1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the Interfaces handler.
8 *
9 * Version: @(#)dev.h 1.0.10 08/12/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
16 * Bjorn Ekwall. <bj0rn@blox.se>
17 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 *
19 * Moved to /usr/include/linux for NET3
20 */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 #include <linux/android_kabi.h>
55
56 struct netpoll_info;
57 struct device;
58 struct ethtool_ops;
59 struct phy_device;
60 struct dsa_port;
61 struct ip_tunnel_parm;
62 struct macsec_context;
63 struct macsec_ops;
64 struct netdev_name_node;
65 struct sd_flow_limit;
66 struct sfp_bus;
67 /* 802.11 specific */
68 struct wireless_dev;
69 /* 802.15.4 specific */
70 struct wpan_dev;
71 struct mpls_dev;
72 /* UDP Tunnel offloads */
73 struct udp_tunnel_info;
74 struct udp_tunnel_nic_info;
75 struct udp_tunnel_nic;
76 struct bpf_prog;
77 struct xdp_buff;
78
79 void synchronize_net(void);
80 void netdev_set_default_ethtool_ops(struct net_device *dev,
81 const struct ethtool_ops *ops);
82
83 /* Backlog congestion levels */
84 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
85 #define NET_RX_DROP 1 /* packet dropped */
86
87 #define MAX_NEST_DEV 8
88
89 /*
90 * Transmit return codes: transmit return codes originate from three different
91 * namespaces:
92 *
93 * - qdisc return codes
94 * - driver transmit return codes
95 * - errno values
96 *
97 * Drivers are allowed to return any one of those in their hard_start_xmit()
98 * function. Real network devices commonly used with qdiscs should only return
99 * the driver transmit return codes though - when qdiscs are used, the actual
100 * transmission happens asynchronously, so the value is not propagated to
101 * higher layers. Virtual network devices transmit synchronously; in this case
102 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
103 * others are propagated to higher layers.
104 */
105
106 /* qdisc ->enqueue() return codes. */
107 #define NET_XMIT_SUCCESS 0x00
108 #define NET_XMIT_DROP 0x01 /* skb dropped */
109 #define NET_XMIT_CN 0x02 /* congestion notification */
110 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
111
112 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
113 * indicates that the device will soon be dropping packets, or already drops
114 * some packets of the same priority; prompting us to send less aggressively. */
115 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
116 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
117
118 /* Driver transmit return codes */
119 #define NETDEV_TX_MASK 0xf0
120
121 enum netdev_tx {
122 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
123 NETDEV_TX_OK = 0x00, /* driver took care of packet */
124 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
125 };
126 typedef enum netdev_tx netdev_tx_t;
127
128 /*
129 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
130 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
131 */
dev_xmit_complete(int rc)132 static inline bool dev_xmit_complete(int rc)
133 {
134 /*
135 * Positive cases with an skb consumed by a driver:
136 * - successful transmission (rc == NETDEV_TX_OK)
137 * - error while transmitting (rc < 0)
138 * - error while queueing to a different device (rc & NET_XMIT_MASK)
139 */
140 if (likely(rc < NET_XMIT_MASK))
141 return true;
142
143 return false;
144 }
145
146 /*
147 * Compute the worst-case header length according to the protocols
148 * used.
149 */
150
151 #if defined(CONFIG_HYPERV_NET)
152 # define LL_MAX_HEADER 128
153 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
154 # if defined(CONFIG_MAC80211_MESH)
155 # define LL_MAX_HEADER 128
156 # else
157 # define LL_MAX_HEADER 96
158 # endif
159 #else
160 # define LL_MAX_HEADER 32
161 #endif
162
163 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
164 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
165 #define MAX_HEADER LL_MAX_HEADER
166 #else
167 #define MAX_HEADER (LL_MAX_HEADER + 48)
168 #endif
169
170 /*
171 * Old network device statistics. Fields are native words
172 * (unsigned long) so they can be read and written atomically.
173 */
174
175 #define NET_DEV_STAT(FIELD) \
176 union { \
177 unsigned long FIELD; \
178 atomic_long_t __##FIELD; \
179 }
180
181 struct net_device_stats {
182 NET_DEV_STAT(rx_packets);
183 NET_DEV_STAT(tx_packets);
184 NET_DEV_STAT(rx_bytes);
185 NET_DEV_STAT(tx_bytes);
186 NET_DEV_STAT(rx_errors);
187 NET_DEV_STAT(tx_errors);
188 NET_DEV_STAT(rx_dropped);
189 NET_DEV_STAT(tx_dropped);
190 NET_DEV_STAT(multicast);
191 NET_DEV_STAT(collisions);
192 NET_DEV_STAT(rx_length_errors);
193 NET_DEV_STAT(rx_over_errors);
194 NET_DEV_STAT(rx_crc_errors);
195 NET_DEV_STAT(rx_frame_errors);
196 NET_DEV_STAT(rx_fifo_errors);
197 NET_DEV_STAT(rx_missed_errors);
198 NET_DEV_STAT(tx_aborted_errors);
199 NET_DEV_STAT(tx_carrier_errors);
200 NET_DEV_STAT(tx_fifo_errors);
201 NET_DEV_STAT(tx_heartbeat_errors);
202 NET_DEV_STAT(tx_window_errors);
203 NET_DEV_STAT(rx_compressed);
204 NET_DEV_STAT(tx_compressed);
205 };
206 #undef NET_DEV_STAT
207
208 /* per-cpu stats, allocated on demand.
209 * Try to fit them in a single cache line, for dev_get_stats() sake.
210 */
211 struct net_device_core_stats {
212 unsigned long rx_dropped;
213 unsigned long tx_dropped;
214 unsigned long rx_nohandler;
215 unsigned long rx_otherhost_dropped;
216 } __aligned(4 * sizeof(unsigned long));
217
218 #include <linux/cache.h>
219 #include <linux/skbuff.h>
220
221 #ifdef CONFIG_RPS
222 #include <linux/static_key.h>
223 extern struct static_key_false rps_needed;
224 extern struct static_key_false rfs_needed;
225 #endif
226
227 struct neighbour;
228 struct neigh_parms;
229 struct sk_buff;
230
231 struct netdev_hw_addr {
232 struct list_head list;
233 struct rb_node node;
234 unsigned char addr[MAX_ADDR_LEN];
235 unsigned char type;
236 #define NETDEV_HW_ADDR_T_LAN 1
237 #define NETDEV_HW_ADDR_T_SAN 2
238 #define NETDEV_HW_ADDR_T_UNICAST 3
239 #define NETDEV_HW_ADDR_T_MULTICAST 4
240 bool global_use;
241 int sync_cnt;
242 int refcount;
243 int synced;
244 struct rcu_head rcu_head;
245 };
246
247 struct netdev_hw_addr_list {
248 struct list_head list;
249 int count;
250
251 /* Auxiliary tree for faster lookup on addition and deletion */
252 struct rb_root tree;
253 };
254
255 #define netdev_hw_addr_list_count(l) ((l)->count)
256 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
257 #define netdev_hw_addr_list_for_each(ha, l) \
258 list_for_each_entry(ha, &(l)->list, list)
259
260 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
261 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
262 #define netdev_for_each_uc_addr(ha, dev) \
263 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
264 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
265 netdev_for_each_uc_addr((_ha), (_dev)) \
266 if ((_ha)->sync_cnt)
267
268 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
269 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
270 #define netdev_for_each_mc_addr(ha, dev) \
271 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
272 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
273 netdev_for_each_mc_addr((_ha), (_dev)) \
274 if ((_ha)->sync_cnt)
275
276 struct hh_cache {
277 unsigned int hh_len;
278 seqlock_t hh_lock;
279
280 /* cached hardware header; allow for machine alignment needs. */
281 #define HH_DATA_MOD 16
282 #define HH_DATA_OFF(__len) \
283 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
284 #define HH_DATA_ALIGN(__len) \
285 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
286 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
287 };
288
289 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
290 * Alternative is:
291 * dev->hard_header_len ? (dev->hard_header_len +
292 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
293 *
294 * We could use other alignment values, but we must maintain the
295 * relationship HH alignment <= LL alignment.
296 */
297 #define LL_RESERVED_SPACE(dev) \
298 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
299 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
300 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
301 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
302 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
303
304 struct header_ops {
305 int (*create) (struct sk_buff *skb, struct net_device *dev,
306 unsigned short type, const void *daddr,
307 const void *saddr, unsigned int len);
308 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
309 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
310 void (*cache_update)(struct hh_cache *hh,
311 const struct net_device *dev,
312 const unsigned char *haddr);
313 bool (*validate)(const char *ll_header, unsigned int len);
314 __be16 (*parse_protocol)(const struct sk_buff *skb);
315
316 ANDROID_KABI_RESERVE(1);
317 ANDROID_KABI_RESERVE(2);
318 };
319
320 /* These flag bits are private to the generic network queueing
321 * layer; they may not be explicitly referenced by any other
322 * code.
323 */
324
325 enum netdev_state_t {
326 __LINK_STATE_START,
327 __LINK_STATE_PRESENT,
328 __LINK_STATE_NOCARRIER,
329 __LINK_STATE_LINKWATCH_PENDING,
330 __LINK_STATE_DORMANT,
331 __LINK_STATE_TESTING,
332 };
333
334 struct gro_list {
335 struct list_head list;
336 int count;
337 };
338
339 /*
340 * size of gro hash buckets, must less than bit number of
341 * napi_struct::gro_bitmask
342 */
343 #define GRO_HASH_BUCKETS 8
344
345 /*
346 * Structure for NAPI scheduling similar to tasklet but with weighting
347 */
348 struct napi_struct {
349 /* The poll_list must only be managed by the entity which
350 * changes the state of the NAPI_STATE_SCHED bit. This means
351 * whoever atomically sets that bit can add this napi_struct
352 * to the per-CPU poll_list, and whoever clears that bit
353 * can remove from the list right before clearing the bit.
354 */
355 struct list_head poll_list;
356
357 unsigned long state;
358 int weight;
359 int defer_hard_irqs_count;
360 unsigned long gro_bitmask;
361 int (*poll)(struct napi_struct *, int);
362 #ifdef CONFIG_NETPOLL
363 int poll_owner;
364 #endif
365 struct net_device *dev;
366 struct gro_list gro_hash[GRO_HASH_BUCKETS];
367 struct sk_buff *skb;
368 struct list_head rx_list; /* Pending GRO_NORMAL skbs */
369 int rx_count; /* length of rx_list */
370 struct hrtimer timer;
371 struct list_head dev_list;
372 struct hlist_node napi_hash_node;
373 unsigned int napi_id;
374 struct task_struct *thread;
375
376 ANDROID_KABI_RESERVE(1);
377 ANDROID_KABI_RESERVE(2);
378 ANDROID_KABI_RESERVE(3);
379 ANDROID_KABI_RESERVE(4);
380 };
381
382 enum {
383 NAPI_STATE_SCHED, /* Poll is scheduled */
384 NAPI_STATE_MISSED, /* reschedule a napi */
385 NAPI_STATE_DISABLE, /* Disable pending */
386 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
387 NAPI_STATE_LISTED, /* NAPI added to system lists */
388 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */
389 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */
390 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/
391 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/
392 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */
393 };
394
395 enum {
396 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
397 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
398 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
399 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
400 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED),
401 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
402 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
403 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL),
404 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED),
405 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED),
406 };
407
408 enum gro_result {
409 GRO_MERGED,
410 GRO_MERGED_FREE,
411 GRO_HELD,
412 GRO_NORMAL,
413 GRO_CONSUMED,
414 };
415 typedef enum gro_result gro_result_t;
416
417 /*
418 * enum rx_handler_result - Possible return values for rx_handlers.
419 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
420 * further.
421 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
422 * case skb->dev was changed by rx_handler.
423 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
424 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
425 *
426 * rx_handlers are functions called from inside __netif_receive_skb(), to do
427 * special processing of the skb, prior to delivery to protocol handlers.
428 *
429 * Currently, a net_device can only have a single rx_handler registered. Trying
430 * to register a second rx_handler will return -EBUSY.
431 *
432 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
433 * To unregister a rx_handler on a net_device, use
434 * netdev_rx_handler_unregister().
435 *
436 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
437 * do with the skb.
438 *
439 * If the rx_handler consumed the skb in some way, it should return
440 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
441 * the skb to be delivered in some other way.
442 *
443 * If the rx_handler changed skb->dev, to divert the skb to another
444 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
445 * new device will be called if it exists.
446 *
447 * If the rx_handler decides the skb should be ignored, it should return
448 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
449 * are registered on exact device (ptype->dev == skb->dev).
450 *
451 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
452 * delivered, it should return RX_HANDLER_PASS.
453 *
454 * A device without a registered rx_handler will behave as if rx_handler
455 * returned RX_HANDLER_PASS.
456 */
457
458 enum rx_handler_result {
459 RX_HANDLER_CONSUMED,
460 RX_HANDLER_ANOTHER,
461 RX_HANDLER_EXACT,
462 RX_HANDLER_PASS,
463 };
464 typedef enum rx_handler_result rx_handler_result_t;
465 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
466
467 void __napi_schedule(struct napi_struct *n);
468 void __napi_schedule_irqoff(struct napi_struct *n);
469
napi_disable_pending(struct napi_struct * n)470 static inline bool napi_disable_pending(struct napi_struct *n)
471 {
472 return test_bit(NAPI_STATE_DISABLE, &n->state);
473 }
474
napi_prefer_busy_poll(struct napi_struct * n)475 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
476 {
477 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
478 }
479
480 bool napi_schedule_prep(struct napi_struct *n);
481
482 /**
483 * napi_schedule - schedule NAPI poll
484 * @n: NAPI context
485 *
486 * Schedule NAPI poll routine to be called if it is not already
487 * running.
488 */
napi_schedule(struct napi_struct * n)489 static inline void napi_schedule(struct napi_struct *n)
490 {
491 if (napi_schedule_prep(n))
492 __napi_schedule(n);
493 }
494
495 /**
496 * napi_schedule_irqoff - schedule NAPI poll
497 * @n: NAPI context
498 *
499 * Variant of napi_schedule(), assuming hard irqs are masked.
500 */
napi_schedule_irqoff(struct napi_struct * n)501 static inline void napi_schedule_irqoff(struct napi_struct *n)
502 {
503 if (napi_schedule_prep(n))
504 __napi_schedule_irqoff(n);
505 }
506
507 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
napi_reschedule(struct napi_struct * napi)508 static inline bool napi_reschedule(struct napi_struct *napi)
509 {
510 if (napi_schedule_prep(napi)) {
511 __napi_schedule(napi);
512 return true;
513 }
514 return false;
515 }
516
517 bool napi_complete_done(struct napi_struct *n, int work_done);
518 /**
519 * napi_complete - NAPI processing complete
520 * @n: NAPI context
521 *
522 * Mark NAPI processing as complete.
523 * Consider using napi_complete_done() instead.
524 * Return false if device should avoid rearming interrupts.
525 */
napi_complete(struct napi_struct * n)526 static inline bool napi_complete(struct napi_struct *n)
527 {
528 return napi_complete_done(n, 0);
529 }
530
531 int dev_set_threaded(struct net_device *dev, bool threaded);
532
533 /**
534 * napi_disable - prevent NAPI from scheduling
535 * @n: NAPI context
536 *
537 * Stop NAPI from being scheduled on this context.
538 * Waits till any outstanding processing completes.
539 */
540 void napi_disable(struct napi_struct *n);
541
542 void napi_enable(struct napi_struct *n);
543
544 /**
545 * napi_synchronize - wait until NAPI is not running
546 * @n: NAPI context
547 *
548 * Wait until NAPI is done being scheduled on this context.
549 * Waits till any outstanding processing completes but
550 * does not disable future activations.
551 */
napi_synchronize(const struct napi_struct * n)552 static inline void napi_synchronize(const struct napi_struct *n)
553 {
554 if (IS_ENABLED(CONFIG_SMP))
555 while (test_bit(NAPI_STATE_SCHED, &n->state))
556 msleep(1);
557 else
558 barrier();
559 }
560
561 /**
562 * napi_if_scheduled_mark_missed - if napi is running, set the
563 * NAPIF_STATE_MISSED
564 * @n: NAPI context
565 *
566 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
567 * NAPI is scheduled.
568 **/
napi_if_scheduled_mark_missed(struct napi_struct * n)569 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
570 {
571 unsigned long val, new;
572
573 val = READ_ONCE(n->state);
574 do {
575 if (val & NAPIF_STATE_DISABLE)
576 return true;
577
578 if (!(val & NAPIF_STATE_SCHED))
579 return false;
580
581 new = val | NAPIF_STATE_MISSED;
582 } while (!try_cmpxchg(&n->state, &val, new));
583
584 return true;
585 }
586
587 enum netdev_queue_state_t {
588 __QUEUE_STATE_DRV_XOFF,
589 __QUEUE_STATE_STACK_XOFF,
590 __QUEUE_STATE_FROZEN,
591 };
592
593 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
594 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
595 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
596
597 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
598 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
599 QUEUE_STATE_FROZEN)
600 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
601 QUEUE_STATE_FROZEN)
602
603 /*
604 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
605 * netif_tx_* functions below are used to manipulate this flag. The
606 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
607 * queue independently. The netif_xmit_*stopped functions below are called
608 * to check if the queue has been stopped by the driver or stack (either
609 * of the XOFF bits are set in the state). Drivers should not need to call
610 * netif_xmit*stopped functions, they should only be using netif_tx_*.
611 */
612
613 struct netdev_queue {
614 /*
615 * read-mostly part
616 */
617 struct net_device *dev;
618 netdevice_tracker dev_tracker;
619
620 struct Qdisc __rcu *qdisc;
621 struct Qdisc __rcu *qdisc_sleeping;
622 #ifdef CONFIG_SYSFS
623 struct kobject kobj;
624 #endif
625 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
626 int numa_node;
627 #endif
628 unsigned long tx_maxrate;
629 /*
630 * Number of TX timeouts for this queue
631 * (/sys/class/net/DEV/Q/trans_timeout)
632 */
633 atomic_long_t trans_timeout;
634
635 /* Subordinate device that the queue has been assigned to */
636 struct net_device *sb_dev;
637 #ifdef CONFIG_XDP_SOCKETS
638 struct xsk_buff_pool *pool;
639 #endif
640 /*
641 * write-mostly part
642 */
643 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
644 int xmit_lock_owner;
645 /*
646 * Time (in jiffies) of last Tx
647 */
648 unsigned long trans_start;
649
650 unsigned long state;
651
652 #ifdef CONFIG_BQL
653 struct dql dql;
654 #endif
655
656 ANDROID_KABI_RESERVE(1);
657 ANDROID_KABI_RESERVE(2);
658 ANDROID_KABI_RESERVE(3);
659 ANDROID_KABI_RESERVE(4);
660 } ____cacheline_aligned_in_smp;
661
662 extern int sysctl_fb_tunnels_only_for_init_net;
663 extern int sysctl_devconf_inherit_init_net;
664
665 /*
666 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
667 * == 1 : For initns only
668 * == 2 : For none.
669 */
net_has_fallback_tunnels(const struct net * net)670 static inline bool net_has_fallback_tunnels(const struct net *net)
671 {
672 #if IS_ENABLED(CONFIG_SYSCTL)
673 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
674
675 return !fb_tunnels_only_for_init_net ||
676 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
677 #else
678 return true;
679 #endif
680 }
681
net_inherit_devconf(void)682 static inline int net_inherit_devconf(void)
683 {
684 #if IS_ENABLED(CONFIG_SYSCTL)
685 return READ_ONCE(sysctl_devconf_inherit_init_net);
686 #else
687 return 0;
688 #endif
689 }
690
netdev_queue_numa_node_read(const struct netdev_queue * q)691 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
692 {
693 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
694 return q->numa_node;
695 #else
696 return NUMA_NO_NODE;
697 #endif
698 }
699
netdev_queue_numa_node_write(struct netdev_queue * q,int node)700 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
701 {
702 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
703 q->numa_node = node;
704 #endif
705 }
706
707 #ifdef CONFIG_RPS
708 /*
709 * This structure holds an RPS map which can be of variable length. The
710 * map is an array of CPUs.
711 */
712 struct rps_map {
713 unsigned int len;
714 struct rcu_head rcu;
715 u16 cpus[];
716 };
717 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
718
719 /*
720 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
721 * tail pointer for that CPU's input queue at the time of last enqueue, and
722 * a hardware filter index.
723 */
724 struct rps_dev_flow {
725 u16 cpu;
726 u16 filter;
727 unsigned int last_qtail;
728 };
729 #define RPS_NO_FILTER 0xffff
730
731 /*
732 * The rps_dev_flow_table structure contains a table of flow mappings.
733 */
734 struct rps_dev_flow_table {
735 unsigned int mask;
736 struct rcu_head rcu;
737 struct rps_dev_flow flows[];
738 };
739 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
740 ((_num) * sizeof(struct rps_dev_flow)))
741
742 /*
743 * The rps_sock_flow_table contains mappings of flows to the last CPU
744 * on which they were processed by the application (set in recvmsg).
745 * Each entry is a 32bit value. Upper part is the high-order bits
746 * of flow hash, lower part is CPU number.
747 * rps_cpu_mask is used to partition the space, depending on number of
748 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
749 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
750 * meaning we use 32-6=26 bits for the hash.
751 */
752 struct rps_sock_flow_table {
753 u32 mask;
754
755 u32 ents[] ____cacheline_aligned_in_smp;
756 };
757 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
758
759 #define RPS_NO_CPU 0xffff
760
761 extern u32 rps_cpu_mask;
762 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
763
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)764 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
765 u32 hash)
766 {
767 if (table && hash) {
768 unsigned int index = hash & table->mask;
769 u32 val = hash & ~rps_cpu_mask;
770
771 /* We only give a hint, preemption can change CPU under us */
772 val |= raw_smp_processor_id();
773
774 /* The following WRITE_ONCE() is paired with the READ_ONCE()
775 * here, and another one in get_rps_cpu().
776 */
777 if (READ_ONCE(table->ents[index]) != val)
778 WRITE_ONCE(table->ents[index], val);
779 }
780 }
781
782 #ifdef CONFIG_RFS_ACCEL
783 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
784 u16 filter_id);
785 #endif
786 #endif /* CONFIG_RPS */
787
788 /* This structure contains an instance of an RX queue. */
789 struct netdev_rx_queue {
790 struct xdp_rxq_info xdp_rxq;
791 #ifdef CONFIG_RPS
792 struct rps_map __rcu *rps_map;
793 struct rps_dev_flow_table __rcu *rps_flow_table;
794 #endif
795 struct kobject kobj;
796 struct net_device *dev;
797 netdevice_tracker dev_tracker;
798
799 #ifdef CONFIG_XDP_SOCKETS
800 struct xsk_buff_pool *pool;
801 #endif
802
803 ANDROID_KABI_RESERVE(1);
804 ANDROID_KABI_RESERVE(2);
805 ANDROID_KABI_RESERVE(3);
806 ANDROID_KABI_RESERVE(4);
807 } ____cacheline_aligned_in_smp;
808
809 /*
810 * RX queue sysfs structures and functions.
811 */
812 struct rx_queue_attribute {
813 struct attribute attr;
814 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
815 ssize_t (*store)(struct netdev_rx_queue *queue,
816 const char *buf, size_t len);
817 };
818
819 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
820 enum xps_map_type {
821 XPS_CPUS = 0,
822 XPS_RXQS,
823 XPS_MAPS_MAX,
824 };
825
826 #ifdef CONFIG_XPS
827 /*
828 * This structure holds an XPS map which can be of variable length. The
829 * map is an array of queues.
830 */
831 struct xps_map {
832 unsigned int len;
833 unsigned int alloc_len;
834 struct rcu_head rcu;
835 u16 queues[];
836 };
837 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
838 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
839 - sizeof(struct xps_map)) / sizeof(u16))
840
841 /*
842 * This structure holds all XPS maps for device. Maps are indexed by CPU.
843 *
844 * We keep track of the number of cpus/rxqs used when the struct is allocated,
845 * in nr_ids. This will help not accessing out-of-bound memory.
846 *
847 * We keep track of the number of traffic classes used when the struct is
848 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
849 * not crossing its upper bound, as the original dev->num_tc can be updated in
850 * the meantime.
851 */
852 struct xps_dev_maps {
853 struct rcu_head rcu;
854 unsigned int nr_ids;
855 s16 num_tc;
856 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
857 };
858
859 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
860 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
861
862 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
863 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
864
865 #endif /* CONFIG_XPS */
866
867 #define TC_MAX_QUEUE 16
868 #define TC_BITMASK 15
869 /* HW offloaded queuing disciplines txq count and offset maps */
870 struct netdev_tc_txq {
871 u16 count;
872 u16 offset;
873 };
874
875 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
876 /*
877 * This structure is to hold information about the device
878 * configured to run FCoE protocol stack.
879 */
880 struct netdev_fcoe_hbainfo {
881 char manufacturer[64];
882 char serial_number[64];
883 char hardware_version[64];
884 char driver_version[64];
885 char optionrom_version[64];
886 char firmware_version[64];
887 char model[256];
888 char model_description[256];
889 };
890 #endif
891
892 #define MAX_PHYS_ITEM_ID_LEN 32
893
894 /* This structure holds a unique identifier to identify some
895 * physical item (port for example) used by a netdevice.
896 */
897 struct netdev_phys_item_id {
898 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
899 unsigned char id_len;
900 };
901
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)902 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
903 struct netdev_phys_item_id *b)
904 {
905 return a->id_len == b->id_len &&
906 memcmp(a->id, b->id, a->id_len) == 0;
907 }
908
909 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
910 struct sk_buff *skb,
911 struct net_device *sb_dev);
912
913 enum net_device_path_type {
914 DEV_PATH_ETHERNET = 0,
915 DEV_PATH_VLAN,
916 DEV_PATH_BRIDGE,
917 DEV_PATH_PPPOE,
918 DEV_PATH_DSA,
919 DEV_PATH_MTK_WDMA,
920 };
921
922 struct net_device_path {
923 enum net_device_path_type type;
924 const struct net_device *dev;
925 union {
926 struct {
927 u16 id;
928 __be16 proto;
929 u8 h_dest[ETH_ALEN];
930 } encap;
931 struct {
932 enum {
933 DEV_PATH_BR_VLAN_KEEP,
934 DEV_PATH_BR_VLAN_TAG,
935 DEV_PATH_BR_VLAN_UNTAG,
936 DEV_PATH_BR_VLAN_UNTAG_HW,
937 } vlan_mode;
938 u16 vlan_id;
939 __be16 vlan_proto;
940 } bridge;
941 struct {
942 int port;
943 u16 proto;
944 } dsa;
945 struct {
946 u8 wdma_idx;
947 u8 queue;
948 u16 wcid;
949 u8 bss;
950 } mtk_wdma;
951 };
952 };
953
954 #define NET_DEVICE_PATH_STACK_MAX 5
955 #define NET_DEVICE_PATH_VLAN_MAX 2
956
957 struct net_device_path_stack {
958 int num_paths;
959 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX];
960 };
961
962 struct net_device_path_ctx {
963 const struct net_device *dev;
964 u8 daddr[ETH_ALEN];
965
966 int num_vlans;
967 struct {
968 u16 id;
969 __be16 proto;
970 } vlan[NET_DEVICE_PATH_VLAN_MAX];
971 };
972
973 enum tc_setup_type {
974 TC_QUERY_CAPS,
975 TC_SETUP_QDISC_MQPRIO,
976 TC_SETUP_CLSU32,
977 TC_SETUP_CLSFLOWER,
978 TC_SETUP_CLSMATCHALL,
979 TC_SETUP_CLSBPF,
980 TC_SETUP_BLOCK,
981 TC_SETUP_QDISC_CBS,
982 TC_SETUP_QDISC_RED,
983 TC_SETUP_QDISC_PRIO,
984 TC_SETUP_QDISC_MQ,
985 TC_SETUP_QDISC_ETF,
986 TC_SETUP_ROOT_QDISC,
987 TC_SETUP_QDISC_GRED,
988 TC_SETUP_QDISC_TAPRIO,
989 TC_SETUP_FT,
990 TC_SETUP_QDISC_ETS,
991 TC_SETUP_QDISC_TBF,
992 TC_SETUP_QDISC_FIFO,
993 TC_SETUP_QDISC_HTB,
994 TC_SETUP_ACT,
995 };
996
997 /* These structures hold the attributes of bpf state that are being passed
998 * to the netdevice through the bpf op.
999 */
1000 enum bpf_netdev_command {
1001 /* Set or clear a bpf program used in the earliest stages of packet
1002 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
1003 * is responsible for calling bpf_prog_put on any old progs that are
1004 * stored. In case of error, the callee need not release the new prog
1005 * reference, but on success it takes ownership and must bpf_prog_put
1006 * when it is no longer used.
1007 */
1008 XDP_SETUP_PROG,
1009 XDP_SETUP_PROG_HW,
1010 /* BPF program for offload callbacks, invoked at program load time. */
1011 BPF_OFFLOAD_MAP_ALLOC,
1012 BPF_OFFLOAD_MAP_FREE,
1013 XDP_SETUP_XSK_POOL,
1014 };
1015
1016 struct bpf_prog_offload_ops;
1017 struct netlink_ext_ack;
1018 struct xdp_umem;
1019 struct xdp_dev_bulk_queue;
1020 struct bpf_xdp_link;
1021
1022 enum bpf_xdp_mode {
1023 XDP_MODE_SKB = 0,
1024 XDP_MODE_DRV = 1,
1025 XDP_MODE_HW = 2,
1026 __MAX_XDP_MODE
1027 };
1028
1029 struct bpf_xdp_entity {
1030 struct bpf_prog *prog;
1031 struct bpf_xdp_link *link;
1032 };
1033
1034 struct netdev_bpf {
1035 enum bpf_netdev_command command;
1036 union {
1037 /* XDP_SETUP_PROG */
1038 struct {
1039 u32 flags;
1040 struct bpf_prog *prog;
1041 struct netlink_ext_ack *extack;
1042 };
1043 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1044 struct {
1045 struct bpf_offloaded_map *offmap;
1046 };
1047 /* XDP_SETUP_XSK_POOL */
1048 struct {
1049 struct xsk_buff_pool *pool;
1050 u16 queue_id;
1051 } xsk;
1052 };
1053 };
1054
1055 /* Flags for ndo_xsk_wakeup. */
1056 #define XDP_WAKEUP_RX (1 << 0)
1057 #define XDP_WAKEUP_TX (1 << 1)
1058
1059 #ifdef CONFIG_XFRM_OFFLOAD
1060 struct xfrmdev_ops {
1061 int (*xdo_dev_state_add) (struct xfrm_state *x);
1062 void (*xdo_dev_state_delete) (struct xfrm_state *x);
1063 void (*xdo_dev_state_free) (struct xfrm_state *x);
1064 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
1065 struct xfrm_state *x);
1066 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1067
1068 ANDROID_KABI_RESERVE(1);
1069 ANDROID_KABI_RESERVE(2);
1070 ANDROID_KABI_RESERVE(3);
1071 ANDROID_KABI_RESERVE(4);
1072 };
1073 #endif
1074
1075 struct dev_ifalias {
1076 struct rcu_head rcuhead;
1077 char ifalias[];
1078 };
1079
1080 struct devlink;
1081 struct tlsdev_ops;
1082
1083 struct netdev_net_notifier {
1084 struct list_head list;
1085 struct notifier_block *nb;
1086 };
1087
1088 /*
1089 * This structure defines the management hooks for network devices.
1090 * The following hooks can be defined; unless noted otherwise, they are
1091 * optional and can be filled with a null pointer.
1092 *
1093 * int (*ndo_init)(struct net_device *dev);
1094 * This function is called once when a network device is registered.
1095 * The network device can use this for any late stage initialization
1096 * or semantic validation. It can fail with an error code which will
1097 * be propagated back to register_netdev.
1098 *
1099 * void (*ndo_uninit)(struct net_device *dev);
1100 * This function is called when device is unregistered or when registration
1101 * fails. It is not called if init fails.
1102 *
1103 * int (*ndo_open)(struct net_device *dev);
1104 * This function is called when a network device transitions to the up
1105 * state.
1106 *
1107 * int (*ndo_stop)(struct net_device *dev);
1108 * This function is called when a network device transitions to the down
1109 * state.
1110 *
1111 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1112 * struct net_device *dev);
1113 * Called when a packet needs to be transmitted.
1114 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
1115 * the queue before that can happen; it's for obsolete devices and weird
1116 * corner cases, but the stack really does a non-trivial amount
1117 * of useless work if you return NETDEV_TX_BUSY.
1118 * Required; cannot be NULL.
1119 *
1120 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1121 * struct net_device *dev
1122 * netdev_features_t features);
1123 * Called by core transmit path to determine if device is capable of
1124 * performing offload operations on a given packet. This is to give
1125 * the device an opportunity to implement any restrictions that cannot
1126 * be otherwise expressed by feature flags. The check is called with
1127 * the set of features that the stack has calculated and it returns
1128 * those the driver believes to be appropriate.
1129 *
1130 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1131 * struct net_device *sb_dev);
1132 * Called to decide which queue to use when device supports multiple
1133 * transmit queues.
1134 *
1135 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1136 * This function is called to allow device receiver to make
1137 * changes to configuration when multicast or promiscuous is enabled.
1138 *
1139 * void (*ndo_set_rx_mode)(struct net_device *dev);
1140 * This function is called device changes address list filtering.
1141 * If driver handles unicast address filtering, it should set
1142 * IFF_UNICAST_FLT in its priv_flags.
1143 *
1144 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1145 * This function is called when the Media Access Control address
1146 * needs to be changed. If this interface is not defined, the
1147 * MAC address can not be changed.
1148 *
1149 * int (*ndo_validate_addr)(struct net_device *dev);
1150 * Test if Media Access Control address is valid for the device.
1151 *
1152 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1153 * Old-style ioctl entry point. This is used internally by the
1154 * appletalk and ieee802154 subsystems but is no longer called by
1155 * the device ioctl handler.
1156 *
1157 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1158 * Used by the bonding driver for its device specific ioctls:
1159 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1160 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1161 *
1162 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1163 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1164 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1165 *
1166 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1167 * Used to set network devices bus interface parameters. This interface
1168 * is retained for legacy reasons; new devices should use the bus
1169 * interface (PCI) for low level management.
1170 *
1171 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1172 * Called when a user wants to change the Maximum Transfer Unit
1173 * of a device.
1174 *
1175 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1176 * Callback used when the transmitter has not made any progress
1177 * for dev->watchdog ticks.
1178 *
1179 * void (*ndo_get_stats64)(struct net_device *dev,
1180 * struct rtnl_link_stats64 *storage);
1181 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1182 * Called when a user wants to get the network device usage
1183 * statistics. Drivers must do one of the following:
1184 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1185 * rtnl_link_stats64 structure passed by the caller.
1186 * 2. Define @ndo_get_stats to update a net_device_stats structure
1187 * (which should normally be dev->stats) and return a pointer to
1188 * it. The structure may be changed asynchronously only if each
1189 * field is written atomically.
1190 * 3. Update dev->stats asynchronously and atomically, and define
1191 * neither operation.
1192 *
1193 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1194 * Return true if this device supports offload stats of this attr_id.
1195 *
1196 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1197 * void *attr_data)
1198 * Get statistics for offload operations by attr_id. Write it into the
1199 * attr_data pointer.
1200 *
1201 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1202 * If device supports VLAN filtering this function is called when a
1203 * VLAN id is registered.
1204 *
1205 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1206 * If device supports VLAN filtering this function is called when a
1207 * VLAN id is unregistered.
1208 *
1209 * void (*ndo_poll_controller)(struct net_device *dev);
1210 *
1211 * SR-IOV management functions.
1212 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1213 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1214 * u8 qos, __be16 proto);
1215 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1216 * int max_tx_rate);
1217 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1218 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1219 * int (*ndo_get_vf_config)(struct net_device *dev,
1220 * int vf, struct ifla_vf_info *ivf);
1221 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1222 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1223 * struct nlattr *port[]);
1224 *
1225 * Enable or disable the VF ability to query its RSS Redirection Table and
1226 * Hash Key. This is needed since on some devices VF share this information
1227 * with PF and querying it may introduce a theoretical security risk.
1228 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1229 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1230 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1231 * void *type_data);
1232 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1233 * This is always called from the stack with the rtnl lock held and netif
1234 * tx queues stopped. This allows the netdevice to perform queue
1235 * management safely.
1236 *
1237 * Fiber Channel over Ethernet (FCoE) offload functions.
1238 * int (*ndo_fcoe_enable)(struct net_device *dev);
1239 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1240 * so the underlying device can perform whatever needed configuration or
1241 * initialization to support acceleration of FCoE traffic.
1242 *
1243 * int (*ndo_fcoe_disable)(struct net_device *dev);
1244 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1245 * so the underlying device can perform whatever needed clean-ups to
1246 * stop supporting acceleration of FCoE traffic.
1247 *
1248 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1249 * struct scatterlist *sgl, unsigned int sgc);
1250 * Called when the FCoE Initiator wants to initialize an I/O that
1251 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1252 * perform necessary setup and returns 1 to indicate the device is set up
1253 * successfully to perform DDP on this I/O, otherwise this returns 0.
1254 *
1255 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1256 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1257 * indicated by the FC exchange id 'xid', so the underlying device can
1258 * clean up and reuse resources for later DDP requests.
1259 *
1260 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1261 * struct scatterlist *sgl, unsigned int sgc);
1262 * Called when the FCoE Target wants to initialize an I/O that
1263 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1264 * perform necessary setup and returns 1 to indicate the device is set up
1265 * successfully to perform DDP on this I/O, otherwise this returns 0.
1266 *
1267 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1268 * struct netdev_fcoe_hbainfo *hbainfo);
1269 * Called when the FCoE Protocol stack wants information on the underlying
1270 * device. This information is utilized by the FCoE protocol stack to
1271 * register attributes with Fiber Channel management service as per the
1272 * FC-GS Fabric Device Management Information(FDMI) specification.
1273 *
1274 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1275 * Called when the underlying device wants to override default World Wide
1276 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1277 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1278 * protocol stack to use.
1279 *
1280 * RFS acceleration.
1281 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1282 * u16 rxq_index, u32 flow_id);
1283 * Set hardware filter for RFS. rxq_index is the target queue index;
1284 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1285 * Return the filter ID on success, or a negative error code.
1286 *
1287 * Slave management functions (for bridge, bonding, etc).
1288 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1289 * Called to make another netdev an underling.
1290 *
1291 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1292 * Called to release previously enslaved netdev.
1293 *
1294 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1295 * struct sk_buff *skb,
1296 * bool all_slaves);
1297 * Get the xmit slave of master device. If all_slaves is true, function
1298 * assume all the slaves can transmit.
1299 *
1300 * Feature/offload setting functions.
1301 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1302 * netdev_features_t features);
1303 * Adjusts the requested feature flags according to device-specific
1304 * constraints, and returns the resulting flags. Must not modify
1305 * the device state.
1306 *
1307 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1308 * Called to update device configuration to new features. Passed
1309 * feature set might be less than what was returned by ndo_fix_features()).
1310 * Must return >0 or -errno if it changed dev->features itself.
1311 *
1312 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1313 * struct net_device *dev,
1314 * const unsigned char *addr, u16 vid, u16 flags,
1315 * struct netlink_ext_ack *extack);
1316 * Adds an FDB entry to dev for addr.
1317 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1318 * struct net_device *dev,
1319 * const unsigned char *addr, u16 vid)
1320 * Deletes the FDB entry from dev coresponding to addr.
1321 * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1322 * struct net_device *dev,
1323 * u16 vid,
1324 * struct netlink_ext_ack *extack);
1325 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1326 * struct net_device *dev, struct net_device *filter_dev,
1327 * int *idx)
1328 * Used to add FDB entries to dump requests. Implementers should add
1329 * entries to skb and update idx with the number of entries.
1330 *
1331 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1332 * u16 flags, struct netlink_ext_ack *extack)
1333 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1334 * struct net_device *dev, u32 filter_mask,
1335 * int nlflags)
1336 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1337 * u16 flags);
1338 *
1339 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1340 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1341 * which do not represent real hardware may define this to allow their
1342 * userspace components to manage their virtual carrier state. Devices
1343 * that determine carrier state from physical hardware properties (eg
1344 * network cables) or protocol-dependent mechanisms (eg
1345 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1346 *
1347 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1348 * struct netdev_phys_item_id *ppid);
1349 * Called to get ID of physical port of this device. If driver does
1350 * not implement this, it is assumed that the hw is not able to have
1351 * multiple net devices on single physical port.
1352 *
1353 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1354 * struct netdev_phys_item_id *ppid)
1355 * Called to get the parent ID of the physical port of this device.
1356 *
1357 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1358 * struct net_device *dev)
1359 * Called by upper layer devices to accelerate switching or other
1360 * station functionality into hardware. 'pdev is the lowerdev
1361 * to use for the offload and 'dev' is the net device that will
1362 * back the offload. Returns a pointer to the private structure
1363 * the upper layer will maintain.
1364 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1365 * Called by upper layer device to delete the station created
1366 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1367 * the station and priv is the structure returned by the add
1368 * operation.
1369 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1370 * int queue_index, u32 maxrate);
1371 * Called when a user wants to set a max-rate limitation of specific
1372 * TX queue.
1373 * int (*ndo_get_iflink)(const struct net_device *dev);
1374 * Called to get the iflink value of this device.
1375 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1376 * This function is used to get egress tunnel information for given skb.
1377 * This is useful for retrieving outer tunnel header parameters while
1378 * sampling packet.
1379 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1380 * This function is used to specify the headroom that the skb must
1381 * consider when allocation skb during packet reception. Setting
1382 * appropriate rx headroom value allows avoiding skb head copy on
1383 * forward. Setting a negative value resets the rx headroom to the
1384 * default value.
1385 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1386 * This function is used to set or query state related to XDP on the
1387 * netdevice and manage BPF offload. See definition of
1388 * enum bpf_netdev_command for details.
1389 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1390 * u32 flags);
1391 * This function is used to submit @n XDP packets for transmit on a
1392 * netdevice. Returns number of frames successfully transmitted, frames
1393 * that got dropped are freed/returned via xdp_return_frame().
1394 * Returns negative number, means general error invoking ndo, meaning
1395 * no frames were xmit'ed and core-caller will free all frames.
1396 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1397 * struct xdp_buff *xdp);
1398 * Get the xmit slave of master device based on the xdp_buff.
1399 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1400 * This function is used to wake up the softirq, ksoftirqd or kthread
1401 * responsible for sending and/or receiving packets on a specific
1402 * queue id bound to an AF_XDP socket. The flags field specifies if
1403 * only RX, only Tx, or both should be woken up using the flags
1404 * XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1405 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1406 * Get devlink port instance associated with a given netdev.
1407 * Called with a reference on the netdevice and devlink locks only,
1408 * rtnl_lock is not held.
1409 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1410 * int cmd);
1411 * Add, change, delete or get information on an IPv4 tunnel.
1412 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1413 * If a device is paired with a peer device, return the peer instance.
1414 * The caller must be under RCU read context.
1415 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1416 * Get the forwarding path to reach the real device from the HW destination address
1417 * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1418 * const struct skb_shared_hwtstamps *hwtstamps,
1419 * bool cycles);
1420 * Get hardware timestamp based on normal/adjustable time or free running
1421 * cycle counter. This function is required if physical clock supports a
1422 * free running cycle counter.
1423 */
1424 struct net_device_ops {
1425 int (*ndo_init)(struct net_device *dev);
1426 void (*ndo_uninit)(struct net_device *dev);
1427 int (*ndo_open)(struct net_device *dev);
1428 int (*ndo_stop)(struct net_device *dev);
1429 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1430 struct net_device *dev);
1431 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1432 struct net_device *dev,
1433 netdev_features_t features);
1434 u16 (*ndo_select_queue)(struct net_device *dev,
1435 struct sk_buff *skb,
1436 struct net_device *sb_dev);
1437 void (*ndo_change_rx_flags)(struct net_device *dev,
1438 int flags);
1439 void (*ndo_set_rx_mode)(struct net_device *dev);
1440 int (*ndo_set_mac_address)(struct net_device *dev,
1441 void *addr);
1442 int (*ndo_validate_addr)(struct net_device *dev);
1443 int (*ndo_do_ioctl)(struct net_device *dev,
1444 struct ifreq *ifr, int cmd);
1445 int (*ndo_eth_ioctl)(struct net_device *dev,
1446 struct ifreq *ifr, int cmd);
1447 int (*ndo_siocbond)(struct net_device *dev,
1448 struct ifreq *ifr, int cmd);
1449 int (*ndo_siocwandev)(struct net_device *dev,
1450 struct if_settings *ifs);
1451 int (*ndo_siocdevprivate)(struct net_device *dev,
1452 struct ifreq *ifr,
1453 void __user *data, int cmd);
1454 int (*ndo_set_config)(struct net_device *dev,
1455 struct ifmap *map);
1456 int (*ndo_change_mtu)(struct net_device *dev,
1457 int new_mtu);
1458 int (*ndo_neigh_setup)(struct net_device *dev,
1459 struct neigh_parms *);
1460 void (*ndo_tx_timeout) (struct net_device *dev,
1461 unsigned int txqueue);
1462
1463 void (*ndo_get_stats64)(struct net_device *dev,
1464 struct rtnl_link_stats64 *storage);
1465 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1466 int (*ndo_get_offload_stats)(int attr_id,
1467 const struct net_device *dev,
1468 void *attr_data);
1469 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1470
1471 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1472 __be16 proto, u16 vid);
1473 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1474 __be16 proto, u16 vid);
1475 #ifdef CONFIG_NET_POLL_CONTROLLER
1476 void (*ndo_poll_controller)(struct net_device *dev);
1477 int (*ndo_netpoll_setup)(struct net_device *dev,
1478 struct netpoll_info *info);
1479 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1480 #endif
1481 int (*ndo_set_vf_mac)(struct net_device *dev,
1482 int queue, u8 *mac);
1483 int (*ndo_set_vf_vlan)(struct net_device *dev,
1484 int queue, u16 vlan,
1485 u8 qos, __be16 proto);
1486 int (*ndo_set_vf_rate)(struct net_device *dev,
1487 int vf, int min_tx_rate,
1488 int max_tx_rate);
1489 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1490 int vf, bool setting);
1491 int (*ndo_set_vf_trust)(struct net_device *dev,
1492 int vf, bool setting);
1493 int (*ndo_get_vf_config)(struct net_device *dev,
1494 int vf,
1495 struct ifla_vf_info *ivf);
1496 int (*ndo_set_vf_link_state)(struct net_device *dev,
1497 int vf, int link_state);
1498 int (*ndo_get_vf_stats)(struct net_device *dev,
1499 int vf,
1500 struct ifla_vf_stats
1501 *vf_stats);
1502 int (*ndo_set_vf_port)(struct net_device *dev,
1503 int vf,
1504 struct nlattr *port[]);
1505 int (*ndo_get_vf_port)(struct net_device *dev,
1506 int vf, struct sk_buff *skb);
1507 int (*ndo_get_vf_guid)(struct net_device *dev,
1508 int vf,
1509 struct ifla_vf_guid *node_guid,
1510 struct ifla_vf_guid *port_guid);
1511 int (*ndo_set_vf_guid)(struct net_device *dev,
1512 int vf, u64 guid,
1513 int guid_type);
1514 int (*ndo_set_vf_rss_query_en)(
1515 struct net_device *dev,
1516 int vf, bool setting);
1517 int (*ndo_setup_tc)(struct net_device *dev,
1518 enum tc_setup_type type,
1519 void *type_data);
1520 #if IS_ENABLED(CONFIG_FCOE)
1521 int (*ndo_fcoe_enable)(struct net_device *dev);
1522 int (*ndo_fcoe_disable)(struct net_device *dev);
1523 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1524 u16 xid,
1525 struct scatterlist *sgl,
1526 unsigned int sgc);
1527 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1528 u16 xid);
1529 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1530 u16 xid,
1531 struct scatterlist *sgl,
1532 unsigned int sgc);
1533 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1534 struct netdev_fcoe_hbainfo *hbainfo);
1535 #endif
1536
1537 #if IS_ENABLED(CONFIG_LIBFCOE)
1538 #define NETDEV_FCOE_WWNN 0
1539 #define NETDEV_FCOE_WWPN 1
1540 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1541 u64 *wwn, int type);
1542 #endif
1543
1544 #ifdef CONFIG_RFS_ACCEL
1545 int (*ndo_rx_flow_steer)(struct net_device *dev,
1546 const struct sk_buff *skb,
1547 u16 rxq_index,
1548 u32 flow_id);
1549 #endif
1550 int (*ndo_add_slave)(struct net_device *dev,
1551 struct net_device *slave_dev,
1552 struct netlink_ext_ack *extack);
1553 int (*ndo_del_slave)(struct net_device *dev,
1554 struct net_device *slave_dev);
1555 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev,
1556 struct sk_buff *skb,
1557 bool all_slaves);
1558 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev,
1559 struct sock *sk);
1560 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1561 netdev_features_t features);
1562 int (*ndo_set_features)(struct net_device *dev,
1563 netdev_features_t features);
1564 int (*ndo_neigh_construct)(struct net_device *dev,
1565 struct neighbour *n);
1566 void (*ndo_neigh_destroy)(struct net_device *dev,
1567 struct neighbour *n);
1568
1569 int (*ndo_fdb_add)(struct ndmsg *ndm,
1570 struct nlattr *tb[],
1571 struct net_device *dev,
1572 const unsigned char *addr,
1573 u16 vid,
1574 u16 flags,
1575 struct netlink_ext_ack *extack);
1576 int (*ndo_fdb_del)(struct ndmsg *ndm,
1577 struct nlattr *tb[],
1578 struct net_device *dev,
1579 const unsigned char *addr,
1580 u16 vid, struct netlink_ext_ack *extack);
1581 int (*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1582 struct nlattr *tb[],
1583 struct net_device *dev,
1584 u16 vid,
1585 struct netlink_ext_ack *extack);
1586 int (*ndo_fdb_dump)(struct sk_buff *skb,
1587 struct netlink_callback *cb,
1588 struct net_device *dev,
1589 struct net_device *filter_dev,
1590 int *idx);
1591 int (*ndo_fdb_get)(struct sk_buff *skb,
1592 struct nlattr *tb[],
1593 struct net_device *dev,
1594 const unsigned char *addr,
1595 u16 vid, u32 portid, u32 seq,
1596 struct netlink_ext_ack *extack);
1597 int (*ndo_bridge_setlink)(struct net_device *dev,
1598 struct nlmsghdr *nlh,
1599 u16 flags,
1600 struct netlink_ext_ack *extack);
1601 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1602 u32 pid, u32 seq,
1603 struct net_device *dev,
1604 u32 filter_mask,
1605 int nlflags);
1606 int (*ndo_bridge_dellink)(struct net_device *dev,
1607 struct nlmsghdr *nlh,
1608 u16 flags);
1609 int (*ndo_change_carrier)(struct net_device *dev,
1610 bool new_carrier);
1611 int (*ndo_get_phys_port_id)(struct net_device *dev,
1612 struct netdev_phys_item_id *ppid);
1613 int (*ndo_get_port_parent_id)(struct net_device *dev,
1614 struct netdev_phys_item_id *ppid);
1615 int (*ndo_get_phys_port_name)(struct net_device *dev,
1616 char *name, size_t len);
1617 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1618 struct net_device *dev);
1619 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1620 void *priv);
1621
1622 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1623 int queue_index,
1624 u32 maxrate);
1625 int (*ndo_get_iflink)(const struct net_device *dev);
1626 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1627 struct sk_buff *skb);
1628 void (*ndo_set_rx_headroom)(struct net_device *dev,
1629 int needed_headroom);
1630 int (*ndo_bpf)(struct net_device *dev,
1631 struct netdev_bpf *bpf);
1632 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1633 struct xdp_frame **xdp,
1634 u32 flags);
1635 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1636 struct xdp_buff *xdp);
1637 int (*ndo_xsk_wakeup)(struct net_device *dev,
1638 u32 queue_id, u32 flags);
1639 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev);
1640 int (*ndo_tunnel_ctl)(struct net_device *dev,
1641 struct ip_tunnel_parm *p, int cmd);
1642 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev);
1643 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1644 struct net_device_path *path);
1645 ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1646 const struct skb_shared_hwtstamps *hwtstamps,
1647 bool cycles);
1648
1649 ANDROID_KABI_RESERVE(1);
1650 ANDROID_KABI_RESERVE(2);
1651 ANDROID_KABI_RESERVE(3);
1652 ANDROID_KABI_RESERVE(4);
1653 ANDROID_KABI_RESERVE(5);
1654 ANDROID_KABI_RESERVE(6);
1655 ANDROID_KABI_RESERVE(7);
1656 ANDROID_KABI_RESERVE(8);
1657 };
1658
1659 /**
1660 * enum netdev_priv_flags - &struct net_device priv_flags
1661 *
1662 * These are the &struct net_device, they are only set internally
1663 * by drivers and used in the kernel. These flags are invisible to
1664 * userspace; this means that the order of these flags can change
1665 * during any kernel release.
1666 *
1667 * You should have a pretty good reason to be extending these flags.
1668 *
1669 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1670 * @IFF_EBRIDGE: Ethernet bridging device
1671 * @IFF_BONDING: bonding master or slave
1672 * @IFF_ISATAP: ISATAP interface (RFC4214)
1673 * @IFF_WAN_HDLC: WAN HDLC device
1674 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1675 * release skb->dst
1676 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1677 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1678 * @IFF_MACVLAN_PORT: device used as macvlan port
1679 * @IFF_BRIDGE_PORT: device used as bridge port
1680 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1681 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1682 * @IFF_UNICAST_FLT: Supports unicast filtering
1683 * @IFF_TEAM_PORT: device used as team port
1684 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1685 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1686 * change when it's running
1687 * @IFF_MACVLAN: Macvlan device
1688 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1689 * underlying stacked devices
1690 * @IFF_L3MDEV_MASTER: device is an L3 master device
1691 * @IFF_NO_QUEUE: device can run without qdisc attached
1692 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1693 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1694 * @IFF_TEAM: device is a team device
1695 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1696 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1697 * entity (i.e. the master device for bridged veth)
1698 * @IFF_MACSEC: device is a MACsec device
1699 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1700 * @IFF_FAILOVER: device is a failover master device
1701 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1702 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1703 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1704 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1705 * skb_headlen(skb) == 0 (data starts from frag0)
1706 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1707 */
1708 enum netdev_priv_flags {
1709 IFF_802_1Q_VLAN = 1<<0,
1710 IFF_EBRIDGE = 1<<1,
1711 IFF_BONDING = 1<<2,
1712 IFF_ISATAP = 1<<3,
1713 IFF_WAN_HDLC = 1<<4,
1714 IFF_XMIT_DST_RELEASE = 1<<5,
1715 IFF_DONT_BRIDGE = 1<<6,
1716 IFF_DISABLE_NETPOLL = 1<<7,
1717 IFF_MACVLAN_PORT = 1<<8,
1718 IFF_BRIDGE_PORT = 1<<9,
1719 IFF_OVS_DATAPATH = 1<<10,
1720 IFF_TX_SKB_SHARING = 1<<11,
1721 IFF_UNICAST_FLT = 1<<12,
1722 IFF_TEAM_PORT = 1<<13,
1723 IFF_SUPP_NOFCS = 1<<14,
1724 IFF_LIVE_ADDR_CHANGE = 1<<15,
1725 IFF_MACVLAN = 1<<16,
1726 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1727 IFF_L3MDEV_MASTER = 1<<18,
1728 IFF_NO_QUEUE = 1<<19,
1729 IFF_OPENVSWITCH = 1<<20,
1730 IFF_L3MDEV_SLAVE = 1<<21,
1731 IFF_TEAM = 1<<22,
1732 IFF_RXFH_CONFIGURED = 1<<23,
1733 IFF_PHONY_HEADROOM = 1<<24,
1734 IFF_MACSEC = 1<<25,
1735 IFF_NO_RX_HANDLER = 1<<26,
1736 IFF_FAILOVER = 1<<27,
1737 IFF_FAILOVER_SLAVE = 1<<28,
1738 IFF_L3MDEV_RX_HANDLER = 1<<29,
1739 IFF_LIVE_RENAME_OK = 1<<30,
1740 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31),
1741 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32),
1742 };
1743
1744 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1745 #define IFF_EBRIDGE IFF_EBRIDGE
1746 #define IFF_BONDING IFF_BONDING
1747 #define IFF_ISATAP IFF_ISATAP
1748 #define IFF_WAN_HDLC IFF_WAN_HDLC
1749 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1750 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1751 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1752 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1753 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1754 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1755 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1756 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1757 #define IFF_TEAM_PORT IFF_TEAM_PORT
1758 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1759 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1760 #define IFF_MACVLAN IFF_MACVLAN
1761 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1762 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1763 #define IFF_NO_QUEUE IFF_NO_QUEUE
1764 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1765 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1766 #define IFF_TEAM IFF_TEAM
1767 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1768 #define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM
1769 #define IFF_MACSEC IFF_MACSEC
1770 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER
1771 #define IFF_FAILOVER IFF_FAILOVER
1772 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE
1773 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER
1774 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK
1775 #define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR
1776
1777 /* Specifies the type of the struct net_device::ml_priv pointer */
1778 enum netdev_ml_priv_type {
1779 ML_PRIV_NONE,
1780 ML_PRIV_CAN,
1781 };
1782
1783 /**
1784 * struct net_device - The DEVICE structure.
1785 *
1786 * Actually, this whole structure is a big mistake. It mixes I/O
1787 * data with strictly "high-level" data, and it has to know about
1788 * almost every data structure used in the INET module.
1789 *
1790 * @name: This is the first field of the "visible" part of this structure
1791 * (i.e. as seen by users in the "Space.c" file). It is the name
1792 * of the interface.
1793 *
1794 * @name_node: Name hashlist node
1795 * @ifalias: SNMP alias
1796 * @mem_end: Shared memory end
1797 * @mem_start: Shared memory start
1798 * @base_addr: Device I/O address
1799 * @irq: Device IRQ number
1800 *
1801 * @state: Generic network queuing layer state, see netdev_state_t
1802 * @dev_list: The global list of network devices
1803 * @napi_list: List entry used for polling NAPI devices
1804 * @unreg_list: List entry when we are unregistering the
1805 * device; see the function unregister_netdev
1806 * @close_list: List entry used when we are closing the device
1807 * @ptype_all: Device-specific packet handlers for all protocols
1808 * @ptype_specific: Device-specific, protocol-specific packet handlers
1809 *
1810 * @adj_list: Directly linked devices, like slaves for bonding
1811 * @features: Currently active device features
1812 * @hw_features: User-changeable features
1813 *
1814 * @wanted_features: User-requested features
1815 * @vlan_features: Mask of features inheritable by VLAN devices
1816 *
1817 * @hw_enc_features: Mask of features inherited by encapsulating devices
1818 * This field indicates what encapsulation
1819 * offloads the hardware is capable of doing,
1820 * and drivers will need to set them appropriately.
1821 *
1822 * @mpls_features: Mask of features inheritable by MPLS
1823 * @gso_partial_features: value(s) from NETIF_F_GSO\*
1824 *
1825 * @ifindex: interface index
1826 * @group: The group the device belongs to
1827 *
1828 * @stats: Statistics struct, which was left as a legacy, use
1829 * rtnl_link_stats64 instead
1830 *
1831 * @core_stats: core networking counters,
1832 * do not use this in drivers
1833 * @carrier_up_count: Number of times the carrier has been up
1834 * @carrier_down_count: Number of times the carrier has been down
1835 *
1836 * @wireless_handlers: List of functions to handle Wireless Extensions,
1837 * instead of ioctl,
1838 * see <net/iw_handler.h> for details.
1839 * @wireless_data: Instance data managed by the core of wireless extensions
1840 *
1841 * @netdev_ops: Includes several pointers to callbacks,
1842 * if one wants to override the ndo_*() functions
1843 * @ethtool_ops: Management operations
1844 * @l3mdev_ops: Layer 3 master device operations
1845 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1846 * discovery handling. Necessary for e.g. 6LoWPAN.
1847 * @xfrmdev_ops: Transformation offload operations
1848 * @tlsdev_ops: Transport Layer Security offload operations
1849 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1850 * of Layer 2 headers.
1851 *
1852 * @flags: Interface flags (a la BSD)
1853 * @priv_flags: Like 'flags' but invisible to userspace,
1854 * see if.h for the definitions
1855 * @gflags: Global flags ( kept as legacy )
1856 * @padded: How much padding added by alloc_netdev()
1857 * @operstate: RFC2863 operstate
1858 * @link_mode: Mapping policy to operstate
1859 * @if_port: Selectable AUI, TP, ...
1860 * @dma: DMA channel
1861 * @mtu: Interface MTU value
1862 * @min_mtu: Interface Minimum MTU value
1863 * @max_mtu: Interface Maximum MTU value
1864 * @type: Interface hardware type
1865 * @hard_header_len: Maximum hardware header length.
1866 * @min_header_len: Minimum hardware header length
1867 *
1868 * @needed_headroom: Extra headroom the hardware may need, but not in all
1869 * cases can this be guaranteed
1870 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1871 * cases can this be guaranteed. Some cases also use
1872 * LL_MAX_HEADER instead to allocate the skb
1873 *
1874 * interface address info:
1875 *
1876 * @perm_addr: Permanent hw address
1877 * @addr_assign_type: Hw address assignment type
1878 * @addr_len: Hardware address length
1879 * @upper_level: Maximum depth level of upper devices.
1880 * @lower_level: Maximum depth level of lower devices.
1881 * @neigh_priv_len: Used in neigh_alloc()
1882 * @dev_id: Used to differentiate devices that share
1883 * the same link layer address
1884 * @dev_port: Used to differentiate devices that share
1885 * the same function
1886 * @addr_list_lock: XXX: need comments on this one
1887 * @name_assign_type: network interface name assignment type
1888 * @uc_promisc: Counter that indicates promiscuous mode
1889 * has been enabled due to the need to listen to
1890 * additional unicast addresses in a device that
1891 * does not implement ndo_set_rx_mode()
1892 * @uc: unicast mac addresses
1893 * @mc: multicast mac addresses
1894 * @dev_addrs: list of device hw addresses
1895 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1896 * @promiscuity: Number of times the NIC is told to work in
1897 * promiscuous mode; if it becomes 0 the NIC will
1898 * exit promiscuous mode
1899 * @allmulti: Counter, enables or disables allmulticast mode
1900 *
1901 * @vlan_info: VLAN info
1902 * @dsa_ptr: dsa specific data
1903 * @tipc_ptr: TIPC specific data
1904 * @atalk_ptr: AppleTalk link
1905 * @ip_ptr: IPv4 specific data
1906 * @ip6_ptr: IPv6 specific data
1907 * @ax25_ptr: AX.25 specific data
1908 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1909 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1910 * device struct
1911 * @mpls_ptr: mpls_dev struct pointer
1912 * @mctp_ptr: MCTP specific data
1913 *
1914 * @dev_addr: Hw address (before bcast,
1915 * because most packets are unicast)
1916 *
1917 * @_rx: Array of RX queues
1918 * @num_rx_queues: Number of RX queues
1919 * allocated at register_netdev() time
1920 * @real_num_rx_queues: Number of RX queues currently active in device
1921 * @xdp_prog: XDP sockets filter program pointer
1922 * @gro_flush_timeout: timeout for GRO layer in NAPI
1923 * @napi_defer_hard_irqs: If not zero, provides a counter that would
1924 * allow to avoid NIC hard IRQ, on busy queues.
1925 *
1926 * @rx_handler: handler for received packets
1927 * @rx_handler_data: XXX: need comments on this one
1928 * @miniq_ingress: ingress/clsact qdisc specific data for
1929 * ingress processing
1930 * @ingress_queue: XXX: need comments on this one
1931 * @nf_hooks_ingress: netfilter hooks executed for ingress packets
1932 * @broadcast: hw bcast address
1933 *
1934 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1935 * indexed by RX queue number. Assigned by driver.
1936 * This must only be set if the ndo_rx_flow_steer
1937 * operation is defined
1938 * @index_hlist: Device index hash chain
1939 *
1940 * @_tx: Array of TX queues
1941 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1942 * @real_num_tx_queues: Number of TX queues currently active in device
1943 * @qdisc: Root qdisc from userspace point of view
1944 * @tx_queue_len: Max frames per queue allowed
1945 * @tx_global_lock: XXX: need comments on this one
1946 * @xdp_bulkq: XDP device bulk queue
1947 * @xps_maps: all CPUs/RXQs maps for XPS device
1948 *
1949 * @xps_maps: XXX: need comments on this one
1950 * @miniq_egress: clsact qdisc specific data for
1951 * egress processing
1952 * @nf_hooks_egress: netfilter hooks executed for egress packets
1953 * @qdisc_hash: qdisc hash table
1954 * @watchdog_timeo: Represents the timeout that is used by
1955 * the watchdog (see dev_watchdog())
1956 * @watchdog_timer: List of timers
1957 *
1958 * @proto_down_reason: reason a netdev interface is held down
1959 * @pcpu_refcnt: Number of references to this device
1960 * @dev_refcnt: Number of references to this device
1961 * @refcnt_tracker: Tracker directory for tracked references to this device
1962 * @todo_list: Delayed register/unregister
1963 * @link_watch_list: XXX: need comments on this one
1964 *
1965 * @reg_state: Register/unregister state machine
1966 * @dismantle: Device is going to be freed
1967 * @rtnl_link_state: This enum represents the phases of creating
1968 * a new link
1969 *
1970 * @needs_free_netdev: Should unregister perform free_netdev?
1971 * @priv_destructor: Called from unregister
1972 * @npinfo: XXX: need comments on this one
1973 * @nd_net: Network namespace this network device is inside
1974 *
1975 * @ml_priv: Mid-layer private
1976 * @ml_priv_type: Mid-layer private type
1977 * @lstats: Loopback statistics
1978 * @tstats: Tunnel statistics
1979 * @dstats: Dummy statistics
1980 * @vstats: Virtual ethernet statistics
1981 *
1982 * @garp_port: GARP
1983 * @mrp_port: MRP
1984 *
1985 * @dm_private: Drop monitor private
1986 *
1987 * @dev: Class/net/name entry
1988 * @sysfs_groups: Space for optional device, statistics and wireless
1989 * sysfs groups
1990 *
1991 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1992 * @rtnl_link_ops: Rtnl_link_ops
1993 *
1994 * @gso_max_size: Maximum size of generic segmentation offload
1995 * @tso_max_size: Device (as in HW) limit on the max TSO request size
1996 * @gso_max_segs: Maximum number of segments that can be passed to the
1997 * NIC for GSO
1998 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count
1999 *
2000 * @dcbnl_ops: Data Center Bridging netlink ops
2001 * @num_tc: Number of traffic classes in the net device
2002 * @tc_to_txq: XXX: need comments on this one
2003 * @prio_tc_map: XXX: need comments on this one
2004 *
2005 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
2006 *
2007 * @priomap: XXX: need comments on this one
2008 * @phydev: Physical device may attach itself
2009 * for hardware timestamping
2010 * @sfp_bus: attached &struct sfp_bus structure.
2011 *
2012 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
2013 *
2014 * @proto_down: protocol port state information can be sent to the
2015 * switch driver and used to set the phys state of the
2016 * switch port.
2017 *
2018 * @wol_enabled: Wake-on-LAN is enabled
2019 *
2020 * @threaded: napi threaded mode is enabled
2021 *
2022 * @net_notifier_list: List of per-net netdev notifier block
2023 * that follow this device when it is moved
2024 * to another network namespace.
2025 *
2026 * @macsec_ops: MACsec offloading ops
2027 *
2028 * @udp_tunnel_nic_info: static structure describing the UDP tunnel
2029 * offload capabilities of the device
2030 * @udp_tunnel_nic: UDP tunnel offload state
2031 * @xdp_state: stores info on attached XDP BPF programs
2032 *
2033 * @nested_level: Used as a parameter of spin_lock_nested() of
2034 * dev->addr_list_lock.
2035 * @unlink_list: As netif_addr_lock() can be called recursively,
2036 * keep a list of interfaces to be deleted.
2037 * @gro_max_size: Maximum size of aggregated packet in generic
2038 * receive offload (GRO)
2039 *
2040 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes.
2041 * @linkwatch_dev_tracker: refcount tracker used by linkwatch.
2042 * @watchdog_dev_tracker: refcount tracker used by watchdog.
2043 * @dev_registered_tracker: tracker for reference held while
2044 * registered
2045 * @offload_xstats_l3: L3 HW stats for this netdevice.
2046 *
2047 * FIXME: cleanup struct net_device such that network protocol info
2048 * moves out.
2049 */
2050
2051 struct net_device {
2052 char name[IFNAMSIZ];
2053 struct netdev_name_node *name_node;
2054 struct dev_ifalias __rcu *ifalias;
2055 /*
2056 * I/O specific fields
2057 * FIXME: Merge these and struct ifmap into one
2058 */
2059 unsigned long mem_end;
2060 unsigned long mem_start;
2061 unsigned long base_addr;
2062
2063 /*
2064 * Some hardware also needs these fields (state,dev_list,
2065 * napi_list,unreg_list,close_list) but they are not
2066 * part of the usual set specified in Space.c.
2067 */
2068
2069 unsigned long state;
2070
2071 struct list_head dev_list;
2072 struct list_head napi_list;
2073 struct list_head unreg_list;
2074 struct list_head close_list;
2075 struct list_head ptype_all;
2076 struct list_head ptype_specific;
2077
2078 struct {
2079 struct list_head upper;
2080 struct list_head lower;
2081 } adj_list;
2082
2083 /* Read-mostly cache-line for fast-path access */
2084 unsigned int flags;
2085 unsigned long long priv_flags;
2086 const struct net_device_ops *netdev_ops;
2087 int ifindex;
2088 unsigned short gflags;
2089 unsigned short hard_header_len;
2090
2091 /* Note : dev->mtu is often read without holding a lock.
2092 * Writers usually hold RTNL.
2093 * It is recommended to use READ_ONCE() to annotate the reads,
2094 * and to use WRITE_ONCE() to annotate the writes.
2095 */
2096 unsigned int mtu;
2097 unsigned short needed_headroom;
2098 unsigned short needed_tailroom;
2099
2100 netdev_features_t features;
2101 netdev_features_t hw_features;
2102 netdev_features_t wanted_features;
2103 netdev_features_t vlan_features;
2104 netdev_features_t hw_enc_features;
2105 netdev_features_t mpls_features;
2106 netdev_features_t gso_partial_features;
2107
2108 unsigned int min_mtu;
2109 unsigned int max_mtu;
2110 unsigned short type;
2111 unsigned char min_header_len;
2112 unsigned char name_assign_type;
2113
2114 int group;
2115
2116 struct net_device_stats stats; /* not used by modern drivers */
2117
2118 struct net_device_core_stats __percpu *core_stats;
2119
2120 /* Stats to monitor link on/off, flapping */
2121 atomic_t carrier_up_count;
2122 atomic_t carrier_down_count;
2123
2124 /* Android KMI hack to allow vendors to have their own wifi changes in modules */
2125 #ifdef __GENKSYMS__
2126 void *wireless_handlers;
2127 void *wireless_data;
2128 #else
2129 const struct iw_handler_def *wireless_handlers;
2130 struct iw_public_data *wireless_data;
2131 #endif
2132 const struct ethtool_ops *ethtool_ops;
2133 #ifdef CONFIG_NET_L3_MASTER_DEV
2134 const struct l3mdev_ops *l3mdev_ops;
2135 #endif
2136 #if IS_ENABLED(CONFIG_IPV6)
2137 const struct ndisc_ops *ndisc_ops;
2138 #endif
2139
2140 #ifdef CONFIG_XFRM_OFFLOAD
2141 const struct xfrmdev_ops *xfrmdev_ops;
2142 #endif
2143
2144 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2145 const struct tlsdev_ops *tlsdev_ops;
2146 #endif
2147
2148 const struct header_ops *header_ops;
2149
2150 unsigned char operstate;
2151 unsigned char link_mode;
2152
2153 unsigned char if_port;
2154 unsigned char dma;
2155
2156 /* Interface address info. */
2157 unsigned char perm_addr[MAX_ADDR_LEN];
2158 unsigned char addr_assign_type;
2159 unsigned char addr_len;
2160 unsigned char upper_level;
2161 unsigned char lower_level;
2162
2163 unsigned short neigh_priv_len;
2164 unsigned short dev_id;
2165 unsigned short dev_port;
2166 unsigned short padded;
2167
2168 spinlock_t addr_list_lock;
2169 int irq;
2170
2171 struct netdev_hw_addr_list uc;
2172 struct netdev_hw_addr_list mc;
2173 struct netdev_hw_addr_list dev_addrs;
2174
2175 #ifdef CONFIG_SYSFS
2176 struct kset *queues_kset;
2177 #endif
2178 #ifdef CONFIG_LOCKDEP
2179 struct list_head unlink_list;
2180 #endif
2181 unsigned int promiscuity;
2182 unsigned int allmulti;
2183 bool uc_promisc;
2184 #ifdef CONFIG_LOCKDEP
2185 unsigned char nested_level;
2186 #endif
2187
2188
2189 /* Protocol-specific pointers */
2190
2191 struct in_device __rcu *ip_ptr;
2192 struct inet6_dev __rcu *ip6_ptr;
2193 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2194 struct vlan_info __rcu *vlan_info;
2195 #endif
2196 #if IS_ENABLED(CONFIG_NET_DSA)
2197 struct dsa_port *dsa_ptr;
2198 #endif
2199 #if IS_ENABLED(CONFIG_TIPC)
2200 struct tipc_bearer __rcu *tipc_ptr;
2201 #endif
2202 #if IS_ENABLED(CONFIG_ATALK)
2203 void *atalk_ptr;
2204 #endif
2205 #if IS_ENABLED(CONFIG_AX25)
2206 void *ax25_ptr;
2207 #endif
2208 /* Android KMI hack to allow vendors to have their own wifi changes in modules */
2209 #ifdef __GENKSYMS__
2210 void *ieee80211_ptr;
2211 #else
2212 struct wireless_dev *ieee80211_ptr;
2213 #endif
2214
2215 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2216 struct wpan_dev *ieee802154_ptr;
2217 #endif
2218 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2219 struct mpls_dev __rcu *mpls_ptr;
2220 #endif
2221 #if IS_ENABLED(CONFIG_MCTP)
2222 struct mctp_dev __rcu *mctp_ptr;
2223 #endif
2224
2225 /*
2226 * Cache lines mostly used on receive path (including eth_type_trans())
2227 */
2228 /* Interface address info used in eth_type_trans() */
2229 const unsigned char *dev_addr;
2230
2231 struct netdev_rx_queue *_rx;
2232 unsigned int num_rx_queues;
2233 unsigned int real_num_rx_queues;
2234
2235 struct bpf_prog __rcu *xdp_prog;
2236 unsigned long gro_flush_timeout;
2237 int napi_defer_hard_irqs;
2238 #define GRO_LEGACY_MAX_SIZE 65536u
2239 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2240 * and shinfo->gso_segs is a 16bit field.
2241 */
2242 #define GRO_MAX_SIZE (8 * 65535u)
2243 unsigned int gro_max_size;
2244 rx_handler_func_t __rcu *rx_handler;
2245 void __rcu *rx_handler_data;
2246
2247 #ifdef CONFIG_NET_CLS_ACT
2248 struct mini_Qdisc __rcu *miniq_ingress;
2249 #endif
2250 struct netdev_queue __rcu *ingress_queue;
2251 #ifdef CONFIG_NETFILTER_INGRESS
2252 struct nf_hook_entries __rcu *nf_hooks_ingress;
2253 #endif
2254
2255 unsigned char broadcast[MAX_ADDR_LEN];
2256 #ifdef CONFIG_RFS_ACCEL
2257 struct cpu_rmap *rx_cpu_rmap;
2258 #endif
2259 struct hlist_node index_hlist;
2260
2261 /*
2262 * Cache lines mostly used on transmit path
2263 */
2264 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
2265 unsigned int num_tx_queues;
2266 unsigned int real_num_tx_queues;
2267 struct Qdisc __rcu *qdisc;
2268 unsigned int tx_queue_len;
2269 spinlock_t tx_global_lock;
2270
2271 struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2272
2273 #ifdef CONFIG_XPS
2274 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2275 #endif
2276 #ifdef CONFIG_NET_CLS_ACT
2277 struct mini_Qdisc __rcu *miniq_egress;
2278 #endif
2279 #ifdef CONFIG_NETFILTER_EGRESS
2280 struct nf_hook_entries __rcu *nf_hooks_egress;
2281 #endif
2282
2283 #ifdef CONFIG_NET_SCHED
2284 DECLARE_HASHTABLE (qdisc_hash, 4);
2285 #endif
2286 /* These may be needed for future network-power-down code. */
2287 struct timer_list watchdog_timer;
2288 int watchdog_timeo;
2289
2290 u32 proto_down_reason;
2291
2292 struct list_head todo_list;
2293
2294 #ifdef CONFIG_PCPU_DEV_REFCNT
2295 int __percpu *pcpu_refcnt;
2296 #else
2297 refcount_t dev_refcnt;
2298 #endif
2299 struct ref_tracker_dir refcnt_tracker;
2300
2301 struct list_head link_watch_list;
2302
2303 enum { NETREG_UNINITIALIZED=0,
2304 NETREG_REGISTERED, /* completed register_netdevice */
2305 NETREG_UNREGISTERING, /* called unregister_netdevice */
2306 NETREG_UNREGISTERED, /* completed unregister todo */
2307 NETREG_RELEASED, /* called free_netdev */
2308 NETREG_DUMMY, /* dummy device for NAPI poll */
2309 } reg_state:8;
2310
2311 bool dismantle;
2312
2313 enum {
2314 RTNL_LINK_INITIALIZED,
2315 RTNL_LINK_INITIALIZING,
2316 } rtnl_link_state:16;
2317
2318 bool needs_free_netdev;
2319 void (*priv_destructor)(struct net_device *dev);
2320
2321 #ifdef CONFIG_NETPOLL
2322 struct netpoll_info __rcu *npinfo;
2323 #endif
2324
2325 possible_net_t nd_net;
2326
2327 /* mid-layer private */
2328 void *ml_priv;
2329 enum netdev_ml_priv_type ml_priv_type;
2330
2331 union {
2332 struct pcpu_lstats __percpu *lstats;
2333 struct pcpu_sw_netstats __percpu *tstats;
2334 struct pcpu_dstats __percpu *dstats;
2335 };
2336
2337 #if IS_ENABLED(CONFIG_GARP)
2338 struct garp_port __rcu *garp_port;
2339 #endif
2340 #if IS_ENABLED(CONFIG_MRP)
2341 struct mrp_port __rcu *mrp_port;
2342 #endif
2343 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2344 struct dm_hw_stat_delta __rcu *dm_private;
2345 #endif
2346 struct device dev;
2347 const struct attribute_group *sysfs_groups[4];
2348 const struct attribute_group *sysfs_rx_queue_group;
2349
2350 const struct rtnl_link_ops *rtnl_link_ops;
2351
2352 /* for setting kernel sock attribute on TCP connection setup */
2353 #define GSO_MAX_SEGS 65535u
2354 #define GSO_LEGACY_MAX_SIZE 65536u
2355 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2356 * and shinfo->gso_segs is a 16bit field.
2357 */
2358 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS)
2359
2360 unsigned int gso_max_size;
2361 #define TSO_LEGACY_MAX_SIZE 65536
2362 #define TSO_MAX_SIZE UINT_MAX
2363 unsigned int tso_max_size;
2364 u16 gso_max_segs;
2365 #define TSO_MAX_SEGS U16_MAX
2366 u16 tso_max_segs;
2367
2368 #ifdef CONFIG_DCB
2369 const struct dcbnl_rtnl_ops *dcbnl_ops;
2370 #endif
2371 s16 num_tc;
2372 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2373 u8 prio_tc_map[TC_BITMASK + 1];
2374
2375 #if IS_ENABLED(CONFIG_FCOE)
2376 unsigned int fcoe_ddp_xid;
2377 #endif
2378 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2379 struct netprio_map __rcu *priomap;
2380 #endif
2381 struct phy_device *phydev;
2382 struct sfp_bus *sfp_bus;
2383 struct lock_class_key *qdisc_tx_busylock;
2384 bool proto_down;
2385 unsigned wol_enabled:1;
2386 unsigned threaded:1;
2387
2388 struct list_head net_notifier_list;
2389
2390 #if IS_ENABLED(CONFIG_MACSEC)
2391 /* MACsec management functions */
2392 const struct macsec_ops *macsec_ops;
2393 #endif
2394 const struct udp_tunnel_nic_info *udp_tunnel_nic_info;
2395 struct udp_tunnel_nic *udp_tunnel_nic;
2396
2397 /* protected by rtnl_lock */
2398 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE];
2399
2400 u8 dev_addr_shadow[MAX_ADDR_LEN];
2401 netdevice_tracker linkwatch_dev_tracker;
2402 netdevice_tracker watchdog_dev_tracker;
2403 netdevice_tracker dev_registered_tracker;
2404 struct rtnl_hw_stats64 *offload_xstats_l3;
2405
2406 ANDROID_KABI_RESERVE(1);
2407 ANDROID_KABI_RESERVE(2);
2408 ANDROID_KABI_RESERVE(3);
2409 ANDROID_KABI_RESERVE(4);
2410 ANDROID_KABI_RESERVE(5);
2411 ANDROID_KABI_RESERVE(6);
2412 ANDROID_KABI_RESERVE(7);
2413 ANDROID_KABI_RESERVE(8);
2414 };
2415 #define to_net_dev(d) container_of(d, struct net_device, dev)
2416
netif_elide_gro(const struct net_device * dev)2417 static inline bool netif_elide_gro(const struct net_device *dev)
2418 {
2419 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2420 return true;
2421 return false;
2422 }
2423
2424 #define NETDEV_ALIGN 32
2425
2426 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)2427 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2428 {
2429 return dev->prio_tc_map[prio & TC_BITMASK];
2430 }
2431
2432 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)2433 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2434 {
2435 if (tc >= dev->num_tc)
2436 return -EINVAL;
2437
2438 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2439 return 0;
2440 }
2441
2442 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2443 void netdev_reset_tc(struct net_device *dev);
2444 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2445 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2446
2447 static inline
netdev_get_num_tc(struct net_device * dev)2448 int netdev_get_num_tc(struct net_device *dev)
2449 {
2450 return dev->num_tc;
2451 }
2452
net_prefetch(void * p)2453 static inline void net_prefetch(void *p)
2454 {
2455 prefetch(p);
2456 #if L1_CACHE_BYTES < 128
2457 prefetch((u8 *)p + L1_CACHE_BYTES);
2458 #endif
2459 }
2460
net_prefetchw(void * p)2461 static inline void net_prefetchw(void *p)
2462 {
2463 prefetchw(p);
2464 #if L1_CACHE_BYTES < 128
2465 prefetchw((u8 *)p + L1_CACHE_BYTES);
2466 #endif
2467 }
2468
2469 void netdev_unbind_sb_channel(struct net_device *dev,
2470 struct net_device *sb_dev);
2471 int netdev_bind_sb_channel_queue(struct net_device *dev,
2472 struct net_device *sb_dev,
2473 u8 tc, u16 count, u16 offset);
2474 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
netdev_get_sb_channel(struct net_device * dev)2475 static inline int netdev_get_sb_channel(struct net_device *dev)
2476 {
2477 return max_t(int, -dev->num_tc, 0);
2478 }
2479
2480 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)2481 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2482 unsigned int index)
2483 {
2484 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2485 return &dev->_tx[index];
2486 }
2487
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)2488 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2489 const struct sk_buff *skb)
2490 {
2491 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2492 }
2493
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)2494 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2495 void (*f)(struct net_device *,
2496 struct netdev_queue *,
2497 void *),
2498 void *arg)
2499 {
2500 unsigned int i;
2501
2502 for (i = 0; i < dev->num_tx_queues; i++)
2503 f(dev, &dev->_tx[i], arg);
2504 }
2505
2506 #define netdev_lockdep_set_classes(dev) \
2507 { \
2508 static struct lock_class_key qdisc_tx_busylock_key; \
2509 static struct lock_class_key qdisc_xmit_lock_key; \
2510 static struct lock_class_key dev_addr_list_lock_key; \
2511 unsigned int i; \
2512 \
2513 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
2514 lockdep_set_class(&(dev)->addr_list_lock, \
2515 &dev_addr_list_lock_key); \
2516 for (i = 0; i < (dev)->num_tx_queues; i++) \
2517 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
2518 &qdisc_xmit_lock_key); \
2519 }
2520
2521 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2522 struct net_device *sb_dev);
2523 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2524 struct sk_buff *skb,
2525 struct net_device *sb_dev);
2526
2527 /* returns the headroom that the master device needs to take in account
2528 * when forwarding to this dev
2529 */
netdev_get_fwd_headroom(struct net_device * dev)2530 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2531 {
2532 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2533 }
2534
netdev_set_rx_headroom(struct net_device * dev,int new_hr)2535 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2536 {
2537 if (dev->netdev_ops->ndo_set_rx_headroom)
2538 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2539 }
2540
2541 /* set the device rx headroom to the dev's default */
netdev_reset_rx_headroom(struct net_device * dev)2542 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2543 {
2544 netdev_set_rx_headroom(dev, -1);
2545 }
2546
netdev_get_ml_priv(struct net_device * dev,enum netdev_ml_priv_type type)2547 static inline void *netdev_get_ml_priv(struct net_device *dev,
2548 enum netdev_ml_priv_type type)
2549 {
2550 if (dev->ml_priv_type != type)
2551 return NULL;
2552
2553 return dev->ml_priv;
2554 }
2555
netdev_set_ml_priv(struct net_device * dev,void * ml_priv,enum netdev_ml_priv_type type)2556 static inline void netdev_set_ml_priv(struct net_device *dev,
2557 void *ml_priv,
2558 enum netdev_ml_priv_type type)
2559 {
2560 WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2561 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2562 dev->ml_priv_type, type);
2563 WARN(!dev->ml_priv_type && dev->ml_priv,
2564 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2565
2566 dev->ml_priv = ml_priv;
2567 dev->ml_priv_type = type;
2568 }
2569
2570 /*
2571 * Net namespace inlines
2572 */
2573 static inline
dev_net(const struct net_device * dev)2574 struct net *dev_net(const struct net_device *dev)
2575 {
2576 return read_pnet(&dev->nd_net);
2577 }
2578
2579 static inline
dev_net_set(struct net_device * dev,struct net * net)2580 void dev_net_set(struct net_device *dev, struct net *net)
2581 {
2582 write_pnet(&dev->nd_net, net);
2583 }
2584
2585 /**
2586 * netdev_priv - access network device private data
2587 * @dev: network device
2588 *
2589 * Get network device private data
2590 */
netdev_priv(const struct net_device * dev)2591 static inline void *netdev_priv(const struct net_device *dev)
2592 {
2593 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2594 }
2595
2596 /* Set the sysfs physical device reference for the network logical device
2597 * if set prior to registration will cause a symlink during initialization.
2598 */
2599 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2600
2601 /* Set the sysfs device type for the network logical device to allow
2602 * fine-grained identification of different network device types. For
2603 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2604 */
2605 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2606
2607 /* Default NAPI poll() weight
2608 * Device drivers are strongly advised to not use bigger value
2609 */
2610 #define NAPI_POLL_WEIGHT 64
2611
2612 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2613 int (*poll)(struct napi_struct *, int), int weight);
2614
2615 /**
2616 * netif_napi_add() - initialize a NAPI context
2617 * @dev: network device
2618 * @napi: NAPI context
2619 * @poll: polling function
2620 *
2621 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2622 * *any* of the other NAPI-related functions.
2623 */
2624 static inline void
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int))2625 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2626 int (*poll)(struct napi_struct *, int))
2627 {
2628 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2629 }
2630
2631 static inline void
netif_napi_add_tx_weight(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2632 netif_napi_add_tx_weight(struct net_device *dev,
2633 struct napi_struct *napi,
2634 int (*poll)(struct napi_struct *, int),
2635 int weight)
2636 {
2637 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2638 netif_napi_add_weight(dev, napi, poll, weight);
2639 }
2640
2641 /**
2642 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2643 * @dev: network device
2644 * @napi: NAPI context
2645 * @poll: polling function
2646 *
2647 * This variant of netif_napi_add() should be used from drivers using NAPI
2648 * to exclusively poll a TX queue.
2649 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2650 */
netif_napi_add_tx(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int))2651 static inline void netif_napi_add_tx(struct net_device *dev,
2652 struct napi_struct *napi,
2653 int (*poll)(struct napi_struct *, int))
2654 {
2655 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2656 }
2657
2658 /**
2659 * __netif_napi_del - remove a NAPI context
2660 * @napi: NAPI context
2661 *
2662 * Warning: caller must observe RCU grace period before freeing memory
2663 * containing @napi. Drivers might want to call this helper to combine
2664 * all the needed RCU grace periods into a single one.
2665 */
2666 void __netif_napi_del(struct napi_struct *napi);
2667
2668 /**
2669 * netif_napi_del - remove a NAPI context
2670 * @napi: NAPI context
2671 *
2672 * netif_napi_del() removes a NAPI context from the network device NAPI list
2673 */
netif_napi_del(struct napi_struct * napi)2674 static inline void netif_napi_del(struct napi_struct *napi)
2675 {
2676 __netif_napi_del(napi);
2677 synchronize_net();
2678 }
2679
2680 struct packet_type {
2681 __be16 type; /* This is really htons(ether_type). */
2682 bool ignore_outgoing;
2683 struct net_device *dev; /* NULL is wildcarded here */
2684 netdevice_tracker dev_tracker;
2685 int (*func) (struct sk_buff *,
2686 struct net_device *,
2687 struct packet_type *,
2688 struct net_device *);
2689 void (*list_func) (struct list_head *,
2690 struct packet_type *,
2691 struct net_device *);
2692 bool (*id_match)(struct packet_type *ptype,
2693 struct sock *sk);
2694 struct net *af_packet_net;
2695 void *af_packet_priv;
2696 struct list_head list;
2697
2698 ANDROID_KABI_RESERVE(1);
2699 ANDROID_KABI_RESERVE(2);
2700 ANDROID_KABI_RESERVE(3);
2701 ANDROID_KABI_RESERVE(4);
2702 };
2703
2704 struct offload_callbacks {
2705 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2706 netdev_features_t features);
2707 struct sk_buff *(*gro_receive)(struct list_head *head,
2708 struct sk_buff *skb);
2709 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2710 };
2711
2712 struct packet_offload {
2713 __be16 type; /* This is really htons(ether_type). */
2714 u16 priority;
2715 struct offload_callbacks callbacks;
2716 struct list_head list;
2717 };
2718
2719 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2720 struct pcpu_sw_netstats {
2721 u64_stats_t rx_packets;
2722 u64_stats_t rx_bytes;
2723 u64_stats_t tx_packets;
2724 u64_stats_t tx_bytes;
2725 struct u64_stats_sync syncp;
2726 } __aligned(4 * sizeof(u64));
2727
2728 struct pcpu_lstats {
2729 u64_stats_t packets;
2730 u64_stats_t bytes;
2731 struct u64_stats_sync syncp;
2732 } __aligned(2 * sizeof(u64));
2733
2734 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2735
dev_sw_netstats_rx_add(struct net_device * dev,unsigned int len)2736 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2737 {
2738 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2739
2740 u64_stats_update_begin(&tstats->syncp);
2741 u64_stats_add(&tstats->rx_bytes, len);
2742 u64_stats_inc(&tstats->rx_packets);
2743 u64_stats_update_end(&tstats->syncp);
2744 }
2745
dev_sw_netstats_tx_add(struct net_device * dev,unsigned int packets,unsigned int len)2746 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2747 unsigned int packets,
2748 unsigned int len)
2749 {
2750 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2751
2752 u64_stats_update_begin(&tstats->syncp);
2753 u64_stats_add(&tstats->tx_bytes, len);
2754 u64_stats_add(&tstats->tx_packets, packets);
2755 u64_stats_update_end(&tstats->syncp);
2756 }
2757
dev_lstats_add(struct net_device * dev,unsigned int len)2758 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2759 {
2760 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2761
2762 u64_stats_update_begin(&lstats->syncp);
2763 u64_stats_add(&lstats->bytes, len);
2764 u64_stats_inc(&lstats->packets);
2765 u64_stats_update_end(&lstats->syncp);
2766 }
2767
2768 #define __netdev_alloc_pcpu_stats(type, gfp) \
2769 ({ \
2770 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2771 if (pcpu_stats) { \
2772 int __cpu; \
2773 for_each_possible_cpu(__cpu) { \
2774 typeof(type) *stat; \
2775 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2776 u64_stats_init(&stat->syncp); \
2777 } \
2778 } \
2779 pcpu_stats; \
2780 })
2781
2782 #define netdev_alloc_pcpu_stats(type) \
2783 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2784
2785 #define devm_netdev_alloc_pcpu_stats(dev, type) \
2786 ({ \
2787 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2788 if (pcpu_stats) { \
2789 int __cpu; \
2790 for_each_possible_cpu(__cpu) { \
2791 typeof(type) *stat; \
2792 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2793 u64_stats_init(&stat->syncp); \
2794 } \
2795 } \
2796 pcpu_stats; \
2797 })
2798
2799 enum netdev_lag_tx_type {
2800 NETDEV_LAG_TX_TYPE_UNKNOWN,
2801 NETDEV_LAG_TX_TYPE_RANDOM,
2802 NETDEV_LAG_TX_TYPE_BROADCAST,
2803 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2804 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2805 NETDEV_LAG_TX_TYPE_HASH,
2806 };
2807
2808 enum netdev_lag_hash {
2809 NETDEV_LAG_HASH_NONE,
2810 NETDEV_LAG_HASH_L2,
2811 NETDEV_LAG_HASH_L34,
2812 NETDEV_LAG_HASH_L23,
2813 NETDEV_LAG_HASH_E23,
2814 NETDEV_LAG_HASH_E34,
2815 NETDEV_LAG_HASH_VLAN_SRCMAC,
2816 NETDEV_LAG_HASH_UNKNOWN,
2817 };
2818
2819 struct netdev_lag_upper_info {
2820 enum netdev_lag_tx_type tx_type;
2821 enum netdev_lag_hash hash_type;
2822 };
2823
2824 struct netdev_lag_lower_state_info {
2825 u8 link_up : 1,
2826 tx_enabled : 1;
2827 };
2828
2829 #include <linux/notifier.h>
2830
2831 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2832 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2833 * adding new types.
2834 */
2835 enum netdev_cmd {
2836 NETDEV_UP = 1, /* For now you can't veto a device up/down */
2837 NETDEV_DOWN,
2838 NETDEV_REBOOT, /* Tell a protocol stack a network interface
2839 detected a hardware crash and restarted
2840 - we can use this eg to kick tcp sessions
2841 once done */
2842 NETDEV_CHANGE, /* Notify device state change */
2843 NETDEV_REGISTER,
2844 NETDEV_UNREGISTER,
2845 NETDEV_CHANGEMTU, /* notify after mtu change happened */
2846 NETDEV_CHANGEADDR, /* notify after the address change */
2847 NETDEV_PRE_CHANGEADDR, /* notify before the address change */
2848 NETDEV_GOING_DOWN,
2849 NETDEV_CHANGENAME,
2850 NETDEV_FEAT_CHANGE,
2851 NETDEV_BONDING_FAILOVER,
2852 NETDEV_PRE_UP,
2853 NETDEV_PRE_TYPE_CHANGE,
2854 NETDEV_POST_TYPE_CHANGE,
2855 NETDEV_POST_INIT,
2856 NETDEV_RELEASE,
2857 NETDEV_NOTIFY_PEERS,
2858 NETDEV_JOIN,
2859 NETDEV_CHANGEUPPER,
2860 NETDEV_RESEND_IGMP,
2861 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
2862 NETDEV_CHANGEINFODATA,
2863 NETDEV_BONDING_INFO,
2864 NETDEV_PRECHANGEUPPER,
2865 NETDEV_CHANGELOWERSTATE,
2866 NETDEV_UDP_TUNNEL_PUSH_INFO,
2867 NETDEV_UDP_TUNNEL_DROP_INFO,
2868 NETDEV_CHANGE_TX_QUEUE_LEN,
2869 NETDEV_CVLAN_FILTER_PUSH_INFO,
2870 NETDEV_CVLAN_FILTER_DROP_INFO,
2871 NETDEV_SVLAN_FILTER_PUSH_INFO,
2872 NETDEV_SVLAN_FILTER_DROP_INFO,
2873 NETDEV_OFFLOAD_XSTATS_ENABLE,
2874 NETDEV_OFFLOAD_XSTATS_DISABLE,
2875 NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2876 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2877 };
2878 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2879
2880 int register_netdevice_notifier(struct notifier_block *nb);
2881 int unregister_netdevice_notifier(struct notifier_block *nb);
2882 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2883 int unregister_netdevice_notifier_net(struct net *net,
2884 struct notifier_block *nb);
2885 int register_netdevice_notifier_dev_net(struct net_device *dev,
2886 struct notifier_block *nb,
2887 struct netdev_net_notifier *nn);
2888 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2889 struct notifier_block *nb,
2890 struct netdev_net_notifier *nn);
2891
2892 struct netdev_notifier_info {
2893 struct net_device *dev;
2894 struct netlink_ext_ack *extack;
2895 };
2896
2897 struct netdev_notifier_info_ext {
2898 struct netdev_notifier_info info; /* must be first */
2899 union {
2900 u32 mtu;
2901 } ext;
2902 };
2903
2904 struct netdev_notifier_change_info {
2905 struct netdev_notifier_info info; /* must be first */
2906 unsigned int flags_changed;
2907 };
2908
2909 struct netdev_notifier_changeupper_info {
2910 struct netdev_notifier_info info; /* must be first */
2911 struct net_device *upper_dev; /* new upper dev */
2912 bool master; /* is upper dev master */
2913 bool linking; /* is the notification for link or unlink */
2914 void *upper_info; /* upper dev info */
2915 };
2916
2917 struct netdev_notifier_changelowerstate_info {
2918 struct netdev_notifier_info info; /* must be first */
2919 void *lower_state_info; /* is lower dev state */
2920 };
2921
2922 struct netdev_notifier_pre_changeaddr_info {
2923 struct netdev_notifier_info info; /* must be first */
2924 const unsigned char *dev_addr;
2925 };
2926
2927 enum netdev_offload_xstats_type {
2928 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2929 };
2930
2931 struct netdev_notifier_offload_xstats_info {
2932 struct netdev_notifier_info info; /* must be first */
2933 enum netdev_offload_xstats_type type;
2934
2935 union {
2936 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2937 struct netdev_notifier_offload_xstats_rd *report_delta;
2938 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2939 struct netdev_notifier_offload_xstats_ru *report_used;
2940 };
2941 };
2942
2943 int netdev_offload_xstats_enable(struct net_device *dev,
2944 enum netdev_offload_xstats_type type,
2945 struct netlink_ext_ack *extack);
2946 int netdev_offload_xstats_disable(struct net_device *dev,
2947 enum netdev_offload_xstats_type type);
2948 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2949 enum netdev_offload_xstats_type type);
2950 int netdev_offload_xstats_get(struct net_device *dev,
2951 enum netdev_offload_xstats_type type,
2952 struct rtnl_hw_stats64 *stats, bool *used,
2953 struct netlink_ext_ack *extack);
2954 void
2955 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2956 const struct rtnl_hw_stats64 *stats);
2957 void
2958 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2959 void netdev_offload_xstats_push_delta(struct net_device *dev,
2960 enum netdev_offload_xstats_type type,
2961 const struct rtnl_hw_stats64 *stats);
2962
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)2963 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2964 struct net_device *dev)
2965 {
2966 info->dev = dev;
2967 info->extack = NULL;
2968 }
2969
2970 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)2971 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2972 {
2973 return info->dev;
2974 }
2975
2976 static inline struct netlink_ext_ack *
netdev_notifier_info_to_extack(const struct netdev_notifier_info * info)2977 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2978 {
2979 return info->extack;
2980 }
2981
2982 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2983
2984
2985 extern rwlock_t dev_base_lock; /* Device list lock */
2986
2987 #define for_each_netdev(net, d) \
2988 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2989 #define for_each_netdev_reverse(net, d) \
2990 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2991 #define for_each_netdev_rcu(net, d) \
2992 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2993 #define for_each_netdev_safe(net, d, n) \
2994 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2995 #define for_each_netdev_continue(net, d) \
2996 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2997 #define for_each_netdev_continue_reverse(net, d) \
2998 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2999 dev_list)
3000 #define for_each_netdev_continue_rcu(net, d) \
3001 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3002 #define for_each_netdev_in_bond_rcu(bond, slave) \
3003 for_each_netdev_rcu(&init_net, slave) \
3004 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3005 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
3006
next_net_device(struct net_device * dev)3007 static inline struct net_device *next_net_device(struct net_device *dev)
3008 {
3009 struct list_head *lh;
3010 struct net *net;
3011
3012 net = dev_net(dev);
3013 lh = dev->dev_list.next;
3014 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3015 }
3016
next_net_device_rcu(struct net_device * dev)3017 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3018 {
3019 struct list_head *lh;
3020 struct net *net;
3021
3022 net = dev_net(dev);
3023 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3024 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3025 }
3026
first_net_device(struct net * net)3027 static inline struct net_device *first_net_device(struct net *net)
3028 {
3029 return list_empty(&net->dev_base_head) ? NULL :
3030 net_device_entry(net->dev_base_head.next);
3031 }
3032
first_net_device_rcu(struct net * net)3033 static inline struct net_device *first_net_device_rcu(struct net *net)
3034 {
3035 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3036
3037 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3038 }
3039
3040 int netdev_boot_setup_check(struct net_device *dev);
3041 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3042 const char *hwaddr);
3043 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3044 void dev_add_pack(struct packet_type *pt);
3045 void dev_remove_pack(struct packet_type *pt);
3046 void __dev_remove_pack(struct packet_type *pt);
3047 void dev_add_offload(struct packet_offload *po);
3048 void dev_remove_offload(struct packet_offload *po);
3049
3050 int dev_get_iflink(const struct net_device *dev);
3051 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3052 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3053 struct net_device_path_stack *stack);
3054 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3055 unsigned short mask);
3056 struct net_device *dev_get_by_name(struct net *net, const char *name);
3057 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3058 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3059 bool netdev_name_in_use(struct net *net, const char *name);
3060 int dev_alloc_name(struct net_device *dev, const char *name);
3061 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3062 void dev_close(struct net_device *dev);
3063 void dev_close_many(struct list_head *head, bool unlink);
3064 void dev_disable_lro(struct net_device *dev);
3065 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3066 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3067 struct net_device *sb_dev);
3068 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3069 struct net_device *sb_dev);
3070
3071 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3072 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3073
dev_queue_xmit(struct sk_buff * skb)3074 static inline int dev_queue_xmit(struct sk_buff *skb)
3075 {
3076 return __dev_queue_xmit(skb, NULL);
3077 }
3078
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)3079 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3080 struct net_device *sb_dev)
3081 {
3082 return __dev_queue_xmit(skb, sb_dev);
3083 }
3084
dev_direct_xmit(struct sk_buff * skb,u16 queue_id)3085 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3086 {
3087 int ret;
3088
3089 ret = __dev_direct_xmit(skb, queue_id);
3090 if (!dev_xmit_complete(ret))
3091 kfree_skb(skb);
3092 return ret;
3093 }
3094
3095 int register_netdevice(struct net_device *dev);
3096 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3097 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)3098 static inline void unregister_netdevice(struct net_device *dev)
3099 {
3100 unregister_netdevice_queue(dev, NULL);
3101 }
3102
3103 int netdev_refcnt_read(const struct net_device *dev);
3104 void free_netdev(struct net_device *dev);
3105 void netdev_freemem(struct net_device *dev);
3106 int init_dummy_netdev(struct net_device *dev);
3107
3108 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3109 struct sk_buff *skb,
3110 bool all_slaves);
3111 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3112 struct sock *sk);
3113 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3114 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3115 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3116 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3117 int dev_restart(struct net_device *dev);
3118
3119
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)3120 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3121 unsigned short type,
3122 const void *daddr, const void *saddr,
3123 unsigned int len)
3124 {
3125 if (!dev->header_ops || !dev->header_ops->create)
3126 return 0;
3127
3128 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3129 }
3130
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)3131 static inline int dev_parse_header(const struct sk_buff *skb,
3132 unsigned char *haddr)
3133 {
3134 const struct net_device *dev = skb->dev;
3135
3136 if (!dev->header_ops || !dev->header_ops->parse)
3137 return 0;
3138 return dev->header_ops->parse(skb, haddr);
3139 }
3140
dev_parse_header_protocol(const struct sk_buff * skb)3141 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3142 {
3143 const struct net_device *dev = skb->dev;
3144
3145 if (!dev->header_ops || !dev->header_ops->parse_protocol)
3146 return 0;
3147 return dev->header_ops->parse_protocol(skb);
3148 }
3149
3150 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)3151 static inline bool dev_validate_header(const struct net_device *dev,
3152 char *ll_header, int len)
3153 {
3154 if (likely(len >= dev->hard_header_len))
3155 return true;
3156 if (len < dev->min_header_len)
3157 return false;
3158
3159 if (capable(CAP_SYS_RAWIO)) {
3160 memset(ll_header + len, 0, dev->hard_header_len - len);
3161 return true;
3162 }
3163
3164 if (dev->header_ops && dev->header_ops->validate)
3165 return dev->header_ops->validate(ll_header, len);
3166
3167 return false;
3168 }
3169
dev_has_header(const struct net_device * dev)3170 static inline bool dev_has_header(const struct net_device *dev)
3171 {
3172 return dev->header_ops && dev->header_ops->create;
3173 }
3174
3175 /*
3176 * Incoming packets are placed on per-CPU queues
3177 */
3178 struct softnet_data {
3179 struct list_head poll_list;
3180 struct sk_buff_head process_queue;
3181
3182 /* stats */
3183 unsigned int processed;
3184 unsigned int time_squeeze;
3185 unsigned int received_rps;
3186 #ifdef CONFIG_RPS
3187 struct softnet_data *rps_ipi_list;
3188 #endif
3189 #ifdef CONFIG_NET_FLOW_LIMIT
3190 struct sd_flow_limit __rcu *flow_limit;
3191 #endif
3192 struct Qdisc *output_queue;
3193 struct Qdisc **output_queue_tailp;
3194 struct sk_buff *completion_queue;
3195 #ifdef CONFIG_XFRM_OFFLOAD
3196 struct sk_buff_head xfrm_backlog;
3197 #endif
3198 /* written and read only by owning cpu: */
3199 struct {
3200 u16 recursion;
3201 u8 more;
3202 #ifdef CONFIG_NET_EGRESS
3203 u8 skip_txqueue;
3204 #endif
3205 } xmit;
3206 #ifdef CONFIG_RPS
3207 /* input_queue_head should be written by cpu owning this struct,
3208 * and only read by other cpus. Worth using a cache line.
3209 */
3210 unsigned int input_queue_head ____cacheline_aligned_in_smp;
3211
3212 /* Elements below can be accessed between CPUs for RPS/RFS */
3213 call_single_data_t csd ____cacheline_aligned_in_smp;
3214 struct softnet_data *rps_ipi_next;
3215 unsigned int cpu;
3216 unsigned int input_queue_tail;
3217 #endif
3218 unsigned int dropped;
3219 struct sk_buff_head input_pkt_queue;
3220 struct napi_struct backlog;
3221
3222 /* Another possibly contended cache line */
3223 spinlock_t defer_lock ____cacheline_aligned_in_smp;
3224 int defer_count;
3225 int defer_ipi_scheduled;
3226 struct sk_buff *defer_list;
3227 call_single_data_t defer_csd;
3228 };
3229
input_queue_head_incr(struct softnet_data * sd)3230 static inline void input_queue_head_incr(struct softnet_data *sd)
3231 {
3232 #ifdef CONFIG_RPS
3233 sd->input_queue_head++;
3234 #endif
3235 }
3236
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)3237 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3238 unsigned int *qtail)
3239 {
3240 #ifdef CONFIG_RPS
3241 *qtail = ++sd->input_queue_tail;
3242 #endif
3243 }
3244
3245 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3246
dev_recursion_level(void)3247 static inline int dev_recursion_level(void)
3248 {
3249 return this_cpu_read(softnet_data.xmit.recursion);
3250 }
3251
3252 #define XMIT_RECURSION_LIMIT 8
dev_xmit_recursion(void)3253 static inline bool dev_xmit_recursion(void)
3254 {
3255 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3256 XMIT_RECURSION_LIMIT);
3257 }
3258
dev_xmit_recursion_inc(void)3259 static inline void dev_xmit_recursion_inc(void)
3260 {
3261 __this_cpu_inc(softnet_data.xmit.recursion);
3262 }
3263
dev_xmit_recursion_dec(void)3264 static inline void dev_xmit_recursion_dec(void)
3265 {
3266 __this_cpu_dec(softnet_data.xmit.recursion);
3267 }
3268
3269 void __netif_schedule(struct Qdisc *q);
3270 void netif_schedule_queue(struct netdev_queue *txq);
3271
netif_tx_schedule_all(struct net_device * dev)3272 static inline void netif_tx_schedule_all(struct net_device *dev)
3273 {
3274 unsigned int i;
3275
3276 for (i = 0; i < dev->num_tx_queues; i++)
3277 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3278 }
3279
netif_tx_start_queue(struct netdev_queue * dev_queue)3280 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3281 {
3282 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3283 }
3284
3285 /**
3286 * netif_start_queue - allow transmit
3287 * @dev: network device
3288 *
3289 * Allow upper layers to call the device hard_start_xmit routine.
3290 */
netif_start_queue(struct net_device * dev)3291 static inline void netif_start_queue(struct net_device *dev)
3292 {
3293 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3294 }
3295
netif_tx_start_all_queues(struct net_device * dev)3296 static inline void netif_tx_start_all_queues(struct net_device *dev)
3297 {
3298 unsigned int i;
3299
3300 for (i = 0; i < dev->num_tx_queues; i++) {
3301 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3302 netif_tx_start_queue(txq);
3303 }
3304 }
3305
3306 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3307
3308 /**
3309 * netif_wake_queue - restart transmit
3310 * @dev: network device
3311 *
3312 * Allow upper layers to call the device hard_start_xmit routine.
3313 * Used for flow control when transmit resources are available.
3314 */
netif_wake_queue(struct net_device * dev)3315 static inline void netif_wake_queue(struct net_device *dev)
3316 {
3317 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3318 }
3319
netif_tx_wake_all_queues(struct net_device * dev)3320 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3321 {
3322 unsigned int i;
3323
3324 for (i = 0; i < dev->num_tx_queues; i++) {
3325 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3326 netif_tx_wake_queue(txq);
3327 }
3328 }
3329
netif_tx_stop_queue(struct netdev_queue * dev_queue)3330 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3331 {
3332 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3333 }
3334
3335 /**
3336 * netif_stop_queue - stop transmitted packets
3337 * @dev: network device
3338 *
3339 * Stop upper layers calling the device hard_start_xmit routine.
3340 * Used for flow control when transmit resources are unavailable.
3341 */
netif_stop_queue(struct net_device * dev)3342 static inline void netif_stop_queue(struct net_device *dev)
3343 {
3344 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3345 }
3346
3347 void netif_tx_stop_all_queues(struct net_device *dev);
3348
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)3349 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3350 {
3351 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3352 }
3353
3354 /**
3355 * netif_queue_stopped - test if transmit queue is flowblocked
3356 * @dev: network device
3357 *
3358 * Test if transmit queue on device is currently unable to send.
3359 */
netif_queue_stopped(const struct net_device * dev)3360 static inline bool netif_queue_stopped(const struct net_device *dev)
3361 {
3362 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3363 }
3364
netif_xmit_stopped(const struct netdev_queue * dev_queue)3365 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3366 {
3367 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3368 }
3369
3370 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)3371 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3372 {
3373 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3374 }
3375
3376 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)3377 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3378 {
3379 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3380 }
3381
3382 /**
3383 * netdev_queue_set_dql_min_limit - set dql minimum limit
3384 * @dev_queue: pointer to transmit queue
3385 * @min_limit: dql minimum limit
3386 *
3387 * Forces xmit_more() to return true until the minimum threshold
3388 * defined by @min_limit is reached (or until the tx queue is
3389 * empty). Warning: to be use with care, misuse will impact the
3390 * latency.
3391 */
netdev_queue_set_dql_min_limit(struct netdev_queue * dev_queue,unsigned int min_limit)3392 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3393 unsigned int min_limit)
3394 {
3395 #ifdef CONFIG_BQL
3396 dev_queue->dql.min_limit = min_limit;
3397 #endif
3398 }
3399
3400 /**
3401 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3402 * @dev_queue: pointer to transmit queue
3403 *
3404 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3405 * to give appropriate hint to the CPU.
3406 */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)3407 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3408 {
3409 #ifdef CONFIG_BQL
3410 prefetchw(&dev_queue->dql.num_queued);
3411 #endif
3412 }
3413
3414 /**
3415 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3416 * @dev_queue: pointer to transmit queue
3417 *
3418 * BQL enabled drivers might use this helper in their TX completion path,
3419 * to give appropriate hint to the CPU.
3420 */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)3421 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3422 {
3423 #ifdef CONFIG_BQL
3424 prefetchw(&dev_queue->dql.limit);
3425 #endif
3426 }
3427
3428 /**
3429 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3430 * @dev_queue: network device queue
3431 * @bytes: number of bytes queued to the device queue
3432 *
3433 * Report the number of bytes queued for sending/completion to the network
3434 * device hardware queue. @bytes should be a good approximation and should
3435 * exactly match netdev_completed_queue() @bytes.
3436 * This is typically called once per packet, from ndo_start_xmit().
3437 */
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)3438 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3439 unsigned int bytes)
3440 {
3441 #ifdef CONFIG_BQL
3442 dql_queued(&dev_queue->dql, bytes);
3443
3444 if (likely(dql_avail(&dev_queue->dql) >= 0))
3445 return;
3446
3447 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3448
3449 /*
3450 * The XOFF flag must be set before checking the dql_avail below,
3451 * because in netdev_tx_completed_queue we update the dql_completed
3452 * before checking the XOFF flag.
3453 */
3454 smp_mb();
3455
3456 /* check again in case another CPU has just made room avail */
3457 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3458 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3459 #endif
3460 }
3461
3462 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3463 * that they should not test BQL status themselves.
3464 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3465 * skb of a batch.
3466 * Returns true if the doorbell must be used to kick the NIC.
3467 */
__netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes,bool xmit_more)3468 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3469 unsigned int bytes,
3470 bool xmit_more)
3471 {
3472 if (xmit_more) {
3473 #ifdef CONFIG_BQL
3474 dql_queued(&dev_queue->dql, bytes);
3475 #endif
3476 return netif_tx_queue_stopped(dev_queue);
3477 }
3478 netdev_tx_sent_queue(dev_queue, bytes);
3479 return true;
3480 }
3481
3482 /**
3483 * netdev_sent_queue - report the number of bytes queued to hardware
3484 * @dev: network device
3485 * @bytes: number of bytes queued to the hardware device queue
3486 *
3487 * Report the number of bytes queued for sending/completion to the network
3488 * device hardware queue#0. @bytes should be a good approximation and should
3489 * exactly match netdev_completed_queue() @bytes.
3490 * This is typically called once per packet, from ndo_start_xmit().
3491 */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)3492 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3493 {
3494 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3495 }
3496
__netdev_sent_queue(struct net_device * dev,unsigned int bytes,bool xmit_more)3497 static inline bool __netdev_sent_queue(struct net_device *dev,
3498 unsigned int bytes,
3499 bool xmit_more)
3500 {
3501 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3502 xmit_more);
3503 }
3504
3505 /**
3506 * netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3507 * @dev_queue: network device queue
3508 * @pkts: number of packets (currently ignored)
3509 * @bytes: number of bytes dequeued from the device queue
3510 *
3511 * Must be called at most once per TX completion round (and not per
3512 * individual packet), so that BQL can adjust its limits appropriately.
3513 */
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)3514 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3515 unsigned int pkts, unsigned int bytes)
3516 {
3517 #ifdef CONFIG_BQL
3518 if (unlikely(!bytes))
3519 return;
3520
3521 dql_completed(&dev_queue->dql, bytes);
3522
3523 /*
3524 * Without the memory barrier there is a small possiblity that
3525 * netdev_tx_sent_queue will miss the update and cause the queue to
3526 * be stopped forever
3527 */
3528 smp_mb();
3529
3530 if (unlikely(dql_avail(&dev_queue->dql) < 0))
3531 return;
3532
3533 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3534 netif_schedule_queue(dev_queue);
3535 #endif
3536 }
3537
3538 /**
3539 * netdev_completed_queue - report bytes and packets completed by device
3540 * @dev: network device
3541 * @pkts: actual number of packets sent over the medium
3542 * @bytes: actual number of bytes sent over the medium
3543 *
3544 * Report the number of bytes and packets transmitted by the network device
3545 * hardware queue over the physical medium, @bytes must exactly match the
3546 * @bytes amount passed to netdev_sent_queue()
3547 */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)3548 static inline void netdev_completed_queue(struct net_device *dev,
3549 unsigned int pkts, unsigned int bytes)
3550 {
3551 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3552 }
3553
netdev_tx_reset_queue(struct netdev_queue * q)3554 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3555 {
3556 #ifdef CONFIG_BQL
3557 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3558 dql_reset(&q->dql);
3559 #endif
3560 }
3561
3562 /**
3563 * netdev_reset_queue - reset the packets and bytes count of a network device
3564 * @dev_queue: network device
3565 *
3566 * Reset the bytes and packet count of a network device and clear the
3567 * software flow control OFF bit for this network device
3568 */
netdev_reset_queue(struct net_device * dev_queue)3569 static inline void netdev_reset_queue(struct net_device *dev_queue)
3570 {
3571 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3572 }
3573
3574 /**
3575 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3576 * @dev: network device
3577 * @queue_index: given tx queue index
3578 *
3579 * Returns 0 if given tx queue index >= number of device tx queues,
3580 * otherwise returns the originally passed tx queue index.
3581 */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)3582 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3583 {
3584 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3585 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3586 dev->name, queue_index,
3587 dev->real_num_tx_queues);
3588 return 0;
3589 }
3590
3591 return queue_index;
3592 }
3593
3594 /**
3595 * netif_running - test if up
3596 * @dev: network device
3597 *
3598 * Test if the device has been brought up.
3599 */
netif_running(const struct net_device * dev)3600 static inline bool netif_running(const struct net_device *dev)
3601 {
3602 return test_bit(__LINK_STATE_START, &dev->state);
3603 }
3604
3605 /*
3606 * Routines to manage the subqueues on a device. We only need start,
3607 * stop, and a check if it's stopped. All other device management is
3608 * done at the overall netdevice level.
3609 * Also test the device if we're multiqueue.
3610 */
3611
3612 /**
3613 * netif_start_subqueue - allow sending packets on subqueue
3614 * @dev: network device
3615 * @queue_index: sub queue index
3616 *
3617 * Start individual transmit queue of a device with multiple transmit queues.
3618 */
netif_start_subqueue(struct net_device * dev,u16 queue_index)3619 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3620 {
3621 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3622
3623 netif_tx_start_queue(txq);
3624 }
3625
3626 /**
3627 * netif_stop_subqueue - stop sending packets on subqueue
3628 * @dev: network device
3629 * @queue_index: sub queue index
3630 *
3631 * Stop individual transmit queue of a device with multiple transmit queues.
3632 */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)3633 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3634 {
3635 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3636 netif_tx_stop_queue(txq);
3637 }
3638
3639 /**
3640 * __netif_subqueue_stopped - test status of subqueue
3641 * @dev: network device
3642 * @queue_index: sub queue index
3643 *
3644 * Check individual transmit queue of a device with multiple transmit queues.
3645 */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)3646 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3647 u16 queue_index)
3648 {
3649 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3650
3651 return netif_tx_queue_stopped(txq);
3652 }
3653
3654 /**
3655 * netif_subqueue_stopped - test status of subqueue
3656 * @dev: network device
3657 * @skb: sub queue buffer pointer
3658 *
3659 * Check individual transmit queue of a device with multiple transmit queues.
3660 */
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)3661 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3662 struct sk_buff *skb)
3663 {
3664 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3665 }
3666
3667 /**
3668 * netif_wake_subqueue - allow sending packets on subqueue
3669 * @dev: network device
3670 * @queue_index: sub queue index
3671 *
3672 * Resume individual transmit queue of a device with multiple transmit queues.
3673 */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)3674 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3675 {
3676 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3677
3678 netif_tx_wake_queue(txq);
3679 }
3680
3681 #ifdef CONFIG_XPS
3682 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3683 u16 index);
3684 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3685 u16 index, enum xps_map_type type);
3686
3687 /**
3688 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3689 * @j: CPU/Rx queue index
3690 * @mask: bitmask of all cpus/rx queues
3691 * @nr_bits: number of bits in the bitmask
3692 *
3693 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3694 */
netif_attr_test_mask(unsigned long j,const unsigned long * mask,unsigned int nr_bits)3695 static inline bool netif_attr_test_mask(unsigned long j,
3696 const unsigned long *mask,
3697 unsigned int nr_bits)
3698 {
3699 cpu_max_bits_warn(j, nr_bits);
3700 return test_bit(j, mask);
3701 }
3702
3703 /**
3704 * netif_attr_test_online - Test for online CPU/Rx queue
3705 * @j: CPU/Rx queue index
3706 * @online_mask: bitmask for CPUs/Rx queues that are online
3707 * @nr_bits: number of bits in the bitmask
3708 *
3709 * Returns true if a CPU/Rx queue is online.
3710 */
netif_attr_test_online(unsigned long j,const unsigned long * online_mask,unsigned int nr_bits)3711 static inline bool netif_attr_test_online(unsigned long j,
3712 const unsigned long *online_mask,
3713 unsigned int nr_bits)
3714 {
3715 cpu_max_bits_warn(j, nr_bits);
3716
3717 if (online_mask)
3718 return test_bit(j, online_mask);
3719
3720 return (j < nr_bits);
3721 }
3722
3723 /**
3724 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3725 * @n: CPU/Rx queue index
3726 * @srcp: the cpumask/Rx queue mask pointer
3727 * @nr_bits: number of bits in the bitmask
3728 *
3729 * Returns >= nr_bits if no further CPUs/Rx queues set.
3730 */
netif_attrmask_next(int n,const unsigned long * srcp,unsigned int nr_bits)3731 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3732 unsigned int nr_bits)
3733 {
3734 /* -1 is a legal arg here. */
3735 if (n != -1)
3736 cpu_max_bits_warn(n, nr_bits);
3737
3738 if (srcp)
3739 return find_next_bit(srcp, nr_bits, n + 1);
3740
3741 return n + 1;
3742 }
3743
3744 /**
3745 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3746 * @n: CPU/Rx queue index
3747 * @src1p: the first CPUs/Rx queues mask pointer
3748 * @src2p: the second CPUs/Rx queues mask pointer
3749 * @nr_bits: number of bits in the bitmask
3750 *
3751 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3752 */
netif_attrmask_next_and(int n,const unsigned long * src1p,const unsigned long * src2p,unsigned int nr_bits)3753 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3754 const unsigned long *src2p,
3755 unsigned int nr_bits)
3756 {
3757 /* -1 is a legal arg here. */
3758 if (n != -1)
3759 cpu_max_bits_warn(n, nr_bits);
3760
3761 if (src1p && src2p)
3762 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3763 else if (src1p)
3764 return find_next_bit(src1p, nr_bits, n + 1);
3765 else if (src2p)
3766 return find_next_bit(src2p, nr_bits, n + 1);
3767
3768 return n + 1;
3769 }
3770 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3771 static inline int netif_set_xps_queue(struct net_device *dev,
3772 const struct cpumask *mask,
3773 u16 index)
3774 {
3775 return 0;
3776 }
3777
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)3778 static inline int __netif_set_xps_queue(struct net_device *dev,
3779 const unsigned long *mask,
3780 u16 index, enum xps_map_type type)
3781 {
3782 return 0;
3783 }
3784 #endif
3785
3786 /**
3787 * netif_is_multiqueue - test if device has multiple transmit queues
3788 * @dev: network device
3789 *
3790 * Check if device has multiple transmit queues
3791 */
netif_is_multiqueue(const struct net_device * dev)3792 static inline bool netif_is_multiqueue(const struct net_device *dev)
3793 {
3794 return dev->num_tx_queues > 1;
3795 }
3796
3797 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3798
3799 #ifdef CONFIG_SYSFS
3800 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3801 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxqs)3802 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3803 unsigned int rxqs)
3804 {
3805 dev->real_num_rx_queues = rxqs;
3806 return 0;
3807 }
3808 #endif
3809 int netif_set_real_num_queues(struct net_device *dev,
3810 unsigned int txq, unsigned int rxq);
3811
3812 static inline struct netdev_rx_queue *
__netif_get_rx_queue(struct net_device * dev,unsigned int rxq)3813 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3814 {
3815 return dev->_rx + rxq;
3816 }
3817
3818 #ifdef CONFIG_SYSFS
get_netdev_rx_queue_index(struct netdev_rx_queue * queue)3819 static inline unsigned int get_netdev_rx_queue_index(
3820 struct netdev_rx_queue *queue)
3821 {
3822 struct net_device *dev = queue->dev;
3823 int index = queue - dev->_rx;
3824
3825 BUG_ON(index >= dev->num_rx_queues);
3826 return index;
3827 }
3828 #endif
3829
3830 int netif_get_num_default_rss_queues(void);
3831
3832 enum skb_free_reason {
3833 SKB_REASON_CONSUMED,
3834 SKB_REASON_DROPPED,
3835 };
3836
3837 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3838 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3839
3840 /*
3841 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3842 * interrupt context or with hardware interrupts being disabled.
3843 * (in_hardirq() || irqs_disabled())
3844 *
3845 * We provide four helpers that can be used in following contexts :
3846 *
3847 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3848 * replacing kfree_skb(skb)
3849 *
3850 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3851 * Typically used in place of consume_skb(skb) in TX completion path
3852 *
3853 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3854 * replacing kfree_skb(skb)
3855 *
3856 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3857 * and consumed a packet. Used in place of consume_skb(skb)
3858 */
dev_kfree_skb_irq(struct sk_buff * skb)3859 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3860 {
3861 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3862 }
3863
dev_consume_skb_irq(struct sk_buff * skb)3864 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3865 {
3866 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3867 }
3868
dev_kfree_skb_any(struct sk_buff * skb)3869 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3870 {
3871 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3872 }
3873
dev_consume_skb_any(struct sk_buff * skb)3874 static inline void dev_consume_skb_any(struct sk_buff *skb)
3875 {
3876 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3877 }
3878
3879 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3880 struct bpf_prog *xdp_prog);
3881 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3882 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3883 int netif_rx(struct sk_buff *skb);
3884 int __netif_rx(struct sk_buff *skb);
3885
3886 int netif_receive_skb(struct sk_buff *skb);
3887 int netif_receive_skb_core(struct sk_buff *skb);
3888 void netif_receive_skb_list_internal(struct list_head *head);
3889 void netif_receive_skb_list(struct list_head *head);
3890 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3891 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3892 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3893 void napi_get_frags_check(struct napi_struct *napi);
3894 gro_result_t napi_gro_frags(struct napi_struct *napi);
3895 struct packet_offload *gro_find_receive_by_type(__be16 type);
3896 struct packet_offload *gro_find_complete_by_type(__be16 type);
3897
napi_free_frags(struct napi_struct * napi)3898 static inline void napi_free_frags(struct napi_struct *napi)
3899 {
3900 kfree_skb(napi->skb);
3901 napi->skb = NULL;
3902 }
3903
3904 bool netdev_is_rx_handler_busy(struct net_device *dev);
3905 int netdev_rx_handler_register(struct net_device *dev,
3906 rx_handler_func_t *rx_handler,
3907 void *rx_handler_data);
3908 void netdev_rx_handler_unregister(struct net_device *dev);
3909
3910 bool dev_valid_name(const char *name);
is_socket_ioctl_cmd(unsigned int cmd)3911 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3912 {
3913 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3914 }
3915 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3916 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3917 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3918 void __user *data, bool *need_copyout);
3919 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3920 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3921 unsigned int dev_get_flags(const struct net_device *);
3922 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3923 struct netlink_ext_ack *extack);
3924 int dev_change_flags(struct net_device *dev, unsigned int flags,
3925 struct netlink_ext_ack *extack);
3926 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3927 unsigned int gchanges);
3928 int dev_set_alias(struct net_device *, const char *, size_t);
3929 int dev_get_alias(const struct net_device *, char *, size_t);
3930 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3931 const char *pat, int new_ifindex);
3932 static inline
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)3933 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3934 const char *pat)
3935 {
3936 return __dev_change_net_namespace(dev, net, pat, 0);
3937 }
3938 int __dev_set_mtu(struct net_device *, int);
3939 int dev_set_mtu(struct net_device *, int);
3940 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3941 struct netlink_ext_ack *extack);
3942 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3943 struct netlink_ext_ack *extack);
3944 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3945 struct netlink_ext_ack *extack);
3946 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3947 int dev_get_port_parent_id(struct net_device *dev,
3948 struct netdev_phys_item_id *ppid, bool recurse);
3949 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3950 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3951 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3952 struct netdev_queue *txq, int *ret);
3953
3954 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3955 u8 dev_xdp_prog_count(struct net_device *dev);
3956 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3957
3958 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3959 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3960 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3961 bool is_skb_forwardable(const struct net_device *dev,
3962 const struct sk_buff *skb);
3963
__is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb,const bool check_mtu)3964 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3965 const struct sk_buff *skb,
3966 const bool check_mtu)
3967 {
3968 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3969 unsigned int len;
3970
3971 if (!(dev->flags & IFF_UP))
3972 return false;
3973
3974 if (!check_mtu)
3975 return true;
3976
3977 len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3978 if (skb->len <= len)
3979 return true;
3980
3981 /* if TSO is enabled, we don't care about the length as the packet
3982 * could be forwarded without being segmented before
3983 */
3984 if (skb_is_gso(skb))
3985 return true;
3986
3987 return false;
3988 }
3989
3990 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
3991
dev_core_stats(struct net_device * dev)3992 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
3993 {
3994 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
3995 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
3996
3997 if (likely(p))
3998 return p;
3999
4000 return netdev_core_stats_alloc(dev);
4001 }
4002
4003 #define DEV_CORE_STATS_INC(FIELD) \
4004 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \
4005 { \
4006 struct net_device_core_stats __percpu *p; \
4007 \
4008 p = dev_core_stats(dev); \
4009 if (p) \
4010 this_cpu_inc(p->FIELD); \
4011 }
4012 DEV_CORE_STATS_INC(rx_dropped)
DEV_CORE_STATS_INC(tx_dropped)4013 DEV_CORE_STATS_INC(tx_dropped)
4014 DEV_CORE_STATS_INC(rx_nohandler)
4015 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4016
4017 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4018 struct sk_buff *skb,
4019 const bool check_mtu)
4020 {
4021 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4022 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4023 dev_core_stats_rx_dropped_inc(dev);
4024 kfree_skb(skb);
4025 return NET_RX_DROP;
4026 }
4027
4028 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4029 skb->priority = 0;
4030 return 0;
4031 }
4032
4033 bool dev_nit_active(struct net_device *dev);
4034 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4035
__dev_put(struct net_device * dev)4036 static inline void __dev_put(struct net_device *dev)
4037 {
4038 if (dev) {
4039 #ifdef CONFIG_PCPU_DEV_REFCNT
4040 this_cpu_dec(*dev->pcpu_refcnt);
4041 #else
4042 refcount_dec(&dev->dev_refcnt);
4043 #endif
4044 }
4045 }
4046
__dev_hold(struct net_device * dev)4047 static inline void __dev_hold(struct net_device *dev)
4048 {
4049 if (dev) {
4050 #ifdef CONFIG_PCPU_DEV_REFCNT
4051 this_cpu_inc(*dev->pcpu_refcnt);
4052 #else
4053 refcount_inc(&dev->dev_refcnt);
4054 #endif
4055 }
4056 }
4057
__netdev_tracker_alloc(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)4058 static inline void __netdev_tracker_alloc(struct net_device *dev,
4059 netdevice_tracker *tracker,
4060 gfp_t gfp)
4061 {
4062 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4063 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4064 #endif
4065 }
4066
4067 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4068 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4069 */
netdev_tracker_alloc(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)4070 static inline void netdev_tracker_alloc(struct net_device *dev,
4071 netdevice_tracker *tracker, gfp_t gfp)
4072 {
4073 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4074 refcount_dec(&dev->refcnt_tracker.no_tracker);
4075 __netdev_tracker_alloc(dev, tracker, gfp);
4076 #endif
4077 }
4078
netdev_tracker_free(struct net_device * dev,netdevice_tracker * tracker)4079 static inline void netdev_tracker_free(struct net_device *dev,
4080 netdevice_tracker *tracker)
4081 {
4082 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4083 ref_tracker_free(&dev->refcnt_tracker, tracker);
4084 #endif
4085 }
4086
netdev_hold(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)4087 static inline void netdev_hold(struct net_device *dev,
4088 netdevice_tracker *tracker, gfp_t gfp)
4089 {
4090 if (dev) {
4091 __dev_hold(dev);
4092 __netdev_tracker_alloc(dev, tracker, gfp);
4093 }
4094 }
4095
netdev_put(struct net_device * dev,netdevice_tracker * tracker)4096 static inline void netdev_put(struct net_device *dev,
4097 netdevice_tracker *tracker)
4098 {
4099 if (dev) {
4100 netdev_tracker_free(dev, tracker);
4101 __dev_put(dev);
4102 }
4103 }
4104
4105 /**
4106 * dev_hold - get reference to device
4107 * @dev: network device
4108 *
4109 * Hold reference to device to keep it from being freed.
4110 * Try using netdev_hold() instead.
4111 */
dev_hold(struct net_device * dev)4112 static inline void dev_hold(struct net_device *dev)
4113 {
4114 netdev_hold(dev, NULL, GFP_ATOMIC);
4115 }
4116
4117 /**
4118 * dev_put - release reference to device
4119 * @dev: network device
4120 *
4121 * Release reference to device to allow it to be freed.
4122 * Try using netdev_put() instead.
4123 */
dev_put(struct net_device * dev)4124 static inline void dev_put(struct net_device *dev)
4125 {
4126 netdev_put(dev, NULL);
4127 }
4128
netdev_ref_replace(struct net_device * odev,struct net_device * ndev,netdevice_tracker * tracker,gfp_t gfp)4129 static inline void netdev_ref_replace(struct net_device *odev,
4130 struct net_device *ndev,
4131 netdevice_tracker *tracker,
4132 gfp_t gfp)
4133 {
4134 if (odev)
4135 netdev_tracker_free(odev, tracker);
4136
4137 __dev_hold(ndev);
4138 __dev_put(odev);
4139
4140 if (ndev)
4141 __netdev_tracker_alloc(ndev, tracker, gfp);
4142 }
4143
4144 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4145 * and _off may be called from IRQ context, but it is caller
4146 * who is responsible for serialization of these calls.
4147 *
4148 * The name carrier is inappropriate, these functions should really be
4149 * called netif_lowerlayer_*() because they represent the state of any
4150 * kind of lower layer not just hardware media.
4151 */
4152 void linkwatch_fire_event(struct net_device *dev);
4153
4154 /**
4155 * netif_carrier_ok - test if carrier present
4156 * @dev: network device
4157 *
4158 * Check if carrier is present on device
4159 */
netif_carrier_ok(const struct net_device * dev)4160 static inline bool netif_carrier_ok(const struct net_device *dev)
4161 {
4162 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4163 }
4164
4165 unsigned long dev_trans_start(struct net_device *dev);
4166
4167 void __netdev_watchdog_up(struct net_device *dev);
4168
4169 void netif_carrier_on(struct net_device *dev);
4170 void netif_carrier_off(struct net_device *dev);
4171 void netif_carrier_event(struct net_device *dev);
4172
4173 /**
4174 * netif_dormant_on - mark device as dormant.
4175 * @dev: network device
4176 *
4177 * Mark device as dormant (as per RFC2863).
4178 *
4179 * The dormant state indicates that the relevant interface is not
4180 * actually in a condition to pass packets (i.e., it is not 'up') but is
4181 * in a "pending" state, waiting for some external event. For "on-
4182 * demand" interfaces, this new state identifies the situation where the
4183 * interface is waiting for events to place it in the up state.
4184 */
netif_dormant_on(struct net_device * dev)4185 static inline void netif_dormant_on(struct net_device *dev)
4186 {
4187 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4188 linkwatch_fire_event(dev);
4189 }
4190
4191 /**
4192 * netif_dormant_off - set device as not dormant.
4193 * @dev: network device
4194 *
4195 * Device is not in dormant state.
4196 */
netif_dormant_off(struct net_device * dev)4197 static inline void netif_dormant_off(struct net_device *dev)
4198 {
4199 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4200 linkwatch_fire_event(dev);
4201 }
4202
4203 /**
4204 * netif_dormant - test if device is dormant
4205 * @dev: network device
4206 *
4207 * Check if device is dormant.
4208 */
netif_dormant(const struct net_device * dev)4209 static inline bool netif_dormant(const struct net_device *dev)
4210 {
4211 return test_bit(__LINK_STATE_DORMANT, &dev->state);
4212 }
4213
4214
4215 /**
4216 * netif_testing_on - mark device as under test.
4217 * @dev: network device
4218 *
4219 * Mark device as under test (as per RFC2863).
4220 *
4221 * The testing state indicates that some test(s) must be performed on
4222 * the interface. After completion, of the test, the interface state
4223 * will change to up, dormant, or down, as appropriate.
4224 */
netif_testing_on(struct net_device * dev)4225 static inline void netif_testing_on(struct net_device *dev)
4226 {
4227 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4228 linkwatch_fire_event(dev);
4229 }
4230
4231 /**
4232 * netif_testing_off - set device as not under test.
4233 * @dev: network device
4234 *
4235 * Device is not in testing state.
4236 */
netif_testing_off(struct net_device * dev)4237 static inline void netif_testing_off(struct net_device *dev)
4238 {
4239 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4240 linkwatch_fire_event(dev);
4241 }
4242
4243 /**
4244 * netif_testing - test if device is under test
4245 * @dev: network device
4246 *
4247 * Check if device is under test
4248 */
netif_testing(const struct net_device * dev)4249 static inline bool netif_testing(const struct net_device *dev)
4250 {
4251 return test_bit(__LINK_STATE_TESTING, &dev->state);
4252 }
4253
4254
4255 /**
4256 * netif_oper_up - test if device is operational
4257 * @dev: network device
4258 *
4259 * Check if carrier is operational
4260 */
netif_oper_up(const struct net_device * dev)4261 static inline bool netif_oper_up(const struct net_device *dev)
4262 {
4263 return (dev->operstate == IF_OPER_UP ||
4264 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4265 }
4266
4267 /**
4268 * netif_device_present - is device available or removed
4269 * @dev: network device
4270 *
4271 * Check if device has not been removed from system.
4272 */
netif_device_present(const struct net_device * dev)4273 static inline bool netif_device_present(const struct net_device *dev)
4274 {
4275 return test_bit(__LINK_STATE_PRESENT, &dev->state);
4276 }
4277
4278 void netif_device_detach(struct net_device *dev);
4279
4280 void netif_device_attach(struct net_device *dev);
4281
4282 /*
4283 * Network interface message level settings
4284 */
4285
4286 enum {
4287 NETIF_MSG_DRV_BIT,
4288 NETIF_MSG_PROBE_BIT,
4289 NETIF_MSG_LINK_BIT,
4290 NETIF_MSG_TIMER_BIT,
4291 NETIF_MSG_IFDOWN_BIT,
4292 NETIF_MSG_IFUP_BIT,
4293 NETIF_MSG_RX_ERR_BIT,
4294 NETIF_MSG_TX_ERR_BIT,
4295 NETIF_MSG_TX_QUEUED_BIT,
4296 NETIF_MSG_INTR_BIT,
4297 NETIF_MSG_TX_DONE_BIT,
4298 NETIF_MSG_RX_STATUS_BIT,
4299 NETIF_MSG_PKTDATA_BIT,
4300 NETIF_MSG_HW_BIT,
4301 NETIF_MSG_WOL_BIT,
4302
4303 /* When you add a new bit above, update netif_msg_class_names array
4304 * in net/ethtool/common.c
4305 */
4306 NETIF_MSG_CLASS_COUNT,
4307 };
4308 /* Both ethtool_ops interface and internal driver implementation use u32 */
4309 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4310
4311 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit))
4312 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4313
4314 #define NETIF_MSG_DRV __NETIF_MSG(DRV)
4315 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE)
4316 #define NETIF_MSG_LINK __NETIF_MSG(LINK)
4317 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER)
4318 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN)
4319 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP)
4320 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR)
4321 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR)
4322 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED)
4323 #define NETIF_MSG_INTR __NETIF_MSG(INTR)
4324 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE)
4325 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS)
4326 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA)
4327 #define NETIF_MSG_HW __NETIF_MSG(HW)
4328 #define NETIF_MSG_WOL __NETIF_MSG(WOL)
4329
4330 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
4331 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
4332 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
4333 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
4334 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
4335 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
4336 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
4337 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
4338 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4339 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
4340 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
4341 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
4342 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
4343 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
4344 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
4345
netif_msg_init(int debug_value,int default_msg_enable_bits)4346 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4347 {
4348 /* use default */
4349 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4350 return default_msg_enable_bits;
4351 if (debug_value == 0) /* no output */
4352 return 0;
4353 /* set low N bits */
4354 return (1U << debug_value) - 1;
4355 }
4356
__netif_tx_lock(struct netdev_queue * txq,int cpu)4357 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4358 {
4359 spin_lock(&txq->_xmit_lock);
4360 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4361 WRITE_ONCE(txq->xmit_lock_owner, cpu);
4362 }
4363
__netif_tx_acquire(struct netdev_queue * txq)4364 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4365 {
4366 __acquire(&txq->_xmit_lock);
4367 return true;
4368 }
4369
__netif_tx_release(struct netdev_queue * txq)4370 static inline void __netif_tx_release(struct netdev_queue *txq)
4371 {
4372 __release(&txq->_xmit_lock);
4373 }
4374
__netif_tx_lock_bh(struct netdev_queue * txq)4375 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4376 {
4377 spin_lock_bh(&txq->_xmit_lock);
4378 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4379 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4380 }
4381
__netif_tx_trylock(struct netdev_queue * txq)4382 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4383 {
4384 bool ok = spin_trylock(&txq->_xmit_lock);
4385
4386 if (likely(ok)) {
4387 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4388 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4389 }
4390 return ok;
4391 }
4392
__netif_tx_unlock(struct netdev_queue * txq)4393 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4394 {
4395 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4396 WRITE_ONCE(txq->xmit_lock_owner, -1);
4397 spin_unlock(&txq->_xmit_lock);
4398 }
4399
__netif_tx_unlock_bh(struct netdev_queue * txq)4400 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4401 {
4402 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4403 WRITE_ONCE(txq->xmit_lock_owner, -1);
4404 spin_unlock_bh(&txq->_xmit_lock);
4405 }
4406
4407 /*
4408 * txq->trans_start can be read locklessly from dev_watchdog()
4409 */
txq_trans_update(struct netdev_queue * txq)4410 static inline void txq_trans_update(struct netdev_queue *txq)
4411 {
4412 if (txq->xmit_lock_owner != -1)
4413 WRITE_ONCE(txq->trans_start, jiffies);
4414 }
4415
txq_trans_cond_update(struct netdev_queue * txq)4416 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4417 {
4418 unsigned long now = jiffies;
4419
4420 if (READ_ONCE(txq->trans_start) != now)
4421 WRITE_ONCE(txq->trans_start, now);
4422 }
4423
4424 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
netif_trans_update(struct net_device * dev)4425 static inline void netif_trans_update(struct net_device *dev)
4426 {
4427 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4428
4429 txq_trans_cond_update(txq);
4430 }
4431
4432 /**
4433 * netif_tx_lock - grab network device transmit lock
4434 * @dev: network device
4435 *
4436 * Get network device transmit lock
4437 */
4438 void netif_tx_lock(struct net_device *dev);
4439
netif_tx_lock_bh(struct net_device * dev)4440 static inline void netif_tx_lock_bh(struct net_device *dev)
4441 {
4442 local_bh_disable();
4443 netif_tx_lock(dev);
4444 }
4445
4446 void netif_tx_unlock(struct net_device *dev);
4447
netif_tx_unlock_bh(struct net_device * dev)4448 static inline void netif_tx_unlock_bh(struct net_device *dev)
4449 {
4450 netif_tx_unlock(dev);
4451 local_bh_enable();
4452 }
4453
4454 #define HARD_TX_LOCK(dev, txq, cpu) { \
4455 if ((dev->features & NETIF_F_LLTX) == 0) { \
4456 __netif_tx_lock(txq, cpu); \
4457 } else { \
4458 __netif_tx_acquire(txq); \
4459 } \
4460 }
4461
4462 #define HARD_TX_TRYLOCK(dev, txq) \
4463 (((dev->features & NETIF_F_LLTX) == 0) ? \
4464 __netif_tx_trylock(txq) : \
4465 __netif_tx_acquire(txq))
4466
4467 #define HARD_TX_UNLOCK(dev, txq) { \
4468 if ((dev->features & NETIF_F_LLTX) == 0) { \
4469 __netif_tx_unlock(txq); \
4470 } else { \
4471 __netif_tx_release(txq); \
4472 } \
4473 }
4474
netif_tx_disable(struct net_device * dev)4475 static inline void netif_tx_disable(struct net_device *dev)
4476 {
4477 unsigned int i;
4478 int cpu;
4479
4480 local_bh_disable();
4481 cpu = smp_processor_id();
4482 spin_lock(&dev->tx_global_lock);
4483 for (i = 0; i < dev->num_tx_queues; i++) {
4484 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4485
4486 __netif_tx_lock(txq, cpu);
4487 netif_tx_stop_queue(txq);
4488 __netif_tx_unlock(txq);
4489 }
4490 spin_unlock(&dev->tx_global_lock);
4491 local_bh_enable();
4492 }
4493
netif_addr_lock(struct net_device * dev)4494 static inline void netif_addr_lock(struct net_device *dev)
4495 {
4496 unsigned char nest_level = 0;
4497
4498 #ifdef CONFIG_LOCKDEP
4499 nest_level = dev->nested_level;
4500 #endif
4501 spin_lock_nested(&dev->addr_list_lock, nest_level);
4502 }
4503
netif_addr_lock_bh(struct net_device * dev)4504 static inline void netif_addr_lock_bh(struct net_device *dev)
4505 {
4506 unsigned char nest_level = 0;
4507
4508 #ifdef CONFIG_LOCKDEP
4509 nest_level = dev->nested_level;
4510 #endif
4511 local_bh_disable();
4512 spin_lock_nested(&dev->addr_list_lock, nest_level);
4513 }
4514
netif_addr_unlock(struct net_device * dev)4515 static inline void netif_addr_unlock(struct net_device *dev)
4516 {
4517 spin_unlock(&dev->addr_list_lock);
4518 }
4519
netif_addr_unlock_bh(struct net_device * dev)4520 static inline void netif_addr_unlock_bh(struct net_device *dev)
4521 {
4522 spin_unlock_bh(&dev->addr_list_lock);
4523 }
4524
4525 /*
4526 * dev_addrs walker. Should be used only for read access. Call with
4527 * rcu_read_lock held.
4528 */
4529 #define for_each_dev_addr(dev, ha) \
4530 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4531
4532 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4533
4534 void ether_setup(struct net_device *dev);
4535
4536 /* Support for loadable net-drivers */
4537 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4538 unsigned char name_assign_type,
4539 void (*setup)(struct net_device *),
4540 unsigned int txqs, unsigned int rxqs);
4541 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4542 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4543
4544 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4545 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4546 count)
4547
4548 int register_netdev(struct net_device *dev);
4549 void unregister_netdev(struct net_device *dev);
4550
4551 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4552
4553 /* General hardware address lists handling functions */
4554 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4555 struct netdev_hw_addr_list *from_list, int addr_len);
4556 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4557 struct netdev_hw_addr_list *from_list, int addr_len);
4558 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4559 struct net_device *dev,
4560 int (*sync)(struct net_device *, const unsigned char *),
4561 int (*unsync)(struct net_device *,
4562 const unsigned char *));
4563 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4564 struct net_device *dev,
4565 int (*sync)(struct net_device *,
4566 const unsigned char *, int),
4567 int (*unsync)(struct net_device *,
4568 const unsigned char *, int));
4569 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4570 struct net_device *dev,
4571 int (*unsync)(struct net_device *,
4572 const unsigned char *, int));
4573 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4574 struct net_device *dev,
4575 int (*unsync)(struct net_device *,
4576 const unsigned char *));
4577 void __hw_addr_init(struct netdev_hw_addr_list *list);
4578
4579 /* Functions used for device addresses handling */
4580 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4581 const void *addr, size_t len);
4582
4583 static inline void
__dev_addr_set(struct net_device * dev,const void * addr,size_t len)4584 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4585 {
4586 dev_addr_mod(dev, 0, addr, len);
4587 }
4588
dev_addr_set(struct net_device * dev,const u8 * addr)4589 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4590 {
4591 __dev_addr_set(dev, addr, dev->addr_len);
4592 }
4593
4594 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4595 unsigned char addr_type);
4596 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4597 unsigned char addr_type);
4598
4599 /* Functions used for unicast addresses handling */
4600 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4601 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4602 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4603 int dev_uc_sync(struct net_device *to, struct net_device *from);
4604 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4605 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4606 void dev_uc_flush(struct net_device *dev);
4607 void dev_uc_init(struct net_device *dev);
4608
4609 /**
4610 * __dev_uc_sync - Synchonize device's unicast list
4611 * @dev: device to sync
4612 * @sync: function to call if address should be added
4613 * @unsync: function to call if address should be removed
4614 *
4615 * Add newly added addresses to the interface, and release
4616 * addresses that have been deleted.
4617 */
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4618 static inline int __dev_uc_sync(struct net_device *dev,
4619 int (*sync)(struct net_device *,
4620 const unsigned char *),
4621 int (*unsync)(struct net_device *,
4622 const unsigned char *))
4623 {
4624 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4625 }
4626
4627 /**
4628 * __dev_uc_unsync - Remove synchronized addresses from device
4629 * @dev: device to sync
4630 * @unsync: function to call if address should be removed
4631 *
4632 * Remove all addresses that were added to the device by dev_uc_sync().
4633 */
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4634 static inline void __dev_uc_unsync(struct net_device *dev,
4635 int (*unsync)(struct net_device *,
4636 const unsigned char *))
4637 {
4638 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4639 }
4640
4641 /* Functions used for multicast addresses handling */
4642 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4643 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4644 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4645 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4646 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4647 int dev_mc_sync(struct net_device *to, struct net_device *from);
4648 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4649 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4650 void dev_mc_flush(struct net_device *dev);
4651 void dev_mc_init(struct net_device *dev);
4652
4653 /**
4654 * __dev_mc_sync - Synchonize device's multicast list
4655 * @dev: device to sync
4656 * @sync: function to call if address should be added
4657 * @unsync: function to call if address should be removed
4658 *
4659 * Add newly added addresses to the interface, and release
4660 * addresses that have been deleted.
4661 */
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4662 static inline int __dev_mc_sync(struct net_device *dev,
4663 int (*sync)(struct net_device *,
4664 const unsigned char *),
4665 int (*unsync)(struct net_device *,
4666 const unsigned char *))
4667 {
4668 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4669 }
4670
4671 /**
4672 * __dev_mc_unsync - Remove synchronized addresses from device
4673 * @dev: device to sync
4674 * @unsync: function to call if address should be removed
4675 *
4676 * Remove all addresses that were added to the device by dev_mc_sync().
4677 */
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4678 static inline void __dev_mc_unsync(struct net_device *dev,
4679 int (*unsync)(struct net_device *,
4680 const unsigned char *))
4681 {
4682 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4683 }
4684
4685 /* Functions used for secondary unicast and multicast support */
4686 void dev_set_rx_mode(struct net_device *dev);
4687 int dev_set_promiscuity(struct net_device *dev, int inc);
4688 int dev_set_allmulti(struct net_device *dev, int inc);
4689 void netdev_state_change(struct net_device *dev);
4690 void __netdev_notify_peers(struct net_device *dev);
4691 void netdev_notify_peers(struct net_device *dev);
4692 void netdev_features_change(struct net_device *dev);
4693 /* Load a device via the kmod */
4694 void dev_load(struct net *net, const char *name);
4695 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4696 struct rtnl_link_stats64 *storage);
4697 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4698 const struct net_device_stats *netdev_stats);
4699 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4700 const struct pcpu_sw_netstats __percpu *netstats);
4701 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4702
4703 extern int netdev_max_backlog;
4704 extern int dev_rx_weight;
4705 extern int dev_tx_weight;
4706 extern int gro_normal_batch;
4707
4708 enum {
4709 NESTED_SYNC_IMM_BIT,
4710 NESTED_SYNC_TODO_BIT,
4711 };
4712
4713 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit))
4714 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4715
4716 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM)
4717 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO)
4718
4719 struct netdev_nested_priv {
4720 unsigned char flags;
4721 void *data;
4722 };
4723
4724 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4725 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4726 struct list_head **iter);
4727
4728 /* iterate through upper list, must be called under RCU read lock */
4729 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4730 for (iter = &(dev)->adj_list.upper, \
4731 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4732 updev; \
4733 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4734
4735 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4736 int (*fn)(struct net_device *upper_dev,
4737 struct netdev_nested_priv *priv),
4738 struct netdev_nested_priv *priv);
4739
4740 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4741 struct net_device *upper_dev);
4742
4743 bool netdev_has_any_upper_dev(struct net_device *dev);
4744
4745 void *netdev_lower_get_next_private(struct net_device *dev,
4746 struct list_head **iter);
4747 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4748 struct list_head **iter);
4749
4750 #define netdev_for_each_lower_private(dev, priv, iter) \
4751 for (iter = (dev)->adj_list.lower.next, \
4752 priv = netdev_lower_get_next_private(dev, &(iter)); \
4753 priv; \
4754 priv = netdev_lower_get_next_private(dev, &(iter)))
4755
4756 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4757 for (iter = &(dev)->adj_list.lower, \
4758 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4759 priv; \
4760 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4761
4762 void *netdev_lower_get_next(struct net_device *dev,
4763 struct list_head **iter);
4764
4765 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4766 for (iter = (dev)->adj_list.lower.next, \
4767 ldev = netdev_lower_get_next(dev, &(iter)); \
4768 ldev; \
4769 ldev = netdev_lower_get_next(dev, &(iter)))
4770
4771 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4772 struct list_head **iter);
4773 int netdev_walk_all_lower_dev(struct net_device *dev,
4774 int (*fn)(struct net_device *lower_dev,
4775 struct netdev_nested_priv *priv),
4776 struct netdev_nested_priv *priv);
4777 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4778 int (*fn)(struct net_device *lower_dev,
4779 struct netdev_nested_priv *priv),
4780 struct netdev_nested_priv *priv);
4781
4782 void *netdev_adjacent_get_private(struct list_head *adj_list);
4783 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4784 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4785 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4786 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4787 struct netlink_ext_ack *extack);
4788 int netdev_master_upper_dev_link(struct net_device *dev,
4789 struct net_device *upper_dev,
4790 void *upper_priv, void *upper_info,
4791 struct netlink_ext_ack *extack);
4792 void netdev_upper_dev_unlink(struct net_device *dev,
4793 struct net_device *upper_dev);
4794 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4795 struct net_device *new_dev,
4796 struct net_device *dev,
4797 struct netlink_ext_ack *extack);
4798 void netdev_adjacent_change_commit(struct net_device *old_dev,
4799 struct net_device *new_dev,
4800 struct net_device *dev);
4801 void netdev_adjacent_change_abort(struct net_device *old_dev,
4802 struct net_device *new_dev,
4803 struct net_device *dev);
4804 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4805 void *netdev_lower_dev_get_private(struct net_device *dev,
4806 struct net_device *lower_dev);
4807 void netdev_lower_state_changed(struct net_device *lower_dev,
4808 void *lower_state_info);
4809
4810 /* RSS keys are 40 or 52 bytes long */
4811 #define NETDEV_RSS_KEY_LEN 52
4812 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4813 void netdev_rss_key_fill(void *buffer, size_t len);
4814
4815 int skb_checksum_help(struct sk_buff *skb);
4816 int skb_crc32c_csum_help(struct sk_buff *skb);
4817 int skb_csum_hwoffload_help(struct sk_buff *skb,
4818 const netdev_features_t features);
4819
4820 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4821 netdev_features_t features, bool tx_path);
4822 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4823 netdev_features_t features, __be16 type);
4824 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4825 netdev_features_t features);
4826
4827 struct netdev_bonding_info {
4828 ifslave slave;
4829 ifbond master;
4830 };
4831
4832 struct netdev_notifier_bonding_info {
4833 struct netdev_notifier_info info; /* must be first */
4834 struct netdev_bonding_info bonding_info;
4835 };
4836
4837 void netdev_bonding_info_change(struct net_device *dev,
4838 struct netdev_bonding_info *bonding_info);
4839
4840 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4841 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4842 #else
ethtool_notify(struct net_device * dev,unsigned int cmd,const void * data)4843 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4844 const void *data)
4845 {
4846 }
4847 #endif
4848
4849 static inline
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)4850 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4851 {
4852 return __skb_gso_segment(skb, features, true);
4853 }
4854 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4855
can_checksum_protocol(netdev_features_t features,__be16 protocol)4856 static inline bool can_checksum_protocol(netdev_features_t features,
4857 __be16 protocol)
4858 {
4859 if (protocol == htons(ETH_P_FCOE))
4860 return !!(features & NETIF_F_FCOE_CRC);
4861
4862 /* Assume this is an IP checksum (not SCTP CRC) */
4863
4864 if (features & NETIF_F_HW_CSUM) {
4865 /* Can checksum everything */
4866 return true;
4867 }
4868
4869 switch (protocol) {
4870 case htons(ETH_P_IP):
4871 return !!(features & NETIF_F_IP_CSUM);
4872 case htons(ETH_P_IPV6):
4873 return !!(features & NETIF_F_IPV6_CSUM);
4874 default:
4875 return false;
4876 }
4877 }
4878
4879 #ifdef CONFIG_BUG
4880 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4881 #else
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)4882 static inline void netdev_rx_csum_fault(struct net_device *dev,
4883 struct sk_buff *skb)
4884 {
4885 }
4886 #endif
4887 /* rx skb timestamps */
4888 void net_enable_timestamp(void);
4889 void net_disable_timestamp(void);
4890
netdev_get_tstamp(struct net_device * dev,const struct skb_shared_hwtstamps * hwtstamps,bool cycles)4891 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4892 const struct skb_shared_hwtstamps *hwtstamps,
4893 bool cycles)
4894 {
4895 const struct net_device_ops *ops = dev->netdev_ops;
4896
4897 if (ops->ndo_get_tstamp)
4898 return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4899
4900 return hwtstamps->hwtstamp;
4901 }
4902
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)4903 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4904 struct sk_buff *skb, struct net_device *dev,
4905 bool more)
4906 {
4907 __this_cpu_write(softnet_data.xmit.more, more);
4908 return ops->ndo_start_xmit(skb, dev);
4909 }
4910
netdev_xmit_more(void)4911 static inline bool netdev_xmit_more(void)
4912 {
4913 return __this_cpu_read(softnet_data.xmit.more);
4914 }
4915
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)4916 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4917 struct netdev_queue *txq, bool more)
4918 {
4919 const struct net_device_ops *ops = dev->netdev_ops;
4920 netdev_tx_t rc;
4921
4922 rc = __netdev_start_xmit(ops, skb, dev, more);
4923 if (rc == NETDEV_TX_OK)
4924 txq_trans_update(txq);
4925
4926 return rc;
4927 }
4928
4929 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4930 const void *ns);
4931 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4932 const void *ns);
4933
4934 extern const struct kobj_ns_type_operations net_ns_type_operations;
4935
4936 const char *netdev_drivername(const struct net_device *dev);
4937
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)4938 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4939 netdev_features_t f2)
4940 {
4941 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4942 if (f1 & NETIF_F_HW_CSUM)
4943 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4944 else
4945 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4946 }
4947
4948 return f1 & f2;
4949 }
4950
netdev_get_wanted_features(struct net_device * dev)4951 static inline netdev_features_t netdev_get_wanted_features(
4952 struct net_device *dev)
4953 {
4954 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4955 }
4956 netdev_features_t netdev_increment_features(netdev_features_t all,
4957 netdev_features_t one, netdev_features_t mask);
4958
4959 /* Allow TSO being used on stacked device :
4960 * Performing the GSO segmentation before last device
4961 * is a performance improvement.
4962 */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)4963 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4964 netdev_features_t mask)
4965 {
4966 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4967 }
4968
4969 int __netdev_update_features(struct net_device *dev);
4970 void netdev_update_features(struct net_device *dev);
4971 void netdev_change_features(struct net_device *dev);
4972
4973 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4974 struct net_device *dev);
4975
4976 netdev_features_t passthru_features_check(struct sk_buff *skb,
4977 struct net_device *dev,
4978 netdev_features_t features);
4979 netdev_features_t netif_skb_features(struct sk_buff *skb);
4980
net_gso_ok(netdev_features_t features,int gso_type)4981 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4982 {
4983 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4984
4985 /* check flags correspondence */
4986 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4987 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4988 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4989 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4990 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4991 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4992 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4993 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4994 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4995 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4996 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4997 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4998 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4999 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5000 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5001 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5002 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5003 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5004 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5005
5006 return (features & feature) == feature;
5007 }
5008
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)5009 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5010 {
5011 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5012 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5013 }
5014
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)5015 static inline bool netif_needs_gso(struct sk_buff *skb,
5016 netdev_features_t features)
5017 {
5018 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5019 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5020 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5021 }
5022
5023 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5024 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5025 void netif_inherit_tso_max(struct net_device *to,
5026 const struct net_device *from);
5027
skb_gso_error_unwind(struct sk_buff * skb,__be16 protocol,int pulled_hlen,u16 mac_offset,int mac_len)5028 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
5029 int pulled_hlen, u16 mac_offset,
5030 int mac_len)
5031 {
5032 skb->protocol = protocol;
5033 skb->encapsulation = 1;
5034 skb_push(skb, pulled_hlen);
5035 skb_reset_transport_header(skb);
5036 skb->mac_header = mac_offset;
5037 skb->network_header = skb->mac_header + mac_len;
5038 skb->mac_len = mac_len;
5039 }
5040
netif_is_macsec(const struct net_device * dev)5041 static inline bool netif_is_macsec(const struct net_device *dev)
5042 {
5043 return dev->priv_flags & IFF_MACSEC;
5044 }
5045
netif_is_macvlan(const struct net_device * dev)5046 static inline bool netif_is_macvlan(const struct net_device *dev)
5047 {
5048 return dev->priv_flags & IFF_MACVLAN;
5049 }
5050
netif_is_macvlan_port(const struct net_device * dev)5051 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5052 {
5053 return dev->priv_flags & IFF_MACVLAN_PORT;
5054 }
5055
netif_is_bond_master(const struct net_device * dev)5056 static inline bool netif_is_bond_master(const struct net_device *dev)
5057 {
5058 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5059 }
5060
netif_is_bond_slave(const struct net_device * dev)5061 static inline bool netif_is_bond_slave(const struct net_device *dev)
5062 {
5063 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5064 }
5065
netif_supports_nofcs(struct net_device * dev)5066 static inline bool netif_supports_nofcs(struct net_device *dev)
5067 {
5068 return dev->priv_flags & IFF_SUPP_NOFCS;
5069 }
5070
netif_has_l3_rx_handler(const struct net_device * dev)5071 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5072 {
5073 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5074 }
5075
netif_is_l3_master(const struct net_device * dev)5076 static inline bool netif_is_l3_master(const struct net_device *dev)
5077 {
5078 return dev->priv_flags & IFF_L3MDEV_MASTER;
5079 }
5080
netif_is_l3_slave(const struct net_device * dev)5081 static inline bool netif_is_l3_slave(const struct net_device *dev)
5082 {
5083 return dev->priv_flags & IFF_L3MDEV_SLAVE;
5084 }
5085
dev_sdif(const struct net_device * dev)5086 static inline int dev_sdif(const struct net_device *dev)
5087 {
5088 #ifdef CONFIG_NET_L3_MASTER_DEV
5089 if (netif_is_l3_slave(dev))
5090 return dev->ifindex;
5091 #endif
5092 return 0;
5093 }
5094
netif_is_bridge_master(const struct net_device * dev)5095 static inline bool netif_is_bridge_master(const struct net_device *dev)
5096 {
5097 return dev->priv_flags & IFF_EBRIDGE;
5098 }
5099
netif_is_bridge_port(const struct net_device * dev)5100 static inline bool netif_is_bridge_port(const struct net_device *dev)
5101 {
5102 return dev->priv_flags & IFF_BRIDGE_PORT;
5103 }
5104
netif_is_ovs_master(const struct net_device * dev)5105 static inline bool netif_is_ovs_master(const struct net_device *dev)
5106 {
5107 return dev->priv_flags & IFF_OPENVSWITCH;
5108 }
5109
netif_is_ovs_port(const struct net_device * dev)5110 static inline bool netif_is_ovs_port(const struct net_device *dev)
5111 {
5112 return dev->priv_flags & IFF_OVS_DATAPATH;
5113 }
5114
netif_is_any_bridge_port(const struct net_device * dev)5115 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5116 {
5117 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5118 }
5119
netif_is_team_master(const struct net_device * dev)5120 static inline bool netif_is_team_master(const struct net_device *dev)
5121 {
5122 return dev->priv_flags & IFF_TEAM;
5123 }
5124
netif_is_team_port(const struct net_device * dev)5125 static inline bool netif_is_team_port(const struct net_device *dev)
5126 {
5127 return dev->priv_flags & IFF_TEAM_PORT;
5128 }
5129
netif_is_lag_master(const struct net_device * dev)5130 static inline bool netif_is_lag_master(const struct net_device *dev)
5131 {
5132 return netif_is_bond_master(dev) || netif_is_team_master(dev);
5133 }
5134
netif_is_lag_port(const struct net_device * dev)5135 static inline bool netif_is_lag_port(const struct net_device *dev)
5136 {
5137 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5138 }
5139
netif_is_rxfh_configured(const struct net_device * dev)5140 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5141 {
5142 return dev->priv_flags & IFF_RXFH_CONFIGURED;
5143 }
5144
netif_is_failover(const struct net_device * dev)5145 static inline bool netif_is_failover(const struct net_device *dev)
5146 {
5147 return dev->priv_flags & IFF_FAILOVER;
5148 }
5149
netif_is_failover_slave(const struct net_device * dev)5150 static inline bool netif_is_failover_slave(const struct net_device *dev)
5151 {
5152 return dev->priv_flags & IFF_FAILOVER_SLAVE;
5153 }
5154
5155 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)5156 static inline void netif_keep_dst(struct net_device *dev)
5157 {
5158 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5159 }
5160
5161 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
netif_reduces_vlan_mtu(struct net_device * dev)5162 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5163 {
5164 /* TODO: reserve and use an additional IFF bit, if we get more users */
5165 return netif_is_macsec(dev);
5166 }
5167
5168 extern struct pernet_operations __net_initdata loopback_net_ops;
5169
5170 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5171
5172 /* netdev_printk helpers, similar to dev_printk */
5173
netdev_name(const struct net_device * dev)5174 static inline const char *netdev_name(const struct net_device *dev)
5175 {
5176 if (!dev->name[0] || strchr(dev->name, '%'))
5177 return "(unnamed net_device)";
5178 return dev->name;
5179 }
5180
netdev_unregistering(const struct net_device * dev)5181 static inline bool netdev_unregistering(const struct net_device *dev)
5182 {
5183 return dev->reg_state == NETREG_UNREGISTERING;
5184 }
5185
netdev_reg_state(const struct net_device * dev)5186 static inline const char *netdev_reg_state(const struct net_device *dev)
5187 {
5188 switch (dev->reg_state) {
5189 case NETREG_UNINITIALIZED: return " (uninitialized)";
5190 case NETREG_REGISTERED: return "";
5191 case NETREG_UNREGISTERING: return " (unregistering)";
5192 case NETREG_UNREGISTERED: return " (unregistered)";
5193 case NETREG_RELEASED: return " (released)";
5194 case NETREG_DUMMY: return " (dummy)";
5195 }
5196
5197 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5198 return " (unknown)";
5199 }
5200
5201 #define MODULE_ALIAS_NETDEV(device) \
5202 MODULE_ALIAS("netdev-" device)
5203
5204 /*
5205 * netdev_WARN() acts like dev_printk(), but with the key difference
5206 * of using a WARN/WARN_ON to get the message out, including the
5207 * file/line information and a backtrace.
5208 */
5209 #define netdev_WARN(dev, format, args...) \
5210 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
5211 netdev_reg_state(dev), ##args)
5212
5213 #define netdev_WARN_ONCE(dev, format, args...) \
5214 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
5215 netdev_reg_state(dev), ##args)
5216
5217 /*
5218 * The list of packet types we will receive (as opposed to discard)
5219 * and the routines to invoke.
5220 *
5221 * Why 16. Because with 16 the only overlap we get on a hash of the
5222 * low nibble of the protocol value is RARP/SNAP/X.25.
5223 *
5224 * 0800 IP
5225 * 0001 802.3
5226 * 0002 AX.25
5227 * 0004 802.2
5228 * 8035 RARP
5229 * 0005 SNAP
5230 * 0805 X.25
5231 * 0806 ARP
5232 * 8137 IPX
5233 * 0009 Localtalk
5234 * 86DD IPv6
5235 */
5236 #define PTYPE_HASH_SIZE (16)
5237 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
5238
5239 extern struct list_head ptype_all __read_mostly;
5240 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5241
5242 extern struct net_device *blackhole_netdev;
5243
5244 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5245 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5246 #define DEV_STATS_ADD(DEV, FIELD, VAL) \
5247 atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5248 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5249
5250 #endif /* _LINUX_NETDEVICE_H */
5251