1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h> /* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72 #include <linux/android_vendor.h>
73 #include <linux/android_kabi.h>
74
75 /*
76 * This structure really needs to be cleaned up.
77 * Most of it is for TCP, and not used by any of
78 * the other protocols.
79 */
80
81 /* Define this to get the SOCK_DBG debugging facility. */
82 #define SOCK_DEBUGGING
83 #ifdef SOCK_DEBUGGING
84 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
85 printk(KERN_DEBUG msg); } while (0)
86 #else
87 /* Validate arguments and do nothing */
88 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)89 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
90 {
91 }
92 #endif
93
94 /* This is the per-socket lock. The spinlock provides a synchronization
95 * between user contexts and software interrupt processing, whereas the
96 * mini-semaphore synchronizes multiple users amongst themselves.
97 */
98 typedef struct {
99 spinlock_t slock;
100 int owned;
101 wait_queue_head_t wq;
102 /*
103 * We express the mutex-alike socket_lock semantics
104 * to the lock validator by explicitly managing
105 * the slock as a lock variant (in addition to
106 * the slock itself):
107 */
108 #ifdef CONFIG_DEBUG_LOCK_ALLOC
109 struct lockdep_map dep_map;
110 #endif
111 } socket_lock_t;
112
113 struct sock;
114 struct proto;
115 struct net;
116
117 typedef __u32 __bitwise __portpair;
118 typedef __u64 __bitwise __addrpair;
119
120 /**
121 * struct sock_common - minimal network layer representation of sockets
122 * @skc_daddr: Foreign IPv4 addr
123 * @skc_rcv_saddr: Bound local IPv4 addr
124 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
125 * @skc_hash: hash value used with various protocol lookup tables
126 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
127 * @skc_dport: placeholder for inet_dport/tw_dport
128 * @skc_num: placeholder for inet_num/tw_num
129 * @skc_portpair: __u32 union of @skc_dport & @skc_num
130 * @skc_family: network address family
131 * @skc_state: Connection state
132 * @skc_reuse: %SO_REUSEADDR setting
133 * @skc_reuseport: %SO_REUSEPORT setting
134 * @skc_ipv6only: socket is IPV6 only
135 * @skc_net_refcnt: socket is using net ref counting
136 * @skc_bound_dev_if: bound device index if != 0
137 * @skc_bind_node: bind hash linkage for various protocol lookup tables
138 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
139 * @skc_prot: protocol handlers inside a network family
140 * @skc_net: reference to the network namespace of this socket
141 * @skc_v6_daddr: IPV6 destination address
142 * @skc_v6_rcv_saddr: IPV6 source address
143 * @skc_cookie: socket's cookie value
144 * @skc_node: main hash linkage for various protocol lookup tables
145 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
146 * @skc_tx_queue_mapping: tx queue number for this connection
147 * @skc_rx_queue_mapping: rx queue number for this connection
148 * @skc_flags: place holder for sk_flags
149 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
150 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
151 * @skc_listener: connection request listener socket (aka rsk_listener)
152 * [union with @skc_flags]
153 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
154 * [union with @skc_flags]
155 * @skc_incoming_cpu: record/match cpu processing incoming packets
156 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
157 * [union with @skc_incoming_cpu]
158 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
159 * [union with @skc_incoming_cpu]
160 * @skc_refcnt: reference count
161 *
162 * This is the minimal network layer representation of sockets, the header
163 * for struct sock and struct inet_timewait_sock.
164 */
165 struct sock_common {
166 union {
167 __addrpair skc_addrpair;
168 struct {
169 __be32 skc_daddr;
170 __be32 skc_rcv_saddr;
171 };
172 };
173 union {
174 unsigned int skc_hash;
175 __u16 skc_u16hashes[2];
176 };
177 /* skc_dport && skc_num must be grouped as well */
178 union {
179 __portpair skc_portpair;
180 struct {
181 __be16 skc_dport;
182 __u16 skc_num;
183 };
184 };
185
186 unsigned short skc_family;
187 volatile unsigned char skc_state;
188 unsigned char skc_reuse:4;
189 unsigned char skc_reuseport:1;
190 unsigned char skc_ipv6only:1;
191 unsigned char skc_net_refcnt:1;
192 int skc_bound_dev_if;
193 union {
194 struct hlist_node skc_bind_node;
195 struct hlist_node skc_portaddr_node;
196 };
197 struct proto *skc_prot;
198 possible_net_t skc_net;
199
200 #if IS_ENABLED(CONFIG_IPV6)
201 struct in6_addr skc_v6_daddr;
202 struct in6_addr skc_v6_rcv_saddr;
203 #endif
204
205 atomic64_t skc_cookie;
206
207 /* following fields are padding to force
208 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
209 * assuming IPV6 is enabled. We use this padding differently
210 * for different kind of 'sockets'
211 */
212 union {
213 unsigned long skc_flags;
214 struct sock *skc_listener; /* request_sock */
215 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
216 };
217 /*
218 * fields between dontcopy_begin/dontcopy_end
219 * are not copied in sock_copy()
220 */
221 /* private: */
222 int skc_dontcopy_begin[0];
223 /* public: */
224 union {
225 struct hlist_node skc_node;
226 struct hlist_nulls_node skc_nulls_node;
227 };
228 unsigned short skc_tx_queue_mapping;
229 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
230 unsigned short skc_rx_queue_mapping;
231 #endif
232 union {
233 int skc_incoming_cpu;
234 u32 skc_rcv_wnd;
235 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
236 };
237
238 refcount_t skc_refcnt;
239 /* private: */
240 int skc_dontcopy_end[0];
241 union {
242 u32 skc_rxhash;
243 u32 skc_window_clamp;
244 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
245 };
246 /* public: */
247 };
248
249 struct bpf_local_storage;
250 struct sk_filter;
251
252 /**
253 * struct sock - network layer representation of sockets
254 * @__sk_common: shared layout with inet_timewait_sock
255 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
256 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
257 * @sk_lock: synchronizer
258 * @sk_kern_sock: True if sock is using kernel lock classes
259 * @sk_rcvbuf: size of receive buffer in bytes
260 * @sk_wq: sock wait queue and async head
261 * @sk_rx_dst: receive input route used by early demux
262 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst
263 * @sk_rx_dst_cookie: cookie for @sk_rx_dst
264 * @sk_dst_cache: destination cache
265 * @sk_dst_pending_confirm: need to confirm neighbour
266 * @sk_policy: flow policy
267 * @sk_receive_queue: incoming packets
268 * @sk_wmem_alloc: transmit queue bytes committed
269 * @sk_tsq_flags: TCP Small Queues flags
270 * @sk_write_queue: Packet sending queue
271 * @sk_omem_alloc: "o" is "option" or "other"
272 * @sk_wmem_queued: persistent queue size
273 * @sk_forward_alloc: space allocated forward
274 * @sk_reserved_mem: space reserved and non-reclaimable for the socket
275 * @sk_napi_id: id of the last napi context to receive data for sk
276 * @sk_ll_usec: usecs to busypoll when there is no data
277 * @sk_allocation: allocation mode
278 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
279 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
280 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
281 * @sk_sndbuf: size of send buffer in bytes
282 * @__sk_flags_offset: empty field used to determine location of bitfield
283 * @sk_padding: unused element for alignment
284 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
285 * @sk_no_check_rx: allow zero checksum in RX packets
286 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
287 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
288 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
289 * @sk_gso_max_size: Maximum GSO segment size to build
290 * @sk_gso_max_segs: Maximum number of GSO segments
291 * @sk_pacing_shift: scaling factor for TCP Small Queues
292 * @sk_lingertime: %SO_LINGER l_linger setting
293 * @sk_backlog: always used with the per-socket spinlock held
294 * @sk_callback_lock: used with the callbacks in the end of this struct
295 * @sk_error_queue: rarely used
296 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
297 * IPV6_ADDRFORM for instance)
298 * @sk_err: last error
299 * @sk_err_soft: errors that don't cause failure but are the cause of a
300 * persistent failure not just 'timed out'
301 * @sk_drops: raw/udp drops counter
302 * @sk_ack_backlog: current listen backlog
303 * @sk_max_ack_backlog: listen backlog set in listen()
304 * @sk_uid: user id of owner
305 * @sk_prefer_busy_poll: prefer busypolling over softirq processing
306 * @sk_busy_poll_budget: napi processing budget when busypolling
307 * @sk_priority: %SO_PRIORITY setting
308 * @sk_type: socket type (%SOCK_STREAM, etc)
309 * @sk_protocol: which protocol this socket belongs in this network family
310 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
311 * @sk_peer_pid: &struct pid for this socket's peer
312 * @sk_peer_cred: %SO_PEERCRED setting
313 * @sk_rcvlowat: %SO_RCVLOWAT setting
314 * @sk_rcvtimeo: %SO_RCVTIMEO setting
315 * @sk_sndtimeo: %SO_SNDTIMEO setting
316 * @sk_txhash: computed flow hash for use on transmit
317 * @sk_txrehash: enable TX hash rethink
318 * @sk_filter: socket filtering instructions
319 * @sk_timer: sock cleanup timer
320 * @sk_stamp: time stamp of last packet received
321 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
322 * @sk_tsflags: SO_TIMESTAMPING flags
323 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
324 * for timestamping
325 * @sk_tskey: counter to disambiguate concurrent tstamp requests
326 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
327 * @sk_socket: Identd and reporting IO signals
328 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
329 * @sk_frag: cached page frag
330 * @sk_peek_off: current peek_offset value
331 * @sk_send_head: front of stuff to transmit
332 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
333 * @sk_security: used by security modules
334 * @sk_mark: generic packet mark
335 * @sk_cgrp_data: cgroup data for this cgroup
336 * @sk_memcg: this socket's memory cgroup association
337 * @sk_write_pending: a write to stream socket waits to start
338 * @sk_wait_pending: number of threads blocked on this socket
339 * @sk_state_change: callback to indicate change in the state of the sock
340 * @sk_data_ready: callback to indicate there is data to be processed
341 * @sk_write_space: callback to indicate there is bf sending space available
342 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
343 * @sk_backlog_rcv: callback to process the backlog
344 * @sk_validate_xmit_skb: ptr to an optional validate function
345 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
346 * @sk_reuseport_cb: reuseport group container
347 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
348 * @sk_rcu: used during RCU grace period
349 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
350 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
351 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
352 * @sk_txtime_unused: unused txtime flags
353 * @ns_tracker: tracker for netns reference
354 * @sk_bind2_node: bind node in the bhash2 table
355 */
356 struct sock {
357 /*
358 * Now struct inet_timewait_sock also uses sock_common, so please just
359 * don't add nothing before this first member (__sk_common) --acme
360 */
361 struct sock_common __sk_common;
362 #define sk_node __sk_common.skc_node
363 #define sk_nulls_node __sk_common.skc_nulls_node
364 #define sk_refcnt __sk_common.skc_refcnt
365 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
366 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
367 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
368 #endif
369
370 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
371 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
372 #define sk_hash __sk_common.skc_hash
373 #define sk_portpair __sk_common.skc_portpair
374 #define sk_num __sk_common.skc_num
375 #define sk_dport __sk_common.skc_dport
376 #define sk_addrpair __sk_common.skc_addrpair
377 #define sk_daddr __sk_common.skc_daddr
378 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
379 #define sk_family __sk_common.skc_family
380 #define sk_state __sk_common.skc_state
381 #define sk_reuse __sk_common.skc_reuse
382 #define sk_reuseport __sk_common.skc_reuseport
383 #define sk_ipv6only __sk_common.skc_ipv6only
384 #define sk_net_refcnt __sk_common.skc_net_refcnt
385 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
386 #define sk_bind_node __sk_common.skc_bind_node
387 #define sk_prot __sk_common.skc_prot
388 #define sk_net __sk_common.skc_net
389 #define sk_v6_daddr __sk_common.skc_v6_daddr
390 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
391 #define sk_cookie __sk_common.skc_cookie
392 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
393 #define sk_flags __sk_common.skc_flags
394 #define sk_rxhash __sk_common.skc_rxhash
395
396 /* early demux fields */
397 struct dst_entry __rcu *sk_rx_dst;
398 int sk_rx_dst_ifindex;
399 u32 sk_rx_dst_cookie;
400
401 socket_lock_t sk_lock;
402 atomic_t sk_drops;
403 int sk_rcvlowat;
404 struct sk_buff_head sk_error_queue;
405 struct sk_buff_head sk_receive_queue;
406 /*
407 * The backlog queue is special, it is always used with
408 * the per-socket spinlock held and requires low latency
409 * access. Therefore we special case it's implementation.
410 * Note : rmem_alloc is in this structure to fill a hole
411 * on 64bit arches, not because its logically part of
412 * backlog.
413 */
414 struct {
415 atomic_t rmem_alloc;
416 int len;
417 struct sk_buff *head;
418 struct sk_buff *tail;
419 } sk_backlog;
420
421 #define sk_rmem_alloc sk_backlog.rmem_alloc
422
423 int sk_forward_alloc;
424 u32 sk_reserved_mem;
425 #ifdef CONFIG_NET_RX_BUSY_POLL
426 unsigned int sk_ll_usec;
427 /* ===== mostly read cache line ===== */
428 unsigned int sk_napi_id;
429 #endif
430 int sk_rcvbuf;
431 int sk_wait_pending;
432
433 struct sk_filter __rcu *sk_filter;
434 union {
435 struct socket_wq __rcu *sk_wq;
436 /* private: */
437 struct socket_wq *sk_wq_raw;
438 /* public: */
439 };
440 #ifdef CONFIG_XFRM
441 struct xfrm_policy __rcu *sk_policy[2];
442 #endif
443
444 struct dst_entry __rcu *sk_dst_cache;
445 atomic_t sk_omem_alloc;
446 int sk_sndbuf;
447
448 /* ===== cache line for TX ===== */
449 int sk_wmem_queued;
450 refcount_t sk_wmem_alloc;
451 unsigned long sk_tsq_flags;
452 union {
453 struct sk_buff *sk_send_head;
454 struct rb_root tcp_rtx_queue;
455 };
456 struct sk_buff_head sk_write_queue;
457 __s32 sk_peek_off;
458 int sk_write_pending;
459 __u32 sk_dst_pending_confirm;
460 u32 sk_pacing_status; /* see enum sk_pacing */
461 long sk_sndtimeo;
462 struct timer_list sk_timer;
463 __u32 sk_priority;
464 __u32 sk_mark;
465 unsigned long sk_pacing_rate; /* bytes per second */
466 unsigned long sk_max_pacing_rate;
467 struct page_frag sk_frag;
468 netdev_features_t sk_route_caps;
469 int sk_gso_type;
470 unsigned int sk_gso_max_size;
471 gfp_t sk_allocation;
472 __u32 sk_txhash;
473
474 /*
475 * Because of non atomicity rules, all
476 * changes are protected by socket lock.
477 */
478 u8 sk_gso_disabled : 1,
479 sk_kern_sock : 1,
480 sk_no_check_tx : 1,
481 sk_no_check_rx : 1,
482 sk_userlocks : 4;
483 u8 sk_pacing_shift;
484 u16 sk_type;
485 u16 sk_protocol;
486 u16 sk_gso_max_segs;
487 unsigned long sk_lingertime;
488 struct proto *sk_prot_creator;
489 rwlock_t sk_callback_lock;
490 int sk_err,
491 sk_err_soft;
492 u32 sk_ack_backlog;
493 u32 sk_max_ack_backlog;
494 kuid_t sk_uid;
495 u8 sk_txrehash;
496 #ifdef CONFIG_NET_RX_BUSY_POLL
497 u8 sk_prefer_busy_poll;
498 u16 sk_busy_poll_budget;
499 #endif
500 spinlock_t sk_peer_lock;
501 int sk_bind_phc;
502 struct pid *sk_peer_pid;
503 const struct cred *sk_peer_cred;
504
505 long sk_rcvtimeo;
506 ktime_t sk_stamp;
507 #if BITS_PER_LONG==32
508 seqlock_t sk_stamp_seq;
509 #endif
510 u16 sk_tsflags;
511 u8 sk_shutdown;
512 atomic_t sk_tskey;
513 atomic_t sk_zckey;
514
515 u8 sk_clockid;
516 u8 sk_txtime_deadline_mode : 1,
517 sk_txtime_report_errors : 1,
518 sk_txtime_unused : 6;
519
520 struct socket *sk_socket;
521 void *sk_user_data;
522 #ifdef CONFIG_SECURITY
523 void *sk_security;
524 #endif
525 struct sock_cgroup_data sk_cgrp_data;
526 struct mem_cgroup *sk_memcg;
527 void (*sk_state_change)(struct sock *sk);
528 void (*sk_data_ready)(struct sock *sk);
529 void (*sk_write_space)(struct sock *sk);
530 void (*sk_error_report)(struct sock *sk);
531 int (*sk_backlog_rcv)(struct sock *sk,
532 struct sk_buff *skb);
533 #ifdef CONFIG_SOCK_VALIDATE_XMIT
534 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
535 struct net_device *dev,
536 struct sk_buff *skb);
537 #endif
538 void (*sk_destruct)(struct sock *sk);
539 struct sock_reuseport __rcu *sk_reuseport_cb;
540 #ifdef CONFIG_BPF_SYSCALL
541 struct bpf_local_storage __rcu *sk_bpf_storage;
542 #endif
543 struct rcu_head sk_rcu;
544 netns_tracker ns_tracker;
545 struct hlist_node sk_bind2_node;
546
547 ANDROID_OEM_DATA(1);
548 ANDROID_KABI_RESERVE(1);
549 ANDROID_KABI_RESERVE(2);
550 ANDROID_KABI_RESERVE(3);
551 ANDROID_KABI_RESERVE(4);
552 ANDROID_KABI_RESERVE(5);
553 ANDROID_KABI_RESERVE(6);
554 ANDROID_KABI_RESERVE(7);
555 ANDROID_KABI_RESERVE(8);
556 };
557
558 enum sk_pacing {
559 SK_PACING_NONE = 0,
560 SK_PACING_NEEDED = 1,
561 SK_PACING_FQ = 2,
562 };
563
564 /* flag bits in sk_user_data
565 *
566 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might
567 * not be suitable for copying when cloning the socket. For instance,
568 * it can point to a reference counted object. sk_user_data bottom
569 * bit is set if pointer must not be copied.
570 *
571 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is
572 * managed/owned by a BPF reuseport array. This bit should be set
573 * when sk_user_data's sk is added to the bpf's reuseport_array.
574 *
575 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in
576 * sk_user_data points to psock type. This bit should be set
577 * when sk_user_data is assigned to a psock object.
578 */
579 #define SK_USER_DATA_NOCOPY 1UL
580 #define SK_USER_DATA_BPF 2UL
581 #define SK_USER_DATA_PSOCK 4UL
582 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
583 SK_USER_DATA_PSOCK)
584
585 /**
586 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
587 * @sk: socket
588 */
sk_user_data_is_nocopy(const struct sock * sk)589 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
590 {
591 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
592 }
593
594 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
595
596 /**
597 * __locked_read_sk_user_data_with_flags - return the pointer
598 * only if argument flags all has been set in sk_user_data. Otherwise
599 * return NULL
600 *
601 * @sk: socket
602 * @flags: flag bits
603 *
604 * The caller must be holding sk->sk_callback_lock.
605 */
606 static inline void *
__locked_read_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)607 __locked_read_sk_user_data_with_flags(const struct sock *sk,
608 uintptr_t flags)
609 {
610 uintptr_t sk_user_data =
611 (uintptr_t)rcu_dereference_check(__sk_user_data(sk),
612 lockdep_is_held(&sk->sk_callback_lock));
613
614 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
615
616 if ((sk_user_data & flags) == flags)
617 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
618 return NULL;
619 }
620
621 /**
622 * __rcu_dereference_sk_user_data_with_flags - return the pointer
623 * only if argument flags all has been set in sk_user_data. Otherwise
624 * return NULL
625 *
626 * @sk: socket
627 * @flags: flag bits
628 */
629 static inline void *
__rcu_dereference_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)630 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
631 uintptr_t flags)
632 {
633 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
634
635 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
636
637 if ((sk_user_data & flags) == flags)
638 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
639 return NULL;
640 }
641
642 #define rcu_dereference_sk_user_data(sk) \
643 __rcu_dereference_sk_user_data_with_flags(sk, 0)
644 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \
645 ({ \
646 uintptr_t __tmp1 = (uintptr_t)(ptr), \
647 __tmp2 = (uintptr_t)(flags); \
648 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \
649 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \
650 rcu_assign_pointer(__sk_user_data((sk)), \
651 __tmp1 | __tmp2); \
652 })
653 #define rcu_assign_sk_user_data(sk, ptr) \
654 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
655
656 static inline
sock_net(const struct sock * sk)657 struct net *sock_net(const struct sock *sk)
658 {
659 return read_pnet(&sk->sk_net);
660 }
661
662 static inline
sock_net_set(struct sock * sk,struct net * net)663 void sock_net_set(struct sock *sk, struct net *net)
664 {
665 write_pnet(&sk->sk_net, net);
666 }
667
668 /*
669 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
670 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
671 * on a socket means that the socket will reuse everybody else's port
672 * without looking at the other's sk_reuse value.
673 */
674
675 #define SK_NO_REUSE 0
676 #define SK_CAN_REUSE 1
677 #define SK_FORCE_REUSE 2
678
679 int sk_set_peek_off(struct sock *sk, int val);
680
sk_peek_offset(const struct sock * sk,int flags)681 static inline int sk_peek_offset(const struct sock *sk, int flags)
682 {
683 if (unlikely(flags & MSG_PEEK)) {
684 return READ_ONCE(sk->sk_peek_off);
685 }
686
687 return 0;
688 }
689
sk_peek_offset_bwd(struct sock * sk,int val)690 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
691 {
692 s32 off = READ_ONCE(sk->sk_peek_off);
693
694 if (unlikely(off >= 0)) {
695 off = max_t(s32, off - val, 0);
696 WRITE_ONCE(sk->sk_peek_off, off);
697 }
698 }
699
sk_peek_offset_fwd(struct sock * sk,int val)700 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
701 {
702 sk_peek_offset_bwd(sk, -val);
703 }
704
705 /*
706 * Hashed lists helper routines
707 */
sk_entry(const struct hlist_node * node)708 static inline struct sock *sk_entry(const struct hlist_node *node)
709 {
710 return hlist_entry(node, struct sock, sk_node);
711 }
712
__sk_head(const struct hlist_head * head)713 static inline struct sock *__sk_head(const struct hlist_head *head)
714 {
715 return hlist_entry(head->first, struct sock, sk_node);
716 }
717
sk_head(const struct hlist_head * head)718 static inline struct sock *sk_head(const struct hlist_head *head)
719 {
720 return hlist_empty(head) ? NULL : __sk_head(head);
721 }
722
__sk_nulls_head(const struct hlist_nulls_head * head)723 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
724 {
725 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
726 }
727
sk_nulls_head(const struct hlist_nulls_head * head)728 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
729 {
730 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
731 }
732
sk_next(const struct sock * sk)733 static inline struct sock *sk_next(const struct sock *sk)
734 {
735 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
736 }
737
sk_nulls_next(const struct sock * sk)738 static inline struct sock *sk_nulls_next(const struct sock *sk)
739 {
740 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
741 hlist_nulls_entry(sk->sk_nulls_node.next,
742 struct sock, sk_nulls_node) :
743 NULL;
744 }
745
sk_unhashed(const struct sock * sk)746 static inline bool sk_unhashed(const struct sock *sk)
747 {
748 return hlist_unhashed(&sk->sk_node);
749 }
750
sk_hashed(const struct sock * sk)751 static inline bool sk_hashed(const struct sock *sk)
752 {
753 return !sk_unhashed(sk);
754 }
755
sk_node_init(struct hlist_node * node)756 static inline void sk_node_init(struct hlist_node *node)
757 {
758 node->pprev = NULL;
759 }
760
__sk_del_node(struct sock * sk)761 static inline void __sk_del_node(struct sock *sk)
762 {
763 __hlist_del(&sk->sk_node);
764 }
765
766 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)767 static inline bool __sk_del_node_init(struct sock *sk)
768 {
769 if (sk_hashed(sk)) {
770 __sk_del_node(sk);
771 sk_node_init(&sk->sk_node);
772 return true;
773 }
774 return false;
775 }
776
777 /* Grab socket reference count. This operation is valid only
778 when sk is ALREADY grabbed f.e. it is found in hash table
779 or a list and the lookup is made under lock preventing hash table
780 modifications.
781 */
782
sock_hold(struct sock * sk)783 static __always_inline void sock_hold(struct sock *sk)
784 {
785 refcount_inc(&sk->sk_refcnt);
786 }
787
788 /* Ungrab socket in the context, which assumes that socket refcnt
789 cannot hit zero, f.e. it is true in context of any socketcall.
790 */
__sock_put(struct sock * sk)791 static __always_inline void __sock_put(struct sock *sk)
792 {
793 refcount_dec(&sk->sk_refcnt);
794 }
795
sk_del_node_init(struct sock * sk)796 static inline bool sk_del_node_init(struct sock *sk)
797 {
798 bool rc = __sk_del_node_init(sk);
799
800 if (rc) {
801 /* paranoid for a while -acme */
802 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
803 __sock_put(sk);
804 }
805 return rc;
806 }
807 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
808
__sk_nulls_del_node_init_rcu(struct sock * sk)809 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
810 {
811 if (sk_hashed(sk)) {
812 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
813 return true;
814 }
815 return false;
816 }
817
sk_nulls_del_node_init_rcu(struct sock * sk)818 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
819 {
820 bool rc = __sk_nulls_del_node_init_rcu(sk);
821
822 if (rc) {
823 /* paranoid for a while -acme */
824 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
825 __sock_put(sk);
826 }
827 return rc;
828 }
829
__sk_add_node(struct sock * sk,struct hlist_head * list)830 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
831 {
832 hlist_add_head(&sk->sk_node, list);
833 }
834
sk_add_node(struct sock * sk,struct hlist_head * list)835 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
836 {
837 sock_hold(sk);
838 __sk_add_node(sk, list);
839 }
840
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)841 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
842 {
843 sock_hold(sk);
844 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
845 sk->sk_family == AF_INET6)
846 hlist_add_tail_rcu(&sk->sk_node, list);
847 else
848 hlist_add_head_rcu(&sk->sk_node, list);
849 }
850
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)851 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
852 {
853 sock_hold(sk);
854 hlist_add_tail_rcu(&sk->sk_node, list);
855 }
856
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)857 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
858 {
859 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
860 }
861
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)862 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
863 {
864 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
865 }
866
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)867 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
868 {
869 sock_hold(sk);
870 __sk_nulls_add_node_rcu(sk, list);
871 }
872
__sk_del_bind_node(struct sock * sk)873 static inline void __sk_del_bind_node(struct sock *sk)
874 {
875 __hlist_del(&sk->sk_bind_node);
876 }
877
sk_add_bind_node(struct sock * sk,struct hlist_head * list)878 static inline void sk_add_bind_node(struct sock *sk,
879 struct hlist_head *list)
880 {
881 hlist_add_head(&sk->sk_bind_node, list);
882 }
883
__sk_del_bind2_node(struct sock * sk)884 static inline void __sk_del_bind2_node(struct sock *sk)
885 {
886 __hlist_del(&sk->sk_bind2_node);
887 }
888
sk_add_bind2_node(struct sock * sk,struct hlist_head * list)889 static inline void sk_add_bind2_node(struct sock *sk, struct hlist_head *list)
890 {
891 hlist_add_head(&sk->sk_bind2_node, list);
892 }
893
894 #define sk_for_each(__sk, list) \
895 hlist_for_each_entry(__sk, list, sk_node)
896 #define sk_for_each_rcu(__sk, list) \
897 hlist_for_each_entry_rcu(__sk, list, sk_node)
898 #define sk_nulls_for_each(__sk, node, list) \
899 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
900 #define sk_nulls_for_each_rcu(__sk, node, list) \
901 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
902 #define sk_for_each_from(__sk) \
903 hlist_for_each_entry_from(__sk, sk_node)
904 #define sk_nulls_for_each_from(__sk, node) \
905 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
906 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
907 #define sk_for_each_safe(__sk, tmp, list) \
908 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
909 #define sk_for_each_bound(__sk, list) \
910 hlist_for_each_entry(__sk, list, sk_bind_node)
911 #define sk_for_each_bound_bhash2(__sk, list) \
912 hlist_for_each_entry(__sk, list, sk_bind2_node)
913
914 /**
915 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
916 * @tpos: the type * to use as a loop cursor.
917 * @pos: the &struct hlist_node to use as a loop cursor.
918 * @head: the head for your list.
919 * @offset: offset of hlist_node within the struct.
920 *
921 */
922 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
923 for (pos = rcu_dereference(hlist_first_rcu(head)); \
924 pos != NULL && \
925 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
926 pos = rcu_dereference(hlist_next_rcu(pos)))
927
sk_user_ns(const struct sock * sk)928 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
929 {
930 /* Careful only use this in a context where these parameters
931 * can not change and must all be valid, such as recvmsg from
932 * userspace.
933 */
934 return sk->sk_socket->file->f_cred->user_ns;
935 }
936
937 /* Sock flags */
938 enum sock_flags {
939 SOCK_DEAD,
940 SOCK_DONE,
941 SOCK_URGINLINE,
942 SOCK_KEEPOPEN,
943 SOCK_LINGER,
944 SOCK_DESTROY,
945 SOCK_BROADCAST,
946 SOCK_TIMESTAMP,
947 SOCK_ZAPPED,
948 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
949 SOCK_DBG, /* %SO_DEBUG setting */
950 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
951 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
952 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
953 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
954 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
955 SOCK_FASYNC, /* fasync() active */
956 SOCK_RXQ_OVFL,
957 SOCK_ZEROCOPY, /* buffers from userspace */
958 SOCK_WIFI_STATUS, /* push wifi status to userspace */
959 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
960 * Will use last 4 bytes of packet sent from
961 * user-space instead.
962 */
963 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
964 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
965 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
966 SOCK_TXTIME,
967 SOCK_XDP, /* XDP is attached */
968 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
969 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */
970 };
971
972 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
973
sock_copy_flags(struct sock * nsk,const struct sock * osk)974 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
975 {
976 nsk->sk_flags = osk->sk_flags;
977 }
978
sock_set_flag(struct sock * sk,enum sock_flags flag)979 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
980 {
981 __set_bit(flag, &sk->sk_flags);
982 }
983
sock_reset_flag(struct sock * sk,enum sock_flags flag)984 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
985 {
986 __clear_bit(flag, &sk->sk_flags);
987 }
988
sock_valbool_flag(struct sock * sk,enum sock_flags bit,int valbool)989 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
990 int valbool)
991 {
992 if (valbool)
993 sock_set_flag(sk, bit);
994 else
995 sock_reset_flag(sk, bit);
996 }
997
sock_flag(const struct sock * sk,enum sock_flags flag)998 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
999 {
1000 return test_bit(flag, &sk->sk_flags);
1001 }
1002
1003 #ifdef CONFIG_NET
1004 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)1005 static inline int sk_memalloc_socks(void)
1006 {
1007 return static_branch_unlikely(&memalloc_socks_key);
1008 }
1009
1010 void __receive_sock(struct file *file);
1011 #else
1012
sk_memalloc_socks(void)1013 static inline int sk_memalloc_socks(void)
1014 {
1015 return 0;
1016 }
1017
__receive_sock(struct file * file)1018 static inline void __receive_sock(struct file *file)
1019 { }
1020 #endif
1021
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)1022 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1023 {
1024 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1025 }
1026
sk_acceptq_removed(struct sock * sk)1027 static inline void sk_acceptq_removed(struct sock *sk)
1028 {
1029 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1030 }
1031
sk_acceptq_added(struct sock * sk)1032 static inline void sk_acceptq_added(struct sock *sk)
1033 {
1034 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1035 }
1036
1037 /* Note: If you think the test should be:
1038 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1039 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1040 */
sk_acceptq_is_full(const struct sock * sk)1041 static inline bool sk_acceptq_is_full(const struct sock *sk)
1042 {
1043 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1044 }
1045
1046 /*
1047 * Compute minimal free write space needed to queue new packets.
1048 */
sk_stream_min_wspace(const struct sock * sk)1049 static inline int sk_stream_min_wspace(const struct sock *sk)
1050 {
1051 return READ_ONCE(sk->sk_wmem_queued) >> 1;
1052 }
1053
sk_stream_wspace(const struct sock * sk)1054 static inline int sk_stream_wspace(const struct sock *sk)
1055 {
1056 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1057 }
1058
sk_wmem_queued_add(struct sock * sk,int val)1059 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1060 {
1061 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1062 }
1063
sk_forward_alloc_add(struct sock * sk,int val)1064 static inline void sk_forward_alloc_add(struct sock *sk, int val)
1065 {
1066 /* Paired with lockless reads of sk->sk_forward_alloc */
1067 WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1068 }
1069
1070 void sk_stream_write_space(struct sock *sk);
1071
1072 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)1073 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1074 {
1075 /* dont let skb dst not refcounted, we are going to leave rcu lock */
1076 skb_dst_force(skb);
1077
1078 if (!sk->sk_backlog.tail)
1079 WRITE_ONCE(sk->sk_backlog.head, skb);
1080 else
1081 sk->sk_backlog.tail->next = skb;
1082
1083 WRITE_ONCE(sk->sk_backlog.tail, skb);
1084 skb->next = NULL;
1085 }
1086
1087 /*
1088 * Take into account size of receive queue and backlog queue
1089 * Do not take into account this skb truesize,
1090 * to allow even a single big packet to come.
1091 */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)1092 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1093 {
1094 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1095
1096 return qsize > limit;
1097 }
1098
1099 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)1100 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1101 unsigned int limit)
1102 {
1103 if (sk_rcvqueues_full(sk, limit))
1104 return -ENOBUFS;
1105
1106 /*
1107 * If the skb was allocated from pfmemalloc reserves, only
1108 * allow SOCK_MEMALLOC sockets to use it as this socket is
1109 * helping free memory
1110 */
1111 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1112 return -ENOMEM;
1113
1114 __sk_add_backlog(sk, skb);
1115 sk->sk_backlog.len += skb->truesize;
1116 return 0;
1117 }
1118
1119 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1120
1121 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1122 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1123
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)1124 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1125 {
1126 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1127 return __sk_backlog_rcv(sk, skb);
1128
1129 return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1130 tcp_v6_do_rcv,
1131 tcp_v4_do_rcv,
1132 sk, skb);
1133 }
1134
sk_incoming_cpu_update(struct sock * sk)1135 static inline void sk_incoming_cpu_update(struct sock *sk)
1136 {
1137 int cpu = raw_smp_processor_id();
1138
1139 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1140 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1141 }
1142
sock_rps_record_flow_hash(__u32 hash)1143 static inline void sock_rps_record_flow_hash(__u32 hash)
1144 {
1145 #ifdef CONFIG_RPS
1146 struct rps_sock_flow_table *sock_flow_table;
1147
1148 rcu_read_lock();
1149 sock_flow_table = rcu_dereference(rps_sock_flow_table);
1150 rps_record_sock_flow(sock_flow_table, hash);
1151 rcu_read_unlock();
1152 #endif
1153 }
1154
sock_rps_record_flow(const struct sock * sk)1155 static inline void sock_rps_record_flow(const struct sock *sk)
1156 {
1157 #ifdef CONFIG_RPS
1158 if (static_branch_unlikely(&rfs_needed)) {
1159 /* Reading sk->sk_rxhash might incur an expensive cache line
1160 * miss.
1161 *
1162 * TCP_ESTABLISHED does cover almost all states where RFS
1163 * might be useful, and is cheaper [1] than testing :
1164 * IPv4: inet_sk(sk)->inet_daddr
1165 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1166 * OR an additional socket flag
1167 * [1] : sk_state and sk_prot are in the same cache line.
1168 */
1169 if (sk->sk_state == TCP_ESTABLISHED) {
1170 /* This READ_ONCE() is paired with the WRITE_ONCE()
1171 * from sock_rps_save_rxhash() and sock_rps_reset_rxhash().
1172 */
1173 sock_rps_record_flow_hash(READ_ONCE(sk->sk_rxhash));
1174 }
1175 }
1176 #endif
1177 }
1178
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)1179 static inline void sock_rps_save_rxhash(struct sock *sk,
1180 const struct sk_buff *skb)
1181 {
1182 #ifdef CONFIG_RPS
1183 /* The following WRITE_ONCE() is paired with the READ_ONCE()
1184 * here, and another one in sock_rps_record_flow().
1185 */
1186 if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1187 WRITE_ONCE(sk->sk_rxhash, skb->hash);
1188 #endif
1189 }
1190
sock_rps_reset_rxhash(struct sock * sk)1191 static inline void sock_rps_reset_rxhash(struct sock *sk)
1192 {
1193 #ifdef CONFIG_RPS
1194 /* Paired with READ_ONCE() in sock_rps_record_flow() */
1195 WRITE_ONCE(sk->sk_rxhash, 0);
1196 #endif
1197 }
1198
1199 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1200 ({ int __rc; \
1201 __sk->sk_wait_pending++; \
1202 release_sock(__sk); \
1203 __rc = __condition; \
1204 if (!__rc) { \
1205 *(__timeo) = wait_woken(__wait, \
1206 TASK_INTERRUPTIBLE, \
1207 *(__timeo)); \
1208 } \
1209 sched_annotate_sleep(); \
1210 lock_sock(__sk); \
1211 __sk->sk_wait_pending--; \
1212 __rc = __condition; \
1213 __rc; \
1214 })
1215
1216 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1217 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1218 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1219 int sk_stream_error(struct sock *sk, int flags, int err);
1220 void sk_stream_kill_queues(struct sock *sk);
1221 void sk_set_memalloc(struct sock *sk);
1222 void sk_clear_memalloc(struct sock *sk);
1223
1224 void __sk_flush_backlog(struct sock *sk);
1225
sk_flush_backlog(struct sock * sk)1226 static inline bool sk_flush_backlog(struct sock *sk)
1227 {
1228 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1229 __sk_flush_backlog(sk);
1230 return true;
1231 }
1232 return false;
1233 }
1234
1235 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1236
1237 struct request_sock_ops;
1238 struct timewait_sock_ops;
1239 struct inet_hashinfo;
1240 struct raw_hashinfo;
1241 struct smc_hashinfo;
1242 struct module;
1243 struct sk_psock;
1244
1245 /*
1246 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1247 * un-modified. Special care is taken when initializing object to zero.
1248 */
sk_prot_clear_nulls(struct sock * sk,int size)1249 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1250 {
1251 if (offsetof(struct sock, sk_node.next) != 0)
1252 memset(sk, 0, offsetof(struct sock, sk_node.next));
1253 memset(&sk->sk_node.pprev, 0,
1254 size - offsetof(struct sock, sk_node.pprev));
1255 }
1256
1257 /* Networking protocol blocks we attach to sockets.
1258 * socket layer -> transport layer interface
1259 */
1260 struct proto {
1261 void (*close)(struct sock *sk,
1262 long timeout);
1263 int (*pre_connect)(struct sock *sk,
1264 struct sockaddr *uaddr,
1265 int addr_len);
1266 int (*connect)(struct sock *sk,
1267 struct sockaddr *uaddr,
1268 int addr_len);
1269 int (*disconnect)(struct sock *sk, int flags);
1270
1271 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1272 bool kern);
1273
1274 int (*ioctl)(struct sock *sk, int cmd,
1275 unsigned long arg);
1276 int (*init)(struct sock *sk);
1277 void (*destroy)(struct sock *sk);
1278 void (*shutdown)(struct sock *sk, int how);
1279 int (*setsockopt)(struct sock *sk, int level,
1280 int optname, sockptr_t optval,
1281 unsigned int optlen);
1282 int (*getsockopt)(struct sock *sk, int level,
1283 int optname, char __user *optval,
1284 int __user *option);
1285 void (*keepalive)(struct sock *sk, int valbool);
1286 #ifdef CONFIG_COMPAT
1287 int (*compat_ioctl)(struct sock *sk,
1288 unsigned int cmd, unsigned long arg);
1289 #endif
1290 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1291 size_t len);
1292 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1293 size_t len, int flags, int *addr_len);
1294 int (*sendpage)(struct sock *sk, struct page *page,
1295 int offset, size_t size, int flags);
1296 int (*bind)(struct sock *sk,
1297 struct sockaddr *addr, int addr_len);
1298 int (*bind_add)(struct sock *sk,
1299 struct sockaddr *addr, int addr_len);
1300
1301 int (*backlog_rcv) (struct sock *sk,
1302 struct sk_buff *skb);
1303 bool (*bpf_bypass_getsockopt)(int level,
1304 int optname);
1305
1306 void (*release_cb)(struct sock *sk);
1307
1308 /* Keeping track of sk's, looking them up, and port selection methods. */
1309 int (*hash)(struct sock *sk);
1310 void (*unhash)(struct sock *sk);
1311 void (*rehash)(struct sock *sk);
1312 int (*get_port)(struct sock *sk, unsigned short snum);
1313 void (*put_port)(struct sock *sk);
1314 #ifdef CONFIG_BPF_SYSCALL
1315 int (*psock_update_sk_prot)(struct sock *sk,
1316 struct sk_psock *psock,
1317 bool restore);
1318 #endif
1319
1320 /* Keeping track of sockets in use */
1321 #ifdef CONFIG_PROC_FS
1322 unsigned int inuse_idx;
1323 #endif
1324
1325 #if IS_ENABLED(CONFIG_MPTCP)
1326 int (*forward_alloc_get)(const struct sock *sk);
1327 #endif
1328
1329 bool (*stream_memory_free)(const struct sock *sk, int wake);
1330 bool (*sock_is_readable)(struct sock *sk);
1331 /* Memory pressure */
1332 void (*enter_memory_pressure)(struct sock *sk);
1333 void (*leave_memory_pressure)(struct sock *sk);
1334 atomic_long_t *memory_allocated; /* Current allocated memory. */
1335 int __percpu *per_cpu_fw_alloc;
1336 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1337
1338 /*
1339 * Pressure flag: try to collapse.
1340 * Technical note: it is used by multiple contexts non atomically.
1341 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1342 * All the __sk_mem_schedule() is of this nature: accounting
1343 * is strict, actions are advisory and have some latency.
1344 */
1345 unsigned long *memory_pressure;
1346 long *sysctl_mem;
1347
1348 int *sysctl_wmem;
1349 int *sysctl_rmem;
1350 u32 sysctl_wmem_offset;
1351 u32 sysctl_rmem_offset;
1352
1353 int max_header;
1354 bool no_autobind;
1355
1356 struct kmem_cache *slab;
1357 unsigned int obj_size;
1358 slab_flags_t slab_flags;
1359 unsigned int useroffset; /* Usercopy region offset */
1360 unsigned int usersize; /* Usercopy region size */
1361
1362 unsigned int __percpu *orphan_count;
1363
1364 struct request_sock_ops *rsk_prot;
1365 struct timewait_sock_ops *twsk_prot;
1366
1367 union {
1368 struct inet_hashinfo *hashinfo;
1369 struct udp_table *udp_table;
1370 struct raw_hashinfo *raw_hash;
1371 struct smc_hashinfo *smc_hash;
1372 } h;
1373
1374 struct module *owner;
1375
1376 char name[32];
1377
1378 struct list_head node;
1379 #ifdef SOCK_REFCNT_DEBUG
1380 atomic_t socks;
1381 #endif
1382 int (*diag_destroy)(struct sock *sk, int err);
1383 } __randomize_layout;
1384
1385 int proto_register(struct proto *prot, int alloc_slab);
1386 void proto_unregister(struct proto *prot);
1387 int sock_load_diag_module(int family, int protocol);
1388
1389 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)1390 static inline void sk_refcnt_debug_inc(struct sock *sk)
1391 {
1392 atomic_inc(&sk->sk_prot->socks);
1393 }
1394
sk_refcnt_debug_dec(struct sock * sk)1395 static inline void sk_refcnt_debug_dec(struct sock *sk)
1396 {
1397 atomic_dec(&sk->sk_prot->socks);
1398 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1399 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1400 }
1401
sk_refcnt_debug_release(const struct sock * sk)1402 static inline void sk_refcnt_debug_release(const struct sock *sk)
1403 {
1404 if (refcount_read(&sk->sk_refcnt) != 1)
1405 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1406 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1407 }
1408 #else /* SOCK_REFCNT_DEBUG */
1409 #define sk_refcnt_debug_inc(sk) do { } while (0)
1410 #define sk_refcnt_debug_dec(sk) do { } while (0)
1411 #define sk_refcnt_debug_release(sk) do { } while (0)
1412 #endif /* SOCK_REFCNT_DEBUG */
1413
1414 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1415
sk_forward_alloc_get(const struct sock * sk)1416 static inline int sk_forward_alloc_get(const struct sock *sk)
1417 {
1418 #if IS_ENABLED(CONFIG_MPTCP)
1419 if (sk->sk_prot->forward_alloc_get)
1420 return sk->sk_prot->forward_alloc_get(sk);
1421 #endif
1422 return READ_ONCE(sk->sk_forward_alloc);
1423 }
1424
__sk_stream_memory_free(const struct sock * sk,int wake)1425 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1426 {
1427 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1428 return false;
1429
1430 return sk->sk_prot->stream_memory_free ?
1431 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1432 tcp_stream_memory_free, sk, wake) : true;
1433 }
1434
sk_stream_memory_free(const struct sock * sk)1435 static inline bool sk_stream_memory_free(const struct sock *sk)
1436 {
1437 return __sk_stream_memory_free(sk, 0);
1438 }
1439
__sk_stream_is_writeable(const struct sock * sk,int wake)1440 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1441 {
1442 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1443 __sk_stream_memory_free(sk, wake);
1444 }
1445
sk_stream_is_writeable(const struct sock * sk)1446 static inline bool sk_stream_is_writeable(const struct sock *sk)
1447 {
1448 return __sk_stream_is_writeable(sk, 0);
1449 }
1450
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1451 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1452 struct cgroup *ancestor)
1453 {
1454 #ifdef CONFIG_SOCK_CGROUP_DATA
1455 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1456 ancestor);
1457 #else
1458 return -ENOTSUPP;
1459 #endif
1460 }
1461
sk_has_memory_pressure(const struct sock * sk)1462 static inline bool sk_has_memory_pressure(const struct sock *sk)
1463 {
1464 return sk->sk_prot->memory_pressure != NULL;
1465 }
1466
sk_under_global_memory_pressure(const struct sock * sk)1467 static inline bool sk_under_global_memory_pressure(const struct sock *sk)
1468 {
1469 return sk->sk_prot->memory_pressure &&
1470 !!READ_ONCE(*sk->sk_prot->memory_pressure);
1471 }
1472
sk_under_memory_pressure(const struct sock * sk)1473 static inline bool sk_under_memory_pressure(const struct sock *sk)
1474 {
1475 if (!sk->sk_prot->memory_pressure)
1476 return false;
1477
1478 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1479 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1480 return true;
1481
1482 return !!READ_ONCE(*sk->sk_prot->memory_pressure);
1483 }
1484
1485 static inline long
proto_memory_allocated(const struct proto * prot)1486 proto_memory_allocated(const struct proto *prot)
1487 {
1488 return max(0L, atomic_long_read(prot->memory_allocated));
1489 }
1490
1491 static inline long
sk_memory_allocated(const struct sock * sk)1492 sk_memory_allocated(const struct sock *sk)
1493 {
1494 return proto_memory_allocated(sk->sk_prot);
1495 }
1496
1497 /* 1 MB per cpu, in page units */
1498 #define SK_MEMORY_PCPU_RESERVE (1 << (20 - PAGE_SHIFT))
1499
1500 static inline void
sk_memory_allocated_add(struct sock * sk,int amt)1501 sk_memory_allocated_add(struct sock *sk, int amt)
1502 {
1503 int local_reserve;
1504
1505 preempt_disable();
1506 local_reserve = __this_cpu_add_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1507 if (local_reserve >= SK_MEMORY_PCPU_RESERVE) {
1508 __this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1509 atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1510 }
1511 preempt_enable();
1512 }
1513
1514 static inline void
sk_memory_allocated_sub(struct sock * sk,int amt)1515 sk_memory_allocated_sub(struct sock *sk, int amt)
1516 {
1517 int local_reserve;
1518
1519 preempt_disable();
1520 local_reserve = __this_cpu_sub_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1521 if (local_reserve <= -SK_MEMORY_PCPU_RESERVE) {
1522 __this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1523 atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1524 }
1525 preempt_enable();
1526 }
1527
1528 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1529
sk_sockets_allocated_dec(struct sock * sk)1530 static inline void sk_sockets_allocated_dec(struct sock *sk)
1531 {
1532 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1533 SK_ALLOC_PERCPU_COUNTER_BATCH);
1534 }
1535
sk_sockets_allocated_inc(struct sock * sk)1536 static inline void sk_sockets_allocated_inc(struct sock *sk)
1537 {
1538 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1539 SK_ALLOC_PERCPU_COUNTER_BATCH);
1540 }
1541
1542 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1543 sk_sockets_allocated_read_positive(struct sock *sk)
1544 {
1545 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1546 }
1547
1548 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1549 proto_sockets_allocated_sum_positive(struct proto *prot)
1550 {
1551 return percpu_counter_sum_positive(prot->sockets_allocated);
1552 }
1553
1554 static inline bool
proto_memory_pressure(struct proto * prot)1555 proto_memory_pressure(struct proto *prot)
1556 {
1557 if (!prot->memory_pressure)
1558 return false;
1559 return !!READ_ONCE(*prot->memory_pressure);
1560 }
1561
1562
1563 #ifdef CONFIG_PROC_FS
1564 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
1565 struct prot_inuse {
1566 int all;
1567 int val[PROTO_INUSE_NR];
1568 };
1569
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1570 static inline void sock_prot_inuse_add(const struct net *net,
1571 const struct proto *prot, int val)
1572 {
1573 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1574 }
1575
sock_inuse_add(const struct net * net,int val)1576 static inline void sock_inuse_add(const struct net *net, int val)
1577 {
1578 this_cpu_add(net->core.prot_inuse->all, val);
1579 }
1580
1581 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1582 int sock_inuse_get(struct net *net);
1583 #else
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1584 static inline void sock_prot_inuse_add(const struct net *net,
1585 const struct proto *prot, int val)
1586 {
1587 }
1588
sock_inuse_add(const struct net * net,int val)1589 static inline void sock_inuse_add(const struct net *net, int val)
1590 {
1591 }
1592 #endif
1593
1594
1595 /* With per-bucket locks this operation is not-atomic, so that
1596 * this version is not worse.
1597 */
__sk_prot_rehash(struct sock * sk)1598 static inline int __sk_prot_rehash(struct sock *sk)
1599 {
1600 sk->sk_prot->unhash(sk);
1601 return sk->sk_prot->hash(sk);
1602 }
1603
1604 /* About 10 seconds */
1605 #define SOCK_DESTROY_TIME (10*HZ)
1606
1607 /* Sockets 0-1023 can't be bound to unless you are superuser */
1608 #define PROT_SOCK 1024
1609
1610 #define SHUTDOWN_MASK 3
1611 #define RCV_SHUTDOWN 1
1612 #define SEND_SHUTDOWN 2
1613
1614 #define SOCK_BINDADDR_LOCK 4
1615 #define SOCK_BINDPORT_LOCK 8
1616
1617 struct socket_alloc {
1618 struct socket socket;
1619 struct inode vfs_inode;
1620 };
1621
SOCKET_I(struct inode * inode)1622 static inline struct socket *SOCKET_I(struct inode *inode)
1623 {
1624 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1625 }
1626
SOCK_INODE(struct socket * socket)1627 static inline struct inode *SOCK_INODE(struct socket *socket)
1628 {
1629 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1630 }
1631
1632 /*
1633 * Functions for memory accounting
1634 */
1635 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1636 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1637 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1638 void __sk_mem_reclaim(struct sock *sk, int amount);
1639
1640 #define SK_MEM_SEND 0
1641 #define SK_MEM_RECV 1
1642
1643 /* sysctl_mem values are in pages */
sk_prot_mem_limits(const struct sock * sk,int index)1644 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1645 {
1646 return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1647 }
1648
sk_mem_pages(int amt)1649 static inline int sk_mem_pages(int amt)
1650 {
1651 return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1652 }
1653
sk_has_account(struct sock * sk)1654 static inline bool sk_has_account(struct sock *sk)
1655 {
1656 /* return true if protocol supports memory accounting */
1657 return !!sk->sk_prot->memory_allocated;
1658 }
1659
sk_wmem_schedule(struct sock * sk,int size)1660 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1661 {
1662 int delta;
1663
1664 if (!sk_has_account(sk))
1665 return true;
1666 delta = size - sk->sk_forward_alloc;
1667 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1668 }
1669
1670 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1671 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1672 {
1673 int delta;
1674
1675 if (!sk_has_account(sk))
1676 return true;
1677 delta = size - sk->sk_forward_alloc;
1678 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1679 skb_pfmemalloc(skb);
1680 }
1681
sk_unused_reserved_mem(const struct sock * sk)1682 static inline int sk_unused_reserved_mem(const struct sock *sk)
1683 {
1684 int unused_mem;
1685
1686 if (likely(!sk->sk_reserved_mem))
1687 return 0;
1688
1689 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1690 atomic_read(&sk->sk_rmem_alloc);
1691
1692 return unused_mem > 0 ? unused_mem : 0;
1693 }
1694
sk_mem_reclaim(struct sock * sk)1695 static inline void sk_mem_reclaim(struct sock *sk)
1696 {
1697 int reclaimable;
1698
1699 if (!sk_has_account(sk))
1700 return;
1701
1702 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1703
1704 if (reclaimable >= (int)PAGE_SIZE)
1705 __sk_mem_reclaim(sk, reclaimable);
1706 }
1707
sk_mem_reclaim_final(struct sock * sk)1708 static inline void sk_mem_reclaim_final(struct sock *sk)
1709 {
1710 sk->sk_reserved_mem = 0;
1711 sk_mem_reclaim(sk);
1712 }
1713
sk_mem_charge(struct sock * sk,int size)1714 static inline void sk_mem_charge(struct sock *sk, int size)
1715 {
1716 if (!sk_has_account(sk))
1717 return;
1718 sk_forward_alloc_add(sk, -size);
1719 }
1720
sk_mem_uncharge(struct sock * sk,int size)1721 static inline void sk_mem_uncharge(struct sock *sk, int size)
1722 {
1723 if (!sk_has_account(sk))
1724 return;
1725 sk_forward_alloc_add(sk, size);
1726 sk_mem_reclaim(sk);
1727 }
1728
1729 /*
1730 * Macro so as to not evaluate some arguments when
1731 * lockdep is not enabled.
1732 *
1733 * Mark both the sk_lock and the sk_lock.slock as a
1734 * per-address-family lock class.
1735 */
1736 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1737 do { \
1738 sk->sk_lock.owned = 0; \
1739 init_waitqueue_head(&sk->sk_lock.wq); \
1740 spin_lock_init(&(sk)->sk_lock.slock); \
1741 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1742 sizeof((sk)->sk_lock)); \
1743 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1744 (skey), (sname)); \
1745 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1746 } while (0)
1747
lockdep_sock_is_held(const struct sock * sk)1748 static inline bool lockdep_sock_is_held(const struct sock *sk)
1749 {
1750 return lockdep_is_held(&sk->sk_lock) ||
1751 lockdep_is_held(&sk->sk_lock.slock);
1752 }
1753
1754 void lock_sock_nested(struct sock *sk, int subclass);
1755
lock_sock(struct sock * sk)1756 static inline void lock_sock(struct sock *sk)
1757 {
1758 lock_sock_nested(sk, 0);
1759 }
1760
1761 void __lock_sock(struct sock *sk);
1762 void __release_sock(struct sock *sk);
1763 void release_sock(struct sock *sk);
1764
1765 /* BH context may only use the following locking interface. */
1766 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1767 #define bh_lock_sock_nested(__sk) \
1768 spin_lock_nested(&((__sk)->sk_lock.slock), \
1769 SINGLE_DEPTH_NESTING)
1770 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1771
1772 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1773
1774 /**
1775 * lock_sock_fast - fast version of lock_sock
1776 * @sk: socket
1777 *
1778 * This version should be used for very small section, where process wont block
1779 * return false if fast path is taken:
1780 *
1781 * sk_lock.slock locked, owned = 0, BH disabled
1782 *
1783 * return true if slow path is taken:
1784 *
1785 * sk_lock.slock unlocked, owned = 1, BH enabled
1786 */
lock_sock_fast(struct sock * sk)1787 static inline bool lock_sock_fast(struct sock *sk)
1788 {
1789 /* The sk_lock has mutex_lock() semantics here. */
1790 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1791
1792 return __lock_sock_fast(sk);
1793 }
1794
1795 /* fast socket lock variant for caller already holding a [different] socket lock */
lock_sock_fast_nested(struct sock * sk)1796 static inline bool lock_sock_fast_nested(struct sock *sk)
1797 {
1798 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1799
1800 return __lock_sock_fast(sk);
1801 }
1802
1803 /**
1804 * unlock_sock_fast - complement of lock_sock_fast
1805 * @sk: socket
1806 * @slow: slow mode
1807 *
1808 * fast unlock socket for user context.
1809 * If slow mode is on, we call regular release_sock()
1810 */
unlock_sock_fast(struct sock * sk,bool slow)1811 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1812 __releases(&sk->sk_lock.slock)
1813 {
1814 if (slow) {
1815 release_sock(sk);
1816 __release(&sk->sk_lock.slock);
1817 } else {
1818 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1819 spin_unlock_bh(&sk->sk_lock.slock);
1820 }
1821 }
1822
1823 void sockopt_lock_sock(struct sock *sk);
1824 void sockopt_release_sock(struct sock *sk);
1825 bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1826 bool sockopt_capable(int cap);
1827
1828 /* Used by processes to "lock" a socket state, so that
1829 * interrupts and bottom half handlers won't change it
1830 * from under us. It essentially blocks any incoming
1831 * packets, so that we won't get any new data or any
1832 * packets that change the state of the socket.
1833 *
1834 * While locked, BH processing will add new packets to
1835 * the backlog queue. This queue is processed by the
1836 * owner of the socket lock right before it is released.
1837 *
1838 * Since ~2.3.5 it is also exclusive sleep lock serializing
1839 * accesses from user process context.
1840 */
1841
sock_owned_by_me(const struct sock * sk)1842 static inline void sock_owned_by_me(const struct sock *sk)
1843 {
1844 #ifdef CONFIG_LOCKDEP
1845 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1846 #endif
1847 }
1848
sock_owned_by_user(const struct sock * sk)1849 static inline bool sock_owned_by_user(const struct sock *sk)
1850 {
1851 sock_owned_by_me(sk);
1852 return sk->sk_lock.owned;
1853 }
1854
sock_owned_by_user_nocheck(const struct sock * sk)1855 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1856 {
1857 return sk->sk_lock.owned;
1858 }
1859
sock_release_ownership(struct sock * sk)1860 static inline void sock_release_ownership(struct sock *sk)
1861 {
1862 if (sock_owned_by_user_nocheck(sk)) {
1863 sk->sk_lock.owned = 0;
1864
1865 /* The sk_lock has mutex_unlock() semantics: */
1866 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1867 }
1868 }
1869
1870 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1871 static inline bool sock_allow_reclassification(const struct sock *csk)
1872 {
1873 struct sock *sk = (struct sock *)csk;
1874
1875 return !sock_owned_by_user_nocheck(sk) &&
1876 !spin_is_locked(&sk->sk_lock.slock);
1877 }
1878
1879 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1880 struct proto *prot, int kern);
1881 void sk_free(struct sock *sk);
1882 void sk_destruct(struct sock *sk);
1883 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1884 void sk_free_unlock_clone(struct sock *sk);
1885
1886 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1887 gfp_t priority);
1888 void __sock_wfree(struct sk_buff *skb);
1889 void sock_wfree(struct sk_buff *skb);
1890 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1891 gfp_t priority);
1892 void skb_orphan_partial(struct sk_buff *skb);
1893 void sock_rfree(struct sk_buff *skb);
1894 void sock_efree(struct sk_buff *skb);
1895 #ifdef CONFIG_INET
1896 void sock_edemux(struct sk_buff *skb);
1897 void sock_pfree(struct sk_buff *skb);
1898 #else
1899 #define sock_edemux sock_efree
1900 #endif
1901
1902 int sk_setsockopt(struct sock *sk, int level, int optname,
1903 sockptr_t optval, unsigned int optlen);
1904 int sock_setsockopt(struct socket *sock, int level, int op,
1905 sockptr_t optval, unsigned int optlen);
1906
1907 int sk_getsockopt(struct sock *sk, int level, int optname,
1908 sockptr_t optval, sockptr_t optlen);
1909 int sock_getsockopt(struct socket *sock, int level, int op,
1910 char __user *optval, int __user *optlen);
1911 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1912 bool timeval, bool time32);
1913 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1914 unsigned long data_len, int noblock,
1915 int *errcode, int max_page_order);
1916
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)1917 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1918 unsigned long size,
1919 int noblock, int *errcode)
1920 {
1921 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1922 }
1923
1924 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1925 void sock_kfree_s(struct sock *sk, void *mem, int size);
1926 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1927 void sk_send_sigurg(struct sock *sk);
1928
sock_replace_proto(struct sock * sk,struct proto * proto)1929 static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1930 {
1931 if (sk->sk_socket)
1932 clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1933 WRITE_ONCE(sk->sk_prot, proto);
1934 }
1935
1936 struct sockcm_cookie {
1937 u64 transmit_time;
1938 u32 mark;
1939 u16 tsflags;
1940 };
1941
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1942 static inline void sockcm_init(struct sockcm_cookie *sockc,
1943 const struct sock *sk)
1944 {
1945 *sockc = (struct sockcm_cookie) {
1946 .tsflags = READ_ONCE(sk->sk_tsflags)
1947 };
1948 }
1949
1950 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1951 struct sockcm_cookie *sockc);
1952 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1953 struct sockcm_cookie *sockc);
1954
1955 /*
1956 * Functions to fill in entries in struct proto_ops when a protocol
1957 * does not implement a particular function.
1958 */
1959 int sock_no_bind(struct socket *, struct sockaddr *, int);
1960 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1961 int sock_no_socketpair(struct socket *, struct socket *);
1962 int sock_no_accept(struct socket *, struct socket *, int, bool);
1963 int sock_no_getname(struct socket *, struct sockaddr *, int);
1964 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1965 int sock_no_listen(struct socket *, int);
1966 int sock_no_shutdown(struct socket *, int);
1967 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1968 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1969 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1970 int sock_no_mmap(struct file *file, struct socket *sock,
1971 struct vm_area_struct *vma);
1972 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1973 size_t size, int flags);
1974 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1975 int offset, size_t size, int flags);
1976
1977 /*
1978 * Functions to fill in entries in struct proto_ops when a protocol
1979 * uses the inet style.
1980 */
1981 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1982 char __user *optval, int __user *optlen);
1983 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1984 int flags);
1985 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1986 sockptr_t optval, unsigned int optlen);
1987
1988 void sk_common_release(struct sock *sk);
1989
1990 /*
1991 * Default socket callbacks and setup code
1992 */
1993
1994 /* Initialise core socket variables using an explicit uid. */
1995 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1996
1997 /* Initialise core socket variables.
1998 * Assumes struct socket *sock is embedded in a struct socket_alloc.
1999 */
2000 void sock_init_data(struct socket *sock, struct sock *sk);
2001
2002 /*
2003 * Socket reference counting postulates.
2004 *
2005 * * Each user of socket SHOULD hold a reference count.
2006 * * Each access point to socket (an hash table bucket, reference from a list,
2007 * running timer, skb in flight MUST hold a reference count.
2008 * * When reference count hits 0, it means it will never increase back.
2009 * * When reference count hits 0, it means that no references from
2010 * outside exist to this socket and current process on current CPU
2011 * is last user and may/should destroy this socket.
2012 * * sk_free is called from any context: process, BH, IRQ. When
2013 * it is called, socket has no references from outside -> sk_free
2014 * may release descendant resources allocated by the socket, but
2015 * to the time when it is called, socket is NOT referenced by any
2016 * hash tables, lists etc.
2017 * * Packets, delivered from outside (from network or from another process)
2018 * and enqueued on receive/error queues SHOULD NOT grab reference count,
2019 * when they sit in queue. Otherwise, packets will leak to hole, when
2020 * socket is looked up by one cpu and unhasing is made by another CPU.
2021 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
2022 * (leak to backlog). Packet socket does all the processing inside
2023 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
2024 * use separate SMP lock, so that they are prone too.
2025 */
2026
2027 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)2028 static inline void sock_put(struct sock *sk)
2029 {
2030 if (refcount_dec_and_test(&sk->sk_refcnt))
2031 sk_free(sk);
2032 }
2033 /* Generic version of sock_put(), dealing with all sockets
2034 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
2035 */
2036 void sock_gen_put(struct sock *sk);
2037
2038 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
2039 unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)2040 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
2041 const int nested)
2042 {
2043 return __sk_receive_skb(sk, skb, nested, 1, true);
2044 }
2045
sk_tx_queue_set(struct sock * sk,int tx_queue)2046 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
2047 {
2048 /* sk_tx_queue_mapping accept only upto a 16-bit value */
2049 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
2050 return;
2051 /* Paired with READ_ONCE() in sk_tx_queue_get() and
2052 * other WRITE_ONCE() because socket lock might be not held.
2053 */
2054 WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
2055 }
2056
2057 #define NO_QUEUE_MAPPING USHRT_MAX
2058
sk_tx_queue_clear(struct sock * sk)2059 static inline void sk_tx_queue_clear(struct sock *sk)
2060 {
2061 /* Paired with READ_ONCE() in sk_tx_queue_get() and
2062 * other WRITE_ONCE() because socket lock might be not held.
2063 */
2064 WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
2065 }
2066
sk_tx_queue_get(const struct sock * sk)2067 static inline int sk_tx_queue_get(const struct sock *sk)
2068 {
2069 if (sk) {
2070 /* Paired with WRITE_ONCE() in sk_tx_queue_clear()
2071 * and sk_tx_queue_set().
2072 */
2073 int val = READ_ONCE(sk->sk_tx_queue_mapping);
2074
2075 if (val != NO_QUEUE_MAPPING)
2076 return val;
2077 }
2078 return -1;
2079 }
2080
__sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb,bool force_set)2081 static inline void __sk_rx_queue_set(struct sock *sk,
2082 const struct sk_buff *skb,
2083 bool force_set)
2084 {
2085 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2086 if (skb_rx_queue_recorded(skb)) {
2087 u16 rx_queue = skb_get_rx_queue(skb);
2088
2089 if (force_set ||
2090 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2091 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2092 }
2093 #endif
2094 }
2095
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)2096 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2097 {
2098 __sk_rx_queue_set(sk, skb, true);
2099 }
2100
sk_rx_queue_update(struct sock * sk,const struct sk_buff * skb)2101 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2102 {
2103 __sk_rx_queue_set(sk, skb, false);
2104 }
2105
sk_rx_queue_clear(struct sock * sk)2106 static inline void sk_rx_queue_clear(struct sock *sk)
2107 {
2108 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2109 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2110 #endif
2111 }
2112
sk_rx_queue_get(const struct sock * sk)2113 static inline int sk_rx_queue_get(const struct sock *sk)
2114 {
2115 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2116 if (sk) {
2117 int res = READ_ONCE(sk->sk_rx_queue_mapping);
2118
2119 if (res != NO_QUEUE_MAPPING)
2120 return res;
2121 }
2122 #endif
2123
2124 return -1;
2125 }
2126
sk_set_socket(struct sock * sk,struct socket * sock)2127 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2128 {
2129 sk->sk_socket = sock;
2130 }
2131
sk_sleep(struct sock * sk)2132 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2133 {
2134 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2135 return &rcu_dereference_raw(sk->sk_wq)->wait;
2136 }
2137 /* Detach socket from process context.
2138 * Announce socket dead, detach it from wait queue and inode.
2139 * Note that parent inode held reference count on this struct sock,
2140 * we do not release it in this function, because protocol
2141 * probably wants some additional cleanups or even continuing
2142 * to work with this socket (TCP).
2143 */
sock_orphan(struct sock * sk)2144 static inline void sock_orphan(struct sock *sk)
2145 {
2146 write_lock_bh(&sk->sk_callback_lock);
2147 sock_set_flag(sk, SOCK_DEAD);
2148 sk_set_socket(sk, NULL);
2149 sk->sk_wq = NULL;
2150 write_unlock_bh(&sk->sk_callback_lock);
2151 }
2152
sock_graft(struct sock * sk,struct socket * parent)2153 static inline void sock_graft(struct sock *sk, struct socket *parent)
2154 {
2155 WARN_ON(parent->sk);
2156 write_lock_bh(&sk->sk_callback_lock);
2157 rcu_assign_pointer(sk->sk_wq, &parent->wq);
2158 parent->sk = sk;
2159 sk_set_socket(sk, parent);
2160 sk->sk_uid = SOCK_INODE(parent)->i_uid;
2161 security_sock_graft(sk, parent);
2162 write_unlock_bh(&sk->sk_callback_lock);
2163 }
2164
2165 kuid_t sock_i_uid(struct sock *sk);
2166 unsigned long __sock_i_ino(struct sock *sk);
2167 unsigned long sock_i_ino(struct sock *sk);
2168
sock_net_uid(const struct net * net,const struct sock * sk)2169 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2170 {
2171 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2172 }
2173
net_tx_rndhash(void)2174 static inline u32 net_tx_rndhash(void)
2175 {
2176 u32 v = get_random_u32();
2177
2178 return v ?: 1;
2179 }
2180
sk_set_txhash(struct sock * sk)2181 static inline void sk_set_txhash(struct sock *sk)
2182 {
2183 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2184 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2185 }
2186
sk_rethink_txhash(struct sock * sk)2187 static inline bool sk_rethink_txhash(struct sock *sk)
2188 {
2189 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2190 sk_set_txhash(sk);
2191 return true;
2192 }
2193 return false;
2194 }
2195
2196 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)2197 __sk_dst_get(struct sock *sk)
2198 {
2199 return rcu_dereference_check(sk->sk_dst_cache,
2200 lockdep_sock_is_held(sk));
2201 }
2202
2203 static inline struct dst_entry *
sk_dst_get(struct sock * sk)2204 sk_dst_get(struct sock *sk)
2205 {
2206 struct dst_entry *dst;
2207
2208 rcu_read_lock();
2209 dst = rcu_dereference(sk->sk_dst_cache);
2210 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2211 dst = NULL;
2212 rcu_read_unlock();
2213 return dst;
2214 }
2215
__dst_negative_advice(struct sock * sk)2216 static inline void __dst_negative_advice(struct sock *sk)
2217 {
2218 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2219
2220 if (dst && dst->ops->negative_advice) {
2221 ndst = dst->ops->negative_advice(dst);
2222
2223 if (ndst != dst) {
2224 rcu_assign_pointer(sk->sk_dst_cache, ndst);
2225 sk_tx_queue_clear(sk);
2226 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2227 }
2228 }
2229 }
2230
dst_negative_advice(struct sock * sk)2231 static inline void dst_negative_advice(struct sock *sk)
2232 {
2233 sk_rethink_txhash(sk);
2234 __dst_negative_advice(sk);
2235 }
2236
2237 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)2238 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2239 {
2240 struct dst_entry *old_dst;
2241
2242 sk_tx_queue_clear(sk);
2243 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2244 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2245 lockdep_sock_is_held(sk));
2246 rcu_assign_pointer(sk->sk_dst_cache, dst);
2247 dst_release(old_dst);
2248 }
2249
2250 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)2251 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2252 {
2253 struct dst_entry *old_dst;
2254
2255 sk_tx_queue_clear(sk);
2256 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2257 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2258 dst_release(old_dst);
2259 }
2260
2261 static inline void
__sk_dst_reset(struct sock * sk)2262 __sk_dst_reset(struct sock *sk)
2263 {
2264 __sk_dst_set(sk, NULL);
2265 }
2266
2267 static inline void
sk_dst_reset(struct sock * sk)2268 sk_dst_reset(struct sock *sk)
2269 {
2270 sk_dst_set(sk, NULL);
2271 }
2272
2273 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2274
2275 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2276
sk_dst_confirm(struct sock * sk)2277 static inline void sk_dst_confirm(struct sock *sk)
2278 {
2279 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2280 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2281 }
2282
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)2283 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2284 {
2285 if (skb_get_dst_pending_confirm(skb)) {
2286 struct sock *sk = skb->sk;
2287
2288 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2289 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2290 neigh_confirm(n);
2291 }
2292 }
2293
2294 bool sk_mc_loop(struct sock *sk);
2295
sk_can_gso(const struct sock * sk)2296 static inline bool sk_can_gso(const struct sock *sk)
2297 {
2298 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2299 }
2300
2301 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2302
sk_gso_disable(struct sock * sk)2303 static inline void sk_gso_disable(struct sock *sk)
2304 {
2305 sk->sk_gso_disabled = 1;
2306 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2307 }
2308
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)2309 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2310 struct iov_iter *from, char *to,
2311 int copy, int offset)
2312 {
2313 if (skb->ip_summed == CHECKSUM_NONE) {
2314 __wsum csum = 0;
2315 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2316 return -EFAULT;
2317 skb->csum = csum_block_add(skb->csum, csum, offset);
2318 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2319 if (!copy_from_iter_full_nocache(to, copy, from))
2320 return -EFAULT;
2321 } else if (!copy_from_iter_full(to, copy, from))
2322 return -EFAULT;
2323
2324 return 0;
2325 }
2326
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)2327 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2328 struct iov_iter *from, int copy)
2329 {
2330 int err, offset = skb->len;
2331
2332 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2333 copy, offset);
2334 if (err)
2335 __skb_trim(skb, offset);
2336
2337 return err;
2338 }
2339
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)2340 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2341 struct sk_buff *skb,
2342 struct page *page,
2343 int off, int copy)
2344 {
2345 int err;
2346
2347 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2348 copy, skb->len);
2349 if (err)
2350 return err;
2351
2352 skb_len_add(skb, copy);
2353 sk_wmem_queued_add(sk, copy);
2354 sk_mem_charge(sk, copy);
2355 return 0;
2356 }
2357
2358 /**
2359 * sk_wmem_alloc_get - returns write allocations
2360 * @sk: socket
2361 *
2362 * Return: sk_wmem_alloc minus initial offset of one
2363 */
sk_wmem_alloc_get(const struct sock * sk)2364 static inline int sk_wmem_alloc_get(const struct sock *sk)
2365 {
2366 return refcount_read(&sk->sk_wmem_alloc) - 1;
2367 }
2368
2369 /**
2370 * sk_rmem_alloc_get - returns read allocations
2371 * @sk: socket
2372 *
2373 * Return: sk_rmem_alloc
2374 */
sk_rmem_alloc_get(const struct sock * sk)2375 static inline int sk_rmem_alloc_get(const struct sock *sk)
2376 {
2377 return atomic_read(&sk->sk_rmem_alloc);
2378 }
2379
2380 /**
2381 * sk_has_allocations - check if allocations are outstanding
2382 * @sk: socket
2383 *
2384 * Return: true if socket has write or read allocations
2385 */
sk_has_allocations(const struct sock * sk)2386 static inline bool sk_has_allocations(const struct sock *sk)
2387 {
2388 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2389 }
2390
2391 /**
2392 * skwq_has_sleeper - check if there are any waiting processes
2393 * @wq: struct socket_wq
2394 *
2395 * Return: true if socket_wq has waiting processes
2396 *
2397 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2398 * barrier call. They were added due to the race found within the tcp code.
2399 *
2400 * Consider following tcp code paths::
2401 *
2402 * CPU1 CPU2
2403 * sys_select receive packet
2404 * ... ...
2405 * __add_wait_queue update tp->rcv_nxt
2406 * ... ...
2407 * tp->rcv_nxt check sock_def_readable
2408 * ... {
2409 * schedule rcu_read_lock();
2410 * wq = rcu_dereference(sk->sk_wq);
2411 * if (wq && waitqueue_active(&wq->wait))
2412 * wake_up_interruptible(&wq->wait)
2413 * ...
2414 * }
2415 *
2416 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2417 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2418 * could then endup calling schedule and sleep forever if there are no more
2419 * data on the socket.
2420 *
2421 */
skwq_has_sleeper(struct socket_wq * wq)2422 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2423 {
2424 return wq && wq_has_sleeper(&wq->wait);
2425 }
2426
2427 /**
2428 * sock_poll_wait - place memory barrier behind the poll_wait call.
2429 * @filp: file
2430 * @sock: socket to wait on
2431 * @p: poll_table
2432 *
2433 * See the comments in the wq_has_sleeper function.
2434 */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2435 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2436 poll_table *p)
2437 {
2438 if (!poll_does_not_wait(p)) {
2439 poll_wait(filp, &sock->wq.wait, p);
2440 /* We need to be sure we are in sync with the
2441 * socket flags modification.
2442 *
2443 * This memory barrier is paired in the wq_has_sleeper.
2444 */
2445 smp_mb();
2446 }
2447 }
2448
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2449 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2450 {
2451 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2452 u32 txhash = READ_ONCE(sk->sk_txhash);
2453
2454 if (txhash) {
2455 skb->l4_hash = 1;
2456 skb->hash = txhash;
2457 }
2458 }
2459
2460 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2461
2462 /*
2463 * Queue a received datagram if it will fit. Stream and sequenced
2464 * protocols can't normally use this as they need to fit buffers in
2465 * and play with them.
2466 *
2467 * Inlined as it's very short and called for pretty much every
2468 * packet ever received.
2469 */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2470 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2471 {
2472 skb_orphan(skb);
2473 skb->sk = sk;
2474 skb->destructor = sock_rfree;
2475 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2476 sk_mem_charge(sk, skb->truesize);
2477 }
2478
skb_set_owner_sk_safe(struct sk_buff * skb,struct sock * sk)2479 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2480 {
2481 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2482 skb_orphan(skb);
2483 skb->destructor = sock_efree;
2484 skb->sk = sk;
2485 return true;
2486 }
2487 return false;
2488 }
2489
skb_clone_and_charge_r(struct sk_buff * skb,struct sock * sk)2490 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2491 {
2492 skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2493 if (skb) {
2494 if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2495 skb_set_owner_r(skb, sk);
2496 return skb;
2497 }
2498 __kfree_skb(skb);
2499 }
2500 return NULL;
2501 }
2502
skb_prepare_for_gro(struct sk_buff * skb)2503 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2504 {
2505 if (skb->destructor != sock_wfree) {
2506 skb_orphan(skb);
2507 return;
2508 }
2509 skb->slow_gro = 1;
2510 }
2511
2512 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2513 unsigned long expires);
2514
2515 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2516
2517 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2518
2519 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2520 struct sk_buff *skb, unsigned int flags,
2521 void (*destructor)(struct sock *sk,
2522 struct sk_buff *skb));
2523 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2524
2525 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2526 enum skb_drop_reason *reason);
2527
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2528 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2529 {
2530 return sock_queue_rcv_skb_reason(sk, skb, NULL);
2531 }
2532
2533 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2534 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2535
2536 /*
2537 * Recover an error report and clear atomically
2538 */
2539
sock_error(struct sock * sk)2540 static inline int sock_error(struct sock *sk)
2541 {
2542 int err;
2543
2544 /* Avoid an atomic operation for the common case.
2545 * This is racy since another cpu/thread can change sk_err under us.
2546 */
2547 if (likely(data_race(!sk->sk_err)))
2548 return 0;
2549
2550 err = xchg(&sk->sk_err, 0);
2551 return -err;
2552 }
2553
2554 void sk_error_report(struct sock *sk);
2555
sock_wspace(struct sock * sk)2556 static inline unsigned long sock_wspace(struct sock *sk)
2557 {
2558 int amt = 0;
2559
2560 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2561 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2562 if (amt < 0)
2563 amt = 0;
2564 }
2565 return amt;
2566 }
2567
2568 /* Note:
2569 * We use sk->sk_wq_raw, from contexts knowing this
2570 * pointer is not NULL and cannot disappear/change.
2571 */
sk_set_bit(int nr,struct sock * sk)2572 static inline void sk_set_bit(int nr, struct sock *sk)
2573 {
2574 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2575 !sock_flag(sk, SOCK_FASYNC))
2576 return;
2577
2578 set_bit(nr, &sk->sk_wq_raw->flags);
2579 }
2580
sk_clear_bit(int nr,struct sock * sk)2581 static inline void sk_clear_bit(int nr, struct sock *sk)
2582 {
2583 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2584 !sock_flag(sk, SOCK_FASYNC))
2585 return;
2586
2587 clear_bit(nr, &sk->sk_wq_raw->flags);
2588 }
2589
sk_wake_async(const struct sock * sk,int how,int band)2590 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2591 {
2592 if (sock_flag(sk, SOCK_FASYNC)) {
2593 rcu_read_lock();
2594 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2595 rcu_read_unlock();
2596 }
2597 }
2598
2599 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2600 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2601 * Note: for send buffers, TCP works better if we can build two skbs at
2602 * minimum.
2603 */
2604 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2605
2606 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2607 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2608
sk_stream_moderate_sndbuf(struct sock * sk)2609 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2610 {
2611 u32 val;
2612
2613 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2614 return;
2615
2616 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2617 val = max_t(u32, val, sk_unused_reserved_mem(sk));
2618
2619 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2620 }
2621
2622 /**
2623 * sk_page_frag - return an appropriate page_frag
2624 * @sk: socket
2625 *
2626 * Use the per task page_frag instead of the per socket one for
2627 * optimization when we know that we're in process context and own
2628 * everything that's associated with %current.
2629 *
2630 * Both direct reclaim and page faults can nest inside other
2631 * socket operations and end up recursing into sk_page_frag()
2632 * while it's already in use: explicitly avoid task page_frag
2633 * usage if the caller is potentially doing any of them.
2634 * This assumes that page fault handlers use the GFP_NOFS flags.
2635 *
2636 * Return: a per task page_frag if context allows that,
2637 * otherwise a per socket one.
2638 */
sk_page_frag(struct sock * sk)2639 static inline struct page_frag *sk_page_frag(struct sock *sk)
2640 {
2641 if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) ==
2642 (__GFP_DIRECT_RECLAIM | __GFP_FS))
2643 return ¤t->task_frag;
2644
2645 return &sk->sk_frag;
2646 }
2647
2648 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2649
2650 /*
2651 * Default write policy as shown to user space via poll/select/SIGIO
2652 */
sock_writeable(const struct sock * sk)2653 static inline bool sock_writeable(const struct sock *sk)
2654 {
2655 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2656 }
2657
gfp_any(void)2658 static inline gfp_t gfp_any(void)
2659 {
2660 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2661 }
2662
gfp_memcg_charge(void)2663 static inline gfp_t gfp_memcg_charge(void)
2664 {
2665 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2666 }
2667
sock_rcvtimeo(const struct sock * sk,bool noblock)2668 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2669 {
2670 return noblock ? 0 : sk->sk_rcvtimeo;
2671 }
2672
sock_sndtimeo(const struct sock * sk,bool noblock)2673 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2674 {
2675 return noblock ? 0 : sk->sk_sndtimeo;
2676 }
2677
sock_rcvlowat(const struct sock * sk,int waitall,int len)2678 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2679 {
2680 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2681
2682 return v ?: 1;
2683 }
2684
2685 /* Alas, with timeout socket operations are not restartable.
2686 * Compare this to poll().
2687 */
sock_intr_errno(long timeo)2688 static inline int sock_intr_errno(long timeo)
2689 {
2690 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2691 }
2692
2693 struct sock_skb_cb {
2694 u32 dropcount;
2695 };
2696
2697 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2698 * using skb->cb[] would keep using it directly and utilize its
2699 * alignement guarantee.
2700 */
2701 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2702 sizeof(struct sock_skb_cb)))
2703
2704 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2705 SOCK_SKB_CB_OFFSET))
2706
2707 #define sock_skb_cb_check_size(size) \
2708 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2709
2710 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2711 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2712 {
2713 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2714 atomic_read(&sk->sk_drops) : 0;
2715 }
2716
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2717 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2718 {
2719 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2720
2721 atomic_add(segs, &sk->sk_drops);
2722 }
2723
sock_read_timestamp(struct sock * sk)2724 static inline ktime_t sock_read_timestamp(struct sock *sk)
2725 {
2726 #if BITS_PER_LONG==32
2727 unsigned int seq;
2728 ktime_t kt;
2729
2730 do {
2731 seq = read_seqbegin(&sk->sk_stamp_seq);
2732 kt = sk->sk_stamp;
2733 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2734
2735 return kt;
2736 #else
2737 return READ_ONCE(sk->sk_stamp);
2738 #endif
2739 }
2740
sock_write_timestamp(struct sock * sk,ktime_t kt)2741 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2742 {
2743 #if BITS_PER_LONG==32
2744 write_seqlock(&sk->sk_stamp_seq);
2745 sk->sk_stamp = kt;
2746 write_sequnlock(&sk->sk_stamp_seq);
2747 #else
2748 WRITE_ONCE(sk->sk_stamp, kt);
2749 #endif
2750 }
2751
2752 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2753 struct sk_buff *skb);
2754 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2755 struct sk_buff *skb);
2756
2757 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2758 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2759 {
2760 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2761 u32 tsflags = READ_ONCE(sk->sk_tsflags);
2762 ktime_t kt = skb->tstamp;
2763 /*
2764 * generate control messages if
2765 * - receive time stamping in software requested
2766 * - software time stamp available and wanted
2767 * - hardware time stamps available and wanted
2768 */
2769 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2770 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2771 (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2772 (hwtstamps->hwtstamp &&
2773 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2774 __sock_recv_timestamp(msg, sk, skb);
2775 else
2776 sock_write_timestamp(sk, kt);
2777
2778 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2779 __sock_recv_wifi_status(msg, sk, skb);
2780 }
2781
2782 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2783 struct sk_buff *skb);
2784
2785 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2786 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2787 struct sk_buff *skb)
2788 {
2789 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \
2790 (1UL << SOCK_RCVTSTAMP) | \
2791 (1UL << SOCK_RCVMARK))
2792 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2793 SOF_TIMESTAMPING_RAW_HARDWARE)
2794
2795 if (sk->sk_flags & FLAGS_RECV_CMSGS ||
2796 READ_ONCE(sk->sk_tsflags) & TSFLAGS_ANY)
2797 __sock_recv_cmsgs(msg, sk, skb);
2798 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2799 sock_write_timestamp(sk, skb->tstamp);
2800 else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2801 sock_write_timestamp(sk, 0);
2802 }
2803
2804 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2805
2806 /**
2807 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2808 * @sk: socket sending this packet
2809 * @tsflags: timestamping flags to use
2810 * @tx_flags: completed with instructions for time stamping
2811 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2812 *
2813 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2814 */
_sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags,__u32 * tskey)2815 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2816 __u8 *tx_flags, __u32 *tskey)
2817 {
2818 if (unlikely(tsflags)) {
2819 __sock_tx_timestamp(tsflags, tx_flags);
2820 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2821 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2822 *tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2823 }
2824 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2825 *tx_flags |= SKBTX_WIFI_STATUS;
2826 }
2827
sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags)2828 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2829 __u8 *tx_flags)
2830 {
2831 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2832 }
2833
skb_setup_tx_timestamp(struct sk_buff * skb,__u16 tsflags)2834 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2835 {
2836 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2837 &skb_shinfo(skb)->tskey);
2838 }
2839
sk_is_inet(const struct sock * sk)2840 static inline bool sk_is_inet(const struct sock *sk)
2841 {
2842 int family = READ_ONCE(sk->sk_family);
2843
2844 return family == AF_INET || family == AF_INET6;
2845 }
2846
sk_is_tcp(const struct sock * sk)2847 static inline bool sk_is_tcp(const struct sock *sk)
2848 {
2849 return sk_is_inet(sk) &&
2850 sk->sk_type == SOCK_STREAM &&
2851 sk->sk_protocol == IPPROTO_TCP;
2852 }
2853
sk_is_udp(const struct sock * sk)2854 static inline bool sk_is_udp(const struct sock *sk)
2855 {
2856 return sk_is_inet(sk) &&
2857 sk->sk_type == SOCK_DGRAM &&
2858 sk->sk_protocol == IPPROTO_UDP;
2859 }
2860
sk_is_stream_unix(const struct sock * sk)2861 static inline bool sk_is_stream_unix(const struct sock *sk)
2862 {
2863 return sk->sk_family == AF_UNIX && sk->sk_type == SOCK_STREAM;
2864 }
2865
2866 /**
2867 * sk_eat_skb - Release a skb if it is no longer needed
2868 * @sk: socket to eat this skb from
2869 * @skb: socket buffer to eat
2870 *
2871 * This routine must be called with interrupts disabled or with the socket
2872 * locked so that the sk_buff queue operation is ok.
2873 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2874 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2875 {
2876 __skb_unlink(skb, &sk->sk_receive_queue);
2877 __kfree_skb(skb);
2878 }
2879
2880 static inline bool
skb_sk_is_prefetched(struct sk_buff * skb)2881 skb_sk_is_prefetched(struct sk_buff *skb)
2882 {
2883 #ifdef CONFIG_INET
2884 return skb->destructor == sock_pfree;
2885 #else
2886 return false;
2887 #endif /* CONFIG_INET */
2888 }
2889
2890 /* This helper checks if a socket is a full socket,
2891 * ie _not_ a timewait or request socket.
2892 */
sk_fullsock(const struct sock * sk)2893 static inline bool sk_fullsock(const struct sock *sk)
2894 {
2895 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2896 }
2897
2898 static inline bool
sk_is_refcounted(struct sock * sk)2899 sk_is_refcounted(struct sock *sk)
2900 {
2901 /* Only full sockets have sk->sk_flags. */
2902 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2903 }
2904
2905 /**
2906 * skb_steal_sock - steal a socket from an sk_buff
2907 * @skb: sk_buff to steal the socket from
2908 * @refcounted: is set to true if the socket is reference-counted
2909 */
2910 static inline struct sock *
skb_steal_sock(struct sk_buff * skb,bool * refcounted)2911 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2912 {
2913 if (skb->sk) {
2914 struct sock *sk = skb->sk;
2915
2916 *refcounted = true;
2917 if (skb_sk_is_prefetched(skb))
2918 *refcounted = sk_is_refcounted(sk);
2919 skb->destructor = NULL;
2920 skb->sk = NULL;
2921 return sk;
2922 }
2923 *refcounted = false;
2924 return NULL;
2925 }
2926
2927 /* Checks if this SKB belongs to an HW offloaded socket
2928 * and whether any SW fallbacks are required based on dev.
2929 * Check decrypted mark in case skb_orphan() cleared socket.
2930 */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2931 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2932 struct net_device *dev)
2933 {
2934 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2935 struct sock *sk = skb->sk;
2936
2937 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2938 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2939 #ifdef CONFIG_TLS_DEVICE
2940 } else if (unlikely(skb->decrypted)) {
2941 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2942 kfree_skb(skb);
2943 skb = NULL;
2944 #endif
2945 }
2946 #endif
2947
2948 return skb;
2949 }
2950
2951 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2952 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2953 */
sk_listener(const struct sock * sk)2954 static inline bool sk_listener(const struct sock *sk)
2955 {
2956 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2957 }
2958
2959 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2960 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2961 int type);
2962
2963 bool sk_ns_capable(const struct sock *sk,
2964 struct user_namespace *user_ns, int cap);
2965 bool sk_capable(const struct sock *sk, int cap);
2966 bool sk_net_capable(const struct sock *sk, int cap);
2967
2968 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2969
2970 /* Take into consideration the size of the struct sk_buff overhead in the
2971 * determination of these values, since that is non-constant across
2972 * platforms. This makes socket queueing behavior and performance
2973 * not depend upon such differences.
2974 */
2975 #define _SK_MEM_PACKETS 256
2976 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2977 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2978 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2979
2980 extern __u32 sysctl_wmem_max;
2981 extern __u32 sysctl_rmem_max;
2982
2983 extern int sysctl_tstamp_allow_data;
2984 extern int sysctl_optmem_max;
2985
2986 extern __u32 sysctl_wmem_default;
2987 extern __u32 sysctl_rmem_default;
2988
2989 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2990 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2991
sk_get_wmem0(const struct sock * sk,const struct proto * proto)2992 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2993 {
2994 /* Does this proto have per netns sysctl_wmem ? */
2995 if (proto->sysctl_wmem_offset)
2996 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2997
2998 return READ_ONCE(*proto->sysctl_wmem);
2999 }
3000
sk_get_rmem0(const struct sock * sk,const struct proto * proto)3001 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
3002 {
3003 /* Does this proto have per netns sysctl_rmem ? */
3004 if (proto->sysctl_rmem_offset)
3005 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
3006
3007 return READ_ONCE(*proto->sysctl_rmem);
3008 }
3009
3010 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
3011 * Some wifi drivers need to tweak it to get more chunks.
3012 * They can use this helper from their ndo_start_xmit()
3013 */
sk_pacing_shift_update(struct sock * sk,int val)3014 static inline void sk_pacing_shift_update(struct sock *sk, int val)
3015 {
3016 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
3017 return;
3018 WRITE_ONCE(sk->sk_pacing_shift, val);
3019 }
3020
3021 /* if a socket is bound to a device, check that the given device
3022 * index is either the same or that the socket is bound to an L3
3023 * master device and the given device index is also enslaved to
3024 * that L3 master
3025 */
sk_dev_equal_l3scope(struct sock * sk,int dif)3026 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
3027 {
3028 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
3029 int mdif;
3030
3031 if (!bound_dev_if || bound_dev_if == dif)
3032 return true;
3033
3034 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
3035 if (mdif && mdif == bound_dev_if)
3036 return true;
3037
3038 return false;
3039 }
3040
3041 void sock_def_readable(struct sock *sk);
3042
3043 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
3044 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
3045 int sock_set_timestamping(struct sock *sk, int optname,
3046 struct so_timestamping timestamping);
3047
3048 void sock_enable_timestamps(struct sock *sk);
3049 void sock_no_linger(struct sock *sk);
3050 void sock_set_keepalive(struct sock *sk);
3051 void sock_set_priority(struct sock *sk, u32 priority);
3052 void sock_set_rcvbuf(struct sock *sk, int val);
3053 void sock_set_mark(struct sock *sk, u32 val);
3054 void sock_set_reuseaddr(struct sock *sk);
3055 void sock_set_reuseport(struct sock *sk);
3056 void sock_set_sndtimeo(struct sock *sk, s64 secs);
3057
3058 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
3059
3060 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
3061 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
3062 sockptr_t optval, int optlen, bool old_timeval);
3063
sk_is_readable(struct sock * sk)3064 static inline bool sk_is_readable(struct sock *sk)
3065 {
3066 if (sk->sk_prot->sock_is_readable)
3067 return sk->sk_prot->sock_is_readable(sk);
3068 return false;
3069 }
3070 #endif /* _SOCK_H */
3071