }
70
71 /* Flag to suspend/resume CPUFreq governors */
72 static bool cpufreq_suspended;
73
has_target(void)74 static inline bool has_target(void)
75 {
76 return cpufreq_driver->target_index || cpufreq_driver->target;
77 }
78
79 /* internal prototypes */
80 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
81 static int cpufreq_init_governor(struct cpufreq_policy *policy);
82 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
83 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
84 static int cpufreq_set_policy(struct cpufreq_policy *policy,
85 struct cpufreq_governor *new_gov,
86 unsigned int new_pol);
87
88 /*
89 * Two notifier lists: the "policy" list is involved in the
90 * validation process for a new CPU frequency policy; the
91 * "transition" list for kernel code that needs to handle
92 * changes to devices when the CPU clock speed changes.
93 * The mutex locks both lists.
94 */
95 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
96 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
97
98 static int off __read_mostly;
cpufreq_disabled(void)99 static int cpufreq_disabled(void)
100 {
101 return off;
102 }
disable_cpufreq(void)103 void disable_cpufreq(void)
104 {
105 off = 1;
106 }
107 static DEFINE_MUTEX(cpufreq_governor_mutex);
108
have_governor_per_policy(void)109 bool have_governor_per_policy(void)
110 {
111 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
112 }
113 EXPORT_SYMBOL_GPL(have_governor_per_policy);
114
115 static struct kobject *cpufreq_global_kobject;
116
get_governor_parent_kobj(struct cpufreq_policy * policy)117 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
118 {
119 if (have_governor_per_policy())
120 return &policy->kobj;
121 else
122 return cpufreq_global_kobject;
123 }
124 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
125
get_cpu_idle_time_jiffy(unsigned int cpu,u64 * wall)126 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
127 {
128 struct kernel_cpustat kcpustat;
129 u64 cur_wall_time;
130 u64 idle_time;
131 u64 busy_time;
132
133 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
134
135 kcpustat_cpu_fetch(&kcpustat, cpu);
136
137 busy_time = kcpustat.cpustat[CPUTIME_USER];
138 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
139 busy_time += kcpustat.cpustat[CPUTIME_IRQ];
140 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
141 busy_time += kcpustat.cpustat[CPUTIME_STEAL];
142 busy_time += kcpustat.cpustat[CPUTIME_NICE];
143
144 idle_time = cur_wall_time - busy_time;
145 if (wall)
146 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
147
148 return div_u64(idle_time, NSEC_PER_USEC);
149 }
150
get_cpu_idle_time(unsigned int cpu,u64 * wall,int io_busy)151 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
152 {
153 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
154
155 if (idle_time == -1ULL)
156 return get_cpu_idle_time_jiffy(cpu, wall);
157 else if (!io_busy)
158 idle_time += get_cpu_iowait_time_us(cpu, wall);
159
160 return idle_time;
161 }
162 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
163
164 /*
165 * This is a generic cpufreq init() routine which can be used by cpufreq
166 * drivers of SMP systems. It will do following:
167 * - validate & show freq table passed
168 * - set policies transition latency
169 * - policy->cpus with all possible CPUs
170 */
cpufreq_generic_init(struct cpufreq_policy * policy,struct cpufreq_frequency_table * table,unsigned int transition_latency)171 void cpufreq_generic_init(struct cpufreq_policy *policy,
172 struct cpufreq_frequency_table *table,
173 unsigned int transition_latency)
174 {
175 policy->freq_table = table;
176 policy->cpuinfo.transition_latency = transition_latency;
177
178 /*
179 * The driver only supports the SMP configuration where all processors
180 * share the clock and voltage and clock.
181 */
182 cpumask_setall(policy->cpus);
183 }
184 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
185
cpufreq_cpu_get_raw(unsigned int cpu)186 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
187 {
188 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
189
190 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
191 }
192 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
193
cpufreq_generic_get(unsigned int cpu)194 unsigned int cpufreq_generic_get(unsigned int cpu)
195 {
196 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
197
198 if (!policy || IS_ERR(policy->clk)) {
199 pr_err("%s: No %s associated to cpu: %d\n",
200 __func__, policy ? "clk" : "policy", cpu);
201 return 0;
202 }
203
204 return clk_get_rate(policy->clk) / 1000;
205 }
206 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
207
208 /**
209 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
210 * @cpu: CPU to find the policy for.
211 *
212 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
213 * the kobject reference counter of that policy. Return a valid policy on
214 * success or NULL on failure.
215 *
216 * The policy returned by this function has to be released with the help of
217 * cpufreq_cpu_put() to balance its kobject reference counter properly.
218 */
cpufreq_cpu_get(unsigned int cpu)219 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
220 {
221 struct cpufreq_policy *policy = NULL;
222 unsigned long flags;
223
224 if (WARN_ON(cpu >= nr_cpu_ids))
225 return NULL;
226
227 /* get the cpufreq driver */
228 read_lock_irqsave(&cpufreq_driver_lock, flags);
229
230 if (cpufreq_driver) {
231 /* get the CPU */
232 policy = cpufreq_cpu_get_raw(cpu);
233 if (policy)
234 kobject_get(&policy->kobj);
235 }
236
237 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
238
239 return policy;
240 }
241 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
242
243 /**
244 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
245 * @policy: cpufreq policy returned by cpufreq_cpu_get().
246 */
cpufreq_cpu_put(struct cpufreq_policy * policy)247 void cpufreq_cpu_put(struct cpufreq_policy *policy)
248 {
249 kobject_put(&policy->kobj);
250 }
251 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
252
253 /**
254 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
255 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
256 */
cpufreq_cpu_release(struct cpufreq_policy * policy)257 void cpufreq_cpu_release(struct cpufreq_policy *policy)
258 {
259 if (WARN_ON(!policy))
260 return;
261
262 lockdep_assert_held(&policy->rwsem);
263
264 up_write(&policy->rwsem);
265
266 cpufreq_cpu_put(policy);
267 }
268
269 /**
270 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
271 * @cpu: CPU to find the policy for.
272 *
273 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
274 * if the policy returned by it is not NULL, acquire its rwsem for writing.
275 * Return the policy if it is active or release it and return NULL otherwise.
276 *
277 * The policy returned by this function has to be released with the help of
278 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
279 * counter properly.
280 */
cpufreq_cpu_acquire(unsigned int cpu)281 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
282 {
283 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
284
285 if (!policy)
286 return NULL;
287
288 down_write(&policy->rwsem);
289
290 if (policy_is_inactive(policy)) {
291 cpufreq_cpu_release(policy);
292 return NULL;
293 }
294
295 return policy;
296 }
297
298 /*********************************************************************
299 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
300 *********************************************************************/
301
302 /**
303 * adjust_jiffies - Adjust the system "loops_per_jiffy".
304 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
305 * @ci: Frequency change information.
306 *
307 * This function alters the system "loops_per_jiffy" for the clock
308 * speed change. Note that loops_per_jiffy cannot be updated on SMP
309 * systems as each CPU might be scaled differently. So, use the arch
310 * per-CPU loops_per_jiffy value wherever possible.
311 */
adjust_jiffies(unsigned long val,struct cpufreq_freqs * ci)312 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
313 {
314 #ifndef CONFIG_SMP
315 static unsigned long l_p_j_ref;
316 static unsigned int l_p_j_ref_freq;
317
318 if (ci->flags & CPUFREQ_CONST_LOOPS)
319 return;
320
321 if (!l_p_j_ref_freq) {
322 l_p_j_ref = loops_per_jiffy;
323 l_p_j_ref_freq = ci->old;
324 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
325 l_p_j_ref, l_p_j_ref_freq);
326 }
327 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
328 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
329 ci->new);
330 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
331 loops_per_jiffy, ci->new);
332 }
333 #endif
334 }
335
336 /**
337 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
338 * @policy: cpufreq policy to enable fast frequency switching for.
339 * @freqs: contain details of the frequency update.
340 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
341 *
342 * This function calls the transition notifiers and adjust_jiffies().
343 *
344 * It is called twice on all CPU frequency changes that have external effects.
345 */
cpufreq_notify_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,unsigned int state)346 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
347 struct cpufreq_freqs *freqs,
348 unsigned int state)
349 {
350 int cpu;
351
352 BUG_ON(irqs_disabled());
353
354 if (cpufreq_disabled())
355 return;
356
357 freqs->policy = policy;
358 freqs->flags = cpufreq_driver->flags;
359 pr_debug("notification %u of frequency transition to %u kHz\n",
360 state, freqs->new);
361
362 switch (state) {
363 case CPUFREQ_PRECHANGE:
364 /*
365 * Detect if the driver reported a value as "old frequency"
366 * which is not equal to what the cpufreq core thinks is
367 * "old frequency".
368 */
369 if (policy->cur && policy->cur != freqs->old) {
370 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
371 freqs->old, policy->cur);
372 freqs->old = policy->cur;
373 }
374
375 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
376 CPUFREQ_PRECHANGE, freqs);
377
378 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
379 break;
380
381 case CPUFREQ_POSTCHANGE:
382 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
383 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
384 cpumask_pr_args(policy->cpus));
385
386 for_each_cpu(cpu, policy->cpus)
387 trace_cpu_frequency(freqs->new, cpu);
388
389 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
390 CPUFREQ_POSTCHANGE, freqs);
391
392 cpufreq_stats_record_transition(policy, freqs->new);
393 cpufreq_times_record_transition(policy, freqs->new);
394 policy->cur = freqs->new;
395 trace_android_rvh_cpufreq_transition(policy);
396 }
397 }
398
399 /* Do post notifications when there are chances that transition has failed */
cpufreq_notify_post_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)400 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
401 struct cpufreq_freqs *freqs, int transition_failed)
402 {
403 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
404 if (!transition_failed)
405 return;
406
407 swap(freqs->old, freqs->new);
408 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
409 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
410 }
411
cpufreq_freq_transition_begin(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs)412 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
413 struct cpufreq_freqs *freqs)
414 {
415
416 /*
417 * Catch double invocations of _begin() which lead to self-deadlock.
418 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
419 * doesn't invoke _begin() on their behalf, and hence the chances of
420 * double invocations are very low. Moreover, there are scenarios
421 * where these checks can emit false-positive warnings in these
422 * drivers; so we avoid that by skipping them altogether.
423 */
424 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
425 && current == policy->transition_task);
426
427 wait:
428 wait_event(policy->transition_wait, !policy->transition_ongoing);
429
430 spin_lock(&policy->transition_lock);
431
432 if (unlikely(policy->transition_ongoing)) {
433 spin_unlock(&policy->transition_lock);
434 goto wait;
435 }
436
437 policy->transition_ongoing = true;
438 policy->transition_task = current;
439
440 spin_unlock(&policy->transition_lock);
441
442 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
443 }
444 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
445
cpufreq_freq_transition_end(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)446 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
447 struct cpufreq_freqs *freqs, int transition_failed)
448 {
449 if (WARN_ON(!policy->transition_ongoing))
450 return;
451
452 cpufreq_notify_post_transition(policy, freqs, transition_failed);
453
454 arch_set_freq_scale(policy->related_cpus,
455 policy->cur,
456 policy->cpuinfo.max_freq);
457
458 spin_lock(&policy->transition_lock);
459 policy->transition_ongoing = false;
460 policy->transition_task = NULL;
461 spin_unlock(&policy->transition_lock);
462
463 wake_up(&policy->transition_wait);
464 }
465 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
466
467 /*
468 * Fast frequency switching status count. Positive means "enabled", negative
469 * means "disabled" and 0 means "not decided yet".
470 */
471 static int cpufreq_fast_switch_count;
472 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
473
cpufreq_list_transition_notifiers(void)474 static void cpufreq_list_transition_notifiers(void)
475 {
476 struct notifier_block *nb;
477
478 pr_info("Registered transition notifiers:\n");
479
480 mutex_lock(&cpufreq_transition_notifier_list.mutex);
481
482 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
483 pr_info("%pS\n", nb->notifier_call);
484
485 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
486 }
487
488 /**
489 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
490 * @policy: cpufreq policy to enable fast frequency switching for.
491 *
492 * Try to enable fast frequency switching for @policy.
493 *
494 * The attempt will fail if there is at least one transition notifier registered
495 * at this point, as fast frequency switching is quite fundamentally at odds
496 * with transition notifiers. Thus if successful, it will make registration of
497 * transition notifiers fail going forward.
498 */
cpufreq_enable_fast_switch(struct cpufreq_policy * policy)499 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
500 {
501 lockdep_assert_held(&policy->rwsem);
502
503 if (!policy->fast_switch_possible)
504 return;
505
506 mutex_lock(&cpufreq_fast_switch_lock);
507 if (cpufreq_fast_switch_count >= 0) {
508 cpufreq_fast_switch_count++;
509 policy->fast_switch_enabled = true;
510 } else {
511 pr_warn("CPU%u: Fast frequency switching not enabled\n",
512 policy->cpu);
513 cpufreq_list_transition_notifiers();
514 }
515 mutex_unlock(&cpufreq_fast_switch_lock);
516 }
517 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
518
519 /**
520 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
521 * @policy: cpufreq policy to disable fast frequency switching for.
522 */
cpufreq_disable_fast_switch(struct cpufreq_policy * policy)523 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
524 {
525 mutex_lock(&cpufreq_fast_switch_lock);
526 if (policy->fast_switch_enabled) {
527 policy->fast_switch_enabled = false;
528 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
529 cpufreq_fast_switch_count--;
530 }
531 mutex_unlock(&cpufreq_fast_switch_lock);
532 }
533 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
534
__resolve_freq(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)535 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
536 unsigned int target_freq, unsigned int relation)
537 {
538 unsigned int idx;
539 unsigned int old_target_freq = target_freq;
540
541 target_freq = clamp_val(target_freq, policy->min, policy->max);
542 trace_android_vh_cpufreq_resolve_freq(policy, &target_freq, old_target_freq);
543
544 if (!policy->freq_table)
545 return target_freq;
546
547 idx = cpufreq_frequency_table_target(policy, target_freq, relation);
548 policy->cached_resolved_idx = idx;
549 policy->cached_target_freq = target_freq;
550 return policy->freq_table[idx].frequency;
551 }
552
553 /**
554 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
555 * one.
556 * @policy: associated policy to interrogate
557 * @target_freq: target frequency to resolve.
558 *
559 * The target to driver frequency mapping is cached in the policy.
560 *
561 * Return: Lowest driver-supported frequency greater than or equal to the
562 * given target_freq, subject to policy (min/max) and driver limitations.
563 */
cpufreq_driver_resolve_freq(struct cpufreq_policy * policy,unsigned int target_freq)564 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
565 unsigned int target_freq)
566 {
567 return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
568 }
569 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
570
cpufreq_policy_transition_delay_us(struct cpufreq_policy * policy)571 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
572 {
573 unsigned int latency;
574
575 if (policy->transition_delay_us)
576 return policy->transition_delay_us;
577
578 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
579 if (latency) {
580 /*
581 * For platforms that can change the frequency very fast (< 10
582 * us), the above formula gives a decent transition delay. But
583 * for platforms where transition_latency is in milliseconds, it
584 * ends up giving unrealistic values.
585 *
586 * Cap the default transition delay to 10 ms, which seems to be
587 * a reasonable amount of time after which we should reevaluate
588 * the frequency.
589 */
590 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
591 }
592
593 return LATENCY_MULTIPLIER;
594 }
595 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
596
597 /*********************************************************************
598 * SYSFS INTERFACE *
599 *********************************************************************/
show_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)600 static ssize_t show_boost(struct kobject *kobj,
601 struct kobj_attribute *attr, char *buf)
602 {
603 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
604 }
605
store_boost(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)606 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
607 const char *buf, size_t count)
608 {
609 int ret, enable;
610
611 ret = sscanf(buf, "%d", &enable);
612 if (ret != 1 || enable < 0 || enable > 1)
613 return -EINVAL;
614
615 if (cpufreq_boost_trigger_state(enable)) {
616 pr_err("%s: Cannot %s BOOST!\n",
617 __func__, enable ? "enable" : "disable");
618 return -EINVAL;
619 }
620
621 pr_debug("%s: cpufreq BOOST %s\n",
622 __func__, enable ? "enabled" : "disabled");
623
624 return count;
625 }
626 define_one_global_rw(boost);
627
find_governor(const char * str_governor)628 static struct cpufreq_governor *find_governor(const char *str_governor)
629 {
630 struct cpufreq_governor *t;
631
632 for_each_governor(t)
633 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
634 return t;
635
636 return NULL;
637 }
638
get_governor(const char * str_governor)639 static struct cpufreq_governor *get_governor(const char *str_governor)
640 {
641 struct cpufreq_governor *t;
642
643 mutex_lock(&cpufreq_governor_mutex);
644 t = find_governor(str_governor);
645 if (!t)
646 goto unlock;
647
648 if (!try_module_get(t->owner))
649 t = NULL;
650
651 unlock:
652 mutex_unlock(&cpufreq_governor_mutex);
653
654 return t;
655 }
656
cpufreq_parse_policy(char * str_governor)657 static unsigned int cpufreq_parse_policy(char *str_governor)
658 {
659 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
660 return CPUFREQ_POLICY_PERFORMANCE;
661
662 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
663 return CPUFREQ_POLICY_POWERSAVE;
664
665 return CPUFREQ_POLICY_UNKNOWN;
666 }
667
668 /**
669 * cpufreq_parse_governor - parse a governor string only for has_target()
670 * @str_governor: Governor name.
671 */
cpufreq_parse_governor(char * str_governor)672 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
673 {
674 struct cpufreq_governor *t;
675
676 t = get_governor(str_governor);
677 if (t)
678 return t;
679
680 if (request_module("cpufreq_%s", str_governor))
681 return NULL;
682
683 return get_governor(str_governor);
684 }
685
686 /*
687 * cpufreq_per_cpu_attr_read() / show_##file_name() -
688 * print out cpufreq information
689 *
690 * Write out information from cpufreq_driver->policy[cpu]; object must be
691 * "unsigned int".
692 */
693
694 #define show_one(file_name, object) \
695 static ssize_t show_##file_name \
696 (struct cpufreq_policy *policy, char *buf) \
697 { \
698 return sprintf(buf, "%u\n", policy->object); \
699 }
700
show_cpuinfo_max_freq(struct cpufreq_policy * policy,char * buf)701 static ssize_t show_cpuinfo_max_freq(struct cpufreq_policy *policy, char *buf)
702 {
703 unsigned int max_freq = policy->cpuinfo.max_freq;
704
705 trace_android_rvh_show_max_freq(policy, &max_freq);
706 return sprintf(buf, "%u\n", max_freq);
707 }
708
709 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
710 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
711 show_one(scaling_min_freq, min);
712 show_one(scaling_max_freq, max);
713
arch_freq_get_on_cpu(int cpu)714 __weak unsigned int arch_freq_get_on_cpu(int cpu)
715 {
716 return 0;
717 }
718
show_scaling_cur_freq(struct cpufreq_policy * policy,char * buf)719 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
720 {
721 ssize_t ret;
722 unsigned int freq;
723
724 freq = arch_freq_get_on_cpu(policy->cpu);
725 if (freq)
726 ret = sprintf(buf, "%u\n", freq);
727 else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
728 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
729 else
730 ret = sprintf(buf, "%u\n", policy->cur);
731 return ret;
732 }
733
734 /*
735 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
736 */
737 #define store_one(file_name, object) \
738 static ssize_t store_##file_name \
739 (struct cpufreq_policy *policy, const char *buf, size_t count) \
740 { \
741 unsigned long val; \
742 int ret; \
743 \
744 ret = sscanf(buf, "%lu", &val); \
745 if (ret != 1) \
746 return -EINVAL; \
747 \
748 ret = freq_qos_update_request(policy->object##_freq_req, val);\
749 return ret >= 0 ? count : ret; \
750 }
751
752 store_one(scaling_min_freq, min);
753 store_one(scaling_max_freq, max);
754
755 /*
756 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
757 */
show_cpuinfo_cur_freq(struct cpufreq_policy * policy,char * buf)758 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
759 char *buf)
760 {
761 unsigned int cur_freq = __cpufreq_get(policy);
762
763 if (cur_freq)
764 return sprintf(buf, "%u\n", cur_freq);
765
766 return sprintf(buf, "<unknown>\n");
767 }
768
769 /*
770 * show_scaling_governor - show the current policy for the specified CPU
771 */
show_scaling_governor(struct cpufreq_policy * policy,char * buf)772 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
773 {
774 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
775 return sprintf(buf, "powersave\n");
776 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
777 return sprintf(buf, "performance\n");
778 else if (policy->governor)
779 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
780 policy->governor->name);
781 return -EINVAL;
782 }
783
784 /*
785 * store_scaling_governor - store policy for the specified CPU
786 */
store_scaling_governor(struct cpufreq_policy * policy,const char * buf,size_t count)787 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
788 const char *buf, size_t count)
789 {
790 char str_governor[16];
791 int ret;
792
793 ret = sscanf(buf, "%15s", str_governor);
794 if (ret != 1)
795 return -EINVAL;
796
797 if (cpufreq_driver->setpolicy) {
798 unsigned int new_pol;
799
800 new_pol = cpufreq_parse_policy(str_governor);
801 if (!new_pol)
802 return -EINVAL;
803
804 ret = cpufreq_set_policy(policy, NULL, new_pol);
805 } else {
806 struct cpufreq_governor *new_gov;
807
808 new_gov = cpufreq_parse_governor(str_governor);
809 if (!new_gov)
810 return -EINVAL;
811
812 ret = cpufreq_set_policy(policy, new_gov,
813 CPUFREQ_POLICY_UNKNOWN);
814
815 module_put(new_gov->owner);
816 }
817
818 return ret ? ret : count;
819 }
820
821 /*
822 * show_scaling_driver - show the cpufreq driver currently loaded
823 */
show_scaling_driver(struct cpufreq_policy * policy,char * buf)824 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
825 {
826 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
827 }
828
829 /*
830 * show_scaling_available_governors - show the available CPUfreq governors
831 */
show_scaling_available_governors(struct cpufreq_policy * policy,char * buf)832 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
833 char *buf)
834 {
835 ssize_t i = 0;
836 struct cpufreq_governor *t;
837
838 if (!has_target()) {
839 i += sprintf(buf, "performance powersave");
840 goto out;
841 }
842
843 mutex_lock(&cpufreq_governor_mutex);
844 for_each_governor(t) {
845 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
846 - (CPUFREQ_NAME_LEN + 2)))
847 break;
848 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
849 }
850 mutex_unlock(&cpufreq_governor_mutex);
851 out:
852 i += sprintf(&buf[i], "\n");
853 return i;
854 }
855
cpufreq_show_cpus(const struct cpumask * mask,char * buf)856 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
857 {
858 ssize_t i = 0;
859 unsigned int cpu;
860
861 for_each_cpu(cpu, mask) {
862 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
863 if (i >= (PAGE_SIZE - 5))
864 break;
865 }
866
867 /* Remove the extra space at the end */
868 i--;
869
870 i += sprintf(&buf[i], "\n");
871 return i;
872 }
873 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
874
875 /*
876 * show_related_cpus - show the CPUs affected by each transition even if
877 * hw coordination is in use
878 */
show_related_cpus(struct cpufreq_policy * policy,char * buf)879 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
880 {
881 return cpufreq_show_cpus(policy->related_cpus, buf);
882 }
883
884 /*
885 * show_affected_cpus - show the CPUs affected by each transition
886 */
show_affected_cpus(struct cpufreq_policy * policy,char * buf)887 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
888 {
889 return cpufreq_show_cpus(policy->cpus, buf);
890 }
891
store_scaling_setspeed(struct cpufreq_policy * policy,const char * buf,size_t count)892 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
893 const char *buf, size_t count)
894 {
895 unsigned int freq = 0;
896 unsigned int ret;
897
898 if (!policy->governor || !policy->governor->store_setspeed)
899 return -EINVAL;
900
901 ret = sscanf(buf, "%u", &freq);
902 if (ret != 1)
903 return -EINVAL;
904
905 policy->governor->store_setspeed(policy, freq);
906
907 return count;
908 }
909
show_scaling_setspeed(struct cpufreq_policy * policy,char * buf)910 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
911 {
912 if (!policy->governor || !policy->governor->show_setspeed)
913 return sprintf(buf, "<unsupported>\n");
914
915 return policy->governor->show_setspeed(policy, buf);
916 }
917
918 /*
919 * show_bios_limit - show the current cpufreq HW/BIOS limitation
920 */
show_bios_limit(struct cpufreq_policy * policy,char * buf)921 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
922 {
923 unsigned int limit;
924 int ret;
925 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
926 if (!ret)
927 return sprintf(buf, "%u\n", limit);
928 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
929 }
930
931 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
932 cpufreq_freq_attr_ro(cpuinfo_min_freq);
933 cpufreq_freq_attr_ro(cpuinfo_max_freq);
934 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
935 cpufreq_freq_attr_ro(scaling_available_governors);
936 cpufreq_freq_attr_ro(scaling_driver);
937 cpufreq_freq_attr_ro(scaling_cur_freq);
938 cpufreq_freq_attr_ro(bios_limit);
939 cpufreq_freq_attr_ro(related_cpus);
940 cpufreq_freq_attr_ro(affected_cpus);
941 cpufreq_freq_attr_rw(scaling_min_freq);
942 cpufreq_freq_attr_rw(scaling_max_freq);
943 cpufreq_freq_attr_rw(scaling_governor);
944 cpufreq_freq_attr_rw(scaling_setspeed);
945
946 static struct attribute *cpufreq_attrs[] = {
947 &cpuinfo_min_freq.attr,
948 &cpuinfo_max_freq.attr,
949 &cpuinfo_transition_latency.attr,
950 &scaling_min_freq.attr,
951 &scaling_max_freq.attr,
952 &affected_cpus.attr,
953 &related_cpus.attr,
954 &scaling_governor.attr,
955 &scaling_driver.attr,
956 &scaling_available_governors.attr,
957 &scaling_setspeed.attr,
958 NULL
959 };
960 ATTRIBUTE_GROUPS(cpufreq);
961
962 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
963 #define to_attr(a) container_of(a, struct freq_attr, attr)
964
show(struct kobject * kobj,struct attribute * attr,char * buf)965 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
966 {
967 struct cpufreq_policy *policy = to_policy(kobj);
968 struct freq_attr *fattr = to_attr(attr);
969 ssize_t ret = -EBUSY;
970
971 if (!fattr->show)
972 return -EIO;
973
974 down_read(&policy->rwsem);
975 if (likely(!policy_is_inactive(policy)))
976 ret = fattr->show(policy, buf);
977 up_read(&policy->rwsem);
978
979 return ret;
980 }
981
store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)982 static ssize_t store(struct kobject *kobj, struct attribute *attr,
983 const char *buf, size_t count)
984 {
985 struct cpufreq_policy *policy = to_policy(kobj);
986 struct freq_attr *fattr = to_attr(attr);
987 ssize_t ret = -EBUSY;
988
989 if (!fattr->store)
990 return -EIO;
991
992 down_write(&policy->rwsem);
993 if (likely(!policy_is_inactive(policy)))
994 ret = fattr->store(policy, buf, count);
995 up_write(&policy->rwsem);
996
997 return ret;
998 }
999
cpufreq_sysfs_release(struct kobject * kobj)1000 static void cpufreq_sysfs_release(struct kobject *kobj)
1001 {
1002 struct cpufreq_policy *policy = to_policy(kobj);
1003 pr_debug("last reference is dropped\n");
1004 complete(&policy->kobj_unregister);
1005 }
1006
1007 static const struct sysfs_ops sysfs_ops = {
1008 .show = show,
1009 .store = store,
1010 };
1011
1012 static struct kobj_type ktype_cpufreq = {
1013 .sysfs_ops = &sysfs_ops,
1014 .default_groups = cpufreq_groups,
1015 .release = cpufreq_sysfs_release,
1016 };
1017
add_cpu_dev_symlink(struct cpufreq_policy * policy,unsigned int cpu,struct device * dev)1018 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1019 struct device *dev)
1020 {
1021 if (unlikely(!dev))
1022 return;
1023
1024 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1025 return;
1026
1027 dev_dbg(dev, "%s: Adding symlink\n", __func__);
1028 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1029 dev_err(dev, "cpufreq symlink creation failed\n");
1030 }
1031
remove_cpu_dev_symlink(struct cpufreq_policy * policy,int cpu,struct device * dev)1032 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1033 struct device *dev)
1034 {
1035 dev_dbg(dev, "%s: Removing symlink\n", __func__);
1036 sysfs_remove_link(&dev->kobj, "cpufreq");
1037 cpumask_clear_cpu(cpu, policy->real_cpus);
1038 }
1039
cpufreq_add_dev_interface(struct cpufreq_policy * policy)1040 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1041 {
1042 struct freq_attr **drv_attr;
1043 int ret = 0;
1044
1045 /* set up files for this cpu device */
1046 drv_attr = cpufreq_driver->attr;
1047 while (drv_attr && *drv_attr) {
1048 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1049 if (ret)
1050 return ret;
1051 drv_attr++;
1052 }
1053 if (cpufreq_driver->get) {
1054 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1055 if (ret)
1056 return ret;
1057 }
1058
1059 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1060 if (ret)
1061 return ret;
1062
1063 if (cpufreq_driver->bios_limit) {
1064 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1065 if (ret)
1066 return ret;
1067 }
1068
1069 return 0;
1070 }
1071
cpufreq_init_policy(struct cpufreq_policy * policy)1072 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1073 {
1074 struct cpufreq_governor *gov = NULL;
1075 unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1076 int ret;
1077
1078 if (has_target()) {
1079 /* Update policy governor to the one used before hotplug. */
1080 gov = get_governor(policy->last_governor);
1081 if (gov) {
1082 pr_debug("Restoring governor %s for cpu %d\n",
1083 gov->name, policy->cpu);
1084 } else {
1085 gov = get_governor(default_governor);
1086 }
1087
1088 if (!gov) {
1089 gov = cpufreq_default_governor();
1090 __module_get(gov->owner);
1091 }
1092
1093 } else {
1094
1095 /* Use the default policy if there is no last_policy. */
1096 if (policy->last_policy) {
1097 pol = policy->last_policy;
1098 } else {
1099 pol = cpufreq_parse_policy(default_governor);
1100 /*
1101 * In case the default governor is neither "performance"
1102 * nor "powersave", fall back to the initial policy
1103 * value set by the driver.
1104 */
1105 if (pol == CPUFREQ_POLICY_UNKNOWN)
1106 pol = policy->policy;
1107 }
1108 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1109 pol != CPUFREQ_POLICY_POWERSAVE)
1110 return -ENODATA;
1111 }
1112
1113 ret = cpufreq_set_policy(policy, gov, pol);
1114 if (gov)
1115 module_put(gov->owner);
1116
1117 return ret;
1118 }
1119
cpufreq_add_policy_cpu(struct cpufreq_policy * policy,unsigned int cpu)1120 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1121 {
1122 int ret = 0;
1123
1124 /* Has this CPU been taken care of already? */
1125 if (cpumask_test_cpu(cpu, policy->cpus))
1126 return 0;
1127
1128 down_write(&policy->rwsem);
1129 if (has_target())
1130 cpufreq_stop_governor(policy);
1131
1132 cpumask_set_cpu(cpu, policy->cpus);
1133
1134 if (has_target()) {
1135 ret = cpufreq_start_governor(policy);
1136 if (ret)
1137 pr_err("%s: Failed to start governor\n", __func__);
1138 }
1139 up_write(&policy->rwsem);
1140 return ret;
1141 }
1142
refresh_frequency_limits(struct cpufreq_policy * policy)1143 void refresh_frequency_limits(struct cpufreq_policy *policy)
1144 {
1145 if (!policy_is_inactive(policy)) {
1146 pr_debug("updating policy for CPU %u\n", policy->cpu);
1147
1148 cpufreq_set_policy(policy, policy->governor, policy->policy);
1149 }
1150 }
1151 EXPORT_SYMBOL(refresh_frequency_limits);
1152
handle_update(struct work_struct * work)1153 static void handle_update(struct work_struct *work)
1154 {
1155 struct cpufreq_policy *policy =
1156 container_of(work, struct cpufreq_policy, update);
1157
1158 pr_debug("handle_update for cpu %u called\n", policy->cpu);
1159 down_write(&policy->rwsem);
1160 refresh_frequency_limits(policy);
1161 up_write(&policy->rwsem);
1162 }
1163
cpufreq_notifier_min(struct notifier_block * nb,unsigned long freq,void * data)1164 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1165 void *data)
1166 {
1167 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1168
1169 schedule_work(&policy->update);
1170 return 0;
1171 }
1172
cpufreq_notifier_max(struct notifier_block * nb,unsigned long freq,void * data)1173 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1174 void *data)
1175 {
1176 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1177
1178 schedule_work(&policy->update);
1179 return 0;
1180 }
1181
cpufreq_policy_put_kobj(struct cpufreq_policy * policy)1182 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1183 {
1184 struct kobject *kobj;
1185 struct completion *cmp;
1186
1187 down_write(&policy->rwsem);
1188 cpufreq_stats_free_table(policy);
1189 kobj = &policy->kobj;
1190 cmp = &policy->kobj_unregister;
1191 up_write(&policy->rwsem);
1192 kobject_put(kobj);
1193
1194 /*
1195 * We need to make sure that the underlying kobj is
1196 * actually not referenced anymore by anybody before we
1197 * proceed with unloading.
1198 */
1199 pr_debug("waiting for dropping of refcount\n");
1200 wait_for_completion(cmp);
1201 pr_debug("wait complete\n");
1202 }
1203
cpufreq_policy_alloc(unsigned int cpu)1204 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1205 {
1206 struct cpufreq_policy *policy;
1207 struct device *dev = get_cpu_device(cpu);
1208 int ret;
1209
1210 if (!dev)
1211 return NULL;
1212
1213 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1214 if (!policy)
1215 return NULL;
1216
1217 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1218 goto err_free_policy;
1219
1220 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1221 goto err_free_cpumask;
1222
1223 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1224 goto err_free_rcpumask;
1225
1226 init_completion(&policy->kobj_unregister);
1227 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1228 cpufreq_global_kobject, "policy%u", cpu);
1229 if (ret) {
1230 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1231 /*
1232 * The entire policy object will be freed below, but the extra
1233 * memory allocated for the kobject name needs to be freed by
1234 * releasing the kobject.
1235 */
1236 kobject_put(&policy->kobj);
1237 goto err_free_real_cpus;
1238 }
1239
1240 freq_constraints_init(&policy->constraints);
1241
1242 policy->nb_min.notifier_call = cpufreq_notifier_min;
1243 policy->nb_max.notifier_call = cpufreq_notifier_max;
1244
1245 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1246 &policy->nb_min);
1247 if (ret) {
1248 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1249 ret, cpumask_pr_args(policy->cpus));
1250 goto err_kobj_remove;
1251 }
1252
1253 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1254 &policy->nb_max);
1255 if (ret) {
1256 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1257 ret, cpumask_pr_args(policy->cpus));
1258 goto err_min_qos_notifier;
1259 }
1260
1261 INIT_LIST_HEAD(&policy->policy_list);
1262 init_rwsem(&policy->rwsem);
1263 spin_lock_init(&policy->transition_lock);
1264 init_waitqueue_head(&policy->transition_wait);
1265 INIT_WORK(&policy->update, handle_update);
1266
1267 policy->cpu = cpu;
1268 return policy;
1269
1270 err_min_qos_notifier:
1271 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1272 &policy->nb_min);
1273 err_kobj_remove:
1274 cpufreq_policy_put_kobj(policy);
1275 err_free_real_cpus:
1276 free_cpumask_var(policy->real_cpus);
1277 err_free_rcpumask:
1278 free_cpumask_var(policy->related_cpus);
1279 err_free_cpumask:
1280 free_cpumask_var(policy->cpus);
1281 err_free_policy:
1282 kfree(policy);
1283
1284 return NULL;
1285 }
1286
cpufreq_policy_free(struct cpufreq_policy * policy)1287 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1288 {
1289 unsigned long flags;
1290 int cpu;
1291
1292 /*
1293 * The callers must ensure the policy is inactive by now, to avoid any
1294 * races with show()/store() callbacks.
1295 */
1296 if (unlikely(!policy_is_inactive(policy)))
1297 pr_warn("%s: Freeing active policy\n", __func__);
1298
1299 /* Remove policy from list */
1300 write_lock_irqsave(&cpufreq_driver_lock, flags);
1301 list_del(&policy->policy_list);
1302
1303 for_each_cpu(cpu, policy->related_cpus)
1304 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1305 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1306
1307 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1308 &policy->nb_max);
1309 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1310 &policy->nb_min);
1311
1312 /* Cancel any pending policy->update work before freeing the policy. */
1313 cancel_work_sync(&policy->update);
1314
1315 if (policy->max_freq_req) {
1316 /*
1317 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1318 * notification, since CPUFREQ_CREATE_POLICY notification was
1319 * sent after adding max_freq_req earlier.
1320 */
1321 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1322 CPUFREQ_REMOVE_POLICY, policy);
1323 freq_qos_remove_request(policy->max_freq_req);
1324 }
1325
1326 freq_qos_remove_request(policy->min_freq_req);
1327 kfree(policy->min_freq_req);
1328
1329 cpufreq_policy_put_kobj(policy);
1330 free_cpumask_var(policy->real_cpus);
1331 free_cpumask_var(policy->related_cpus);
1332 free_cpumask_var(policy->cpus);
1333 kfree(policy);
1334 }
1335
cpufreq_online(unsigned int cpu)1336 static int cpufreq_online(unsigned int cpu)
1337 {
1338 struct cpufreq_policy *policy;
1339 bool new_policy;
1340 unsigned long flags;
1341 unsigned int j;
1342 int ret;
1343
1344 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1345
1346 /* Check if this CPU already has a policy to manage it */
1347 policy = per_cpu(cpufreq_cpu_data, cpu);
1348 if (policy) {
1349 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1350 if (!policy_is_inactive(policy))
1351 return cpufreq_add_policy_cpu(policy, cpu);
1352
1353 /* This is the only online CPU for the policy. Start over. */
1354 new_policy = false;
1355 down_write(&policy->rwsem);
1356 policy->cpu = cpu;
1357 policy->governor = NULL;
1358 } else {
1359 new_policy = true;
1360 policy = cpufreq_policy_alloc(cpu);
1361 if (!policy)
1362 return -ENOMEM;
1363 down_write(&policy->rwsem);
1364 }
1365
1366 if (!new_policy && cpufreq_driver->online) {
1367 /* Recover policy->cpus using related_cpus */
1368 cpumask_copy(policy->cpus, policy->related_cpus);
1369
1370 ret = cpufreq_driver->online(policy);
1371 if (ret) {
1372 pr_debug("%s: %d: initialization failed\n", __func__,
1373 __LINE__);
1374 goto out_exit_policy;
1375 }
1376 } else {
1377 cpumask_copy(policy->cpus, cpumask_of(cpu));
1378
1379 /*
1380 * Call driver. From then on the cpufreq must be able
1381 * to accept all calls to ->verify and ->setpolicy for this CPU.
1382 */
1383 ret = cpufreq_driver->init(policy);
1384 if (ret) {
1385 pr_debug("%s: %d: initialization failed\n", __func__,
1386 __LINE__);
1387 goto out_free_policy;
1388 }
1389
1390 /*
1391 * The initialization has succeeded and the policy is online.
1392 * If there is a problem with its frequency table, take it
1393 * offline and drop it.
1394 */
1395 ret = cpufreq_table_validate_and_sort(policy);
1396 if (ret)
1397 goto out_offline_policy;
1398
1399 /* related_cpus should at least include policy->cpus. */
1400 cpumask_copy(policy->related_cpus, policy->cpus);
1401 }
1402
1403 /*
1404 * affected cpus must always be the one, which are online. We aren't
1405 * managing offline cpus here.
1406 */
1407 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1408
1409 if (new_policy) {
1410 for_each_cpu(j, policy->related_cpus) {
1411 per_cpu(cpufreq_cpu_data, j) = policy;
1412 add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1413 }
1414
1415 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1416 GFP_KERNEL);
1417 if (!policy->min_freq_req) {
1418 ret = -ENOMEM;
1419 goto out_destroy_policy;
1420 }
1421
1422 ret = freq_qos_add_request(&policy->constraints,
1423 policy->min_freq_req, FREQ_QOS_MIN,
1424 FREQ_QOS_MIN_DEFAULT_VALUE);
1425 if (ret < 0) {
1426 /*
1427 * So we don't call freq_qos_remove_request() for an
1428 * uninitialized request.
1429 */
1430 kfree(policy->min_freq_req);
1431 policy->min_freq_req = NULL;
1432 goto out_destroy_policy;
1433 }
1434
1435 /*
1436 * This must be initialized right here to avoid calling
1437 * freq_qos_remove_request() on uninitialized request in case
1438 * of errors.
1439 */
1440 policy->max_freq_req = policy->min_freq_req + 1;
1441
1442 ret = freq_qos_add_request(&policy->constraints,
1443 policy->max_freq_req, FREQ_QOS_MAX,
1444 FREQ_QOS_MAX_DEFAULT_VALUE);
1445 if (ret < 0) {
1446 policy->max_freq_req = NULL;
1447 goto out_destroy_policy;
1448 }
1449
1450 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1451 CPUFREQ_CREATE_POLICY, policy);
1452 }
1453
1454 if (cpufreq_driver->get && has_target()) {
1455 policy->cur = cpufreq_driver->get(policy->cpu);
1456 if (!policy->cur) {
1457 ret = -EIO;
1458 pr_err("%s: ->get() failed\n", __func__);
1459 goto out_destroy_policy;
1460 }
1461 }
1462
1463 /*
1464 * Sometimes boot loaders set CPU frequency to a value outside of
1465 * frequency table present with cpufreq core. In such cases CPU might be
1466 * unstable if it has to run on that frequency for long duration of time
1467 * and so its better to set it to a frequency which is specified in
1468 * freq-table. This also makes cpufreq stats inconsistent as
1469 * cpufreq-stats would fail to register because current frequency of CPU
1470 * isn't found in freq-table.
1471 *
1472 * Because we don't want this change to effect boot process badly, we go
1473 * for the next freq which is >= policy->cur ('cur' must be set by now,
1474 * otherwise we will end up setting freq to lowest of the table as 'cur'
1475 * is initialized to zero).
1476 *
1477 * We are passing target-freq as "policy->cur - 1" otherwise
1478 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1479 * equal to target-freq.
1480 */
1481 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1482 && has_target()) {
1483 unsigned int old_freq = policy->cur;
1484
1485 /* Are we running at unknown frequency ? */
1486 ret = cpufreq_frequency_table_get_index(policy, old_freq);
1487 if (ret == -EINVAL) {
1488 ret = __cpufreq_driver_target(policy, old_freq - 1,
1489 CPUFREQ_RELATION_L);
1490
1491 /*
1492 * Reaching here after boot in a few seconds may not
1493 * mean that system will remain stable at "unknown"
1494 * frequency for longer duration. Hence, a BUG_ON().
1495 */
1496 BUG_ON(ret);
1497 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1498 __func__, policy->cpu, old_freq, policy->cur);
1499 }
1500 }
1501
1502 if (new_policy) {
1503 ret = cpufreq_add_dev_interface(policy);
1504 if (ret)
1505 goto out_destroy_policy;
1506
1507 cpufreq_stats_create_table(policy);
1508 cpufreq_times_create_policy(policy);
1509
1510 write_lock_irqsave(&cpufreq_driver_lock, flags);
1511 list_add(&policy->policy_list, &cpufreq_policy_list);
1512 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1513
1514 /*
1515 * Register with the energy model before
1516 * sched_cpufreq_governor_change() is called, which will result
1517 * in rebuilding of the sched domains, which should only be done
1518 * once the energy model is properly initialized for the policy
1519 * first.
1520 *
1521 * Also, this should be called before the policy is registered
1522 * with cooling framework.
1523 */
1524 if (cpufreq_driver->register_em)
1525 cpufreq_driver->register_em(policy);
1526 }
1527
1528 ret = cpufreq_init_policy(policy);
1529 if (ret) {
1530 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1531 __func__, cpu, ret);
1532 goto out_destroy_policy;
1533 }
1534
1535 up_write(&policy->rwsem);
1536
1537 kobject_uevent(&policy->kobj, KOBJ_ADD);
1538
1539 /* Callback for handling stuff after policy is ready */
1540 if (cpufreq_driver->ready)
1541 cpufreq_driver->ready(policy);
1542
1543 /* Register cpufreq cooling only for a new policy */
1544 if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver)) {
1545 policy->cdev = of_cpufreq_cooling_register(policy);
1546 trace_android_vh_thermal_register(policy);
1547 }
1548
1549 pr_debug("initialization complete\n");
1550
1551 return 0;
1552
1553 out_destroy_policy:
1554 for_each_cpu(j, policy->real_cpus)
1555 remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1556
1557 out_offline_policy:
1558 if (cpufreq_driver->offline)
1559 cpufreq_driver->offline(policy);
1560
1561 out_exit_policy:
1562 if (cpufreq_driver->exit)
1563 cpufreq_driver->exit(policy);
1564
1565 out_free_policy:
1566 cpumask_clear(policy->cpus);
1567 up_write(&policy->rwsem);
1568
1569 cpufreq_policy_free(policy);
1570 return ret;
1571 }
1572
1573 /**
1574 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1575 * @dev: CPU device.
1576 * @sif: Subsystem interface structure pointer (not used)
1577 */
cpufreq_add_dev(struct device * dev,struct subsys_interface * sif)1578 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1579 {
1580 struct cpufreq_policy *policy;
1581 unsigned cpu = dev->id;
1582 int ret;
1583
1584 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1585
1586 if (cpu_online(cpu)) {
1587 ret = cpufreq_online(cpu);
1588 if (ret)
1589 return ret;
1590 }
1591
1592 /* Create sysfs link on CPU registration */
1593 policy = per_cpu(cpufreq_cpu_data, cpu);
1594 if (policy)
1595 add_cpu_dev_symlink(policy, cpu, dev);
1596
1597 return 0;
1598 }
1599
__cpufreq_offline(unsigned int cpu,struct cpufreq_policy * policy)1600 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1601 {
1602 int ret;
1603
1604 if (has_target())
1605 cpufreq_stop_governor(policy);
1606
1607 cpumask_clear_cpu(cpu, policy->cpus);
1608
1609 if (!policy_is_inactive(policy)) {
1610 /* Nominate a new CPU if necessary. */
1611 if (cpu == policy->cpu)
1612 policy->cpu = cpumask_any(policy->cpus);
1613
1614 /* Start the governor again for the active policy. */
1615 if (has_target()) {
1616 ret = cpufreq_start_governor(policy);
1617 if (ret)
1618 pr_err("%s: Failed to start governor\n", __func__);
1619 }
1620
1621 return;
1622 }
1623
1624 if (has_target())
1625 strncpy(policy->last_governor, policy->governor->name,
1626 CPUFREQ_NAME_LEN);
1627 else
1628 policy->last_policy = policy->policy;
1629
1630 if (has_target())
1631 cpufreq_exit_governor(policy);
1632
1633 /*
1634 * Perform the ->offline() during light-weight tear-down, as
1635 * that allows fast recovery when the CPU comes back.
1636 */
1637 if (cpufreq_driver->offline) {
1638 cpufreq_driver->offline(policy);
1639 } else if (cpufreq_driver->exit) {
1640 cpufreq_driver->exit(policy);
1641 policy->freq_table = NULL;
1642 }
1643 }
1644
cpufreq_offline(unsigned int cpu)1645 static int cpufreq_offline(unsigned int cpu)
1646 {
1647 struct cpufreq_policy *policy;
1648
1649 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1650
1651 policy = cpufreq_cpu_get_raw(cpu);
1652 if (!policy) {
1653 pr_debug("%s: No cpu_data found\n", __func__);
1654 return 0;
1655 }
1656
1657 down_write(&policy->rwsem);
1658
1659 __cpufreq_offline(cpu, policy);
1660
1661 up_write(&policy->rwsem);
1662 return 0;
1663 }
1664
1665 /*
1666 * cpufreq_remove_dev - remove a CPU device
1667 *
1668 * Removes the cpufreq interface for a CPU device.
1669 */
cpufreq_remove_dev(struct device * dev,struct subsys_interface * sif)1670 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1671 {
1672 unsigned int cpu = dev->id;
1673 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1674
1675 if (!policy)
1676 return;
1677
1678 down_write(&policy->rwsem);
1679
1680 if (cpu_online(cpu))
1681 __cpufreq_offline(cpu, policy);
1682
1683 remove_cpu_dev_symlink(policy, cpu, dev);
1684
1685 if (!cpumask_empty(policy->real_cpus)) {
1686 up_write(&policy->rwsem);
1687 return;
1688 }
1689
1690 /*
1691 * Unregister cpufreq cooling once all the CPUs of the policy are
1692 * removed.
1693 */
1694 if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1695 cpufreq_cooling_unregister(policy->cdev);
1696 trace_android_vh_thermal_unregister(policy);
1697 policy->cdev = NULL;
1698 }
1699
1700 /* We did light-weight exit earlier, do full tear down now */
1701 if (cpufreq_driver->offline)
1702 cpufreq_driver->exit(policy);
1703
1704 up_write(&policy->rwsem);
1705
1706 cpufreq_policy_free(policy);
1707 }
1708
1709 /**
1710 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1711 * @policy: Policy managing CPUs.
1712 * @new_freq: New CPU frequency.
1713 *
1714 * Adjust to the current frequency first and clean up later by either calling
1715 * cpufreq_update_policy(), or scheduling handle_update().
1716 */
cpufreq_out_of_sync(struct cpufreq_policy * policy,unsigned int new_freq)1717 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1718 unsigned int new_freq)
1719 {
1720 struct cpufreq_freqs freqs;
1721
1722 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1723 policy->cur, new_freq);
1724
1725 freqs.old = policy->cur;
1726 freqs.new = new_freq;
1727
1728 cpufreq_freq_transition_begin(policy, &freqs);
1729 cpufreq_freq_transition_end(policy, &freqs, 0);
1730 }
1731
cpufreq_verify_current_freq(struct cpufreq_policy * policy,bool update)1732 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1733 {
1734 unsigned int new_freq;
1735
1736 new_freq = cpufreq_driver->get(policy->cpu);
1737 if (!new_freq)
1738 return 0;
1739
1740 /*
1741 * If fast frequency switching is used with the given policy, the check
1742 * against policy->cur is pointless, so skip it in that case.
1743 */
1744 if (policy->fast_switch_enabled || !has_target())
1745 return new_freq;
1746
1747 if (policy->cur != new_freq) {
1748 /*
1749 * For some platforms, the frequency returned by hardware may be
1750 * slightly different from what is provided in the frequency
1751 * table, for example hardware may return 499 MHz instead of 500
1752 * MHz. In such cases it is better to avoid getting into
1753 * unnecessary frequency updates.
1754 */
1755 if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1756 return policy->cur;
1757
1758 cpufreq_out_of_sync(policy, new_freq);
1759 if (update)
1760 schedule_work(&policy->update);
1761 }
1762
1763 return new_freq;
1764 }
1765
1766 /**
1767 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1768 * @cpu: CPU number
1769 *
1770 * This is the last known freq, without actually getting it from the driver.
1771 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1772 */
cpufreq_quick_get(unsigned int cpu)1773 unsigned int cpufreq_quick_get(unsigned int cpu)
1774 {
1775 struct cpufreq_policy *policy;
1776 unsigned int ret_freq = 0;
1777 unsigned long flags;
1778
1779 read_lock_irqsave(&cpufreq_driver_lock, flags);
1780
1781 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1782 ret_freq = cpufreq_driver->get(cpu);
1783 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1784 return ret_freq;
1785 }
1786
1787 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1788
1789 policy = cpufreq_cpu_get(cpu);
1790 if (policy) {
1791 ret_freq = policy->cur;
1792 cpufreq_cpu_put(policy);
1793 }
1794
1795 return ret_freq;
1796 }
1797 EXPORT_SYMBOL(cpufreq_quick_get);
1798
1799 /**
1800 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1801 * @cpu: CPU number
1802 *
1803 * Just return the max possible frequency for a given CPU.
1804 */
cpufreq_quick_get_max(unsigned int cpu)1805 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1806 {
1807 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1808 unsigned int ret_freq = 0;
1809
1810 if (policy) {
1811 ret_freq = policy->max;
1812 cpufreq_cpu_put(policy);
1813 }
1814
1815 return ret_freq;
1816 }
1817 EXPORT_SYMBOL(cpufreq_quick_get_max);
1818
1819 /**
1820 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1821 * @cpu: CPU number
1822 *
1823 * The default return value is the max_freq field of cpuinfo.
1824 */
cpufreq_get_hw_max_freq(unsigned int cpu)1825 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1826 {
1827 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1828 unsigned int ret_freq = 0;
1829
1830 if (policy) {
1831 ret_freq = policy->cpuinfo.max_freq;
1832 cpufreq_cpu_put(policy);
1833 }
1834
1835 return ret_freq;
1836 }
1837 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1838
__cpufreq_get(struct cpufreq_policy * policy)1839 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1840 {
1841 if (unlikely(policy_is_inactive(policy)))
1842 return 0;
1843
1844 return cpufreq_verify_current_freq(policy, true);
1845 }
1846
1847 /**
1848 * cpufreq_get - get the current CPU frequency (in kHz)
1849 * @cpu: CPU number
1850 *
1851 * Get the CPU current (static) CPU frequency
1852 */
cpufreq_get(unsigned int cpu)1853 unsigned int cpufreq_get(unsigned int cpu)
1854 {
1855 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1856 unsigned int ret_freq = 0;
1857
1858 if (policy) {
1859 down_read(&policy->rwsem);
1860 if (cpufreq_driver->get)
1861 ret_freq = __cpufreq_get(policy);
1862 up_read(&policy->rwsem);
1863
1864 cpufreq_cpu_put(policy);
1865 }
1866
1867 return ret_freq;
1868 }
1869 EXPORT_SYMBOL(cpufreq_get);
1870
1871 static struct subsys_interface cpufreq_interface = {
1872 .name = "cpufreq",
1873 .subsys = &cpu_subsys,
1874 .add_dev = cpufreq_add_dev,
1875 .remove_dev = cpufreq_remove_dev,
1876 };
1877
1878 /*
1879 * In case platform wants some specific frequency to be configured
1880 * during suspend..
1881 */
cpufreq_generic_suspend(struct cpufreq_policy * policy)1882 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1883 {
1884 int ret;
1885
1886 if (!policy->suspend_freq) {
1887 pr_debug("%s: suspend_freq not defined\n", __func__);
1888 return 0;
1889 }
1890
1891 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1892 policy->suspend_freq);
1893
1894 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1895 CPUFREQ_RELATION_H);
1896 if (ret)
1897 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1898 __func__, policy->suspend_freq, ret);
1899
1900 return ret;
1901 }
1902 EXPORT_SYMBOL(cpufreq_generic_suspend);
1903
1904 /**
1905 * cpufreq_suspend() - Suspend CPUFreq governors.
1906 *
1907 * Called during system wide Suspend/Hibernate cycles for suspending governors
1908 * as some platforms can't change frequency after this point in suspend cycle.
1909 * Because some of the devices (like: i2c, regulators, etc) they use for
1910 * changing frequency are suspended quickly after this point.
1911 */
cpufreq_suspend(void)1912 void cpufreq_suspend(void)
1913 {
1914 struct cpufreq_policy *policy;
1915
1916 if (!cpufreq_driver)
1917 return;
1918
1919 if (!has_target() && !cpufreq_driver->suspend)
1920 goto suspend;
1921
1922 pr_debug("%s: Suspending Governors\n", __func__);
1923
1924 for_each_active_policy(policy) {
1925 if (has_target()) {
1926 down_write(&policy->rwsem);
1927 cpufreq_stop_governor(policy);
1928 up_write(&policy->rwsem);
1929 }
1930
1931 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1932 pr_err("%s: Failed to suspend driver: %s\n", __func__,
1933 cpufreq_driver->name);
1934 }
1935
1936 suspend:
1937 cpufreq_suspended = true;
1938 }
1939
1940 /**
1941 * cpufreq_resume() - Resume CPUFreq governors.
1942 *
1943 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1944 * are suspended with cpufreq_suspend().
1945 */
cpufreq_resume(void)1946 void cpufreq_resume(void)
1947 {
1948 struct cpufreq_policy *policy;
1949 int ret;
1950
1951 if (!cpufreq_driver)
1952 return;
1953
1954 if (unlikely(!cpufreq_suspended))
1955 return;
1956
1957 cpufreq_suspended = false;
1958
1959 if (!has_target() && !cpufreq_driver->resume)
1960 return;
1961
1962 pr_debug("%s: Resuming Governors\n", __func__);
1963
1964 for_each_active_policy(policy) {
1965 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1966 pr_err("%s: Failed to resume driver: %p\n", __func__,
1967 policy);
1968 } else if (has_target()) {
1969 down_write(&policy->rwsem);
1970 ret = cpufreq_start_governor(policy);
1971 up_write(&policy->rwsem);
1972
1973 if (ret)
1974 pr_err("%s: Failed to start governor for policy: %p\n",
1975 __func__, policy);
1976 }
1977 }
1978 }
1979
1980 /**
1981 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1982 * @flags: Flags to test against the current cpufreq driver's flags.
1983 *
1984 * Assumes that the driver is there, so callers must ensure that this is the
1985 * case.
1986 */
cpufreq_driver_test_flags(u16 flags)1987 bool cpufreq_driver_test_flags(u16 flags)
1988 {
1989 return !!(cpufreq_driver->flags & flags);
1990 }
1991 EXPORT_SYMBOL_GPL(cpufreq_driver_test_flags);
1992
1993 /**
1994 * cpufreq_get_current_driver - Return the current driver's name.
1995 *
1996 * Return the name string of the currently registered cpufreq driver or NULL if
1997 * none.
1998 */
cpufreq_get_current_driver(void)1999 const char *cpufreq_get_current_driver(void)
2000 {
2001 if (cpufreq_driver)
2002 return cpufreq_driver->name;
2003
2004 return NULL;
2005 }
2006 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2007
2008 /**
2009 * cpufreq_get_driver_data - Return current driver data.
2010 *
2011 * Return the private data of the currently registered cpufreq driver, or NULL
2012 * if no cpufreq driver has been registered.
2013 */
cpufreq_get_driver_data(void)2014 void *cpufreq_get_driver_data(void)
2015 {
2016 if (cpufreq_driver)
2017 return cpufreq_driver->driver_data;
2018
2019 return NULL;
2020 }
2021 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2022
2023 /*********************************************************************
2024 * NOTIFIER LISTS INTERFACE *
2025 *********************************************************************/
2026
2027 /**
2028 * cpufreq_register_notifier - Register a notifier with cpufreq.
2029 * @nb: notifier function to register.
2030 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2031 *
2032 * Add a notifier to one of two lists: either a list of notifiers that run on
2033 * clock rate changes (once before and once after every transition), or a list
2034 * of notifiers that ron on cpufreq policy changes.
2035 *
2036 * This function may sleep and it has the same return values as
2037 * blocking_notifier_chain_register().
2038 */
cpufreq_register_notifier(struct notifier_block * nb,unsigned int list)2039 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2040 {
2041 int ret;
2042
2043 if (cpufreq_disabled())
2044 return -EINVAL;
2045
2046 switch (list) {
2047 case CPUFREQ_TRANSITION_NOTIFIER:
2048 mutex_lock(&cpufreq_fast_switch_lock);
2049
2050 if (cpufreq_fast_switch_count > 0) {
2051 mutex_unlock(&cpufreq_fast_switch_lock);
2052 return -EBUSY;
2053 }
2054 ret = srcu_notifier_chain_register(
2055 &cpufreq_transition_notifier_list, nb);
2056 if (!ret)
2057 cpufreq_fast_switch_count--;
2058
2059 mutex_unlock(&cpufreq_fast_switch_lock);
2060 break;
2061 case CPUFREQ_POLICY_NOTIFIER:
2062 ret = blocking_notifier_chain_register(
2063 &cpufreq_policy_notifier_list, nb);
2064 break;
2065 default:
2066 ret = -EINVAL;
2067 }
2068
2069 return ret;
2070 }
2071 EXPORT_SYMBOL(cpufreq_register_notifier);
2072
2073 /**
2074 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2075 * @nb: notifier block to be unregistered.
2076 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2077 *
2078 * Remove a notifier from one of the cpufreq notifier lists.
2079 *
2080 * This function may sleep and it has the same return values as
2081 * blocking_notifier_chain_unregister().
2082 */
cpufreq_unregister_notifier(struct notifier_block * nb,unsigned int list)2083 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2084 {
2085 int ret;
2086
2087 if (cpufreq_disabled())
2088 return -EINVAL;
2089
2090 switch (list) {
2091 case CPUFREQ_TRANSITION_NOTIFIER:
2092 mutex_lock(&cpufreq_fast_switch_lock);
2093
2094 ret = srcu_notifier_chain_unregister(
2095 &cpufreq_transition_notifier_list, nb);
2096 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2097 cpufreq_fast_switch_count++;
2098
2099 mutex_unlock(&cpufreq_fast_switch_lock);
2100 break;
2101 case CPUFREQ_POLICY_NOTIFIER:
2102 ret = blocking_notifier_chain_unregister(
2103 &cpufreq_policy_notifier_list, nb);
2104 break;
2105 default:
2106 ret = -EINVAL;
2107 }
2108
2109 return ret;
2110 }
2111 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2112
2113
2114 /*********************************************************************
2115 * GOVERNORS *
2116 *********************************************************************/
2117
2118 /**
2119 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2120 * @policy: cpufreq policy to switch the frequency for.
2121 * @target_freq: New frequency to set (may be approximate).
2122 *
2123 * Carry out a fast frequency switch without sleeping.
2124 *
2125 * The driver's ->fast_switch() callback invoked by this function must be
2126 * suitable for being called from within RCU-sched read-side critical sections
2127 * and it is expected to select the minimum available frequency greater than or
2128 * equal to @target_freq (CPUFREQ_RELATION_L).
2129 *
2130 * This function must not be called if policy->fast_switch_enabled is unset.
2131 *
2132 * Governors calling this function must guarantee that it will never be invoked
2133 * twice in parallel for the same policy and that it will never be called in
2134 * parallel with either ->target() or ->target_index() for the same policy.
2135 *
2136 * Returns the actual frequency set for the CPU.
2137 *
2138 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2139 * error condition, the hardware configuration must be preserved.
2140 */
cpufreq_driver_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)2141 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2142 unsigned int target_freq)
2143 {
2144 unsigned int freq;
2145 unsigned int old_target_freq = target_freq;
2146 int cpu;
2147
2148 target_freq = clamp_val(target_freq, policy->min, policy->max);
2149 trace_android_vh_cpufreq_fast_switch(policy, &target_freq, old_target_freq);
2150 freq = cpufreq_driver->fast_switch(policy, target_freq);
2151
2152 if (!freq)
2153 return 0;
2154
2155 policy->cur = freq;
2156 arch_set_freq_scale(policy->related_cpus, freq,
2157 policy->cpuinfo.max_freq);
2158 cpufreq_stats_record_transition(policy, freq);
2159 cpufreq_times_record_transition(policy, freq);
2160 trace_android_rvh_cpufreq_transition(policy);
2161
2162 if (trace_cpu_frequency_enabled()) {
2163 for_each_cpu(cpu, policy->cpus)
2164 trace_cpu_frequency(freq, cpu);
2165 }
2166
2167 return freq;
2168 }
2169 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2170
2171 /**
2172 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2173 * @cpu: Target CPU.
2174 * @min_perf: Minimum (required) performance level (units of @capacity).
2175 * @target_perf: Target (desired) performance level (units of @capacity).
2176 * @capacity: Capacity of the target CPU.
2177 *
2178 * Carry out a fast performance level switch of @cpu without sleeping.
2179 *
2180 * The driver's ->adjust_perf() callback invoked by this function must be
2181 * suitable for being called from within RCU-sched read-side critical sections
2182 * and it is expected to select a suitable performance level equal to or above
2183 * @min_perf and preferably equal to or below @target_perf.
2184 *
2185 * This function must not be called if policy->fast_switch_enabled is unset.
2186 *
2187 * Governors calling this function must guarantee that it will never be invoked
2188 * twice in parallel for the same CPU and that it will never be called in
2189 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2190 * the same CPU.
2191 */
cpufreq_driver_adjust_perf(unsigned int cpu,unsigned long min_perf,unsigned long target_perf,unsigned long capacity)2192 void cpufreq_driver_adjust_perf(unsigned int cpu,
2193 unsigned long min_perf,
2194 unsigned long target_perf,
2195 unsigned long capacity)
2196 {
2197 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2198 }
2199
2200 /**
2201 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2202 *
2203 * Return 'true' if the ->adjust_perf callback is present for the
2204 * current driver or 'false' otherwise.
2205 */
cpufreq_driver_has_adjust_perf(void)2206 bool cpufreq_driver_has_adjust_perf(void)
2207 {
2208 return !!cpufreq_driver->adjust_perf;
2209 }
2210
2211 /* Must set freqs->new to intermediate frequency */
__target_intermediate(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int index)2212 static int __target_intermediate(struct cpufreq_policy *policy,
2213 struct cpufreq_freqs *freqs, int index)
2214 {
2215 int ret;
2216
2217 freqs->new = cpufreq_driver->get_intermediate(policy, index);
2218
2219 /* We don't need to switch to intermediate freq */
2220 if (!freqs->new)
2221 return 0;
2222
2223 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2224 __func__, policy->cpu, freqs->old, freqs->new);
2225
2226 cpufreq_freq_transition_begin(policy, freqs);
2227 ret = cpufreq_driver->target_intermediate(policy, index);
2228 cpufreq_freq_transition_end(policy, freqs, ret);
2229
2230 if (ret)
2231 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2232 __func__, ret);
2233
2234 return ret;
2235 }
2236
__target_index(struct cpufreq_policy * policy,int index)2237 static int __target_index(struct cpufreq_policy *policy, int index)
2238 {
2239 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2240 unsigned int restore_freq, intermediate_freq = 0;
2241 unsigned int newfreq = policy->freq_table[index].frequency;
2242 int retval = -EINVAL;
2243 bool notify;
2244
2245 if (newfreq == policy->cur)
2246 return 0;
2247
2248 /* Save last value to restore later on errors */
2249 restore_freq = policy->cur;
2250
2251 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2252 if (notify) {
2253 /* Handle switching to intermediate frequency */
2254 if (cpufreq_driver->get_intermediate) {
2255 retval = __target_intermediate(policy, &freqs, index);
2256 if (retval)
2257 return retval;
2258
2259 intermediate_freq = freqs.new;
2260 /* Set old freq to intermediate */
2261 if (intermediate_freq)
2262 freqs.old = freqs.new;
2263 }
2264
2265 freqs.new = newfreq;
2266 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2267 __func__, policy->cpu, freqs.old, freqs.new);
2268
2269 cpufreq_freq_transition_begin(policy, &freqs);
2270 }
2271
2272 retval = cpufreq_driver->target_index(policy, index);
2273 if (retval)
2274 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2275 retval);
2276
2277 if (notify) {
2278 cpufreq_freq_transition_end(policy, &freqs, retval);
2279
2280 /*
2281 * Failed after setting to intermediate freq? Driver should have
2282 * reverted back to initial frequency and so should we. Check
2283 * here for intermediate_freq instead of get_intermediate, in
2284 * case we haven't switched to intermediate freq at all.
2285 */
2286 if (unlikely(retval && intermediate_freq)) {
2287 freqs.old = intermediate_freq;
2288 freqs.new = restore_freq;
2289 cpufreq_freq_transition_begin(policy, &freqs);
2290 cpufreq_freq_transition_end(policy, &freqs, 0);
2291 }
2292 }
2293
2294 return retval;
2295 }
2296
__cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2297 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2298 unsigned int target_freq,
2299 unsigned int relation)
2300 {
2301 unsigned int old_target_freq = target_freq;
2302
2303 if (cpufreq_disabled())
2304 return -ENODEV;
2305
2306 target_freq = __resolve_freq(policy, target_freq, relation);
2307
2308 trace_android_vh_cpufreq_target(policy, &target_freq, old_target_freq);
2309
2310 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2311 policy->cpu, target_freq, relation, old_target_freq);
2312
2313 /*
2314 * This might look like a redundant call as we are checking it again
2315 * after finding index. But it is left intentionally for cases where
2316 * exactly same freq is called again and so we can save on few function
2317 * calls.
2318 */
2319 if (target_freq == policy->cur &&
2320 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2321 return 0;
2322
2323 if (cpufreq_driver->target) {
2324 /*
2325 * If the driver hasn't setup a single inefficient frequency,
2326 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2327 */
2328 if (!policy->efficiencies_available)
2329 relation &= ~CPUFREQ_RELATION_E;
2330
2331 return cpufreq_driver->target(policy, target_freq, relation);
2332 }
2333
2334 if (!cpufreq_driver->target_index)
2335 return -EINVAL;
2336
2337 return __target_index(policy, policy->cached_resolved_idx);
2338 }
2339 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2340
cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2341 int cpufreq_driver_target(struct cpufreq_policy *policy,
2342 unsigned int target_freq,
2343 unsigned int relation)
2344 {
2345 int ret;
2346
2347 down_write(&policy->rwsem);
2348
2349 ret = __cpufreq_driver_target(policy, target_freq, relation);
2350
2351 up_write(&policy->rwsem);
2352
2353 return ret;
2354 }
2355 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2356
cpufreq_fallback_governor(void)2357 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2358 {
2359 return NULL;
2360 }
2361
cpufreq_init_governor(struct cpufreq_policy * policy)2362 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2363 {
2364 int ret;
2365
2366 /* Don't start any governor operations if we are entering suspend */
2367 if (cpufreq_suspended)
2368 return 0;
2369 /*
2370 * Governor might not be initiated here if ACPI _PPC changed
2371 * notification happened, so check it.
2372 */
2373 if (!policy->governor)
2374 return -EINVAL;
2375
2376 /* Platform doesn't want dynamic frequency switching ? */
2377 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2378 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2379 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2380
2381 if (gov) {
2382 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2383 policy->governor->name, gov->name);
2384 policy->governor = gov;
2385 } else {
2386 return -EINVAL;
2387 }
2388 }
2389
2390 if (!try_module_get(policy->governor->owner))
2391 return -EINVAL;
2392
2393 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2394
2395 if (policy->governor->init) {
2396 ret = policy->governor->init(policy);
2397 if (ret) {
2398 module_put(policy->governor->owner);
2399 return ret;
2400 }
2401 }
2402
2403 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2404
2405 return 0;
2406 }
2407
cpufreq_exit_governor(struct cpufreq_policy * policy)2408 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2409 {
2410 if (cpufreq_suspended || !policy->governor)
2411 return;
2412
2413 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2414
2415 if (policy->governor->exit)
2416 policy->governor->exit(policy);
2417
2418 module_put(policy->governor->owner);
2419 }
2420
cpufreq_start_governor(struct cpufreq_policy * policy)2421 int cpufreq_start_governor(struct cpufreq_policy *policy)
2422 {
2423 int ret;
2424
2425 if (cpufreq_suspended)
2426 return 0;
2427
2428 if (!policy->governor)
2429 return -EINVAL;
2430
2431 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2432
2433 if (cpufreq_driver->get)
2434 cpufreq_verify_current_freq(policy, false);
2435
2436 if (policy->governor->start) {
2437 ret = policy->governor->start(policy);
2438 if (ret)
2439 return ret;
2440 }
2441
2442 if (policy->governor->limits)
2443 policy->governor->limits(policy);
2444
2445 return 0;
2446 }
2447
cpufreq_stop_governor(struct cpufreq_policy * policy)2448 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2449 {
2450 if (cpufreq_suspended || !policy->governor)
2451 return;
2452
2453 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2454
2455 if (policy->governor->stop)
2456 policy->governor->stop(policy);
2457 }
2458
cpufreq_governor_limits(struct cpufreq_policy * policy)2459 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2460 {
2461 if (cpufreq_suspended || !policy->governor)
2462 return;
2463
2464 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2465
2466 if (policy->governor->limits)
2467 policy->governor->limits(policy);
2468 }
2469
cpufreq_register_governor(struct cpufreq_governor * governor)2470 int cpufreq_register_governor(struct cpufreq_governor *governor)
2471 {
2472 int err;
2473
2474 if (!governor)
2475 return -EINVAL;
2476
2477 if (cpufreq_disabled())
2478 return -ENODEV;
2479
2480 mutex_lock(&cpufreq_governor_mutex);
2481
2482 err = -EBUSY;
2483 if (!find_governor(governor->name)) {
2484 err = 0;
2485 list_add(&governor->governor_list, &cpufreq_governor_list);
2486 }
2487
2488 mutex_unlock(&cpufreq_governor_mutex);
2489 return err;
2490 }
2491 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2492
cpufreq_unregister_governor(struct cpufreq_governor * governor)2493 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2494 {
2495 struct cpufreq_policy *policy;
2496 unsigned long flags;
2497
2498 if (!governor)
2499 return;
2500
2501 if (cpufreq_disabled())
2502 return;
2503
2504 /* clear last_governor for all inactive policies */
2505 read_lock_irqsave(&cpufreq_driver_lock, flags);
2506 for_each_inactive_policy(policy) {
2507 if (!strcmp(policy->last_governor, governor->name)) {
2508 policy->governor = NULL;
2509 strcpy(policy->last_governor, "\0");
2510 }
2511 }
2512 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2513
2514 mutex_lock(&cpufreq_governor_mutex);
2515 list_del(&governor->governor_list);
2516 mutex_unlock(&cpufreq_governor_mutex);
2517 }
2518 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2519
2520
2521 /*********************************************************************
2522 * POLICY INTERFACE *
2523 *********************************************************************/
2524
2525 /**
2526 * cpufreq_get_policy - get the current cpufreq_policy
2527 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2528 * is written
2529 * @cpu: CPU to find the policy for
2530 *
2531 * Reads the current cpufreq policy.
2532 */
cpufreq_get_policy(struct cpufreq_policy * policy,unsigned int cpu)2533 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2534 {
2535 struct cpufreq_policy *cpu_policy;
2536 if (!policy)
2537 return -EINVAL;
2538
2539 cpu_policy = cpufreq_cpu_get(cpu);
2540 if (!cpu_policy)
2541 return -EINVAL;
2542
2543 memcpy(policy, cpu_policy, sizeof(*policy));
2544
2545 cpufreq_cpu_put(cpu_policy);
2546 return 0;
2547 }
2548 EXPORT_SYMBOL(cpufreq_get_policy);
2549
2550 /**
2551 * cpufreq_set_policy - Modify cpufreq policy parameters.
2552 * @policy: Policy object to modify.
2553 * @new_gov: Policy governor pointer.
2554 * @new_pol: Policy value (for drivers with built-in governors).
2555 *
2556 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2557 * limits to be set for the policy, update @policy with the verified limits
2558 * values and either invoke the driver's ->setpolicy() callback (if present) or
2559 * carry out a governor update for @policy. That is, run the current governor's
2560 * ->limits() callback (if @new_gov points to the same object as the one in
2561 * @policy) or replace the governor for @policy with @new_gov.
2562 *
2563 * The cpuinfo part of @policy is not updated by this function.
2564 */
cpufreq_set_policy(struct cpufreq_policy * policy,struct cpufreq_governor * new_gov,unsigned int new_pol)2565 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2566 struct cpufreq_governor *new_gov,
2567 unsigned int new_pol)
2568 {
2569 struct cpufreq_policy_data new_data;
2570 struct cpufreq_governor *old_gov;
2571 int ret;
2572
2573 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2574 new_data.freq_table = policy->freq_table;
2575 new_data.cpu = policy->cpu;
2576 /*
2577 * PM QoS framework collects all the requests from users and provide us
2578 * the final aggregated value here.
2579 */
2580 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2581 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2582
2583 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2584 new_data.cpu, new_data.min, new_data.max);
2585
2586 /*
2587 * Verify that the CPU speed can be set within these limits and make sure
2588 * that min <= max.
2589 */
2590 ret = cpufreq_driver->verify(&new_data);
2591 if (ret)
2592 return ret;
2593
2594 /*
2595 * Resolve policy min/max to available frequencies. It ensures
2596 * no frequency resolution will neither overshoot the requested maximum
2597 * nor undershoot the requested minimum.
2598 */
2599 policy->min = new_data.min;
2600 policy->max = new_data.max;
2601 policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2602 policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2603 trace_cpu_frequency_limits(policy);
2604
2605 policy->cached_target_freq = UINT_MAX;
2606
2607 pr_debug("new min and max freqs are %u - %u kHz\n",
2608 policy->min, policy->max);
2609
2610 if (cpufreq_driver->setpolicy) {
2611 policy->policy = new_pol;
2612 pr_debug("setting range\n");
2613 return cpufreq_driver->setpolicy(policy);
2614 }
2615
2616 if (new_gov == policy->governor) {
2617 pr_debug("governor limits update\n");
2618 cpufreq_governor_limits(policy);
2619 return 0;
2620 }
2621
2622 pr_debug("governor switch\n");
2623
2624 /* save old, working values */
2625 old_gov = policy->governor;
2626 /* end old governor */
2627 if (old_gov) {
2628 cpufreq_stop_governor(policy);
2629 cpufreq_exit_governor(policy);
2630 }
2631
2632 /* start new governor */
2633 policy->governor = new_gov;
2634 ret = cpufreq_init_governor(policy);
2635 if (!ret) {
2636 ret = cpufreq_start_governor(policy);
2637 if (!ret) {
2638 pr_debug("governor change\n");
2639 return 0;
2640 }
2641 cpufreq_exit_governor(policy);
2642 }
2643
2644 /* new governor failed, so re-start old one */
2645 pr_debug("starting governor %s failed\n", policy->governor->name);
2646 if (old_gov) {
2647 policy->governor = old_gov;
2648 if (cpufreq_init_governor(policy))
2649 policy->governor = NULL;
2650 else
2651 cpufreq_start_governor(policy);
2652 }
2653
2654 return ret;
2655 }
2656 EXPORT_TRACEPOINT_SYMBOL_GPL(cpu_frequency_limits);
2657
2658 /**
2659 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2660 * @cpu: CPU to re-evaluate the policy for.
2661 *
2662 * Update the current frequency for the cpufreq policy of @cpu and use
2663 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2664 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2665 * for the policy in question, among other things.
2666 */
cpufreq_update_policy(unsigned int cpu)2667 void cpufreq_update_policy(unsigned int cpu)
2668 {
2669 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2670
2671 if (!policy)
2672 return;
2673
2674 /*
2675 * BIOS might change freq behind our back
2676 * -> ask driver for current freq and notify governors about a change
2677 */
2678 if (cpufreq_driver->get && has_target() &&
2679 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2680 goto unlock;
2681
2682 refresh_frequency_limits(policy);
2683
2684 unlock:
2685 cpufreq_cpu_release(policy);
2686 }
2687 EXPORT_SYMBOL(cpufreq_update_policy);
2688
2689 /**
2690 * cpufreq_update_limits - Update policy limits for a given CPU.
2691 * @cpu: CPU to update the policy limits for.
2692 *
2693 * Invoke the driver's ->update_limits callback if present or call
2694 * cpufreq_update_policy() for @cpu.
2695 */
cpufreq_update_limits(unsigned int cpu)2696 void cpufreq_update_limits(unsigned int cpu)
2697 {
2698 if (cpufreq_driver->update_limits)
2699 cpufreq_driver->update_limits(cpu);
2700 else
2701 cpufreq_update_policy(cpu);
2702 }
2703 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2704
2705 /*********************************************************************
2706 * BOOST *
2707 *********************************************************************/
cpufreq_boost_set_sw(struct cpufreq_policy * policy,int state)2708 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2709 {
2710 int ret;
2711
2712 if (!policy->freq_table)
2713 return -ENXIO;
2714
2715 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2716 if (ret) {
2717 pr_err("%s: Policy frequency update failed\n", __func__);
2718 return ret;
2719 }
2720
2721 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2722 if (ret < 0)
2723 return ret;
2724
2725 return 0;
2726 }
2727
cpufreq_boost_trigger_state(int state)2728 int cpufreq_boost_trigger_state(int state)
2729 {
2730 struct cpufreq_policy *policy;
2731 unsigned long flags;
2732 int ret = 0;
2733
2734 if (cpufreq_driver->boost_enabled == state)
2735 return 0;
2736
2737 write_lock_irqsave(&cpufreq_driver_lock, flags);
2738 cpufreq_driver->boost_enabled = state;
2739 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2740
2741 cpus_read_lock();
2742 for_each_active_policy(policy) {
2743 ret = cpufreq_driver->set_boost(policy, state);
2744 if (ret)
2745 goto err_reset_state;
2746 }
2747 cpus_read_unlock();
2748
2749 return 0;
2750
2751 err_reset_state:
2752 cpus_read_unlock();
2753
2754 write_lock_irqsave(&cpufreq_driver_lock, flags);
2755 cpufreq_driver->boost_enabled = !state;
2756 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2757
2758 pr_err("%s: Cannot %s BOOST\n",
2759 __func__, state ? "enable" : "disable");
2760
2761 return ret;
2762 }
2763
cpufreq_boost_supported(void)2764 static bool cpufreq_boost_supported(void)
2765 {
2766 return cpufreq_driver->set_boost;
2767 }
2768
create_boost_sysfs_file(void)2769 static int create_boost_sysfs_file(void)
2770 {
2771 int ret;
2772
2773 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2774 if (ret)
2775 pr_err("%s: cannot register global BOOST sysfs file\n",
2776 __func__);
2777
2778 return ret;
2779 }
2780
remove_boost_sysfs_file(void)2781 static void remove_boost_sysfs_file(void)
2782 {
2783 if (cpufreq_boost_supported())
2784 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2785 }
2786
cpufreq_enable_boost_support(void)2787 int cpufreq_enable_boost_support(void)
2788 {
2789 if (!cpufreq_driver)
2790 return -EINVAL;
2791
2792 if (cpufreq_boost_supported())
2793 return 0;
2794
2795 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2796
2797 /* This will get removed on driver unregister */
2798 return create_boost_sysfs_file();
2799 }
2800 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2801
cpufreq_boost_enabled(void)2802 int cpufreq_boost_enabled(void)
2803 {
2804 return cpufreq_driver->boost_enabled;
2805 }
2806 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2807
2808 /*********************************************************************
2809 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2810 *********************************************************************/
2811 static enum cpuhp_state hp_online;
2812
cpuhp_cpufreq_online(unsigned int cpu)2813 static int cpuhp_cpufreq_online(unsigned int cpu)
2814 {
2815 cpufreq_online(cpu);
2816
2817 return 0;
2818 }
2819
cpuhp_cpufreq_offline(unsigned int cpu)2820 static int cpuhp_cpufreq_offline(unsigned int cpu)
2821 {
2822 cpufreq_offline(cpu);
2823
2824 return 0;
2825 }
2826
2827 /**
2828 * cpufreq_register_driver - register a CPU Frequency driver
2829 * @driver_data: A struct cpufreq_driver containing the values#
2830 * submitted by the CPU Frequency driver.
2831 *
2832 * Registers a CPU Frequency driver to this core code. This code
2833 * returns zero on success, -EEXIST when another driver got here first
2834 * (and isn't unregistered in the meantime).
2835 *
2836 */
cpufreq_register_driver(struct cpufreq_driver * driver_data)2837 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2838 {
2839 unsigned long flags;
2840 int ret;
2841
2842 if (cpufreq_disabled())
2843 return -ENODEV;
2844
2845 /*
2846 * The cpufreq core depends heavily on the availability of device
2847 * structure, make sure they are available before proceeding further.
2848 */
2849 if (!get_cpu_device(0))
2850 return -EPROBE_DEFER;
2851
2852 if (!driver_data || !driver_data->verify || !driver_data->init ||
2853 !(driver_data->setpolicy || driver_data->target_index ||
2854 driver_data->target) ||
2855 (driver_data->setpolicy && (driver_data->target_index ||
2856 driver_data->target)) ||
2857 (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2858 (!driver_data->online != !driver_data->offline))
2859 return -EINVAL;
2860
2861 pr_debug("trying to register driver %s\n", driver_data->name);
2862
2863 /* Protect against concurrent CPU online/offline. */
2864 cpus_read_lock();
2865
2866 write_lock_irqsave(&cpufreq_driver_lock, flags);
2867 if (cpufreq_driver) {
2868 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2869 ret = -EEXIST;
2870 goto out;
2871 }
2872 cpufreq_driver = driver_data;
2873 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2874
2875 /*
2876 * Mark support for the scheduler's frequency invariance engine for
2877 * drivers that implement target(), target_index() or fast_switch().
2878 */
2879 if (!cpufreq_driver->setpolicy) {
2880 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2881 pr_debug("supports frequency invariance");
2882 }
2883
2884 if (driver_data->setpolicy)
2885 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2886
2887 if (cpufreq_boost_supported()) {
2888 ret = create_boost_sysfs_file();
2889 if (ret)
2890 goto err_null_driver;
2891 }
2892
2893 ret = subsys_interface_register(&cpufreq_interface);
2894 if (ret)
2895 goto err_boost_unreg;
2896
2897 if (unlikely(list_empty(&cpufreq_policy_list))) {
2898 /* if all ->init() calls failed, unregister */
2899 ret = -ENODEV;
2900 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2901 driver_data->name);
2902 goto err_if_unreg;
2903 }
2904
2905 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2906 "cpufreq:online",
2907 cpuhp_cpufreq_online,
2908 cpuhp_cpufreq_offline);
2909 if (ret < 0)
2910 goto err_if_unreg;
2911 hp_online = ret;
2912 ret = 0;
2913
2914 pr_debug("driver %s up and running\n", driver_data->name);
2915 goto out;
2916
2917 err_if_unreg:
2918 subsys_interface_unregister(&cpufreq_interface);
2919 err_boost_unreg:
2920 remove_boost_sysfs_file();
2921 err_null_driver:
2922 write_lock_irqsave(&cpufreq_driver_lock, flags);
2923 cpufreq_driver = NULL;
2924 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2925 out:
2926 cpus_read_unlock();
2927 return ret;
2928 }
2929 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2930
2931 /*
2932 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2933 *
2934 * Unregister the current CPUFreq driver. Only call this if you have
2935 * the right to do so, i.e. if you have succeeded in initialising before!
2936 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2937 * currently not initialised.
2938 */
cpufreq_unregister_driver(struct cpufreq_driver * driver)2939 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2940 {
2941 unsigned long flags;
2942
2943 if (!cpufreq_driver || (driver != cpufreq_driver))
2944 return -EINVAL;
2945
2946 pr_debug("unregistering driver %s\n", driver->name);
2947
2948 /* Protect against concurrent cpu hotplug */
2949 cpus_read_lock();
2950 subsys_interface_unregister(&cpufreq_interface);
2951 remove_boost_sysfs_file();
2952 static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2953 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2954
2955 write_lock_irqsave(&cpufreq_driver_lock, flags);
2956
2957 cpufreq_driver = NULL;
2958
2959 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2960 cpus_read_unlock();
2961
2962 return 0;
2963 }
2964 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2965
cpufreq_core_init(void)2966 static int __init cpufreq_core_init(void)
2967 {
2968 struct cpufreq_governor *gov = cpufreq_default_governor();
2969
2970 if (cpufreq_disabled())
2971 return -ENODEV;
2972
2973 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2974 BUG_ON(!cpufreq_global_kobject);
2975
2976 if (!strlen(default_governor))
2977 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2978
2979 return 0;
2980 }
2981 module_param(off, int, 0444);
2982 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2983 core_initcall(cpufreq_core_init);
2984