• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45 
46 #include <linux/uaccess.h>
47 #include <linux/nospec.h>
48 
49 #include "internal.h"
50 
51 #define KIOCB_KEY		0
52 
53 #define AIO_RING_MAGIC			0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES	1
55 #define AIO_RING_INCOMPAT_FEATURES	0
56 struct aio_ring {
57 	unsigned	id;	/* kernel internal index number */
58 	unsigned	nr;	/* number of io_events */
59 	unsigned	head;	/* Written to by userland or under ring_lock
60 				 * mutex by aio_read_events_ring(). */
61 	unsigned	tail;
62 
63 	unsigned	magic;
64 	unsigned	compat_features;
65 	unsigned	incompat_features;
66 	unsigned	header_length;	/* size of aio_ring */
67 
68 
69 	struct io_event		io_events[];
70 }; /* 128 bytes + ring size */
71 
72 /*
73  * Plugging is meant to work with larger batches of IOs. If we don't
74  * have more than the below, then don't bother setting up a plug.
75  */
76 #define AIO_PLUG_THRESHOLD	2
77 
78 #define AIO_RING_PAGES	8
79 
80 struct kioctx_table {
81 	struct rcu_head		rcu;
82 	unsigned		nr;
83 	struct kioctx __rcu	*table[];
84 };
85 
86 struct kioctx_cpu {
87 	unsigned		reqs_available;
88 };
89 
90 struct ctx_rq_wait {
91 	struct completion comp;
92 	atomic_t count;
93 };
94 
95 struct kioctx {
96 	struct percpu_ref	users;
97 	atomic_t		dead;
98 
99 	struct percpu_ref	reqs;
100 
101 	unsigned long		user_id;
102 
103 	struct __percpu kioctx_cpu *cpu;
104 
105 	/*
106 	 * For percpu reqs_available, number of slots we move to/from global
107 	 * counter at a time:
108 	 */
109 	unsigned		req_batch;
110 	/*
111 	 * This is what userspace passed to io_setup(), it's not used for
112 	 * anything but counting against the global max_reqs quota.
113 	 *
114 	 * The real limit is nr_events - 1, which will be larger (see
115 	 * aio_setup_ring())
116 	 */
117 	unsigned		max_reqs;
118 
119 	/* Size of ringbuffer, in units of struct io_event */
120 	unsigned		nr_events;
121 
122 	unsigned long		mmap_base;
123 	unsigned long		mmap_size;
124 
125 	struct page		**ring_pages;
126 	long			nr_pages;
127 
128 	struct rcu_work		free_rwork;	/* see free_ioctx() */
129 
130 	/*
131 	 * signals when all in-flight requests are done
132 	 */
133 	struct ctx_rq_wait	*rq_wait;
134 
135 	struct {
136 		/*
137 		 * This counts the number of available slots in the ringbuffer,
138 		 * so we avoid overflowing it: it's decremented (if positive)
139 		 * when allocating a kiocb and incremented when the resulting
140 		 * io_event is pulled off the ringbuffer.
141 		 *
142 		 * We batch accesses to it with a percpu version.
143 		 */
144 		atomic_t	reqs_available;
145 	} ____cacheline_aligned_in_smp;
146 
147 	struct {
148 		spinlock_t	ctx_lock;
149 		struct list_head active_reqs;	/* used for cancellation */
150 	} ____cacheline_aligned_in_smp;
151 
152 	struct {
153 		struct mutex	ring_lock;
154 		wait_queue_head_t wait;
155 	} ____cacheline_aligned_in_smp;
156 
157 	struct {
158 		unsigned	tail;
159 		unsigned	completed_events;
160 		spinlock_t	completion_lock;
161 	} ____cacheline_aligned_in_smp;
162 
163 	struct page		*internal_pages[AIO_RING_PAGES];
164 	struct file		*aio_ring_file;
165 
166 	unsigned		id;
167 };
168 
169 /*
170  * First field must be the file pointer in all the
171  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172  */
173 struct fsync_iocb {
174 	struct file		*file;
175 	struct work_struct	work;
176 	bool			datasync;
177 	struct cred		*creds;
178 };
179 
180 struct poll_iocb {
181 	struct file		*file;
182 	struct wait_queue_head	*head;
183 	__poll_t		events;
184 	bool			cancelled;
185 	bool			work_scheduled;
186 	bool			work_need_resched;
187 	struct wait_queue_entry	wait;
188 	struct work_struct	work;
189 };
190 
191 /*
192  * NOTE! Each of the iocb union members has the file pointer
193  * as the first entry in their struct definition. So you can
194  * access the file pointer through any of the sub-structs,
195  * or directly as just 'ki_filp' in this struct.
196  */
197 struct aio_kiocb {
198 	union {
199 		struct file		*ki_filp;
200 		struct kiocb		rw;
201 		struct fsync_iocb	fsync;
202 		struct poll_iocb	poll;
203 	};
204 
205 	struct kioctx		*ki_ctx;
206 	kiocb_cancel_fn		*ki_cancel;
207 
208 	struct io_event		ki_res;
209 
210 	struct list_head	ki_list;	/* the aio core uses this
211 						 * for cancellation */
212 	refcount_t		ki_refcnt;
213 
214 	/*
215 	 * If the aio_resfd field of the userspace iocb is not zero,
216 	 * this is the underlying eventfd context to deliver events to.
217 	 */
218 	struct eventfd_ctx	*ki_eventfd;
219 };
220 
221 /*------ sysctl variables----*/
222 static DEFINE_SPINLOCK(aio_nr_lock);
223 static unsigned long aio_nr;		/* current system wide number of aio requests */
224 static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225 /*----end sysctl variables---*/
226 #ifdef CONFIG_SYSCTL
227 static struct ctl_table aio_sysctls[] = {
228 	{
229 		.procname	= "aio-nr",
230 		.data		= &aio_nr,
231 		.maxlen		= sizeof(aio_nr),
232 		.mode		= 0444,
233 		.proc_handler	= proc_doulongvec_minmax,
234 	},
235 	{
236 		.procname	= "aio-max-nr",
237 		.data		= &aio_max_nr,
238 		.maxlen		= sizeof(aio_max_nr),
239 		.mode		= 0644,
240 		.proc_handler	= proc_doulongvec_minmax,
241 	},
242 	{}
243 };
244 
aio_sysctl_init(void)245 static void __init aio_sysctl_init(void)
246 {
247 	register_sysctl_init("fs", aio_sysctls);
248 }
249 #else
250 #define aio_sysctl_init() do { } while (0)
251 #endif
252 
253 static struct kmem_cache	*kiocb_cachep;
254 static struct kmem_cache	*kioctx_cachep;
255 
256 static struct vfsmount *aio_mnt;
257 
258 static const struct file_operations aio_ring_fops;
259 static const struct address_space_operations aio_ctx_aops;
260 
aio_private_file(struct kioctx * ctx,loff_t nr_pages)261 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
262 {
263 	struct file *file;
264 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
265 	if (IS_ERR(inode))
266 		return ERR_CAST(inode);
267 
268 	inode->i_mapping->a_ops = &aio_ctx_aops;
269 	inode->i_mapping->private_data = ctx;
270 	inode->i_size = PAGE_SIZE * nr_pages;
271 
272 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
273 				O_RDWR, &aio_ring_fops);
274 	if (IS_ERR(file))
275 		iput(inode);
276 	return file;
277 }
278 
aio_init_fs_context(struct fs_context * fc)279 static int aio_init_fs_context(struct fs_context *fc)
280 {
281 	if (!init_pseudo(fc, AIO_RING_MAGIC))
282 		return -ENOMEM;
283 	fc->s_iflags |= SB_I_NOEXEC;
284 	return 0;
285 }
286 
287 /* aio_setup
288  *	Creates the slab caches used by the aio routines, panic on
289  *	failure as this is done early during the boot sequence.
290  */
aio_setup(void)291 static int __init aio_setup(void)
292 {
293 	static struct file_system_type aio_fs = {
294 		.name		= "aio",
295 		.init_fs_context = aio_init_fs_context,
296 		.kill_sb	= kill_anon_super,
297 	};
298 	aio_mnt = kern_mount(&aio_fs);
299 	if (IS_ERR(aio_mnt))
300 		panic("Failed to create aio fs mount.");
301 
302 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
303 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
304 	aio_sysctl_init();
305 	return 0;
306 }
307 __initcall(aio_setup);
308 
put_aio_ring_file(struct kioctx * ctx)309 static void put_aio_ring_file(struct kioctx *ctx)
310 {
311 	struct file *aio_ring_file = ctx->aio_ring_file;
312 	struct address_space *i_mapping;
313 
314 	if (aio_ring_file) {
315 		truncate_setsize(file_inode(aio_ring_file), 0);
316 
317 		/* Prevent further access to the kioctx from migratepages */
318 		i_mapping = aio_ring_file->f_mapping;
319 		spin_lock(&i_mapping->private_lock);
320 		i_mapping->private_data = NULL;
321 		ctx->aio_ring_file = NULL;
322 		spin_unlock(&i_mapping->private_lock);
323 
324 		fput(aio_ring_file);
325 	}
326 }
327 
aio_free_ring(struct kioctx * ctx)328 static void aio_free_ring(struct kioctx *ctx)
329 {
330 	int i;
331 
332 	/* Disconnect the kiotx from the ring file.  This prevents future
333 	 * accesses to the kioctx from page migration.
334 	 */
335 	put_aio_ring_file(ctx);
336 
337 	for (i = 0; i < ctx->nr_pages; i++) {
338 		struct page *page;
339 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
340 				page_count(ctx->ring_pages[i]));
341 		page = ctx->ring_pages[i];
342 		if (!page)
343 			continue;
344 		ctx->ring_pages[i] = NULL;
345 		put_page(page);
346 	}
347 
348 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
349 		kfree(ctx->ring_pages);
350 		ctx->ring_pages = NULL;
351 	}
352 }
353 
aio_ring_mremap(struct vm_area_struct * vma)354 static int aio_ring_mremap(struct vm_area_struct *vma)
355 {
356 	struct file *file = vma->vm_file;
357 	struct mm_struct *mm = vma->vm_mm;
358 	struct kioctx_table *table;
359 	int i, res = -EINVAL;
360 
361 	spin_lock(&mm->ioctx_lock);
362 	rcu_read_lock();
363 	table = rcu_dereference(mm->ioctx_table);
364 	if (!table)
365 		goto out_unlock;
366 
367 	for (i = 0; i < table->nr; i++) {
368 		struct kioctx *ctx;
369 
370 		ctx = rcu_dereference(table->table[i]);
371 		if (ctx && ctx->aio_ring_file == file) {
372 			if (!atomic_read(&ctx->dead)) {
373 				ctx->user_id = ctx->mmap_base = vma->vm_start;
374 				res = 0;
375 			}
376 			break;
377 		}
378 	}
379 
380 out_unlock:
381 	rcu_read_unlock();
382 	spin_unlock(&mm->ioctx_lock);
383 	return res;
384 }
385 
386 static const struct vm_operations_struct aio_ring_vm_ops = {
387 	.mremap		= aio_ring_mremap,
388 #if IS_ENABLED(CONFIG_MMU)
389 	.fault		= filemap_fault,
390 	.map_pages	= filemap_map_pages,
391 	.page_mkwrite	= filemap_page_mkwrite,
392 #endif
393 };
394 
aio_ring_mmap(struct file * file,struct vm_area_struct * vma)395 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
396 {
397 	vm_flags_set(vma, VM_DONTEXPAND);
398 	vma->vm_ops = &aio_ring_vm_ops;
399 	return 0;
400 }
401 
402 static const struct file_operations aio_ring_fops = {
403 	.mmap = aio_ring_mmap,
404 };
405 
406 #if IS_ENABLED(CONFIG_MIGRATION)
aio_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)407 static int aio_migrate_folio(struct address_space *mapping, struct folio *dst,
408 			struct folio *src, enum migrate_mode mode)
409 {
410 	struct kioctx *ctx;
411 	unsigned long flags;
412 	pgoff_t idx;
413 	int rc;
414 
415 	/*
416 	 * We cannot support the _NO_COPY case here, because copy needs to
417 	 * happen under the ctx->completion_lock. That does not work with the
418 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
419 	 */
420 	if (mode == MIGRATE_SYNC_NO_COPY)
421 		return -EINVAL;
422 
423 	rc = 0;
424 
425 	/* mapping->private_lock here protects against the kioctx teardown.  */
426 	spin_lock(&mapping->private_lock);
427 	ctx = mapping->private_data;
428 	if (!ctx) {
429 		rc = -EINVAL;
430 		goto out;
431 	}
432 
433 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
434 	 * to the ring's head, and prevents page migration from mucking in
435 	 * a partially initialized kiotx.
436 	 */
437 	if (!mutex_trylock(&ctx->ring_lock)) {
438 		rc = -EAGAIN;
439 		goto out;
440 	}
441 
442 	idx = src->index;
443 	if (idx < (pgoff_t)ctx->nr_pages) {
444 		/* Make sure the old folio hasn't already been changed */
445 		if (ctx->ring_pages[idx] != &src->page)
446 			rc = -EAGAIN;
447 	} else
448 		rc = -EINVAL;
449 
450 	if (rc != 0)
451 		goto out_unlock;
452 
453 	/* Writeback must be complete */
454 	BUG_ON(folio_test_writeback(src));
455 	folio_get(dst);
456 
457 	rc = folio_migrate_mapping(mapping, dst, src, 1);
458 	if (rc != MIGRATEPAGE_SUCCESS) {
459 		folio_put(dst);
460 		goto out_unlock;
461 	}
462 
463 	/* Take completion_lock to prevent other writes to the ring buffer
464 	 * while the old folio is copied to the new.  This prevents new
465 	 * events from being lost.
466 	 */
467 	spin_lock_irqsave(&ctx->completion_lock, flags);
468 	folio_migrate_copy(dst, src);
469 	BUG_ON(ctx->ring_pages[idx] != &src->page);
470 	ctx->ring_pages[idx] = &dst->page;
471 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
472 
473 	/* The old folio is no longer accessible. */
474 	folio_put(src);
475 
476 out_unlock:
477 	mutex_unlock(&ctx->ring_lock);
478 out:
479 	spin_unlock(&mapping->private_lock);
480 	return rc;
481 }
482 #else
483 #define aio_migrate_folio NULL
484 #endif
485 
486 static const struct address_space_operations aio_ctx_aops = {
487 	.dirty_folio	= noop_dirty_folio,
488 	.migrate_folio	= aio_migrate_folio,
489 };
490 
aio_setup_ring(struct kioctx * ctx,unsigned int nr_events)491 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
492 {
493 	struct aio_ring *ring;
494 	struct mm_struct *mm = current->mm;
495 	unsigned long size, unused;
496 	int nr_pages;
497 	int i;
498 	struct file *file;
499 
500 	/* Compensate for the ring buffer's head/tail overlap entry */
501 	nr_events += 2;	/* 1 is required, 2 for good luck */
502 
503 	size = sizeof(struct aio_ring);
504 	size += sizeof(struct io_event) * nr_events;
505 
506 	nr_pages = PFN_UP(size);
507 	if (nr_pages < 0)
508 		return -EINVAL;
509 
510 	file = aio_private_file(ctx, nr_pages);
511 	if (IS_ERR(file)) {
512 		ctx->aio_ring_file = NULL;
513 		return -ENOMEM;
514 	}
515 
516 	ctx->aio_ring_file = file;
517 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
518 			/ sizeof(struct io_event);
519 
520 	ctx->ring_pages = ctx->internal_pages;
521 	if (nr_pages > AIO_RING_PAGES) {
522 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
523 					  GFP_KERNEL);
524 		if (!ctx->ring_pages) {
525 			put_aio_ring_file(ctx);
526 			return -ENOMEM;
527 		}
528 	}
529 
530 	for (i = 0; i < nr_pages; i++) {
531 		struct page *page;
532 		page = find_or_create_page(file->f_mapping,
533 					   i, GFP_HIGHUSER | __GFP_ZERO);
534 		if (!page)
535 			break;
536 		pr_debug("pid(%d) page[%d]->count=%d\n",
537 			 current->pid, i, page_count(page));
538 		SetPageUptodate(page);
539 		unlock_page(page);
540 
541 		ctx->ring_pages[i] = page;
542 	}
543 	ctx->nr_pages = i;
544 
545 	if (unlikely(i != nr_pages)) {
546 		aio_free_ring(ctx);
547 		return -ENOMEM;
548 	}
549 
550 	ctx->mmap_size = nr_pages * PAGE_SIZE;
551 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
552 
553 	if (mmap_write_lock_killable(mm)) {
554 		ctx->mmap_size = 0;
555 		aio_free_ring(ctx);
556 		return -EINTR;
557 	}
558 
559 	ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
560 				 PROT_READ | PROT_WRITE,
561 				 MAP_SHARED, 0, &unused, NULL);
562 	mmap_write_unlock(mm);
563 	if (IS_ERR((void *)ctx->mmap_base)) {
564 		ctx->mmap_size = 0;
565 		aio_free_ring(ctx);
566 		return -ENOMEM;
567 	}
568 
569 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
570 
571 	ctx->user_id = ctx->mmap_base;
572 	ctx->nr_events = nr_events; /* trusted copy */
573 
574 	ring = kmap_atomic(ctx->ring_pages[0]);
575 	ring->nr = nr_events;	/* user copy */
576 	ring->id = ~0U;
577 	ring->head = ring->tail = 0;
578 	ring->magic = AIO_RING_MAGIC;
579 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
580 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
581 	ring->header_length = sizeof(struct aio_ring);
582 	kunmap_atomic(ring);
583 	flush_dcache_page(ctx->ring_pages[0]);
584 
585 	return 0;
586 }
587 
588 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
589 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
590 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
591 
kiocb_set_cancel_fn(struct kiocb * iocb,kiocb_cancel_fn * cancel)592 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
593 {
594 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
595 	struct kioctx *ctx = req->ki_ctx;
596 	unsigned long flags;
597 
598 	/*
599 	 * kiocb didn't come from aio or is neither a read nor a write, hence
600 	 * ignore it.
601 	 */
602 	if (!(iocb->ki_flags & IOCB_AIO_RW))
603 		return;
604 
605 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
606 		return;
607 
608 	spin_lock_irqsave(&ctx->ctx_lock, flags);
609 	list_add_tail(&req->ki_list, &ctx->active_reqs);
610 	req->ki_cancel = cancel;
611 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
612 }
613 EXPORT_SYMBOL(kiocb_set_cancel_fn);
614 
615 /*
616  * free_ioctx() should be RCU delayed to synchronize against the RCU
617  * protected lookup_ioctx() and also needs process context to call
618  * aio_free_ring().  Use rcu_work.
619  */
free_ioctx(struct work_struct * work)620 static void free_ioctx(struct work_struct *work)
621 {
622 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
623 					  free_rwork);
624 	pr_debug("freeing %p\n", ctx);
625 
626 	aio_free_ring(ctx);
627 	free_percpu(ctx->cpu);
628 	percpu_ref_exit(&ctx->reqs);
629 	percpu_ref_exit(&ctx->users);
630 	kmem_cache_free(kioctx_cachep, ctx);
631 }
632 
free_ioctx_reqs(struct percpu_ref * ref)633 static void free_ioctx_reqs(struct percpu_ref *ref)
634 {
635 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
636 
637 	/* At this point we know that there are no any in-flight requests */
638 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
639 		complete(&ctx->rq_wait->comp);
640 
641 	/* Synchronize against RCU protected table->table[] dereferences */
642 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
643 	queue_rcu_work(system_wq, &ctx->free_rwork);
644 }
645 
646 /*
647  * When this function runs, the kioctx has been removed from the "hash table"
648  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
649  * now it's safe to cancel any that need to be.
650  */
free_ioctx_users(struct percpu_ref * ref)651 static void free_ioctx_users(struct percpu_ref *ref)
652 {
653 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
654 	struct aio_kiocb *req;
655 
656 	spin_lock_irq(&ctx->ctx_lock);
657 
658 	while (!list_empty(&ctx->active_reqs)) {
659 		req = list_first_entry(&ctx->active_reqs,
660 				       struct aio_kiocb, ki_list);
661 		req->ki_cancel(&req->rw);
662 		list_del_init(&req->ki_list);
663 	}
664 
665 	spin_unlock_irq(&ctx->ctx_lock);
666 
667 	percpu_ref_kill(&ctx->reqs);
668 	percpu_ref_put(&ctx->reqs);
669 }
670 
ioctx_add_table(struct kioctx * ctx,struct mm_struct * mm)671 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
672 {
673 	unsigned i, new_nr;
674 	struct kioctx_table *table, *old;
675 	struct aio_ring *ring;
676 
677 	spin_lock(&mm->ioctx_lock);
678 	table = rcu_dereference_raw(mm->ioctx_table);
679 
680 	while (1) {
681 		if (table)
682 			for (i = 0; i < table->nr; i++)
683 				if (!rcu_access_pointer(table->table[i])) {
684 					ctx->id = i;
685 					rcu_assign_pointer(table->table[i], ctx);
686 					spin_unlock(&mm->ioctx_lock);
687 
688 					/* While kioctx setup is in progress,
689 					 * we are protected from page migration
690 					 * changes ring_pages by ->ring_lock.
691 					 */
692 					ring = kmap_atomic(ctx->ring_pages[0]);
693 					ring->id = ctx->id;
694 					kunmap_atomic(ring);
695 					return 0;
696 				}
697 
698 		new_nr = (table ? table->nr : 1) * 4;
699 		spin_unlock(&mm->ioctx_lock);
700 
701 		table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
702 		if (!table)
703 			return -ENOMEM;
704 
705 		table->nr = new_nr;
706 
707 		spin_lock(&mm->ioctx_lock);
708 		old = rcu_dereference_raw(mm->ioctx_table);
709 
710 		if (!old) {
711 			rcu_assign_pointer(mm->ioctx_table, table);
712 		} else if (table->nr > old->nr) {
713 			memcpy(table->table, old->table,
714 			       old->nr * sizeof(struct kioctx *));
715 
716 			rcu_assign_pointer(mm->ioctx_table, table);
717 			kfree_rcu(old, rcu);
718 		} else {
719 			kfree(table);
720 			table = old;
721 		}
722 	}
723 }
724 
aio_nr_sub(unsigned nr)725 static void aio_nr_sub(unsigned nr)
726 {
727 	spin_lock(&aio_nr_lock);
728 	if (WARN_ON(aio_nr - nr > aio_nr))
729 		aio_nr = 0;
730 	else
731 		aio_nr -= nr;
732 	spin_unlock(&aio_nr_lock);
733 }
734 
735 /* ioctx_alloc
736  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
737  */
ioctx_alloc(unsigned nr_events)738 static struct kioctx *ioctx_alloc(unsigned nr_events)
739 {
740 	struct mm_struct *mm = current->mm;
741 	struct kioctx *ctx;
742 	int err = -ENOMEM;
743 
744 	/*
745 	 * Store the original nr_events -- what userspace passed to io_setup(),
746 	 * for counting against the global limit -- before it changes.
747 	 */
748 	unsigned int max_reqs = nr_events;
749 
750 	/*
751 	 * We keep track of the number of available ringbuffer slots, to prevent
752 	 * overflow (reqs_available), and we also use percpu counters for this.
753 	 *
754 	 * So since up to half the slots might be on other cpu's percpu counters
755 	 * and unavailable, double nr_events so userspace sees what they
756 	 * expected: additionally, we move req_batch slots to/from percpu
757 	 * counters at a time, so make sure that isn't 0:
758 	 */
759 	nr_events = max(nr_events, num_possible_cpus() * 4);
760 	nr_events *= 2;
761 
762 	/* Prevent overflows */
763 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
764 		pr_debug("ENOMEM: nr_events too high\n");
765 		return ERR_PTR(-EINVAL);
766 	}
767 
768 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
769 		return ERR_PTR(-EAGAIN);
770 
771 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
772 	if (!ctx)
773 		return ERR_PTR(-ENOMEM);
774 
775 	ctx->max_reqs = max_reqs;
776 
777 	spin_lock_init(&ctx->ctx_lock);
778 	spin_lock_init(&ctx->completion_lock);
779 	mutex_init(&ctx->ring_lock);
780 	/* Protect against page migration throughout kiotx setup by keeping
781 	 * the ring_lock mutex held until setup is complete. */
782 	mutex_lock(&ctx->ring_lock);
783 	init_waitqueue_head(&ctx->wait);
784 
785 	INIT_LIST_HEAD(&ctx->active_reqs);
786 
787 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
788 		goto err;
789 
790 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
791 		goto err;
792 
793 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
794 	if (!ctx->cpu)
795 		goto err;
796 
797 	err = aio_setup_ring(ctx, nr_events);
798 	if (err < 0)
799 		goto err;
800 
801 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
802 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
803 	if (ctx->req_batch < 1)
804 		ctx->req_batch = 1;
805 
806 	/* limit the number of system wide aios */
807 	spin_lock(&aio_nr_lock);
808 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
809 	    aio_nr + ctx->max_reqs < aio_nr) {
810 		spin_unlock(&aio_nr_lock);
811 		err = -EAGAIN;
812 		goto err_ctx;
813 	}
814 	aio_nr += ctx->max_reqs;
815 	spin_unlock(&aio_nr_lock);
816 
817 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
818 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
819 
820 	err = ioctx_add_table(ctx, mm);
821 	if (err)
822 		goto err_cleanup;
823 
824 	/* Release the ring_lock mutex now that all setup is complete. */
825 	mutex_unlock(&ctx->ring_lock);
826 
827 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
828 		 ctx, ctx->user_id, mm, ctx->nr_events);
829 	return ctx;
830 
831 err_cleanup:
832 	aio_nr_sub(ctx->max_reqs);
833 err_ctx:
834 	atomic_set(&ctx->dead, 1);
835 	if (ctx->mmap_size)
836 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
837 	aio_free_ring(ctx);
838 err:
839 	mutex_unlock(&ctx->ring_lock);
840 	free_percpu(ctx->cpu);
841 	percpu_ref_exit(&ctx->reqs);
842 	percpu_ref_exit(&ctx->users);
843 	kmem_cache_free(kioctx_cachep, ctx);
844 	pr_debug("error allocating ioctx %d\n", err);
845 	return ERR_PTR(err);
846 }
847 
848 /* kill_ioctx
849  *	Cancels all outstanding aio requests on an aio context.  Used
850  *	when the processes owning a context have all exited to encourage
851  *	the rapid destruction of the kioctx.
852  */
kill_ioctx(struct mm_struct * mm,struct kioctx * ctx,struct ctx_rq_wait * wait)853 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
854 		      struct ctx_rq_wait *wait)
855 {
856 	struct kioctx_table *table;
857 
858 	spin_lock(&mm->ioctx_lock);
859 	if (atomic_xchg(&ctx->dead, 1)) {
860 		spin_unlock(&mm->ioctx_lock);
861 		return -EINVAL;
862 	}
863 
864 	table = rcu_dereference_raw(mm->ioctx_table);
865 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
866 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
867 	spin_unlock(&mm->ioctx_lock);
868 
869 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
870 	wake_up_all(&ctx->wait);
871 
872 	/*
873 	 * It'd be more correct to do this in free_ioctx(), after all
874 	 * the outstanding kiocbs have finished - but by then io_destroy
875 	 * has already returned, so io_setup() could potentially return
876 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
877 	 *  could tell).
878 	 */
879 	aio_nr_sub(ctx->max_reqs);
880 
881 	if (ctx->mmap_size)
882 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
883 
884 	ctx->rq_wait = wait;
885 	percpu_ref_kill(&ctx->users);
886 	return 0;
887 }
888 
889 /*
890  * exit_aio: called when the last user of mm goes away.  At this point, there is
891  * no way for any new requests to be submited or any of the io_* syscalls to be
892  * called on the context.
893  *
894  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
895  * them.
896  */
exit_aio(struct mm_struct * mm)897 void exit_aio(struct mm_struct *mm)
898 {
899 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
900 	struct ctx_rq_wait wait;
901 	int i, skipped;
902 
903 	if (!table)
904 		return;
905 
906 	atomic_set(&wait.count, table->nr);
907 	init_completion(&wait.comp);
908 
909 	skipped = 0;
910 	for (i = 0; i < table->nr; ++i) {
911 		struct kioctx *ctx =
912 			rcu_dereference_protected(table->table[i], true);
913 
914 		if (!ctx) {
915 			skipped++;
916 			continue;
917 		}
918 
919 		/*
920 		 * We don't need to bother with munmap() here - exit_mmap(mm)
921 		 * is coming and it'll unmap everything. And we simply can't,
922 		 * this is not necessarily our ->mm.
923 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
924 		 * that it needs to unmap the area, just set it to 0.
925 		 */
926 		ctx->mmap_size = 0;
927 		kill_ioctx(mm, ctx, &wait);
928 	}
929 
930 	if (!atomic_sub_and_test(skipped, &wait.count)) {
931 		/* Wait until all IO for the context are done. */
932 		wait_for_completion(&wait.comp);
933 	}
934 
935 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
936 	kfree(table);
937 }
938 
put_reqs_available(struct kioctx * ctx,unsigned nr)939 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
940 {
941 	struct kioctx_cpu *kcpu;
942 	unsigned long flags;
943 
944 	local_irq_save(flags);
945 	kcpu = this_cpu_ptr(ctx->cpu);
946 	kcpu->reqs_available += nr;
947 
948 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
949 		kcpu->reqs_available -= ctx->req_batch;
950 		atomic_add(ctx->req_batch, &ctx->reqs_available);
951 	}
952 
953 	local_irq_restore(flags);
954 }
955 
__get_reqs_available(struct kioctx * ctx)956 static bool __get_reqs_available(struct kioctx *ctx)
957 {
958 	struct kioctx_cpu *kcpu;
959 	bool ret = false;
960 	unsigned long flags;
961 
962 	local_irq_save(flags);
963 	kcpu = this_cpu_ptr(ctx->cpu);
964 	if (!kcpu->reqs_available) {
965 		int avail = atomic_read(&ctx->reqs_available);
966 
967 		do {
968 			if (avail < ctx->req_batch)
969 				goto out;
970 		} while (!atomic_try_cmpxchg(&ctx->reqs_available,
971 					     &avail, avail - ctx->req_batch));
972 
973 		kcpu->reqs_available += ctx->req_batch;
974 	}
975 
976 	ret = true;
977 	kcpu->reqs_available--;
978 out:
979 	local_irq_restore(flags);
980 	return ret;
981 }
982 
983 /* refill_reqs_available
984  *	Updates the reqs_available reference counts used for tracking the
985  *	number of free slots in the completion ring.  This can be called
986  *	from aio_complete() (to optimistically update reqs_available) or
987  *	from aio_get_req() (the we're out of events case).  It must be
988  *	called holding ctx->completion_lock.
989  */
refill_reqs_available(struct kioctx * ctx,unsigned head,unsigned tail)990 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
991                                   unsigned tail)
992 {
993 	unsigned events_in_ring, completed;
994 
995 	/* Clamp head since userland can write to it. */
996 	head %= ctx->nr_events;
997 	if (head <= tail)
998 		events_in_ring = tail - head;
999 	else
1000 		events_in_ring = ctx->nr_events - (head - tail);
1001 
1002 	completed = ctx->completed_events;
1003 	if (events_in_ring < completed)
1004 		completed -= events_in_ring;
1005 	else
1006 		completed = 0;
1007 
1008 	if (!completed)
1009 		return;
1010 
1011 	ctx->completed_events -= completed;
1012 	put_reqs_available(ctx, completed);
1013 }
1014 
1015 /* user_refill_reqs_available
1016  *	Called to refill reqs_available when aio_get_req() encounters an
1017  *	out of space in the completion ring.
1018  */
user_refill_reqs_available(struct kioctx * ctx)1019 static void user_refill_reqs_available(struct kioctx *ctx)
1020 {
1021 	spin_lock_irq(&ctx->completion_lock);
1022 	if (ctx->completed_events) {
1023 		struct aio_ring *ring;
1024 		unsigned head;
1025 
1026 		/* Access of ring->head may race with aio_read_events_ring()
1027 		 * here, but that's okay since whether we read the old version
1028 		 * or the new version, and either will be valid.  The important
1029 		 * part is that head cannot pass tail since we prevent
1030 		 * aio_complete() from updating tail by holding
1031 		 * ctx->completion_lock.  Even if head is invalid, the check
1032 		 * against ctx->completed_events below will make sure we do the
1033 		 * safe/right thing.
1034 		 */
1035 		ring = kmap_atomic(ctx->ring_pages[0]);
1036 		head = ring->head;
1037 		kunmap_atomic(ring);
1038 
1039 		refill_reqs_available(ctx, head, ctx->tail);
1040 	}
1041 
1042 	spin_unlock_irq(&ctx->completion_lock);
1043 }
1044 
get_reqs_available(struct kioctx * ctx)1045 static bool get_reqs_available(struct kioctx *ctx)
1046 {
1047 	if (__get_reqs_available(ctx))
1048 		return true;
1049 	user_refill_reqs_available(ctx);
1050 	return __get_reqs_available(ctx);
1051 }
1052 
1053 /* aio_get_req
1054  *	Allocate a slot for an aio request.
1055  * Returns NULL if no requests are free.
1056  *
1057  * The refcount is initialized to 2 - one for the async op completion,
1058  * one for the synchronous code that does this.
1059  */
aio_get_req(struct kioctx * ctx)1060 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1061 {
1062 	struct aio_kiocb *req;
1063 
1064 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1065 	if (unlikely(!req))
1066 		return NULL;
1067 
1068 	if (unlikely(!get_reqs_available(ctx))) {
1069 		kmem_cache_free(kiocb_cachep, req);
1070 		return NULL;
1071 	}
1072 
1073 	percpu_ref_get(&ctx->reqs);
1074 	req->ki_ctx = ctx;
1075 	INIT_LIST_HEAD(&req->ki_list);
1076 	refcount_set(&req->ki_refcnt, 2);
1077 	req->ki_eventfd = NULL;
1078 	return req;
1079 }
1080 
lookup_ioctx(unsigned long ctx_id)1081 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1082 {
1083 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1084 	struct mm_struct *mm = current->mm;
1085 	struct kioctx *ctx, *ret = NULL;
1086 	struct kioctx_table *table;
1087 	unsigned id;
1088 
1089 	if (get_user(id, &ring->id))
1090 		return NULL;
1091 
1092 	rcu_read_lock();
1093 	table = rcu_dereference(mm->ioctx_table);
1094 
1095 	if (!table || id >= table->nr)
1096 		goto out;
1097 
1098 	id = array_index_nospec(id, table->nr);
1099 	ctx = rcu_dereference(table->table[id]);
1100 	if (ctx && ctx->user_id == ctx_id) {
1101 		if (percpu_ref_tryget_live(&ctx->users))
1102 			ret = ctx;
1103 	}
1104 out:
1105 	rcu_read_unlock();
1106 	return ret;
1107 }
1108 
iocb_destroy(struct aio_kiocb * iocb)1109 static inline void iocb_destroy(struct aio_kiocb *iocb)
1110 {
1111 	if (iocb->ki_eventfd)
1112 		eventfd_ctx_put(iocb->ki_eventfd);
1113 	if (iocb->ki_filp)
1114 		fput(iocb->ki_filp);
1115 	percpu_ref_put(&iocb->ki_ctx->reqs);
1116 	kmem_cache_free(kiocb_cachep, iocb);
1117 }
1118 
1119 /* aio_complete
1120  *	Called when the io request on the given iocb is complete.
1121  */
aio_complete(struct aio_kiocb * iocb)1122 static void aio_complete(struct aio_kiocb *iocb)
1123 {
1124 	struct kioctx	*ctx = iocb->ki_ctx;
1125 	struct aio_ring	*ring;
1126 	struct io_event	*ev_page, *event;
1127 	unsigned tail, pos, head;
1128 	unsigned long	flags;
1129 
1130 	/*
1131 	 * Add a completion event to the ring buffer. Must be done holding
1132 	 * ctx->completion_lock to prevent other code from messing with the tail
1133 	 * pointer since we might be called from irq context.
1134 	 */
1135 	spin_lock_irqsave(&ctx->completion_lock, flags);
1136 
1137 	tail = ctx->tail;
1138 	pos = tail + AIO_EVENTS_OFFSET;
1139 
1140 	if (++tail >= ctx->nr_events)
1141 		tail = 0;
1142 
1143 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1144 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1145 
1146 	*event = iocb->ki_res;
1147 
1148 	kunmap_atomic(ev_page);
1149 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1150 
1151 	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1152 		 (void __user *)(unsigned long)iocb->ki_res.obj,
1153 		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1154 
1155 	/* after flagging the request as done, we
1156 	 * must never even look at it again
1157 	 */
1158 	smp_wmb();	/* make event visible before updating tail */
1159 
1160 	ctx->tail = tail;
1161 
1162 	ring = kmap_atomic(ctx->ring_pages[0]);
1163 	head = ring->head;
1164 	ring->tail = tail;
1165 	kunmap_atomic(ring);
1166 	flush_dcache_page(ctx->ring_pages[0]);
1167 
1168 	ctx->completed_events++;
1169 	if (ctx->completed_events > 1)
1170 		refill_reqs_available(ctx, head, tail);
1171 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1172 
1173 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1174 
1175 	/*
1176 	 * Check if the user asked us to deliver the result through an
1177 	 * eventfd. The eventfd_signal() function is safe to be called
1178 	 * from IRQ context.
1179 	 */
1180 	if (iocb->ki_eventfd)
1181 		eventfd_signal(iocb->ki_eventfd, 1);
1182 
1183 	/*
1184 	 * We have to order our ring_info tail store above and test
1185 	 * of the wait list below outside the wait lock.  This is
1186 	 * like in wake_up_bit() where clearing a bit has to be
1187 	 * ordered with the unlocked test.
1188 	 */
1189 	smp_mb();
1190 
1191 	if (waitqueue_active(&ctx->wait))
1192 		wake_up(&ctx->wait);
1193 }
1194 
iocb_put(struct aio_kiocb * iocb)1195 static inline void iocb_put(struct aio_kiocb *iocb)
1196 {
1197 	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1198 		aio_complete(iocb);
1199 		iocb_destroy(iocb);
1200 	}
1201 }
1202 
1203 /* aio_read_events_ring
1204  *	Pull an event off of the ioctx's event ring.  Returns the number of
1205  *	events fetched
1206  */
aio_read_events_ring(struct kioctx * ctx,struct io_event __user * event,long nr)1207 static long aio_read_events_ring(struct kioctx *ctx,
1208 				 struct io_event __user *event, long nr)
1209 {
1210 	struct aio_ring *ring;
1211 	unsigned head, tail, pos;
1212 	long ret = 0;
1213 	int copy_ret;
1214 
1215 	/*
1216 	 * The mutex can block and wake us up and that will cause
1217 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1218 	 * and repeat. This should be rare enough that it doesn't cause
1219 	 * peformance issues. See the comment in read_events() for more detail.
1220 	 */
1221 	sched_annotate_sleep();
1222 	mutex_lock(&ctx->ring_lock);
1223 
1224 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1225 	ring = kmap_atomic(ctx->ring_pages[0]);
1226 	head = ring->head;
1227 	tail = ring->tail;
1228 	kunmap_atomic(ring);
1229 
1230 	/*
1231 	 * Ensure that once we've read the current tail pointer, that
1232 	 * we also see the events that were stored up to the tail.
1233 	 */
1234 	smp_rmb();
1235 
1236 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1237 
1238 	if (head == tail)
1239 		goto out;
1240 
1241 	head %= ctx->nr_events;
1242 	tail %= ctx->nr_events;
1243 
1244 	while (ret < nr) {
1245 		long avail;
1246 		struct io_event *ev;
1247 		struct page *page;
1248 
1249 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1250 		if (head == tail)
1251 			break;
1252 
1253 		pos = head + AIO_EVENTS_OFFSET;
1254 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1255 		pos %= AIO_EVENTS_PER_PAGE;
1256 
1257 		avail = min(avail, nr - ret);
1258 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1259 
1260 		ev = kmap(page);
1261 		copy_ret = copy_to_user(event + ret, ev + pos,
1262 					sizeof(*ev) * avail);
1263 		kunmap(page);
1264 
1265 		if (unlikely(copy_ret)) {
1266 			ret = -EFAULT;
1267 			goto out;
1268 		}
1269 
1270 		ret += avail;
1271 		head += avail;
1272 		head %= ctx->nr_events;
1273 	}
1274 
1275 	ring = kmap_atomic(ctx->ring_pages[0]);
1276 	ring->head = head;
1277 	kunmap_atomic(ring);
1278 	flush_dcache_page(ctx->ring_pages[0]);
1279 
1280 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1281 out:
1282 	mutex_unlock(&ctx->ring_lock);
1283 
1284 	return ret;
1285 }
1286 
aio_read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,long * i)1287 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1288 			    struct io_event __user *event, long *i)
1289 {
1290 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1291 
1292 	if (ret > 0)
1293 		*i += ret;
1294 
1295 	if (unlikely(atomic_read(&ctx->dead)))
1296 		ret = -EINVAL;
1297 
1298 	if (!*i)
1299 		*i = ret;
1300 
1301 	return ret < 0 || *i >= min_nr;
1302 }
1303 
read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,ktime_t until)1304 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1305 			struct io_event __user *event,
1306 			ktime_t until)
1307 {
1308 	long ret = 0;
1309 
1310 	/*
1311 	 * Note that aio_read_events() is being called as the conditional - i.e.
1312 	 * we're calling it after prepare_to_wait() has set task state to
1313 	 * TASK_INTERRUPTIBLE.
1314 	 *
1315 	 * But aio_read_events() can block, and if it blocks it's going to flip
1316 	 * the task state back to TASK_RUNNING.
1317 	 *
1318 	 * This should be ok, provided it doesn't flip the state back to
1319 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1320 	 * will only happen if the mutex_lock() call blocks, and we then find
1321 	 * the ringbuffer empty. So in practice we should be ok, but it's
1322 	 * something to be aware of when touching this code.
1323 	 */
1324 	if (until == 0)
1325 		aio_read_events(ctx, min_nr, nr, event, &ret);
1326 	else
1327 		wait_event_interruptible_hrtimeout(ctx->wait,
1328 				aio_read_events(ctx, min_nr, nr, event, &ret),
1329 				until);
1330 	return ret;
1331 }
1332 
1333 /* sys_io_setup:
1334  *	Create an aio_context capable of receiving at least nr_events.
1335  *	ctxp must not point to an aio_context that already exists, and
1336  *	must be initialized to 0 prior to the call.  On successful
1337  *	creation of the aio_context, *ctxp is filled in with the resulting
1338  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1339  *	if the specified nr_events exceeds internal limits.  May fail
1340  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1341  *	of available events.  May fail with -ENOMEM if insufficient kernel
1342  *	resources are available.  May fail with -EFAULT if an invalid
1343  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1344  *	implemented.
1345  */
SYSCALL_DEFINE2(io_setup,unsigned,nr_events,aio_context_t __user *,ctxp)1346 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1347 {
1348 	struct kioctx *ioctx = NULL;
1349 	unsigned long ctx;
1350 	long ret;
1351 
1352 	ret = get_user(ctx, ctxp);
1353 	if (unlikely(ret))
1354 		goto out;
1355 
1356 	ret = -EINVAL;
1357 	if (unlikely(ctx || nr_events == 0)) {
1358 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1359 		         ctx, nr_events);
1360 		goto out;
1361 	}
1362 
1363 	ioctx = ioctx_alloc(nr_events);
1364 	ret = PTR_ERR(ioctx);
1365 	if (!IS_ERR(ioctx)) {
1366 		ret = put_user(ioctx->user_id, ctxp);
1367 		if (ret)
1368 			kill_ioctx(current->mm, ioctx, NULL);
1369 		percpu_ref_put(&ioctx->users);
1370 	}
1371 
1372 out:
1373 	return ret;
1374 }
1375 
1376 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(io_setup,unsigned,nr_events,u32 __user *,ctx32p)1377 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1378 {
1379 	struct kioctx *ioctx = NULL;
1380 	unsigned long ctx;
1381 	long ret;
1382 
1383 	ret = get_user(ctx, ctx32p);
1384 	if (unlikely(ret))
1385 		goto out;
1386 
1387 	ret = -EINVAL;
1388 	if (unlikely(ctx || nr_events == 0)) {
1389 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1390 		         ctx, nr_events);
1391 		goto out;
1392 	}
1393 
1394 	ioctx = ioctx_alloc(nr_events);
1395 	ret = PTR_ERR(ioctx);
1396 	if (!IS_ERR(ioctx)) {
1397 		/* truncating is ok because it's a user address */
1398 		ret = put_user((u32)ioctx->user_id, ctx32p);
1399 		if (ret)
1400 			kill_ioctx(current->mm, ioctx, NULL);
1401 		percpu_ref_put(&ioctx->users);
1402 	}
1403 
1404 out:
1405 	return ret;
1406 }
1407 #endif
1408 
1409 /* sys_io_destroy:
1410  *	Destroy the aio_context specified.  May cancel any outstanding
1411  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1412  *	implemented.  May fail with -EINVAL if the context pointed to
1413  *	is invalid.
1414  */
SYSCALL_DEFINE1(io_destroy,aio_context_t,ctx)1415 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1416 {
1417 	struct kioctx *ioctx = lookup_ioctx(ctx);
1418 	if (likely(NULL != ioctx)) {
1419 		struct ctx_rq_wait wait;
1420 		int ret;
1421 
1422 		init_completion(&wait.comp);
1423 		atomic_set(&wait.count, 1);
1424 
1425 		/* Pass requests_done to kill_ioctx() where it can be set
1426 		 * in a thread-safe way. If we try to set it here then we have
1427 		 * a race condition if two io_destroy() called simultaneously.
1428 		 */
1429 		ret = kill_ioctx(current->mm, ioctx, &wait);
1430 		percpu_ref_put(&ioctx->users);
1431 
1432 		/* Wait until all IO for the context are done. Otherwise kernel
1433 		 * keep using user-space buffers even if user thinks the context
1434 		 * is destroyed.
1435 		 */
1436 		if (!ret)
1437 			wait_for_completion(&wait.comp);
1438 
1439 		return ret;
1440 	}
1441 	pr_debug("EINVAL: invalid context id\n");
1442 	return -EINVAL;
1443 }
1444 
aio_remove_iocb(struct aio_kiocb * iocb)1445 static void aio_remove_iocb(struct aio_kiocb *iocb)
1446 {
1447 	struct kioctx *ctx = iocb->ki_ctx;
1448 	unsigned long flags;
1449 
1450 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1451 	list_del(&iocb->ki_list);
1452 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1453 }
1454 
aio_complete_rw(struct kiocb * kiocb,long res)1455 static void aio_complete_rw(struct kiocb *kiocb, long res)
1456 {
1457 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1458 
1459 	if (!list_empty_careful(&iocb->ki_list))
1460 		aio_remove_iocb(iocb);
1461 
1462 	if (kiocb->ki_flags & IOCB_WRITE) {
1463 		struct inode *inode = file_inode(kiocb->ki_filp);
1464 
1465 		/*
1466 		 * Tell lockdep we inherited freeze protection from submission
1467 		 * thread.
1468 		 */
1469 		if (S_ISREG(inode->i_mode))
1470 			__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1471 		file_end_write(kiocb->ki_filp);
1472 	}
1473 
1474 	iocb->ki_res.res = res;
1475 	iocb->ki_res.res2 = 0;
1476 	iocb_put(iocb);
1477 }
1478 
aio_prep_rw(struct kiocb * req,const struct iocb * iocb)1479 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1480 {
1481 	int ret;
1482 
1483 	req->ki_complete = aio_complete_rw;
1484 	req->private = NULL;
1485 	req->ki_pos = iocb->aio_offset;
1486 	req->ki_flags = req->ki_filp->f_iocb_flags | IOCB_AIO_RW;
1487 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1488 		req->ki_flags |= IOCB_EVENTFD;
1489 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1490 		/*
1491 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1492 		 * aio_reqprio is interpreted as an I/O scheduling
1493 		 * class and priority.
1494 		 */
1495 		ret = ioprio_check_cap(iocb->aio_reqprio);
1496 		if (ret) {
1497 			pr_debug("aio ioprio check cap error: %d\n", ret);
1498 			return ret;
1499 		}
1500 
1501 		req->ki_ioprio = iocb->aio_reqprio;
1502 	} else
1503 		req->ki_ioprio = get_current_ioprio();
1504 
1505 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1506 	if (unlikely(ret))
1507 		return ret;
1508 
1509 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1510 	return 0;
1511 }
1512 
aio_setup_rw(int rw,const struct iocb * iocb,struct iovec ** iovec,bool vectored,bool compat,struct iov_iter * iter)1513 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1514 		struct iovec **iovec, bool vectored, bool compat,
1515 		struct iov_iter *iter)
1516 {
1517 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1518 	size_t len = iocb->aio_nbytes;
1519 
1520 	if (!vectored) {
1521 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1522 		*iovec = NULL;
1523 		return ret;
1524 	}
1525 
1526 	return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1527 }
1528 
aio_rw_done(struct kiocb * req,ssize_t ret)1529 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1530 {
1531 	switch (ret) {
1532 	case -EIOCBQUEUED:
1533 		break;
1534 	case -ERESTARTSYS:
1535 	case -ERESTARTNOINTR:
1536 	case -ERESTARTNOHAND:
1537 	case -ERESTART_RESTARTBLOCK:
1538 		/*
1539 		 * There's no easy way to restart the syscall since other AIO's
1540 		 * may be already running. Just fail this IO with EINTR.
1541 		 */
1542 		ret = -EINTR;
1543 		fallthrough;
1544 	default:
1545 		req->ki_complete(req, ret);
1546 	}
1547 }
1548 
aio_read(struct kiocb * req,const struct iocb * iocb,bool vectored,bool compat)1549 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1550 			bool vectored, bool compat)
1551 {
1552 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1553 	struct iov_iter iter;
1554 	struct file *file;
1555 	int ret;
1556 
1557 	ret = aio_prep_rw(req, iocb);
1558 	if (ret)
1559 		return ret;
1560 	file = req->ki_filp;
1561 	if (unlikely(!(file->f_mode & FMODE_READ)))
1562 		return -EBADF;
1563 	if (unlikely(!file->f_op->read_iter))
1564 		return -EINVAL;
1565 
1566 	ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter);
1567 	if (ret < 0)
1568 		return ret;
1569 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1570 	if (!ret)
1571 		aio_rw_done(req, call_read_iter(file, req, &iter));
1572 	kfree(iovec);
1573 	return ret;
1574 }
1575 
aio_write(struct kiocb * req,const struct iocb * iocb,bool vectored,bool compat)1576 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1577 			 bool vectored, bool compat)
1578 {
1579 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1580 	struct iov_iter iter;
1581 	struct file *file;
1582 	int ret;
1583 
1584 	ret = aio_prep_rw(req, iocb);
1585 	if (ret)
1586 		return ret;
1587 	file = req->ki_filp;
1588 
1589 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1590 		return -EBADF;
1591 	if (unlikely(!file->f_op->write_iter))
1592 		return -EINVAL;
1593 
1594 	ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter);
1595 	if (ret < 0)
1596 		return ret;
1597 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1598 	if (!ret) {
1599 		/*
1600 		 * Open-code file_start_write here to grab freeze protection,
1601 		 * which will be released by another thread in
1602 		 * aio_complete_rw().  Fool lockdep by telling it the lock got
1603 		 * released so that it doesn't complain about the held lock when
1604 		 * we return to userspace.
1605 		 */
1606 		if (S_ISREG(file_inode(file)->i_mode)) {
1607 			sb_start_write(file_inode(file)->i_sb);
1608 			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1609 		}
1610 		req->ki_flags |= IOCB_WRITE;
1611 		aio_rw_done(req, call_write_iter(file, req, &iter));
1612 	}
1613 	kfree(iovec);
1614 	return ret;
1615 }
1616 
aio_fsync_work(struct work_struct * work)1617 static void aio_fsync_work(struct work_struct *work)
1618 {
1619 	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1620 	const struct cred *old_cred = override_creds(iocb->fsync.creds);
1621 
1622 	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1623 	revert_creds(old_cred);
1624 	put_cred(iocb->fsync.creds);
1625 	iocb_put(iocb);
1626 }
1627 
aio_fsync(struct fsync_iocb * req,const struct iocb * iocb,bool datasync)1628 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1629 		     bool datasync)
1630 {
1631 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1632 			iocb->aio_rw_flags))
1633 		return -EINVAL;
1634 
1635 	if (unlikely(!req->file->f_op->fsync))
1636 		return -EINVAL;
1637 
1638 	req->creds = prepare_creds();
1639 	if (!req->creds)
1640 		return -ENOMEM;
1641 
1642 	req->datasync = datasync;
1643 	INIT_WORK(&req->work, aio_fsync_work);
1644 	schedule_work(&req->work);
1645 	return 0;
1646 }
1647 
aio_poll_put_work(struct work_struct * work)1648 static void aio_poll_put_work(struct work_struct *work)
1649 {
1650 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1651 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1652 
1653 	iocb_put(iocb);
1654 }
1655 
1656 /*
1657  * Safely lock the waitqueue which the request is on, synchronizing with the
1658  * case where the ->poll() provider decides to free its waitqueue early.
1659  *
1660  * Returns true on success, meaning that req->head->lock was locked, req->wait
1661  * is on req->head, and an RCU read lock was taken.  Returns false if the
1662  * request was already removed from its waitqueue (which might no longer exist).
1663  */
poll_iocb_lock_wq(struct poll_iocb * req)1664 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1665 {
1666 	wait_queue_head_t *head;
1667 
1668 	/*
1669 	 * While we hold the waitqueue lock and the waitqueue is nonempty,
1670 	 * wake_up_pollfree() will wait for us.  However, taking the waitqueue
1671 	 * lock in the first place can race with the waitqueue being freed.
1672 	 *
1673 	 * We solve this as eventpoll does: by taking advantage of the fact that
1674 	 * all users of wake_up_pollfree() will RCU-delay the actual free.  If
1675 	 * we enter rcu_read_lock() and see that the pointer to the queue is
1676 	 * non-NULL, we can then lock it without the memory being freed out from
1677 	 * under us, then check whether the request is still on the queue.
1678 	 *
1679 	 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1680 	 * case the caller deletes the entry from the queue, leaving it empty.
1681 	 * In that case, only RCU prevents the queue memory from being freed.
1682 	 */
1683 	rcu_read_lock();
1684 	head = smp_load_acquire(&req->head);
1685 	if (head) {
1686 		spin_lock(&head->lock);
1687 		if (!list_empty(&req->wait.entry))
1688 			return true;
1689 		spin_unlock(&head->lock);
1690 	}
1691 	rcu_read_unlock();
1692 	return false;
1693 }
1694 
poll_iocb_unlock_wq(struct poll_iocb * req)1695 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1696 {
1697 	spin_unlock(&req->head->lock);
1698 	rcu_read_unlock();
1699 }
1700 
aio_poll_complete_work(struct work_struct * work)1701 static void aio_poll_complete_work(struct work_struct *work)
1702 {
1703 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1704 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1705 	struct poll_table_struct pt = { ._key = req->events };
1706 	struct kioctx *ctx = iocb->ki_ctx;
1707 	__poll_t mask = 0;
1708 
1709 	if (!READ_ONCE(req->cancelled))
1710 		mask = vfs_poll(req->file, &pt) & req->events;
1711 
1712 	/*
1713 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1714 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1715 	 * synchronize with them.  In the cancellation case the list_del_init
1716 	 * itself is not actually needed, but harmless so we keep it in to
1717 	 * avoid further branches in the fast path.
1718 	 */
1719 	spin_lock_irq(&ctx->ctx_lock);
1720 	if (poll_iocb_lock_wq(req)) {
1721 		if (!mask && !READ_ONCE(req->cancelled)) {
1722 			/*
1723 			 * The request isn't actually ready to be completed yet.
1724 			 * Reschedule completion if another wakeup came in.
1725 			 */
1726 			if (req->work_need_resched) {
1727 				schedule_work(&req->work);
1728 				req->work_need_resched = false;
1729 			} else {
1730 				req->work_scheduled = false;
1731 			}
1732 			poll_iocb_unlock_wq(req);
1733 			spin_unlock_irq(&ctx->ctx_lock);
1734 			return;
1735 		}
1736 		list_del_init(&req->wait.entry);
1737 		poll_iocb_unlock_wq(req);
1738 	} /* else, POLLFREE has freed the waitqueue, so we must complete */
1739 	list_del_init(&iocb->ki_list);
1740 	iocb->ki_res.res = mangle_poll(mask);
1741 	spin_unlock_irq(&ctx->ctx_lock);
1742 
1743 	iocb_put(iocb);
1744 }
1745 
1746 /* assumes we are called with irqs disabled */
aio_poll_cancel(struct kiocb * iocb)1747 static int aio_poll_cancel(struct kiocb *iocb)
1748 {
1749 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1750 	struct poll_iocb *req = &aiocb->poll;
1751 
1752 	if (poll_iocb_lock_wq(req)) {
1753 		WRITE_ONCE(req->cancelled, true);
1754 		if (!req->work_scheduled) {
1755 			schedule_work(&aiocb->poll.work);
1756 			req->work_scheduled = true;
1757 		}
1758 		poll_iocb_unlock_wq(req);
1759 	} /* else, the request was force-cancelled by POLLFREE already */
1760 
1761 	return 0;
1762 }
1763 
aio_poll_wake(struct wait_queue_entry * wait,unsigned mode,int sync,void * key)1764 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1765 		void *key)
1766 {
1767 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1768 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1769 	__poll_t mask = key_to_poll(key);
1770 	unsigned long flags;
1771 
1772 	/* for instances that support it check for an event match first: */
1773 	if (mask && !(mask & req->events))
1774 		return 0;
1775 
1776 	/*
1777 	 * Complete the request inline if possible.  This requires that three
1778 	 * conditions be met:
1779 	 *   1. An event mask must have been passed.  If a plain wakeup was done
1780 	 *	instead, then mask == 0 and we have to call vfs_poll() to get
1781 	 *	the events, so inline completion isn't possible.
1782 	 *   2. The completion work must not have already been scheduled.
1783 	 *   3. ctx_lock must not be busy.  We have to use trylock because we
1784 	 *	already hold the waitqueue lock, so this inverts the normal
1785 	 *	locking order.  Use irqsave/irqrestore because not all
1786 	 *	filesystems (e.g. fuse) call this function with IRQs disabled,
1787 	 *	yet IRQs have to be disabled before ctx_lock is obtained.
1788 	 */
1789 	if (mask && !req->work_scheduled &&
1790 	    spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1791 		struct kioctx *ctx = iocb->ki_ctx;
1792 
1793 		list_del_init(&req->wait.entry);
1794 		list_del(&iocb->ki_list);
1795 		iocb->ki_res.res = mangle_poll(mask);
1796 		if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
1797 			iocb = NULL;
1798 			INIT_WORK(&req->work, aio_poll_put_work);
1799 			schedule_work(&req->work);
1800 		}
1801 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1802 		if (iocb)
1803 			iocb_put(iocb);
1804 	} else {
1805 		/*
1806 		 * Schedule the completion work if needed.  If it was already
1807 		 * scheduled, record that another wakeup came in.
1808 		 *
1809 		 * Don't remove the request from the waitqueue here, as it might
1810 		 * not actually be complete yet (we won't know until vfs_poll()
1811 		 * is called), and we must not miss any wakeups.  POLLFREE is an
1812 		 * exception to this; see below.
1813 		 */
1814 		if (req->work_scheduled) {
1815 			req->work_need_resched = true;
1816 		} else {
1817 			schedule_work(&req->work);
1818 			req->work_scheduled = true;
1819 		}
1820 
1821 		/*
1822 		 * If the waitqueue is being freed early but we can't complete
1823 		 * the request inline, we have to tear down the request as best
1824 		 * we can.  That means immediately removing the request from its
1825 		 * waitqueue and preventing all further accesses to the
1826 		 * waitqueue via the request.  We also need to schedule the
1827 		 * completion work (done above).  Also mark the request as
1828 		 * cancelled, to potentially skip an unneeded call to ->poll().
1829 		 */
1830 		if (mask & POLLFREE) {
1831 			WRITE_ONCE(req->cancelled, true);
1832 			list_del_init(&req->wait.entry);
1833 
1834 			/*
1835 			 * Careful: this *must* be the last step, since as soon
1836 			 * as req->head is NULL'ed out, the request can be
1837 			 * completed and freed, since aio_poll_complete_work()
1838 			 * will no longer need to take the waitqueue lock.
1839 			 */
1840 			smp_store_release(&req->head, NULL);
1841 		}
1842 	}
1843 	return 1;
1844 }
1845 
1846 struct aio_poll_table {
1847 	struct poll_table_struct	pt;
1848 	struct aio_kiocb		*iocb;
1849 	bool				queued;
1850 	int				error;
1851 };
1852 
1853 static void
aio_poll_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)1854 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1855 		struct poll_table_struct *p)
1856 {
1857 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1858 
1859 	/* multiple wait queues per file are not supported */
1860 	if (unlikely(pt->queued)) {
1861 		pt->error = -EINVAL;
1862 		return;
1863 	}
1864 
1865 	pt->queued = true;
1866 	pt->error = 0;
1867 	pt->iocb->poll.head = head;
1868 	add_wait_queue(head, &pt->iocb->poll.wait);
1869 }
1870 
aio_poll(struct aio_kiocb * aiocb,const struct iocb * iocb)1871 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1872 {
1873 	struct kioctx *ctx = aiocb->ki_ctx;
1874 	struct poll_iocb *req = &aiocb->poll;
1875 	struct aio_poll_table apt;
1876 	bool cancel = false;
1877 	__poll_t mask;
1878 
1879 	/* reject any unknown events outside the normal event mask. */
1880 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1881 		return -EINVAL;
1882 	/* reject fields that are not defined for poll */
1883 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1884 		return -EINVAL;
1885 
1886 	INIT_WORK(&req->work, aio_poll_complete_work);
1887 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1888 
1889 	req->head = NULL;
1890 	req->cancelled = false;
1891 	req->work_scheduled = false;
1892 	req->work_need_resched = false;
1893 
1894 	apt.pt._qproc = aio_poll_queue_proc;
1895 	apt.pt._key = req->events;
1896 	apt.iocb = aiocb;
1897 	apt.queued = false;
1898 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1899 
1900 	/* initialized the list so that we can do list_empty checks */
1901 	INIT_LIST_HEAD(&req->wait.entry);
1902 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1903 
1904 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1905 	spin_lock_irq(&ctx->ctx_lock);
1906 	if (likely(apt.queued)) {
1907 		bool on_queue = poll_iocb_lock_wq(req);
1908 
1909 		if (!on_queue || req->work_scheduled) {
1910 			/*
1911 			 * aio_poll_wake() already either scheduled the async
1912 			 * completion work, or completed the request inline.
1913 			 */
1914 			if (apt.error) /* unsupported case: multiple queues */
1915 				cancel = true;
1916 			apt.error = 0;
1917 			mask = 0;
1918 		}
1919 		if (mask || apt.error) {
1920 			/* Steal to complete synchronously. */
1921 			list_del_init(&req->wait.entry);
1922 		} else if (cancel) {
1923 			/* Cancel if possible (may be too late though). */
1924 			WRITE_ONCE(req->cancelled, true);
1925 		} else if (on_queue) {
1926 			/*
1927 			 * Actually waiting for an event, so add the request to
1928 			 * active_reqs so that it can be cancelled if needed.
1929 			 */
1930 			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1931 			aiocb->ki_cancel = aio_poll_cancel;
1932 		}
1933 		if (on_queue)
1934 			poll_iocb_unlock_wq(req);
1935 	}
1936 	if (mask) { /* no async, we'd stolen it */
1937 		aiocb->ki_res.res = mangle_poll(mask);
1938 		apt.error = 0;
1939 	}
1940 	spin_unlock_irq(&ctx->ctx_lock);
1941 	if (mask)
1942 		iocb_put(aiocb);
1943 	return apt.error;
1944 }
1945 
__io_submit_one(struct kioctx * ctx,const struct iocb * iocb,struct iocb __user * user_iocb,struct aio_kiocb * req,bool compat)1946 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1947 			   struct iocb __user *user_iocb, struct aio_kiocb *req,
1948 			   bool compat)
1949 {
1950 	req->ki_filp = fget(iocb->aio_fildes);
1951 	if (unlikely(!req->ki_filp))
1952 		return -EBADF;
1953 
1954 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1955 		struct eventfd_ctx *eventfd;
1956 		/*
1957 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1958 		 * instance of the file* now. The file descriptor must be
1959 		 * an eventfd() fd, and will be signaled for each completed
1960 		 * event using the eventfd_signal() function.
1961 		 */
1962 		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1963 		if (IS_ERR(eventfd))
1964 			return PTR_ERR(eventfd);
1965 
1966 		req->ki_eventfd = eventfd;
1967 	}
1968 
1969 	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1970 		pr_debug("EFAULT: aio_key\n");
1971 		return -EFAULT;
1972 	}
1973 
1974 	req->ki_res.obj = (u64)(unsigned long)user_iocb;
1975 	req->ki_res.data = iocb->aio_data;
1976 	req->ki_res.res = 0;
1977 	req->ki_res.res2 = 0;
1978 
1979 	switch (iocb->aio_lio_opcode) {
1980 	case IOCB_CMD_PREAD:
1981 		return aio_read(&req->rw, iocb, false, compat);
1982 	case IOCB_CMD_PWRITE:
1983 		return aio_write(&req->rw, iocb, false, compat);
1984 	case IOCB_CMD_PREADV:
1985 		return aio_read(&req->rw, iocb, true, compat);
1986 	case IOCB_CMD_PWRITEV:
1987 		return aio_write(&req->rw, iocb, true, compat);
1988 	case IOCB_CMD_FSYNC:
1989 		return aio_fsync(&req->fsync, iocb, false);
1990 	case IOCB_CMD_FDSYNC:
1991 		return aio_fsync(&req->fsync, iocb, true);
1992 	case IOCB_CMD_POLL:
1993 		return aio_poll(req, iocb);
1994 	default:
1995 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1996 		return -EINVAL;
1997 	}
1998 }
1999 
io_submit_one(struct kioctx * ctx,struct iocb __user * user_iocb,bool compat)2000 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
2001 			 bool compat)
2002 {
2003 	struct aio_kiocb *req;
2004 	struct iocb iocb;
2005 	int err;
2006 
2007 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
2008 		return -EFAULT;
2009 
2010 	/* enforce forwards compatibility on users */
2011 	if (unlikely(iocb.aio_reserved2)) {
2012 		pr_debug("EINVAL: reserve field set\n");
2013 		return -EINVAL;
2014 	}
2015 
2016 	/* prevent overflows */
2017 	if (unlikely(
2018 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
2019 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2020 	    ((ssize_t)iocb.aio_nbytes < 0)
2021 	   )) {
2022 		pr_debug("EINVAL: overflow check\n");
2023 		return -EINVAL;
2024 	}
2025 
2026 	req = aio_get_req(ctx);
2027 	if (unlikely(!req))
2028 		return -EAGAIN;
2029 
2030 	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2031 
2032 	/* Done with the synchronous reference */
2033 	iocb_put(req);
2034 
2035 	/*
2036 	 * If err is 0, we'd either done aio_complete() ourselves or have
2037 	 * arranged for that to be done asynchronously.  Anything non-zero
2038 	 * means that we need to destroy req ourselves.
2039 	 */
2040 	if (unlikely(err)) {
2041 		iocb_destroy(req);
2042 		put_reqs_available(ctx, 1);
2043 	}
2044 	return err;
2045 }
2046 
2047 /* sys_io_submit:
2048  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
2049  *	the number of iocbs queued.  May return -EINVAL if the aio_context
2050  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
2051  *	*iocbpp[0] is not properly initialized, if the operation specified
2052  *	is invalid for the file descriptor in the iocb.  May fail with
2053  *	-EFAULT if any of the data structures point to invalid data.  May
2054  *	fail with -EBADF if the file descriptor specified in the first
2055  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
2056  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
2057  *	fail with -ENOSYS if not implemented.
2058  */
SYSCALL_DEFINE3(io_submit,aio_context_t,ctx_id,long,nr,struct iocb __user * __user *,iocbpp)2059 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2060 		struct iocb __user * __user *, iocbpp)
2061 {
2062 	struct kioctx *ctx;
2063 	long ret = 0;
2064 	int i = 0;
2065 	struct blk_plug plug;
2066 
2067 	if (unlikely(nr < 0))
2068 		return -EINVAL;
2069 
2070 	ctx = lookup_ioctx(ctx_id);
2071 	if (unlikely(!ctx)) {
2072 		pr_debug("EINVAL: invalid context id\n");
2073 		return -EINVAL;
2074 	}
2075 
2076 	if (nr > ctx->nr_events)
2077 		nr = ctx->nr_events;
2078 
2079 	if (nr > AIO_PLUG_THRESHOLD)
2080 		blk_start_plug(&plug);
2081 	for (i = 0; i < nr; i++) {
2082 		struct iocb __user *user_iocb;
2083 
2084 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2085 			ret = -EFAULT;
2086 			break;
2087 		}
2088 
2089 		ret = io_submit_one(ctx, user_iocb, false);
2090 		if (ret)
2091 			break;
2092 	}
2093 	if (nr > AIO_PLUG_THRESHOLD)
2094 		blk_finish_plug(&plug);
2095 
2096 	percpu_ref_put(&ctx->users);
2097 	return i ? i : ret;
2098 }
2099 
2100 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(io_submit,compat_aio_context_t,ctx_id,int,nr,compat_uptr_t __user *,iocbpp)2101 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2102 		       int, nr, compat_uptr_t __user *, iocbpp)
2103 {
2104 	struct kioctx *ctx;
2105 	long ret = 0;
2106 	int i = 0;
2107 	struct blk_plug plug;
2108 
2109 	if (unlikely(nr < 0))
2110 		return -EINVAL;
2111 
2112 	ctx = lookup_ioctx(ctx_id);
2113 	if (unlikely(!ctx)) {
2114 		pr_debug("EINVAL: invalid context id\n");
2115 		return -EINVAL;
2116 	}
2117 
2118 	if (nr > ctx->nr_events)
2119 		nr = ctx->nr_events;
2120 
2121 	if (nr > AIO_PLUG_THRESHOLD)
2122 		blk_start_plug(&plug);
2123 	for (i = 0; i < nr; i++) {
2124 		compat_uptr_t user_iocb;
2125 
2126 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2127 			ret = -EFAULT;
2128 			break;
2129 		}
2130 
2131 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2132 		if (ret)
2133 			break;
2134 	}
2135 	if (nr > AIO_PLUG_THRESHOLD)
2136 		blk_finish_plug(&plug);
2137 
2138 	percpu_ref_put(&ctx->users);
2139 	return i ? i : ret;
2140 }
2141 #endif
2142 
2143 /* sys_io_cancel:
2144  *	Attempts to cancel an iocb previously passed to io_submit.  If
2145  *	the operation is successfully cancelled, the resulting event is
2146  *	copied into the memory pointed to by result without being placed
2147  *	into the completion queue and 0 is returned.  May fail with
2148  *	-EFAULT if any of the data structures pointed to are invalid.
2149  *	May fail with -EINVAL if aio_context specified by ctx_id is
2150  *	invalid.  May fail with -EAGAIN if the iocb specified was not
2151  *	cancelled.  Will fail with -ENOSYS if not implemented.
2152  */
SYSCALL_DEFINE3(io_cancel,aio_context_t,ctx_id,struct iocb __user *,iocb,struct io_event __user *,result)2153 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2154 		struct io_event __user *, result)
2155 {
2156 	struct kioctx *ctx;
2157 	struct aio_kiocb *kiocb;
2158 	int ret = -EINVAL;
2159 	u32 key;
2160 	u64 obj = (u64)(unsigned long)iocb;
2161 
2162 	if (unlikely(get_user(key, &iocb->aio_key)))
2163 		return -EFAULT;
2164 	if (unlikely(key != KIOCB_KEY))
2165 		return -EINVAL;
2166 
2167 	ctx = lookup_ioctx(ctx_id);
2168 	if (unlikely(!ctx))
2169 		return -EINVAL;
2170 
2171 	spin_lock_irq(&ctx->ctx_lock);
2172 	/* TODO: use a hash or array, this sucks. */
2173 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2174 		if (kiocb->ki_res.obj == obj) {
2175 			ret = kiocb->ki_cancel(&kiocb->rw);
2176 			list_del_init(&kiocb->ki_list);
2177 			break;
2178 		}
2179 	}
2180 	spin_unlock_irq(&ctx->ctx_lock);
2181 
2182 	if (!ret) {
2183 		/*
2184 		 * The result argument is no longer used - the io_event is
2185 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2186 		 * cancellation is progress:
2187 		 */
2188 		ret = -EINPROGRESS;
2189 	}
2190 
2191 	percpu_ref_put(&ctx->users);
2192 
2193 	return ret;
2194 }
2195 
do_io_getevents(aio_context_t ctx_id,long min_nr,long nr,struct io_event __user * events,struct timespec64 * ts)2196 static long do_io_getevents(aio_context_t ctx_id,
2197 		long min_nr,
2198 		long nr,
2199 		struct io_event __user *events,
2200 		struct timespec64 *ts)
2201 {
2202 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2203 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2204 	long ret = -EINVAL;
2205 
2206 	if (likely(ioctx)) {
2207 		if (likely(min_nr <= nr && min_nr >= 0))
2208 			ret = read_events(ioctx, min_nr, nr, events, until);
2209 		percpu_ref_put(&ioctx->users);
2210 	}
2211 
2212 	return ret;
2213 }
2214 
2215 /* io_getevents:
2216  *	Attempts to read at least min_nr events and up to nr events from
2217  *	the completion queue for the aio_context specified by ctx_id. If
2218  *	it succeeds, the number of read events is returned. May fail with
2219  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2220  *	out of range, if timeout is out of range.  May fail with -EFAULT
2221  *	if any of the memory specified is invalid.  May return 0 or
2222  *	< min_nr if the timeout specified by timeout has elapsed
2223  *	before sufficient events are available, where timeout == NULL
2224  *	specifies an infinite timeout. Note that the timeout pointed to by
2225  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2226  */
2227 #ifdef CONFIG_64BIT
2228 
SYSCALL_DEFINE5(io_getevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout)2229 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2230 		long, min_nr,
2231 		long, nr,
2232 		struct io_event __user *, events,
2233 		struct __kernel_timespec __user *, timeout)
2234 {
2235 	struct timespec64	ts;
2236 	int			ret;
2237 
2238 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2239 		return -EFAULT;
2240 
2241 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2242 	if (!ret && signal_pending(current))
2243 		ret = -EINTR;
2244 	return ret;
2245 }
2246 
2247 #endif
2248 
2249 struct __aio_sigset {
2250 	const sigset_t __user	*sigmask;
2251 	size_t		sigsetsize;
2252 };
2253 
SYSCALL_DEFINE6(io_pgetevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout,const struct __aio_sigset __user *,usig)2254 SYSCALL_DEFINE6(io_pgetevents,
2255 		aio_context_t, ctx_id,
2256 		long, min_nr,
2257 		long, nr,
2258 		struct io_event __user *, events,
2259 		struct __kernel_timespec __user *, timeout,
2260 		const struct __aio_sigset __user *, usig)
2261 {
2262 	struct __aio_sigset	ksig = { NULL, };
2263 	struct timespec64	ts;
2264 	bool interrupted;
2265 	int ret;
2266 
2267 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2268 		return -EFAULT;
2269 
2270 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2271 		return -EFAULT;
2272 
2273 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2274 	if (ret)
2275 		return ret;
2276 
2277 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2278 
2279 	interrupted = signal_pending(current);
2280 	restore_saved_sigmask_unless(interrupted);
2281 	if (interrupted && !ret)
2282 		ret = -ERESTARTNOHAND;
2283 
2284 	return ret;
2285 }
2286 
2287 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2288 
SYSCALL_DEFINE6(io_pgetevents_time32,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout,const struct __aio_sigset __user *,usig)2289 SYSCALL_DEFINE6(io_pgetevents_time32,
2290 		aio_context_t, ctx_id,
2291 		long, min_nr,
2292 		long, nr,
2293 		struct io_event __user *, events,
2294 		struct old_timespec32 __user *, timeout,
2295 		const struct __aio_sigset __user *, usig)
2296 {
2297 	struct __aio_sigset	ksig = { NULL, };
2298 	struct timespec64	ts;
2299 	bool interrupted;
2300 	int ret;
2301 
2302 	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2303 		return -EFAULT;
2304 
2305 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2306 		return -EFAULT;
2307 
2308 
2309 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2310 	if (ret)
2311 		return ret;
2312 
2313 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2314 
2315 	interrupted = signal_pending(current);
2316 	restore_saved_sigmask_unless(interrupted);
2317 	if (interrupted && !ret)
2318 		ret = -ERESTARTNOHAND;
2319 
2320 	return ret;
2321 }
2322 
2323 #endif
2324 
2325 #if defined(CONFIG_COMPAT_32BIT_TIME)
2326 
SYSCALL_DEFINE5(io_getevents_time32,__u32,ctx_id,__s32,min_nr,__s32,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout)2327 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2328 		__s32, min_nr,
2329 		__s32, nr,
2330 		struct io_event __user *, events,
2331 		struct old_timespec32 __user *, timeout)
2332 {
2333 	struct timespec64 t;
2334 	int ret;
2335 
2336 	if (timeout && get_old_timespec32(&t, timeout))
2337 		return -EFAULT;
2338 
2339 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2340 	if (!ret && signal_pending(current))
2341 		ret = -EINTR;
2342 	return ret;
2343 }
2344 
2345 #endif
2346 
2347 #ifdef CONFIG_COMPAT
2348 
2349 struct __compat_aio_sigset {
2350 	compat_uptr_t		sigmask;
2351 	compat_size_t		sigsetsize;
2352 };
2353 
2354 #if defined(CONFIG_COMPAT_32BIT_TIME)
2355 
COMPAT_SYSCALL_DEFINE6(io_pgetevents,compat_aio_context_t,ctx_id,compat_long_t,min_nr,compat_long_t,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout,const struct __compat_aio_sigset __user *,usig)2356 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2357 		compat_aio_context_t, ctx_id,
2358 		compat_long_t, min_nr,
2359 		compat_long_t, nr,
2360 		struct io_event __user *, events,
2361 		struct old_timespec32 __user *, timeout,
2362 		const struct __compat_aio_sigset __user *, usig)
2363 {
2364 	struct __compat_aio_sigset ksig = { 0, };
2365 	struct timespec64 t;
2366 	bool interrupted;
2367 	int ret;
2368 
2369 	if (timeout && get_old_timespec32(&t, timeout))
2370 		return -EFAULT;
2371 
2372 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2373 		return -EFAULT;
2374 
2375 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2376 	if (ret)
2377 		return ret;
2378 
2379 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2380 
2381 	interrupted = signal_pending(current);
2382 	restore_saved_sigmask_unless(interrupted);
2383 	if (interrupted && !ret)
2384 		ret = -ERESTARTNOHAND;
2385 
2386 	return ret;
2387 }
2388 
2389 #endif
2390 
COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,compat_aio_context_t,ctx_id,compat_long_t,min_nr,compat_long_t,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout,const struct __compat_aio_sigset __user *,usig)2391 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2392 		compat_aio_context_t, ctx_id,
2393 		compat_long_t, min_nr,
2394 		compat_long_t, nr,
2395 		struct io_event __user *, events,
2396 		struct __kernel_timespec __user *, timeout,
2397 		const struct __compat_aio_sigset __user *, usig)
2398 {
2399 	struct __compat_aio_sigset ksig = { 0, };
2400 	struct timespec64 t;
2401 	bool interrupted;
2402 	int ret;
2403 
2404 	if (timeout && get_timespec64(&t, timeout))
2405 		return -EFAULT;
2406 
2407 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2408 		return -EFAULT;
2409 
2410 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2411 	if (ret)
2412 		return ret;
2413 
2414 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2415 
2416 	interrupted = signal_pending(current);
2417 	restore_saved_sigmask_unless(interrupted);
2418 	if (interrupted && !ret)
2419 		ret = -ERESTARTNOHAND;
2420 
2421 	return ret;
2422 }
2423 #endif
2424