• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 #include <linux/android_kabi.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct ethtool_ops;
59 struct phy_device;
60 struct dsa_port;
61 struct ip_tunnel_parm;
62 struct macsec_context;
63 struct macsec_ops;
64 struct netdev_name_node;
65 struct sd_flow_limit;
66 struct sfp_bus;
67 /* 802.11 specific */
68 struct wireless_dev;
69 /* 802.15.4 specific */
70 struct wpan_dev;
71 struct mpls_dev;
72 /* UDP Tunnel offloads */
73 struct udp_tunnel_info;
74 struct udp_tunnel_nic_info;
75 struct udp_tunnel_nic;
76 struct bpf_prog;
77 struct xdp_buff;
78 
79 void synchronize_net(void);
80 void netdev_set_default_ethtool_ops(struct net_device *dev,
81 				    const struct ethtool_ops *ops);
82 
83 /* Backlog congestion levels */
84 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
85 #define NET_RX_DROP		1	/* packet dropped */
86 
87 #define MAX_NEST_DEV 8
88 
89 /*
90  * Transmit return codes: transmit return codes originate from three different
91  * namespaces:
92  *
93  * - qdisc return codes
94  * - driver transmit return codes
95  * - errno values
96  *
97  * Drivers are allowed to return any one of those in their hard_start_xmit()
98  * function. Real network devices commonly used with qdiscs should only return
99  * the driver transmit return codes though - when qdiscs are used, the actual
100  * transmission happens asynchronously, so the value is not propagated to
101  * higher layers. Virtual network devices transmit synchronously; in this case
102  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
103  * others are propagated to higher layers.
104  */
105 
106 /* qdisc ->enqueue() return codes. */
107 #define NET_XMIT_SUCCESS	0x00
108 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
109 #define NET_XMIT_CN		0x02	/* congestion notification	*/
110 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
111 
112 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
113  * indicates that the device will soon be dropping packets, or already drops
114  * some packets of the same priority; prompting us to send less aggressively. */
115 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
116 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
117 
118 /* Driver transmit return codes */
119 #define NETDEV_TX_MASK		0xf0
120 
121 enum netdev_tx {
122 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
123 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
124 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
125 };
126 typedef enum netdev_tx netdev_tx_t;
127 
128 /*
129  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
130  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
131  */
dev_xmit_complete(int rc)132 static inline bool dev_xmit_complete(int rc)
133 {
134 	/*
135 	 * Positive cases with an skb consumed by a driver:
136 	 * - successful transmission (rc == NETDEV_TX_OK)
137 	 * - error while transmitting (rc < 0)
138 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
139 	 */
140 	if (likely(rc < NET_XMIT_MASK))
141 		return true;
142 
143 	return false;
144 }
145 
146 /*
147  *	Compute the worst-case header length according to the protocols
148  *	used.
149  */
150 
151 #if defined(CONFIG_HYPERV_NET)
152 # define LL_MAX_HEADER 128
153 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
154 # if defined(CONFIG_MAC80211_MESH)
155 #  define LL_MAX_HEADER 128
156 # else
157 #  define LL_MAX_HEADER 96
158 # endif
159 #else
160 # define LL_MAX_HEADER 32
161 #endif
162 
163 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
164     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
165 #define MAX_HEADER LL_MAX_HEADER
166 #else
167 #define MAX_HEADER (LL_MAX_HEADER + 48)
168 #endif
169 
170 /*
171  *	Old network device statistics. Fields are native words
172  *	(unsigned long) so they can be read and written atomically.
173  */
174 
175 #define NET_DEV_STAT(FIELD)			\
176 	union {					\
177 		unsigned long FIELD;		\
178 		atomic_long_t __##FIELD;	\
179 	}
180 
181 struct net_device_stats {
182 	NET_DEV_STAT(rx_packets);
183 	NET_DEV_STAT(tx_packets);
184 	NET_DEV_STAT(rx_bytes);
185 	NET_DEV_STAT(tx_bytes);
186 	NET_DEV_STAT(rx_errors);
187 	NET_DEV_STAT(tx_errors);
188 	NET_DEV_STAT(rx_dropped);
189 	NET_DEV_STAT(tx_dropped);
190 	NET_DEV_STAT(multicast);
191 	NET_DEV_STAT(collisions);
192 	NET_DEV_STAT(rx_length_errors);
193 	NET_DEV_STAT(rx_over_errors);
194 	NET_DEV_STAT(rx_crc_errors);
195 	NET_DEV_STAT(rx_frame_errors);
196 	NET_DEV_STAT(rx_fifo_errors);
197 	NET_DEV_STAT(rx_missed_errors);
198 	NET_DEV_STAT(tx_aborted_errors);
199 	NET_DEV_STAT(tx_carrier_errors);
200 	NET_DEV_STAT(tx_fifo_errors);
201 	NET_DEV_STAT(tx_heartbeat_errors);
202 	NET_DEV_STAT(tx_window_errors);
203 	NET_DEV_STAT(rx_compressed);
204 	NET_DEV_STAT(tx_compressed);
205 };
206 #undef NET_DEV_STAT
207 
208 /* per-cpu stats, allocated on demand.
209  * Try to fit them in a single cache line, for dev_get_stats() sake.
210  */
211 struct net_device_core_stats {
212 	unsigned long	rx_dropped;
213 	unsigned long	tx_dropped;
214 	unsigned long	rx_nohandler;
215 	unsigned long	rx_otherhost_dropped;
216 } __aligned(4 * sizeof(unsigned long));
217 
218 #include <linux/cache.h>
219 #include <linux/skbuff.h>
220 
221 #ifdef CONFIG_RPS
222 #include <linux/static_key.h>
223 extern struct static_key_false rps_needed;
224 extern struct static_key_false rfs_needed;
225 #endif
226 
227 struct neighbour;
228 struct neigh_parms;
229 struct sk_buff;
230 
231 struct netdev_hw_addr {
232 	struct list_head	list;
233 	struct rb_node		node;
234 	unsigned char		addr[MAX_ADDR_LEN];
235 	unsigned char		type;
236 #define NETDEV_HW_ADDR_T_LAN		1
237 #define NETDEV_HW_ADDR_T_SAN		2
238 #define NETDEV_HW_ADDR_T_UNICAST	3
239 #define NETDEV_HW_ADDR_T_MULTICAST	4
240 	bool			global_use;
241 	int			sync_cnt;
242 	int			refcount;
243 	int			synced;
244 	struct rcu_head		rcu_head;
245 };
246 
247 struct netdev_hw_addr_list {
248 	struct list_head	list;
249 	int			count;
250 
251 	/* Auxiliary tree for faster lookup on addition and deletion */
252 	struct rb_root		tree;
253 };
254 
255 #define netdev_hw_addr_list_count(l) ((l)->count)
256 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
257 #define netdev_hw_addr_list_for_each(ha, l) \
258 	list_for_each_entry(ha, &(l)->list, list)
259 
260 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
261 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
262 #define netdev_for_each_uc_addr(ha, dev) \
263 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
264 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
265 	netdev_for_each_uc_addr((_ha), (_dev)) \
266 		if ((_ha)->sync_cnt)
267 
268 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
269 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
270 #define netdev_for_each_mc_addr(ha, dev) \
271 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
272 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
273 	netdev_for_each_mc_addr((_ha), (_dev)) \
274 		if ((_ha)->sync_cnt)
275 
276 struct hh_cache {
277 	unsigned int	hh_len;
278 	seqlock_t	hh_lock;
279 
280 	/* cached hardware header; allow for machine alignment needs.        */
281 #define HH_DATA_MOD	16
282 #define HH_DATA_OFF(__len) \
283 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
284 #define HH_DATA_ALIGN(__len) \
285 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
286 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
287 };
288 
289 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
290  * Alternative is:
291  *   dev->hard_header_len ? (dev->hard_header_len +
292  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
293  *
294  * We could use other alignment values, but we must maintain the
295  * relationship HH alignment <= LL alignment.
296  */
297 #define LL_RESERVED_SPACE(dev) \
298 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
299 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
300 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
301 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
302 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
303 
304 struct header_ops {
305 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
306 			   unsigned short type, const void *daddr,
307 			   const void *saddr, unsigned int len);
308 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
309 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
310 	void	(*cache_update)(struct hh_cache *hh,
311 				const struct net_device *dev,
312 				const unsigned char *haddr);
313 	bool	(*validate)(const char *ll_header, unsigned int len);
314 	__be16	(*parse_protocol)(const struct sk_buff *skb);
315 
316 	ANDROID_KABI_RESERVE(1);
317 	ANDROID_KABI_RESERVE(2);
318 };
319 
320 /* These flag bits are private to the generic network queueing
321  * layer; they may not be explicitly referenced by any other
322  * code.
323  */
324 
325 enum netdev_state_t {
326 	__LINK_STATE_START,
327 	__LINK_STATE_PRESENT,
328 	__LINK_STATE_NOCARRIER,
329 	__LINK_STATE_LINKWATCH_PENDING,
330 	__LINK_STATE_DORMANT,
331 	__LINK_STATE_TESTING,
332 };
333 
334 struct gro_list {
335 	struct list_head	list;
336 	int			count;
337 };
338 
339 /*
340  * size of gro hash buckets, must less than bit number of
341  * napi_struct::gro_bitmask
342  */
343 #define GRO_HASH_BUCKETS	8
344 
345 /*
346  * Structure for NAPI scheduling similar to tasklet but with weighting
347  */
348 struct napi_struct {
349 	/* The poll_list must only be managed by the entity which
350 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
351 	 * whoever atomically sets that bit can add this napi_struct
352 	 * to the per-CPU poll_list, and whoever clears that bit
353 	 * can remove from the list right before clearing the bit.
354 	 */
355 	struct list_head	poll_list;
356 
357 	unsigned long		state;
358 	int			weight;
359 	int			defer_hard_irqs_count;
360 	unsigned long		gro_bitmask;
361 	int			(*poll)(struct napi_struct *, int);
362 #ifdef CONFIG_NETPOLL
363 	int			poll_owner;
364 #endif
365 	struct net_device	*dev;
366 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
367 	struct sk_buff		*skb;
368 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
369 	int			rx_count; /* length of rx_list */
370 	struct hrtimer		timer;
371 	struct list_head	dev_list;
372 	struct hlist_node	napi_hash_node;
373 	unsigned int		napi_id;
374 	struct task_struct	*thread;
375 
376 	ANDROID_KABI_RESERVE(1);
377 	ANDROID_KABI_RESERVE(2);
378 	ANDROID_KABI_RESERVE(3);
379 	ANDROID_KABI_RESERVE(4);
380 };
381 
382 enum {
383 	NAPI_STATE_SCHED,		/* Poll is scheduled */
384 	NAPI_STATE_MISSED,		/* reschedule a napi */
385 	NAPI_STATE_DISABLE,		/* Disable pending */
386 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
387 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
388 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
389 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
390 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
391 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
392 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
393 };
394 
395 enum {
396 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
397 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
398 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
399 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
400 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
401 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
402 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
403 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
404 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
405 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
406 };
407 
408 enum gro_result {
409 	GRO_MERGED,
410 	GRO_MERGED_FREE,
411 	GRO_HELD,
412 	GRO_NORMAL,
413 	GRO_CONSUMED,
414 };
415 typedef enum gro_result gro_result_t;
416 
417 /*
418  * enum rx_handler_result - Possible return values for rx_handlers.
419  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
420  * further.
421  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
422  * case skb->dev was changed by rx_handler.
423  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
424  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
425  *
426  * rx_handlers are functions called from inside __netif_receive_skb(), to do
427  * special processing of the skb, prior to delivery to protocol handlers.
428  *
429  * Currently, a net_device can only have a single rx_handler registered. Trying
430  * to register a second rx_handler will return -EBUSY.
431  *
432  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
433  * To unregister a rx_handler on a net_device, use
434  * netdev_rx_handler_unregister().
435  *
436  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
437  * do with the skb.
438  *
439  * If the rx_handler consumed the skb in some way, it should return
440  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
441  * the skb to be delivered in some other way.
442  *
443  * If the rx_handler changed skb->dev, to divert the skb to another
444  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
445  * new device will be called if it exists.
446  *
447  * If the rx_handler decides the skb should be ignored, it should return
448  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
449  * are registered on exact device (ptype->dev == skb->dev).
450  *
451  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
452  * delivered, it should return RX_HANDLER_PASS.
453  *
454  * A device without a registered rx_handler will behave as if rx_handler
455  * returned RX_HANDLER_PASS.
456  */
457 
458 enum rx_handler_result {
459 	RX_HANDLER_CONSUMED,
460 	RX_HANDLER_ANOTHER,
461 	RX_HANDLER_EXACT,
462 	RX_HANDLER_PASS,
463 };
464 typedef enum rx_handler_result rx_handler_result_t;
465 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
466 
467 void __napi_schedule(struct napi_struct *n);
468 void __napi_schedule_irqoff(struct napi_struct *n);
469 
napi_disable_pending(struct napi_struct * n)470 static inline bool napi_disable_pending(struct napi_struct *n)
471 {
472 	return test_bit(NAPI_STATE_DISABLE, &n->state);
473 }
474 
napi_prefer_busy_poll(struct napi_struct * n)475 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
476 {
477 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
478 }
479 
480 bool napi_schedule_prep(struct napi_struct *n);
481 
482 /**
483  *	napi_schedule - schedule NAPI poll
484  *	@n: NAPI context
485  *
486  * Schedule NAPI poll routine to be called if it is not already
487  * running.
488  */
napi_schedule(struct napi_struct * n)489 static inline void napi_schedule(struct napi_struct *n)
490 {
491 	if (napi_schedule_prep(n))
492 		__napi_schedule(n);
493 }
494 
495 /**
496  *	napi_schedule_irqoff - schedule NAPI poll
497  *	@n: NAPI context
498  *
499  * Variant of napi_schedule(), assuming hard irqs are masked.
500  */
napi_schedule_irqoff(struct napi_struct * n)501 static inline void napi_schedule_irqoff(struct napi_struct *n)
502 {
503 	if (napi_schedule_prep(n))
504 		__napi_schedule_irqoff(n);
505 }
506 
507 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
napi_reschedule(struct napi_struct * napi)508 static inline bool napi_reschedule(struct napi_struct *napi)
509 {
510 	if (napi_schedule_prep(napi)) {
511 		__napi_schedule(napi);
512 		return true;
513 	}
514 	return false;
515 }
516 
517 bool napi_complete_done(struct napi_struct *n, int work_done);
518 /**
519  *	napi_complete - NAPI processing complete
520  *	@n: NAPI context
521  *
522  * Mark NAPI processing as complete.
523  * Consider using napi_complete_done() instead.
524  * Return false if device should avoid rearming interrupts.
525  */
napi_complete(struct napi_struct * n)526 static inline bool napi_complete(struct napi_struct *n)
527 {
528 	return napi_complete_done(n, 0);
529 }
530 
531 int dev_set_threaded(struct net_device *dev, bool threaded);
532 
533 /**
534  *	napi_disable - prevent NAPI from scheduling
535  *	@n: NAPI context
536  *
537  * Stop NAPI from being scheduled on this context.
538  * Waits till any outstanding processing completes.
539  */
540 void napi_disable(struct napi_struct *n);
541 
542 void napi_enable(struct napi_struct *n);
543 
544 /**
545  *	napi_synchronize - wait until NAPI is not running
546  *	@n: NAPI context
547  *
548  * Wait until NAPI is done being scheduled on this context.
549  * Waits till any outstanding processing completes but
550  * does not disable future activations.
551  */
napi_synchronize(const struct napi_struct * n)552 static inline void napi_synchronize(const struct napi_struct *n)
553 {
554 	if (IS_ENABLED(CONFIG_SMP))
555 		while (test_bit(NAPI_STATE_SCHED, &n->state))
556 			msleep(1);
557 	else
558 		barrier();
559 }
560 
561 /**
562  *	napi_if_scheduled_mark_missed - if napi is running, set the
563  *	NAPIF_STATE_MISSED
564  *	@n: NAPI context
565  *
566  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
567  * NAPI is scheduled.
568  **/
napi_if_scheduled_mark_missed(struct napi_struct * n)569 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
570 {
571 	unsigned long val, new;
572 
573 	val = READ_ONCE(n->state);
574 	do {
575 		if (val & NAPIF_STATE_DISABLE)
576 			return true;
577 
578 		if (!(val & NAPIF_STATE_SCHED))
579 			return false;
580 
581 		new = val | NAPIF_STATE_MISSED;
582 	} while (!try_cmpxchg(&n->state, &val, new));
583 
584 	return true;
585 }
586 
587 enum netdev_queue_state_t {
588 	__QUEUE_STATE_DRV_XOFF,
589 	__QUEUE_STATE_STACK_XOFF,
590 	__QUEUE_STATE_FROZEN,
591 };
592 
593 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
594 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
595 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
596 
597 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
598 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
599 					QUEUE_STATE_FROZEN)
600 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
601 					QUEUE_STATE_FROZEN)
602 
603 /*
604  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
605  * netif_tx_* functions below are used to manipulate this flag.  The
606  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
607  * queue independently.  The netif_xmit_*stopped functions below are called
608  * to check if the queue has been stopped by the driver or stack (either
609  * of the XOFF bits are set in the state).  Drivers should not need to call
610  * netif_xmit*stopped functions, they should only be using netif_tx_*.
611  */
612 
613 struct netdev_queue {
614 /*
615  * read-mostly part
616  */
617 	struct net_device	*dev;
618 	netdevice_tracker	dev_tracker;
619 
620 	struct Qdisc __rcu	*qdisc;
621 	struct Qdisc __rcu	*qdisc_sleeping;
622 #ifdef CONFIG_SYSFS
623 	struct kobject		kobj;
624 #endif
625 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
626 	int			numa_node;
627 #endif
628 	unsigned long		tx_maxrate;
629 	/*
630 	 * Number of TX timeouts for this queue
631 	 * (/sys/class/net/DEV/Q/trans_timeout)
632 	 */
633 	atomic_long_t		trans_timeout;
634 
635 	/* Subordinate device that the queue has been assigned to */
636 	struct net_device	*sb_dev;
637 #ifdef CONFIG_XDP_SOCKETS
638 	struct xsk_buff_pool    *pool;
639 #endif
640 /*
641  * write-mostly part
642  */
643 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
644 	int			xmit_lock_owner;
645 	/*
646 	 * Time (in jiffies) of last Tx
647 	 */
648 	unsigned long		trans_start;
649 
650 	unsigned long		state;
651 
652 #ifdef CONFIG_BQL
653 	struct dql		dql;
654 #endif
655 
656 	ANDROID_KABI_RESERVE(1);
657 	ANDROID_KABI_RESERVE(2);
658 	ANDROID_KABI_RESERVE(3);
659 	ANDROID_KABI_RESERVE(4);
660 } ____cacheline_aligned_in_smp;
661 
662 extern int sysctl_fb_tunnels_only_for_init_net;
663 extern int sysctl_devconf_inherit_init_net;
664 
665 /*
666  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
667  *                                     == 1 : For initns only
668  *                                     == 2 : For none.
669  */
net_has_fallback_tunnels(const struct net * net)670 static inline bool net_has_fallback_tunnels(const struct net *net)
671 {
672 #if IS_ENABLED(CONFIG_SYSCTL)
673 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
674 
675 	return !fb_tunnels_only_for_init_net ||
676 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
677 #else
678 	return true;
679 #endif
680 }
681 
net_inherit_devconf(void)682 static inline int net_inherit_devconf(void)
683 {
684 #if IS_ENABLED(CONFIG_SYSCTL)
685 	return READ_ONCE(sysctl_devconf_inherit_init_net);
686 #else
687 	return 0;
688 #endif
689 }
690 
netdev_queue_numa_node_read(const struct netdev_queue * q)691 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
692 {
693 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
694 	return q->numa_node;
695 #else
696 	return NUMA_NO_NODE;
697 #endif
698 }
699 
netdev_queue_numa_node_write(struct netdev_queue * q,int node)700 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
701 {
702 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
703 	q->numa_node = node;
704 #endif
705 }
706 
707 #ifdef CONFIG_RPS
708 /*
709  * This structure holds an RPS map which can be of variable length.  The
710  * map is an array of CPUs.
711  */
712 struct rps_map {
713 	unsigned int len;
714 	struct rcu_head rcu;
715 	u16 cpus[];
716 };
717 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
718 
719 /*
720  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
721  * tail pointer for that CPU's input queue at the time of last enqueue, and
722  * a hardware filter index.
723  */
724 struct rps_dev_flow {
725 	u16 cpu;
726 	u16 filter;
727 	unsigned int last_qtail;
728 };
729 #define RPS_NO_FILTER 0xffff
730 
731 /*
732  * The rps_dev_flow_table structure contains a table of flow mappings.
733  */
734 struct rps_dev_flow_table {
735 	unsigned int mask;
736 	struct rcu_head rcu;
737 	struct rps_dev_flow flows[];
738 };
739 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
740     ((_num) * sizeof(struct rps_dev_flow)))
741 
742 /*
743  * The rps_sock_flow_table contains mappings of flows to the last CPU
744  * on which they were processed by the application (set in recvmsg).
745  * Each entry is a 32bit value. Upper part is the high-order bits
746  * of flow hash, lower part is CPU number.
747  * rps_cpu_mask is used to partition the space, depending on number of
748  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
749  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
750  * meaning we use 32-6=26 bits for the hash.
751  */
752 struct rps_sock_flow_table {
753 	u32	mask;
754 
755 	u32	ents[] ____cacheline_aligned_in_smp;
756 };
757 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
758 
759 #define RPS_NO_CPU 0xffff
760 
761 extern u32 rps_cpu_mask;
762 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
763 
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)764 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
765 					u32 hash)
766 {
767 	if (table && hash) {
768 		unsigned int index = hash & table->mask;
769 		u32 val = hash & ~rps_cpu_mask;
770 
771 		/* We only give a hint, preemption can change CPU under us */
772 		val |= raw_smp_processor_id();
773 
774 		/* The following WRITE_ONCE() is paired with the READ_ONCE()
775 		 * here, and another one in get_rps_cpu().
776 		 */
777 		if (READ_ONCE(table->ents[index]) != val)
778 			WRITE_ONCE(table->ents[index], val);
779 	}
780 }
781 
782 #ifdef CONFIG_RFS_ACCEL
783 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
784 			 u16 filter_id);
785 #endif
786 #endif /* CONFIG_RPS */
787 
788 /* This structure contains an instance of an RX queue. */
789 struct netdev_rx_queue {
790 	struct xdp_rxq_info		xdp_rxq;
791 #ifdef CONFIG_RPS
792 	struct rps_map __rcu		*rps_map;
793 	struct rps_dev_flow_table __rcu	*rps_flow_table;
794 #endif
795 	struct kobject			kobj;
796 	struct net_device		*dev;
797 	netdevice_tracker		dev_tracker;
798 
799 #ifdef CONFIG_XDP_SOCKETS
800 	struct xsk_buff_pool            *pool;
801 #endif
802 
803 	ANDROID_KABI_RESERVE(1);
804 	ANDROID_KABI_RESERVE(2);
805 	ANDROID_KABI_RESERVE(3);
806 	ANDROID_KABI_RESERVE(4);
807 } ____cacheline_aligned_in_smp;
808 
809 /*
810  * RX queue sysfs structures and functions.
811  */
812 struct rx_queue_attribute {
813 	struct attribute attr;
814 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
815 	ssize_t (*store)(struct netdev_rx_queue *queue,
816 			 const char *buf, size_t len);
817 };
818 
819 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
820 enum xps_map_type {
821 	XPS_CPUS = 0,
822 	XPS_RXQS,
823 	XPS_MAPS_MAX,
824 };
825 
826 #ifdef CONFIG_XPS
827 /*
828  * This structure holds an XPS map which can be of variable length.  The
829  * map is an array of queues.
830  */
831 struct xps_map {
832 	unsigned int len;
833 	unsigned int alloc_len;
834 	struct rcu_head rcu;
835 	u16 queues[];
836 };
837 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
838 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
839        - sizeof(struct xps_map)) / sizeof(u16))
840 
841 /*
842  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
843  *
844  * We keep track of the number of cpus/rxqs used when the struct is allocated,
845  * in nr_ids. This will help not accessing out-of-bound memory.
846  *
847  * We keep track of the number of traffic classes used when the struct is
848  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
849  * not crossing its upper bound, as the original dev->num_tc can be updated in
850  * the meantime.
851  */
852 struct xps_dev_maps {
853 	struct rcu_head rcu;
854 	unsigned int nr_ids;
855 	s16 num_tc;
856 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
857 };
858 
859 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
860 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
861 
862 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
863 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
864 
865 #endif /* CONFIG_XPS */
866 
867 #define TC_MAX_QUEUE	16
868 #define TC_BITMASK	15
869 /* HW offloaded queuing disciplines txq count and offset maps */
870 struct netdev_tc_txq {
871 	u16 count;
872 	u16 offset;
873 };
874 
875 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
876 /*
877  * This structure is to hold information about the device
878  * configured to run FCoE protocol stack.
879  */
880 struct netdev_fcoe_hbainfo {
881 	char	manufacturer[64];
882 	char	serial_number[64];
883 	char	hardware_version[64];
884 	char	driver_version[64];
885 	char	optionrom_version[64];
886 	char	firmware_version[64];
887 	char	model[256];
888 	char	model_description[256];
889 };
890 #endif
891 
892 #define MAX_PHYS_ITEM_ID_LEN 32
893 
894 /* This structure holds a unique identifier to identify some
895  * physical item (port for example) used by a netdevice.
896  */
897 struct netdev_phys_item_id {
898 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
899 	unsigned char id_len;
900 };
901 
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)902 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
903 					    struct netdev_phys_item_id *b)
904 {
905 	return a->id_len == b->id_len &&
906 	       memcmp(a->id, b->id, a->id_len) == 0;
907 }
908 
909 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
910 				       struct sk_buff *skb,
911 				       struct net_device *sb_dev);
912 
913 enum net_device_path_type {
914 	DEV_PATH_ETHERNET = 0,
915 	DEV_PATH_VLAN,
916 	DEV_PATH_BRIDGE,
917 	DEV_PATH_PPPOE,
918 	DEV_PATH_DSA,
919 	DEV_PATH_MTK_WDMA,
920 };
921 
922 struct net_device_path {
923 	enum net_device_path_type	type;
924 	const struct net_device		*dev;
925 	union {
926 		struct {
927 			u16		id;
928 			__be16		proto;
929 			u8		h_dest[ETH_ALEN];
930 		} encap;
931 		struct {
932 			enum {
933 				DEV_PATH_BR_VLAN_KEEP,
934 				DEV_PATH_BR_VLAN_TAG,
935 				DEV_PATH_BR_VLAN_UNTAG,
936 				DEV_PATH_BR_VLAN_UNTAG_HW,
937 			}		vlan_mode;
938 			u16		vlan_id;
939 			__be16		vlan_proto;
940 		} bridge;
941 		struct {
942 			int port;
943 			u16 proto;
944 		} dsa;
945 		struct {
946 			u8 wdma_idx;
947 			u8 queue;
948 			u16 wcid;
949 			u8 bss;
950 		} mtk_wdma;
951 	};
952 };
953 
954 #define NET_DEVICE_PATH_STACK_MAX	5
955 #define NET_DEVICE_PATH_VLAN_MAX	2
956 
957 struct net_device_path_stack {
958 	int			num_paths;
959 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
960 };
961 
962 struct net_device_path_ctx {
963 	const struct net_device *dev;
964 	u8			daddr[ETH_ALEN];
965 
966 	int			num_vlans;
967 	struct {
968 		u16		id;
969 		__be16		proto;
970 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
971 };
972 
973 enum tc_setup_type {
974 	TC_QUERY_CAPS,
975 	TC_SETUP_QDISC_MQPRIO,
976 	TC_SETUP_CLSU32,
977 	TC_SETUP_CLSFLOWER,
978 	TC_SETUP_CLSMATCHALL,
979 	TC_SETUP_CLSBPF,
980 	TC_SETUP_BLOCK,
981 	TC_SETUP_QDISC_CBS,
982 	TC_SETUP_QDISC_RED,
983 	TC_SETUP_QDISC_PRIO,
984 	TC_SETUP_QDISC_MQ,
985 	TC_SETUP_QDISC_ETF,
986 	TC_SETUP_ROOT_QDISC,
987 	TC_SETUP_QDISC_GRED,
988 	TC_SETUP_QDISC_TAPRIO,
989 	TC_SETUP_FT,
990 	TC_SETUP_QDISC_ETS,
991 	TC_SETUP_QDISC_TBF,
992 	TC_SETUP_QDISC_FIFO,
993 	TC_SETUP_QDISC_HTB,
994 	TC_SETUP_ACT,
995 };
996 
997 /* These structures hold the attributes of bpf state that are being passed
998  * to the netdevice through the bpf op.
999  */
1000 enum bpf_netdev_command {
1001 	/* Set or clear a bpf program used in the earliest stages of packet
1002 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
1003 	 * is responsible for calling bpf_prog_put on any old progs that are
1004 	 * stored. In case of error, the callee need not release the new prog
1005 	 * reference, but on success it takes ownership and must bpf_prog_put
1006 	 * when it is no longer used.
1007 	 */
1008 	XDP_SETUP_PROG,
1009 	XDP_SETUP_PROG_HW,
1010 	/* BPF program for offload callbacks, invoked at program load time. */
1011 	BPF_OFFLOAD_MAP_ALLOC,
1012 	BPF_OFFLOAD_MAP_FREE,
1013 	XDP_SETUP_XSK_POOL,
1014 };
1015 
1016 struct bpf_prog_offload_ops;
1017 struct netlink_ext_ack;
1018 struct xdp_umem;
1019 struct xdp_dev_bulk_queue;
1020 struct bpf_xdp_link;
1021 
1022 enum bpf_xdp_mode {
1023 	XDP_MODE_SKB = 0,
1024 	XDP_MODE_DRV = 1,
1025 	XDP_MODE_HW = 2,
1026 	__MAX_XDP_MODE
1027 };
1028 
1029 struct bpf_xdp_entity {
1030 	struct bpf_prog *prog;
1031 	struct bpf_xdp_link *link;
1032 };
1033 
1034 struct netdev_bpf {
1035 	enum bpf_netdev_command command;
1036 	union {
1037 		/* XDP_SETUP_PROG */
1038 		struct {
1039 			u32 flags;
1040 			struct bpf_prog *prog;
1041 			struct netlink_ext_ack *extack;
1042 		};
1043 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1044 		struct {
1045 			struct bpf_offloaded_map *offmap;
1046 		};
1047 		/* XDP_SETUP_XSK_POOL */
1048 		struct {
1049 			struct xsk_buff_pool *pool;
1050 			u16 queue_id;
1051 		} xsk;
1052 	};
1053 };
1054 
1055 /* Flags for ndo_xsk_wakeup. */
1056 #define XDP_WAKEUP_RX (1 << 0)
1057 #define XDP_WAKEUP_TX (1 << 1)
1058 
1059 #ifdef CONFIG_XFRM_OFFLOAD
1060 struct xfrmdev_ops {
1061 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
1062 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1063 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1064 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1065 				       struct xfrm_state *x);
1066 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1067 
1068 	ANDROID_KABI_RESERVE(1);
1069 	ANDROID_KABI_RESERVE(2);
1070 	ANDROID_KABI_RESERVE(3);
1071 	ANDROID_KABI_RESERVE(4);
1072 };
1073 #endif
1074 
1075 struct dev_ifalias {
1076 	struct rcu_head rcuhead;
1077 	char ifalias[];
1078 };
1079 
1080 struct devlink;
1081 struct tlsdev_ops;
1082 
1083 struct netdev_net_notifier {
1084 	struct list_head list;
1085 	struct notifier_block *nb;
1086 };
1087 
1088 /*
1089  * This structure defines the management hooks for network devices.
1090  * The following hooks can be defined; unless noted otherwise, they are
1091  * optional and can be filled with a null pointer.
1092  *
1093  * int (*ndo_init)(struct net_device *dev);
1094  *     This function is called once when a network device is registered.
1095  *     The network device can use this for any late stage initialization
1096  *     or semantic validation. It can fail with an error code which will
1097  *     be propagated back to register_netdev.
1098  *
1099  * void (*ndo_uninit)(struct net_device *dev);
1100  *     This function is called when device is unregistered or when registration
1101  *     fails. It is not called if init fails.
1102  *
1103  * int (*ndo_open)(struct net_device *dev);
1104  *     This function is called when a network device transitions to the up
1105  *     state.
1106  *
1107  * int (*ndo_stop)(struct net_device *dev);
1108  *     This function is called when a network device transitions to the down
1109  *     state.
1110  *
1111  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1112  *                               struct net_device *dev);
1113  *	Called when a packet needs to be transmitted.
1114  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1115  *	the queue before that can happen; it's for obsolete devices and weird
1116  *	corner cases, but the stack really does a non-trivial amount
1117  *	of useless work if you return NETDEV_TX_BUSY.
1118  *	Required; cannot be NULL.
1119  *
1120  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1121  *					   struct net_device *dev
1122  *					   netdev_features_t features);
1123  *	Called by core transmit path to determine if device is capable of
1124  *	performing offload operations on a given packet. This is to give
1125  *	the device an opportunity to implement any restrictions that cannot
1126  *	be otherwise expressed by feature flags. The check is called with
1127  *	the set of features that the stack has calculated and it returns
1128  *	those the driver believes to be appropriate.
1129  *
1130  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1131  *                         struct net_device *sb_dev);
1132  *	Called to decide which queue to use when device supports multiple
1133  *	transmit queues.
1134  *
1135  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1136  *	This function is called to allow device receiver to make
1137  *	changes to configuration when multicast or promiscuous is enabled.
1138  *
1139  * void (*ndo_set_rx_mode)(struct net_device *dev);
1140  *	This function is called device changes address list filtering.
1141  *	If driver handles unicast address filtering, it should set
1142  *	IFF_UNICAST_FLT in its priv_flags.
1143  *
1144  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1145  *	This function  is called when the Media Access Control address
1146  *	needs to be changed. If this interface is not defined, the
1147  *	MAC address can not be changed.
1148  *
1149  * int (*ndo_validate_addr)(struct net_device *dev);
1150  *	Test if Media Access Control address is valid for the device.
1151  *
1152  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1153  *	Old-style ioctl entry point. This is used internally by the
1154  *	appletalk and ieee802154 subsystems but is no longer called by
1155  *	the device ioctl handler.
1156  *
1157  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1158  *	Used by the bonding driver for its device specific ioctls:
1159  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1160  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1161  *
1162  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1163  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1164  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1165  *
1166  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1167  *	Used to set network devices bus interface parameters. This interface
1168  *	is retained for legacy reasons; new devices should use the bus
1169  *	interface (PCI) for low level management.
1170  *
1171  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1172  *	Called when a user wants to change the Maximum Transfer Unit
1173  *	of a device.
1174  *
1175  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1176  *	Callback used when the transmitter has not made any progress
1177  *	for dev->watchdog ticks.
1178  *
1179  * void (*ndo_get_stats64)(struct net_device *dev,
1180  *                         struct rtnl_link_stats64 *storage);
1181  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1182  *	Called when a user wants to get the network device usage
1183  *	statistics. Drivers must do one of the following:
1184  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1185  *	   rtnl_link_stats64 structure passed by the caller.
1186  *	2. Define @ndo_get_stats to update a net_device_stats structure
1187  *	   (which should normally be dev->stats) and return a pointer to
1188  *	   it. The structure may be changed asynchronously only if each
1189  *	   field is written atomically.
1190  *	3. Update dev->stats asynchronously and atomically, and define
1191  *	   neither operation.
1192  *
1193  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1194  *	Return true if this device supports offload stats of this attr_id.
1195  *
1196  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1197  *	void *attr_data)
1198  *	Get statistics for offload operations by attr_id. Write it into the
1199  *	attr_data pointer.
1200  *
1201  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1202  *	If device supports VLAN filtering this function is called when a
1203  *	VLAN id is registered.
1204  *
1205  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1206  *	If device supports VLAN filtering this function is called when a
1207  *	VLAN id is unregistered.
1208  *
1209  * void (*ndo_poll_controller)(struct net_device *dev);
1210  *
1211  *	SR-IOV management functions.
1212  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1213  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1214  *			  u8 qos, __be16 proto);
1215  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1216  *			  int max_tx_rate);
1217  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1218  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1219  * int (*ndo_get_vf_config)(struct net_device *dev,
1220  *			    int vf, struct ifla_vf_info *ivf);
1221  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1222  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1223  *			  struct nlattr *port[]);
1224  *
1225  *      Enable or disable the VF ability to query its RSS Redirection Table and
1226  *      Hash Key. This is needed since on some devices VF share this information
1227  *      with PF and querying it may introduce a theoretical security risk.
1228  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1229  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1230  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1231  *		       void *type_data);
1232  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1233  *	This is always called from the stack with the rtnl lock held and netif
1234  *	tx queues stopped. This allows the netdevice to perform queue
1235  *	management safely.
1236  *
1237  *	Fiber Channel over Ethernet (FCoE) offload functions.
1238  * int (*ndo_fcoe_enable)(struct net_device *dev);
1239  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1240  *	so the underlying device can perform whatever needed configuration or
1241  *	initialization to support acceleration of FCoE traffic.
1242  *
1243  * int (*ndo_fcoe_disable)(struct net_device *dev);
1244  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1245  *	so the underlying device can perform whatever needed clean-ups to
1246  *	stop supporting acceleration of FCoE traffic.
1247  *
1248  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1249  *			     struct scatterlist *sgl, unsigned int sgc);
1250  *	Called when the FCoE Initiator wants to initialize an I/O that
1251  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1252  *	perform necessary setup and returns 1 to indicate the device is set up
1253  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1254  *
1255  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1256  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1257  *	indicated by the FC exchange id 'xid', so the underlying device can
1258  *	clean up and reuse resources for later DDP requests.
1259  *
1260  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1261  *			      struct scatterlist *sgl, unsigned int sgc);
1262  *	Called when the FCoE Target wants to initialize an I/O that
1263  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1264  *	perform necessary setup and returns 1 to indicate the device is set up
1265  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1266  *
1267  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1268  *			       struct netdev_fcoe_hbainfo *hbainfo);
1269  *	Called when the FCoE Protocol stack wants information on the underlying
1270  *	device. This information is utilized by the FCoE protocol stack to
1271  *	register attributes with Fiber Channel management service as per the
1272  *	FC-GS Fabric Device Management Information(FDMI) specification.
1273  *
1274  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1275  *	Called when the underlying device wants to override default World Wide
1276  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1277  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1278  *	protocol stack to use.
1279  *
1280  *	RFS acceleration.
1281  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1282  *			    u16 rxq_index, u32 flow_id);
1283  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1284  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1285  *	Return the filter ID on success, or a negative error code.
1286  *
1287  *	Slave management functions (for bridge, bonding, etc).
1288  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1289  *	Called to make another netdev an underling.
1290  *
1291  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1292  *	Called to release previously enslaved netdev.
1293  *
1294  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1295  *					    struct sk_buff *skb,
1296  *					    bool all_slaves);
1297  *	Get the xmit slave of master device. If all_slaves is true, function
1298  *	assume all the slaves can transmit.
1299  *
1300  *      Feature/offload setting functions.
1301  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1302  *		netdev_features_t features);
1303  *	Adjusts the requested feature flags according to device-specific
1304  *	constraints, and returns the resulting flags. Must not modify
1305  *	the device state.
1306  *
1307  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1308  *	Called to update device configuration to new features. Passed
1309  *	feature set might be less than what was returned by ndo_fix_features()).
1310  *	Must return >0 or -errno if it changed dev->features itself.
1311  *
1312  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1313  *		      struct net_device *dev,
1314  *		      const unsigned char *addr, u16 vid, u16 flags,
1315  *		      struct netlink_ext_ack *extack);
1316  *	Adds an FDB entry to dev for addr.
1317  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1318  *		      struct net_device *dev,
1319  *		      const unsigned char *addr, u16 vid)
1320  *	Deletes the FDB entry from dev coresponding to addr.
1321  * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1322  *			   struct net_device *dev,
1323  *			   u16 vid,
1324  *			   struct netlink_ext_ack *extack);
1325  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1326  *		       struct net_device *dev, struct net_device *filter_dev,
1327  *		       int *idx)
1328  *	Used to add FDB entries to dump requests. Implementers should add
1329  *	entries to skb and update idx with the number of entries.
1330  *
1331  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1332  *			     u16 flags, struct netlink_ext_ack *extack)
1333  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1334  *			     struct net_device *dev, u32 filter_mask,
1335  *			     int nlflags)
1336  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1337  *			     u16 flags);
1338  *
1339  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1340  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1341  *	which do not represent real hardware may define this to allow their
1342  *	userspace components to manage their virtual carrier state. Devices
1343  *	that determine carrier state from physical hardware properties (eg
1344  *	network cables) or protocol-dependent mechanisms (eg
1345  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1346  *
1347  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1348  *			       struct netdev_phys_item_id *ppid);
1349  *	Called to get ID of physical port of this device. If driver does
1350  *	not implement this, it is assumed that the hw is not able to have
1351  *	multiple net devices on single physical port.
1352  *
1353  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1354  *				 struct netdev_phys_item_id *ppid)
1355  *	Called to get the parent ID of the physical port of this device.
1356  *
1357  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1358  *				 struct net_device *dev)
1359  *	Called by upper layer devices to accelerate switching or other
1360  *	station functionality into hardware. 'pdev is the lowerdev
1361  *	to use for the offload and 'dev' is the net device that will
1362  *	back the offload. Returns a pointer to the private structure
1363  *	the upper layer will maintain.
1364  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1365  *	Called by upper layer device to delete the station created
1366  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1367  *	the station and priv is the structure returned by the add
1368  *	operation.
1369  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1370  *			     int queue_index, u32 maxrate);
1371  *	Called when a user wants to set a max-rate limitation of specific
1372  *	TX queue.
1373  * int (*ndo_get_iflink)(const struct net_device *dev);
1374  *	Called to get the iflink value of this device.
1375  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1376  *	This function is used to get egress tunnel information for given skb.
1377  *	This is useful for retrieving outer tunnel header parameters while
1378  *	sampling packet.
1379  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1380  *	This function is used to specify the headroom that the skb must
1381  *	consider when allocation skb during packet reception. Setting
1382  *	appropriate rx headroom value allows avoiding skb head copy on
1383  *	forward. Setting a negative value resets the rx headroom to the
1384  *	default value.
1385  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1386  *	This function is used to set or query state related to XDP on the
1387  *	netdevice and manage BPF offload. See definition of
1388  *	enum bpf_netdev_command for details.
1389  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1390  *			u32 flags);
1391  *	This function is used to submit @n XDP packets for transmit on a
1392  *	netdevice. Returns number of frames successfully transmitted, frames
1393  *	that got dropped are freed/returned via xdp_return_frame().
1394  *	Returns negative number, means general error invoking ndo, meaning
1395  *	no frames were xmit'ed and core-caller will free all frames.
1396  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1397  *					        struct xdp_buff *xdp);
1398  *      Get the xmit slave of master device based on the xdp_buff.
1399  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1400  *      This function is used to wake up the softirq, ksoftirqd or kthread
1401  *	responsible for sending and/or receiving packets on a specific
1402  *	queue id bound to an AF_XDP socket. The flags field specifies if
1403  *	only RX, only Tx, or both should be woken up using the flags
1404  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1405  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1406  *	Get devlink port instance associated with a given netdev.
1407  *	Called with a reference on the netdevice and devlink locks only,
1408  *	rtnl_lock is not held.
1409  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1410  *			 int cmd);
1411  *	Add, change, delete or get information on an IPv4 tunnel.
1412  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1413  *	If a device is paired with a peer device, return the peer instance.
1414  *	The caller must be under RCU read context.
1415  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1416  *     Get the forwarding path to reach the real device from the HW destination address
1417  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1418  *			     const struct skb_shared_hwtstamps *hwtstamps,
1419  *			     bool cycles);
1420  *	Get hardware timestamp based on normal/adjustable time or free running
1421  *	cycle counter. This function is required if physical clock supports a
1422  *	free running cycle counter.
1423  */
1424 struct net_device_ops {
1425 	int			(*ndo_init)(struct net_device *dev);
1426 	void			(*ndo_uninit)(struct net_device *dev);
1427 	int			(*ndo_open)(struct net_device *dev);
1428 	int			(*ndo_stop)(struct net_device *dev);
1429 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1430 						  struct net_device *dev);
1431 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1432 						      struct net_device *dev,
1433 						      netdev_features_t features);
1434 	u16			(*ndo_select_queue)(struct net_device *dev,
1435 						    struct sk_buff *skb,
1436 						    struct net_device *sb_dev);
1437 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1438 						       int flags);
1439 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1440 	int			(*ndo_set_mac_address)(struct net_device *dev,
1441 						       void *addr);
1442 	int			(*ndo_validate_addr)(struct net_device *dev);
1443 	int			(*ndo_do_ioctl)(struct net_device *dev,
1444 					        struct ifreq *ifr, int cmd);
1445 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1446 						 struct ifreq *ifr, int cmd);
1447 	int			(*ndo_siocbond)(struct net_device *dev,
1448 						struct ifreq *ifr, int cmd);
1449 	int			(*ndo_siocwandev)(struct net_device *dev,
1450 						  struct if_settings *ifs);
1451 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1452 						      struct ifreq *ifr,
1453 						      void __user *data, int cmd);
1454 	int			(*ndo_set_config)(struct net_device *dev,
1455 					          struct ifmap *map);
1456 	int			(*ndo_change_mtu)(struct net_device *dev,
1457 						  int new_mtu);
1458 	int			(*ndo_neigh_setup)(struct net_device *dev,
1459 						   struct neigh_parms *);
1460 	void			(*ndo_tx_timeout) (struct net_device *dev,
1461 						   unsigned int txqueue);
1462 
1463 	void			(*ndo_get_stats64)(struct net_device *dev,
1464 						   struct rtnl_link_stats64 *storage);
1465 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1466 	int			(*ndo_get_offload_stats)(int attr_id,
1467 							 const struct net_device *dev,
1468 							 void *attr_data);
1469 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1470 
1471 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1472 						       __be16 proto, u16 vid);
1473 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1474 						        __be16 proto, u16 vid);
1475 #ifdef CONFIG_NET_POLL_CONTROLLER
1476 	void                    (*ndo_poll_controller)(struct net_device *dev);
1477 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1478 						     struct netpoll_info *info);
1479 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1480 #endif
1481 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1482 						  int queue, u8 *mac);
1483 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1484 						   int queue, u16 vlan,
1485 						   u8 qos, __be16 proto);
1486 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1487 						   int vf, int min_tx_rate,
1488 						   int max_tx_rate);
1489 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1490 						       int vf, bool setting);
1491 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1492 						    int vf, bool setting);
1493 	int			(*ndo_get_vf_config)(struct net_device *dev,
1494 						     int vf,
1495 						     struct ifla_vf_info *ivf);
1496 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1497 							 int vf, int link_state);
1498 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1499 						    int vf,
1500 						    struct ifla_vf_stats
1501 						    *vf_stats);
1502 	int			(*ndo_set_vf_port)(struct net_device *dev,
1503 						   int vf,
1504 						   struct nlattr *port[]);
1505 	int			(*ndo_get_vf_port)(struct net_device *dev,
1506 						   int vf, struct sk_buff *skb);
1507 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1508 						   int vf,
1509 						   struct ifla_vf_guid *node_guid,
1510 						   struct ifla_vf_guid *port_guid);
1511 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1512 						   int vf, u64 guid,
1513 						   int guid_type);
1514 	int			(*ndo_set_vf_rss_query_en)(
1515 						   struct net_device *dev,
1516 						   int vf, bool setting);
1517 	int			(*ndo_setup_tc)(struct net_device *dev,
1518 						enum tc_setup_type type,
1519 						void *type_data);
1520 #if IS_ENABLED(CONFIG_FCOE)
1521 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1522 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1523 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1524 						      u16 xid,
1525 						      struct scatterlist *sgl,
1526 						      unsigned int sgc);
1527 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1528 						     u16 xid);
1529 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1530 						       u16 xid,
1531 						       struct scatterlist *sgl,
1532 						       unsigned int sgc);
1533 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1534 							struct netdev_fcoe_hbainfo *hbainfo);
1535 #endif
1536 
1537 #if IS_ENABLED(CONFIG_LIBFCOE)
1538 #define NETDEV_FCOE_WWNN 0
1539 #define NETDEV_FCOE_WWPN 1
1540 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1541 						    u64 *wwn, int type);
1542 #endif
1543 
1544 #ifdef CONFIG_RFS_ACCEL
1545 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1546 						     const struct sk_buff *skb,
1547 						     u16 rxq_index,
1548 						     u32 flow_id);
1549 #endif
1550 	int			(*ndo_add_slave)(struct net_device *dev,
1551 						 struct net_device *slave_dev,
1552 						 struct netlink_ext_ack *extack);
1553 	int			(*ndo_del_slave)(struct net_device *dev,
1554 						 struct net_device *slave_dev);
1555 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1556 						      struct sk_buff *skb,
1557 						      bool all_slaves);
1558 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1559 							struct sock *sk);
1560 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1561 						    netdev_features_t features);
1562 	int			(*ndo_set_features)(struct net_device *dev,
1563 						    netdev_features_t features);
1564 	int			(*ndo_neigh_construct)(struct net_device *dev,
1565 						       struct neighbour *n);
1566 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1567 						     struct neighbour *n);
1568 
1569 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1570 					       struct nlattr *tb[],
1571 					       struct net_device *dev,
1572 					       const unsigned char *addr,
1573 					       u16 vid,
1574 					       u16 flags,
1575 					       struct netlink_ext_ack *extack);
1576 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1577 					       struct nlattr *tb[],
1578 					       struct net_device *dev,
1579 					       const unsigned char *addr,
1580 					       u16 vid, struct netlink_ext_ack *extack);
1581 	int			(*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1582 						    struct nlattr *tb[],
1583 						    struct net_device *dev,
1584 						    u16 vid,
1585 						    struct netlink_ext_ack *extack);
1586 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1587 						struct netlink_callback *cb,
1588 						struct net_device *dev,
1589 						struct net_device *filter_dev,
1590 						int *idx);
1591 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1592 					       struct nlattr *tb[],
1593 					       struct net_device *dev,
1594 					       const unsigned char *addr,
1595 					       u16 vid, u32 portid, u32 seq,
1596 					       struct netlink_ext_ack *extack);
1597 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1598 						      struct nlmsghdr *nlh,
1599 						      u16 flags,
1600 						      struct netlink_ext_ack *extack);
1601 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1602 						      u32 pid, u32 seq,
1603 						      struct net_device *dev,
1604 						      u32 filter_mask,
1605 						      int nlflags);
1606 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1607 						      struct nlmsghdr *nlh,
1608 						      u16 flags);
1609 	int			(*ndo_change_carrier)(struct net_device *dev,
1610 						      bool new_carrier);
1611 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1612 							struct netdev_phys_item_id *ppid);
1613 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1614 							  struct netdev_phys_item_id *ppid);
1615 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1616 							  char *name, size_t len);
1617 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1618 							struct net_device *dev);
1619 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1620 							void *priv);
1621 
1622 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1623 						      int queue_index,
1624 						      u32 maxrate);
1625 	int			(*ndo_get_iflink)(const struct net_device *dev);
1626 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1627 						       struct sk_buff *skb);
1628 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1629 						       int needed_headroom);
1630 	int			(*ndo_bpf)(struct net_device *dev,
1631 					   struct netdev_bpf *bpf);
1632 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1633 						struct xdp_frame **xdp,
1634 						u32 flags);
1635 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1636 							  struct xdp_buff *xdp);
1637 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1638 						  u32 queue_id, u32 flags);
1639 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1640 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1641 						  struct ip_tunnel_parm *p, int cmd);
1642 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1643 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1644                                                          struct net_device_path *path);
1645 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1646 						  const struct skb_shared_hwtstamps *hwtstamps,
1647 						  bool cycles);
1648 
1649 	ANDROID_KABI_RESERVE(1);
1650 	ANDROID_KABI_RESERVE(2);
1651 	ANDROID_KABI_RESERVE(3);
1652 	ANDROID_KABI_RESERVE(4);
1653 	ANDROID_KABI_RESERVE(5);
1654 	ANDROID_KABI_RESERVE(6);
1655 	ANDROID_KABI_RESERVE(7);
1656 	ANDROID_KABI_RESERVE(8);
1657 };
1658 
1659 /**
1660  * enum netdev_priv_flags - &struct net_device priv_flags
1661  *
1662  * These are the &struct net_device, they are only set internally
1663  * by drivers and used in the kernel. These flags are invisible to
1664  * userspace; this means that the order of these flags can change
1665  * during any kernel release.
1666  *
1667  * You should have a pretty good reason to be extending these flags.
1668  *
1669  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1670  * @IFF_EBRIDGE: Ethernet bridging device
1671  * @IFF_BONDING: bonding master or slave
1672  * @IFF_ISATAP: ISATAP interface (RFC4214)
1673  * @IFF_WAN_HDLC: WAN HDLC device
1674  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1675  *	release skb->dst
1676  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1677  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1678  * @IFF_MACVLAN_PORT: device used as macvlan port
1679  * @IFF_BRIDGE_PORT: device used as bridge port
1680  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1681  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1682  * @IFF_UNICAST_FLT: Supports unicast filtering
1683  * @IFF_TEAM_PORT: device used as team port
1684  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1685  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1686  *	change when it's running
1687  * @IFF_MACVLAN: Macvlan device
1688  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1689  *	underlying stacked devices
1690  * @IFF_L3MDEV_MASTER: device is an L3 master device
1691  * @IFF_NO_QUEUE: device can run without qdisc attached
1692  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1693  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1694  * @IFF_TEAM: device is a team device
1695  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1696  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1697  *	entity (i.e. the master device for bridged veth)
1698  * @IFF_MACSEC: device is a MACsec device
1699  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1700  * @IFF_FAILOVER: device is a failover master device
1701  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1702  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1703  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1704  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1705  *	skb_headlen(skb) == 0 (data starts from frag0)
1706  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1707  */
1708 enum netdev_priv_flags {
1709 	IFF_802_1Q_VLAN			= 1<<0,
1710 	IFF_EBRIDGE			= 1<<1,
1711 	IFF_BONDING			= 1<<2,
1712 	IFF_ISATAP			= 1<<3,
1713 	IFF_WAN_HDLC			= 1<<4,
1714 	IFF_XMIT_DST_RELEASE		= 1<<5,
1715 	IFF_DONT_BRIDGE			= 1<<6,
1716 	IFF_DISABLE_NETPOLL		= 1<<7,
1717 	IFF_MACVLAN_PORT		= 1<<8,
1718 	IFF_BRIDGE_PORT			= 1<<9,
1719 	IFF_OVS_DATAPATH		= 1<<10,
1720 	IFF_TX_SKB_SHARING		= 1<<11,
1721 	IFF_UNICAST_FLT			= 1<<12,
1722 	IFF_TEAM_PORT			= 1<<13,
1723 	IFF_SUPP_NOFCS			= 1<<14,
1724 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1725 	IFF_MACVLAN			= 1<<16,
1726 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1727 	IFF_L3MDEV_MASTER		= 1<<18,
1728 	IFF_NO_QUEUE			= 1<<19,
1729 	IFF_OPENVSWITCH			= 1<<20,
1730 	IFF_L3MDEV_SLAVE		= 1<<21,
1731 	IFF_TEAM			= 1<<22,
1732 	IFF_RXFH_CONFIGURED		= 1<<23,
1733 	IFF_PHONY_HEADROOM		= 1<<24,
1734 	IFF_MACSEC			= 1<<25,
1735 	IFF_NO_RX_HANDLER		= 1<<26,
1736 	IFF_FAILOVER			= 1<<27,
1737 	IFF_FAILOVER_SLAVE		= 1<<28,
1738 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1739 	IFF_LIVE_RENAME_OK		= 1<<30,
1740 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1741 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1742 };
1743 
1744 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1745 #define IFF_EBRIDGE			IFF_EBRIDGE
1746 #define IFF_BONDING			IFF_BONDING
1747 #define IFF_ISATAP			IFF_ISATAP
1748 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1749 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1750 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1751 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1752 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1753 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1754 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1755 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1756 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1757 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1758 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1759 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1760 #define IFF_MACVLAN			IFF_MACVLAN
1761 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1762 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1763 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1764 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1765 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1766 #define IFF_TEAM			IFF_TEAM
1767 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1768 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1769 #define IFF_MACSEC			IFF_MACSEC
1770 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1771 #define IFF_FAILOVER			IFF_FAILOVER
1772 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1773 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1774 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1775 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1776 
1777 /* Specifies the type of the struct net_device::ml_priv pointer */
1778 enum netdev_ml_priv_type {
1779 	ML_PRIV_NONE,
1780 	ML_PRIV_CAN,
1781 };
1782 
1783 /**
1784  *	struct net_device - The DEVICE structure.
1785  *
1786  *	Actually, this whole structure is a big mistake.  It mixes I/O
1787  *	data with strictly "high-level" data, and it has to know about
1788  *	almost every data structure used in the INET module.
1789  *
1790  *	@name:	This is the first field of the "visible" part of this structure
1791  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1792  *		of the interface.
1793  *
1794  *	@name_node:	Name hashlist node
1795  *	@ifalias:	SNMP alias
1796  *	@mem_end:	Shared memory end
1797  *	@mem_start:	Shared memory start
1798  *	@base_addr:	Device I/O address
1799  *	@irq:		Device IRQ number
1800  *
1801  *	@state:		Generic network queuing layer state, see netdev_state_t
1802  *	@dev_list:	The global list of network devices
1803  *	@napi_list:	List entry used for polling NAPI devices
1804  *	@unreg_list:	List entry  when we are unregistering the
1805  *			device; see the function unregister_netdev
1806  *	@close_list:	List entry used when we are closing the device
1807  *	@ptype_all:     Device-specific packet handlers for all protocols
1808  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1809  *
1810  *	@adj_list:	Directly linked devices, like slaves for bonding
1811  *	@features:	Currently active device features
1812  *	@hw_features:	User-changeable features
1813  *
1814  *	@wanted_features:	User-requested features
1815  *	@vlan_features:		Mask of features inheritable by VLAN devices
1816  *
1817  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1818  *				This field indicates what encapsulation
1819  *				offloads the hardware is capable of doing,
1820  *				and drivers will need to set them appropriately.
1821  *
1822  *	@mpls_features:	Mask of features inheritable by MPLS
1823  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1824  *
1825  *	@ifindex:	interface index
1826  *	@group:		The group the device belongs to
1827  *
1828  *	@stats:		Statistics struct, which was left as a legacy, use
1829  *			rtnl_link_stats64 instead
1830  *
1831  *	@core_stats:	core networking counters,
1832  *			do not use this in drivers
1833  *	@carrier_up_count:	Number of times the carrier has been up
1834  *	@carrier_down_count:	Number of times the carrier has been down
1835  *
1836  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1837  *				instead of ioctl,
1838  *				see <net/iw_handler.h> for details.
1839  *	@wireless_data:	Instance data managed by the core of wireless extensions
1840  *
1841  *	@netdev_ops:	Includes several pointers to callbacks,
1842  *			if one wants to override the ndo_*() functions
1843  *	@ethtool_ops:	Management operations
1844  *	@l3mdev_ops:	Layer 3 master device operations
1845  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1846  *			discovery handling. Necessary for e.g. 6LoWPAN.
1847  *	@xfrmdev_ops:	Transformation offload operations
1848  *	@tlsdev_ops:	Transport Layer Security offload operations
1849  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1850  *			of Layer 2 headers.
1851  *
1852  *	@flags:		Interface flags (a la BSD)
1853  *	@priv_flags:	Like 'flags' but invisible to userspace,
1854  *			see if.h for the definitions
1855  *	@gflags:	Global flags ( kept as legacy )
1856  *	@padded:	How much padding added by alloc_netdev()
1857  *	@operstate:	RFC2863 operstate
1858  *	@link_mode:	Mapping policy to operstate
1859  *	@if_port:	Selectable AUI, TP, ...
1860  *	@dma:		DMA channel
1861  *	@mtu:		Interface MTU value
1862  *	@min_mtu:	Interface Minimum MTU value
1863  *	@max_mtu:	Interface Maximum MTU value
1864  *	@type:		Interface hardware type
1865  *	@hard_header_len: Maximum hardware header length.
1866  *	@min_header_len:  Minimum hardware header length
1867  *
1868  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1869  *			  cases can this be guaranteed
1870  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1871  *			  cases can this be guaranteed. Some cases also use
1872  *			  LL_MAX_HEADER instead to allocate the skb
1873  *
1874  *	interface address info:
1875  *
1876  * 	@perm_addr:		Permanent hw address
1877  * 	@addr_assign_type:	Hw address assignment type
1878  * 	@addr_len:		Hardware address length
1879  *	@upper_level:		Maximum depth level of upper devices.
1880  *	@lower_level:		Maximum depth level of lower devices.
1881  *	@neigh_priv_len:	Used in neigh_alloc()
1882  * 	@dev_id:		Used to differentiate devices that share
1883  * 				the same link layer address
1884  * 	@dev_port:		Used to differentiate devices that share
1885  * 				the same function
1886  *	@addr_list_lock:	XXX: need comments on this one
1887  *	@name_assign_type:	network interface name assignment type
1888  *	@uc_promisc:		Counter that indicates promiscuous mode
1889  *				has been enabled due to the need to listen to
1890  *				additional unicast addresses in a device that
1891  *				does not implement ndo_set_rx_mode()
1892  *	@uc:			unicast mac addresses
1893  *	@mc:			multicast mac addresses
1894  *	@dev_addrs:		list of device hw addresses
1895  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1896  *	@promiscuity:		Number of times the NIC is told to work in
1897  *				promiscuous mode; if it becomes 0 the NIC will
1898  *				exit promiscuous mode
1899  *	@allmulti:		Counter, enables or disables allmulticast mode
1900  *
1901  *	@vlan_info:	VLAN info
1902  *	@dsa_ptr:	dsa specific data
1903  *	@tipc_ptr:	TIPC specific data
1904  *	@atalk_ptr:	AppleTalk link
1905  *	@ip_ptr:	IPv4 specific data
1906  *	@ip6_ptr:	IPv6 specific data
1907  *	@ax25_ptr:	AX.25 specific data
1908  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1909  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1910  *			 device struct
1911  *	@mpls_ptr:	mpls_dev struct pointer
1912  *	@mctp_ptr:	MCTP specific data
1913  *
1914  *	@dev_addr:	Hw address (before bcast,
1915  *			because most packets are unicast)
1916  *
1917  *	@_rx:			Array of RX queues
1918  *	@num_rx_queues:		Number of RX queues
1919  *				allocated at register_netdev() time
1920  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1921  *	@xdp_prog:		XDP sockets filter program pointer
1922  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1923  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1924  *				allow to avoid NIC hard IRQ, on busy queues.
1925  *
1926  *	@rx_handler:		handler for received packets
1927  *	@rx_handler_data: 	XXX: need comments on this one
1928  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1929  *				ingress processing
1930  *	@ingress_queue:		XXX: need comments on this one
1931  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1932  *	@broadcast:		hw bcast address
1933  *
1934  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1935  *			indexed by RX queue number. Assigned by driver.
1936  *			This must only be set if the ndo_rx_flow_steer
1937  *			operation is defined
1938  *	@index_hlist:		Device index hash chain
1939  *
1940  *	@_tx:			Array of TX queues
1941  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1942  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1943  *	@qdisc:			Root qdisc from userspace point of view
1944  *	@tx_queue_len:		Max frames per queue allowed
1945  *	@tx_global_lock: 	XXX: need comments on this one
1946  *	@xdp_bulkq:		XDP device bulk queue
1947  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1948  *
1949  *	@xps_maps:	XXX: need comments on this one
1950  *	@miniq_egress:		clsact qdisc specific data for
1951  *				egress processing
1952  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1953  *	@qdisc_hash:		qdisc hash table
1954  *	@watchdog_timeo:	Represents the timeout that is used by
1955  *				the watchdog (see dev_watchdog())
1956  *	@watchdog_timer:	List of timers
1957  *
1958  *	@proto_down_reason:	reason a netdev interface is held down
1959  *	@pcpu_refcnt:		Number of references to this device
1960  *	@dev_refcnt:		Number of references to this device
1961  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1962  *	@todo_list:		Delayed register/unregister
1963  *	@link_watch_list:	XXX: need comments on this one
1964  *
1965  *	@reg_state:		Register/unregister state machine
1966  *	@dismantle:		Device is going to be freed
1967  *	@rtnl_link_state:	This enum represents the phases of creating
1968  *				a new link
1969  *
1970  *	@needs_free_netdev:	Should unregister perform free_netdev?
1971  *	@priv_destructor:	Called from unregister
1972  *	@npinfo:		XXX: need comments on this one
1973  * 	@nd_net:		Network namespace this network device is inside
1974  *
1975  * 	@ml_priv:	Mid-layer private
1976  *	@ml_priv_type:  Mid-layer private type
1977  * 	@lstats:	Loopback statistics
1978  * 	@tstats:	Tunnel statistics
1979  * 	@dstats:	Dummy statistics
1980  * 	@vstats:	Virtual ethernet statistics
1981  *
1982  *	@garp_port:	GARP
1983  *	@mrp_port:	MRP
1984  *
1985  *	@dm_private:	Drop monitor private
1986  *
1987  *	@dev:		Class/net/name entry
1988  *	@sysfs_groups:	Space for optional device, statistics and wireless
1989  *			sysfs groups
1990  *
1991  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1992  *	@rtnl_link_ops:	Rtnl_link_ops
1993  *
1994  *	@gso_max_size:	Maximum size of generic segmentation offload
1995  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1996  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1997  *			NIC for GSO
1998  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1999  *
2000  *	@dcbnl_ops:	Data Center Bridging netlink ops
2001  *	@num_tc:	Number of traffic classes in the net device
2002  *	@tc_to_txq:	XXX: need comments on this one
2003  *	@prio_tc_map:	XXX: need comments on this one
2004  *
2005  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
2006  *
2007  *	@priomap:	XXX: need comments on this one
2008  *	@phydev:	Physical device may attach itself
2009  *			for hardware timestamping
2010  *	@sfp_bus:	attached &struct sfp_bus structure.
2011  *
2012  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
2013  *
2014  *	@proto_down:	protocol port state information can be sent to the
2015  *			switch driver and used to set the phys state of the
2016  *			switch port.
2017  *
2018  *	@wol_enabled:	Wake-on-LAN is enabled
2019  *
2020  *	@threaded:	napi threaded mode is enabled
2021  *
2022  *	@net_notifier_list:	List of per-net netdev notifier block
2023  *				that follow this device when it is moved
2024  *				to another network namespace.
2025  *
2026  *	@macsec_ops:    MACsec offloading ops
2027  *
2028  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
2029  *				offload capabilities of the device
2030  *	@udp_tunnel_nic:	UDP tunnel offload state
2031  *	@xdp_state:		stores info on attached XDP BPF programs
2032  *
2033  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2034  *			dev->addr_list_lock.
2035  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2036  *			keep a list of interfaces to be deleted.
2037  *	@gro_max_size:	Maximum size of aggregated packet in generic
2038  *			receive offload (GRO)
2039  *
2040  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2041  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2042  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2043  *	@dev_registered_tracker:	tracker for reference held while
2044  *					registered
2045  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2046  *
2047  *	FIXME: cleanup struct net_device such that network protocol info
2048  *	moves out.
2049  */
2050 
2051 struct net_device {
2052 	char			name[IFNAMSIZ];
2053 	struct netdev_name_node	*name_node;
2054 	struct dev_ifalias	__rcu *ifalias;
2055 	/*
2056 	 *	I/O specific fields
2057 	 *	FIXME: Merge these and struct ifmap into one
2058 	 */
2059 	unsigned long		mem_end;
2060 	unsigned long		mem_start;
2061 	unsigned long		base_addr;
2062 
2063 	/*
2064 	 *	Some hardware also needs these fields (state,dev_list,
2065 	 *	napi_list,unreg_list,close_list) but they are not
2066 	 *	part of the usual set specified in Space.c.
2067 	 */
2068 
2069 	unsigned long		state;
2070 
2071 	struct list_head	dev_list;
2072 	struct list_head	napi_list;
2073 	struct list_head	unreg_list;
2074 	struct list_head	close_list;
2075 	struct list_head	ptype_all;
2076 	struct list_head	ptype_specific;
2077 
2078 	struct {
2079 		struct list_head upper;
2080 		struct list_head lower;
2081 	} adj_list;
2082 
2083 	/* Read-mostly cache-line for fast-path access */
2084 	unsigned int		flags;
2085 	unsigned long long	priv_flags;
2086 	const struct net_device_ops *netdev_ops;
2087 	int			ifindex;
2088 	unsigned short		gflags;
2089 	unsigned short		hard_header_len;
2090 
2091 	/* Note : dev->mtu is often read without holding a lock.
2092 	 * Writers usually hold RTNL.
2093 	 * It is recommended to use READ_ONCE() to annotate the reads,
2094 	 * and to use WRITE_ONCE() to annotate the writes.
2095 	 */
2096 	unsigned int		mtu;
2097 	unsigned short		needed_headroom;
2098 	unsigned short		needed_tailroom;
2099 
2100 	netdev_features_t	features;
2101 	netdev_features_t	hw_features;
2102 	netdev_features_t	wanted_features;
2103 	netdev_features_t	vlan_features;
2104 	netdev_features_t	hw_enc_features;
2105 	netdev_features_t	mpls_features;
2106 	netdev_features_t	gso_partial_features;
2107 
2108 	unsigned int		min_mtu;
2109 	unsigned int		max_mtu;
2110 	unsigned short		type;
2111 	unsigned char		min_header_len;
2112 	unsigned char		name_assign_type;
2113 
2114 	int			group;
2115 
2116 	struct net_device_stats	stats; /* not used by modern drivers */
2117 
2118 	struct net_device_core_stats __percpu *core_stats;
2119 
2120 	/* Stats to monitor link on/off, flapping */
2121 	atomic_t		carrier_up_count;
2122 	atomic_t		carrier_down_count;
2123 
2124 	/* Android KMI hack to allow vendors to have their own wifi changes in modules */
2125 #ifdef __GENKSYMS__
2126 	void			*wireless_handlers;
2127 	void			*wireless_data;
2128 #else
2129 	const struct iw_handler_def *wireless_handlers;
2130 	struct iw_public_data	*wireless_data;
2131 #endif
2132 	const struct ethtool_ops *ethtool_ops;
2133 #ifdef CONFIG_NET_L3_MASTER_DEV
2134 	const struct l3mdev_ops	*l3mdev_ops;
2135 #endif
2136 #if IS_ENABLED(CONFIG_IPV6)
2137 	const struct ndisc_ops *ndisc_ops;
2138 #endif
2139 
2140 #ifdef CONFIG_XFRM_OFFLOAD
2141 	const struct xfrmdev_ops *xfrmdev_ops;
2142 #endif
2143 
2144 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2145 	const struct tlsdev_ops *tlsdev_ops;
2146 #endif
2147 
2148 	const struct header_ops *header_ops;
2149 
2150 	unsigned char		operstate;
2151 	unsigned char		link_mode;
2152 
2153 	unsigned char		if_port;
2154 	unsigned char		dma;
2155 
2156 	/* Interface address info. */
2157 	unsigned char		perm_addr[MAX_ADDR_LEN];
2158 	unsigned char		addr_assign_type;
2159 	unsigned char		addr_len;
2160 	unsigned char		upper_level;
2161 	unsigned char		lower_level;
2162 
2163 	unsigned short		neigh_priv_len;
2164 	unsigned short          dev_id;
2165 	unsigned short          dev_port;
2166 	unsigned short		padded;
2167 
2168 	spinlock_t		addr_list_lock;
2169 	int			irq;
2170 
2171 	struct netdev_hw_addr_list	uc;
2172 	struct netdev_hw_addr_list	mc;
2173 	struct netdev_hw_addr_list	dev_addrs;
2174 
2175 #ifdef CONFIG_SYSFS
2176 	struct kset		*queues_kset;
2177 #endif
2178 #ifdef CONFIG_LOCKDEP
2179 	struct list_head	unlink_list;
2180 #endif
2181 	unsigned int		promiscuity;
2182 	unsigned int		allmulti;
2183 	bool			uc_promisc;
2184 #ifdef CONFIG_LOCKDEP
2185 	unsigned char		nested_level;
2186 #endif
2187 
2188 
2189 	/* Protocol-specific pointers */
2190 
2191 	struct in_device __rcu	*ip_ptr;
2192 	struct inet6_dev __rcu	*ip6_ptr;
2193 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2194 	struct vlan_info __rcu	*vlan_info;
2195 #endif
2196 #if IS_ENABLED(CONFIG_NET_DSA)
2197 	struct dsa_port		*dsa_ptr;
2198 #endif
2199 #if IS_ENABLED(CONFIG_TIPC)
2200 	struct tipc_bearer __rcu *tipc_ptr;
2201 #endif
2202 #if IS_ENABLED(CONFIG_ATALK)
2203 	void 			*atalk_ptr;
2204 #endif
2205 #if IS_ENABLED(CONFIG_AX25)
2206 	void			*ax25_ptr;
2207 #endif
2208 	/* Android KMI hack to allow vendors to have their own wifi changes in modules */
2209 #ifdef __GENKSYMS__
2210 	void			*ieee80211_ptr;
2211 #else
2212 	struct wireless_dev	*ieee80211_ptr;
2213 #endif
2214 
2215 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2216 	struct wpan_dev		*ieee802154_ptr;
2217 #endif
2218 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2219 	struct mpls_dev __rcu	*mpls_ptr;
2220 #endif
2221 #if IS_ENABLED(CONFIG_MCTP)
2222 	struct mctp_dev __rcu	*mctp_ptr;
2223 #endif
2224 
2225 /*
2226  * Cache lines mostly used on receive path (including eth_type_trans())
2227  */
2228 	/* Interface address info used in eth_type_trans() */
2229 	const unsigned char	*dev_addr;
2230 
2231 	struct netdev_rx_queue	*_rx;
2232 	unsigned int		num_rx_queues;
2233 	unsigned int		real_num_rx_queues;
2234 
2235 	struct bpf_prog __rcu	*xdp_prog;
2236 	unsigned long		gro_flush_timeout;
2237 	int			napi_defer_hard_irqs;
2238 #define GRO_LEGACY_MAX_SIZE	65536u
2239 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2240  * and shinfo->gso_segs is a 16bit field.
2241  */
2242 #define GRO_MAX_SIZE		(8 * 65535u)
2243 	unsigned int		gro_max_size;
2244 	rx_handler_func_t __rcu	*rx_handler;
2245 	void __rcu		*rx_handler_data;
2246 
2247 #ifdef CONFIG_NET_CLS_ACT
2248 	struct mini_Qdisc __rcu	*miniq_ingress;
2249 #endif
2250 	struct netdev_queue __rcu *ingress_queue;
2251 #ifdef CONFIG_NETFILTER_INGRESS
2252 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2253 #endif
2254 
2255 	unsigned char		broadcast[MAX_ADDR_LEN];
2256 #ifdef CONFIG_RFS_ACCEL
2257 	struct cpu_rmap		*rx_cpu_rmap;
2258 #endif
2259 	struct hlist_node	index_hlist;
2260 
2261 /*
2262  * Cache lines mostly used on transmit path
2263  */
2264 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2265 	unsigned int		num_tx_queues;
2266 	unsigned int		real_num_tx_queues;
2267 	struct Qdisc __rcu	*qdisc;
2268 	unsigned int		tx_queue_len;
2269 	spinlock_t		tx_global_lock;
2270 
2271 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2272 
2273 #ifdef CONFIG_XPS
2274 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2275 #endif
2276 #ifdef CONFIG_NET_CLS_ACT
2277 	struct mini_Qdisc __rcu	*miniq_egress;
2278 #endif
2279 #ifdef CONFIG_NETFILTER_EGRESS
2280 	struct nf_hook_entries __rcu *nf_hooks_egress;
2281 #endif
2282 
2283 #ifdef CONFIG_NET_SCHED
2284 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2285 #endif
2286 	/* These may be needed for future network-power-down code. */
2287 	struct timer_list	watchdog_timer;
2288 	int			watchdog_timeo;
2289 
2290 	u32                     proto_down_reason;
2291 
2292 	struct list_head	todo_list;
2293 
2294 #ifdef CONFIG_PCPU_DEV_REFCNT
2295 	int __percpu		*pcpu_refcnt;
2296 #else
2297 	refcount_t		dev_refcnt;
2298 #endif
2299 	struct ref_tracker_dir	refcnt_tracker;
2300 
2301 	struct list_head	link_watch_list;
2302 
2303 	enum { NETREG_UNINITIALIZED=0,
2304 	       NETREG_REGISTERED,	/* completed register_netdevice */
2305 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2306 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2307 	       NETREG_RELEASED,		/* called free_netdev */
2308 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2309 	} reg_state:8;
2310 
2311 	bool dismantle;
2312 
2313 	enum {
2314 		RTNL_LINK_INITIALIZED,
2315 		RTNL_LINK_INITIALIZING,
2316 	} rtnl_link_state:16;
2317 
2318 	bool needs_free_netdev;
2319 	void (*priv_destructor)(struct net_device *dev);
2320 
2321 #ifdef CONFIG_NETPOLL
2322 	struct netpoll_info __rcu	*npinfo;
2323 #endif
2324 
2325 	possible_net_t			nd_net;
2326 
2327 	/* mid-layer private */
2328 	void				*ml_priv;
2329 	enum netdev_ml_priv_type	ml_priv_type;
2330 
2331 	union {
2332 		struct pcpu_lstats __percpu		*lstats;
2333 		struct pcpu_sw_netstats __percpu	*tstats;
2334 		struct pcpu_dstats __percpu		*dstats;
2335 	};
2336 
2337 #if IS_ENABLED(CONFIG_GARP)
2338 	struct garp_port __rcu	*garp_port;
2339 #endif
2340 #if IS_ENABLED(CONFIG_MRP)
2341 	struct mrp_port __rcu	*mrp_port;
2342 #endif
2343 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2344 	struct dm_hw_stat_delta __rcu *dm_private;
2345 #endif
2346 	struct device		dev;
2347 	const struct attribute_group *sysfs_groups[4];
2348 	const struct attribute_group *sysfs_rx_queue_group;
2349 
2350 	const struct rtnl_link_ops *rtnl_link_ops;
2351 
2352 	/* for setting kernel sock attribute on TCP connection setup */
2353 #define GSO_MAX_SEGS		65535u
2354 #define GSO_LEGACY_MAX_SIZE	65536u
2355 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2356  * and shinfo->gso_segs is a 16bit field.
2357  */
2358 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2359 
2360 	unsigned int		gso_max_size;
2361 #define TSO_LEGACY_MAX_SIZE	65536
2362 #define TSO_MAX_SIZE		UINT_MAX
2363 	unsigned int		tso_max_size;
2364 	u16			gso_max_segs;
2365 #define TSO_MAX_SEGS		U16_MAX
2366 	u16			tso_max_segs;
2367 
2368 #ifdef CONFIG_DCB
2369 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2370 #endif
2371 	s16			num_tc;
2372 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2373 	u8			prio_tc_map[TC_BITMASK + 1];
2374 
2375 #if IS_ENABLED(CONFIG_FCOE)
2376 	unsigned int		fcoe_ddp_xid;
2377 #endif
2378 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2379 	struct netprio_map __rcu *priomap;
2380 #endif
2381 	struct phy_device	*phydev;
2382 	struct sfp_bus		*sfp_bus;
2383 	struct lock_class_key	*qdisc_tx_busylock;
2384 	bool			proto_down;
2385 	unsigned		wol_enabled:1;
2386 	unsigned		threaded:1;
2387 
2388 	struct list_head	net_notifier_list;
2389 
2390 #if IS_ENABLED(CONFIG_MACSEC)
2391 	/* MACsec management functions */
2392 	const struct macsec_ops *macsec_ops;
2393 #endif
2394 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2395 	struct udp_tunnel_nic	*udp_tunnel_nic;
2396 
2397 	/* protected by rtnl_lock */
2398 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2399 
2400 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2401 	netdevice_tracker	linkwatch_dev_tracker;
2402 	netdevice_tracker	watchdog_dev_tracker;
2403 	netdevice_tracker	dev_registered_tracker;
2404 	struct rtnl_hw_stats64	*offload_xstats_l3;
2405 
2406 	ANDROID_KABI_RESERVE(1);
2407 	ANDROID_KABI_RESERVE(2);
2408 	ANDROID_KABI_RESERVE(3);
2409 	ANDROID_KABI_RESERVE(4);
2410 	ANDROID_KABI_RESERVE(5);
2411 	ANDROID_KABI_RESERVE(6);
2412 	ANDROID_KABI_RESERVE(7);
2413 	ANDROID_KABI_RESERVE(8);
2414 };
2415 #define to_net_dev(d) container_of(d, struct net_device, dev)
2416 
netif_elide_gro(const struct net_device * dev)2417 static inline bool netif_elide_gro(const struct net_device *dev)
2418 {
2419 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2420 		return true;
2421 	return false;
2422 }
2423 
2424 #define	NETDEV_ALIGN		32
2425 
2426 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)2427 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2428 {
2429 	return dev->prio_tc_map[prio & TC_BITMASK];
2430 }
2431 
2432 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)2433 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2434 {
2435 	if (tc >= dev->num_tc)
2436 		return -EINVAL;
2437 
2438 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2439 	return 0;
2440 }
2441 
2442 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2443 void netdev_reset_tc(struct net_device *dev);
2444 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2445 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2446 
2447 static inline
netdev_get_num_tc(struct net_device * dev)2448 int netdev_get_num_tc(struct net_device *dev)
2449 {
2450 	return dev->num_tc;
2451 }
2452 
net_prefetch(void * p)2453 static inline void net_prefetch(void *p)
2454 {
2455 	prefetch(p);
2456 #if L1_CACHE_BYTES < 128
2457 	prefetch((u8 *)p + L1_CACHE_BYTES);
2458 #endif
2459 }
2460 
net_prefetchw(void * p)2461 static inline void net_prefetchw(void *p)
2462 {
2463 	prefetchw(p);
2464 #if L1_CACHE_BYTES < 128
2465 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2466 #endif
2467 }
2468 
2469 void netdev_unbind_sb_channel(struct net_device *dev,
2470 			      struct net_device *sb_dev);
2471 int netdev_bind_sb_channel_queue(struct net_device *dev,
2472 				 struct net_device *sb_dev,
2473 				 u8 tc, u16 count, u16 offset);
2474 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
netdev_get_sb_channel(struct net_device * dev)2475 static inline int netdev_get_sb_channel(struct net_device *dev)
2476 {
2477 	return max_t(int, -dev->num_tc, 0);
2478 }
2479 
2480 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)2481 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2482 					 unsigned int index)
2483 {
2484 	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2485 	return &dev->_tx[index];
2486 }
2487 
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)2488 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2489 						    const struct sk_buff *skb)
2490 {
2491 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2492 }
2493 
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)2494 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2495 					    void (*f)(struct net_device *,
2496 						      struct netdev_queue *,
2497 						      void *),
2498 					    void *arg)
2499 {
2500 	unsigned int i;
2501 
2502 	for (i = 0; i < dev->num_tx_queues; i++)
2503 		f(dev, &dev->_tx[i], arg);
2504 }
2505 
2506 #define netdev_lockdep_set_classes(dev)				\
2507 {								\
2508 	static struct lock_class_key qdisc_tx_busylock_key;	\
2509 	static struct lock_class_key qdisc_xmit_lock_key;	\
2510 	static struct lock_class_key dev_addr_list_lock_key;	\
2511 	unsigned int i;						\
2512 								\
2513 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2514 	lockdep_set_class(&(dev)->addr_list_lock,		\
2515 			  &dev_addr_list_lock_key);		\
2516 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2517 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2518 				  &qdisc_xmit_lock_key);	\
2519 }
2520 
2521 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2522 		     struct net_device *sb_dev);
2523 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2524 					 struct sk_buff *skb,
2525 					 struct net_device *sb_dev);
2526 
2527 /* returns the headroom that the master device needs to take in account
2528  * when forwarding to this dev
2529  */
netdev_get_fwd_headroom(struct net_device * dev)2530 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2531 {
2532 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2533 }
2534 
netdev_set_rx_headroom(struct net_device * dev,int new_hr)2535 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2536 {
2537 	if (dev->netdev_ops->ndo_set_rx_headroom)
2538 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2539 }
2540 
2541 /* set the device rx headroom to the dev's default */
netdev_reset_rx_headroom(struct net_device * dev)2542 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2543 {
2544 	netdev_set_rx_headroom(dev, -1);
2545 }
2546 
netdev_get_ml_priv(struct net_device * dev,enum netdev_ml_priv_type type)2547 static inline void *netdev_get_ml_priv(struct net_device *dev,
2548 				       enum netdev_ml_priv_type type)
2549 {
2550 	if (dev->ml_priv_type != type)
2551 		return NULL;
2552 
2553 	return dev->ml_priv;
2554 }
2555 
netdev_set_ml_priv(struct net_device * dev,void * ml_priv,enum netdev_ml_priv_type type)2556 static inline void netdev_set_ml_priv(struct net_device *dev,
2557 				      void *ml_priv,
2558 				      enum netdev_ml_priv_type type)
2559 {
2560 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2561 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2562 	     dev->ml_priv_type, type);
2563 	WARN(!dev->ml_priv_type && dev->ml_priv,
2564 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2565 
2566 	dev->ml_priv = ml_priv;
2567 	dev->ml_priv_type = type;
2568 }
2569 
2570 /*
2571  * Net namespace inlines
2572  */
2573 static inline
dev_net(const struct net_device * dev)2574 struct net *dev_net(const struct net_device *dev)
2575 {
2576 	return read_pnet(&dev->nd_net);
2577 }
2578 
2579 static inline
dev_net_set(struct net_device * dev,struct net * net)2580 void dev_net_set(struct net_device *dev, struct net *net)
2581 {
2582 	write_pnet(&dev->nd_net, net);
2583 }
2584 
2585 /**
2586  *	netdev_priv - access network device private data
2587  *	@dev: network device
2588  *
2589  * Get network device private data
2590  */
netdev_priv(const struct net_device * dev)2591 static inline void *netdev_priv(const struct net_device *dev)
2592 {
2593 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2594 }
2595 
2596 /* Set the sysfs physical device reference for the network logical device
2597  * if set prior to registration will cause a symlink during initialization.
2598  */
2599 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2600 
2601 /* Set the sysfs device type for the network logical device to allow
2602  * fine-grained identification of different network device types. For
2603  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2604  */
2605 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2606 
2607 /* Default NAPI poll() weight
2608  * Device drivers are strongly advised to not use bigger value
2609  */
2610 #define NAPI_POLL_WEIGHT 64
2611 
2612 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2613 			   int (*poll)(struct napi_struct *, int), int weight);
2614 
2615 /**
2616  * netif_napi_add() - initialize a NAPI context
2617  * @dev:  network device
2618  * @napi: NAPI context
2619  * @poll: polling function
2620  *
2621  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2622  * *any* of the other NAPI-related functions.
2623  */
2624 static inline void
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int))2625 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2626 	       int (*poll)(struct napi_struct *, int))
2627 {
2628 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2629 }
2630 
2631 static inline void
netif_napi_add_tx_weight(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2632 netif_napi_add_tx_weight(struct net_device *dev,
2633 			 struct napi_struct *napi,
2634 			 int (*poll)(struct napi_struct *, int),
2635 			 int weight)
2636 {
2637 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2638 	netif_napi_add_weight(dev, napi, poll, weight);
2639 }
2640 
2641 /**
2642  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2643  * @dev:  network device
2644  * @napi: NAPI context
2645  * @poll: polling function
2646  *
2647  * This variant of netif_napi_add() should be used from drivers using NAPI
2648  * to exclusively poll a TX queue.
2649  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2650  */
netif_napi_add_tx(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int))2651 static inline void netif_napi_add_tx(struct net_device *dev,
2652 				     struct napi_struct *napi,
2653 				     int (*poll)(struct napi_struct *, int))
2654 {
2655 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2656 }
2657 
2658 /**
2659  *  __netif_napi_del - remove a NAPI context
2660  *  @napi: NAPI context
2661  *
2662  * Warning: caller must observe RCU grace period before freeing memory
2663  * containing @napi. Drivers might want to call this helper to combine
2664  * all the needed RCU grace periods into a single one.
2665  */
2666 void __netif_napi_del(struct napi_struct *napi);
2667 
2668 /**
2669  *  netif_napi_del - remove a NAPI context
2670  *  @napi: NAPI context
2671  *
2672  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2673  */
netif_napi_del(struct napi_struct * napi)2674 static inline void netif_napi_del(struct napi_struct *napi)
2675 {
2676 	__netif_napi_del(napi);
2677 	synchronize_net();
2678 }
2679 
2680 struct packet_type {
2681 	__be16			type;	/* This is really htons(ether_type). */
2682 	bool			ignore_outgoing;
2683 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2684 	netdevice_tracker	dev_tracker;
2685 	int			(*func) (struct sk_buff *,
2686 					 struct net_device *,
2687 					 struct packet_type *,
2688 					 struct net_device *);
2689 	void			(*list_func) (struct list_head *,
2690 					      struct packet_type *,
2691 					      struct net_device *);
2692 	bool			(*id_match)(struct packet_type *ptype,
2693 					    struct sock *sk);
2694 	struct net		*af_packet_net;
2695 	void			*af_packet_priv;
2696 	struct list_head	list;
2697 
2698 	ANDROID_KABI_RESERVE(1);
2699 	ANDROID_KABI_RESERVE(2);
2700 	ANDROID_KABI_RESERVE(3);
2701 	ANDROID_KABI_RESERVE(4);
2702 };
2703 
2704 struct offload_callbacks {
2705 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2706 						netdev_features_t features);
2707 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2708 						struct sk_buff *skb);
2709 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2710 };
2711 
2712 struct packet_offload {
2713 	__be16			 type;	/* This is really htons(ether_type). */
2714 	u16			 priority;
2715 	struct offload_callbacks callbacks;
2716 	struct list_head	 list;
2717 };
2718 
2719 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2720 struct pcpu_sw_netstats {
2721 	u64_stats_t		rx_packets;
2722 	u64_stats_t		rx_bytes;
2723 	u64_stats_t		tx_packets;
2724 	u64_stats_t		tx_bytes;
2725 	struct u64_stats_sync   syncp;
2726 } __aligned(4 * sizeof(u64));
2727 
2728 struct pcpu_lstats {
2729 	u64_stats_t packets;
2730 	u64_stats_t bytes;
2731 	struct u64_stats_sync syncp;
2732 } __aligned(2 * sizeof(u64));
2733 
2734 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2735 
dev_sw_netstats_rx_add(struct net_device * dev,unsigned int len)2736 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2737 {
2738 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2739 
2740 	u64_stats_update_begin(&tstats->syncp);
2741 	u64_stats_add(&tstats->rx_bytes, len);
2742 	u64_stats_inc(&tstats->rx_packets);
2743 	u64_stats_update_end(&tstats->syncp);
2744 }
2745 
dev_sw_netstats_tx_add(struct net_device * dev,unsigned int packets,unsigned int len)2746 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2747 					  unsigned int packets,
2748 					  unsigned int len)
2749 {
2750 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2751 
2752 	u64_stats_update_begin(&tstats->syncp);
2753 	u64_stats_add(&tstats->tx_bytes, len);
2754 	u64_stats_add(&tstats->tx_packets, packets);
2755 	u64_stats_update_end(&tstats->syncp);
2756 }
2757 
dev_lstats_add(struct net_device * dev,unsigned int len)2758 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2759 {
2760 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2761 
2762 	u64_stats_update_begin(&lstats->syncp);
2763 	u64_stats_add(&lstats->bytes, len);
2764 	u64_stats_inc(&lstats->packets);
2765 	u64_stats_update_end(&lstats->syncp);
2766 }
2767 
2768 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2769 ({									\
2770 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2771 	if (pcpu_stats)	{						\
2772 		int __cpu;						\
2773 		for_each_possible_cpu(__cpu) {				\
2774 			typeof(type) *stat;				\
2775 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2776 			u64_stats_init(&stat->syncp);			\
2777 		}							\
2778 	}								\
2779 	pcpu_stats;							\
2780 })
2781 
2782 #define netdev_alloc_pcpu_stats(type)					\
2783 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2784 
2785 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2786 ({									\
2787 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2788 	if (pcpu_stats) {						\
2789 		int __cpu;						\
2790 		for_each_possible_cpu(__cpu) {				\
2791 			typeof(type) *stat;				\
2792 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2793 			u64_stats_init(&stat->syncp);			\
2794 		}							\
2795 	}								\
2796 	pcpu_stats;							\
2797 })
2798 
2799 enum netdev_lag_tx_type {
2800 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2801 	NETDEV_LAG_TX_TYPE_RANDOM,
2802 	NETDEV_LAG_TX_TYPE_BROADCAST,
2803 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2804 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2805 	NETDEV_LAG_TX_TYPE_HASH,
2806 };
2807 
2808 enum netdev_lag_hash {
2809 	NETDEV_LAG_HASH_NONE,
2810 	NETDEV_LAG_HASH_L2,
2811 	NETDEV_LAG_HASH_L34,
2812 	NETDEV_LAG_HASH_L23,
2813 	NETDEV_LAG_HASH_E23,
2814 	NETDEV_LAG_HASH_E34,
2815 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2816 	NETDEV_LAG_HASH_UNKNOWN,
2817 };
2818 
2819 struct netdev_lag_upper_info {
2820 	enum netdev_lag_tx_type tx_type;
2821 	enum netdev_lag_hash hash_type;
2822 };
2823 
2824 struct netdev_lag_lower_state_info {
2825 	u8 link_up : 1,
2826 	   tx_enabled : 1;
2827 };
2828 
2829 #include <linux/notifier.h>
2830 
2831 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2832  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2833  * adding new types.
2834  */
2835 enum netdev_cmd {
2836 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2837 	NETDEV_DOWN,
2838 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2839 				   detected a hardware crash and restarted
2840 				   - we can use this eg to kick tcp sessions
2841 				   once done */
2842 	NETDEV_CHANGE,		/* Notify device state change */
2843 	NETDEV_REGISTER,
2844 	NETDEV_UNREGISTER,
2845 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2846 	NETDEV_CHANGEADDR,	/* notify after the address change */
2847 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2848 	NETDEV_GOING_DOWN,
2849 	NETDEV_CHANGENAME,
2850 	NETDEV_FEAT_CHANGE,
2851 	NETDEV_BONDING_FAILOVER,
2852 	NETDEV_PRE_UP,
2853 	NETDEV_PRE_TYPE_CHANGE,
2854 	NETDEV_POST_TYPE_CHANGE,
2855 	NETDEV_POST_INIT,
2856 	NETDEV_RELEASE,
2857 	NETDEV_NOTIFY_PEERS,
2858 	NETDEV_JOIN,
2859 	NETDEV_CHANGEUPPER,
2860 	NETDEV_RESEND_IGMP,
2861 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2862 	NETDEV_CHANGEINFODATA,
2863 	NETDEV_BONDING_INFO,
2864 	NETDEV_PRECHANGEUPPER,
2865 	NETDEV_CHANGELOWERSTATE,
2866 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2867 	NETDEV_UDP_TUNNEL_DROP_INFO,
2868 	NETDEV_CHANGE_TX_QUEUE_LEN,
2869 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2870 	NETDEV_CVLAN_FILTER_DROP_INFO,
2871 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2872 	NETDEV_SVLAN_FILTER_DROP_INFO,
2873 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2874 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2875 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2876 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2877 };
2878 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2879 
2880 int register_netdevice_notifier(struct notifier_block *nb);
2881 int unregister_netdevice_notifier(struct notifier_block *nb);
2882 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2883 int unregister_netdevice_notifier_net(struct net *net,
2884 				      struct notifier_block *nb);
2885 int register_netdevice_notifier_dev_net(struct net_device *dev,
2886 					struct notifier_block *nb,
2887 					struct netdev_net_notifier *nn);
2888 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2889 					  struct notifier_block *nb,
2890 					  struct netdev_net_notifier *nn);
2891 
2892 struct netdev_notifier_info {
2893 	struct net_device	*dev;
2894 	struct netlink_ext_ack	*extack;
2895 };
2896 
2897 struct netdev_notifier_info_ext {
2898 	struct netdev_notifier_info info; /* must be first */
2899 	union {
2900 		u32 mtu;
2901 	} ext;
2902 };
2903 
2904 struct netdev_notifier_change_info {
2905 	struct netdev_notifier_info info; /* must be first */
2906 	unsigned int flags_changed;
2907 };
2908 
2909 struct netdev_notifier_changeupper_info {
2910 	struct netdev_notifier_info info; /* must be first */
2911 	struct net_device *upper_dev; /* new upper dev */
2912 	bool master; /* is upper dev master */
2913 	bool linking; /* is the notification for link or unlink */
2914 	void *upper_info; /* upper dev info */
2915 };
2916 
2917 struct netdev_notifier_changelowerstate_info {
2918 	struct netdev_notifier_info info; /* must be first */
2919 	void *lower_state_info; /* is lower dev state */
2920 };
2921 
2922 struct netdev_notifier_pre_changeaddr_info {
2923 	struct netdev_notifier_info info; /* must be first */
2924 	const unsigned char *dev_addr;
2925 };
2926 
2927 enum netdev_offload_xstats_type {
2928 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2929 };
2930 
2931 struct netdev_notifier_offload_xstats_info {
2932 	struct netdev_notifier_info info; /* must be first */
2933 	enum netdev_offload_xstats_type type;
2934 
2935 	union {
2936 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2937 		struct netdev_notifier_offload_xstats_rd *report_delta;
2938 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2939 		struct netdev_notifier_offload_xstats_ru *report_used;
2940 	};
2941 };
2942 
2943 int netdev_offload_xstats_enable(struct net_device *dev,
2944 				 enum netdev_offload_xstats_type type,
2945 				 struct netlink_ext_ack *extack);
2946 int netdev_offload_xstats_disable(struct net_device *dev,
2947 				  enum netdev_offload_xstats_type type);
2948 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2949 				   enum netdev_offload_xstats_type type);
2950 int netdev_offload_xstats_get(struct net_device *dev,
2951 			      enum netdev_offload_xstats_type type,
2952 			      struct rtnl_hw_stats64 *stats, bool *used,
2953 			      struct netlink_ext_ack *extack);
2954 void
2955 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2956 				   const struct rtnl_hw_stats64 *stats);
2957 void
2958 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2959 void netdev_offload_xstats_push_delta(struct net_device *dev,
2960 				      enum netdev_offload_xstats_type type,
2961 				      const struct rtnl_hw_stats64 *stats);
2962 
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)2963 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2964 					     struct net_device *dev)
2965 {
2966 	info->dev = dev;
2967 	info->extack = NULL;
2968 }
2969 
2970 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)2971 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2972 {
2973 	return info->dev;
2974 }
2975 
2976 static inline struct netlink_ext_ack *
netdev_notifier_info_to_extack(const struct netdev_notifier_info * info)2977 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2978 {
2979 	return info->extack;
2980 }
2981 
2982 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2983 
2984 
2985 extern rwlock_t				dev_base_lock;		/* Device list lock */
2986 
2987 #define for_each_netdev(net, d)		\
2988 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2989 #define for_each_netdev_reverse(net, d)	\
2990 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2991 #define for_each_netdev_rcu(net, d)		\
2992 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2993 #define for_each_netdev_safe(net, d, n)	\
2994 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2995 #define for_each_netdev_continue(net, d)		\
2996 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2997 #define for_each_netdev_continue_reverse(net, d)		\
2998 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2999 						     dev_list)
3000 #define for_each_netdev_continue_rcu(net, d)		\
3001 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3002 #define for_each_netdev_in_bond_rcu(bond, slave)	\
3003 		for_each_netdev_rcu(&init_net, slave)	\
3004 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3005 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3006 
next_net_device(struct net_device * dev)3007 static inline struct net_device *next_net_device(struct net_device *dev)
3008 {
3009 	struct list_head *lh;
3010 	struct net *net;
3011 
3012 	net = dev_net(dev);
3013 	lh = dev->dev_list.next;
3014 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3015 }
3016 
next_net_device_rcu(struct net_device * dev)3017 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3018 {
3019 	struct list_head *lh;
3020 	struct net *net;
3021 
3022 	net = dev_net(dev);
3023 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3024 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3025 }
3026 
first_net_device(struct net * net)3027 static inline struct net_device *first_net_device(struct net *net)
3028 {
3029 	return list_empty(&net->dev_base_head) ? NULL :
3030 		net_device_entry(net->dev_base_head.next);
3031 }
3032 
first_net_device_rcu(struct net * net)3033 static inline struct net_device *first_net_device_rcu(struct net *net)
3034 {
3035 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3036 
3037 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3038 }
3039 
3040 int netdev_boot_setup_check(struct net_device *dev);
3041 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3042 				       const char *hwaddr);
3043 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3044 void dev_add_pack(struct packet_type *pt);
3045 void dev_remove_pack(struct packet_type *pt);
3046 void __dev_remove_pack(struct packet_type *pt);
3047 void dev_add_offload(struct packet_offload *po);
3048 void dev_remove_offload(struct packet_offload *po);
3049 
3050 int dev_get_iflink(const struct net_device *dev);
3051 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3052 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3053 			  struct net_device_path_stack *stack);
3054 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3055 				      unsigned short mask);
3056 struct net_device *dev_get_by_name(struct net *net, const char *name);
3057 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3058 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3059 bool netdev_name_in_use(struct net *net, const char *name);
3060 int dev_alloc_name(struct net_device *dev, const char *name);
3061 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3062 void dev_close(struct net_device *dev);
3063 void dev_close_many(struct list_head *head, bool unlink);
3064 void dev_disable_lro(struct net_device *dev);
3065 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3066 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3067 		     struct net_device *sb_dev);
3068 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3069 		       struct net_device *sb_dev);
3070 
3071 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3072 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3073 
dev_queue_xmit(struct sk_buff * skb)3074 static inline int dev_queue_xmit(struct sk_buff *skb)
3075 {
3076 	return __dev_queue_xmit(skb, NULL);
3077 }
3078 
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)3079 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3080 				       struct net_device *sb_dev)
3081 {
3082 	return __dev_queue_xmit(skb, sb_dev);
3083 }
3084 
dev_direct_xmit(struct sk_buff * skb,u16 queue_id)3085 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3086 {
3087 	int ret;
3088 
3089 	ret = __dev_direct_xmit(skb, queue_id);
3090 	if (!dev_xmit_complete(ret))
3091 		kfree_skb(skb);
3092 	return ret;
3093 }
3094 
3095 int register_netdevice(struct net_device *dev);
3096 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3097 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)3098 static inline void unregister_netdevice(struct net_device *dev)
3099 {
3100 	unregister_netdevice_queue(dev, NULL);
3101 }
3102 
3103 int netdev_refcnt_read(const struct net_device *dev);
3104 void free_netdev(struct net_device *dev);
3105 void netdev_freemem(struct net_device *dev);
3106 int init_dummy_netdev(struct net_device *dev);
3107 
3108 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3109 					 struct sk_buff *skb,
3110 					 bool all_slaves);
3111 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3112 					    struct sock *sk);
3113 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3114 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3115 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3116 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3117 int dev_restart(struct net_device *dev);
3118 
3119 
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)3120 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3121 				  unsigned short type,
3122 				  const void *daddr, const void *saddr,
3123 				  unsigned int len)
3124 {
3125 	if (!dev->header_ops || !dev->header_ops->create)
3126 		return 0;
3127 
3128 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3129 }
3130 
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)3131 static inline int dev_parse_header(const struct sk_buff *skb,
3132 				   unsigned char *haddr)
3133 {
3134 	const struct net_device *dev = skb->dev;
3135 
3136 	if (!dev->header_ops || !dev->header_ops->parse)
3137 		return 0;
3138 	return dev->header_ops->parse(skb, haddr);
3139 }
3140 
dev_parse_header_protocol(const struct sk_buff * skb)3141 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3142 {
3143 	const struct net_device *dev = skb->dev;
3144 
3145 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3146 		return 0;
3147 	return dev->header_ops->parse_protocol(skb);
3148 }
3149 
3150 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)3151 static inline bool dev_validate_header(const struct net_device *dev,
3152 				       char *ll_header, int len)
3153 {
3154 	if (likely(len >= dev->hard_header_len))
3155 		return true;
3156 	if (len < dev->min_header_len)
3157 		return false;
3158 
3159 	if (capable(CAP_SYS_RAWIO)) {
3160 		memset(ll_header + len, 0, dev->hard_header_len - len);
3161 		return true;
3162 	}
3163 
3164 	if (dev->header_ops && dev->header_ops->validate)
3165 		return dev->header_ops->validate(ll_header, len);
3166 
3167 	return false;
3168 }
3169 
dev_has_header(const struct net_device * dev)3170 static inline bool dev_has_header(const struct net_device *dev)
3171 {
3172 	return dev->header_ops && dev->header_ops->create;
3173 }
3174 
3175 /*
3176  * Incoming packets are placed on per-CPU queues
3177  */
3178 struct softnet_data {
3179 	struct list_head	poll_list;
3180 	struct sk_buff_head	process_queue;
3181 
3182 	/* stats */
3183 	unsigned int		processed;
3184 	unsigned int		time_squeeze;
3185 	unsigned int		received_rps;
3186 #ifdef CONFIG_RPS
3187 	struct softnet_data	*rps_ipi_list;
3188 #endif
3189 #ifdef CONFIG_NET_FLOW_LIMIT
3190 	struct sd_flow_limit __rcu *flow_limit;
3191 #endif
3192 	struct Qdisc		*output_queue;
3193 	struct Qdisc		**output_queue_tailp;
3194 	struct sk_buff		*completion_queue;
3195 #ifdef CONFIG_XFRM_OFFLOAD
3196 	struct sk_buff_head	xfrm_backlog;
3197 #endif
3198 	/* written and read only by owning cpu: */
3199 	struct {
3200 		u16 recursion;
3201 		u8  more;
3202 #ifdef CONFIG_NET_EGRESS
3203 		u8  skip_txqueue;
3204 #endif
3205 	} xmit;
3206 #ifdef CONFIG_RPS
3207 	/* input_queue_head should be written by cpu owning this struct,
3208 	 * and only read by other cpus. Worth using a cache line.
3209 	 */
3210 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3211 
3212 	/* Elements below can be accessed between CPUs for RPS/RFS */
3213 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3214 	struct softnet_data	*rps_ipi_next;
3215 	unsigned int		cpu;
3216 	unsigned int		input_queue_tail;
3217 #endif
3218 	unsigned int		dropped;
3219 	struct sk_buff_head	input_pkt_queue;
3220 	struct napi_struct	backlog;
3221 
3222 	/* Another possibly contended cache line */
3223 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3224 	int			defer_count;
3225 	int			defer_ipi_scheduled;
3226 	struct sk_buff		*defer_list;
3227 	call_single_data_t	defer_csd;
3228 };
3229 
input_queue_head_incr(struct softnet_data * sd)3230 static inline void input_queue_head_incr(struct softnet_data *sd)
3231 {
3232 #ifdef CONFIG_RPS
3233 	sd->input_queue_head++;
3234 #endif
3235 }
3236 
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)3237 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3238 					      unsigned int *qtail)
3239 {
3240 #ifdef CONFIG_RPS
3241 	*qtail = ++sd->input_queue_tail;
3242 #endif
3243 }
3244 
3245 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3246 
dev_recursion_level(void)3247 static inline int dev_recursion_level(void)
3248 {
3249 	return this_cpu_read(softnet_data.xmit.recursion);
3250 }
3251 
3252 #define XMIT_RECURSION_LIMIT	8
dev_xmit_recursion(void)3253 static inline bool dev_xmit_recursion(void)
3254 {
3255 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3256 			XMIT_RECURSION_LIMIT);
3257 }
3258 
dev_xmit_recursion_inc(void)3259 static inline void dev_xmit_recursion_inc(void)
3260 {
3261 	__this_cpu_inc(softnet_data.xmit.recursion);
3262 }
3263 
dev_xmit_recursion_dec(void)3264 static inline void dev_xmit_recursion_dec(void)
3265 {
3266 	__this_cpu_dec(softnet_data.xmit.recursion);
3267 }
3268 
3269 void __netif_schedule(struct Qdisc *q);
3270 void netif_schedule_queue(struct netdev_queue *txq);
3271 
netif_tx_schedule_all(struct net_device * dev)3272 static inline void netif_tx_schedule_all(struct net_device *dev)
3273 {
3274 	unsigned int i;
3275 
3276 	for (i = 0; i < dev->num_tx_queues; i++)
3277 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3278 }
3279 
netif_tx_start_queue(struct netdev_queue * dev_queue)3280 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3281 {
3282 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3283 }
3284 
3285 /**
3286  *	netif_start_queue - allow transmit
3287  *	@dev: network device
3288  *
3289  *	Allow upper layers to call the device hard_start_xmit routine.
3290  */
netif_start_queue(struct net_device * dev)3291 static inline void netif_start_queue(struct net_device *dev)
3292 {
3293 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3294 }
3295 
netif_tx_start_all_queues(struct net_device * dev)3296 static inline void netif_tx_start_all_queues(struct net_device *dev)
3297 {
3298 	unsigned int i;
3299 
3300 	for (i = 0; i < dev->num_tx_queues; i++) {
3301 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3302 		netif_tx_start_queue(txq);
3303 	}
3304 }
3305 
3306 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3307 
3308 /**
3309  *	netif_wake_queue - restart transmit
3310  *	@dev: network device
3311  *
3312  *	Allow upper layers to call the device hard_start_xmit routine.
3313  *	Used for flow control when transmit resources are available.
3314  */
netif_wake_queue(struct net_device * dev)3315 static inline void netif_wake_queue(struct net_device *dev)
3316 {
3317 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3318 }
3319 
netif_tx_wake_all_queues(struct net_device * dev)3320 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3321 {
3322 	unsigned int i;
3323 
3324 	for (i = 0; i < dev->num_tx_queues; i++) {
3325 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3326 		netif_tx_wake_queue(txq);
3327 	}
3328 }
3329 
netif_tx_stop_queue(struct netdev_queue * dev_queue)3330 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3331 {
3332 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3333 }
3334 
3335 /**
3336  *	netif_stop_queue - stop transmitted packets
3337  *	@dev: network device
3338  *
3339  *	Stop upper layers calling the device hard_start_xmit routine.
3340  *	Used for flow control when transmit resources are unavailable.
3341  */
netif_stop_queue(struct net_device * dev)3342 static inline void netif_stop_queue(struct net_device *dev)
3343 {
3344 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3345 }
3346 
3347 void netif_tx_stop_all_queues(struct net_device *dev);
3348 
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)3349 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3350 {
3351 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3352 }
3353 
3354 /**
3355  *	netif_queue_stopped - test if transmit queue is flowblocked
3356  *	@dev: network device
3357  *
3358  *	Test if transmit queue on device is currently unable to send.
3359  */
netif_queue_stopped(const struct net_device * dev)3360 static inline bool netif_queue_stopped(const struct net_device *dev)
3361 {
3362 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3363 }
3364 
netif_xmit_stopped(const struct netdev_queue * dev_queue)3365 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3366 {
3367 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3368 }
3369 
3370 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)3371 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3372 {
3373 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3374 }
3375 
3376 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)3377 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3378 {
3379 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3380 }
3381 
3382 /**
3383  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3384  *	@dev_queue: pointer to transmit queue
3385  *	@min_limit: dql minimum limit
3386  *
3387  * Forces xmit_more() to return true until the minimum threshold
3388  * defined by @min_limit is reached (or until the tx queue is
3389  * empty). Warning: to be use with care, misuse will impact the
3390  * latency.
3391  */
netdev_queue_set_dql_min_limit(struct netdev_queue * dev_queue,unsigned int min_limit)3392 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3393 						  unsigned int min_limit)
3394 {
3395 #ifdef CONFIG_BQL
3396 	dev_queue->dql.min_limit = min_limit;
3397 #endif
3398 }
3399 
3400 /**
3401  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3402  *	@dev_queue: pointer to transmit queue
3403  *
3404  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3405  * to give appropriate hint to the CPU.
3406  */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)3407 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3408 {
3409 #ifdef CONFIG_BQL
3410 	prefetchw(&dev_queue->dql.num_queued);
3411 #endif
3412 }
3413 
3414 /**
3415  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3416  *	@dev_queue: pointer to transmit queue
3417  *
3418  * BQL enabled drivers might use this helper in their TX completion path,
3419  * to give appropriate hint to the CPU.
3420  */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)3421 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3422 {
3423 #ifdef CONFIG_BQL
3424 	prefetchw(&dev_queue->dql.limit);
3425 #endif
3426 }
3427 
3428 /**
3429  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3430  *	@dev_queue: network device queue
3431  *	@bytes: number of bytes queued to the device queue
3432  *
3433  *	Report the number of bytes queued for sending/completion to the network
3434  *	device hardware queue. @bytes should be a good approximation and should
3435  *	exactly match netdev_completed_queue() @bytes.
3436  *	This is typically called once per packet, from ndo_start_xmit().
3437  */
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)3438 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3439 					unsigned int bytes)
3440 {
3441 #ifdef CONFIG_BQL
3442 	dql_queued(&dev_queue->dql, bytes);
3443 
3444 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3445 		return;
3446 
3447 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3448 
3449 	/*
3450 	 * The XOFF flag must be set before checking the dql_avail below,
3451 	 * because in netdev_tx_completed_queue we update the dql_completed
3452 	 * before checking the XOFF flag.
3453 	 */
3454 	smp_mb();
3455 
3456 	/* check again in case another CPU has just made room avail */
3457 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3458 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3459 #endif
3460 }
3461 
3462 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3463  * that they should not test BQL status themselves.
3464  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3465  * skb of a batch.
3466  * Returns true if the doorbell must be used to kick the NIC.
3467  */
__netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes,bool xmit_more)3468 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3469 					  unsigned int bytes,
3470 					  bool xmit_more)
3471 {
3472 	if (xmit_more) {
3473 #ifdef CONFIG_BQL
3474 		dql_queued(&dev_queue->dql, bytes);
3475 #endif
3476 		return netif_tx_queue_stopped(dev_queue);
3477 	}
3478 	netdev_tx_sent_queue(dev_queue, bytes);
3479 	return true;
3480 }
3481 
3482 /**
3483  *	netdev_sent_queue - report the number of bytes queued to hardware
3484  *	@dev: network device
3485  *	@bytes: number of bytes queued to the hardware device queue
3486  *
3487  *	Report the number of bytes queued for sending/completion to the network
3488  *	device hardware queue#0. @bytes should be a good approximation and should
3489  *	exactly match netdev_completed_queue() @bytes.
3490  *	This is typically called once per packet, from ndo_start_xmit().
3491  */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)3492 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3493 {
3494 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3495 }
3496 
__netdev_sent_queue(struct net_device * dev,unsigned int bytes,bool xmit_more)3497 static inline bool __netdev_sent_queue(struct net_device *dev,
3498 				       unsigned int bytes,
3499 				       bool xmit_more)
3500 {
3501 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3502 				      xmit_more);
3503 }
3504 
3505 /**
3506  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3507  *	@dev_queue: network device queue
3508  *	@pkts: number of packets (currently ignored)
3509  *	@bytes: number of bytes dequeued from the device queue
3510  *
3511  *	Must be called at most once per TX completion round (and not per
3512  *	individual packet), so that BQL can adjust its limits appropriately.
3513  */
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)3514 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3515 					     unsigned int pkts, unsigned int bytes)
3516 {
3517 #ifdef CONFIG_BQL
3518 	if (unlikely(!bytes))
3519 		return;
3520 
3521 	dql_completed(&dev_queue->dql, bytes);
3522 
3523 	/*
3524 	 * Without the memory barrier there is a small possiblity that
3525 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3526 	 * be stopped forever
3527 	 */
3528 	smp_mb();
3529 
3530 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3531 		return;
3532 
3533 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3534 		netif_schedule_queue(dev_queue);
3535 #endif
3536 }
3537 
3538 /**
3539  * 	netdev_completed_queue - report bytes and packets completed by device
3540  * 	@dev: network device
3541  * 	@pkts: actual number of packets sent over the medium
3542  * 	@bytes: actual number of bytes sent over the medium
3543  *
3544  * 	Report the number of bytes and packets transmitted by the network device
3545  * 	hardware queue over the physical medium, @bytes must exactly match the
3546  * 	@bytes amount passed to netdev_sent_queue()
3547  */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)3548 static inline void netdev_completed_queue(struct net_device *dev,
3549 					  unsigned int pkts, unsigned int bytes)
3550 {
3551 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3552 }
3553 
netdev_tx_reset_queue(struct netdev_queue * q)3554 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3555 {
3556 #ifdef CONFIG_BQL
3557 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3558 	dql_reset(&q->dql);
3559 #endif
3560 }
3561 
3562 /**
3563  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3564  * 	@dev_queue: network device
3565  *
3566  * 	Reset the bytes and packet count of a network device and clear the
3567  * 	software flow control OFF bit for this network device
3568  */
netdev_reset_queue(struct net_device * dev_queue)3569 static inline void netdev_reset_queue(struct net_device *dev_queue)
3570 {
3571 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3572 }
3573 
3574 /**
3575  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3576  * 	@dev: network device
3577  * 	@queue_index: given tx queue index
3578  *
3579  * 	Returns 0 if given tx queue index >= number of device tx queues,
3580  * 	otherwise returns the originally passed tx queue index.
3581  */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)3582 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3583 {
3584 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3585 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3586 				     dev->name, queue_index,
3587 				     dev->real_num_tx_queues);
3588 		return 0;
3589 	}
3590 
3591 	return queue_index;
3592 }
3593 
3594 /**
3595  *	netif_running - test if up
3596  *	@dev: network device
3597  *
3598  *	Test if the device has been brought up.
3599  */
netif_running(const struct net_device * dev)3600 static inline bool netif_running(const struct net_device *dev)
3601 {
3602 	return test_bit(__LINK_STATE_START, &dev->state);
3603 }
3604 
3605 /*
3606  * Routines to manage the subqueues on a device.  We only need start,
3607  * stop, and a check if it's stopped.  All other device management is
3608  * done at the overall netdevice level.
3609  * Also test the device if we're multiqueue.
3610  */
3611 
3612 /**
3613  *	netif_start_subqueue - allow sending packets on subqueue
3614  *	@dev: network device
3615  *	@queue_index: sub queue index
3616  *
3617  * Start individual transmit queue of a device with multiple transmit queues.
3618  */
netif_start_subqueue(struct net_device * dev,u16 queue_index)3619 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3620 {
3621 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3622 
3623 	netif_tx_start_queue(txq);
3624 }
3625 
3626 /**
3627  *	netif_stop_subqueue - stop sending packets on subqueue
3628  *	@dev: network device
3629  *	@queue_index: sub queue index
3630  *
3631  * Stop individual transmit queue of a device with multiple transmit queues.
3632  */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)3633 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3634 {
3635 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3636 	netif_tx_stop_queue(txq);
3637 }
3638 
3639 /**
3640  *	__netif_subqueue_stopped - test status of subqueue
3641  *	@dev: network device
3642  *	@queue_index: sub queue index
3643  *
3644  * Check individual transmit queue of a device with multiple transmit queues.
3645  */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)3646 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3647 					    u16 queue_index)
3648 {
3649 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3650 
3651 	return netif_tx_queue_stopped(txq);
3652 }
3653 
3654 /**
3655  *	netif_subqueue_stopped - test status of subqueue
3656  *	@dev: network device
3657  *	@skb: sub queue buffer pointer
3658  *
3659  * Check individual transmit queue of a device with multiple transmit queues.
3660  */
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)3661 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3662 					  struct sk_buff *skb)
3663 {
3664 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3665 }
3666 
3667 /**
3668  *	netif_wake_subqueue - allow sending packets on subqueue
3669  *	@dev: network device
3670  *	@queue_index: sub queue index
3671  *
3672  * Resume individual transmit queue of a device with multiple transmit queues.
3673  */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)3674 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3675 {
3676 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3677 
3678 	netif_tx_wake_queue(txq);
3679 }
3680 
3681 #ifdef CONFIG_XPS
3682 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3683 			u16 index);
3684 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3685 			  u16 index, enum xps_map_type type);
3686 
3687 /**
3688  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3689  *	@j: CPU/Rx queue index
3690  *	@mask: bitmask of all cpus/rx queues
3691  *	@nr_bits: number of bits in the bitmask
3692  *
3693  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3694  */
netif_attr_test_mask(unsigned long j,const unsigned long * mask,unsigned int nr_bits)3695 static inline bool netif_attr_test_mask(unsigned long j,
3696 					const unsigned long *mask,
3697 					unsigned int nr_bits)
3698 {
3699 	cpu_max_bits_warn(j, nr_bits);
3700 	return test_bit(j, mask);
3701 }
3702 
3703 /**
3704  *	netif_attr_test_online - Test for online CPU/Rx queue
3705  *	@j: CPU/Rx queue index
3706  *	@online_mask: bitmask for CPUs/Rx queues that are online
3707  *	@nr_bits: number of bits in the bitmask
3708  *
3709  * Returns true if a CPU/Rx queue is online.
3710  */
netif_attr_test_online(unsigned long j,const unsigned long * online_mask,unsigned int nr_bits)3711 static inline bool netif_attr_test_online(unsigned long j,
3712 					  const unsigned long *online_mask,
3713 					  unsigned int nr_bits)
3714 {
3715 	cpu_max_bits_warn(j, nr_bits);
3716 
3717 	if (online_mask)
3718 		return test_bit(j, online_mask);
3719 
3720 	return (j < nr_bits);
3721 }
3722 
3723 /**
3724  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3725  *	@n: CPU/Rx queue index
3726  *	@srcp: the cpumask/Rx queue mask pointer
3727  *	@nr_bits: number of bits in the bitmask
3728  *
3729  * Returns >= nr_bits if no further CPUs/Rx queues set.
3730  */
netif_attrmask_next(int n,const unsigned long * srcp,unsigned int nr_bits)3731 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3732 					       unsigned int nr_bits)
3733 {
3734 	/* -1 is a legal arg here. */
3735 	if (n != -1)
3736 		cpu_max_bits_warn(n, nr_bits);
3737 
3738 	if (srcp)
3739 		return find_next_bit(srcp, nr_bits, n + 1);
3740 
3741 	return n + 1;
3742 }
3743 
3744 /**
3745  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3746  *	@n: CPU/Rx queue index
3747  *	@src1p: the first CPUs/Rx queues mask pointer
3748  *	@src2p: the second CPUs/Rx queues mask pointer
3749  *	@nr_bits: number of bits in the bitmask
3750  *
3751  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3752  */
netif_attrmask_next_and(int n,const unsigned long * src1p,const unsigned long * src2p,unsigned int nr_bits)3753 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3754 					  const unsigned long *src2p,
3755 					  unsigned int nr_bits)
3756 {
3757 	/* -1 is a legal arg here. */
3758 	if (n != -1)
3759 		cpu_max_bits_warn(n, nr_bits);
3760 
3761 	if (src1p && src2p)
3762 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3763 	else if (src1p)
3764 		return find_next_bit(src1p, nr_bits, n + 1);
3765 	else if (src2p)
3766 		return find_next_bit(src2p, nr_bits, n + 1);
3767 
3768 	return n + 1;
3769 }
3770 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3771 static inline int netif_set_xps_queue(struct net_device *dev,
3772 				      const struct cpumask *mask,
3773 				      u16 index)
3774 {
3775 	return 0;
3776 }
3777 
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)3778 static inline int __netif_set_xps_queue(struct net_device *dev,
3779 					const unsigned long *mask,
3780 					u16 index, enum xps_map_type type)
3781 {
3782 	return 0;
3783 }
3784 #endif
3785 
3786 /**
3787  *	netif_is_multiqueue - test if device has multiple transmit queues
3788  *	@dev: network device
3789  *
3790  * Check if device has multiple transmit queues
3791  */
netif_is_multiqueue(const struct net_device * dev)3792 static inline bool netif_is_multiqueue(const struct net_device *dev)
3793 {
3794 	return dev->num_tx_queues > 1;
3795 }
3796 
3797 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3798 
3799 #ifdef CONFIG_SYSFS
3800 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3801 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxqs)3802 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3803 						unsigned int rxqs)
3804 {
3805 	dev->real_num_rx_queues = rxqs;
3806 	return 0;
3807 }
3808 #endif
3809 int netif_set_real_num_queues(struct net_device *dev,
3810 			      unsigned int txq, unsigned int rxq);
3811 
3812 static inline struct netdev_rx_queue *
__netif_get_rx_queue(struct net_device * dev,unsigned int rxq)3813 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3814 {
3815 	return dev->_rx + rxq;
3816 }
3817 
3818 #ifdef CONFIG_SYSFS
get_netdev_rx_queue_index(struct netdev_rx_queue * queue)3819 static inline unsigned int get_netdev_rx_queue_index(
3820 		struct netdev_rx_queue *queue)
3821 {
3822 	struct net_device *dev = queue->dev;
3823 	int index = queue - dev->_rx;
3824 
3825 	BUG_ON(index >= dev->num_rx_queues);
3826 	return index;
3827 }
3828 #endif
3829 
3830 int netif_get_num_default_rss_queues(void);
3831 
3832 enum skb_free_reason {
3833 	SKB_REASON_CONSUMED,
3834 	SKB_REASON_DROPPED,
3835 };
3836 
3837 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3838 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3839 
3840 /*
3841  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3842  * interrupt context or with hardware interrupts being disabled.
3843  * (in_hardirq() || irqs_disabled())
3844  *
3845  * We provide four helpers that can be used in following contexts :
3846  *
3847  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3848  *  replacing kfree_skb(skb)
3849  *
3850  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3851  *  Typically used in place of consume_skb(skb) in TX completion path
3852  *
3853  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3854  *  replacing kfree_skb(skb)
3855  *
3856  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3857  *  and consumed a packet. Used in place of consume_skb(skb)
3858  */
dev_kfree_skb_irq(struct sk_buff * skb)3859 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3860 {
3861 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3862 }
3863 
dev_consume_skb_irq(struct sk_buff * skb)3864 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3865 {
3866 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3867 }
3868 
dev_kfree_skb_any(struct sk_buff * skb)3869 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3870 {
3871 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3872 }
3873 
dev_consume_skb_any(struct sk_buff * skb)3874 static inline void dev_consume_skb_any(struct sk_buff *skb)
3875 {
3876 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3877 }
3878 
3879 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3880 			     struct bpf_prog *xdp_prog);
3881 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3882 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3883 int netif_rx(struct sk_buff *skb);
3884 int __netif_rx(struct sk_buff *skb);
3885 
3886 int netif_receive_skb(struct sk_buff *skb);
3887 int netif_receive_skb_core(struct sk_buff *skb);
3888 void netif_receive_skb_list_internal(struct list_head *head);
3889 void netif_receive_skb_list(struct list_head *head);
3890 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3891 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3892 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3893 void napi_get_frags_check(struct napi_struct *napi);
3894 gro_result_t napi_gro_frags(struct napi_struct *napi);
3895 struct packet_offload *gro_find_receive_by_type(__be16 type);
3896 struct packet_offload *gro_find_complete_by_type(__be16 type);
3897 
napi_free_frags(struct napi_struct * napi)3898 static inline void napi_free_frags(struct napi_struct *napi)
3899 {
3900 	kfree_skb(napi->skb);
3901 	napi->skb = NULL;
3902 }
3903 
3904 bool netdev_is_rx_handler_busy(struct net_device *dev);
3905 int netdev_rx_handler_register(struct net_device *dev,
3906 			       rx_handler_func_t *rx_handler,
3907 			       void *rx_handler_data);
3908 void netdev_rx_handler_unregister(struct net_device *dev);
3909 
3910 bool dev_valid_name(const char *name);
is_socket_ioctl_cmd(unsigned int cmd)3911 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3912 {
3913 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3914 }
3915 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3916 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3917 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3918 		void __user *data, bool *need_copyout);
3919 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3920 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3921 unsigned int dev_get_flags(const struct net_device *);
3922 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3923 		       struct netlink_ext_ack *extack);
3924 int dev_change_flags(struct net_device *dev, unsigned int flags,
3925 		     struct netlink_ext_ack *extack);
3926 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3927 			unsigned int gchanges);
3928 int dev_set_alias(struct net_device *, const char *, size_t);
3929 int dev_get_alias(const struct net_device *, char *, size_t);
3930 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3931 			       const char *pat, int new_ifindex);
3932 static inline
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)3933 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3934 			     const char *pat)
3935 {
3936 	return __dev_change_net_namespace(dev, net, pat, 0);
3937 }
3938 int __dev_set_mtu(struct net_device *, int);
3939 int dev_set_mtu(struct net_device *, int);
3940 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3941 			      struct netlink_ext_ack *extack);
3942 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3943 			struct netlink_ext_ack *extack);
3944 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3945 			     struct netlink_ext_ack *extack);
3946 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3947 int dev_get_port_parent_id(struct net_device *dev,
3948 			   struct netdev_phys_item_id *ppid, bool recurse);
3949 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3950 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3951 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3952 				    struct netdev_queue *txq, int *ret);
3953 
3954 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3955 u8 dev_xdp_prog_count(struct net_device *dev);
3956 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3957 
3958 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3959 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3960 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3961 bool is_skb_forwardable(const struct net_device *dev,
3962 			const struct sk_buff *skb);
3963 
__is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb,const bool check_mtu)3964 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3965 						 const struct sk_buff *skb,
3966 						 const bool check_mtu)
3967 {
3968 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3969 	unsigned int len;
3970 
3971 	if (!(dev->flags & IFF_UP))
3972 		return false;
3973 
3974 	if (!check_mtu)
3975 		return true;
3976 
3977 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3978 	if (skb->len <= len)
3979 		return true;
3980 
3981 	/* if TSO is enabled, we don't care about the length as the packet
3982 	 * could be forwarded without being segmented before
3983 	 */
3984 	if (skb_is_gso(skb))
3985 		return true;
3986 
3987 	return false;
3988 }
3989 
3990 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
3991 
dev_core_stats(struct net_device * dev)3992 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
3993 {
3994 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
3995 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
3996 
3997 	if (likely(p))
3998 		return p;
3999 
4000 	return netdev_core_stats_alloc(dev);
4001 }
4002 
4003 #define DEV_CORE_STATS_INC(FIELD)						\
4004 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
4005 {										\
4006 	struct net_device_core_stats __percpu *p;				\
4007 										\
4008 	p = dev_core_stats(dev);						\
4009 	if (p)									\
4010 		this_cpu_inc(p->FIELD);						\
4011 }
4012 DEV_CORE_STATS_INC(rx_dropped)
DEV_CORE_STATS_INC(tx_dropped)4013 DEV_CORE_STATS_INC(tx_dropped)
4014 DEV_CORE_STATS_INC(rx_nohandler)
4015 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4016 
4017 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4018 					       struct sk_buff *skb,
4019 					       const bool check_mtu)
4020 {
4021 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4022 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4023 		dev_core_stats_rx_dropped_inc(dev);
4024 		kfree_skb(skb);
4025 		return NET_RX_DROP;
4026 	}
4027 
4028 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4029 	skb->priority = 0;
4030 	return 0;
4031 }
4032 
4033 bool dev_nit_active(struct net_device *dev);
4034 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4035 
__dev_put(struct net_device * dev)4036 static inline void __dev_put(struct net_device *dev)
4037 {
4038 	if (dev) {
4039 #ifdef CONFIG_PCPU_DEV_REFCNT
4040 		this_cpu_dec(*dev->pcpu_refcnt);
4041 #else
4042 		refcount_dec(&dev->dev_refcnt);
4043 #endif
4044 	}
4045 }
4046 
__dev_hold(struct net_device * dev)4047 static inline void __dev_hold(struct net_device *dev)
4048 {
4049 	if (dev) {
4050 #ifdef CONFIG_PCPU_DEV_REFCNT
4051 		this_cpu_inc(*dev->pcpu_refcnt);
4052 #else
4053 		refcount_inc(&dev->dev_refcnt);
4054 #endif
4055 	}
4056 }
4057 
__netdev_tracker_alloc(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)4058 static inline void __netdev_tracker_alloc(struct net_device *dev,
4059 					  netdevice_tracker *tracker,
4060 					  gfp_t gfp)
4061 {
4062 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4063 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4064 #endif
4065 }
4066 
4067 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4068  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4069  */
netdev_tracker_alloc(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)4070 static inline void netdev_tracker_alloc(struct net_device *dev,
4071 					netdevice_tracker *tracker, gfp_t gfp)
4072 {
4073 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4074 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4075 	__netdev_tracker_alloc(dev, tracker, gfp);
4076 #endif
4077 }
4078 
netdev_tracker_free(struct net_device * dev,netdevice_tracker * tracker)4079 static inline void netdev_tracker_free(struct net_device *dev,
4080 				       netdevice_tracker *tracker)
4081 {
4082 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4083 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4084 #endif
4085 }
4086 
netdev_hold(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)4087 static inline void netdev_hold(struct net_device *dev,
4088 			       netdevice_tracker *tracker, gfp_t gfp)
4089 {
4090 	if (dev) {
4091 		__dev_hold(dev);
4092 		__netdev_tracker_alloc(dev, tracker, gfp);
4093 	}
4094 }
4095 
netdev_put(struct net_device * dev,netdevice_tracker * tracker)4096 static inline void netdev_put(struct net_device *dev,
4097 			      netdevice_tracker *tracker)
4098 {
4099 	if (dev) {
4100 		netdev_tracker_free(dev, tracker);
4101 		__dev_put(dev);
4102 	}
4103 }
4104 
4105 /**
4106  *	dev_hold - get reference to device
4107  *	@dev: network device
4108  *
4109  * Hold reference to device to keep it from being freed.
4110  * Try using netdev_hold() instead.
4111  */
dev_hold(struct net_device * dev)4112 static inline void dev_hold(struct net_device *dev)
4113 {
4114 	netdev_hold(dev, NULL, GFP_ATOMIC);
4115 }
4116 
4117 /**
4118  *	dev_put - release reference to device
4119  *	@dev: network device
4120  *
4121  * Release reference to device to allow it to be freed.
4122  * Try using netdev_put() instead.
4123  */
dev_put(struct net_device * dev)4124 static inline void dev_put(struct net_device *dev)
4125 {
4126 	netdev_put(dev, NULL);
4127 }
4128 
netdev_ref_replace(struct net_device * odev,struct net_device * ndev,netdevice_tracker * tracker,gfp_t gfp)4129 static inline void netdev_ref_replace(struct net_device *odev,
4130 				      struct net_device *ndev,
4131 				      netdevice_tracker *tracker,
4132 				      gfp_t gfp)
4133 {
4134 	if (odev)
4135 		netdev_tracker_free(odev, tracker);
4136 
4137 	__dev_hold(ndev);
4138 	__dev_put(odev);
4139 
4140 	if (ndev)
4141 		__netdev_tracker_alloc(ndev, tracker, gfp);
4142 }
4143 
4144 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4145  * and _off may be called from IRQ context, but it is caller
4146  * who is responsible for serialization of these calls.
4147  *
4148  * The name carrier is inappropriate, these functions should really be
4149  * called netif_lowerlayer_*() because they represent the state of any
4150  * kind of lower layer not just hardware media.
4151  */
4152 void linkwatch_fire_event(struct net_device *dev);
4153 
4154 /**
4155  *	netif_carrier_ok - test if carrier present
4156  *	@dev: network device
4157  *
4158  * Check if carrier is present on device
4159  */
netif_carrier_ok(const struct net_device * dev)4160 static inline bool netif_carrier_ok(const struct net_device *dev)
4161 {
4162 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4163 }
4164 
4165 unsigned long dev_trans_start(struct net_device *dev);
4166 
4167 void __netdev_watchdog_up(struct net_device *dev);
4168 
4169 void netif_carrier_on(struct net_device *dev);
4170 void netif_carrier_off(struct net_device *dev);
4171 void netif_carrier_event(struct net_device *dev);
4172 
4173 /**
4174  *	netif_dormant_on - mark device as dormant.
4175  *	@dev: network device
4176  *
4177  * Mark device as dormant (as per RFC2863).
4178  *
4179  * The dormant state indicates that the relevant interface is not
4180  * actually in a condition to pass packets (i.e., it is not 'up') but is
4181  * in a "pending" state, waiting for some external event.  For "on-
4182  * demand" interfaces, this new state identifies the situation where the
4183  * interface is waiting for events to place it in the up state.
4184  */
netif_dormant_on(struct net_device * dev)4185 static inline void netif_dormant_on(struct net_device *dev)
4186 {
4187 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4188 		linkwatch_fire_event(dev);
4189 }
4190 
4191 /**
4192  *	netif_dormant_off - set device as not dormant.
4193  *	@dev: network device
4194  *
4195  * Device is not in dormant state.
4196  */
netif_dormant_off(struct net_device * dev)4197 static inline void netif_dormant_off(struct net_device *dev)
4198 {
4199 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4200 		linkwatch_fire_event(dev);
4201 }
4202 
4203 /**
4204  *	netif_dormant - test if device is dormant
4205  *	@dev: network device
4206  *
4207  * Check if device is dormant.
4208  */
netif_dormant(const struct net_device * dev)4209 static inline bool netif_dormant(const struct net_device *dev)
4210 {
4211 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4212 }
4213 
4214 
4215 /**
4216  *	netif_testing_on - mark device as under test.
4217  *	@dev: network device
4218  *
4219  * Mark device as under test (as per RFC2863).
4220  *
4221  * The testing state indicates that some test(s) must be performed on
4222  * the interface. After completion, of the test, the interface state
4223  * will change to up, dormant, or down, as appropriate.
4224  */
netif_testing_on(struct net_device * dev)4225 static inline void netif_testing_on(struct net_device *dev)
4226 {
4227 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4228 		linkwatch_fire_event(dev);
4229 }
4230 
4231 /**
4232  *	netif_testing_off - set device as not under test.
4233  *	@dev: network device
4234  *
4235  * Device is not in testing state.
4236  */
netif_testing_off(struct net_device * dev)4237 static inline void netif_testing_off(struct net_device *dev)
4238 {
4239 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4240 		linkwatch_fire_event(dev);
4241 }
4242 
4243 /**
4244  *	netif_testing - test if device is under test
4245  *	@dev: network device
4246  *
4247  * Check if device is under test
4248  */
netif_testing(const struct net_device * dev)4249 static inline bool netif_testing(const struct net_device *dev)
4250 {
4251 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4252 }
4253 
4254 
4255 /**
4256  *	netif_oper_up - test if device is operational
4257  *	@dev: network device
4258  *
4259  * Check if carrier is operational
4260  */
netif_oper_up(const struct net_device * dev)4261 static inline bool netif_oper_up(const struct net_device *dev)
4262 {
4263 	return (dev->operstate == IF_OPER_UP ||
4264 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4265 }
4266 
4267 /**
4268  *	netif_device_present - is device available or removed
4269  *	@dev: network device
4270  *
4271  * Check if device has not been removed from system.
4272  */
netif_device_present(const struct net_device * dev)4273 static inline bool netif_device_present(const struct net_device *dev)
4274 {
4275 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4276 }
4277 
4278 void netif_device_detach(struct net_device *dev);
4279 
4280 void netif_device_attach(struct net_device *dev);
4281 
4282 /*
4283  * Network interface message level settings
4284  */
4285 
4286 enum {
4287 	NETIF_MSG_DRV_BIT,
4288 	NETIF_MSG_PROBE_BIT,
4289 	NETIF_MSG_LINK_BIT,
4290 	NETIF_MSG_TIMER_BIT,
4291 	NETIF_MSG_IFDOWN_BIT,
4292 	NETIF_MSG_IFUP_BIT,
4293 	NETIF_MSG_RX_ERR_BIT,
4294 	NETIF_MSG_TX_ERR_BIT,
4295 	NETIF_MSG_TX_QUEUED_BIT,
4296 	NETIF_MSG_INTR_BIT,
4297 	NETIF_MSG_TX_DONE_BIT,
4298 	NETIF_MSG_RX_STATUS_BIT,
4299 	NETIF_MSG_PKTDATA_BIT,
4300 	NETIF_MSG_HW_BIT,
4301 	NETIF_MSG_WOL_BIT,
4302 
4303 	/* When you add a new bit above, update netif_msg_class_names array
4304 	 * in net/ethtool/common.c
4305 	 */
4306 	NETIF_MSG_CLASS_COUNT,
4307 };
4308 /* Both ethtool_ops interface and internal driver implementation use u32 */
4309 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4310 
4311 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4312 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4313 
4314 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4315 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4316 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4317 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4318 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4319 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4320 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4321 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4322 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4323 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4324 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4325 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4326 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4327 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4328 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4329 
4330 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4331 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4332 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4333 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4334 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4335 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4336 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4337 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4338 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4339 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4340 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4341 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4342 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4343 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4344 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4345 
netif_msg_init(int debug_value,int default_msg_enable_bits)4346 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4347 {
4348 	/* use default */
4349 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4350 		return default_msg_enable_bits;
4351 	if (debug_value == 0)	/* no output */
4352 		return 0;
4353 	/* set low N bits */
4354 	return (1U << debug_value) - 1;
4355 }
4356 
__netif_tx_lock(struct netdev_queue * txq,int cpu)4357 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4358 {
4359 	spin_lock(&txq->_xmit_lock);
4360 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4361 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4362 }
4363 
__netif_tx_acquire(struct netdev_queue * txq)4364 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4365 {
4366 	__acquire(&txq->_xmit_lock);
4367 	return true;
4368 }
4369 
__netif_tx_release(struct netdev_queue * txq)4370 static inline void __netif_tx_release(struct netdev_queue *txq)
4371 {
4372 	__release(&txq->_xmit_lock);
4373 }
4374 
__netif_tx_lock_bh(struct netdev_queue * txq)4375 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4376 {
4377 	spin_lock_bh(&txq->_xmit_lock);
4378 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4379 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4380 }
4381 
__netif_tx_trylock(struct netdev_queue * txq)4382 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4383 {
4384 	bool ok = spin_trylock(&txq->_xmit_lock);
4385 
4386 	if (likely(ok)) {
4387 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4388 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4389 	}
4390 	return ok;
4391 }
4392 
__netif_tx_unlock(struct netdev_queue * txq)4393 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4394 {
4395 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4396 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4397 	spin_unlock(&txq->_xmit_lock);
4398 }
4399 
__netif_tx_unlock_bh(struct netdev_queue * txq)4400 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4401 {
4402 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4403 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4404 	spin_unlock_bh(&txq->_xmit_lock);
4405 }
4406 
4407 /*
4408  * txq->trans_start can be read locklessly from dev_watchdog()
4409  */
txq_trans_update(struct netdev_queue * txq)4410 static inline void txq_trans_update(struct netdev_queue *txq)
4411 {
4412 	if (txq->xmit_lock_owner != -1)
4413 		WRITE_ONCE(txq->trans_start, jiffies);
4414 }
4415 
txq_trans_cond_update(struct netdev_queue * txq)4416 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4417 {
4418 	unsigned long now = jiffies;
4419 
4420 	if (READ_ONCE(txq->trans_start) != now)
4421 		WRITE_ONCE(txq->trans_start, now);
4422 }
4423 
4424 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
netif_trans_update(struct net_device * dev)4425 static inline void netif_trans_update(struct net_device *dev)
4426 {
4427 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4428 
4429 	txq_trans_cond_update(txq);
4430 }
4431 
4432 /**
4433  *	netif_tx_lock - grab network device transmit lock
4434  *	@dev: network device
4435  *
4436  * Get network device transmit lock
4437  */
4438 void netif_tx_lock(struct net_device *dev);
4439 
netif_tx_lock_bh(struct net_device * dev)4440 static inline void netif_tx_lock_bh(struct net_device *dev)
4441 {
4442 	local_bh_disable();
4443 	netif_tx_lock(dev);
4444 }
4445 
4446 void netif_tx_unlock(struct net_device *dev);
4447 
netif_tx_unlock_bh(struct net_device * dev)4448 static inline void netif_tx_unlock_bh(struct net_device *dev)
4449 {
4450 	netif_tx_unlock(dev);
4451 	local_bh_enable();
4452 }
4453 
4454 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4455 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4456 		__netif_tx_lock(txq, cpu);		\
4457 	} else {					\
4458 		__netif_tx_acquire(txq);		\
4459 	}						\
4460 }
4461 
4462 #define HARD_TX_TRYLOCK(dev, txq)			\
4463 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4464 		__netif_tx_trylock(txq) :		\
4465 		__netif_tx_acquire(txq))
4466 
4467 #define HARD_TX_UNLOCK(dev, txq) {			\
4468 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4469 		__netif_tx_unlock(txq);			\
4470 	} else {					\
4471 		__netif_tx_release(txq);		\
4472 	}						\
4473 }
4474 
netif_tx_disable(struct net_device * dev)4475 static inline void netif_tx_disable(struct net_device *dev)
4476 {
4477 	unsigned int i;
4478 	int cpu;
4479 
4480 	local_bh_disable();
4481 	cpu = smp_processor_id();
4482 	spin_lock(&dev->tx_global_lock);
4483 	for (i = 0; i < dev->num_tx_queues; i++) {
4484 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4485 
4486 		__netif_tx_lock(txq, cpu);
4487 		netif_tx_stop_queue(txq);
4488 		__netif_tx_unlock(txq);
4489 	}
4490 	spin_unlock(&dev->tx_global_lock);
4491 	local_bh_enable();
4492 }
4493 
netif_addr_lock(struct net_device * dev)4494 static inline void netif_addr_lock(struct net_device *dev)
4495 {
4496 	unsigned char nest_level = 0;
4497 
4498 #ifdef CONFIG_LOCKDEP
4499 	nest_level = dev->nested_level;
4500 #endif
4501 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4502 }
4503 
netif_addr_lock_bh(struct net_device * dev)4504 static inline void netif_addr_lock_bh(struct net_device *dev)
4505 {
4506 	unsigned char nest_level = 0;
4507 
4508 #ifdef CONFIG_LOCKDEP
4509 	nest_level = dev->nested_level;
4510 #endif
4511 	local_bh_disable();
4512 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4513 }
4514 
netif_addr_unlock(struct net_device * dev)4515 static inline void netif_addr_unlock(struct net_device *dev)
4516 {
4517 	spin_unlock(&dev->addr_list_lock);
4518 }
4519 
netif_addr_unlock_bh(struct net_device * dev)4520 static inline void netif_addr_unlock_bh(struct net_device *dev)
4521 {
4522 	spin_unlock_bh(&dev->addr_list_lock);
4523 }
4524 
4525 /*
4526  * dev_addrs walker. Should be used only for read access. Call with
4527  * rcu_read_lock held.
4528  */
4529 #define for_each_dev_addr(dev, ha) \
4530 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4531 
4532 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4533 
4534 void ether_setup(struct net_device *dev);
4535 
4536 /* Support for loadable net-drivers */
4537 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4538 				    unsigned char name_assign_type,
4539 				    void (*setup)(struct net_device *),
4540 				    unsigned int txqs, unsigned int rxqs);
4541 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4542 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4543 
4544 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4545 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4546 			 count)
4547 
4548 int register_netdev(struct net_device *dev);
4549 void unregister_netdev(struct net_device *dev);
4550 
4551 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4552 
4553 /* General hardware address lists handling functions */
4554 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4555 		   struct netdev_hw_addr_list *from_list, int addr_len);
4556 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4557 		      struct netdev_hw_addr_list *from_list, int addr_len);
4558 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4559 		       struct net_device *dev,
4560 		       int (*sync)(struct net_device *, const unsigned char *),
4561 		       int (*unsync)(struct net_device *,
4562 				     const unsigned char *));
4563 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4564 			   struct net_device *dev,
4565 			   int (*sync)(struct net_device *,
4566 				       const unsigned char *, int),
4567 			   int (*unsync)(struct net_device *,
4568 					 const unsigned char *, int));
4569 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4570 			      struct net_device *dev,
4571 			      int (*unsync)(struct net_device *,
4572 					    const unsigned char *, int));
4573 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4574 			  struct net_device *dev,
4575 			  int (*unsync)(struct net_device *,
4576 					const unsigned char *));
4577 void __hw_addr_init(struct netdev_hw_addr_list *list);
4578 
4579 /* Functions used for device addresses handling */
4580 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4581 		  const void *addr, size_t len);
4582 
4583 static inline void
__dev_addr_set(struct net_device * dev,const void * addr,size_t len)4584 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4585 {
4586 	dev_addr_mod(dev, 0, addr, len);
4587 }
4588 
dev_addr_set(struct net_device * dev,const u8 * addr)4589 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4590 {
4591 	__dev_addr_set(dev, addr, dev->addr_len);
4592 }
4593 
4594 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4595 		 unsigned char addr_type);
4596 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4597 		 unsigned char addr_type);
4598 
4599 /* Functions used for unicast addresses handling */
4600 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4601 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4602 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4603 int dev_uc_sync(struct net_device *to, struct net_device *from);
4604 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4605 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4606 void dev_uc_flush(struct net_device *dev);
4607 void dev_uc_init(struct net_device *dev);
4608 
4609 /**
4610  *  __dev_uc_sync - Synchonize device's unicast list
4611  *  @dev:  device to sync
4612  *  @sync: function to call if address should be added
4613  *  @unsync: function to call if address should be removed
4614  *
4615  *  Add newly added addresses to the interface, and release
4616  *  addresses that have been deleted.
4617  */
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4618 static inline int __dev_uc_sync(struct net_device *dev,
4619 				int (*sync)(struct net_device *,
4620 					    const unsigned char *),
4621 				int (*unsync)(struct net_device *,
4622 					      const unsigned char *))
4623 {
4624 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4625 }
4626 
4627 /**
4628  *  __dev_uc_unsync - Remove synchronized addresses from device
4629  *  @dev:  device to sync
4630  *  @unsync: function to call if address should be removed
4631  *
4632  *  Remove all addresses that were added to the device by dev_uc_sync().
4633  */
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4634 static inline void __dev_uc_unsync(struct net_device *dev,
4635 				   int (*unsync)(struct net_device *,
4636 						 const unsigned char *))
4637 {
4638 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4639 }
4640 
4641 /* Functions used for multicast addresses handling */
4642 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4643 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4644 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4645 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4646 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4647 int dev_mc_sync(struct net_device *to, struct net_device *from);
4648 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4649 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4650 void dev_mc_flush(struct net_device *dev);
4651 void dev_mc_init(struct net_device *dev);
4652 
4653 /**
4654  *  __dev_mc_sync - Synchonize device's multicast list
4655  *  @dev:  device to sync
4656  *  @sync: function to call if address should be added
4657  *  @unsync: function to call if address should be removed
4658  *
4659  *  Add newly added addresses to the interface, and release
4660  *  addresses that have been deleted.
4661  */
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4662 static inline int __dev_mc_sync(struct net_device *dev,
4663 				int (*sync)(struct net_device *,
4664 					    const unsigned char *),
4665 				int (*unsync)(struct net_device *,
4666 					      const unsigned char *))
4667 {
4668 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4669 }
4670 
4671 /**
4672  *  __dev_mc_unsync - Remove synchronized addresses from device
4673  *  @dev:  device to sync
4674  *  @unsync: function to call if address should be removed
4675  *
4676  *  Remove all addresses that were added to the device by dev_mc_sync().
4677  */
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4678 static inline void __dev_mc_unsync(struct net_device *dev,
4679 				   int (*unsync)(struct net_device *,
4680 						 const unsigned char *))
4681 {
4682 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4683 }
4684 
4685 /* Functions used for secondary unicast and multicast support */
4686 void dev_set_rx_mode(struct net_device *dev);
4687 int dev_set_promiscuity(struct net_device *dev, int inc);
4688 int dev_set_allmulti(struct net_device *dev, int inc);
4689 void netdev_state_change(struct net_device *dev);
4690 void __netdev_notify_peers(struct net_device *dev);
4691 void netdev_notify_peers(struct net_device *dev);
4692 void netdev_features_change(struct net_device *dev);
4693 /* Load a device via the kmod */
4694 void dev_load(struct net *net, const char *name);
4695 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4696 					struct rtnl_link_stats64 *storage);
4697 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4698 			     const struct net_device_stats *netdev_stats);
4699 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4700 			   const struct pcpu_sw_netstats __percpu *netstats);
4701 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4702 
4703 extern int		netdev_max_backlog;
4704 extern int		dev_rx_weight;
4705 extern int		dev_tx_weight;
4706 extern int		gro_normal_batch;
4707 
4708 enum {
4709 	NESTED_SYNC_IMM_BIT,
4710 	NESTED_SYNC_TODO_BIT,
4711 };
4712 
4713 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4714 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4715 
4716 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4717 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4718 
4719 struct netdev_nested_priv {
4720 	unsigned char flags;
4721 	void *data;
4722 };
4723 
4724 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4725 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4726 						     struct list_head **iter);
4727 
4728 /* iterate through upper list, must be called under RCU read lock */
4729 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4730 	for (iter = &(dev)->adj_list.upper, \
4731 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4732 	     updev; \
4733 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4734 
4735 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4736 				  int (*fn)(struct net_device *upper_dev,
4737 					    struct netdev_nested_priv *priv),
4738 				  struct netdev_nested_priv *priv);
4739 
4740 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4741 				  struct net_device *upper_dev);
4742 
4743 bool netdev_has_any_upper_dev(struct net_device *dev);
4744 
4745 void *netdev_lower_get_next_private(struct net_device *dev,
4746 				    struct list_head **iter);
4747 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4748 					struct list_head **iter);
4749 
4750 #define netdev_for_each_lower_private(dev, priv, iter) \
4751 	for (iter = (dev)->adj_list.lower.next, \
4752 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4753 	     priv; \
4754 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4755 
4756 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4757 	for (iter = &(dev)->adj_list.lower, \
4758 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4759 	     priv; \
4760 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4761 
4762 void *netdev_lower_get_next(struct net_device *dev,
4763 				struct list_head **iter);
4764 
4765 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4766 	for (iter = (dev)->adj_list.lower.next, \
4767 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4768 	     ldev; \
4769 	     ldev = netdev_lower_get_next(dev, &(iter)))
4770 
4771 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4772 					     struct list_head **iter);
4773 int netdev_walk_all_lower_dev(struct net_device *dev,
4774 			      int (*fn)(struct net_device *lower_dev,
4775 					struct netdev_nested_priv *priv),
4776 			      struct netdev_nested_priv *priv);
4777 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4778 				  int (*fn)(struct net_device *lower_dev,
4779 					    struct netdev_nested_priv *priv),
4780 				  struct netdev_nested_priv *priv);
4781 
4782 void *netdev_adjacent_get_private(struct list_head *adj_list);
4783 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4784 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4785 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4786 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4787 			  struct netlink_ext_ack *extack);
4788 int netdev_master_upper_dev_link(struct net_device *dev,
4789 				 struct net_device *upper_dev,
4790 				 void *upper_priv, void *upper_info,
4791 				 struct netlink_ext_ack *extack);
4792 void netdev_upper_dev_unlink(struct net_device *dev,
4793 			     struct net_device *upper_dev);
4794 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4795 				   struct net_device *new_dev,
4796 				   struct net_device *dev,
4797 				   struct netlink_ext_ack *extack);
4798 void netdev_adjacent_change_commit(struct net_device *old_dev,
4799 				   struct net_device *new_dev,
4800 				   struct net_device *dev);
4801 void netdev_adjacent_change_abort(struct net_device *old_dev,
4802 				  struct net_device *new_dev,
4803 				  struct net_device *dev);
4804 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4805 void *netdev_lower_dev_get_private(struct net_device *dev,
4806 				   struct net_device *lower_dev);
4807 void netdev_lower_state_changed(struct net_device *lower_dev,
4808 				void *lower_state_info);
4809 
4810 /* RSS keys are 40 or 52 bytes long */
4811 #define NETDEV_RSS_KEY_LEN 52
4812 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4813 void netdev_rss_key_fill(void *buffer, size_t len);
4814 
4815 int skb_checksum_help(struct sk_buff *skb);
4816 int skb_crc32c_csum_help(struct sk_buff *skb);
4817 int skb_csum_hwoffload_help(struct sk_buff *skb,
4818 			    const netdev_features_t features);
4819 
4820 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4821 				  netdev_features_t features, bool tx_path);
4822 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4823 				    netdev_features_t features, __be16 type);
4824 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4825 				    netdev_features_t features);
4826 
4827 struct netdev_bonding_info {
4828 	ifslave	slave;
4829 	ifbond	master;
4830 };
4831 
4832 struct netdev_notifier_bonding_info {
4833 	struct netdev_notifier_info info; /* must be first */
4834 	struct netdev_bonding_info  bonding_info;
4835 };
4836 
4837 void netdev_bonding_info_change(struct net_device *dev,
4838 				struct netdev_bonding_info *bonding_info);
4839 
4840 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4841 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4842 #else
ethtool_notify(struct net_device * dev,unsigned int cmd,const void * data)4843 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4844 				  const void *data)
4845 {
4846 }
4847 #endif
4848 
4849 static inline
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)4850 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4851 {
4852 	return __skb_gso_segment(skb, features, true);
4853 }
4854 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4855 
can_checksum_protocol(netdev_features_t features,__be16 protocol)4856 static inline bool can_checksum_protocol(netdev_features_t features,
4857 					 __be16 protocol)
4858 {
4859 	if (protocol == htons(ETH_P_FCOE))
4860 		return !!(features & NETIF_F_FCOE_CRC);
4861 
4862 	/* Assume this is an IP checksum (not SCTP CRC) */
4863 
4864 	if (features & NETIF_F_HW_CSUM) {
4865 		/* Can checksum everything */
4866 		return true;
4867 	}
4868 
4869 	switch (protocol) {
4870 	case htons(ETH_P_IP):
4871 		return !!(features & NETIF_F_IP_CSUM);
4872 	case htons(ETH_P_IPV6):
4873 		return !!(features & NETIF_F_IPV6_CSUM);
4874 	default:
4875 		return false;
4876 	}
4877 }
4878 
4879 #ifdef CONFIG_BUG
4880 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4881 #else
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)4882 static inline void netdev_rx_csum_fault(struct net_device *dev,
4883 					struct sk_buff *skb)
4884 {
4885 }
4886 #endif
4887 /* rx skb timestamps */
4888 void net_enable_timestamp(void);
4889 void net_disable_timestamp(void);
4890 
netdev_get_tstamp(struct net_device * dev,const struct skb_shared_hwtstamps * hwtstamps,bool cycles)4891 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4892 					const struct skb_shared_hwtstamps *hwtstamps,
4893 					bool cycles)
4894 {
4895 	const struct net_device_ops *ops = dev->netdev_ops;
4896 
4897 	if (ops->ndo_get_tstamp)
4898 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4899 
4900 	return hwtstamps->hwtstamp;
4901 }
4902 
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)4903 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4904 					      struct sk_buff *skb, struct net_device *dev,
4905 					      bool more)
4906 {
4907 	__this_cpu_write(softnet_data.xmit.more, more);
4908 	return ops->ndo_start_xmit(skb, dev);
4909 }
4910 
netdev_xmit_more(void)4911 static inline bool netdev_xmit_more(void)
4912 {
4913 	return __this_cpu_read(softnet_data.xmit.more);
4914 }
4915 
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)4916 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4917 					    struct netdev_queue *txq, bool more)
4918 {
4919 	const struct net_device_ops *ops = dev->netdev_ops;
4920 	netdev_tx_t rc;
4921 
4922 	rc = __netdev_start_xmit(ops, skb, dev, more);
4923 	if (rc == NETDEV_TX_OK)
4924 		txq_trans_update(txq);
4925 
4926 	return rc;
4927 }
4928 
4929 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4930 				const void *ns);
4931 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4932 				 const void *ns);
4933 
4934 extern const struct kobj_ns_type_operations net_ns_type_operations;
4935 
4936 const char *netdev_drivername(const struct net_device *dev);
4937 
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)4938 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4939 							  netdev_features_t f2)
4940 {
4941 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4942 		if (f1 & NETIF_F_HW_CSUM)
4943 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4944 		else
4945 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4946 	}
4947 
4948 	return f1 & f2;
4949 }
4950 
netdev_get_wanted_features(struct net_device * dev)4951 static inline netdev_features_t netdev_get_wanted_features(
4952 	struct net_device *dev)
4953 {
4954 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4955 }
4956 netdev_features_t netdev_increment_features(netdev_features_t all,
4957 	netdev_features_t one, netdev_features_t mask);
4958 
4959 /* Allow TSO being used on stacked device :
4960  * Performing the GSO segmentation before last device
4961  * is a performance improvement.
4962  */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)4963 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4964 							netdev_features_t mask)
4965 {
4966 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4967 }
4968 
4969 int __netdev_update_features(struct net_device *dev);
4970 void netdev_update_features(struct net_device *dev);
4971 void netdev_change_features(struct net_device *dev);
4972 
4973 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4974 					struct net_device *dev);
4975 
4976 netdev_features_t passthru_features_check(struct sk_buff *skb,
4977 					  struct net_device *dev,
4978 					  netdev_features_t features);
4979 netdev_features_t netif_skb_features(struct sk_buff *skb);
4980 
net_gso_ok(netdev_features_t features,int gso_type)4981 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4982 {
4983 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4984 
4985 	/* check flags correspondence */
4986 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4987 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4988 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4989 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4990 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4991 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4992 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4993 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4994 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4995 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4996 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4997 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4998 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4999 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5000 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5001 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5002 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5003 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5004 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5005 
5006 	return (features & feature) == feature;
5007 }
5008 
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)5009 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5010 {
5011 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5012 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5013 }
5014 
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)5015 static inline bool netif_needs_gso(struct sk_buff *skb,
5016 				   netdev_features_t features)
5017 {
5018 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5019 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5020 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5021 }
5022 
5023 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5024 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5025 void netif_inherit_tso_max(struct net_device *to,
5026 			   const struct net_device *from);
5027 
skb_gso_error_unwind(struct sk_buff * skb,__be16 protocol,int pulled_hlen,u16 mac_offset,int mac_len)5028 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
5029 					int pulled_hlen, u16 mac_offset,
5030 					int mac_len)
5031 {
5032 	skb->protocol = protocol;
5033 	skb->encapsulation = 1;
5034 	skb_push(skb, pulled_hlen);
5035 	skb_reset_transport_header(skb);
5036 	skb->mac_header = mac_offset;
5037 	skb->network_header = skb->mac_header + mac_len;
5038 	skb->mac_len = mac_len;
5039 }
5040 
netif_is_macsec(const struct net_device * dev)5041 static inline bool netif_is_macsec(const struct net_device *dev)
5042 {
5043 	return dev->priv_flags & IFF_MACSEC;
5044 }
5045 
netif_is_macvlan(const struct net_device * dev)5046 static inline bool netif_is_macvlan(const struct net_device *dev)
5047 {
5048 	return dev->priv_flags & IFF_MACVLAN;
5049 }
5050 
netif_is_macvlan_port(const struct net_device * dev)5051 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5052 {
5053 	return dev->priv_flags & IFF_MACVLAN_PORT;
5054 }
5055 
netif_is_bond_master(const struct net_device * dev)5056 static inline bool netif_is_bond_master(const struct net_device *dev)
5057 {
5058 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5059 }
5060 
netif_is_bond_slave(const struct net_device * dev)5061 static inline bool netif_is_bond_slave(const struct net_device *dev)
5062 {
5063 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5064 }
5065 
netif_supports_nofcs(struct net_device * dev)5066 static inline bool netif_supports_nofcs(struct net_device *dev)
5067 {
5068 	return dev->priv_flags & IFF_SUPP_NOFCS;
5069 }
5070 
netif_has_l3_rx_handler(const struct net_device * dev)5071 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5072 {
5073 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5074 }
5075 
netif_is_l3_master(const struct net_device * dev)5076 static inline bool netif_is_l3_master(const struct net_device *dev)
5077 {
5078 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5079 }
5080 
netif_is_l3_slave(const struct net_device * dev)5081 static inline bool netif_is_l3_slave(const struct net_device *dev)
5082 {
5083 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5084 }
5085 
dev_sdif(const struct net_device * dev)5086 static inline int dev_sdif(const struct net_device *dev)
5087 {
5088 #ifdef CONFIG_NET_L3_MASTER_DEV
5089 	if (netif_is_l3_slave(dev))
5090 		return dev->ifindex;
5091 #endif
5092 	return 0;
5093 }
5094 
netif_is_bridge_master(const struct net_device * dev)5095 static inline bool netif_is_bridge_master(const struct net_device *dev)
5096 {
5097 	return dev->priv_flags & IFF_EBRIDGE;
5098 }
5099 
netif_is_bridge_port(const struct net_device * dev)5100 static inline bool netif_is_bridge_port(const struct net_device *dev)
5101 {
5102 	return dev->priv_flags & IFF_BRIDGE_PORT;
5103 }
5104 
netif_is_ovs_master(const struct net_device * dev)5105 static inline bool netif_is_ovs_master(const struct net_device *dev)
5106 {
5107 	return dev->priv_flags & IFF_OPENVSWITCH;
5108 }
5109 
netif_is_ovs_port(const struct net_device * dev)5110 static inline bool netif_is_ovs_port(const struct net_device *dev)
5111 {
5112 	return dev->priv_flags & IFF_OVS_DATAPATH;
5113 }
5114 
netif_is_any_bridge_port(const struct net_device * dev)5115 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5116 {
5117 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5118 }
5119 
netif_is_team_master(const struct net_device * dev)5120 static inline bool netif_is_team_master(const struct net_device *dev)
5121 {
5122 	return dev->priv_flags & IFF_TEAM;
5123 }
5124 
netif_is_team_port(const struct net_device * dev)5125 static inline bool netif_is_team_port(const struct net_device *dev)
5126 {
5127 	return dev->priv_flags & IFF_TEAM_PORT;
5128 }
5129 
netif_is_lag_master(const struct net_device * dev)5130 static inline bool netif_is_lag_master(const struct net_device *dev)
5131 {
5132 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5133 }
5134 
netif_is_lag_port(const struct net_device * dev)5135 static inline bool netif_is_lag_port(const struct net_device *dev)
5136 {
5137 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5138 }
5139 
netif_is_rxfh_configured(const struct net_device * dev)5140 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5141 {
5142 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5143 }
5144 
netif_is_failover(const struct net_device * dev)5145 static inline bool netif_is_failover(const struct net_device *dev)
5146 {
5147 	return dev->priv_flags & IFF_FAILOVER;
5148 }
5149 
netif_is_failover_slave(const struct net_device * dev)5150 static inline bool netif_is_failover_slave(const struct net_device *dev)
5151 {
5152 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5153 }
5154 
5155 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)5156 static inline void netif_keep_dst(struct net_device *dev)
5157 {
5158 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5159 }
5160 
5161 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
netif_reduces_vlan_mtu(struct net_device * dev)5162 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5163 {
5164 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5165 	return netif_is_macsec(dev);
5166 }
5167 
5168 extern struct pernet_operations __net_initdata loopback_net_ops;
5169 
5170 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5171 
5172 /* netdev_printk helpers, similar to dev_printk */
5173 
netdev_name(const struct net_device * dev)5174 static inline const char *netdev_name(const struct net_device *dev)
5175 {
5176 	if (!dev->name[0] || strchr(dev->name, '%'))
5177 		return "(unnamed net_device)";
5178 	return dev->name;
5179 }
5180 
netdev_unregistering(const struct net_device * dev)5181 static inline bool netdev_unregistering(const struct net_device *dev)
5182 {
5183 	return dev->reg_state == NETREG_UNREGISTERING;
5184 }
5185 
netdev_reg_state(const struct net_device * dev)5186 static inline const char *netdev_reg_state(const struct net_device *dev)
5187 {
5188 	switch (dev->reg_state) {
5189 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5190 	case NETREG_REGISTERED: return "";
5191 	case NETREG_UNREGISTERING: return " (unregistering)";
5192 	case NETREG_UNREGISTERED: return " (unregistered)";
5193 	case NETREG_RELEASED: return " (released)";
5194 	case NETREG_DUMMY: return " (dummy)";
5195 	}
5196 
5197 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5198 	return " (unknown)";
5199 }
5200 
5201 #define MODULE_ALIAS_NETDEV(device) \
5202 	MODULE_ALIAS("netdev-" device)
5203 
5204 /*
5205  * netdev_WARN() acts like dev_printk(), but with the key difference
5206  * of using a WARN/WARN_ON to get the message out, including the
5207  * file/line information and a backtrace.
5208  */
5209 #define netdev_WARN(dev, format, args...)			\
5210 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5211 	     netdev_reg_state(dev), ##args)
5212 
5213 #define netdev_WARN_ONCE(dev, format, args...)				\
5214 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5215 		  netdev_reg_state(dev), ##args)
5216 
5217 /*
5218  *	The list of packet types we will receive (as opposed to discard)
5219  *	and the routines to invoke.
5220  *
5221  *	Why 16. Because with 16 the only overlap we get on a hash of the
5222  *	low nibble of the protocol value is RARP/SNAP/X.25.
5223  *
5224  *		0800	IP
5225  *		0001	802.3
5226  *		0002	AX.25
5227  *		0004	802.2
5228  *		8035	RARP
5229  *		0005	SNAP
5230  *		0805	X.25
5231  *		0806	ARP
5232  *		8137	IPX
5233  *		0009	Localtalk
5234  *		86DD	IPv6
5235  */
5236 #define PTYPE_HASH_SIZE	(16)
5237 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5238 
5239 extern struct list_head ptype_all __read_mostly;
5240 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5241 
5242 extern struct net_device *blackhole_netdev;
5243 
5244 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5245 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5246 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5247 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5248 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5249 
5250 #endif	/* _LINUX_NETDEVICE_H */
5251