• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later
2  *
3  * Copyright (C) 2005 David Brownell
4  */
5 
6 #ifndef __LINUX_SPI_H
7 #define __LINUX_SPI_H
8 
9 #include <linux/bits.h>
10 #include <linux/device.h>
11 #include <linux/mod_devicetable.h>
12 #include <linux/slab.h>
13 #include <linux/kthread.h>
14 #include <linux/completion.h>
15 #include <linux/scatterlist.h>
16 #include <linux/gpio/consumer.h>
17 #include <linux/android_kabi.h>
18 
19 #include <uapi/linux/spi/spi.h>
20 #include <linux/acpi.h>
21 #include <linux/u64_stats_sync.h>
22 
23 struct dma_chan;
24 struct software_node;
25 struct ptp_system_timestamp;
26 struct spi_controller;
27 struct spi_transfer;
28 struct spi_controller_mem_ops;
29 struct spi_controller_mem_caps;
30 
31 /*
32  * INTERFACES between SPI master-side drivers and SPI slave protocol handlers,
33  * and SPI infrastructure.
34  */
35 extern struct bus_type spi_bus_type;
36 
37 /**
38  * struct spi_statistics - statistics for spi transfers
39  * @syncp:         seqcount to protect members in this struct for per-cpu udate
40  *                 on 32-bit systems
41  *
42  * @messages:      number of spi-messages handled
43  * @transfers:     number of spi_transfers handled
44  * @errors:        number of errors during spi_transfer
45  * @timedout:      number of timeouts during spi_transfer
46  *
47  * @spi_sync:      number of times spi_sync is used
48  * @spi_sync_immediate:
49  *                 number of times spi_sync is executed immediately
50  *                 in calling context without queuing and scheduling
51  * @spi_async:     number of times spi_async is used
52  *
53  * @bytes:         number of bytes transferred to/from device
54  * @bytes_tx:      number of bytes sent to device
55  * @bytes_rx:      number of bytes received from device
56  *
57  * @transfer_bytes_histo:
58  *                 transfer bytes histogramm
59  *
60  * @transfers_split_maxsize:
61  *                 number of transfers that have been split because of
62  *                 maxsize limit
63  */
64 struct spi_statistics {
65 	struct u64_stats_sync	syncp;
66 
67 	u64_stats_t		messages;
68 	u64_stats_t		transfers;
69 	u64_stats_t		errors;
70 	u64_stats_t		timedout;
71 
72 	u64_stats_t		spi_sync;
73 	u64_stats_t		spi_sync_immediate;
74 	u64_stats_t		spi_async;
75 
76 	u64_stats_t		bytes;
77 	u64_stats_t		bytes_rx;
78 	u64_stats_t		bytes_tx;
79 
80 #define SPI_STATISTICS_HISTO_SIZE 17
81 	u64_stats_t	transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
82 
83 	u64_stats_t	transfers_split_maxsize;
84 };
85 
86 #define SPI_STATISTICS_ADD_TO_FIELD(pcpu_stats, field, count)		\
87 	do {								\
88 		struct spi_statistics *__lstats;			\
89 		get_cpu();						\
90 		__lstats = this_cpu_ptr(pcpu_stats);			\
91 		u64_stats_update_begin(&__lstats->syncp);		\
92 		u64_stats_add(&__lstats->field, count);			\
93 		u64_stats_update_end(&__lstats->syncp);			\
94 		put_cpu();						\
95 	} while (0)
96 
97 #define SPI_STATISTICS_INCREMENT_FIELD(pcpu_stats, field)		\
98 	do {								\
99 		struct spi_statistics *__lstats;			\
100 		get_cpu();						\
101 		__lstats = this_cpu_ptr(pcpu_stats);			\
102 		u64_stats_update_begin(&__lstats->syncp);		\
103 		u64_stats_inc(&__lstats->field);			\
104 		u64_stats_update_end(&__lstats->syncp);			\
105 		put_cpu();						\
106 	} while (0)
107 
108 /**
109  * struct spi_delay - SPI delay information
110  * @value: Value for the delay
111  * @unit: Unit for the delay
112  */
113 struct spi_delay {
114 #define SPI_DELAY_UNIT_USECS	0
115 #define SPI_DELAY_UNIT_NSECS	1
116 #define SPI_DELAY_UNIT_SCK	2
117 	u16	value;
118 	u8	unit;
119 };
120 
121 extern int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer);
122 extern int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer);
123 
124 /**
125  * struct spi_device - Controller side proxy for an SPI slave device
126  * @dev: Driver model representation of the device.
127  * @controller: SPI controller used with the device.
128  * @master: Copy of controller, for backwards compatibility.
129  * @max_speed_hz: Maximum clock rate to be used with this chip
130  *	(on this board); may be changed by the device's driver.
131  *	The spi_transfer.speed_hz can override this for each transfer.
132  * @chip_select: Chipselect, distinguishing chips handled by @controller.
133  * @mode: The spi mode defines how data is clocked out and in.
134  *	This may be changed by the device's driver.
135  *	The "active low" default for chipselect mode can be overridden
136  *	(by specifying SPI_CS_HIGH) as can the "MSB first" default for
137  *	each word in a transfer (by specifying SPI_LSB_FIRST).
138  * @bits_per_word: Data transfers involve one or more words; word sizes
139  *	like eight or 12 bits are common.  In-memory wordsizes are
140  *	powers of two bytes (e.g. 20 bit samples use 32 bits).
141  *	This may be changed by the device's driver, or left at the
142  *	default (0) indicating protocol words are eight bit bytes.
143  *	The spi_transfer.bits_per_word can override this for each transfer.
144  * @rt: Make the pump thread real time priority.
145  * @irq: Negative, or the number passed to request_irq() to receive
146  *	interrupts from this device.
147  * @controller_state: Controller's runtime state
148  * @controller_data: Board-specific definitions for controller, such as
149  *	FIFO initialization parameters; from board_info.controller_data
150  * @modalias: Name of the driver to use with this device, or an alias
151  *	for that name.  This appears in the sysfs "modalias" attribute
152  *	for driver coldplugging, and in uevents used for hotplugging
153  * @driver_override: If the name of a driver is written to this attribute, then
154  *	the device will bind to the named driver and only the named driver.
155  *	Do not set directly, because core frees it; use driver_set_override() to
156  *	set or clear it.
157  * @cs_gpiod: gpio descriptor of the chipselect line (optional, NULL when
158  *	not using a GPIO line)
159  * @word_delay: delay to be inserted between consecutive
160  *	words of a transfer
161  * @cs_setup: delay to be introduced by the controller after CS is asserted
162  * @cs_hold: delay to be introduced by the controller before CS is deasserted
163  * @cs_inactive: delay to be introduced by the controller after CS is
164  *	deasserted. If @cs_change_delay is used from @spi_transfer, then the
165  *	two delays will be added up.
166  * @pcpu_statistics: statistics for the spi_device
167  *
168  * A @spi_device is used to interchange data between an SPI slave
169  * (usually a discrete chip) and CPU memory.
170  *
171  * In @dev, the platform_data is used to hold information about this
172  * device that's meaningful to the device's protocol driver, but not
173  * to its controller.  One example might be an identifier for a chip
174  * variant with slightly different functionality; another might be
175  * information about how this particular board wires the chip's pins.
176  */
177 struct spi_device {
178 	struct device		dev;
179 	struct spi_controller	*controller;
180 	struct spi_controller	*master;	/* Compatibility layer */
181 	u32			max_speed_hz;
182 	u8			chip_select;
183 	u8			bits_per_word;
184 	bool			rt;
185 #define SPI_NO_TX	BIT(31)		/* No transmit wire */
186 #define SPI_NO_RX	BIT(30)		/* No receive wire */
187 	/*
188 	 * All bits defined above should be covered by SPI_MODE_KERNEL_MASK.
189 	 * The SPI_MODE_KERNEL_MASK has the SPI_MODE_USER_MASK counterpart,
190 	 * which is defined in 'include/uapi/linux/spi/spi.h'.
191 	 * The bits defined here are from bit 31 downwards, while in
192 	 * SPI_MODE_USER_MASK are from 0 upwards.
193 	 * These bits must not overlap. A static assert check should make sure of that.
194 	 * If adding extra bits, make sure to decrease the bit index below as well.
195 	 */
196 #define SPI_MODE_KERNEL_MASK	(~(BIT(30) - 1))
197 	u32			mode;
198 	int			irq;
199 	void			*controller_state;
200 	void			*controller_data;
201 	char			modalias[SPI_NAME_SIZE];
202 	const char		*driver_override;
203 	struct gpio_desc	*cs_gpiod;	/* Chip select gpio desc */
204 	struct spi_delay	word_delay; /* Inter-word delay */
205 	/* CS delays */
206 	struct spi_delay	cs_setup;
207 	struct spi_delay	cs_hold;
208 	struct spi_delay	cs_inactive;
209 
210 	/* The statistics */
211 	struct spi_statistics __percpu	*pcpu_statistics;
212 
213 	ANDROID_KABI_RESERVE(1);
214 	ANDROID_KABI_RESERVE(2);
215 
216 	/*
217 	 * likely need more hooks for more protocol options affecting how
218 	 * the controller talks to each chip, like:
219 	 *  - memory packing (12 bit samples into low bits, others zeroed)
220 	 *  - priority
221 	 *  - chipselect delays
222 	 *  - ...
223 	 */
224 };
225 
226 /* Make sure that SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK don't overlap */
227 static_assert((SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK) == 0,
228 	      "SPI_MODE_USER_MASK & SPI_MODE_KERNEL_MASK must not overlap");
229 
to_spi_device(struct device * dev)230 static inline struct spi_device *to_spi_device(struct device *dev)
231 {
232 	return dev ? container_of(dev, struct spi_device, dev) : NULL;
233 }
234 
235 /* Most drivers won't need to care about device refcounting */
spi_dev_get(struct spi_device * spi)236 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
237 {
238 	return (spi && get_device(&spi->dev)) ? spi : NULL;
239 }
240 
spi_dev_put(struct spi_device * spi)241 static inline void spi_dev_put(struct spi_device *spi)
242 {
243 	if (spi)
244 		put_device(&spi->dev);
245 }
246 
247 /* ctldata is for the bus_controller driver's runtime state */
spi_get_ctldata(struct spi_device * spi)248 static inline void *spi_get_ctldata(struct spi_device *spi)
249 {
250 	return spi->controller_state;
251 }
252 
spi_set_ctldata(struct spi_device * spi,void * state)253 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
254 {
255 	spi->controller_state = state;
256 }
257 
258 /* Device driver data */
259 
spi_set_drvdata(struct spi_device * spi,void * data)260 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
261 {
262 	dev_set_drvdata(&spi->dev, data);
263 }
264 
spi_get_drvdata(struct spi_device * spi)265 static inline void *spi_get_drvdata(struct spi_device *spi)
266 {
267 	return dev_get_drvdata(&spi->dev);
268 }
269 
spi_get_chipselect(const struct spi_device * spi,u8 idx)270 static inline u8 spi_get_chipselect(const struct spi_device *spi, u8 idx)
271 {
272 	return spi->chip_select;
273 }
274 
spi_set_chipselect(struct spi_device * spi,u8 idx,u8 chipselect)275 static inline void spi_set_chipselect(struct spi_device *spi, u8 idx, u8 chipselect)
276 {
277 	spi->chip_select = chipselect;
278 }
279 
spi_get_csgpiod(const struct spi_device * spi,u8 idx)280 static inline struct gpio_desc *spi_get_csgpiod(const struct spi_device *spi, u8 idx)
281 {
282 	return spi->cs_gpiod;
283 }
284 
spi_set_csgpiod(struct spi_device * spi,u8 idx,struct gpio_desc * csgpiod)285 static inline void spi_set_csgpiod(struct spi_device *spi, u8 idx, struct gpio_desc *csgpiod)
286 {
287 	spi->cs_gpiod = csgpiod;
288 }
289 
290 struct spi_message;
291 
292 /**
293  * struct spi_driver - Host side "protocol" driver
294  * @id_table: List of SPI devices supported by this driver
295  * @probe: Binds this driver to the spi device.  Drivers can verify
296  *	that the device is actually present, and may need to configure
297  *	characteristics (such as bits_per_word) which weren't needed for
298  *	the initial configuration done during system setup.
299  * @remove: Unbinds this driver from the spi device
300  * @shutdown: Standard shutdown callback used during system state
301  *	transitions such as powerdown/halt and kexec
302  * @driver: SPI device drivers should initialize the name and owner
303  *	field of this structure.
304  *
305  * This represents the kind of device driver that uses SPI messages to
306  * interact with the hardware at the other end of a SPI link.  It's called
307  * a "protocol" driver because it works through messages rather than talking
308  * directly to SPI hardware (which is what the underlying SPI controller
309  * driver does to pass those messages).  These protocols are defined in the
310  * specification for the device(s) supported by the driver.
311  *
312  * As a rule, those device protocols represent the lowest level interface
313  * supported by a driver, and it will support upper level interfaces too.
314  * Examples of such upper levels include frameworks like MTD, networking,
315  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
316  */
317 struct spi_driver {
318 	const struct spi_device_id *id_table;
319 	int			(*probe)(struct spi_device *spi);
320 	void			(*remove)(struct spi_device *spi);
321 	void			(*shutdown)(struct spi_device *spi);
322 	struct device_driver	driver;
323 
324 	ANDROID_KABI_RESERVE(1);
325 };
326 
to_spi_driver(struct device_driver * drv)327 static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
328 {
329 	return drv ? container_of(drv, struct spi_driver, driver) : NULL;
330 }
331 
332 extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
333 
334 /**
335  * spi_unregister_driver - reverse effect of spi_register_driver
336  * @sdrv: the driver to unregister
337  * Context: can sleep
338  */
spi_unregister_driver(struct spi_driver * sdrv)339 static inline void spi_unregister_driver(struct spi_driver *sdrv)
340 {
341 	if (sdrv)
342 		driver_unregister(&sdrv->driver);
343 }
344 
345 extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 chip_select);
346 
347 /* Use a define to avoid include chaining to get THIS_MODULE */
348 #define spi_register_driver(driver) \
349 	__spi_register_driver(THIS_MODULE, driver)
350 
351 /**
352  * module_spi_driver() - Helper macro for registering a SPI driver
353  * @__spi_driver: spi_driver struct
354  *
355  * Helper macro for SPI drivers which do not do anything special in module
356  * init/exit. This eliminates a lot of boilerplate. Each module may only
357  * use this macro once, and calling it replaces module_init() and module_exit()
358  */
359 #define module_spi_driver(__spi_driver) \
360 	module_driver(__spi_driver, spi_register_driver, \
361 			spi_unregister_driver)
362 
363 /**
364  * struct spi_controller - interface to SPI master or slave controller
365  * @dev: device interface to this driver
366  * @list: link with the global spi_controller list
367  * @bus_num: board-specific (and often SOC-specific) identifier for a
368  *	given SPI controller.
369  * @num_chipselect: chipselects are used to distinguish individual
370  *	SPI slaves, and are numbered from zero to num_chipselects.
371  *	each slave has a chipselect signal, but it's common that not
372  *	every chipselect is connected to a slave.
373  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
374  * @mode_bits: flags understood by this controller driver
375  * @buswidth_override_bits: flags to override for this controller driver
376  * @bits_per_word_mask: A mask indicating which values of bits_per_word are
377  *	supported by the driver. Bit n indicates that a bits_per_word n+1 is
378  *	supported. If set, the SPI core will reject any transfer with an
379  *	unsupported bits_per_word. If not set, this value is simply ignored,
380  *	and it's up to the individual driver to perform any validation.
381  * @min_speed_hz: Lowest supported transfer speed
382  * @max_speed_hz: Highest supported transfer speed
383  * @flags: other constraints relevant to this driver
384  * @slave: indicates that this is an SPI slave controller
385  * @devm_allocated: whether the allocation of this struct is devres-managed
386  * @max_transfer_size: function that returns the max transfer size for
387  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
388  * @max_message_size: function that returns the max message size for
389  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
390  * @io_mutex: mutex for physical bus access
391  * @add_lock: mutex to avoid adding devices to the same chipselect
392  * @bus_lock_spinlock: spinlock for SPI bus locking
393  * @bus_lock_mutex: mutex for exclusion of multiple callers
394  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
395  * @setup: updates the device mode and clocking records used by a
396  *	device's SPI controller; protocol code may call this.  This
397  *	must fail if an unrecognized or unsupported mode is requested.
398  *	It's always safe to call this unless transfers are pending on
399  *	the device whose settings are being modified.
400  * @set_cs_timing: optional hook for SPI devices to request SPI master
401  * controller for configuring specific CS setup time, hold time and inactive
402  * delay interms of clock counts
403  * @transfer: adds a message to the controller's transfer queue.
404  * @cleanup: frees controller-specific state
405  * @can_dma: determine whether this controller supports DMA
406  * @dma_map_dev: device which can be used for DMA mapping
407  * @cur_rx_dma_dev: device which is currently used for RX DMA mapping
408  * @cur_tx_dma_dev: device which is currently used for TX DMA mapping
409  * @queued: whether this controller is providing an internal message queue
410  * @kworker: pointer to thread struct for message pump
411  * @pump_messages: work struct for scheduling work to the message pump
412  * @queue_lock: spinlock to syncronise access to message queue
413  * @queue: message queue
414  * @cur_msg: the currently in-flight message
415  * @cur_msg_completion: a completion for the current in-flight message
416  * @cur_msg_incomplete: Flag used internally to opportunistically skip
417  *	the @cur_msg_completion. This flag is used to check if the driver has
418  *	already called spi_finalize_current_message().
419  * @cur_msg_need_completion: Flag used internally to opportunistically skip
420  *	the @cur_msg_completion. This flag is used to signal the context that
421  *	is running spi_finalize_current_message() that it needs to complete()
422  * @cur_msg_mapped: message has been mapped for DMA
423  * @last_cs: the last chip_select that is recorded by set_cs, -1 on non chip
424  *           selected
425  * @last_cs_mode_high: was (mode & SPI_CS_HIGH) true on the last call to set_cs.
426  * @xfer_completion: used by core transfer_one_message()
427  * @busy: message pump is busy
428  * @running: message pump is running
429  * @rt: whether this queue is set to run as a realtime task
430  * @auto_runtime_pm: the core should ensure a runtime PM reference is held
431  *                   while the hardware is prepared, using the parent
432  *                   device for the spidev
433  * @max_dma_len: Maximum length of a DMA transfer for the device.
434  * @prepare_transfer_hardware: a message will soon arrive from the queue
435  *	so the subsystem requests the driver to prepare the transfer hardware
436  *	by issuing this call
437  * @transfer_one_message: the subsystem calls the driver to transfer a single
438  *	message while queuing transfers that arrive in the meantime. When the
439  *	driver is finished with this message, it must call
440  *	spi_finalize_current_message() so the subsystem can issue the next
441  *	message
442  * @unprepare_transfer_hardware: there are currently no more messages on the
443  *	queue so the subsystem notifies the driver that it may relax the
444  *	hardware by issuing this call
445  *
446  * @set_cs: set the logic level of the chip select line.  May be called
447  *          from interrupt context.
448  * @prepare_message: set up the controller to transfer a single message,
449  *                   for example doing DMA mapping.  Called from threaded
450  *                   context.
451  * @transfer_one: transfer a single spi_transfer.
452  *
453  *                  - return 0 if the transfer is finished,
454  *                  - return 1 if the transfer is still in progress. When
455  *                    the driver is finished with this transfer it must
456  *                    call spi_finalize_current_transfer() so the subsystem
457  *                    can issue the next transfer. Note: transfer_one and
458  *                    transfer_one_message are mutually exclusive; when both
459  *                    are set, the generic subsystem does not call your
460  *                    transfer_one callback.
461  * @handle_err: the subsystem calls the driver to handle an error that occurs
462  *		in the generic implementation of transfer_one_message().
463  * @mem_ops: optimized/dedicated operations for interactions with SPI memory.
464  *	     This field is optional and should only be implemented if the
465  *	     controller has native support for memory like operations.
466  * @mem_caps: controller capabilities for the handling of memory operations.
467  * @unprepare_message: undo any work done by prepare_message().
468  * @slave_abort: abort the ongoing transfer request on an SPI slave controller
469  * @cs_gpiods: Array of GPIO descs to use as chip select lines; one per CS
470  *	number. Any individual value may be NULL for CS lines that
471  *	are not GPIOs (driven by the SPI controller itself).
472  * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab
473  *	GPIO descriptors. This will fill in @cs_gpiods and SPI devices will have
474  *	the cs_gpiod assigned if a GPIO line is found for the chipselect.
475  * @unused_native_cs: When cs_gpiods is used, spi_register_controller() will
476  *	fill in this field with the first unused native CS, to be used by SPI
477  *	controller drivers that need to drive a native CS when using GPIO CS.
478  * @max_native_cs: When cs_gpiods is used, and this field is filled in,
479  *	spi_register_controller() will validate all native CS (including the
480  *	unused native CS) against this value.
481  * @pcpu_statistics: statistics for the spi_controller
482  * @dma_tx: DMA transmit channel
483  * @dma_rx: DMA receive channel
484  * @dummy_rx: dummy receive buffer for full-duplex devices
485  * @dummy_tx: dummy transmit buffer for full-duplex devices
486  * @fw_translate_cs: If the boot firmware uses different numbering scheme
487  *	what Linux expects, this optional hook can be used to translate
488  *	between the two.
489  * @ptp_sts_supported: If the driver sets this to true, it must provide a
490  *	time snapshot in @spi_transfer->ptp_sts as close as possible to the
491  *	moment in time when @spi_transfer->ptp_sts_word_pre and
492  *	@spi_transfer->ptp_sts_word_post were transmitted.
493  *	If the driver does not set this, the SPI core takes the snapshot as
494  *	close to the driver hand-over as possible.
495  * @irq_flags: Interrupt enable state during PTP system timestamping
496  * @fallback: fallback to pio if dma transfer return failure with
497  *	SPI_TRANS_FAIL_NO_START.
498  * @queue_empty: signal green light for opportunistically skipping the queue
499  *	for spi_sync transfers.
500  * @must_async: disable all fast paths in the core
501  *
502  * Each SPI controller can communicate with one or more @spi_device
503  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
504  * but not chip select signals.  Each device may be configured to use a
505  * different clock rate, since those shared signals are ignored unless
506  * the chip is selected.
507  *
508  * The driver for an SPI controller manages access to those devices through
509  * a queue of spi_message transactions, copying data between CPU memory and
510  * an SPI slave device.  For each such message it queues, it calls the
511  * message's completion function when the transaction completes.
512  */
513 struct spi_controller {
514 	struct device	dev;
515 
516 	struct list_head list;
517 
518 	/* Other than negative (== assign one dynamically), bus_num is fully
519 	 * board-specific.  usually that simplifies to being SOC-specific.
520 	 * example:  one SOC has three SPI controllers, numbered 0..2,
521 	 * and one board's schematics might show it using SPI-2.  software
522 	 * would normally use bus_num=2 for that controller.
523 	 */
524 	s16			bus_num;
525 
526 	/* chipselects will be integral to many controllers; some others
527 	 * might use board-specific GPIOs.
528 	 */
529 	u16			num_chipselect;
530 
531 	/* Some SPI controllers pose alignment requirements on DMAable
532 	 * buffers; let protocol drivers know about these requirements.
533 	 */
534 	u16			dma_alignment;
535 
536 	/* spi_device.mode flags understood by this controller driver */
537 	u32			mode_bits;
538 
539 	/* spi_device.mode flags override flags for this controller */
540 	u32			buswidth_override_bits;
541 
542 	/* Bitmask of supported bits_per_word for transfers */
543 	u32			bits_per_word_mask;
544 #define SPI_BPW_MASK(bits) BIT((bits) - 1)
545 #define SPI_BPW_RANGE_MASK(min, max) GENMASK((max) - 1, (min) - 1)
546 
547 	/* Limits on transfer speed */
548 	u32			min_speed_hz;
549 	u32			max_speed_hz;
550 
551 	/* Other constraints relevant to this driver */
552 	u16			flags;
553 #define SPI_CONTROLLER_HALF_DUPLEX	BIT(0)	/* Can't do full duplex */
554 #define SPI_CONTROLLER_NO_RX		BIT(1)	/* Can't do buffer read */
555 #define SPI_CONTROLLER_NO_TX		BIT(2)	/* Can't do buffer write */
556 #define SPI_CONTROLLER_MUST_RX		BIT(3)	/* Requires rx */
557 #define SPI_CONTROLLER_MUST_TX		BIT(4)	/* Requires tx */
558 
559 #define SPI_MASTER_GPIO_SS		BIT(5)	/* GPIO CS must select slave */
560 #define SPI_CONTROLLER_SUSPENDED	BIT(6)	/* Currently suspended */
561 
562 	/* Flag indicating if the allocation of this struct is devres-managed */
563 	bool			devm_allocated;
564 
565 	/* Flag indicating this is an SPI slave controller */
566 	bool			slave;
567 
568 	/*
569 	 * on some hardware transfer / message size may be constrained
570 	 * the limit may depend on device transfer settings
571 	 */
572 	size_t (*max_transfer_size)(struct spi_device *spi);
573 	size_t (*max_message_size)(struct spi_device *spi);
574 
575 	/* I/O mutex */
576 	struct mutex		io_mutex;
577 
578 	/* Used to avoid adding the same CS twice */
579 	struct mutex		add_lock;
580 
581 	/* Lock and mutex for SPI bus locking */
582 	spinlock_t		bus_lock_spinlock;
583 	struct mutex		bus_lock_mutex;
584 
585 	/* Flag indicating that the SPI bus is locked for exclusive use */
586 	bool			bus_lock_flag;
587 
588 	/* Setup mode and clock, etc (spi driver may call many times).
589 	 *
590 	 * IMPORTANT:  this may be called when transfers to another
591 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
592 	 * which could break those transfers.
593 	 */
594 	int			(*setup)(struct spi_device *spi);
595 
596 	/*
597 	 * set_cs_timing() method is for SPI controllers that supports
598 	 * configuring CS timing.
599 	 *
600 	 * This hook allows SPI client drivers to request SPI controllers
601 	 * to configure specific CS timing through spi_set_cs_timing() after
602 	 * spi_setup().
603 	 */
604 	int (*set_cs_timing)(struct spi_device *spi);
605 
606 	/* Bidirectional bulk transfers
607 	 *
608 	 * + The transfer() method may not sleep; its main role is
609 	 *   just to add the message to the queue.
610 	 * + For now there's no remove-from-queue operation, or
611 	 *   any other request management
612 	 * + To a given spi_device, message queueing is pure fifo
613 	 *
614 	 * + The controller's main job is to process its message queue,
615 	 *   selecting a chip (for masters), then transferring data
616 	 * + If there are multiple spi_device children, the i/o queue
617 	 *   arbitration algorithm is unspecified (round robin, fifo,
618 	 *   priority, reservations, preemption, etc)
619 	 *
620 	 * + Chipselect stays active during the entire message
621 	 *   (unless modified by spi_transfer.cs_change != 0).
622 	 * + The message transfers use clock and SPI mode parameters
623 	 *   previously established by setup() for this device
624 	 */
625 	int			(*transfer)(struct spi_device *spi,
626 						struct spi_message *mesg);
627 
628 	/* Called on release() to free memory provided by spi_controller */
629 	void			(*cleanup)(struct spi_device *spi);
630 
631 	/*
632 	 * Used to enable core support for DMA handling, if can_dma()
633 	 * exists and returns true then the transfer will be mapped
634 	 * prior to transfer_one() being called.  The driver should
635 	 * not modify or store xfer and dma_tx and dma_rx must be set
636 	 * while the device is prepared.
637 	 */
638 	bool			(*can_dma)(struct spi_controller *ctlr,
639 					   struct spi_device *spi,
640 					   struct spi_transfer *xfer);
641 	struct device *dma_map_dev;
642 	struct device *cur_rx_dma_dev;
643 	struct device *cur_tx_dma_dev;
644 
645 	/*
646 	 * These hooks are for drivers that want to use the generic
647 	 * controller transfer queueing mechanism. If these are used, the
648 	 * transfer() function above must NOT be specified by the driver.
649 	 * Over time we expect SPI drivers to be phased over to this API.
650 	 */
651 	bool				queued;
652 	struct kthread_worker		*kworker;
653 	struct kthread_work		pump_messages;
654 	spinlock_t			queue_lock;
655 	struct list_head		queue;
656 	struct spi_message		*cur_msg;
657 	struct completion               cur_msg_completion;
658 	bool				cur_msg_incomplete;
659 	bool				cur_msg_need_completion;
660 	bool				busy;
661 	bool				running;
662 	bool				rt;
663 	bool				auto_runtime_pm;
664 	bool				cur_msg_mapped;
665 	char				last_cs;
666 	bool				last_cs_mode_high;
667 	bool                            fallback;
668 	struct completion               xfer_completion;
669 	size_t				max_dma_len;
670 
671 	int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
672 	int (*transfer_one_message)(struct spi_controller *ctlr,
673 				    struct spi_message *mesg);
674 	int (*unprepare_transfer_hardware)(struct spi_controller *ctlr);
675 	int (*prepare_message)(struct spi_controller *ctlr,
676 			       struct spi_message *message);
677 	int (*unprepare_message)(struct spi_controller *ctlr,
678 				 struct spi_message *message);
679 	int (*slave_abort)(struct spi_controller *ctlr);
680 
681 	/*
682 	 * These hooks are for drivers that use a generic implementation
683 	 * of transfer_one_message() provided by the core.
684 	 */
685 	void (*set_cs)(struct spi_device *spi, bool enable);
686 	int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
687 			    struct spi_transfer *transfer);
688 	void (*handle_err)(struct spi_controller *ctlr,
689 			   struct spi_message *message);
690 
691 	/* Optimized handlers for SPI memory-like operations. */
692 	const struct spi_controller_mem_ops *mem_ops;
693 	const struct spi_controller_mem_caps *mem_caps;
694 
695 	/* gpio chip select */
696 	struct gpio_desc	**cs_gpiods;
697 	bool			use_gpio_descriptors;
698 	s8			unused_native_cs;
699 	s8			max_native_cs;
700 
701 	/* Statistics */
702 	struct spi_statistics __percpu	*pcpu_statistics;
703 
704 	/* DMA channels for use with core dmaengine helpers */
705 	struct dma_chan		*dma_tx;
706 	struct dma_chan		*dma_rx;
707 
708 	/* Dummy data for full duplex devices */
709 	void			*dummy_rx;
710 	void			*dummy_tx;
711 
712 	int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs);
713 
714 	/*
715 	 * Driver sets this field to indicate it is able to snapshot SPI
716 	 * transfers (needed e.g. for reading the time of POSIX clocks)
717 	 */
718 	bool			ptp_sts_supported;
719 
720 	/* Interrupt enable state during PTP system timestamping */
721 	unsigned long		irq_flags;
722 
723 	/* Flag for enabling opportunistic skipping of the queue in spi_sync */
724 	bool			queue_empty;
725 	bool			must_async;
726 
727 	ANDROID_KABI_RESERVE(1);
728 	ANDROID_KABI_RESERVE(2);
729 };
730 
spi_controller_get_devdata(struct spi_controller * ctlr)731 static inline void *spi_controller_get_devdata(struct spi_controller *ctlr)
732 {
733 	return dev_get_drvdata(&ctlr->dev);
734 }
735 
spi_controller_set_devdata(struct spi_controller * ctlr,void * data)736 static inline void spi_controller_set_devdata(struct spi_controller *ctlr,
737 					      void *data)
738 {
739 	dev_set_drvdata(&ctlr->dev, data);
740 }
741 
spi_controller_get(struct spi_controller * ctlr)742 static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr)
743 {
744 	if (!ctlr || !get_device(&ctlr->dev))
745 		return NULL;
746 	return ctlr;
747 }
748 
spi_controller_put(struct spi_controller * ctlr)749 static inline void spi_controller_put(struct spi_controller *ctlr)
750 {
751 	if (ctlr)
752 		put_device(&ctlr->dev);
753 }
754 
spi_controller_is_slave(struct spi_controller * ctlr)755 static inline bool spi_controller_is_slave(struct spi_controller *ctlr)
756 {
757 	return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->slave;
758 }
759 
760 /* PM calls that need to be issued by the driver */
761 extern int spi_controller_suspend(struct spi_controller *ctlr);
762 extern int spi_controller_resume(struct spi_controller *ctlr);
763 
764 /* Calls the driver make to interact with the message queue */
765 extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr);
766 extern void spi_finalize_current_message(struct spi_controller *ctlr);
767 extern void spi_finalize_current_transfer(struct spi_controller *ctlr);
768 
769 /* Helper calls for driver to timestamp transfer */
770 void spi_take_timestamp_pre(struct spi_controller *ctlr,
771 			    struct spi_transfer *xfer,
772 			    size_t progress, bool irqs_off);
773 void spi_take_timestamp_post(struct spi_controller *ctlr,
774 			     struct spi_transfer *xfer,
775 			     size_t progress, bool irqs_off);
776 
777 /* The spi driver core manages memory for the spi_controller classdev */
778 extern struct spi_controller *__spi_alloc_controller(struct device *host,
779 						unsigned int size, bool slave);
780 
spi_alloc_master(struct device * host,unsigned int size)781 static inline struct spi_controller *spi_alloc_master(struct device *host,
782 						      unsigned int size)
783 {
784 	return __spi_alloc_controller(host, size, false);
785 }
786 
spi_alloc_slave(struct device * host,unsigned int size)787 static inline struct spi_controller *spi_alloc_slave(struct device *host,
788 						     unsigned int size)
789 {
790 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
791 		return NULL;
792 
793 	return __spi_alloc_controller(host, size, true);
794 }
795 
796 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
797 						   unsigned int size,
798 						   bool slave);
799 
devm_spi_alloc_master(struct device * dev,unsigned int size)800 static inline struct spi_controller *devm_spi_alloc_master(struct device *dev,
801 							   unsigned int size)
802 {
803 	return __devm_spi_alloc_controller(dev, size, false);
804 }
805 
devm_spi_alloc_slave(struct device * dev,unsigned int size)806 static inline struct spi_controller *devm_spi_alloc_slave(struct device *dev,
807 							  unsigned int size)
808 {
809 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
810 		return NULL;
811 
812 	return __devm_spi_alloc_controller(dev, size, true);
813 }
814 
815 extern int spi_register_controller(struct spi_controller *ctlr);
816 extern int devm_spi_register_controller(struct device *dev,
817 					struct spi_controller *ctlr);
818 extern void spi_unregister_controller(struct spi_controller *ctlr);
819 
820 #if IS_ENABLED(CONFIG_ACPI)
821 extern struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
822 						struct acpi_device *adev,
823 						int index);
824 int acpi_spi_count_resources(struct acpi_device *adev);
825 #endif
826 
827 /*
828  * SPI resource management while processing a SPI message
829  */
830 
831 typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
832 				  struct spi_message *msg,
833 				  void *res);
834 
835 /**
836  * struct spi_res - spi resource management structure
837  * @entry:   list entry
838  * @release: release code called prior to freeing this resource
839  * @data:    extra data allocated for the specific use-case
840  *
841  * this is based on ideas from devres, but focused on life-cycle
842  * management during spi_message processing
843  */
844 struct spi_res {
845 	struct list_head        entry;
846 	spi_res_release_t       release;
847 	unsigned long long      data[]; /* Guarantee ull alignment */
848 };
849 
850 /*---------------------------------------------------------------------------*/
851 
852 /*
853  * I/O INTERFACE between SPI controller and protocol drivers
854  *
855  * Protocol drivers use a queue of spi_messages, each transferring data
856  * between the controller and memory buffers.
857  *
858  * The spi_messages themselves consist of a series of read+write transfer
859  * segments.  Those segments always read the same number of bits as they
860  * write; but one or the other is easily ignored by passing a null buffer
861  * pointer.  (This is unlike most types of I/O API, because SPI hardware
862  * is full duplex.)
863  *
864  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
865  * up to the protocol driver, which guarantees the integrity of both (as
866  * well as the data buffers) for as long as the message is queued.
867  */
868 
869 /**
870  * struct spi_transfer - a read/write buffer pair
871  * @tx_buf: data to be written (dma-safe memory), or NULL
872  * @rx_buf: data to be read (dma-safe memory), or NULL
873  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
874  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
875  * @tx_nbits: number of bits used for writing. If 0 the default
876  *      (SPI_NBITS_SINGLE) is used.
877  * @rx_nbits: number of bits used for reading. If 0 the default
878  *      (SPI_NBITS_SINGLE) is used.
879  * @len: size of rx and tx buffers (in bytes)
880  * @speed_hz: Select a speed other than the device default for this
881  *      transfer. If 0 the default (from @spi_device) is used.
882  * @bits_per_word: select a bits_per_word other than the device default
883  *      for this transfer. If 0 the default (from @spi_device) is used.
884  * @dummy_data: indicates transfer is dummy bytes transfer.
885  * @cs_off: performs the transfer with chipselect off.
886  * @cs_change: affects chipselect after this transfer completes
887  * @cs_change_delay: delay between cs deassert and assert when
888  *      @cs_change is set and @spi_transfer is not the last in @spi_message
889  * @delay: delay to be introduced after this transfer before
890  *	(optionally) changing the chipselect status, then starting
891  *	the next transfer or completing this @spi_message.
892  * @word_delay: inter word delay to be introduced after each word size
893  *	(set by bits_per_word) transmission.
894  * @effective_speed_hz: the effective SCK-speed that was used to
895  *      transfer this transfer. Set to 0 if the spi bus driver does
896  *      not support it.
897  * @transfer_list: transfers are sequenced through @spi_message.transfers
898  * @tx_sg: Scatterlist for transmit, currently not for client use
899  * @rx_sg: Scatterlist for receive, currently not for client use
900  * @ptp_sts_word_pre: The word (subject to bits_per_word semantics) offset
901  *	within @tx_buf for which the SPI device is requesting that the time
902  *	snapshot for this transfer begins. Upon completing the SPI transfer,
903  *	this value may have changed compared to what was requested, depending
904  *	on the available snapshotting resolution (DMA transfer,
905  *	@ptp_sts_supported is false, etc).
906  * @ptp_sts_word_post: See @ptp_sts_word_post. The two can be equal (meaning
907  *	that a single byte should be snapshotted).
908  *	If the core takes care of the timestamp (if @ptp_sts_supported is false
909  *	for this controller), it will set @ptp_sts_word_pre to 0, and
910  *	@ptp_sts_word_post to the length of the transfer. This is done
911  *	purposefully (instead of setting to spi_transfer->len - 1) to denote
912  *	that a transfer-level snapshot taken from within the driver may still
913  *	be of higher quality.
914  * @ptp_sts: Pointer to a memory location held by the SPI slave device where a
915  *	PTP system timestamp structure may lie. If drivers use PIO or their
916  *	hardware has some sort of assist for retrieving exact transfer timing,
917  *	they can (and should) assert @ptp_sts_supported and populate this
918  *	structure using the ptp_read_system_*ts helper functions.
919  *	The timestamp must represent the time at which the SPI slave device has
920  *	processed the word, i.e. the "pre" timestamp should be taken before
921  *	transmitting the "pre" word, and the "post" timestamp after receiving
922  *	transmit confirmation from the controller for the "post" word.
923  * @timestamped: true if the transfer has been timestamped
924  * @error: Error status logged by spi controller driver.
925  *
926  * SPI transfers always write the same number of bytes as they read.
927  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
928  * In some cases, they may also want to provide DMA addresses for
929  * the data being transferred; that may reduce overhead, when the
930  * underlying driver uses dma.
931  *
932  * If the transmit buffer is null, zeroes will be shifted out
933  * while filling @rx_buf.  If the receive buffer is null, the data
934  * shifted in will be discarded.  Only "len" bytes shift out (or in).
935  * It's an error to try to shift out a partial word.  (For example, by
936  * shifting out three bytes with word size of sixteen or twenty bits;
937  * the former uses two bytes per word, the latter uses four bytes.)
938  *
939  * In-memory data values are always in native CPU byte order, translated
940  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
941  * for example when bits_per_word is sixteen, buffers are 2N bytes long
942  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
943  *
944  * When the word size of the SPI transfer is not a power-of-two multiple
945  * of eight bits, those in-memory words include extra bits.  In-memory
946  * words are always seen by protocol drivers as right-justified, so the
947  * undefined (rx) or unused (tx) bits are always the most significant bits.
948  *
949  * All SPI transfers start with the relevant chipselect active.  Normally
950  * it stays selected until after the last transfer in a message.  Drivers
951  * can affect the chipselect signal using cs_change.
952  *
953  * (i) If the transfer isn't the last one in the message, this flag is
954  * used to make the chipselect briefly go inactive in the middle of the
955  * message.  Toggling chipselect in this way may be needed to terminate
956  * a chip command, letting a single spi_message perform all of group of
957  * chip transactions together.
958  *
959  * (ii) When the transfer is the last one in the message, the chip may
960  * stay selected until the next transfer.  On multi-device SPI busses
961  * with nothing blocking messages going to other devices, this is just
962  * a performance hint; starting a message to another device deselects
963  * this one.  But in other cases, this can be used to ensure correctness.
964  * Some devices need protocol transactions to be built from a series of
965  * spi_message submissions, where the content of one message is determined
966  * by the results of previous messages and where the whole transaction
967  * ends when the chipselect goes intactive.
968  *
969  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
970  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
971  * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
972  * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
973  *
974  * The code that submits an spi_message (and its spi_transfers)
975  * to the lower layers is responsible for managing its memory.
976  * Zero-initialize every field you don't set up explicitly, to
977  * insulate against future API updates.  After you submit a message
978  * and its transfers, ignore them until its completion callback.
979  */
980 struct spi_transfer {
981 	/* It's ok if tx_buf == rx_buf (right?)
982 	 * for MicroWire, one buffer must be null
983 	 * buffers must work with dma_*map_single() calls, unless
984 	 *   spi_message.is_dma_mapped reports a pre-existing mapping
985 	 */
986 	const void	*tx_buf;
987 	void		*rx_buf;
988 	unsigned	len;
989 
990 	dma_addr_t	tx_dma;
991 	dma_addr_t	rx_dma;
992 	struct sg_table tx_sg;
993 	struct sg_table rx_sg;
994 
995 	unsigned	dummy_data:1;
996 	unsigned	cs_off:1;
997 	unsigned	cs_change:1;
998 	unsigned	tx_nbits:3;
999 	unsigned	rx_nbits:3;
1000 #define	SPI_NBITS_SINGLE	0x01 /* 1bit transfer */
1001 #define	SPI_NBITS_DUAL		0x02 /* 2bits transfer */
1002 #define	SPI_NBITS_QUAD		0x04 /* 4bits transfer */
1003 	u8		bits_per_word;
1004 	struct spi_delay	delay;
1005 	struct spi_delay	cs_change_delay;
1006 	struct spi_delay	word_delay;
1007 	u32		speed_hz;
1008 
1009 	u32		effective_speed_hz;
1010 
1011 	unsigned int	ptp_sts_word_pre;
1012 	unsigned int	ptp_sts_word_post;
1013 
1014 	struct ptp_system_timestamp *ptp_sts;
1015 
1016 	bool		timestamped;
1017 
1018 	struct list_head transfer_list;
1019 
1020 #define SPI_TRANS_FAIL_NO_START	BIT(0)
1021 	u16		error;
1022 
1023 	ANDROID_KABI_RESERVE(1);
1024 };
1025 
1026 /**
1027  * struct spi_message - one multi-segment SPI transaction
1028  * @transfers: list of transfer segments in this transaction
1029  * @spi: SPI device to which the transaction is queued
1030  * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
1031  *	addresses for each transfer buffer
1032  * @complete: called to report transaction completions
1033  * @context: the argument to complete() when it's called
1034  * @frame_length: the total number of bytes in the message
1035  * @actual_length: the total number of bytes that were transferred in all
1036  *	successful segments
1037  * @status: zero for success, else negative errno
1038  * @queue: for use by whichever driver currently owns the message
1039  * @state: for use by whichever driver currently owns the message
1040  * @resources: for resource management when the spi message is processed
1041  * @prepared: spi_prepare_message was called for the this message
1042  *
1043  * A @spi_message is used to execute an atomic sequence of data transfers,
1044  * each represented by a struct spi_transfer.  The sequence is "atomic"
1045  * in the sense that no other spi_message may use that SPI bus until that
1046  * sequence completes.  On some systems, many such sequences can execute as
1047  * a single programmed DMA transfer.  On all systems, these messages are
1048  * queued, and might complete after transactions to other devices.  Messages
1049  * sent to a given spi_device are always executed in FIFO order.
1050  *
1051  * The code that submits an spi_message (and its spi_transfers)
1052  * to the lower layers is responsible for managing its memory.
1053  * Zero-initialize every field you don't set up explicitly, to
1054  * insulate against future API updates.  After you submit a message
1055  * and its transfers, ignore them until its completion callback.
1056  */
1057 struct spi_message {
1058 	struct list_head	transfers;
1059 
1060 	struct spi_device	*spi;
1061 
1062 	unsigned		is_dma_mapped:1;
1063 
1064 	/* REVISIT:  we might want a flag affecting the behavior of the
1065 	 * last transfer ... allowing things like "read 16 bit length L"
1066 	 * immediately followed by "read L bytes".  Basically imposing
1067 	 * a specific message scheduling algorithm.
1068 	 *
1069 	 * Some controller drivers (message-at-a-time queue processing)
1070 	 * could provide that as their default scheduling algorithm.  But
1071 	 * others (with multi-message pipelines) could need a flag to
1072 	 * tell them about such special cases.
1073 	 */
1074 
1075 	/* Completion is reported through a callback */
1076 	void			(*complete)(void *context);
1077 	void			*context;
1078 	unsigned		frame_length;
1079 	unsigned		actual_length;
1080 	int			status;
1081 
1082 	/* For optional use by whatever driver currently owns the
1083 	 * spi_message ...  between calls to spi_async and then later
1084 	 * complete(), that's the spi_controller controller driver.
1085 	 */
1086 	struct list_head	queue;
1087 	void			*state;
1088 
1089 	/* List of spi_res reources when the spi message is processed */
1090 	struct list_head        resources;
1091 
1092 	/* spi_prepare_message() was called for this message */
1093 	bool			prepared;
1094 
1095 	ANDROID_KABI_RESERVE(1);
1096 };
1097 
spi_message_init_no_memset(struct spi_message * m)1098 static inline void spi_message_init_no_memset(struct spi_message *m)
1099 {
1100 	INIT_LIST_HEAD(&m->transfers);
1101 	INIT_LIST_HEAD(&m->resources);
1102 }
1103 
spi_message_init(struct spi_message * m)1104 static inline void spi_message_init(struct spi_message *m)
1105 {
1106 	memset(m, 0, sizeof *m);
1107 	spi_message_init_no_memset(m);
1108 }
1109 
1110 static inline void
spi_message_add_tail(struct spi_transfer * t,struct spi_message * m)1111 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
1112 {
1113 	list_add_tail(&t->transfer_list, &m->transfers);
1114 }
1115 
1116 static inline void
spi_transfer_del(struct spi_transfer * t)1117 spi_transfer_del(struct spi_transfer *t)
1118 {
1119 	list_del(&t->transfer_list);
1120 }
1121 
1122 static inline int
spi_transfer_delay_exec(struct spi_transfer * t)1123 spi_transfer_delay_exec(struct spi_transfer *t)
1124 {
1125 	return spi_delay_exec(&t->delay, t);
1126 }
1127 
1128 /**
1129  * spi_message_init_with_transfers - Initialize spi_message and append transfers
1130  * @m: spi_message to be initialized
1131  * @xfers: An array of spi transfers
1132  * @num_xfers: Number of items in the xfer array
1133  *
1134  * This function initializes the given spi_message and adds each spi_transfer in
1135  * the given array to the message.
1136  */
1137 static inline void
spi_message_init_with_transfers(struct spi_message * m,struct spi_transfer * xfers,unsigned int num_xfers)1138 spi_message_init_with_transfers(struct spi_message *m,
1139 struct spi_transfer *xfers, unsigned int num_xfers)
1140 {
1141 	unsigned int i;
1142 
1143 	spi_message_init(m);
1144 	for (i = 0; i < num_xfers; ++i)
1145 		spi_message_add_tail(&xfers[i], m);
1146 }
1147 
1148 /* It's fine to embed message and transaction structures in other data
1149  * structures so long as you don't free them while they're in use.
1150  */
1151 
spi_message_alloc(unsigned ntrans,gfp_t flags)1152 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
1153 {
1154 	struct spi_message *m;
1155 
1156 	m = kzalloc(sizeof(struct spi_message)
1157 			+ ntrans * sizeof(struct spi_transfer),
1158 			flags);
1159 	if (m) {
1160 		unsigned i;
1161 		struct spi_transfer *t = (struct spi_transfer *)(m + 1);
1162 
1163 		spi_message_init_no_memset(m);
1164 		for (i = 0; i < ntrans; i++, t++)
1165 			spi_message_add_tail(t, m);
1166 	}
1167 	return m;
1168 }
1169 
spi_message_free(struct spi_message * m)1170 static inline void spi_message_free(struct spi_message *m)
1171 {
1172 	kfree(m);
1173 }
1174 
1175 extern int spi_setup(struct spi_device *spi);
1176 extern int spi_async(struct spi_device *spi, struct spi_message *message);
1177 extern int spi_slave_abort(struct spi_device *spi);
1178 
1179 static inline size_t
spi_max_message_size(struct spi_device * spi)1180 spi_max_message_size(struct spi_device *spi)
1181 {
1182 	struct spi_controller *ctlr = spi->controller;
1183 
1184 	if (!ctlr->max_message_size)
1185 		return SIZE_MAX;
1186 	return ctlr->max_message_size(spi);
1187 }
1188 
1189 static inline size_t
spi_max_transfer_size(struct spi_device * spi)1190 spi_max_transfer_size(struct spi_device *spi)
1191 {
1192 	struct spi_controller *ctlr = spi->controller;
1193 	size_t tr_max = SIZE_MAX;
1194 	size_t msg_max = spi_max_message_size(spi);
1195 
1196 	if (ctlr->max_transfer_size)
1197 		tr_max = ctlr->max_transfer_size(spi);
1198 
1199 	/* Transfer size limit must not be greater than message size limit */
1200 	return min(tr_max, msg_max);
1201 }
1202 
1203 /**
1204  * spi_is_bpw_supported - Check if bits per word is supported
1205  * @spi: SPI device
1206  * @bpw: Bits per word
1207  *
1208  * This function checks to see if the SPI controller supports @bpw.
1209  *
1210  * Returns:
1211  * True if @bpw is supported, false otherwise.
1212  */
spi_is_bpw_supported(struct spi_device * spi,u32 bpw)1213 static inline bool spi_is_bpw_supported(struct spi_device *spi, u32 bpw)
1214 {
1215 	u32 bpw_mask = spi->master->bits_per_word_mask;
1216 
1217 	if (bpw == 8 || (bpw <= 32 && bpw_mask & SPI_BPW_MASK(bpw)))
1218 		return true;
1219 
1220 	return false;
1221 }
1222 
1223 /*---------------------------------------------------------------------------*/
1224 
1225 /* SPI transfer replacement methods which make use of spi_res */
1226 
1227 struct spi_replaced_transfers;
1228 typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
1229 				       struct spi_message *msg,
1230 				       struct spi_replaced_transfers *res);
1231 /**
1232  * struct spi_replaced_transfers - structure describing the spi_transfer
1233  *                                 replacements that have occurred
1234  *                                 so that they can get reverted
1235  * @release:            some extra release code to get executed prior to
1236  *                      relasing this structure
1237  * @extradata:          pointer to some extra data if requested or NULL
1238  * @replaced_transfers: transfers that have been replaced and which need
1239  *                      to get restored
1240  * @replaced_after:     the transfer after which the @replaced_transfers
1241  *                      are to get re-inserted
1242  * @inserted:           number of transfers inserted
1243  * @inserted_transfers: array of spi_transfers of array-size @inserted,
1244  *                      that have been replacing replaced_transfers
1245  *
1246  * note: that @extradata will point to @inserted_transfers[@inserted]
1247  * if some extra allocation is requested, so alignment will be the same
1248  * as for spi_transfers
1249  */
1250 struct spi_replaced_transfers {
1251 	spi_replaced_release_t release;
1252 	void *extradata;
1253 	struct list_head replaced_transfers;
1254 	struct list_head *replaced_after;
1255 	size_t inserted;
1256 	struct spi_transfer inserted_transfers[];
1257 };
1258 
1259 /*---------------------------------------------------------------------------*/
1260 
1261 /* SPI transfer transformation methods */
1262 
1263 extern int spi_split_transfers_maxsize(struct spi_controller *ctlr,
1264 				       struct spi_message *msg,
1265 				       size_t maxsize,
1266 				       gfp_t gfp);
1267 
1268 /*---------------------------------------------------------------------------*/
1269 
1270 /* All these synchronous SPI transfer routines are utilities layered
1271  * over the core async transfer primitive.  Here, "synchronous" means
1272  * they will sleep uninterruptibly until the async transfer completes.
1273  */
1274 
1275 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
1276 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
1277 extern int spi_bus_lock(struct spi_controller *ctlr);
1278 extern int spi_bus_unlock(struct spi_controller *ctlr);
1279 
1280 /**
1281  * spi_sync_transfer - synchronous SPI data transfer
1282  * @spi: device with which data will be exchanged
1283  * @xfers: An array of spi_transfers
1284  * @num_xfers: Number of items in the xfer array
1285  * Context: can sleep
1286  *
1287  * Does a synchronous SPI data transfer of the given spi_transfer array.
1288  *
1289  * For more specific semantics see spi_sync().
1290  *
1291  * Return: zero on success, else a negative error code.
1292  */
1293 static inline int
spi_sync_transfer(struct spi_device * spi,struct spi_transfer * xfers,unsigned int num_xfers)1294 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
1295 	unsigned int num_xfers)
1296 {
1297 	struct spi_message msg;
1298 
1299 	spi_message_init_with_transfers(&msg, xfers, num_xfers);
1300 
1301 	return spi_sync(spi, &msg);
1302 }
1303 
1304 /**
1305  * spi_write - SPI synchronous write
1306  * @spi: device to which data will be written
1307  * @buf: data buffer
1308  * @len: data buffer size
1309  * Context: can sleep
1310  *
1311  * This function writes the buffer @buf.
1312  * Callable only from contexts that can sleep.
1313  *
1314  * Return: zero on success, else a negative error code.
1315  */
1316 static inline int
spi_write(struct spi_device * spi,const void * buf,size_t len)1317 spi_write(struct spi_device *spi, const void *buf, size_t len)
1318 {
1319 	struct spi_transfer	t = {
1320 			.tx_buf		= buf,
1321 			.len		= len,
1322 		};
1323 
1324 	return spi_sync_transfer(spi, &t, 1);
1325 }
1326 
1327 /**
1328  * spi_read - SPI synchronous read
1329  * @spi: device from which data will be read
1330  * @buf: data buffer
1331  * @len: data buffer size
1332  * Context: can sleep
1333  *
1334  * This function reads the buffer @buf.
1335  * Callable only from contexts that can sleep.
1336  *
1337  * Return: zero on success, else a negative error code.
1338  */
1339 static inline int
spi_read(struct spi_device * spi,void * buf,size_t len)1340 spi_read(struct spi_device *spi, void *buf, size_t len)
1341 {
1342 	struct spi_transfer	t = {
1343 			.rx_buf		= buf,
1344 			.len		= len,
1345 		};
1346 
1347 	return spi_sync_transfer(spi, &t, 1);
1348 }
1349 
1350 /* This copies txbuf and rxbuf data; for small transfers only! */
1351 extern int spi_write_then_read(struct spi_device *spi,
1352 		const void *txbuf, unsigned n_tx,
1353 		void *rxbuf, unsigned n_rx);
1354 
1355 /**
1356  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
1357  * @spi: device with which data will be exchanged
1358  * @cmd: command to be written before data is read back
1359  * Context: can sleep
1360  *
1361  * Callable only from contexts that can sleep.
1362  *
1363  * Return: the (unsigned) eight bit number returned by the
1364  * device, or else a negative error code.
1365  */
spi_w8r8(struct spi_device * spi,u8 cmd)1366 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
1367 {
1368 	ssize_t			status;
1369 	u8			result;
1370 
1371 	status = spi_write_then_read(spi, &cmd, 1, &result, 1);
1372 
1373 	/* Return negative errno or unsigned value */
1374 	return (status < 0) ? status : result;
1375 }
1376 
1377 /**
1378  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
1379  * @spi: device with which data will be exchanged
1380  * @cmd: command to be written before data is read back
1381  * Context: can sleep
1382  *
1383  * The number is returned in wire-order, which is at least sometimes
1384  * big-endian.
1385  *
1386  * Callable only from contexts that can sleep.
1387  *
1388  * Return: the (unsigned) sixteen bit number returned by the
1389  * device, or else a negative error code.
1390  */
spi_w8r16(struct spi_device * spi,u8 cmd)1391 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
1392 {
1393 	ssize_t			status;
1394 	u16			result;
1395 
1396 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1397 
1398 	/* Return negative errno or unsigned value */
1399 	return (status < 0) ? status : result;
1400 }
1401 
1402 /**
1403  * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
1404  * @spi: device with which data will be exchanged
1405  * @cmd: command to be written before data is read back
1406  * Context: can sleep
1407  *
1408  * This function is similar to spi_w8r16, with the exception that it will
1409  * convert the read 16 bit data word from big-endian to native endianness.
1410  *
1411  * Callable only from contexts that can sleep.
1412  *
1413  * Return: the (unsigned) sixteen bit number returned by the device in cpu
1414  * endianness, or else a negative error code.
1415  */
spi_w8r16be(struct spi_device * spi,u8 cmd)1416 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
1417 
1418 {
1419 	ssize_t status;
1420 	__be16 result;
1421 
1422 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1423 	if (status < 0)
1424 		return status;
1425 
1426 	return be16_to_cpu(result);
1427 }
1428 
1429 /*---------------------------------------------------------------------------*/
1430 
1431 /*
1432  * INTERFACE between board init code and SPI infrastructure.
1433  *
1434  * No SPI driver ever sees these SPI device table segments, but
1435  * it's how the SPI core (or adapters that get hotplugged) grows
1436  * the driver model tree.
1437  *
1438  * As a rule, SPI devices can't be probed.  Instead, board init code
1439  * provides a table listing the devices which are present, with enough
1440  * information to bind and set up the device's driver.  There's basic
1441  * support for nonstatic configurations too; enough to handle adding
1442  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1443  */
1444 
1445 /**
1446  * struct spi_board_info - board-specific template for a SPI device
1447  * @modalias: Initializes spi_device.modalias; identifies the driver.
1448  * @platform_data: Initializes spi_device.platform_data; the particular
1449  *	data stored there is driver-specific.
1450  * @swnode: Software node for the device.
1451  * @controller_data: Initializes spi_device.controller_data; some
1452  *	controllers need hints about hardware setup, e.g. for DMA.
1453  * @irq: Initializes spi_device.irq; depends on how the board is wired.
1454  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1455  *	from the chip datasheet and board-specific signal quality issues.
1456  * @bus_num: Identifies which spi_controller parents the spi_device; unused
1457  *	by spi_new_device(), and otherwise depends on board wiring.
1458  * @chip_select: Initializes spi_device.chip_select; depends on how
1459  *	the board is wired.
1460  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1461  *	wiring (some devices support both 3WIRE and standard modes), and
1462  *	possibly presence of an inverter in the chipselect path.
1463  *
1464  * When adding new SPI devices to the device tree, these structures serve
1465  * as a partial device template.  They hold information which can't always
1466  * be determined by drivers.  Information that probe() can establish (such
1467  * as the default transfer wordsize) is not included here.
1468  *
1469  * These structures are used in two places.  Their primary role is to
1470  * be stored in tables of board-specific device descriptors, which are
1471  * declared early in board initialization and then used (much later) to
1472  * populate a controller's device tree after the that controller's driver
1473  * initializes.  A secondary (and atypical) role is as a parameter to
1474  * spi_new_device() call, which happens after those controller drivers
1475  * are active in some dynamic board configuration models.
1476  */
1477 struct spi_board_info {
1478 	/* The device name and module name are coupled, like platform_bus;
1479 	 * "modalias" is normally the driver name.
1480 	 *
1481 	 * platform_data goes to spi_device.dev.platform_data,
1482 	 * controller_data goes to spi_device.controller_data,
1483 	 * irq is copied too
1484 	 */
1485 	char		modalias[SPI_NAME_SIZE];
1486 	const void	*platform_data;
1487 	const struct software_node *swnode;
1488 	void		*controller_data;
1489 	int		irq;
1490 
1491 	/* Slower signaling on noisy or low voltage boards */
1492 	u32		max_speed_hz;
1493 
1494 
1495 	/* bus_num is board specific and matches the bus_num of some
1496 	 * spi_controller that will probably be registered later.
1497 	 *
1498 	 * chip_select reflects how this chip is wired to that master;
1499 	 * it's less than num_chipselect.
1500 	 */
1501 	u16		bus_num;
1502 	u16		chip_select;
1503 
1504 	/* mode becomes spi_device.mode, and is essential for chips
1505 	 * where the default of SPI_CS_HIGH = 0 is wrong.
1506 	 */
1507 	u32		mode;
1508 
1509 	ANDROID_KABI_RESERVE(1);
1510 
1511 	/* ... may need additional spi_device chip config data here.
1512 	 * avoid stuff protocol drivers can set; but include stuff
1513 	 * needed to behave without being bound to a driver:
1514 	 *  - quirks like clock rate mattering when not selected
1515 	 */
1516 };
1517 
1518 #ifdef	CONFIG_SPI
1519 extern int
1520 spi_register_board_info(struct spi_board_info const *info, unsigned n);
1521 #else
1522 /* Board init code may ignore whether SPI is configured or not */
1523 static inline int
spi_register_board_info(struct spi_board_info const * info,unsigned n)1524 spi_register_board_info(struct spi_board_info const *info, unsigned n)
1525 	{ return 0; }
1526 #endif
1527 
1528 /* If you're hotplugging an adapter with devices (parport, usb, etc)
1529  * use spi_new_device() to describe each device.  You can also call
1530  * spi_unregister_device() to start making that device vanish, but
1531  * normally that would be handled by spi_unregister_controller().
1532  *
1533  * You can also use spi_alloc_device() and spi_add_device() to use a two
1534  * stage registration sequence for each spi_device. This gives the caller
1535  * some more control over the spi_device structure before it is registered,
1536  * but requires that caller to initialize fields that would otherwise
1537  * be defined using the board info.
1538  */
1539 extern struct spi_device *
1540 spi_alloc_device(struct spi_controller *ctlr);
1541 
1542 extern int
1543 spi_add_device(struct spi_device *spi);
1544 
1545 extern struct spi_device *
1546 spi_new_device(struct spi_controller *, struct spi_board_info *);
1547 
1548 extern void spi_unregister_device(struct spi_device *spi);
1549 
1550 extern const struct spi_device_id *
1551 spi_get_device_id(const struct spi_device *sdev);
1552 
1553 extern const void *
1554 spi_get_device_match_data(const struct spi_device *sdev);
1555 
1556 static inline bool
spi_transfer_is_last(struct spi_controller * ctlr,struct spi_transfer * xfer)1557 spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer)
1558 {
1559 	return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers);
1560 }
1561 
1562 /* Compatibility layer */
1563 #define spi_master			spi_controller
1564 
1565 #define SPI_MASTER_HALF_DUPLEX		SPI_CONTROLLER_HALF_DUPLEX
1566 #define SPI_MASTER_NO_RX		SPI_CONTROLLER_NO_RX
1567 #define SPI_MASTER_NO_TX		SPI_CONTROLLER_NO_TX
1568 #define SPI_MASTER_MUST_RX		SPI_CONTROLLER_MUST_RX
1569 #define SPI_MASTER_MUST_TX		SPI_CONTROLLER_MUST_TX
1570 
1571 #define spi_master_get_devdata(_ctlr)	spi_controller_get_devdata(_ctlr)
1572 #define spi_master_set_devdata(_ctlr, _data)	\
1573 	spi_controller_set_devdata(_ctlr, _data)
1574 #define spi_master_get(_ctlr)		spi_controller_get(_ctlr)
1575 #define spi_master_put(_ctlr)		spi_controller_put(_ctlr)
1576 #define spi_master_suspend(_ctlr)	spi_controller_suspend(_ctlr)
1577 #define spi_master_resume(_ctlr)	spi_controller_resume(_ctlr)
1578 
1579 #define spi_register_master(_ctlr)	spi_register_controller(_ctlr)
1580 #define devm_spi_register_master(_dev, _ctlr) \
1581 	devm_spi_register_controller(_dev, _ctlr)
1582 #define spi_unregister_master(_ctlr)	spi_unregister_controller(_ctlr)
1583 
1584 #endif /* __LINUX_SPI_H */
1585