1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/net.h>
61 #include <linux/interrupt.h>
62 #include <linux/thread_info.h>
63 #include <linux/rcupdate.h>
64 #include <linux/netdevice.h>
65 #include <linux/proc_fs.h>
66 #include <linux/seq_file.h>
67 #include <linux/mutex.h>
68 #include <linux/if_bridge.h>
69 #include <linux/if_vlan.h>
70 #include <linux/ptp_classify.h>
71 #include <linux/init.h>
72 #include <linux/poll.h>
73 #include <linux/cache.h>
74 #include <linux/module.h>
75 #include <linux/highmem.h>
76 #include <linux/mount.h>
77 #include <linux/pseudo_fs.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/compat.h>
81 #include <linux/kmod.h>
82 #include <linux/audit.h>
83 #include <linux/wireless.h>
84 #include <linux/nsproxy.h>
85 #include <linux/magic.h>
86 #include <linux/slab.h>
87 #include <linux/xattr.h>
88 #include <linux/nospec.h>
89 #include <linux/indirect_call_wrapper.h>
90
91 #include <linux/uaccess.h>
92 #include <asm/unistd.h>
93
94 #include <net/compat.h>
95 #include <net/wext.h>
96 #include <net/cls_cgroup.h>
97
98 #include <net/sock.h>
99 #include <linux/netfilter.h>
100
101 #include <linux/if_tun.h>
102 #include <linux/ipv6_route.h>
103 #include <linux/route.h>
104 #include <linux/termios.h>
105 #include <linux/sockios.h>
106 #include <net/busy_poll.h>
107 #include <linux/errqueue.h>
108 #include <linux/ptp_clock_kernel.h>
109
110 #ifdef CONFIG_NET_RX_BUSY_POLL
111 unsigned int sysctl_net_busy_read __read_mostly;
112 unsigned int sysctl_net_busy_poll __read_mostly;
113 #endif
114
115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
117 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
118
119 static int sock_close(struct inode *inode, struct file *file);
120 static __poll_t sock_poll(struct file *file,
121 struct poll_table_struct *wait);
122 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
123 #ifdef CONFIG_COMPAT
124 static long compat_sock_ioctl(struct file *file,
125 unsigned int cmd, unsigned long arg);
126 #endif
127 static int sock_fasync(int fd, struct file *filp, int on);
128 static ssize_t sock_sendpage(struct file *file, struct page *page,
129 int offset, size_t size, loff_t *ppos, int more);
130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
131 struct pipe_inode_info *pipe, size_t len,
132 unsigned int flags);
133
134 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)135 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
136 {
137 struct socket *sock = f->private_data;
138
139 if (sock->ops->show_fdinfo)
140 sock->ops->show_fdinfo(m, sock);
141 }
142 #else
143 #define sock_show_fdinfo NULL
144 #endif
145
146 /*
147 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
148 * in the operation structures but are done directly via the socketcall() multiplexor.
149 */
150
151 static const struct file_operations socket_file_ops = {
152 .owner = THIS_MODULE,
153 .llseek = no_llseek,
154 .read_iter = sock_read_iter,
155 .write_iter = sock_write_iter,
156 .poll = sock_poll,
157 .unlocked_ioctl = sock_ioctl,
158 #ifdef CONFIG_COMPAT
159 .compat_ioctl = compat_sock_ioctl,
160 #endif
161 .mmap = sock_mmap,
162 .release = sock_close,
163 .fasync = sock_fasync,
164 .sendpage = sock_sendpage,
165 .splice_write = generic_splice_sendpage,
166 .splice_read = sock_splice_read,
167 .show_fdinfo = sock_show_fdinfo,
168 };
169
170 static const char * const pf_family_names[] = {
171 [PF_UNSPEC] = "PF_UNSPEC",
172 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
173 [PF_INET] = "PF_INET",
174 [PF_AX25] = "PF_AX25",
175 [PF_IPX] = "PF_IPX",
176 [PF_APPLETALK] = "PF_APPLETALK",
177 [PF_NETROM] = "PF_NETROM",
178 [PF_BRIDGE] = "PF_BRIDGE",
179 [PF_ATMPVC] = "PF_ATMPVC",
180 [PF_X25] = "PF_X25",
181 [PF_INET6] = "PF_INET6",
182 [PF_ROSE] = "PF_ROSE",
183 [PF_DECnet] = "PF_DECnet",
184 [PF_NETBEUI] = "PF_NETBEUI",
185 [PF_SECURITY] = "PF_SECURITY",
186 [PF_KEY] = "PF_KEY",
187 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
188 [PF_PACKET] = "PF_PACKET",
189 [PF_ASH] = "PF_ASH",
190 [PF_ECONET] = "PF_ECONET",
191 [PF_ATMSVC] = "PF_ATMSVC",
192 [PF_RDS] = "PF_RDS",
193 [PF_SNA] = "PF_SNA",
194 [PF_IRDA] = "PF_IRDA",
195 [PF_PPPOX] = "PF_PPPOX",
196 [PF_WANPIPE] = "PF_WANPIPE",
197 [PF_LLC] = "PF_LLC",
198 [PF_IB] = "PF_IB",
199 [PF_MPLS] = "PF_MPLS",
200 [PF_CAN] = "PF_CAN",
201 [PF_TIPC] = "PF_TIPC",
202 [PF_BLUETOOTH] = "PF_BLUETOOTH",
203 [PF_IUCV] = "PF_IUCV",
204 [PF_RXRPC] = "PF_RXRPC",
205 [PF_ISDN] = "PF_ISDN",
206 [PF_PHONET] = "PF_PHONET",
207 [PF_IEEE802154] = "PF_IEEE802154",
208 [PF_CAIF] = "PF_CAIF",
209 [PF_ALG] = "PF_ALG",
210 [PF_NFC] = "PF_NFC",
211 [PF_VSOCK] = "PF_VSOCK",
212 [PF_KCM] = "PF_KCM",
213 [PF_QIPCRTR] = "PF_QIPCRTR",
214 [PF_SMC] = "PF_SMC",
215 [PF_XDP] = "PF_XDP",
216 [PF_MCTP] = "PF_MCTP",
217 };
218
219 /*
220 * The protocol list. Each protocol is registered in here.
221 */
222
223 static DEFINE_SPINLOCK(net_family_lock);
224 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
225
226 /*
227 * Support routines.
228 * Move socket addresses back and forth across the kernel/user
229 * divide and look after the messy bits.
230 */
231
232 /**
233 * move_addr_to_kernel - copy a socket address into kernel space
234 * @uaddr: Address in user space
235 * @kaddr: Address in kernel space
236 * @ulen: Length in user space
237 *
238 * The address is copied into kernel space. If the provided address is
239 * too long an error code of -EINVAL is returned. If the copy gives
240 * invalid addresses -EFAULT is returned. On a success 0 is returned.
241 */
242
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)243 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
244 {
245 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
246 return -EINVAL;
247 if (ulen == 0)
248 return 0;
249 if (copy_from_user(kaddr, uaddr, ulen))
250 return -EFAULT;
251 return audit_sockaddr(ulen, kaddr);
252 }
253
254 /**
255 * move_addr_to_user - copy an address to user space
256 * @kaddr: kernel space address
257 * @klen: length of address in kernel
258 * @uaddr: user space address
259 * @ulen: pointer to user length field
260 *
261 * The value pointed to by ulen on entry is the buffer length available.
262 * This is overwritten with the buffer space used. -EINVAL is returned
263 * if an overlong buffer is specified or a negative buffer size. -EFAULT
264 * is returned if either the buffer or the length field are not
265 * accessible.
266 * After copying the data up to the limit the user specifies, the true
267 * length of the data is written over the length limit the user
268 * specified. Zero is returned for a success.
269 */
270
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)271 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
272 void __user *uaddr, int __user *ulen)
273 {
274 int err;
275 int len;
276
277 BUG_ON(klen > sizeof(struct sockaddr_storage));
278 err = get_user(len, ulen);
279 if (err)
280 return err;
281 if (len > klen)
282 len = klen;
283 if (len < 0)
284 return -EINVAL;
285 if (len) {
286 if (audit_sockaddr(klen, kaddr))
287 return -ENOMEM;
288 if (copy_to_user(uaddr, kaddr, len))
289 return -EFAULT;
290 }
291 /*
292 * "fromlen shall refer to the value before truncation.."
293 * 1003.1g
294 */
295 return __put_user(klen, ulen);
296 }
297
298 static struct kmem_cache *sock_inode_cachep __ro_after_init;
299
sock_alloc_inode(struct super_block * sb)300 static struct inode *sock_alloc_inode(struct super_block *sb)
301 {
302 struct socket_alloc *ei;
303
304 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
305 if (!ei)
306 return NULL;
307 init_waitqueue_head(&ei->socket.wq.wait);
308 ei->socket.wq.fasync_list = NULL;
309 ei->socket.wq.flags = 0;
310
311 ei->socket.state = SS_UNCONNECTED;
312 ei->socket.flags = 0;
313 ei->socket.ops = NULL;
314 ei->socket.sk = NULL;
315 ei->socket.file = NULL;
316
317 return &ei->vfs_inode;
318 }
319
sock_free_inode(struct inode * inode)320 static void sock_free_inode(struct inode *inode)
321 {
322 struct socket_alloc *ei;
323
324 ei = container_of(inode, struct socket_alloc, vfs_inode);
325 kmem_cache_free(sock_inode_cachep, ei);
326 }
327
init_once(void * foo)328 static void init_once(void *foo)
329 {
330 struct socket_alloc *ei = (struct socket_alloc *)foo;
331
332 inode_init_once(&ei->vfs_inode);
333 }
334
init_inodecache(void)335 static void init_inodecache(void)
336 {
337 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
338 sizeof(struct socket_alloc),
339 0,
340 (SLAB_HWCACHE_ALIGN |
341 SLAB_RECLAIM_ACCOUNT |
342 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
343 init_once);
344 BUG_ON(sock_inode_cachep == NULL);
345 }
346
347 static const struct super_operations sockfs_ops = {
348 .alloc_inode = sock_alloc_inode,
349 .free_inode = sock_free_inode,
350 .statfs = simple_statfs,
351 };
352
353 /*
354 * sockfs_dname() is called from d_path().
355 */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)356 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
357 {
358 return dynamic_dname(buffer, buflen, "socket:[%lu]",
359 d_inode(dentry)->i_ino);
360 }
361
362 static const struct dentry_operations sockfs_dentry_operations = {
363 .d_dname = sockfs_dname,
364 };
365
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)366 static int sockfs_xattr_get(const struct xattr_handler *handler,
367 struct dentry *dentry, struct inode *inode,
368 const char *suffix, void *value, size_t size)
369 {
370 if (value) {
371 if (dentry->d_name.len + 1 > size)
372 return -ERANGE;
373 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
374 }
375 return dentry->d_name.len + 1;
376 }
377
378 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
379 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
380 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
381
382 static const struct xattr_handler sockfs_xattr_handler = {
383 .name = XATTR_NAME_SOCKPROTONAME,
384 .get = sockfs_xattr_get,
385 };
386
sockfs_security_xattr_set(const struct xattr_handler * handler,struct user_namespace * mnt_userns,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)387 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
388 struct user_namespace *mnt_userns,
389 struct dentry *dentry, struct inode *inode,
390 const char *suffix, const void *value,
391 size_t size, int flags)
392 {
393 /* Handled by LSM. */
394 return -EAGAIN;
395 }
396
397 static const struct xattr_handler sockfs_security_xattr_handler = {
398 .prefix = XATTR_SECURITY_PREFIX,
399 .set = sockfs_security_xattr_set,
400 };
401
402 static const struct xattr_handler *sockfs_xattr_handlers[] = {
403 &sockfs_xattr_handler,
404 &sockfs_security_xattr_handler,
405 NULL
406 };
407
sockfs_init_fs_context(struct fs_context * fc)408 static int sockfs_init_fs_context(struct fs_context *fc)
409 {
410 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
411 if (!ctx)
412 return -ENOMEM;
413 ctx->ops = &sockfs_ops;
414 ctx->dops = &sockfs_dentry_operations;
415 ctx->xattr = sockfs_xattr_handlers;
416 return 0;
417 }
418
419 static struct vfsmount *sock_mnt __read_mostly;
420
421 static struct file_system_type sock_fs_type = {
422 .name = "sockfs",
423 .init_fs_context = sockfs_init_fs_context,
424 .kill_sb = kill_anon_super,
425 };
426
427 /*
428 * Obtains the first available file descriptor and sets it up for use.
429 *
430 * These functions create file structures and maps them to fd space
431 * of the current process. On success it returns file descriptor
432 * and file struct implicitly stored in sock->file.
433 * Note that another thread may close file descriptor before we return
434 * from this function. We use the fact that now we do not refer
435 * to socket after mapping. If one day we will need it, this
436 * function will increment ref. count on file by 1.
437 *
438 * In any case returned fd MAY BE not valid!
439 * This race condition is unavoidable
440 * with shared fd spaces, we cannot solve it inside kernel,
441 * but we take care of internal coherence yet.
442 */
443
444 /**
445 * sock_alloc_file - Bind a &socket to a &file
446 * @sock: socket
447 * @flags: file status flags
448 * @dname: protocol name
449 *
450 * Returns the &file bound with @sock, implicitly storing it
451 * in sock->file. If dname is %NULL, sets to "".
452 *
453 * On failure @sock is released, and an ERR pointer is returned.
454 *
455 * This function uses GFP_KERNEL internally.
456 */
457
sock_alloc_file(struct socket * sock,int flags,const char * dname)458 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
459 {
460 struct file *file;
461
462 if (!dname)
463 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
464
465 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
466 O_RDWR | (flags & O_NONBLOCK),
467 &socket_file_ops);
468 if (IS_ERR(file)) {
469 sock_release(sock);
470 return file;
471 }
472
473 sock->file = file;
474 file->private_data = sock;
475 stream_open(SOCK_INODE(sock), file);
476 return file;
477 }
478 EXPORT_SYMBOL(sock_alloc_file);
479
sock_map_fd(struct socket * sock,int flags)480 static int sock_map_fd(struct socket *sock, int flags)
481 {
482 struct file *newfile;
483 int fd = get_unused_fd_flags(flags);
484 if (unlikely(fd < 0)) {
485 sock_release(sock);
486 return fd;
487 }
488
489 newfile = sock_alloc_file(sock, flags, NULL);
490 if (!IS_ERR(newfile)) {
491 fd_install(fd, newfile);
492 return fd;
493 }
494
495 put_unused_fd(fd);
496 return PTR_ERR(newfile);
497 }
498
499 /**
500 * sock_from_file - Return the &socket bounded to @file.
501 * @file: file
502 *
503 * On failure returns %NULL.
504 */
505
sock_from_file(struct file * file)506 struct socket *sock_from_file(struct file *file)
507 {
508 if (file->f_op == &socket_file_ops)
509 return file->private_data; /* set in sock_alloc_file */
510
511 return NULL;
512 }
513 EXPORT_SYMBOL(sock_from_file);
514
515 /**
516 * sockfd_lookup - Go from a file number to its socket slot
517 * @fd: file handle
518 * @err: pointer to an error code return
519 *
520 * The file handle passed in is locked and the socket it is bound
521 * to is returned. If an error occurs the err pointer is overwritten
522 * with a negative errno code and NULL is returned. The function checks
523 * for both invalid handles and passing a handle which is not a socket.
524 *
525 * On a success the socket object pointer is returned.
526 */
527
sockfd_lookup(int fd,int * err)528 struct socket *sockfd_lookup(int fd, int *err)
529 {
530 struct file *file;
531 struct socket *sock;
532
533 file = fget(fd);
534 if (!file) {
535 *err = -EBADF;
536 return NULL;
537 }
538
539 sock = sock_from_file(file);
540 if (!sock) {
541 *err = -ENOTSOCK;
542 fput(file);
543 }
544 return sock;
545 }
546 EXPORT_SYMBOL(sockfd_lookup);
547
sockfd_lookup_light(int fd,int * err,int * fput_needed)548 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
549 {
550 struct fd f = fdget(fd);
551 struct socket *sock;
552
553 *err = -EBADF;
554 if (f.file) {
555 sock = sock_from_file(f.file);
556 if (likely(sock)) {
557 *fput_needed = f.flags & FDPUT_FPUT;
558 return sock;
559 }
560 *err = -ENOTSOCK;
561 fdput(f);
562 }
563 return NULL;
564 }
565
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)566 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
567 size_t size)
568 {
569 ssize_t len;
570 ssize_t used = 0;
571
572 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
573 if (len < 0)
574 return len;
575 used += len;
576 if (buffer) {
577 if (size < used)
578 return -ERANGE;
579 buffer += len;
580 }
581
582 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
583 used += len;
584 if (buffer) {
585 if (size < used)
586 return -ERANGE;
587 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
588 buffer += len;
589 }
590
591 return used;
592 }
593
sockfs_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * iattr)594 static int sockfs_setattr(struct user_namespace *mnt_userns,
595 struct dentry *dentry, struct iattr *iattr)
596 {
597 int err = simple_setattr(&init_user_ns, dentry, iattr);
598
599 if (!err && (iattr->ia_valid & ATTR_UID)) {
600 struct socket *sock = SOCKET_I(d_inode(dentry));
601
602 if (sock->sk)
603 sock->sk->sk_uid = iattr->ia_uid;
604 else
605 err = -ENOENT;
606 }
607
608 return err;
609 }
610
611 static const struct inode_operations sockfs_inode_ops = {
612 .listxattr = sockfs_listxattr,
613 .setattr = sockfs_setattr,
614 };
615
616 /**
617 * sock_alloc - allocate a socket
618 *
619 * Allocate a new inode and socket object. The two are bound together
620 * and initialised. The socket is then returned. If we are out of inodes
621 * NULL is returned. This functions uses GFP_KERNEL internally.
622 */
623
sock_alloc(void)624 struct socket *sock_alloc(void)
625 {
626 struct inode *inode;
627 struct socket *sock;
628
629 inode = new_inode_pseudo(sock_mnt->mnt_sb);
630 if (!inode)
631 return NULL;
632
633 sock = SOCKET_I(inode);
634
635 inode->i_ino = get_next_ino();
636 inode->i_mode = S_IFSOCK | S_IRWXUGO;
637 inode->i_uid = current_fsuid();
638 inode->i_gid = current_fsgid();
639 inode->i_op = &sockfs_inode_ops;
640
641 return sock;
642 }
643 EXPORT_SYMBOL(sock_alloc);
644
__sock_release(struct socket * sock,struct inode * inode)645 static void __sock_release(struct socket *sock, struct inode *inode)
646 {
647 if (sock->ops) {
648 struct module *owner = sock->ops->owner;
649
650 if (inode)
651 inode_lock(inode);
652 sock->ops->release(sock);
653 sock->sk = NULL;
654 if (inode)
655 inode_unlock(inode);
656 sock->ops = NULL;
657 module_put(owner);
658 }
659
660 if (sock->wq.fasync_list)
661 pr_err("%s: fasync list not empty!\n", __func__);
662
663 if (!sock->file) {
664 iput(SOCK_INODE(sock));
665 return;
666 }
667 sock->file = NULL;
668 }
669
670 /**
671 * sock_release - close a socket
672 * @sock: socket to close
673 *
674 * The socket is released from the protocol stack if it has a release
675 * callback, and the inode is then released if the socket is bound to
676 * an inode not a file.
677 */
sock_release(struct socket * sock)678 void sock_release(struct socket *sock)
679 {
680 __sock_release(sock, NULL);
681 }
682 EXPORT_SYMBOL(sock_release);
683
__sock_tx_timestamp(__u16 tsflags,__u8 * tx_flags)684 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
685 {
686 u8 flags = *tx_flags;
687
688 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
689 flags |= SKBTX_HW_TSTAMP;
690
691 /* PTP hardware clocks can provide a free running cycle counter
692 * as a time base for virtual clocks. Tell driver to use the
693 * free running cycle counter for timestamp if socket is bound
694 * to virtual clock.
695 */
696 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
697 flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
698 }
699
700 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
701 flags |= SKBTX_SW_TSTAMP;
702
703 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
704 flags |= SKBTX_SCHED_TSTAMP;
705
706 *tx_flags = flags;
707 }
708 EXPORT_SYMBOL(__sock_tx_timestamp);
709
710 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
711 size_t));
712 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
713 size_t));
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)714 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
715 {
716 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
717 inet_sendmsg, sock, msg,
718 msg_data_left(msg));
719 BUG_ON(ret == -EIOCBQUEUED);
720 return ret;
721 }
722
__sock_sendmsg(struct socket * sock,struct msghdr * msg)723 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
724 {
725 int err = security_socket_sendmsg(sock, msg,
726 msg_data_left(msg));
727
728 return err ?: sock_sendmsg_nosec(sock, msg);
729 }
730
731 /**
732 * sock_sendmsg - send a message through @sock
733 * @sock: socket
734 * @msg: message to send
735 *
736 * Sends @msg through @sock, passing through LSM.
737 * Returns the number of bytes sent, or an error code.
738 */
sock_sendmsg(struct socket * sock,struct msghdr * msg)739 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
740 {
741 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
742 struct sockaddr_storage address;
743 int save_len = msg->msg_namelen;
744 int ret;
745
746 if (msg->msg_name) {
747 memcpy(&address, msg->msg_name, msg->msg_namelen);
748 msg->msg_name = &address;
749 }
750
751 ret = __sock_sendmsg(sock, msg);
752 msg->msg_name = save_addr;
753 msg->msg_namelen = save_len;
754
755 return ret;
756 }
757 EXPORT_SYMBOL(sock_sendmsg);
758
759 /**
760 * kernel_sendmsg - send a message through @sock (kernel-space)
761 * @sock: socket
762 * @msg: message header
763 * @vec: kernel vec
764 * @num: vec array length
765 * @size: total message data size
766 *
767 * Builds the message data with @vec and sends it through @sock.
768 * Returns the number of bytes sent, or an error code.
769 */
770
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)771 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
772 struct kvec *vec, size_t num, size_t size)
773 {
774 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
775 return sock_sendmsg(sock, msg);
776 }
777 EXPORT_SYMBOL(kernel_sendmsg);
778
779 /**
780 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
781 * @sk: sock
782 * @msg: message header
783 * @vec: output s/g array
784 * @num: output s/g array length
785 * @size: total message data size
786 *
787 * Builds the message data with @vec and sends it through @sock.
788 * Returns the number of bytes sent, or an error code.
789 * Caller must hold @sk.
790 */
791
kernel_sendmsg_locked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)792 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
793 struct kvec *vec, size_t num, size_t size)
794 {
795 struct socket *sock = sk->sk_socket;
796
797 if (!sock->ops->sendmsg_locked)
798 return sock_no_sendmsg_locked(sk, msg, size);
799
800 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
801
802 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
803 }
804 EXPORT_SYMBOL(kernel_sendmsg_locked);
805
skb_is_err_queue(const struct sk_buff * skb)806 static bool skb_is_err_queue(const struct sk_buff *skb)
807 {
808 /* pkt_type of skbs enqueued on the error queue are set to
809 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
810 * in recvmsg, since skbs received on a local socket will never
811 * have a pkt_type of PACKET_OUTGOING.
812 */
813 return skb->pkt_type == PACKET_OUTGOING;
814 }
815
816 /* On transmit, software and hardware timestamps are returned independently.
817 * As the two skb clones share the hardware timestamp, which may be updated
818 * before the software timestamp is received, a hardware TX timestamp may be
819 * returned only if there is no software TX timestamp. Ignore false software
820 * timestamps, which may be made in the __sock_recv_timestamp() call when the
821 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
822 * hardware timestamp.
823 */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)824 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
825 {
826 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
827 }
828
get_timestamp(struct sock * sk,struct sk_buff * skb,int * if_index)829 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
830 {
831 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
832 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
833 struct net_device *orig_dev;
834 ktime_t hwtstamp;
835
836 rcu_read_lock();
837 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
838 if (orig_dev) {
839 *if_index = orig_dev->ifindex;
840 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
841 } else {
842 hwtstamp = shhwtstamps->hwtstamp;
843 }
844 rcu_read_unlock();
845
846 return hwtstamp;
847 }
848
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb,int if_index)849 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
850 int if_index)
851 {
852 struct scm_ts_pktinfo ts_pktinfo;
853 struct net_device *orig_dev;
854
855 if (!skb_mac_header_was_set(skb))
856 return;
857
858 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
859
860 if (!if_index) {
861 rcu_read_lock();
862 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
863 if (orig_dev)
864 if_index = orig_dev->ifindex;
865 rcu_read_unlock();
866 }
867 ts_pktinfo.if_index = if_index;
868
869 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
870 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
871 sizeof(ts_pktinfo), &ts_pktinfo);
872 }
873
874 /*
875 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
876 */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)877 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
878 struct sk_buff *skb)
879 {
880 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
881 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
882 struct scm_timestamping_internal tss;
883 int empty = 1, false_tstamp = 0;
884 struct skb_shared_hwtstamps *shhwtstamps =
885 skb_hwtstamps(skb);
886 int if_index;
887 ktime_t hwtstamp;
888 u32 tsflags;
889
890 /* Race occurred between timestamp enabling and packet
891 receiving. Fill in the current time for now. */
892 if (need_software_tstamp && skb->tstamp == 0) {
893 __net_timestamp(skb);
894 false_tstamp = 1;
895 }
896
897 if (need_software_tstamp) {
898 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
899 if (new_tstamp) {
900 struct __kernel_sock_timeval tv;
901
902 skb_get_new_timestamp(skb, &tv);
903 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
904 sizeof(tv), &tv);
905 } else {
906 struct __kernel_old_timeval tv;
907
908 skb_get_timestamp(skb, &tv);
909 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
910 sizeof(tv), &tv);
911 }
912 } else {
913 if (new_tstamp) {
914 struct __kernel_timespec ts;
915
916 skb_get_new_timestampns(skb, &ts);
917 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
918 sizeof(ts), &ts);
919 } else {
920 struct __kernel_old_timespec ts;
921
922 skb_get_timestampns(skb, &ts);
923 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
924 sizeof(ts), &ts);
925 }
926 }
927 }
928
929 memset(&tss, 0, sizeof(tss));
930 tsflags = READ_ONCE(sk->sk_tsflags);
931 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
932 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
933 empty = 0;
934 if (shhwtstamps &&
935 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
936 !skb_is_swtx_tstamp(skb, false_tstamp)) {
937 if_index = 0;
938 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
939 hwtstamp = get_timestamp(sk, skb, &if_index);
940 else
941 hwtstamp = shhwtstamps->hwtstamp;
942
943 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
944 hwtstamp = ptp_convert_timestamp(&hwtstamp,
945 READ_ONCE(sk->sk_bind_phc));
946
947 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
948 empty = 0;
949
950 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
951 !skb_is_err_queue(skb))
952 put_ts_pktinfo(msg, skb, if_index);
953 }
954 }
955 if (!empty) {
956 if (sock_flag(sk, SOCK_TSTAMP_NEW))
957 put_cmsg_scm_timestamping64(msg, &tss);
958 else
959 put_cmsg_scm_timestamping(msg, &tss);
960
961 if (skb_is_err_queue(skb) && skb->len &&
962 SKB_EXT_ERR(skb)->opt_stats)
963 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
964 skb->len, skb->data);
965 }
966 }
967 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
968
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)969 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
970 struct sk_buff *skb)
971 {
972 int ack;
973
974 if (!sock_flag(sk, SOCK_WIFI_STATUS))
975 return;
976 if (!skb->wifi_acked_valid)
977 return;
978
979 ack = skb->wifi_acked;
980
981 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
982 }
983 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
984
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)985 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
986 struct sk_buff *skb)
987 {
988 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
989 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
990 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
991 }
992
sock_recv_mark(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)993 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
994 struct sk_buff *skb)
995 {
996 if (sock_flag(sk, SOCK_RCVMARK) && skb) {
997 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
998 __u32 mark = skb->mark;
999
1000 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1001 }
1002 }
1003
__sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1004 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1005 struct sk_buff *skb)
1006 {
1007 sock_recv_timestamp(msg, sk, skb);
1008 sock_recv_drops(msg, sk, skb);
1009 sock_recv_mark(msg, sk, skb);
1010 }
1011 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1012
1013 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1014 size_t, int));
1015 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1016 size_t, int));
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)1017 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1018 int flags)
1019 {
1020 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
1021 inet_recvmsg, sock, msg, msg_data_left(msg),
1022 flags);
1023 }
1024
1025 /**
1026 * sock_recvmsg - receive a message from @sock
1027 * @sock: socket
1028 * @msg: message to receive
1029 * @flags: message flags
1030 *
1031 * Receives @msg from @sock, passing through LSM. Returns the total number
1032 * of bytes received, or an error.
1033 */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)1034 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1035 {
1036 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1037
1038 return err ?: sock_recvmsg_nosec(sock, msg, flags);
1039 }
1040 EXPORT_SYMBOL(sock_recvmsg);
1041
1042 /**
1043 * kernel_recvmsg - Receive a message from a socket (kernel space)
1044 * @sock: The socket to receive the message from
1045 * @msg: Received message
1046 * @vec: Input s/g array for message data
1047 * @num: Size of input s/g array
1048 * @size: Number of bytes to read
1049 * @flags: Message flags (MSG_DONTWAIT, etc...)
1050 *
1051 * On return the msg structure contains the scatter/gather array passed in the
1052 * vec argument. The array is modified so that it consists of the unfilled
1053 * portion of the original array.
1054 *
1055 * The returned value is the total number of bytes received, or an error.
1056 */
1057
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)1058 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1059 struct kvec *vec, size_t num, size_t size, int flags)
1060 {
1061 msg->msg_control_is_user = false;
1062 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1063 return sock_recvmsg(sock, msg, flags);
1064 }
1065 EXPORT_SYMBOL(kernel_recvmsg);
1066
sock_sendpage(struct file * file,struct page * page,int offset,size_t size,loff_t * ppos,int more)1067 static ssize_t sock_sendpage(struct file *file, struct page *page,
1068 int offset, size_t size, loff_t *ppos, int more)
1069 {
1070 struct socket *sock;
1071 int flags;
1072
1073 sock = file->private_data;
1074
1075 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1076 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1077 flags |= more;
1078
1079 return kernel_sendpage(sock, page, offset, size, flags);
1080 }
1081
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1082 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1083 struct pipe_inode_info *pipe, size_t len,
1084 unsigned int flags)
1085 {
1086 struct socket *sock = file->private_data;
1087
1088 if (unlikely(!sock->ops->splice_read))
1089 return generic_file_splice_read(file, ppos, pipe, len, flags);
1090
1091 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1092 }
1093
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)1094 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1095 {
1096 struct file *file = iocb->ki_filp;
1097 struct socket *sock = file->private_data;
1098 struct msghdr msg = {.msg_iter = *to,
1099 .msg_iocb = iocb};
1100 ssize_t res;
1101
1102 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1103 msg.msg_flags = MSG_DONTWAIT;
1104
1105 if (iocb->ki_pos != 0)
1106 return -ESPIPE;
1107
1108 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1109 return 0;
1110
1111 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1112 *to = msg.msg_iter;
1113 return res;
1114 }
1115
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)1116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1117 {
1118 struct file *file = iocb->ki_filp;
1119 struct socket *sock = file->private_data;
1120 struct msghdr msg = {.msg_iter = *from,
1121 .msg_iocb = iocb};
1122 ssize_t res;
1123
1124 if (iocb->ki_pos != 0)
1125 return -ESPIPE;
1126
1127 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1128 msg.msg_flags = MSG_DONTWAIT;
1129
1130 if (sock->type == SOCK_SEQPACKET)
1131 msg.msg_flags |= MSG_EOR;
1132
1133 res = __sock_sendmsg(sock, &msg);
1134 *from = msg.msg_iter;
1135 return res;
1136 }
1137
1138 /*
1139 * Atomic setting of ioctl hooks to avoid race
1140 * with module unload.
1141 */
1142
1143 static DEFINE_MUTEX(br_ioctl_mutex);
1144 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1145 unsigned int cmd, struct ifreq *ifr,
1146 void __user *uarg);
1147
brioctl_set(int (* hook)(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg))1148 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1149 unsigned int cmd, struct ifreq *ifr,
1150 void __user *uarg))
1151 {
1152 mutex_lock(&br_ioctl_mutex);
1153 br_ioctl_hook = hook;
1154 mutex_unlock(&br_ioctl_mutex);
1155 }
1156 EXPORT_SYMBOL(brioctl_set);
1157
br_ioctl_call(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg)1158 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1159 struct ifreq *ifr, void __user *uarg)
1160 {
1161 int err = -ENOPKG;
1162
1163 if (!br_ioctl_hook)
1164 request_module("bridge");
1165
1166 mutex_lock(&br_ioctl_mutex);
1167 if (br_ioctl_hook)
1168 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1169 mutex_unlock(&br_ioctl_mutex);
1170
1171 return err;
1172 }
1173
1174 static DEFINE_MUTEX(vlan_ioctl_mutex);
1175 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1176
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1177 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1178 {
1179 mutex_lock(&vlan_ioctl_mutex);
1180 vlan_ioctl_hook = hook;
1181 mutex_unlock(&vlan_ioctl_mutex);
1182 }
1183 EXPORT_SYMBOL(vlan_ioctl_set);
1184
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1185 static long sock_do_ioctl(struct net *net, struct socket *sock,
1186 unsigned int cmd, unsigned long arg)
1187 {
1188 struct ifreq ifr;
1189 bool need_copyout;
1190 int err;
1191 void __user *argp = (void __user *)arg;
1192 void __user *data;
1193
1194 err = sock->ops->ioctl(sock, cmd, arg);
1195
1196 /*
1197 * If this ioctl is unknown try to hand it down
1198 * to the NIC driver.
1199 */
1200 if (err != -ENOIOCTLCMD)
1201 return err;
1202
1203 if (!is_socket_ioctl_cmd(cmd))
1204 return -ENOTTY;
1205
1206 if (get_user_ifreq(&ifr, &data, argp))
1207 return -EFAULT;
1208 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1209 if (!err && need_copyout)
1210 if (put_user_ifreq(&ifr, argp))
1211 return -EFAULT;
1212
1213 return err;
1214 }
1215
1216 /*
1217 * With an ioctl, arg may well be a user mode pointer, but we don't know
1218 * what to do with it - that's up to the protocol still.
1219 */
1220
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1221 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1222 {
1223 struct socket *sock;
1224 struct sock *sk;
1225 void __user *argp = (void __user *)arg;
1226 int pid, err;
1227 struct net *net;
1228
1229 sock = file->private_data;
1230 sk = sock->sk;
1231 net = sock_net(sk);
1232 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1233 struct ifreq ifr;
1234 void __user *data;
1235 bool need_copyout;
1236 if (get_user_ifreq(&ifr, &data, argp))
1237 return -EFAULT;
1238 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1239 if (!err && need_copyout)
1240 if (put_user_ifreq(&ifr, argp))
1241 return -EFAULT;
1242 } else
1243 #ifdef CONFIG_WEXT_CORE
1244 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1245 err = wext_handle_ioctl(net, cmd, argp);
1246 } else
1247 #endif
1248 switch (cmd) {
1249 case FIOSETOWN:
1250 case SIOCSPGRP:
1251 err = -EFAULT;
1252 if (get_user(pid, (int __user *)argp))
1253 break;
1254 err = f_setown(sock->file, pid, 1);
1255 break;
1256 case FIOGETOWN:
1257 case SIOCGPGRP:
1258 err = put_user(f_getown(sock->file),
1259 (int __user *)argp);
1260 break;
1261 case SIOCGIFBR:
1262 case SIOCSIFBR:
1263 case SIOCBRADDBR:
1264 case SIOCBRDELBR:
1265 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1266 break;
1267 case SIOCGIFVLAN:
1268 case SIOCSIFVLAN:
1269 err = -ENOPKG;
1270 if (!vlan_ioctl_hook)
1271 request_module("8021q");
1272
1273 mutex_lock(&vlan_ioctl_mutex);
1274 if (vlan_ioctl_hook)
1275 err = vlan_ioctl_hook(net, argp);
1276 mutex_unlock(&vlan_ioctl_mutex);
1277 break;
1278 case SIOCGSKNS:
1279 err = -EPERM;
1280 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1281 break;
1282
1283 err = open_related_ns(&net->ns, get_net_ns);
1284 break;
1285 case SIOCGSTAMP_OLD:
1286 case SIOCGSTAMPNS_OLD:
1287 if (!sock->ops->gettstamp) {
1288 err = -ENOIOCTLCMD;
1289 break;
1290 }
1291 err = sock->ops->gettstamp(sock, argp,
1292 cmd == SIOCGSTAMP_OLD,
1293 !IS_ENABLED(CONFIG_64BIT));
1294 break;
1295 case SIOCGSTAMP_NEW:
1296 case SIOCGSTAMPNS_NEW:
1297 if (!sock->ops->gettstamp) {
1298 err = -ENOIOCTLCMD;
1299 break;
1300 }
1301 err = sock->ops->gettstamp(sock, argp,
1302 cmd == SIOCGSTAMP_NEW,
1303 false);
1304 break;
1305
1306 case SIOCGIFCONF:
1307 err = dev_ifconf(net, argp);
1308 break;
1309
1310 default:
1311 err = sock_do_ioctl(net, sock, cmd, arg);
1312 break;
1313 }
1314 return err;
1315 }
1316
1317 /**
1318 * sock_create_lite - creates a socket
1319 * @family: protocol family (AF_INET, ...)
1320 * @type: communication type (SOCK_STREAM, ...)
1321 * @protocol: protocol (0, ...)
1322 * @res: new socket
1323 *
1324 * Creates a new socket and assigns it to @res, passing through LSM.
1325 * The new socket initialization is not complete, see kernel_accept().
1326 * Returns 0 or an error. On failure @res is set to %NULL.
1327 * This function internally uses GFP_KERNEL.
1328 */
1329
sock_create_lite(int family,int type,int protocol,struct socket ** res)1330 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1331 {
1332 int err;
1333 struct socket *sock = NULL;
1334
1335 err = security_socket_create(family, type, protocol, 1);
1336 if (err)
1337 goto out;
1338
1339 sock = sock_alloc();
1340 if (!sock) {
1341 err = -ENOMEM;
1342 goto out;
1343 }
1344
1345 sock->type = type;
1346 err = security_socket_post_create(sock, family, type, protocol, 1);
1347 if (err)
1348 goto out_release;
1349
1350 out:
1351 *res = sock;
1352 return err;
1353 out_release:
1354 sock_release(sock);
1355 sock = NULL;
1356 goto out;
1357 }
1358 EXPORT_SYMBOL(sock_create_lite);
1359
1360 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1361 static __poll_t sock_poll(struct file *file, poll_table *wait)
1362 {
1363 struct socket *sock = file->private_data;
1364 __poll_t events = poll_requested_events(wait), flag = 0;
1365
1366 if (!sock->ops->poll)
1367 return 0;
1368
1369 if (sk_can_busy_loop(sock->sk)) {
1370 /* poll once if requested by the syscall */
1371 if (events & POLL_BUSY_LOOP)
1372 sk_busy_loop(sock->sk, 1);
1373
1374 /* if this socket can poll_ll, tell the system call */
1375 flag = POLL_BUSY_LOOP;
1376 }
1377
1378 return sock->ops->poll(file, sock, wait) | flag;
1379 }
1380
sock_mmap(struct file * file,struct vm_area_struct * vma)1381 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1382 {
1383 struct socket *sock = file->private_data;
1384
1385 return sock->ops->mmap(file, sock, vma);
1386 }
1387
sock_close(struct inode * inode,struct file * filp)1388 static int sock_close(struct inode *inode, struct file *filp)
1389 {
1390 __sock_release(SOCKET_I(inode), inode);
1391 return 0;
1392 }
1393
1394 /*
1395 * Update the socket async list
1396 *
1397 * Fasync_list locking strategy.
1398 *
1399 * 1. fasync_list is modified only under process context socket lock
1400 * i.e. under semaphore.
1401 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1402 * or under socket lock
1403 */
1404
sock_fasync(int fd,struct file * filp,int on)1405 static int sock_fasync(int fd, struct file *filp, int on)
1406 {
1407 struct socket *sock = filp->private_data;
1408 struct sock *sk = sock->sk;
1409 struct socket_wq *wq = &sock->wq;
1410
1411 if (sk == NULL)
1412 return -EINVAL;
1413
1414 lock_sock(sk);
1415 fasync_helper(fd, filp, on, &wq->fasync_list);
1416
1417 if (!wq->fasync_list)
1418 sock_reset_flag(sk, SOCK_FASYNC);
1419 else
1420 sock_set_flag(sk, SOCK_FASYNC);
1421
1422 release_sock(sk);
1423 return 0;
1424 }
1425
1426 /* This function may be called only under rcu_lock */
1427
sock_wake_async(struct socket_wq * wq,int how,int band)1428 int sock_wake_async(struct socket_wq *wq, int how, int band)
1429 {
1430 if (!wq || !wq->fasync_list)
1431 return -1;
1432
1433 switch (how) {
1434 case SOCK_WAKE_WAITD:
1435 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1436 break;
1437 goto call_kill;
1438 case SOCK_WAKE_SPACE:
1439 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1440 break;
1441 fallthrough;
1442 case SOCK_WAKE_IO:
1443 call_kill:
1444 kill_fasync(&wq->fasync_list, SIGIO, band);
1445 break;
1446 case SOCK_WAKE_URG:
1447 kill_fasync(&wq->fasync_list, SIGURG, band);
1448 }
1449
1450 return 0;
1451 }
1452 EXPORT_SYMBOL(sock_wake_async);
1453
1454 /**
1455 * __sock_create - creates a socket
1456 * @net: net namespace
1457 * @family: protocol family (AF_INET, ...)
1458 * @type: communication type (SOCK_STREAM, ...)
1459 * @protocol: protocol (0, ...)
1460 * @res: new socket
1461 * @kern: boolean for kernel space sockets
1462 *
1463 * Creates a new socket and assigns it to @res, passing through LSM.
1464 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1465 * be set to true if the socket resides in kernel space.
1466 * This function internally uses GFP_KERNEL.
1467 */
1468
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1469 int __sock_create(struct net *net, int family, int type, int protocol,
1470 struct socket **res, int kern)
1471 {
1472 int err;
1473 struct socket *sock;
1474 const struct net_proto_family *pf;
1475
1476 /*
1477 * Check protocol is in range
1478 */
1479 if (family < 0 || family >= NPROTO)
1480 return -EAFNOSUPPORT;
1481 if (type < 0 || type >= SOCK_MAX)
1482 return -EINVAL;
1483
1484 /* Compatibility.
1485
1486 This uglymoron is moved from INET layer to here to avoid
1487 deadlock in module load.
1488 */
1489 if (family == PF_INET && type == SOCK_PACKET) {
1490 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1491 current->comm);
1492 family = PF_PACKET;
1493 }
1494
1495 err = security_socket_create(family, type, protocol, kern);
1496 if (err)
1497 return err;
1498
1499 /*
1500 * Allocate the socket and allow the family to set things up. if
1501 * the protocol is 0, the family is instructed to select an appropriate
1502 * default.
1503 */
1504 sock = sock_alloc();
1505 if (!sock) {
1506 net_warn_ratelimited("socket: no more sockets\n");
1507 return -ENFILE; /* Not exactly a match, but its the
1508 closest posix thing */
1509 }
1510
1511 sock->type = type;
1512
1513 #ifdef CONFIG_MODULES
1514 /* Attempt to load a protocol module if the find failed.
1515 *
1516 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1517 * requested real, full-featured networking support upon configuration.
1518 * Otherwise module support will break!
1519 */
1520 if (rcu_access_pointer(net_families[family]) == NULL)
1521 request_module("net-pf-%d", family);
1522 #endif
1523
1524 rcu_read_lock();
1525 pf = rcu_dereference(net_families[family]);
1526 err = -EAFNOSUPPORT;
1527 if (!pf)
1528 goto out_release;
1529
1530 /*
1531 * We will call the ->create function, that possibly is in a loadable
1532 * module, so we have to bump that loadable module refcnt first.
1533 */
1534 if (!try_module_get(pf->owner))
1535 goto out_release;
1536
1537 /* Now protected by module ref count */
1538 rcu_read_unlock();
1539
1540 err = pf->create(net, sock, protocol, kern);
1541 if (err < 0)
1542 goto out_module_put;
1543
1544 /*
1545 * Now to bump the refcnt of the [loadable] module that owns this
1546 * socket at sock_release time we decrement its refcnt.
1547 */
1548 if (!try_module_get(sock->ops->owner))
1549 goto out_module_busy;
1550
1551 /*
1552 * Now that we're done with the ->create function, the [loadable]
1553 * module can have its refcnt decremented
1554 */
1555 module_put(pf->owner);
1556 err = security_socket_post_create(sock, family, type, protocol, kern);
1557 if (err)
1558 goto out_sock_release;
1559 *res = sock;
1560
1561 return 0;
1562
1563 out_module_busy:
1564 err = -EAFNOSUPPORT;
1565 out_module_put:
1566 sock->ops = NULL;
1567 module_put(pf->owner);
1568 out_sock_release:
1569 sock_release(sock);
1570 return err;
1571
1572 out_release:
1573 rcu_read_unlock();
1574 goto out_sock_release;
1575 }
1576 EXPORT_SYMBOL(__sock_create);
1577
1578 /**
1579 * sock_create - creates a socket
1580 * @family: protocol family (AF_INET, ...)
1581 * @type: communication type (SOCK_STREAM, ...)
1582 * @protocol: protocol (0, ...)
1583 * @res: new socket
1584 *
1585 * A wrapper around __sock_create().
1586 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1587 */
1588
sock_create(int family,int type,int protocol,struct socket ** res)1589 int sock_create(int family, int type, int protocol, struct socket **res)
1590 {
1591 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1592 }
1593 EXPORT_SYMBOL(sock_create);
1594
1595 /**
1596 * sock_create_kern - creates a socket (kernel space)
1597 * @net: net namespace
1598 * @family: protocol family (AF_INET, ...)
1599 * @type: communication type (SOCK_STREAM, ...)
1600 * @protocol: protocol (0, ...)
1601 * @res: new socket
1602 *
1603 * A wrapper around __sock_create().
1604 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1605 */
1606
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1607 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1608 {
1609 return __sock_create(net, family, type, protocol, res, 1);
1610 }
1611 EXPORT_SYMBOL(sock_create_kern);
1612
__sys_socket_create(int family,int type,int protocol)1613 static struct socket *__sys_socket_create(int family, int type, int protocol)
1614 {
1615 struct socket *sock;
1616 int retval;
1617
1618 /* Check the SOCK_* constants for consistency. */
1619 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1620 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1621 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1622 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1623
1624 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1625 return ERR_PTR(-EINVAL);
1626 type &= SOCK_TYPE_MASK;
1627
1628 retval = sock_create(family, type, protocol, &sock);
1629 if (retval < 0)
1630 return ERR_PTR(retval);
1631
1632 return sock;
1633 }
1634
__sys_socket_file(int family,int type,int protocol)1635 struct file *__sys_socket_file(int family, int type, int protocol)
1636 {
1637 struct socket *sock;
1638 int flags;
1639
1640 sock = __sys_socket_create(family, type, protocol);
1641 if (IS_ERR(sock))
1642 return ERR_CAST(sock);
1643
1644 flags = type & ~SOCK_TYPE_MASK;
1645 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1646 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1647
1648 return sock_alloc_file(sock, flags, NULL);
1649 }
1650
__sys_socket(int family,int type,int protocol)1651 int __sys_socket(int family, int type, int protocol)
1652 {
1653 struct socket *sock;
1654 int flags;
1655
1656 sock = __sys_socket_create(family, type, protocol);
1657 if (IS_ERR(sock))
1658 return PTR_ERR(sock);
1659
1660 flags = type & ~SOCK_TYPE_MASK;
1661 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1662 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1663
1664 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1665 }
1666
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1667 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1668 {
1669 return __sys_socket(family, type, protocol);
1670 }
1671
1672 /*
1673 * Create a pair of connected sockets.
1674 */
1675
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1676 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1677 {
1678 struct socket *sock1, *sock2;
1679 int fd1, fd2, err;
1680 struct file *newfile1, *newfile2;
1681 int flags;
1682
1683 flags = type & ~SOCK_TYPE_MASK;
1684 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1685 return -EINVAL;
1686 type &= SOCK_TYPE_MASK;
1687
1688 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1689 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1690
1691 /*
1692 * reserve descriptors and make sure we won't fail
1693 * to return them to userland.
1694 */
1695 fd1 = get_unused_fd_flags(flags);
1696 if (unlikely(fd1 < 0))
1697 return fd1;
1698
1699 fd2 = get_unused_fd_flags(flags);
1700 if (unlikely(fd2 < 0)) {
1701 put_unused_fd(fd1);
1702 return fd2;
1703 }
1704
1705 err = put_user(fd1, &usockvec[0]);
1706 if (err)
1707 goto out;
1708
1709 err = put_user(fd2, &usockvec[1]);
1710 if (err)
1711 goto out;
1712
1713 /*
1714 * Obtain the first socket and check if the underlying protocol
1715 * supports the socketpair call.
1716 */
1717
1718 err = sock_create(family, type, protocol, &sock1);
1719 if (unlikely(err < 0))
1720 goto out;
1721
1722 err = sock_create(family, type, protocol, &sock2);
1723 if (unlikely(err < 0)) {
1724 sock_release(sock1);
1725 goto out;
1726 }
1727
1728 err = security_socket_socketpair(sock1, sock2);
1729 if (unlikely(err)) {
1730 sock_release(sock2);
1731 sock_release(sock1);
1732 goto out;
1733 }
1734
1735 err = sock1->ops->socketpair(sock1, sock2);
1736 if (unlikely(err < 0)) {
1737 sock_release(sock2);
1738 sock_release(sock1);
1739 goto out;
1740 }
1741
1742 newfile1 = sock_alloc_file(sock1, flags, NULL);
1743 if (IS_ERR(newfile1)) {
1744 err = PTR_ERR(newfile1);
1745 sock_release(sock2);
1746 goto out;
1747 }
1748
1749 newfile2 = sock_alloc_file(sock2, flags, NULL);
1750 if (IS_ERR(newfile2)) {
1751 err = PTR_ERR(newfile2);
1752 fput(newfile1);
1753 goto out;
1754 }
1755
1756 audit_fd_pair(fd1, fd2);
1757
1758 fd_install(fd1, newfile1);
1759 fd_install(fd2, newfile2);
1760 return 0;
1761
1762 out:
1763 put_unused_fd(fd2);
1764 put_unused_fd(fd1);
1765 return err;
1766 }
1767
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1768 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1769 int __user *, usockvec)
1770 {
1771 return __sys_socketpair(family, type, protocol, usockvec);
1772 }
1773
1774 /*
1775 * Bind a name to a socket. Nothing much to do here since it's
1776 * the protocol's responsibility to handle the local address.
1777 *
1778 * We move the socket address to kernel space before we call
1779 * the protocol layer (having also checked the address is ok).
1780 */
1781
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1782 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1783 {
1784 struct socket *sock;
1785 struct sockaddr_storage address;
1786 int err, fput_needed;
1787
1788 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1789 if (sock) {
1790 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1791 if (!err) {
1792 err = security_socket_bind(sock,
1793 (struct sockaddr *)&address,
1794 addrlen);
1795 if (!err)
1796 err = sock->ops->bind(sock,
1797 (struct sockaddr *)
1798 &address, addrlen);
1799 }
1800 fput_light(sock->file, fput_needed);
1801 }
1802 return err;
1803 }
1804
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1805 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1806 {
1807 return __sys_bind(fd, umyaddr, addrlen);
1808 }
1809
1810 /*
1811 * Perform a listen. Basically, we allow the protocol to do anything
1812 * necessary for a listen, and if that works, we mark the socket as
1813 * ready for listening.
1814 */
1815
__sys_listen(int fd,int backlog)1816 int __sys_listen(int fd, int backlog)
1817 {
1818 struct socket *sock;
1819 int err, fput_needed;
1820 int somaxconn;
1821
1822 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1823 if (sock) {
1824 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1825 if ((unsigned int)backlog > somaxconn)
1826 backlog = somaxconn;
1827
1828 err = security_socket_listen(sock, backlog);
1829 if (!err)
1830 err = sock->ops->listen(sock, backlog);
1831
1832 fput_light(sock->file, fput_needed);
1833 }
1834 return err;
1835 }
1836
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1837 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1838 {
1839 return __sys_listen(fd, backlog);
1840 }
1841
do_accept(struct file * file,unsigned file_flags,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1842 struct file *do_accept(struct file *file, unsigned file_flags,
1843 struct sockaddr __user *upeer_sockaddr,
1844 int __user *upeer_addrlen, int flags)
1845 {
1846 struct socket *sock, *newsock;
1847 struct file *newfile;
1848 int err, len;
1849 struct sockaddr_storage address;
1850
1851 sock = sock_from_file(file);
1852 if (!sock)
1853 return ERR_PTR(-ENOTSOCK);
1854
1855 newsock = sock_alloc();
1856 if (!newsock)
1857 return ERR_PTR(-ENFILE);
1858
1859 newsock->type = sock->type;
1860 newsock->ops = sock->ops;
1861
1862 /*
1863 * We don't need try_module_get here, as the listening socket (sock)
1864 * has the protocol module (sock->ops->owner) held.
1865 */
1866 __module_get(newsock->ops->owner);
1867
1868 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1869 if (IS_ERR(newfile))
1870 return newfile;
1871
1872 err = security_socket_accept(sock, newsock);
1873 if (err)
1874 goto out_fd;
1875
1876 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1877 false);
1878 if (err < 0)
1879 goto out_fd;
1880
1881 if (upeer_sockaddr) {
1882 len = newsock->ops->getname(newsock,
1883 (struct sockaddr *)&address, 2);
1884 if (len < 0) {
1885 err = -ECONNABORTED;
1886 goto out_fd;
1887 }
1888 err = move_addr_to_user(&address,
1889 len, upeer_sockaddr, upeer_addrlen);
1890 if (err < 0)
1891 goto out_fd;
1892 }
1893
1894 /* File flags are not inherited via accept() unlike another OSes. */
1895 return newfile;
1896 out_fd:
1897 fput(newfile);
1898 return ERR_PTR(err);
1899 }
1900
__sys_accept4_file(struct file * file,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1901 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1902 int __user *upeer_addrlen, int flags)
1903 {
1904 struct file *newfile;
1905 int newfd;
1906
1907 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1908 return -EINVAL;
1909
1910 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1911 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1912
1913 newfd = get_unused_fd_flags(flags);
1914 if (unlikely(newfd < 0))
1915 return newfd;
1916
1917 newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1918 flags);
1919 if (IS_ERR(newfile)) {
1920 put_unused_fd(newfd);
1921 return PTR_ERR(newfile);
1922 }
1923 fd_install(newfd, newfile);
1924 return newfd;
1925 }
1926
1927 /*
1928 * For accept, we attempt to create a new socket, set up the link
1929 * with the client, wake up the client, then return the new
1930 * connected fd. We collect the address of the connector in kernel
1931 * space and move it to user at the very end. This is unclean because
1932 * we open the socket then return an error.
1933 *
1934 * 1003.1g adds the ability to recvmsg() to query connection pending
1935 * status to recvmsg. We need to add that support in a way thats
1936 * clean when we restructure accept also.
1937 */
1938
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1939 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1940 int __user *upeer_addrlen, int flags)
1941 {
1942 int ret = -EBADF;
1943 struct fd f;
1944
1945 f = fdget(fd);
1946 if (f.file) {
1947 ret = __sys_accept4_file(f.file, upeer_sockaddr,
1948 upeer_addrlen, flags);
1949 fdput(f);
1950 }
1951
1952 return ret;
1953 }
1954
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1955 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1956 int __user *, upeer_addrlen, int, flags)
1957 {
1958 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1959 }
1960
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)1961 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1962 int __user *, upeer_addrlen)
1963 {
1964 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1965 }
1966
1967 /*
1968 * Attempt to connect to a socket with the server address. The address
1969 * is in user space so we verify it is OK and move it to kernel space.
1970 *
1971 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1972 * break bindings
1973 *
1974 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1975 * other SEQPACKET protocols that take time to connect() as it doesn't
1976 * include the -EINPROGRESS status for such sockets.
1977 */
1978
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)1979 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1980 int addrlen, int file_flags)
1981 {
1982 struct socket *sock;
1983 int err;
1984
1985 sock = sock_from_file(file);
1986 if (!sock) {
1987 err = -ENOTSOCK;
1988 goto out;
1989 }
1990
1991 err =
1992 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1993 if (err)
1994 goto out;
1995
1996 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1997 sock->file->f_flags | file_flags);
1998 out:
1999 return err;
2000 }
2001
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)2002 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2003 {
2004 int ret = -EBADF;
2005 struct fd f;
2006
2007 f = fdget(fd);
2008 if (f.file) {
2009 struct sockaddr_storage address;
2010
2011 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2012 if (!ret)
2013 ret = __sys_connect_file(f.file, &address, addrlen, 0);
2014 fdput(f);
2015 }
2016
2017 return ret;
2018 }
2019
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)2020 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2021 int, addrlen)
2022 {
2023 return __sys_connect(fd, uservaddr, addrlen);
2024 }
2025
2026 /*
2027 * Get the local address ('name') of a socket object. Move the obtained
2028 * name to user space.
2029 */
2030
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2031 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2032 int __user *usockaddr_len)
2033 {
2034 struct socket *sock;
2035 struct sockaddr_storage address;
2036 int err, fput_needed;
2037
2038 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2039 if (!sock)
2040 goto out;
2041
2042 err = security_socket_getsockname(sock);
2043 if (err)
2044 goto out_put;
2045
2046 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
2047 if (err < 0)
2048 goto out_put;
2049 /* "err" is actually length in this case */
2050 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2051
2052 out_put:
2053 fput_light(sock->file, fput_needed);
2054 out:
2055 return err;
2056 }
2057
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2058 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2059 int __user *, usockaddr_len)
2060 {
2061 return __sys_getsockname(fd, usockaddr, usockaddr_len);
2062 }
2063
2064 /*
2065 * Get the remote address ('name') of a socket object. Move the obtained
2066 * name to user space.
2067 */
2068
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2069 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2070 int __user *usockaddr_len)
2071 {
2072 struct socket *sock;
2073 struct sockaddr_storage address;
2074 int err, fput_needed;
2075
2076 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2077 if (sock != NULL) {
2078 err = security_socket_getpeername(sock);
2079 if (err) {
2080 fput_light(sock->file, fput_needed);
2081 return err;
2082 }
2083
2084 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
2085 if (err >= 0)
2086 /* "err" is actually length in this case */
2087 err = move_addr_to_user(&address, err, usockaddr,
2088 usockaddr_len);
2089 fput_light(sock->file, fput_needed);
2090 }
2091 return err;
2092 }
2093
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2094 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2095 int __user *, usockaddr_len)
2096 {
2097 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2098 }
2099
2100 /*
2101 * Send a datagram to a given address. We move the address into kernel
2102 * space and check the user space data area is readable before invoking
2103 * the protocol.
2104 */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)2105 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2106 struct sockaddr __user *addr, int addr_len)
2107 {
2108 struct socket *sock;
2109 struct sockaddr_storage address;
2110 int err;
2111 struct msghdr msg;
2112 struct iovec iov;
2113 int fput_needed;
2114
2115 err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter);
2116 if (unlikely(err))
2117 return err;
2118 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2119 if (!sock)
2120 goto out;
2121
2122 msg.msg_name = NULL;
2123 msg.msg_control = NULL;
2124 msg.msg_controllen = 0;
2125 msg.msg_namelen = 0;
2126 msg.msg_ubuf = NULL;
2127 if (addr) {
2128 err = move_addr_to_kernel(addr, addr_len, &address);
2129 if (err < 0)
2130 goto out_put;
2131 msg.msg_name = (struct sockaddr *)&address;
2132 msg.msg_namelen = addr_len;
2133 }
2134 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2135 if (sock->file->f_flags & O_NONBLOCK)
2136 flags |= MSG_DONTWAIT;
2137 msg.msg_flags = flags;
2138 err = __sock_sendmsg(sock, &msg);
2139
2140 out_put:
2141 fput_light(sock->file, fput_needed);
2142 out:
2143 return err;
2144 }
2145
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)2146 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2147 unsigned int, flags, struct sockaddr __user *, addr,
2148 int, addr_len)
2149 {
2150 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2151 }
2152
2153 /*
2154 * Send a datagram down a socket.
2155 */
2156
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2157 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2158 unsigned int, flags)
2159 {
2160 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2161 }
2162
2163 /*
2164 * Receive a frame from the socket and optionally record the address of the
2165 * sender. We verify the buffers are writable and if needed move the
2166 * sender address from kernel to user space.
2167 */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2168 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2169 struct sockaddr __user *addr, int __user *addr_len)
2170 {
2171 struct sockaddr_storage address;
2172 struct msghdr msg = {
2173 /* Save some cycles and don't copy the address if not needed */
2174 .msg_name = addr ? (struct sockaddr *)&address : NULL,
2175 };
2176 struct socket *sock;
2177 struct iovec iov;
2178 int err, err2;
2179 int fput_needed;
2180
2181 err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter);
2182 if (unlikely(err))
2183 return err;
2184 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2185 if (!sock)
2186 goto out;
2187
2188 if (sock->file->f_flags & O_NONBLOCK)
2189 flags |= MSG_DONTWAIT;
2190 err = sock_recvmsg(sock, &msg, flags);
2191
2192 if (err >= 0 && addr != NULL) {
2193 err2 = move_addr_to_user(&address,
2194 msg.msg_namelen, addr, addr_len);
2195 if (err2 < 0)
2196 err = err2;
2197 }
2198
2199 fput_light(sock->file, fput_needed);
2200 out:
2201 return err;
2202 }
2203
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2204 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2205 unsigned int, flags, struct sockaddr __user *, addr,
2206 int __user *, addr_len)
2207 {
2208 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2209 }
2210
2211 /*
2212 * Receive a datagram from a socket.
2213 */
2214
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2215 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2216 unsigned int, flags)
2217 {
2218 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2219 }
2220
sock_use_custom_sol_socket(const struct socket * sock)2221 static bool sock_use_custom_sol_socket(const struct socket *sock)
2222 {
2223 const struct sock *sk = sock->sk;
2224
2225 /* Use sock->ops->setsockopt() for MPTCP */
2226 return IS_ENABLED(CONFIG_MPTCP) &&
2227 sk->sk_protocol == IPPROTO_MPTCP &&
2228 sk->sk_type == SOCK_STREAM &&
2229 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2230 }
2231
2232 /*
2233 * Set a socket option. Because we don't know the option lengths we have
2234 * to pass the user mode parameter for the protocols to sort out.
2235 */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2236 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2237 int optlen)
2238 {
2239 sockptr_t optval = USER_SOCKPTR(user_optval);
2240 char *kernel_optval = NULL;
2241 int err, fput_needed;
2242 struct socket *sock;
2243
2244 if (optlen < 0)
2245 return -EINVAL;
2246
2247 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2248 if (!sock)
2249 return err;
2250
2251 err = security_socket_setsockopt(sock, level, optname);
2252 if (err)
2253 goto out_put;
2254
2255 if (!in_compat_syscall())
2256 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2257 user_optval, &optlen,
2258 &kernel_optval);
2259 if (err < 0)
2260 goto out_put;
2261 if (err > 0) {
2262 err = 0;
2263 goto out_put;
2264 }
2265
2266 if (kernel_optval)
2267 optval = KERNEL_SOCKPTR(kernel_optval);
2268 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2269 err = sock_setsockopt(sock, level, optname, optval, optlen);
2270 else if (unlikely(!sock->ops->setsockopt))
2271 err = -EOPNOTSUPP;
2272 else
2273 err = sock->ops->setsockopt(sock, level, optname, optval,
2274 optlen);
2275 kfree(kernel_optval);
2276 out_put:
2277 fput_light(sock->file, fput_needed);
2278 return err;
2279 }
2280
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2281 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2282 char __user *, optval, int, optlen)
2283 {
2284 return __sys_setsockopt(fd, level, optname, optval, optlen);
2285 }
2286
2287 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2288 int optname));
2289
2290 /*
2291 * Get a socket option. Because we don't know the option lengths we have
2292 * to pass a user mode parameter for the protocols to sort out.
2293 */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2294 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2295 int __user *optlen)
2296 {
2297 int err, fput_needed;
2298 struct socket *sock;
2299 int max_optlen;
2300
2301 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2302 if (!sock)
2303 return err;
2304
2305 err = security_socket_getsockopt(sock, level, optname);
2306 if (err)
2307 goto out_put;
2308
2309 if (!in_compat_syscall())
2310 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2311
2312 if (level == SOL_SOCKET)
2313 err = sock_getsockopt(sock, level, optname, optval, optlen);
2314 else if (unlikely(!sock->ops->getsockopt))
2315 err = -EOPNOTSUPP;
2316 else
2317 err = sock->ops->getsockopt(sock, level, optname, optval,
2318 optlen);
2319
2320 if (!in_compat_syscall())
2321 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2322 optval, optlen, max_optlen,
2323 err);
2324 out_put:
2325 fput_light(sock->file, fput_needed);
2326 return err;
2327 }
2328
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2329 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2330 char __user *, optval, int __user *, optlen)
2331 {
2332 return __sys_getsockopt(fd, level, optname, optval, optlen);
2333 }
2334
2335 /*
2336 * Shutdown a socket.
2337 */
2338
__sys_shutdown_sock(struct socket * sock,int how)2339 int __sys_shutdown_sock(struct socket *sock, int how)
2340 {
2341 int err;
2342
2343 err = security_socket_shutdown(sock, how);
2344 if (!err)
2345 err = sock->ops->shutdown(sock, how);
2346
2347 return err;
2348 }
2349
__sys_shutdown(int fd,int how)2350 int __sys_shutdown(int fd, int how)
2351 {
2352 int err, fput_needed;
2353 struct socket *sock;
2354
2355 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2356 if (sock != NULL) {
2357 err = __sys_shutdown_sock(sock, how);
2358 fput_light(sock->file, fput_needed);
2359 }
2360 return err;
2361 }
2362
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2363 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2364 {
2365 return __sys_shutdown(fd, how);
2366 }
2367
2368 /* A couple of helpful macros for getting the address of the 32/64 bit
2369 * fields which are the same type (int / unsigned) on our platforms.
2370 */
2371 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2372 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2373 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2374
2375 struct used_address {
2376 struct sockaddr_storage name;
2377 unsigned int name_len;
2378 };
2379
__copy_msghdr(struct msghdr * kmsg,struct user_msghdr * msg,struct sockaddr __user ** save_addr)2380 int __copy_msghdr(struct msghdr *kmsg,
2381 struct user_msghdr *msg,
2382 struct sockaddr __user **save_addr)
2383 {
2384 ssize_t err;
2385
2386 kmsg->msg_control_is_user = true;
2387 kmsg->msg_get_inq = 0;
2388 kmsg->msg_control_user = msg->msg_control;
2389 kmsg->msg_controllen = msg->msg_controllen;
2390 kmsg->msg_flags = msg->msg_flags;
2391
2392 kmsg->msg_namelen = msg->msg_namelen;
2393 if (!msg->msg_name)
2394 kmsg->msg_namelen = 0;
2395
2396 if (kmsg->msg_namelen < 0)
2397 return -EINVAL;
2398
2399 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2400 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2401
2402 if (save_addr)
2403 *save_addr = msg->msg_name;
2404
2405 if (msg->msg_name && kmsg->msg_namelen) {
2406 if (!save_addr) {
2407 err = move_addr_to_kernel(msg->msg_name,
2408 kmsg->msg_namelen,
2409 kmsg->msg_name);
2410 if (err < 0)
2411 return err;
2412 }
2413 } else {
2414 kmsg->msg_name = NULL;
2415 kmsg->msg_namelen = 0;
2416 }
2417
2418 if (msg->msg_iovlen > UIO_MAXIOV)
2419 return -EMSGSIZE;
2420
2421 kmsg->msg_iocb = NULL;
2422 kmsg->msg_ubuf = NULL;
2423 return 0;
2424 }
2425
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2426 static int copy_msghdr_from_user(struct msghdr *kmsg,
2427 struct user_msghdr __user *umsg,
2428 struct sockaddr __user **save_addr,
2429 struct iovec **iov)
2430 {
2431 struct user_msghdr msg;
2432 ssize_t err;
2433
2434 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2435 return -EFAULT;
2436
2437 err = __copy_msghdr(kmsg, &msg, save_addr);
2438 if (err)
2439 return err;
2440
2441 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2442 msg.msg_iov, msg.msg_iovlen,
2443 UIO_FASTIOV, iov, &kmsg->msg_iter);
2444 return err < 0 ? err : 0;
2445 }
2446
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2447 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2448 unsigned int flags, struct used_address *used_address,
2449 unsigned int allowed_msghdr_flags)
2450 {
2451 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2452 __aligned(sizeof(__kernel_size_t));
2453 /* 20 is size of ipv6_pktinfo */
2454 unsigned char *ctl_buf = ctl;
2455 int ctl_len;
2456 ssize_t err;
2457
2458 err = -ENOBUFS;
2459
2460 if (msg_sys->msg_controllen > INT_MAX)
2461 goto out;
2462 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2463 ctl_len = msg_sys->msg_controllen;
2464 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2465 err =
2466 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2467 sizeof(ctl));
2468 if (err)
2469 goto out;
2470 ctl_buf = msg_sys->msg_control;
2471 ctl_len = msg_sys->msg_controllen;
2472 } else if (ctl_len) {
2473 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2474 CMSG_ALIGN(sizeof(struct cmsghdr)));
2475 if (ctl_len > sizeof(ctl)) {
2476 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2477 if (ctl_buf == NULL)
2478 goto out;
2479 }
2480 err = -EFAULT;
2481 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2482 goto out_freectl;
2483 msg_sys->msg_control = ctl_buf;
2484 msg_sys->msg_control_is_user = false;
2485 }
2486 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2487 msg_sys->msg_flags = flags;
2488
2489 if (sock->file->f_flags & O_NONBLOCK)
2490 msg_sys->msg_flags |= MSG_DONTWAIT;
2491 /*
2492 * If this is sendmmsg() and current destination address is same as
2493 * previously succeeded address, omit asking LSM's decision.
2494 * used_address->name_len is initialized to UINT_MAX so that the first
2495 * destination address never matches.
2496 */
2497 if (used_address && msg_sys->msg_name &&
2498 used_address->name_len == msg_sys->msg_namelen &&
2499 !memcmp(&used_address->name, msg_sys->msg_name,
2500 used_address->name_len)) {
2501 err = sock_sendmsg_nosec(sock, msg_sys);
2502 goto out_freectl;
2503 }
2504 err = __sock_sendmsg(sock, msg_sys);
2505 /*
2506 * If this is sendmmsg() and sending to current destination address was
2507 * successful, remember it.
2508 */
2509 if (used_address && err >= 0) {
2510 used_address->name_len = msg_sys->msg_namelen;
2511 if (msg_sys->msg_name)
2512 memcpy(&used_address->name, msg_sys->msg_name,
2513 used_address->name_len);
2514 }
2515
2516 out_freectl:
2517 if (ctl_buf != ctl)
2518 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2519 out:
2520 return err;
2521 }
2522
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2523 int sendmsg_copy_msghdr(struct msghdr *msg,
2524 struct user_msghdr __user *umsg, unsigned flags,
2525 struct iovec **iov)
2526 {
2527 int err;
2528
2529 if (flags & MSG_CMSG_COMPAT) {
2530 struct compat_msghdr __user *msg_compat;
2531
2532 msg_compat = (struct compat_msghdr __user *) umsg;
2533 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2534 } else {
2535 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2536 }
2537 if (err < 0)
2538 return err;
2539
2540 return 0;
2541 }
2542
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2543 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2544 struct msghdr *msg_sys, unsigned int flags,
2545 struct used_address *used_address,
2546 unsigned int allowed_msghdr_flags)
2547 {
2548 struct sockaddr_storage address;
2549 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2550 ssize_t err;
2551
2552 msg_sys->msg_name = &address;
2553
2554 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2555 if (err < 0)
2556 return err;
2557
2558 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2559 allowed_msghdr_flags);
2560 kfree(iov);
2561 return err;
2562 }
2563
2564 /*
2565 * BSD sendmsg interface
2566 */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2567 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2568 unsigned int flags)
2569 {
2570 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2571 }
2572
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2573 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2574 bool forbid_cmsg_compat)
2575 {
2576 int fput_needed, err;
2577 struct msghdr msg_sys;
2578 struct socket *sock;
2579
2580 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2581 return -EINVAL;
2582
2583 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2584 if (!sock)
2585 goto out;
2586
2587 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2588
2589 fput_light(sock->file, fput_needed);
2590 out:
2591 return err;
2592 }
2593
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2594 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2595 {
2596 return __sys_sendmsg(fd, msg, flags, true);
2597 }
2598
2599 /*
2600 * Linux sendmmsg interface
2601 */
2602
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2603 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2604 unsigned int flags, bool forbid_cmsg_compat)
2605 {
2606 int fput_needed, err, datagrams;
2607 struct socket *sock;
2608 struct mmsghdr __user *entry;
2609 struct compat_mmsghdr __user *compat_entry;
2610 struct msghdr msg_sys;
2611 struct used_address used_address;
2612 unsigned int oflags = flags;
2613
2614 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2615 return -EINVAL;
2616
2617 if (vlen > UIO_MAXIOV)
2618 vlen = UIO_MAXIOV;
2619
2620 datagrams = 0;
2621
2622 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2623 if (!sock)
2624 return err;
2625
2626 used_address.name_len = UINT_MAX;
2627 entry = mmsg;
2628 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2629 err = 0;
2630 flags |= MSG_BATCH;
2631
2632 while (datagrams < vlen) {
2633 if (datagrams == vlen - 1)
2634 flags = oflags;
2635
2636 if (MSG_CMSG_COMPAT & flags) {
2637 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2638 &msg_sys, flags, &used_address, MSG_EOR);
2639 if (err < 0)
2640 break;
2641 err = __put_user(err, &compat_entry->msg_len);
2642 ++compat_entry;
2643 } else {
2644 err = ___sys_sendmsg(sock,
2645 (struct user_msghdr __user *)entry,
2646 &msg_sys, flags, &used_address, MSG_EOR);
2647 if (err < 0)
2648 break;
2649 err = put_user(err, &entry->msg_len);
2650 ++entry;
2651 }
2652
2653 if (err)
2654 break;
2655 ++datagrams;
2656 if (msg_data_left(&msg_sys))
2657 break;
2658 cond_resched();
2659 }
2660
2661 fput_light(sock->file, fput_needed);
2662
2663 /* We only return an error if no datagrams were able to be sent */
2664 if (datagrams != 0)
2665 return datagrams;
2666
2667 return err;
2668 }
2669
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2670 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2671 unsigned int, vlen, unsigned int, flags)
2672 {
2673 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2674 }
2675
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2676 int recvmsg_copy_msghdr(struct msghdr *msg,
2677 struct user_msghdr __user *umsg, unsigned flags,
2678 struct sockaddr __user **uaddr,
2679 struct iovec **iov)
2680 {
2681 ssize_t err;
2682
2683 if (MSG_CMSG_COMPAT & flags) {
2684 struct compat_msghdr __user *msg_compat;
2685
2686 msg_compat = (struct compat_msghdr __user *) umsg;
2687 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2688 } else {
2689 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2690 }
2691 if (err < 0)
2692 return err;
2693
2694 return 0;
2695 }
2696
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2697 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2698 struct user_msghdr __user *msg,
2699 struct sockaddr __user *uaddr,
2700 unsigned int flags, int nosec)
2701 {
2702 struct compat_msghdr __user *msg_compat =
2703 (struct compat_msghdr __user *) msg;
2704 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2705 struct sockaddr_storage addr;
2706 unsigned long cmsg_ptr;
2707 int len;
2708 ssize_t err;
2709
2710 msg_sys->msg_name = &addr;
2711 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2712 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2713
2714 /* We assume all kernel code knows the size of sockaddr_storage */
2715 msg_sys->msg_namelen = 0;
2716
2717 if (sock->file->f_flags & O_NONBLOCK)
2718 flags |= MSG_DONTWAIT;
2719
2720 if (unlikely(nosec))
2721 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2722 else
2723 err = sock_recvmsg(sock, msg_sys, flags);
2724
2725 if (err < 0)
2726 goto out;
2727 len = err;
2728
2729 if (uaddr != NULL) {
2730 err = move_addr_to_user(&addr,
2731 msg_sys->msg_namelen, uaddr,
2732 uaddr_len);
2733 if (err < 0)
2734 goto out;
2735 }
2736 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2737 COMPAT_FLAGS(msg));
2738 if (err)
2739 goto out;
2740 if (MSG_CMSG_COMPAT & flags)
2741 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2742 &msg_compat->msg_controllen);
2743 else
2744 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2745 &msg->msg_controllen);
2746 if (err)
2747 goto out;
2748 err = len;
2749 out:
2750 return err;
2751 }
2752
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2753 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2754 struct msghdr *msg_sys, unsigned int flags, int nosec)
2755 {
2756 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2757 /* user mode address pointers */
2758 struct sockaddr __user *uaddr;
2759 ssize_t err;
2760
2761 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2762 if (err < 0)
2763 return err;
2764
2765 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2766 kfree(iov);
2767 return err;
2768 }
2769
2770 /*
2771 * BSD recvmsg interface
2772 */
2773
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2774 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2775 struct user_msghdr __user *umsg,
2776 struct sockaddr __user *uaddr, unsigned int flags)
2777 {
2778 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2779 }
2780
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2781 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2782 bool forbid_cmsg_compat)
2783 {
2784 int fput_needed, err;
2785 struct msghdr msg_sys;
2786 struct socket *sock;
2787
2788 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2789 return -EINVAL;
2790
2791 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2792 if (!sock)
2793 goto out;
2794
2795 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2796
2797 fput_light(sock->file, fput_needed);
2798 out:
2799 return err;
2800 }
2801
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2802 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2803 unsigned int, flags)
2804 {
2805 return __sys_recvmsg(fd, msg, flags, true);
2806 }
2807
2808 /*
2809 * Linux recvmmsg interface
2810 */
2811
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2812 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2813 unsigned int vlen, unsigned int flags,
2814 struct timespec64 *timeout)
2815 {
2816 int fput_needed, err, datagrams;
2817 struct socket *sock;
2818 struct mmsghdr __user *entry;
2819 struct compat_mmsghdr __user *compat_entry;
2820 struct msghdr msg_sys;
2821 struct timespec64 end_time;
2822 struct timespec64 timeout64;
2823
2824 if (timeout &&
2825 poll_select_set_timeout(&end_time, timeout->tv_sec,
2826 timeout->tv_nsec))
2827 return -EINVAL;
2828
2829 datagrams = 0;
2830
2831 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2832 if (!sock)
2833 return err;
2834
2835 if (likely(!(flags & MSG_ERRQUEUE))) {
2836 err = sock_error(sock->sk);
2837 if (err) {
2838 datagrams = err;
2839 goto out_put;
2840 }
2841 }
2842
2843 entry = mmsg;
2844 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2845
2846 while (datagrams < vlen) {
2847 /*
2848 * No need to ask LSM for more than the first datagram.
2849 */
2850 if (MSG_CMSG_COMPAT & flags) {
2851 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2852 &msg_sys, flags & ~MSG_WAITFORONE,
2853 datagrams);
2854 if (err < 0)
2855 break;
2856 err = __put_user(err, &compat_entry->msg_len);
2857 ++compat_entry;
2858 } else {
2859 err = ___sys_recvmsg(sock,
2860 (struct user_msghdr __user *)entry,
2861 &msg_sys, flags & ~MSG_WAITFORONE,
2862 datagrams);
2863 if (err < 0)
2864 break;
2865 err = put_user(err, &entry->msg_len);
2866 ++entry;
2867 }
2868
2869 if (err)
2870 break;
2871 ++datagrams;
2872
2873 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2874 if (flags & MSG_WAITFORONE)
2875 flags |= MSG_DONTWAIT;
2876
2877 if (timeout) {
2878 ktime_get_ts64(&timeout64);
2879 *timeout = timespec64_sub(end_time, timeout64);
2880 if (timeout->tv_sec < 0) {
2881 timeout->tv_sec = timeout->tv_nsec = 0;
2882 break;
2883 }
2884
2885 /* Timeout, return less than vlen datagrams */
2886 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2887 break;
2888 }
2889
2890 /* Out of band data, return right away */
2891 if (msg_sys.msg_flags & MSG_OOB)
2892 break;
2893 cond_resched();
2894 }
2895
2896 if (err == 0)
2897 goto out_put;
2898
2899 if (datagrams == 0) {
2900 datagrams = err;
2901 goto out_put;
2902 }
2903
2904 /*
2905 * We may return less entries than requested (vlen) if the
2906 * sock is non block and there aren't enough datagrams...
2907 */
2908 if (err != -EAGAIN) {
2909 /*
2910 * ... or if recvmsg returns an error after we
2911 * received some datagrams, where we record the
2912 * error to return on the next call or if the
2913 * app asks about it using getsockopt(SO_ERROR).
2914 */
2915 WRITE_ONCE(sock->sk->sk_err, -err);
2916 }
2917 out_put:
2918 fput_light(sock->file, fput_needed);
2919
2920 return datagrams;
2921 }
2922
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)2923 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2924 unsigned int vlen, unsigned int flags,
2925 struct __kernel_timespec __user *timeout,
2926 struct old_timespec32 __user *timeout32)
2927 {
2928 int datagrams;
2929 struct timespec64 timeout_sys;
2930
2931 if (timeout && get_timespec64(&timeout_sys, timeout))
2932 return -EFAULT;
2933
2934 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2935 return -EFAULT;
2936
2937 if (!timeout && !timeout32)
2938 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2939
2940 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2941
2942 if (datagrams <= 0)
2943 return datagrams;
2944
2945 if (timeout && put_timespec64(&timeout_sys, timeout))
2946 datagrams = -EFAULT;
2947
2948 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2949 datagrams = -EFAULT;
2950
2951 return datagrams;
2952 }
2953
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)2954 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2955 unsigned int, vlen, unsigned int, flags,
2956 struct __kernel_timespec __user *, timeout)
2957 {
2958 if (flags & MSG_CMSG_COMPAT)
2959 return -EINVAL;
2960
2961 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2962 }
2963
2964 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)2965 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2966 unsigned int, vlen, unsigned int, flags,
2967 struct old_timespec32 __user *, timeout)
2968 {
2969 if (flags & MSG_CMSG_COMPAT)
2970 return -EINVAL;
2971
2972 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2973 }
2974 #endif
2975
2976 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2977 /* Argument list sizes for sys_socketcall */
2978 #define AL(x) ((x) * sizeof(unsigned long))
2979 static const unsigned char nargs[21] = {
2980 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2981 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2982 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2983 AL(4), AL(5), AL(4)
2984 };
2985
2986 #undef AL
2987
2988 /*
2989 * System call vectors.
2990 *
2991 * Argument checking cleaned up. Saved 20% in size.
2992 * This function doesn't need to set the kernel lock because
2993 * it is set by the callees.
2994 */
2995
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)2996 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2997 {
2998 unsigned long a[AUDITSC_ARGS];
2999 unsigned long a0, a1;
3000 int err;
3001 unsigned int len;
3002
3003 if (call < 1 || call > SYS_SENDMMSG)
3004 return -EINVAL;
3005 call = array_index_nospec(call, SYS_SENDMMSG + 1);
3006
3007 len = nargs[call];
3008 if (len > sizeof(a))
3009 return -EINVAL;
3010
3011 /* copy_from_user should be SMP safe. */
3012 if (copy_from_user(a, args, len))
3013 return -EFAULT;
3014
3015 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3016 if (err)
3017 return err;
3018
3019 a0 = a[0];
3020 a1 = a[1];
3021
3022 switch (call) {
3023 case SYS_SOCKET:
3024 err = __sys_socket(a0, a1, a[2]);
3025 break;
3026 case SYS_BIND:
3027 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3028 break;
3029 case SYS_CONNECT:
3030 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3031 break;
3032 case SYS_LISTEN:
3033 err = __sys_listen(a0, a1);
3034 break;
3035 case SYS_ACCEPT:
3036 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3037 (int __user *)a[2], 0);
3038 break;
3039 case SYS_GETSOCKNAME:
3040 err =
3041 __sys_getsockname(a0, (struct sockaddr __user *)a1,
3042 (int __user *)a[2]);
3043 break;
3044 case SYS_GETPEERNAME:
3045 err =
3046 __sys_getpeername(a0, (struct sockaddr __user *)a1,
3047 (int __user *)a[2]);
3048 break;
3049 case SYS_SOCKETPAIR:
3050 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3051 break;
3052 case SYS_SEND:
3053 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3054 NULL, 0);
3055 break;
3056 case SYS_SENDTO:
3057 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3058 (struct sockaddr __user *)a[4], a[5]);
3059 break;
3060 case SYS_RECV:
3061 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3062 NULL, NULL);
3063 break;
3064 case SYS_RECVFROM:
3065 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3066 (struct sockaddr __user *)a[4],
3067 (int __user *)a[5]);
3068 break;
3069 case SYS_SHUTDOWN:
3070 err = __sys_shutdown(a0, a1);
3071 break;
3072 case SYS_SETSOCKOPT:
3073 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3074 a[4]);
3075 break;
3076 case SYS_GETSOCKOPT:
3077 err =
3078 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3079 (int __user *)a[4]);
3080 break;
3081 case SYS_SENDMSG:
3082 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3083 a[2], true);
3084 break;
3085 case SYS_SENDMMSG:
3086 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3087 a[3], true);
3088 break;
3089 case SYS_RECVMSG:
3090 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3091 a[2], true);
3092 break;
3093 case SYS_RECVMMSG:
3094 if (IS_ENABLED(CONFIG_64BIT))
3095 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3096 a[2], a[3],
3097 (struct __kernel_timespec __user *)a[4],
3098 NULL);
3099 else
3100 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3101 a[2], a[3], NULL,
3102 (struct old_timespec32 __user *)a[4]);
3103 break;
3104 case SYS_ACCEPT4:
3105 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3106 (int __user *)a[2], a[3]);
3107 break;
3108 default:
3109 err = -EINVAL;
3110 break;
3111 }
3112 return err;
3113 }
3114
3115 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3116
3117 /**
3118 * sock_register - add a socket protocol handler
3119 * @ops: description of protocol
3120 *
3121 * This function is called by a protocol handler that wants to
3122 * advertise its address family, and have it linked into the
3123 * socket interface. The value ops->family corresponds to the
3124 * socket system call protocol family.
3125 */
sock_register(const struct net_proto_family * ops)3126 int sock_register(const struct net_proto_family *ops)
3127 {
3128 int err;
3129
3130 if (ops->family >= NPROTO) {
3131 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3132 return -ENOBUFS;
3133 }
3134
3135 spin_lock(&net_family_lock);
3136 if (rcu_dereference_protected(net_families[ops->family],
3137 lockdep_is_held(&net_family_lock)))
3138 err = -EEXIST;
3139 else {
3140 rcu_assign_pointer(net_families[ops->family], ops);
3141 err = 0;
3142 }
3143 spin_unlock(&net_family_lock);
3144
3145 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3146 return err;
3147 }
3148 EXPORT_SYMBOL(sock_register);
3149
3150 /**
3151 * sock_unregister - remove a protocol handler
3152 * @family: protocol family to remove
3153 *
3154 * This function is called by a protocol handler that wants to
3155 * remove its address family, and have it unlinked from the
3156 * new socket creation.
3157 *
3158 * If protocol handler is a module, then it can use module reference
3159 * counts to protect against new references. If protocol handler is not
3160 * a module then it needs to provide its own protection in
3161 * the ops->create routine.
3162 */
sock_unregister(int family)3163 void sock_unregister(int family)
3164 {
3165 BUG_ON(family < 0 || family >= NPROTO);
3166
3167 spin_lock(&net_family_lock);
3168 RCU_INIT_POINTER(net_families[family], NULL);
3169 spin_unlock(&net_family_lock);
3170
3171 synchronize_rcu();
3172
3173 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3174 }
3175 EXPORT_SYMBOL(sock_unregister);
3176
sock_is_registered(int family)3177 bool sock_is_registered(int family)
3178 {
3179 return family < NPROTO && rcu_access_pointer(net_families[family]);
3180 }
3181
sock_init(void)3182 static int __init sock_init(void)
3183 {
3184 int err;
3185 /*
3186 * Initialize the network sysctl infrastructure.
3187 */
3188 err = net_sysctl_init();
3189 if (err)
3190 goto out;
3191
3192 /*
3193 * Initialize skbuff SLAB cache
3194 */
3195 skb_init();
3196
3197 /*
3198 * Initialize the protocols module.
3199 */
3200
3201 init_inodecache();
3202
3203 err = register_filesystem(&sock_fs_type);
3204 if (err)
3205 goto out;
3206 sock_mnt = kern_mount(&sock_fs_type);
3207 if (IS_ERR(sock_mnt)) {
3208 err = PTR_ERR(sock_mnt);
3209 goto out_mount;
3210 }
3211
3212 /* The real protocol initialization is performed in later initcalls.
3213 */
3214
3215 #ifdef CONFIG_NETFILTER
3216 err = netfilter_init();
3217 if (err)
3218 goto out;
3219 #endif
3220
3221 ptp_classifier_init();
3222
3223 out:
3224 return err;
3225
3226 out_mount:
3227 unregister_filesystem(&sock_fs_type);
3228 goto out;
3229 }
3230
3231 core_initcall(sock_init); /* early initcall */
3232
3233 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3234 void socket_seq_show(struct seq_file *seq)
3235 {
3236 seq_printf(seq, "sockets: used %d\n",
3237 sock_inuse_get(seq->private));
3238 }
3239 #endif /* CONFIG_PROC_FS */
3240
3241 /* Handle the fact that while struct ifreq has the same *layout* on
3242 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3243 * which are handled elsewhere, it still has different *size* due to
3244 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3245 * resulting in struct ifreq being 32 and 40 bytes respectively).
3246 * As a result, if the struct happens to be at the end of a page and
3247 * the next page isn't readable/writable, we get a fault. To prevent
3248 * that, copy back and forth to the full size.
3249 */
get_user_ifreq(struct ifreq * ifr,void __user ** ifrdata,void __user * arg)3250 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3251 {
3252 if (in_compat_syscall()) {
3253 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3254
3255 memset(ifr, 0, sizeof(*ifr));
3256 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3257 return -EFAULT;
3258
3259 if (ifrdata)
3260 *ifrdata = compat_ptr(ifr32->ifr_data);
3261
3262 return 0;
3263 }
3264
3265 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3266 return -EFAULT;
3267
3268 if (ifrdata)
3269 *ifrdata = ifr->ifr_data;
3270
3271 return 0;
3272 }
3273 EXPORT_SYMBOL(get_user_ifreq);
3274
put_user_ifreq(struct ifreq * ifr,void __user * arg)3275 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3276 {
3277 size_t size = sizeof(*ifr);
3278
3279 if (in_compat_syscall())
3280 size = sizeof(struct compat_ifreq);
3281
3282 if (copy_to_user(arg, ifr, size))
3283 return -EFAULT;
3284
3285 return 0;
3286 }
3287 EXPORT_SYMBOL(put_user_ifreq);
3288
3289 #ifdef CONFIG_COMPAT
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3290 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3291 {
3292 compat_uptr_t uptr32;
3293 struct ifreq ifr;
3294 void __user *saved;
3295 int err;
3296
3297 if (get_user_ifreq(&ifr, NULL, uifr32))
3298 return -EFAULT;
3299
3300 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3301 return -EFAULT;
3302
3303 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3304 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3305
3306 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3307 if (!err) {
3308 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3309 if (put_user_ifreq(&ifr, uifr32))
3310 err = -EFAULT;
3311 }
3312 return err;
3313 }
3314
3315 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3316 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3317 struct compat_ifreq __user *u_ifreq32)
3318 {
3319 struct ifreq ifreq;
3320 void __user *data;
3321
3322 if (!is_socket_ioctl_cmd(cmd))
3323 return -ENOTTY;
3324 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3325 return -EFAULT;
3326 ifreq.ifr_data = data;
3327
3328 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3329 }
3330
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3331 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3332 unsigned int cmd, unsigned long arg)
3333 {
3334 void __user *argp = compat_ptr(arg);
3335 struct sock *sk = sock->sk;
3336 struct net *net = sock_net(sk);
3337
3338 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3339 return sock_ioctl(file, cmd, (unsigned long)argp);
3340
3341 switch (cmd) {
3342 case SIOCWANDEV:
3343 return compat_siocwandev(net, argp);
3344 case SIOCGSTAMP_OLD:
3345 case SIOCGSTAMPNS_OLD:
3346 if (!sock->ops->gettstamp)
3347 return -ENOIOCTLCMD;
3348 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3349 !COMPAT_USE_64BIT_TIME);
3350
3351 case SIOCETHTOOL:
3352 case SIOCBONDSLAVEINFOQUERY:
3353 case SIOCBONDINFOQUERY:
3354 case SIOCSHWTSTAMP:
3355 case SIOCGHWTSTAMP:
3356 return compat_ifr_data_ioctl(net, cmd, argp);
3357
3358 case FIOSETOWN:
3359 case SIOCSPGRP:
3360 case FIOGETOWN:
3361 case SIOCGPGRP:
3362 case SIOCBRADDBR:
3363 case SIOCBRDELBR:
3364 case SIOCGIFVLAN:
3365 case SIOCSIFVLAN:
3366 case SIOCGSKNS:
3367 case SIOCGSTAMP_NEW:
3368 case SIOCGSTAMPNS_NEW:
3369 case SIOCGIFCONF:
3370 case SIOCSIFBR:
3371 case SIOCGIFBR:
3372 return sock_ioctl(file, cmd, arg);
3373
3374 case SIOCGIFFLAGS:
3375 case SIOCSIFFLAGS:
3376 case SIOCGIFMAP:
3377 case SIOCSIFMAP:
3378 case SIOCGIFMETRIC:
3379 case SIOCSIFMETRIC:
3380 case SIOCGIFMTU:
3381 case SIOCSIFMTU:
3382 case SIOCGIFMEM:
3383 case SIOCSIFMEM:
3384 case SIOCGIFHWADDR:
3385 case SIOCSIFHWADDR:
3386 case SIOCADDMULTI:
3387 case SIOCDELMULTI:
3388 case SIOCGIFINDEX:
3389 case SIOCGIFADDR:
3390 case SIOCSIFADDR:
3391 case SIOCSIFHWBROADCAST:
3392 case SIOCDIFADDR:
3393 case SIOCGIFBRDADDR:
3394 case SIOCSIFBRDADDR:
3395 case SIOCGIFDSTADDR:
3396 case SIOCSIFDSTADDR:
3397 case SIOCGIFNETMASK:
3398 case SIOCSIFNETMASK:
3399 case SIOCSIFPFLAGS:
3400 case SIOCGIFPFLAGS:
3401 case SIOCGIFTXQLEN:
3402 case SIOCSIFTXQLEN:
3403 case SIOCBRADDIF:
3404 case SIOCBRDELIF:
3405 case SIOCGIFNAME:
3406 case SIOCSIFNAME:
3407 case SIOCGMIIPHY:
3408 case SIOCGMIIREG:
3409 case SIOCSMIIREG:
3410 case SIOCBONDENSLAVE:
3411 case SIOCBONDRELEASE:
3412 case SIOCBONDSETHWADDR:
3413 case SIOCBONDCHANGEACTIVE:
3414 case SIOCSARP:
3415 case SIOCGARP:
3416 case SIOCDARP:
3417 case SIOCOUTQ:
3418 case SIOCOUTQNSD:
3419 case SIOCATMARK:
3420 return sock_do_ioctl(net, sock, cmd, arg);
3421 }
3422
3423 return -ENOIOCTLCMD;
3424 }
3425
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3426 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3427 unsigned long arg)
3428 {
3429 struct socket *sock = file->private_data;
3430 int ret = -ENOIOCTLCMD;
3431 struct sock *sk;
3432 struct net *net;
3433
3434 sk = sock->sk;
3435 net = sock_net(sk);
3436
3437 if (sock->ops->compat_ioctl)
3438 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3439
3440 if (ret == -ENOIOCTLCMD &&
3441 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3442 ret = compat_wext_handle_ioctl(net, cmd, arg);
3443
3444 if (ret == -ENOIOCTLCMD)
3445 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3446
3447 return ret;
3448 }
3449 #endif
3450
3451 /**
3452 * kernel_bind - bind an address to a socket (kernel space)
3453 * @sock: socket
3454 * @addr: address
3455 * @addrlen: length of address
3456 *
3457 * Returns 0 or an error.
3458 */
3459
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3460 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3461 {
3462 struct sockaddr_storage address;
3463
3464 memcpy(&address, addr, addrlen);
3465
3466 return sock->ops->bind(sock, (struct sockaddr *)&address, addrlen);
3467 }
3468 EXPORT_SYMBOL(kernel_bind);
3469
3470 /**
3471 * kernel_listen - move socket to listening state (kernel space)
3472 * @sock: socket
3473 * @backlog: pending connections queue size
3474 *
3475 * Returns 0 or an error.
3476 */
3477
kernel_listen(struct socket * sock,int backlog)3478 int kernel_listen(struct socket *sock, int backlog)
3479 {
3480 return sock->ops->listen(sock, backlog);
3481 }
3482 EXPORT_SYMBOL(kernel_listen);
3483
3484 /**
3485 * kernel_accept - accept a connection (kernel space)
3486 * @sock: listening socket
3487 * @newsock: new connected socket
3488 * @flags: flags
3489 *
3490 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3491 * If it fails, @newsock is guaranteed to be %NULL.
3492 * Returns 0 or an error.
3493 */
3494
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3495 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3496 {
3497 struct sock *sk = sock->sk;
3498 int err;
3499
3500 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3501 newsock);
3502 if (err < 0)
3503 goto done;
3504
3505 err = sock->ops->accept(sock, *newsock, flags, true);
3506 if (err < 0) {
3507 sock_release(*newsock);
3508 *newsock = NULL;
3509 goto done;
3510 }
3511
3512 (*newsock)->ops = sock->ops;
3513 __module_get((*newsock)->ops->owner);
3514
3515 done:
3516 return err;
3517 }
3518 EXPORT_SYMBOL(kernel_accept);
3519
3520 /**
3521 * kernel_connect - connect a socket (kernel space)
3522 * @sock: socket
3523 * @addr: address
3524 * @addrlen: address length
3525 * @flags: flags (O_NONBLOCK, ...)
3526 *
3527 * For datagram sockets, @addr is the address to which datagrams are sent
3528 * by default, and the only address from which datagrams are received.
3529 * For stream sockets, attempts to connect to @addr.
3530 * Returns 0 or an error code.
3531 */
3532
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3533 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3534 int flags)
3535 {
3536 struct sockaddr_storage address;
3537
3538 memcpy(&address, addr, addrlen);
3539
3540 return sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, flags);
3541 }
3542 EXPORT_SYMBOL(kernel_connect);
3543
3544 /**
3545 * kernel_getsockname - get the address which the socket is bound (kernel space)
3546 * @sock: socket
3547 * @addr: address holder
3548 *
3549 * Fills the @addr pointer with the address which the socket is bound.
3550 * Returns the length of the address in bytes or an error code.
3551 */
3552
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3553 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3554 {
3555 return sock->ops->getname(sock, addr, 0);
3556 }
3557 EXPORT_SYMBOL(kernel_getsockname);
3558
3559 /**
3560 * kernel_getpeername - get the address which the socket is connected (kernel space)
3561 * @sock: socket
3562 * @addr: address holder
3563 *
3564 * Fills the @addr pointer with the address which the socket is connected.
3565 * Returns the length of the address in bytes or an error code.
3566 */
3567
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3568 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3569 {
3570 return sock->ops->getname(sock, addr, 1);
3571 }
3572 EXPORT_SYMBOL(kernel_getpeername);
3573
3574 /**
3575 * kernel_sendpage - send a &page through a socket (kernel space)
3576 * @sock: socket
3577 * @page: page
3578 * @offset: page offset
3579 * @size: total size in bytes
3580 * @flags: flags (MSG_DONTWAIT, ...)
3581 *
3582 * Returns the total amount sent in bytes or an error.
3583 */
3584
kernel_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)3585 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3586 size_t size, int flags)
3587 {
3588 if (sock->ops->sendpage) {
3589 /* Warn in case the improper page to zero-copy send */
3590 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3591 return sock->ops->sendpage(sock, page, offset, size, flags);
3592 }
3593 return sock_no_sendpage(sock, page, offset, size, flags);
3594 }
3595 EXPORT_SYMBOL(kernel_sendpage);
3596
3597 /**
3598 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3599 * @sk: sock
3600 * @page: page
3601 * @offset: page offset
3602 * @size: total size in bytes
3603 * @flags: flags (MSG_DONTWAIT, ...)
3604 *
3605 * Returns the total amount sent in bytes or an error.
3606 * Caller must hold @sk.
3607 */
3608
kernel_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)3609 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3610 size_t size, int flags)
3611 {
3612 struct socket *sock = sk->sk_socket;
3613
3614 if (sock->ops->sendpage_locked)
3615 return sock->ops->sendpage_locked(sk, page, offset, size,
3616 flags);
3617
3618 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3619 }
3620 EXPORT_SYMBOL(kernel_sendpage_locked);
3621
3622 /**
3623 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3624 * @sock: socket
3625 * @how: connection part
3626 *
3627 * Returns 0 or an error.
3628 */
3629
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3630 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3631 {
3632 return sock->ops->shutdown(sock, how);
3633 }
3634 EXPORT_SYMBOL(kernel_sock_shutdown);
3635
3636 /**
3637 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3638 * @sk: socket
3639 *
3640 * This routine returns the IP overhead imposed by a socket i.e.
3641 * the length of the underlying IP header, depending on whether
3642 * this is an IPv4 or IPv6 socket and the length from IP options turned
3643 * on at the socket. Assumes that the caller has a lock on the socket.
3644 */
3645
kernel_sock_ip_overhead(struct sock * sk)3646 u32 kernel_sock_ip_overhead(struct sock *sk)
3647 {
3648 struct inet_sock *inet;
3649 struct ip_options_rcu *opt;
3650 u32 overhead = 0;
3651 #if IS_ENABLED(CONFIG_IPV6)
3652 struct ipv6_pinfo *np;
3653 struct ipv6_txoptions *optv6 = NULL;
3654 #endif /* IS_ENABLED(CONFIG_IPV6) */
3655
3656 if (!sk)
3657 return overhead;
3658
3659 switch (sk->sk_family) {
3660 case AF_INET:
3661 inet = inet_sk(sk);
3662 overhead += sizeof(struct iphdr);
3663 opt = rcu_dereference_protected(inet->inet_opt,
3664 sock_owned_by_user(sk));
3665 if (opt)
3666 overhead += opt->opt.optlen;
3667 return overhead;
3668 #if IS_ENABLED(CONFIG_IPV6)
3669 case AF_INET6:
3670 np = inet6_sk(sk);
3671 overhead += sizeof(struct ipv6hdr);
3672 if (np)
3673 optv6 = rcu_dereference_protected(np->opt,
3674 sock_owned_by_user(sk));
3675 if (optv6)
3676 overhead += (optv6->opt_flen + optv6->opt_nflen);
3677 return overhead;
3678 #endif /* IS_ENABLED(CONFIG_IPV6) */
3679 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3680 return overhead;
3681 }
3682 }
3683 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3684