• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 
85 static const struct bpf_func_proto *
86 bpf_sk_base_func_proto(enum bpf_func_id func_id);
87 
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)88 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
89 {
90 	if (in_compat_syscall()) {
91 		struct compat_sock_fprog f32;
92 
93 		if (len != sizeof(f32))
94 			return -EINVAL;
95 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
96 			return -EFAULT;
97 		memset(dst, 0, sizeof(*dst));
98 		dst->len = f32.len;
99 		dst->filter = compat_ptr(f32.filter);
100 	} else {
101 		if (len != sizeof(*dst))
102 			return -EINVAL;
103 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
104 			return -EFAULT;
105 	}
106 
107 	return 0;
108 }
109 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
110 
111 /**
112  *	sk_filter_trim_cap - run a packet through a socket filter
113  *	@sk: sock associated with &sk_buff
114  *	@skb: buffer to filter
115  *	@cap: limit on how short the eBPF program may trim the packet
116  *
117  * Run the eBPF program and then cut skb->data to correct size returned by
118  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
119  * than pkt_len we keep whole skb->data. This is the socket level
120  * wrapper to bpf_prog_run. It returns 0 if the packet should
121  * be accepted or -EPERM if the packet should be tossed.
122  *
123  */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)124 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
125 {
126 	int err;
127 	struct sk_filter *filter;
128 
129 	/*
130 	 * If the skb was allocated from pfmemalloc reserves, only
131 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
132 	 * helping free memory
133 	 */
134 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
135 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
136 		return -ENOMEM;
137 	}
138 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
139 	if (err)
140 		return err;
141 
142 	err = security_sock_rcv_skb(sk, skb);
143 	if (err)
144 		return err;
145 
146 	rcu_read_lock();
147 	filter = rcu_dereference(sk->sk_filter);
148 	if (filter) {
149 		struct sock *save_sk = skb->sk;
150 		unsigned int pkt_len;
151 
152 		skb->sk = sk;
153 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
154 		skb->sk = save_sk;
155 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
156 	}
157 	rcu_read_unlock();
158 
159 	return err;
160 }
161 EXPORT_SYMBOL(sk_filter_trim_cap);
162 
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)163 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
164 {
165 	return skb_get_poff(skb);
166 }
167 
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)168 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
169 {
170 	struct nlattr *nla;
171 
172 	if (skb_is_nonlinear(skb))
173 		return 0;
174 
175 	if (skb->len < sizeof(struct nlattr))
176 		return 0;
177 
178 	if (a > skb->len - sizeof(struct nlattr))
179 		return 0;
180 
181 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
182 	if (nla)
183 		return (void *) nla - (void *) skb->data;
184 
185 	return 0;
186 }
187 
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)188 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
189 {
190 	struct nlattr *nla;
191 
192 	if (skb_is_nonlinear(skb))
193 		return 0;
194 
195 	if (skb->len < sizeof(struct nlattr))
196 		return 0;
197 
198 	if (a > skb->len - sizeof(struct nlattr))
199 		return 0;
200 
201 	nla = (struct nlattr *) &skb->data[a];
202 	if (nla->nla_len > skb->len - a)
203 		return 0;
204 
205 	nla = nla_find_nested(nla, x);
206 	if (nla)
207 		return (void *) nla - (void *) skb->data;
208 
209 	return 0;
210 }
211 
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)212 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
213 	   data, int, headlen, int, offset)
214 {
215 	u8 tmp, *ptr;
216 	const int len = sizeof(tmp);
217 
218 	if (offset >= 0) {
219 		if (headlen - offset >= len)
220 			return *(u8 *)(data + offset);
221 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
222 			return tmp;
223 	} else {
224 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
225 		if (likely(ptr))
226 			return *(u8 *)ptr;
227 	}
228 
229 	return -EFAULT;
230 }
231 
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)232 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
233 	   int, offset)
234 {
235 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
236 					 offset);
237 }
238 
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)239 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
240 	   data, int, headlen, int, offset)
241 {
242 	__be16 tmp, *ptr;
243 	const int len = sizeof(tmp);
244 
245 	if (offset >= 0) {
246 		if (headlen - offset >= len)
247 			return get_unaligned_be16(data + offset);
248 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
249 			return be16_to_cpu(tmp);
250 	} else {
251 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
252 		if (likely(ptr))
253 			return get_unaligned_be16(ptr);
254 	}
255 
256 	return -EFAULT;
257 }
258 
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)259 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
260 	   int, offset)
261 {
262 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
263 					  offset);
264 }
265 
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)266 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
267 	   data, int, headlen, int, offset)
268 {
269 	__be32 tmp, *ptr;
270 	const int len = sizeof(tmp);
271 
272 	if (likely(offset >= 0)) {
273 		if (headlen - offset >= len)
274 			return get_unaligned_be32(data + offset);
275 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
276 			return be32_to_cpu(tmp);
277 	} else {
278 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
279 		if (likely(ptr))
280 			return get_unaligned_be32(ptr);
281 	}
282 
283 	return -EFAULT;
284 }
285 
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)286 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
287 	   int, offset)
288 {
289 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
290 					  offset);
291 }
292 
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)293 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
294 			      struct bpf_insn *insn_buf)
295 {
296 	struct bpf_insn *insn = insn_buf;
297 
298 	switch (skb_field) {
299 	case SKF_AD_MARK:
300 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
301 
302 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
303 				      offsetof(struct sk_buff, mark));
304 		break;
305 
306 	case SKF_AD_PKTTYPE:
307 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
308 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
309 #ifdef __BIG_ENDIAN_BITFIELD
310 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
311 #endif
312 		break;
313 
314 	case SKF_AD_QUEUE:
315 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
316 
317 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
318 				      offsetof(struct sk_buff, queue_mapping));
319 		break;
320 
321 	case SKF_AD_VLAN_TAG:
322 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
323 
324 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
325 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
326 				      offsetof(struct sk_buff, vlan_tci));
327 		break;
328 	case SKF_AD_VLAN_TAG_PRESENT:
329 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET);
330 		if (PKT_VLAN_PRESENT_BIT)
331 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
332 		if (PKT_VLAN_PRESENT_BIT < 7)
333 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
334 		break;
335 	}
336 
337 	return insn - insn_buf;
338 }
339 
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)340 static bool convert_bpf_extensions(struct sock_filter *fp,
341 				   struct bpf_insn **insnp)
342 {
343 	struct bpf_insn *insn = *insnp;
344 	u32 cnt;
345 
346 	switch (fp->k) {
347 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
348 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
349 
350 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
351 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
352 				      offsetof(struct sk_buff, protocol));
353 		/* A = ntohs(A) [emitting a nop or swap16] */
354 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
355 		break;
356 
357 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
358 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
359 		insn += cnt - 1;
360 		break;
361 
362 	case SKF_AD_OFF + SKF_AD_IFINDEX:
363 	case SKF_AD_OFF + SKF_AD_HATYPE:
364 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
365 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
366 
367 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
368 				      BPF_REG_TMP, BPF_REG_CTX,
369 				      offsetof(struct sk_buff, dev));
370 		/* if (tmp != 0) goto pc + 1 */
371 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
372 		*insn++ = BPF_EXIT_INSN();
373 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
374 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
375 					    offsetof(struct net_device, ifindex));
376 		else
377 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
378 					    offsetof(struct net_device, type));
379 		break;
380 
381 	case SKF_AD_OFF + SKF_AD_MARK:
382 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
383 		insn += cnt - 1;
384 		break;
385 
386 	case SKF_AD_OFF + SKF_AD_RXHASH:
387 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
388 
389 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
390 				    offsetof(struct sk_buff, hash));
391 		break;
392 
393 	case SKF_AD_OFF + SKF_AD_QUEUE:
394 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
395 		insn += cnt - 1;
396 		break;
397 
398 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
399 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
400 					 BPF_REG_A, BPF_REG_CTX, insn);
401 		insn += cnt - 1;
402 		break;
403 
404 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
405 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
406 					 BPF_REG_A, BPF_REG_CTX, insn);
407 		insn += cnt - 1;
408 		break;
409 
410 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
411 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
412 
413 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
414 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
415 				      offsetof(struct sk_buff, vlan_proto));
416 		/* A = ntohs(A) [emitting a nop or swap16] */
417 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
418 		break;
419 
420 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
421 	case SKF_AD_OFF + SKF_AD_NLATTR:
422 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
423 	case SKF_AD_OFF + SKF_AD_CPU:
424 	case SKF_AD_OFF + SKF_AD_RANDOM:
425 		/* arg1 = CTX */
426 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
427 		/* arg2 = A */
428 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
429 		/* arg3 = X */
430 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
431 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
432 		switch (fp->k) {
433 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
434 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
435 			break;
436 		case SKF_AD_OFF + SKF_AD_NLATTR:
437 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
438 			break;
439 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
440 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
441 			break;
442 		case SKF_AD_OFF + SKF_AD_CPU:
443 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
444 			break;
445 		case SKF_AD_OFF + SKF_AD_RANDOM:
446 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
447 			bpf_user_rnd_init_once();
448 			break;
449 		}
450 		break;
451 
452 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
453 		/* A ^= X */
454 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
455 		break;
456 
457 	default:
458 		/* This is just a dummy call to avoid letting the compiler
459 		 * evict __bpf_call_base() as an optimization. Placed here
460 		 * where no-one bothers.
461 		 */
462 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
463 		return false;
464 	}
465 
466 	*insnp = insn;
467 	return true;
468 }
469 
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)470 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
471 {
472 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
473 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
474 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
475 		      BPF_SIZE(fp->code) == BPF_W;
476 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
477 	const int ip_align = NET_IP_ALIGN;
478 	struct bpf_insn *insn = *insnp;
479 	int offset = fp->k;
480 
481 	if (!indirect &&
482 	    ((unaligned_ok && offset >= 0) ||
483 	     (!unaligned_ok && offset >= 0 &&
484 	      offset + ip_align >= 0 &&
485 	      offset + ip_align % size == 0))) {
486 		bool ldx_off_ok = offset <= S16_MAX;
487 
488 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
489 		if (offset)
490 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
491 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
492 				      size, 2 + endian + (!ldx_off_ok * 2));
493 		if (ldx_off_ok) {
494 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
495 					      BPF_REG_D, offset);
496 		} else {
497 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
498 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
499 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
500 					      BPF_REG_TMP, 0);
501 		}
502 		if (endian)
503 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
504 		*insn++ = BPF_JMP_A(8);
505 	}
506 
507 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
508 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
509 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
510 	if (!indirect) {
511 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
512 	} else {
513 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
514 		if (fp->k)
515 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
516 	}
517 
518 	switch (BPF_SIZE(fp->code)) {
519 	case BPF_B:
520 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
521 		break;
522 	case BPF_H:
523 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
524 		break;
525 	case BPF_W:
526 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
527 		break;
528 	default:
529 		return false;
530 	}
531 
532 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
533 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
534 	*insn   = BPF_EXIT_INSN();
535 
536 	*insnp = insn;
537 	return true;
538 }
539 
540 /**
541  *	bpf_convert_filter - convert filter program
542  *	@prog: the user passed filter program
543  *	@len: the length of the user passed filter program
544  *	@new_prog: allocated 'struct bpf_prog' or NULL
545  *	@new_len: pointer to store length of converted program
546  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
547  *
548  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
549  * style extended BPF (eBPF).
550  * Conversion workflow:
551  *
552  * 1) First pass for calculating the new program length:
553  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
554  *
555  * 2) 2nd pass to remap in two passes: 1st pass finds new
556  *    jump offsets, 2nd pass remapping:
557  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
558  */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)559 static int bpf_convert_filter(struct sock_filter *prog, int len,
560 			      struct bpf_prog *new_prog, int *new_len,
561 			      bool *seen_ld_abs)
562 {
563 	int new_flen = 0, pass = 0, target, i, stack_off;
564 	struct bpf_insn *new_insn, *first_insn = NULL;
565 	struct sock_filter *fp;
566 	int *addrs = NULL;
567 	u8 bpf_src;
568 
569 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
570 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
571 
572 	if (len <= 0 || len > BPF_MAXINSNS)
573 		return -EINVAL;
574 
575 	if (new_prog) {
576 		first_insn = new_prog->insnsi;
577 		addrs = kcalloc(len, sizeof(*addrs),
578 				GFP_KERNEL | __GFP_NOWARN);
579 		if (!addrs)
580 			return -ENOMEM;
581 	}
582 
583 do_pass:
584 	new_insn = first_insn;
585 	fp = prog;
586 
587 	/* Classic BPF related prologue emission. */
588 	if (new_prog) {
589 		/* Classic BPF expects A and X to be reset first. These need
590 		 * to be guaranteed to be the first two instructions.
591 		 */
592 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
593 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
594 
595 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
596 		 * In eBPF case it's done by the compiler, here we need to
597 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
598 		 */
599 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
600 		if (*seen_ld_abs) {
601 			/* For packet access in classic BPF, cache skb->data
602 			 * in callee-saved BPF R8 and skb->len - skb->data_len
603 			 * (headlen) in BPF R9. Since classic BPF is read-only
604 			 * on CTX, we only need to cache it once.
605 			 */
606 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
607 						  BPF_REG_D, BPF_REG_CTX,
608 						  offsetof(struct sk_buff, data));
609 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
610 						  offsetof(struct sk_buff, len));
611 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
612 						  offsetof(struct sk_buff, data_len));
613 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
614 		}
615 	} else {
616 		new_insn += 3;
617 	}
618 
619 	for (i = 0; i < len; fp++, i++) {
620 		struct bpf_insn tmp_insns[32] = { };
621 		struct bpf_insn *insn = tmp_insns;
622 
623 		if (addrs)
624 			addrs[i] = new_insn - first_insn;
625 
626 		switch (fp->code) {
627 		/* All arithmetic insns and skb loads map as-is. */
628 		case BPF_ALU | BPF_ADD | BPF_X:
629 		case BPF_ALU | BPF_ADD | BPF_K:
630 		case BPF_ALU | BPF_SUB | BPF_X:
631 		case BPF_ALU | BPF_SUB | BPF_K:
632 		case BPF_ALU | BPF_AND | BPF_X:
633 		case BPF_ALU | BPF_AND | BPF_K:
634 		case BPF_ALU | BPF_OR | BPF_X:
635 		case BPF_ALU | BPF_OR | BPF_K:
636 		case BPF_ALU | BPF_LSH | BPF_X:
637 		case BPF_ALU | BPF_LSH | BPF_K:
638 		case BPF_ALU | BPF_RSH | BPF_X:
639 		case BPF_ALU | BPF_RSH | BPF_K:
640 		case BPF_ALU | BPF_XOR | BPF_X:
641 		case BPF_ALU | BPF_XOR | BPF_K:
642 		case BPF_ALU | BPF_MUL | BPF_X:
643 		case BPF_ALU | BPF_MUL | BPF_K:
644 		case BPF_ALU | BPF_DIV | BPF_X:
645 		case BPF_ALU | BPF_DIV | BPF_K:
646 		case BPF_ALU | BPF_MOD | BPF_X:
647 		case BPF_ALU | BPF_MOD | BPF_K:
648 		case BPF_ALU | BPF_NEG:
649 		case BPF_LD | BPF_ABS | BPF_W:
650 		case BPF_LD | BPF_ABS | BPF_H:
651 		case BPF_LD | BPF_ABS | BPF_B:
652 		case BPF_LD | BPF_IND | BPF_W:
653 		case BPF_LD | BPF_IND | BPF_H:
654 		case BPF_LD | BPF_IND | BPF_B:
655 			/* Check for overloaded BPF extension and
656 			 * directly convert it if found, otherwise
657 			 * just move on with mapping.
658 			 */
659 			if (BPF_CLASS(fp->code) == BPF_LD &&
660 			    BPF_MODE(fp->code) == BPF_ABS &&
661 			    convert_bpf_extensions(fp, &insn))
662 				break;
663 			if (BPF_CLASS(fp->code) == BPF_LD &&
664 			    convert_bpf_ld_abs(fp, &insn)) {
665 				*seen_ld_abs = true;
666 				break;
667 			}
668 
669 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
670 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
671 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
672 				/* Error with exception code on div/mod by 0.
673 				 * For cBPF programs, this was always return 0.
674 				 */
675 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
676 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
677 				*insn++ = BPF_EXIT_INSN();
678 			}
679 
680 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
681 			break;
682 
683 		/* Jump transformation cannot use BPF block macros
684 		 * everywhere as offset calculation and target updates
685 		 * require a bit more work than the rest, i.e. jump
686 		 * opcodes map as-is, but offsets need adjustment.
687 		 */
688 
689 #define BPF_EMIT_JMP							\
690 	do {								\
691 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
692 		s32 off;						\
693 									\
694 		if (target >= len || target < 0)			\
695 			goto err;					\
696 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
697 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
698 		off -= insn - tmp_insns;				\
699 		/* Reject anything not fitting into insn->off. */	\
700 		if (off < off_min || off > off_max)			\
701 			goto err;					\
702 		insn->off = off;					\
703 	} while (0)
704 
705 		case BPF_JMP | BPF_JA:
706 			target = i + fp->k + 1;
707 			insn->code = fp->code;
708 			BPF_EMIT_JMP;
709 			break;
710 
711 		case BPF_JMP | BPF_JEQ | BPF_K:
712 		case BPF_JMP | BPF_JEQ | BPF_X:
713 		case BPF_JMP | BPF_JSET | BPF_K:
714 		case BPF_JMP | BPF_JSET | BPF_X:
715 		case BPF_JMP | BPF_JGT | BPF_K:
716 		case BPF_JMP | BPF_JGT | BPF_X:
717 		case BPF_JMP | BPF_JGE | BPF_K:
718 		case BPF_JMP | BPF_JGE | BPF_X:
719 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
720 				/* BPF immediates are signed, zero extend
721 				 * immediate into tmp register and use it
722 				 * in compare insn.
723 				 */
724 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
725 
726 				insn->dst_reg = BPF_REG_A;
727 				insn->src_reg = BPF_REG_TMP;
728 				bpf_src = BPF_X;
729 			} else {
730 				insn->dst_reg = BPF_REG_A;
731 				insn->imm = fp->k;
732 				bpf_src = BPF_SRC(fp->code);
733 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
734 			}
735 
736 			/* Common case where 'jump_false' is next insn. */
737 			if (fp->jf == 0) {
738 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
739 				target = i + fp->jt + 1;
740 				BPF_EMIT_JMP;
741 				break;
742 			}
743 
744 			/* Convert some jumps when 'jump_true' is next insn. */
745 			if (fp->jt == 0) {
746 				switch (BPF_OP(fp->code)) {
747 				case BPF_JEQ:
748 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
749 					break;
750 				case BPF_JGT:
751 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
752 					break;
753 				case BPF_JGE:
754 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
755 					break;
756 				default:
757 					goto jmp_rest;
758 				}
759 
760 				target = i + fp->jf + 1;
761 				BPF_EMIT_JMP;
762 				break;
763 			}
764 jmp_rest:
765 			/* Other jumps are mapped into two insns: Jxx and JA. */
766 			target = i + fp->jt + 1;
767 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
768 			BPF_EMIT_JMP;
769 			insn++;
770 
771 			insn->code = BPF_JMP | BPF_JA;
772 			target = i + fp->jf + 1;
773 			BPF_EMIT_JMP;
774 			break;
775 
776 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
777 		case BPF_LDX | BPF_MSH | BPF_B: {
778 			struct sock_filter tmp = {
779 				.code	= BPF_LD | BPF_ABS | BPF_B,
780 				.k	= fp->k,
781 			};
782 
783 			*seen_ld_abs = true;
784 
785 			/* X = A */
786 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
787 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
788 			convert_bpf_ld_abs(&tmp, &insn);
789 			insn++;
790 			/* A &= 0xf */
791 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
792 			/* A <<= 2 */
793 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
794 			/* tmp = X */
795 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
796 			/* X = A */
797 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
798 			/* A = tmp */
799 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
800 			break;
801 		}
802 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
803 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
804 		 */
805 		case BPF_RET | BPF_A:
806 		case BPF_RET | BPF_K:
807 			if (BPF_RVAL(fp->code) == BPF_K)
808 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
809 							0, fp->k);
810 			*insn = BPF_EXIT_INSN();
811 			break;
812 
813 		/* Store to stack. */
814 		case BPF_ST:
815 		case BPF_STX:
816 			stack_off = fp->k * 4  + 4;
817 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
818 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
819 					    -stack_off);
820 			/* check_load_and_stores() verifies that classic BPF can
821 			 * load from stack only after write, so tracking
822 			 * stack_depth for ST|STX insns is enough
823 			 */
824 			if (new_prog && new_prog->aux->stack_depth < stack_off)
825 				new_prog->aux->stack_depth = stack_off;
826 			break;
827 
828 		/* Load from stack. */
829 		case BPF_LD | BPF_MEM:
830 		case BPF_LDX | BPF_MEM:
831 			stack_off = fp->k * 4  + 4;
832 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
833 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
834 					    -stack_off);
835 			break;
836 
837 		/* A = K or X = K */
838 		case BPF_LD | BPF_IMM:
839 		case BPF_LDX | BPF_IMM:
840 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
841 					      BPF_REG_A : BPF_REG_X, fp->k);
842 			break;
843 
844 		/* X = A */
845 		case BPF_MISC | BPF_TAX:
846 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
847 			break;
848 
849 		/* A = X */
850 		case BPF_MISC | BPF_TXA:
851 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
852 			break;
853 
854 		/* A = skb->len or X = skb->len */
855 		case BPF_LD | BPF_W | BPF_LEN:
856 		case BPF_LDX | BPF_W | BPF_LEN:
857 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
858 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
859 					    offsetof(struct sk_buff, len));
860 			break;
861 
862 		/* Access seccomp_data fields. */
863 		case BPF_LDX | BPF_ABS | BPF_W:
864 			/* A = *(u32 *) (ctx + K) */
865 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
866 			break;
867 
868 		/* Unknown instruction. */
869 		default:
870 			goto err;
871 		}
872 
873 		insn++;
874 		if (new_prog)
875 			memcpy(new_insn, tmp_insns,
876 			       sizeof(*insn) * (insn - tmp_insns));
877 		new_insn += insn - tmp_insns;
878 	}
879 
880 	if (!new_prog) {
881 		/* Only calculating new length. */
882 		*new_len = new_insn - first_insn;
883 		if (*seen_ld_abs)
884 			*new_len += 4; /* Prologue bits. */
885 		return 0;
886 	}
887 
888 	pass++;
889 	if (new_flen != new_insn - first_insn) {
890 		new_flen = new_insn - first_insn;
891 		if (pass > 2)
892 			goto err;
893 		goto do_pass;
894 	}
895 
896 	kfree(addrs);
897 	BUG_ON(*new_len != new_flen);
898 	return 0;
899 err:
900 	kfree(addrs);
901 	return -EINVAL;
902 }
903 
904 /* Security:
905  *
906  * As we dont want to clear mem[] array for each packet going through
907  * __bpf_prog_run(), we check that filter loaded by user never try to read
908  * a cell if not previously written, and we check all branches to be sure
909  * a malicious user doesn't try to abuse us.
910  */
check_load_and_stores(const struct sock_filter * filter,int flen)911 static int check_load_and_stores(const struct sock_filter *filter, int flen)
912 {
913 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
914 	int pc, ret = 0;
915 
916 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
917 
918 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
919 	if (!masks)
920 		return -ENOMEM;
921 
922 	memset(masks, 0xff, flen * sizeof(*masks));
923 
924 	for (pc = 0; pc < flen; pc++) {
925 		memvalid &= masks[pc];
926 
927 		switch (filter[pc].code) {
928 		case BPF_ST:
929 		case BPF_STX:
930 			memvalid |= (1 << filter[pc].k);
931 			break;
932 		case BPF_LD | BPF_MEM:
933 		case BPF_LDX | BPF_MEM:
934 			if (!(memvalid & (1 << filter[pc].k))) {
935 				ret = -EINVAL;
936 				goto error;
937 			}
938 			break;
939 		case BPF_JMP | BPF_JA:
940 			/* A jump must set masks on target */
941 			masks[pc + 1 + filter[pc].k] &= memvalid;
942 			memvalid = ~0;
943 			break;
944 		case BPF_JMP | BPF_JEQ | BPF_K:
945 		case BPF_JMP | BPF_JEQ | BPF_X:
946 		case BPF_JMP | BPF_JGE | BPF_K:
947 		case BPF_JMP | BPF_JGE | BPF_X:
948 		case BPF_JMP | BPF_JGT | BPF_K:
949 		case BPF_JMP | BPF_JGT | BPF_X:
950 		case BPF_JMP | BPF_JSET | BPF_K:
951 		case BPF_JMP | BPF_JSET | BPF_X:
952 			/* A jump must set masks on targets */
953 			masks[pc + 1 + filter[pc].jt] &= memvalid;
954 			masks[pc + 1 + filter[pc].jf] &= memvalid;
955 			memvalid = ~0;
956 			break;
957 		}
958 	}
959 error:
960 	kfree(masks);
961 	return ret;
962 }
963 
chk_code_allowed(u16 code_to_probe)964 static bool chk_code_allowed(u16 code_to_probe)
965 {
966 	static const bool codes[] = {
967 		/* 32 bit ALU operations */
968 		[BPF_ALU | BPF_ADD | BPF_K] = true,
969 		[BPF_ALU | BPF_ADD | BPF_X] = true,
970 		[BPF_ALU | BPF_SUB | BPF_K] = true,
971 		[BPF_ALU | BPF_SUB | BPF_X] = true,
972 		[BPF_ALU | BPF_MUL | BPF_K] = true,
973 		[BPF_ALU | BPF_MUL | BPF_X] = true,
974 		[BPF_ALU | BPF_DIV | BPF_K] = true,
975 		[BPF_ALU | BPF_DIV | BPF_X] = true,
976 		[BPF_ALU | BPF_MOD | BPF_K] = true,
977 		[BPF_ALU | BPF_MOD | BPF_X] = true,
978 		[BPF_ALU | BPF_AND | BPF_K] = true,
979 		[BPF_ALU | BPF_AND | BPF_X] = true,
980 		[BPF_ALU | BPF_OR | BPF_K] = true,
981 		[BPF_ALU | BPF_OR | BPF_X] = true,
982 		[BPF_ALU | BPF_XOR | BPF_K] = true,
983 		[BPF_ALU | BPF_XOR | BPF_X] = true,
984 		[BPF_ALU | BPF_LSH | BPF_K] = true,
985 		[BPF_ALU | BPF_LSH | BPF_X] = true,
986 		[BPF_ALU | BPF_RSH | BPF_K] = true,
987 		[BPF_ALU | BPF_RSH | BPF_X] = true,
988 		[BPF_ALU | BPF_NEG] = true,
989 		/* Load instructions */
990 		[BPF_LD | BPF_W | BPF_ABS] = true,
991 		[BPF_LD | BPF_H | BPF_ABS] = true,
992 		[BPF_LD | BPF_B | BPF_ABS] = true,
993 		[BPF_LD | BPF_W | BPF_LEN] = true,
994 		[BPF_LD | BPF_W | BPF_IND] = true,
995 		[BPF_LD | BPF_H | BPF_IND] = true,
996 		[BPF_LD | BPF_B | BPF_IND] = true,
997 		[BPF_LD | BPF_IMM] = true,
998 		[BPF_LD | BPF_MEM] = true,
999 		[BPF_LDX | BPF_W | BPF_LEN] = true,
1000 		[BPF_LDX | BPF_B | BPF_MSH] = true,
1001 		[BPF_LDX | BPF_IMM] = true,
1002 		[BPF_LDX | BPF_MEM] = true,
1003 		/* Store instructions */
1004 		[BPF_ST] = true,
1005 		[BPF_STX] = true,
1006 		/* Misc instructions */
1007 		[BPF_MISC | BPF_TAX] = true,
1008 		[BPF_MISC | BPF_TXA] = true,
1009 		/* Return instructions */
1010 		[BPF_RET | BPF_K] = true,
1011 		[BPF_RET | BPF_A] = true,
1012 		/* Jump instructions */
1013 		[BPF_JMP | BPF_JA] = true,
1014 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1015 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1016 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1017 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1018 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1019 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1020 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1021 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1022 	};
1023 
1024 	if (code_to_probe >= ARRAY_SIZE(codes))
1025 		return false;
1026 
1027 	return codes[code_to_probe];
1028 }
1029 
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1030 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1031 				unsigned int flen)
1032 {
1033 	if (filter == NULL)
1034 		return false;
1035 	if (flen == 0 || flen > BPF_MAXINSNS)
1036 		return false;
1037 
1038 	return true;
1039 }
1040 
1041 /**
1042  *	bpf_check_classic - verify socket filter code
1043  *	@filter: filter to verify
1044  *	@flen: length of filter
1045  *
1046  * Check the user's filter code. If we let some ugly
1047  * filter code slip through kaboom! The filter must contain
1048  * no references or jumps that are out of range, no illegal
1049  * instructions, and must end with a RET instruction.
1050  *
1051  * All jumps are forward as they are not signed.
1052  *
1053  * Returns 0 if the rule set is legal or -EINVAL if not.
1054  */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1055 static int bpf_check_classic(const struct sock_filter *filter,
1056 			     unsigned int flen)
1057 {
1058 	bool anc_found;
1059 	int pc;
1060 
1061 	/* Check the filter code now */
1062 	for (pc = 0; pc < flen; pc++) {
1063 		const struct sock_filter *ftest = &filter[pc];
1064 
1065 		/* May we actually operate on this code? */
1066 		if (!chk_code_allowed(ftest->code))
1067 			return -EINVAL;
1068 
1069 		/* Some instructions need special checks */
1070 		switch (ftest->code) {
1071 		case BPF_ALU | BPF_DIV | BPF_K:
1072 		case BPF_ALU | BPF_MOD | BPF_K:
1073 			/* Check for division by zero */
1074 			if (ftest->k == 0)
1075 				return -EINVAL;
1076 			break;
1077 		case BPF_ALU | BPF_LSH | BPF_K:
1078 		case BPF_ALU | BPF_RSH | BPF_K:
1079 			if (ftest->k >= 32)
1080 				return -EINVAL;
1081 			break;
1082 		case BPF_LD | BPF_MEM:
1083 		case BPF_LDX | BPF_MEM:
1084 		case BPF_ST:
1085 		case BPF_STX:
1086 			/* Check for invalid memory addresses */
1087 			if (ftest->k >= BPF_MEMWORDS)
1088 				return -EINVAL;
1089 			break;
1090 		case BPF_JMP | BPF_JA:
1091 			/* Note, the large ftest->k might cause loops.
1092 			 * Compare this with conditional jumps below,
1093 			 * where offsets are limited. --ANK (981016)
1094 			 */
1095 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1096 				return -EINVAL;
1097 			break;
1098 		case BPF_JMP | BPF_JEQ | BPF_K:
1099 		case BPF_JMP | BPF_JEQ | BPF_X:
1100 		case BPF_JMP | BPF_JGE | BPF_K:
1101 		case BPF_JMP | BPF_JGE | BPF_X:
1102 		case BPF_JMP | BPF_JGT | BPF_K:
1103 		case BPF_JMP | BPF_JGT | BPF_X:
1104 		case BPF_JMP | BPF_JSET | BPF_K:
1105 		case BPF_JMP | BPF_JSET | BPF_X:
1106 			/* Both conditionals must be safe */
1107 			if (pc + ftest->jt + 1 >= flen ||
1108 			    pc + ftest->jf + 1 >= flen)
1109 				return -EINVAL;
1110 			break;
1111 		case BPF_LD | BPF_W | BPF_ABS:
1112 		case BPF_LD | BPF_H | BPF_ABS:
1113 		case BPF_LD | BPF_B | BPF_ABS:
1114 			anc_found = false;
1115 			if (bpf_anc_helper(ftest) & BPF_ANC)
1116 				anc_found = true;
1117 			/* Ancillary operation unknown or unsupported */
1118 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1119 				return -EINVAL;
1120 		}
1121 	}
1122 
1123 	/* Last instruction must be a RET code */
1124 	switch (filter[flen - 1].code) {
1125 	case BPF_RET | BPF_K:
1126 	case BPF_RET | BPF_A:
1127 		return check_load_and_stores(filter, flen);
1128 	}
1129 
1130 	return -EINVAL;
1131 }
1132 
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1133 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1134 				      const struct sock_fprog *fprog)
1135 {
1136 	unsigned int fsize = bpf_classic_proglen(fprog);
1137 	struct sock_fprog_kern *fkprog;
1138 
1139 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1140 	if (!fp->orig_prog)
1141 		return -ENOMEM;
1142 
1143 	fkprog = fp->orig_prog;
1144 	fkprog->len = fprog->len;
1145 
1146 	fkprog->filter = kmemdup(fp->insns, fsize,
1147 				 GFP_KERNEL | __GFP_NOWARN);
1148 	if (!fkprog->filter) {
1149 		kfree(fp->orig_prog);
1150 		return -ENOMEM;
1151 	}
1152 
1153 	return 0;
1154 }
1155 
bpf_release_orig_filter(struct bpf_prog * fp)1156 static void bpf_release_orig_filter(struct bpf_prog *fp)
1157 {
1158 	struct sock_fprog_kern *fprog = fp->orig_prog;
1159 
1160 	if (fprog) {
1161 		kfree(fprog->filter);
1162 		kfree(fprog);
1163 	}
1164 }
1165 
__bpf_prog_release(struct bpf_prog * prog)1166 static void __bpf_prog_release(struct bpf_prog *prog)
1167 {
1168 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1169 		bpf_prog_put(prog);
1170 	} else {
1171 		bpf_release_orig_filter(prog);
1172 		bpf_prog_free(prog);
1173 	}
1174 }
1175 
__sk_filter_release(struct sk_filter * fp)1176 static void __sk_filter_release(struct sk_filter *fp)
1177 {
1178 	__bpf_prog_release(fp->prog);
1179 	kfree(fp);
1180 }
1181 
1182 /**
1183  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1184  *	@rcu: rcu_head that contains the sk_filter to free
1185  */
sk_filter_release_rcu(struct rcu_head * rcu)1186 static void sk_filter_release_rcu(struct rcu_head *rcu)
1187 {
1188 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1189 
1190 	__sk_filter_release(fp);
1191 }
1192 
1193 /**
1194  *	sk_filter_release - release a socket filter
1195  *	@fp: filter to remove
1196  *
1197  *	Remove a filter from a socket and release its resources.
1198  */
sk_filter_release(struct sk_filter * fp)1199 static void sk_filter_release(struct sk_filter *fp)
1200 {
1201 	if (refcount_dec_and_test(&fp->refcnt))
1202 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1203 }
1204 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1205 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1206 {
1207 	u32 filter_size = bpf_prog_size(fp->prog->len);
1208 
1209 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1210 	sk_filter_release(fp);
1211 }
1212 
1213 /* try to charge the socket memory if there is space available
1214  * return true on success
1215  */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1216 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1217 {
1218 	u32 filter_size = bpf_prog_size(fp->prog->len);
1219 	int optmem_max = READ_ONCE(sysctl_optmem_max);
1220 
1221 	/* same check as in sock_kmalloc() */
1222 	if (filter_size <= optmem_max &&
1223 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1224 		atomic_add(filter_size, &sk->sk_omem_alloc);
1225 		return true;
1226 	}
1227 	return false;
1228 }
1229 
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1230 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1231 {
1232 	if (!refcount_inc_not_zero(&fp->refcnt))
1233 		return false;
1234 
1235 	if (!__sk_filter_charge(sk, fp)) {
1236 		sk_filter_release(fp);
1237 		return false;
1238 	}
1239 	return true;
1240 }
1241 
bpf_migrate_filter(struct bpf_prog * fp)1242 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1243 {
1244 	struct sock_filter *old_prog;
1245 	struct bpf_prog *old_fp;
1246 	int err, new_len, old_len = fp->len;
1247 	bool seen_ld_abs = false;
1248 
1249 	/* We are free to overwrite insns et al right here as it won't be used at
1250 	 * this point in time anymore internally after the migration to the eBPF
1251 	 * instruction representation.
1252 	 */
1253 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1254 		     sizeof(struct bpf_insn));
1255 
1256 	/* Conversion cannot happen on overlapping memory areas,
1257 	 * so we need to keep the user BPF around until the 2nd
1258 	 * pass. At this time, the user BPF is stored in fp->insns.
1259 	 */
1260 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1261 			   GFP_KERNEL | __GFP_NOWARN);
1262 	if (!old_prog) {
1263 		err = -ENOMEM;
1264 		goto out_err;
1265 	}
1266 
1267 	/* 1st pass: calculate the new program length. */
1268 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1269 				 &seen_ld_abs);
1270 	if (err)
1271 		goto out_err_free;
1272 
1273 	/* Expand fp for appending the new filter representation. */
1274 	old_fp = fp;
1275 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1276 	if (!fp) {
1277 		/* The old_fp is still around in case we couldn't
1278 		 * allocate new memory, so uncharge on that one.
1279 		 */
1280 		fp = old_fp;
1281 		err = -ENOMEM;
1282 		goto out_err_free;
1283 	}
1284 
1285 	fp->len = new_len;
1286 
1287 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1288 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1289 				 &seen_ld_abs);
1290 	if (err)
1291 		/* 2nd bpf_convert_filter() can fail only if it fails
1292 		 * to allocate memory, remapping must succeed. Note,
1293 		 * that at this time old_fp has already been released
1294 		 * by krealloc().
1295 		 */
1296 		goto out_err_free;
1297 
1298 	fp = bpf_prog_select_runtime(fp, &err);
1299 	if (err)
1300 		goto out_err_free;
1301 
1302 	kfree(old_prog);
1303 	return fp;
1304 
1305 out_err_free:
1306 	kfree(old_prog);
1307 out_err:
1308 	__bpf_prog_release(fp);
1309 	return ERR_PTR(err);
1310 }
1311 
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1312 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1313 					   bpf_aux_classic_check_t trans)
1314 {
1315 	int err;
1316 
1317 	fp->bpf_func = NULL;
1318 	fp->jited = 0;
1319 
1320 	err = bpf_check_classic(fp->insns, fp->len);
1321 	if (err) {
1322 		__bpf_prog_release(fp);
1323 		return ERR_PTR(err);
1324 	}
1325 
1326 	/* There might be additional checks and transformations
1327 	 * needed on classic filters, f.e. in case of seccomp.
1328 	 */
1329 	if (trans) {
1330 		err = trans(fp->insns, fp->len);
1331 		if (err) {
1332 			__bpf_prog_release(fp);
1333 			return ERR_PTR(err);
1334 		}
1335 	}
1336 
1337 	/* Probe if we can JIT compile the filter and if so, do
1338 	 * the compilation of the filter.
1339 	 */
1340 	bpf_jit_compile(fp);
1341 
1342 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1343 	 * for the optimized interpreter.
1344 	 */
1345 	if (!fp->jited)
1346 		fp = bpf_migrate_filter(fp);
1347 
1348 	return fp;
1349 }
1350 
1351 /**
1352  *	bpf_prog_create - create an unattached filter
1353  *	@pfp: the unattached filter that is created
1354  *	@fprog: the filter program
1355  *
1356  * Create a filter independent of any socket. We first run some
1357  * sanity checks on it to make sure it does not explode on us later.
1358  * If an error occurs or there is insufficient memory for the filter
1359  * a negative errno code is returned. On success the return is zero.
1360  */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1361 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1362 {
1363 	unsigned int fsize = bpf_classic_proglen(fprog);
1364 	struct bpf_prog *fp;
1365 
1366 	/* Make sure new filter is there and in the right amounts. */
1367 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1368 		return -EINVAL;
1369 
1370 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1371 	if (!fp)
1372 		return -ENOMEM;
1373 
1374 	memcpy(fp->insns, fprog->filter, fsize);
1375 
1376 	fp->len = fprog->len;
1377 	/* Since unattached filters are not copied back to user
1378 	 * space through sk_get_filter(), we do not need to hold
1379 	 * a copy here, and can spare us the work.
1380 	 */
1381 	fp->orig_prog = NULL;
1382 
1383 	/* bpf_prepare_filter() already takes care of freeing
1384 	 * memory in case something goes wrong.
1385 	 */
1386 	fp = bpf_prepare_filter(fp, NULL);
1387 	if (IS_ERR(fp))
1388 		return PTR_ERR(fp);
1389 
1390 	*pfp = fp;
1391 	return 0;
1392 }
1393 EXPORT_SYMBOL_GPL(bpf_prog_create);
1394 
1395 /**
1396  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1397  *	@pfp: the unattached filter that is created
1398  *	@fprog: the filter program
1399  *	@trans: post-classic verifier transformation handler
1400  *	@save_orig: save classic BPF program
1401  *
1402  * This function effectively does the same as bpf_prog_create(), only
1403  * that it builds up its insns buffer from user space provided buffer.
1404  * It also allows for passing a bpf_aux_classic_check_t handler.
1405  */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1406 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1407 			      bpf_aux_classic_check_t trans, bool save_orig)
1408 {
1409 	unsigned int fsize = bpf_classic_proglen(fprog);
1410 	struct bpf_prog *fp;
1411 	int err;
1412 
1413 	/* Make sure new filter is there and in the right amounts. */
1414 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1415 		return -EINVAL;
1416 
1417 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1418 	if (!fp)
1419 		return -ENOMEM;
1420 
1421 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1422 		__bpf_prog_free(fp);
1423 		return -EFAULT;
1424 	}
1425 
1426 	fp->len = fprog->len;
1427 	fp->orig_prog = NULL;
1428 
1429 	if (save_orig) {
1430 		err = bpf_prog_store_orig_filter(fp, fprog);
1431 		if (err) {
1432 			__bpf_prog_free(fp);
1433 			return -ENOMEM;
1434 		}
1435 	}
1436 
1437 	/* bpf_prepare_filter() already takes care of freeing
1438 	 * memory in case something goes wrong.
1439 	 */
1440 	fp = bpf_prepare_filter(fp, trans);
1441 	if (IS_ERR(fp))
1442 		return PTR_ERR(fp);
1443 
1444 	*pfp = fp;
1445 	return 0;
1446 }
1447 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1448 
bpf_prog_destroy(struct bpf_prog * fp)1449 void bpf_prog_destroy(struct bpf_prog *fp)
1450 {
1451 	__bpf_prog_release(fp);
1452 }
1453 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1454 
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1455 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1456 {
1457 	struct sk_filter *fp, *old_fp;
1458 
1459 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1460 	if (!fp)
1461 		return -ENOMEM;
1462 
1463 	fp->prog = prog;
1464 
1465 	if (!__sk_filter_charge(sk, fp)) {
1466 		kfree(fp);
1467 		return -ENOMEM;
1468 	}
1469 	refcount_set(&fp->refcnt, 1);
1470 
1471 	old_fp = rcu_dereference_protected(sk->sk_filter,
1472 					   lockdep_sock_is_held(sk));
1473 	rcu_assign_pointer(sk->sk_filter, fp);
1474 
1475 	if (old_fp)
1476 		sk_filter_uncharge(sk, old_fp);
1477 
1478 	return 0;
1479 }
1480 
1481 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1482 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1483 {
1484 	unsigned int fsize = bpf_classic_proglen(fprog);
1485 	struct bpf_prog *prog;
1486 	int err;
1487 
1488 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1489 		return ERR_PTR(-EPERM);
1490 
1491 	/* Make sure new filter is there and in the right amounts. */
1492 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1493 		return ERR_PTR(-EINVAL);
1494 
1495 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1496 	if (!prog)
1497 		return ERR_PTR(-ENOMEM);
1498 
1499 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1500 		__bpf_prog_free(prog);
1501 		return ERR_PTR(-EFAULT);
1502 	}
1503 
1504 	prog->len = fprog->len;
1505 
1506 	err = bpf_prog_store_orig_filter(prog, fprog);
1507 	if (err) {
1508 		__bpf_prog_free(prog);
1509 		return ERR_PTR(-ENOMEM);
1510 	}
1511 
1512 	/* bpf_prepare_filter() already takes care of freeing
1513 	 * memory in case something goes wrong.
1514 	 */
1515 	return bpf_prepare_filter(prog, NULL);
1516 }
1517 
1518 /**
1519  *	sk_attach_filter - attach a socket filter
1520  *	@fprog: the filter program
1521  *	@sk: the socket to use
1522  *
1523  * Attach the user's filter code. We first run some sanity checks on
1524  * it to make sure it does not explode on us later. If an error
1525  * occurs or there is insufficient memory for the filter a negative
1526  * errno code is returned. On success the return is zero.
1527  */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1528 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1529 {
1530 	struct bpf_prog *prog = __get_filter(fprog, sk);
1531 	int err;
1532 
1533 	if (IS_ERR(prog))
1534 		return PTR_ERR(prog);
1535 
1536 	err = __sk_attach_prog(prog, sk);
1537 	if (err < 0) {
1538 		__bpf_prog_release(prog);
1539 		return err;
1540 	}
1541 
1542 	return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(sk_attach_filter);
1545 
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1546 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1547 {
1548 	struct bpf_prog *prog = __get_filter(fprog, sk);
1549 	int err;
1550 
1551 	if (IS_ERR(prog))
1552 		return PTR_ERR(prog);
1553 
1554 	if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1555 		err = -ENOMEM;
1556 	else
1557 		err = reuseport_attach_prog(sk, prog);
1558 
1559 	if (err)
1560 		__bpf_prog_release(prog);
1561 
1562 	return err;
1563 }
1564 
__get_bpf(u32 ufd,struct sock * sk)1565 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1566 {
1567 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1568 		return ERR_PTR(-EPERM);
1569 
1570 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1571 }
1572 
sk_attach_bpf(u32 ufd,struct sock * sk)1573 int sk_attach_bpf(u32 ufd, struct sock *sk)
1574 {
1575 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1576 	int err;
1577 
1578 	if (IS_ERR(prog))
1579 		return PTR_ERR(prog);
1580 
1581 	err = __sk_attach_prog(prog, sk);
1582 	if (err < 0) {
1583 		bpf_prog_put(prog);
1584 		return err;
1585 	}
1586 
1587 	return 0;
1588 }
1589 
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1590 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1591 {
1592 	struct bpf_prog *prog;
1593 	int err;
1594 
1595 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1596 		return -EPERM;
1597 
1598 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1599 	if (PTR_ERR(prog) == -EINVAL)
1600 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1601 	if (IS_ERR(prog))
1602 		return PTR_ERR(prog);
1603 
1604 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1605 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1606 		 * bpf prog (e.g. sockmap).  It depends on the
1607 		 * limitation imposed by bpf_prog_load().
1608 		 * Hence, sysctl_optmem_max is not checked.
1609 		 */
1610 		if ((sk->sk_type != SOCK_STREAM &&
1611 		     sk->sk_type != SOCK_DGRAM) ||
1612 		    (sk->sk_protocol != IPPROTO_UDP &&
1613 		     sk->sk_protocol != IPPROTO_TCP) ||
1614 		    (sk->sk_family != AF_INET &&
1615 		     sk->sk_family != AF_INET6)) {
1616 			err = -ENOTSUPP;
1617 			goto err_prog_put;
1618 		}
1619 	} else {
1620 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1621 		if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1622 			err = -ENOMEM;
1623 			goto err_prog_put;
1624 		}
1625 	}
1626 
1627 	err = reuseport_attach_prog(sk, prog);
1628 err_prog_put:
1629 	if (err)
1630 		bpf_prog_put(prog);
1631 
1632 	return err;
1633 }
1634 
sk_reuseport_prog_free(struct bpf_prog * prog)1635 void sk_reuseport_prog_free(struct bpf_prog *prog)
1636 {
1637 	if (!prog)
1638 		return;
1639 
1640 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1641 		bpf_prog_put(prog);
1642 	else
1643 		bpf_prog_destroy(prog);
1644 }
1645 
1646 struct bpf_scratchpad {
1647 	union {
1648 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1649 		u8     buff[MAX_BPF_STACK];
1650 	};
1651 };
1652 
1653 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1654 
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1655 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1656 					  unsigned int write_len)
1657 {
1658 	return skb_ensure_writable(skb, write_len);
1659 }
1660 
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1661 static inline int bpf_try_make_writable(struct sk_buff *skb,
1662 					unsigned int write_len)
1663 {
1664 	int err = __bpf_try_make_writable(skb, write_len);
1665 
1666 	bpf_compute_data_pointers(skb);
1667 	return err;
1668 }
1669 
bpf_try_make_head_writable(struct sk_buff * skb)1670 static int bpf_try_make_head_writable(struct sk_buff *skb)
1671 {
1672 	return bpf_try_make_writable(skb, skb_headlen(skb));
1673 }
1674 
bpf_push_mac_rcsum(struct sk_buff * skb)1675 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1676 {
1677 	if (skb_at_tc_ingress(skb))
1678 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1679 }
1680 
bpf_pull_mac_rcsum(struct sk_buff * skb)1681 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1682 {
1683 	if (skb_at_tc_ingress(skb))
1684 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1685 }
1686 
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1687 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1688 	   const void *, from, u32, len, u64, flags)
1689 {
1690 	void *ptr;
1691 
1692 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1693 		return -EINVAL;
1694 	if (unlikely(offset > INT_MAX))
1695 		return -EFAULT;
1696 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1697 		return -EFAULT;
1698 
1699 	ptr = skb->data + offset;
1700 	if (flags & BPF_F_RECOMPUTE_CSUM)
1701 		__skb_postpull_rcsum(skb, ptr, len, offset);
1702 
1703 	memcpy(ptr, from, len);
1704 
1705 	if (flags & BPF_F_RECOMPUTE_CSUM)
1706 		__skb_postpush_rcsum(skb, ptr, len, offset);
1707 	if (flags & BPF_F_INVALIDATE_HASH)
1708 		skb_clear_hash(skb);
1709 
1710 	return 0;
1711 }
1712 
1713 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1714 	.func		= bpf_skb_store_bytes,
1715 	.gpl_only	= false,
1716 	.ret_type	= RET_INTEGER,
1717 	.arg1_type	= ARG_PTR_TO_CTX,
1718 	.arg2_type	= ARG_ANYTHING,
1719 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1720 	.arg4_type	= ARG_CONST_SIZE,
1721 	.arg5_type	= ARG_ANYTHING,
1722 };
1723 
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1724 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1725 	   void *, to, u32, len)
1726 {
1727 	void *ptr;
1728 
1729 	if (unlikely(offset > INT_MAX))
1730 		goto err_clear;
1731 
1732 	ptr = skb_header_pointer(skb, offset, len, to);
1733 	if (unlikely(!ptr))
1734 		goto err_clear;
1735 	if (ptr != to)
1736 		memcpy(to, ptr, len);
1737 
1738 	return 0;
1739 err_clear:
1740 	memset(to, 0, len);
1741 	return -EFAULT;
1742 }
1743 
1744 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1745 	.func		= bpf_skb_load_bytes,
1746 	.gpl_only	= false,
1747 	.ret_type	= RET_INTEGER,
1748 	.arg1_type	= ARG_PTR_TO_CTX,
1749 	.arg2_type	= ARG_ANYTHING,
1750 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1751 	.arg4_type	= ARG_CONST_SIZE,
1752 };
1753 
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1754 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1755 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1756 	   void *, to, u32, len)
1757 {
1758 	void *ptr;
1759 
1760 	if (unlikely(offset > 0xffff))
1761 		goto err_clear;
1762 
1763 	if (unlikely(!ctx->skb))
1764 		goto err_clear;
1765 
1766 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1767 	if (unlikely(!ptr))
1768 		goto err_clear;
1769 	if (ptr != to)
1770 		memcpy(to, ptr, len);
1771 
1772 	return 0;
1773 err_clear:
1774 	memset(to, 0, len);
1775 	return -EFAULT;
1776 }
1777 
1778 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1779 	.func		= bpf_flow_dissector_load_bytes,
1780 	.gpl_only	= false,
1781 	.ret_type	= RET_INTEGER,
1782 	.arg1_type	= ARG_PTR_TO_CTX,
1783 	.arg2_type	= ARG_ANYTHING,
1784 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1785 	.arg4_type	= ARG_CONST_SIZE,
1786 };
1787 
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1788 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1789 	   u32, offset, void *, to, u32, len, u32, start_header)
1790 {
1791 	u8 *end = skb_tail_pointer(skb);
1792 	u8 *start, *ptr;
1793 
1794 	if (unlikely(offset > 0xffff))
1795 		goto err_clear;
1796 
1797 	switch (start_header) {
1798 	case BPF_HDR_START_MAC:
1799 		if (unlikely(!skb_mac_header_was_set(skb)))
1800 			goto err_clear;
1801 		start = skb_mac_header(skb);
1802 		break;
1803 	case BPF_HDR_START_NET:
1804 		start = skb_network_header(skb);
1805 		break;
1806 	default:
1807 		goto err_clear;
1808 	}
1809 
1810 	ptr = start + offset;
1811 
1812 	if (likely(ptr + len <= end)) {
1813 		memcpy(to, ptr, len);
1814 		return 0;
1815 	}
1816 
1817 err_clear:
1818 	memset(to, 0, len);
1819 	return -EFAULT;
1820 }
1821 
1822 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1823 	.func		= bpf_skb_load_bytes_relative,
1824 	.gpl_only	= false,
1825 	.ret_type	= RET_INTEGER,
1826 	.arg1_type	= ARG_PTR_TO_CTX,
1827 	.arg2_type	= ARG_ANYTHING,
1828 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1829 	.arg4_type	= ARG_CONST_SIZE,
1830 	.arg5_type	= ARG_ANYTHING,
1831 };
1832 
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1833 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1834 {
1835 	/* Idea is the following: should the needed direct read/write
1836 	 * test fail during runtime, we can pull in more data and redo
1837 	 * again, since implicitly, we invalidate previous checks here.
1838 	 *
1839 	 * Or, since we know how much we need to make read/writeable,
1840 	 * this can be done once at the program beginning for direct
1841 	 * access case. By this we overcome limitations of only current
1842 	 * headroom being accessible.
1843 	 */
1844 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1845 }
1846 
1847 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1848 	.func		= bpf_skb_pull_data,
1849 	.gpl_only	= false,
1850 	.ret_type	= RET_INTEGER,
1851 	.arg1_type	= ARG_PTR_TO_CTX,
1852 	.arg2_type	= ARG_ANYTHING,
1853 };
1854 
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1855 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1856 {
1857 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1858 }
1859 
1860 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1861 	.func		= bpf_sk_fullsock,
1862 	.gpl_only	= false,
1863 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1864 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1865 };
1866 
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1867 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1868 					   unsigned int write_len)
1869 {
1870 	return __bpf_try_make_writable(skb, write_len);
1871 }
1872 
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1873 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1874 {
1875 	/* Idea is the following: should the needed direct read/write
1876 	 * test fail during runtime, we can pull in more data and redo
1877 	 * again, since implicitly, we invalidate previous checks here.
1878 	 *
1879 	 * Or, since we know how much we need to make read/writeable,
1880 	 * this can be done once at the program beginning for direct
1881 	 * access case. By this we overcome limitations of only current
1882 	 * headroom being accessible.
1883 	 */
1884 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1885 }
1886 
1887 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1888 	.func		= sk_skb_pull_data,
1889 	.gpl_only	= false,
1890 	.ret_type	= RET_INTEGER,
1891 	.arg1_type	= ARG_PTR_TO_CTX,
1892 	.arg2_type	= ARG_ANYTHING,
1893 };
1894 
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1895 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1896 	   u64, from, u64, to, u64, flags)
1897 {
1898 	__sum16 *ptr;
1899 
1900 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1901 		return -EINVAL;
1902 	if (unlikely(offset > 0xffff || offset & 1))
1903 		return -EFAULT;
1904 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1905 		return -EFAULT;
1906 
1907 	ptr = (__sum16 *)(skb->data + offset);
1908 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1909 	case 0:
1910 		if (unlikely(from != 0))
1911 			return -EINVAL;
1912 
1913 		csum_replace_by_diff(ptr, to);
1914 		break;
1915 	case 2:
1916 		csum_replace2(ptr, from, to);
1917 		break;
1918 	case 4:
1919 		csum_replace4(ptr, from, to);
1920 		break;
1921 	default:
1922 		return -EINVAL;
1923 	}
1924 
1925 	return 0;
1926 }
1927 
1928 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1929 	.func		= bpf_l3_csum_replace,
1930 	.gpl_only	= false,
1931 	.ret_type	= RET_INTEGER,
1932 	.arg1_type	= ARG_PTR_TO_CTX,
1933 	.arg2_type	= ARG_ANYTHING,
1934 	.arg3_type	= ARG_ANYTHING,
1935 	.arg4_type	= ARG_ANYTHING,
1936 	.arg5_type	= ARG_ANYTHING,
1937 };
1938 
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1939 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1940 	   u64, from, u64, to, u64, flags)
1941 {
1942 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1943 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1944 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1945 	__sum16 *ptr;
1946 
1947 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1948 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1949 		return -EINVAL;
1950 	if (unlikely(offset > 0xffff || offset & 1))
1951 		return -EFAULT;
1952 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1953 		return -EFAULT;
1954 
1955 	ptr = (__sum16 *)(skb->data + offset);
1956 	if (is_mmzero && !do_mforce && !*ptr)
1957 		return 0;
1958 
1959 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1960 	case 0:
1961 		if (unlikely(from != 0))
1962 			return -EINVAL;
1963 
1964 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1965 		break;
1966 	case 2:
1967 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1968 		break;
1969 	case 4:
1970 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1971 		break;
1972 	default:
1973 		return -EINVAL;
1974 	}
1975 
1976 	if (is_mmzero && !*ptr)
1977 		*ptr = CSUM_MANGLED_0;
1978 	return 0;
1979 }
1980 
1981 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1982 	.func		= bpf_l4_csum_replace,
1983 	.gpl_only	= false,
1984 	.ret_type	= RET_INTEGER,
1985 	.arg1_type	= ARG_PTR_TO_CTX,
1986 	.arg2_type	= ARG_ANYTHING,
1987 	.arg3_type	= ARG_ANYTHING,
1988 	.arg4_type	= ARG_ANYTHING,
1989 	.arg5_type	= ARG_ANYTHING,
1990 };
1991 
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)1992 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1993 	   __be32 *, to, u32, to_size, __wsum, seed)
1994 {
1995 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1996 	u32 diff_size = from_size + to_size;
1997 	int i, j = 0;
1998 
1999 	/* This is quite flexible, some examples:
2000 	 *
2001 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2002 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2003 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2004 	 *
2005 	 * Even for diffing, from_size and to_size don't need to be equal.
2006 	 */
2007 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2008 		     diff_size > sizeof(sp->diff)))
2009 		return -EINVAL;
2010 
2011 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2012 		sp->diff[j] = ~from[i];
2013 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2014 		sp->diff[j] = to[i];
2015 
2016 	return csum_partial(sp->diff, diff_size, seed);
2017 }
2018 
2019 static const struct bpf_func_proto bpf_csum_diff_proto = {
2020 	.func		= bpf_csum_diff,
2021 	.gpl_only	= false,
2022 	.pkt_access	= true,
2023 	.ret_type	= RET_INTEGER,
2024 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2025 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2026 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2027 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2028 	.arg5_type	= ARG_ANYTHING,
2029 };
2030 
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2031 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2032 {
2033 	/* The interface is to be used in combination with bpf_csum_diff()
2034 	 * for direct packet writes. csum rotation for alignment as well
2035 	 * as emulating csum_sub() can be done from the eBPF program.
2036 	 */
2037 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2038 		return (skb->csum = csum_add(skb->csum, csum));
2039 
2040 	return -ENOTSUPP;
2041 }
2042 
2043 static const struct bpf_func_proto bpf_csum_update_proto = {
2044 	.func		= bpf_csum_update,
2045 	.gpl_only	= false,
2046 	.ret_type	= RET_INTEGER,
2047 	.arg1_type	= ARG_PTR_TO_CTX,
2048 	.arg2_type	= ARG_ANYTHING,
2049 };
2050 
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2051 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2052 {
2053 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2054 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2055 	 * is passed as flags, for example.
2056 	 */
2057 	switch (level) {
2058 	case BPF_CSUM_LEVEL_INC:
2059 		__skb_incr_checksum_unnecessary(skb);
2060 		break;
2061 	case BPF_CSUM_LEVEL_DEC:
2062 		__skb_decr_checksum_unnecessary(skb);
2063 		break;
2064 	case BPF_CSUM_LEVEL_RESET:
2065 		__skb_reset_checksum_unnecessary(skb);
2066 		break;
2067 	case BPF_CSUM_LEVEL_QUERY:
2068 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2069 		       skb->csum_level : -EACCES;
2070 	default:
2071 		return -EINVAL;
2072 	}
2073 
2074 	return 0;
2075 }
2076 
2077 static const struct bpf_func_proto bpf_csum_level_proto = {
2078 	.func		= bpf_csum_level,
2079 	.gpl_only	= false,
2080 	.ret_type	= RET_INTEGER,
2081 	.arg1_type	= ARG_PTR_TO_CTX,
2082 	.arg2_type	= ARG_ANYTHING,
2083 };
2084 
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2085 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2086 {
2087 	return dev_forward_skb_nomtu(dev, skb);
2088 }
2089 
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2090 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2091 				      struct sk_buff *skb)
2092 {
2093 	int ret = ____dev_forward_skb(dev, skb, false);
2094 
2095 	if (likely(!ret)) {
2096 		skb->dev = dev;
2097 		ret = netif_rx(skb);
2098 	}
2099 
2100 	return ret;
2101 }
2102 
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2103 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2104 {
2105 	int ret;
2106 
2107 	if (dev_xmit_recursion()) {
2108 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2109 		kfree_skb(skb);
2110 		return -ENETDOWN;
2111 	}
2112 
2113 	skb->dev = dev;
2114 	skb_clear_tstamp(skb);
2115 
2116 	dev_xmit_recursion_inc();
2117 	ret = dev_queue_xmit(skb);
2118 	dev_xmit_recursion_dec();
2119 
2120 	return ret;
2121 }
2122 
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2123 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2124 				 u32 flags)
2125 {
2126 	unsigned int mlen = skb_network_offset(skb);
2127 
2128 	if (unlikely(skb->len <= mlen)) {
2129 		kfree_skb(skb);
2130 		return -ERANGE;
2131 	}
2132 
2133 	if (mlen) {
2134 		__skb_pull(skb, mlen);
2135 		if (unlikely(!skb->len)) {
2136 			kfree_skb(skb);
2137 			return -ERANGE;
2138 		}
2139 
2140 		/* At ingress, the mac header has already been pulled once.
2141 		 * At egress, skb_pospull_rcsum has to be done in case that
2142 		 * the skb is originated from ingress (i.e. a forwarded skb)
2143 		 * to ensure that rcsum starts at net header.
2144 		 */
2145 		if (!skb_at_tc_ingress(skb))
2146 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2147 	}
2148 	skb_pop_mac_header(skb);
2149 	skb_reset_mac_len(skb);
2150 	return flags & BPF_F_INGRESS ?
2151 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2152 }
2153 
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2154 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2155 				 u32 flags)
2156 {
2157 	/* Verify that a link layer header is carried */
2158 	if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2159 		kfree_skb(skb);
2160 		return -ERANGE;
2161 	}
2162 
2163 	bpf_push_mac_rcsum(skb);
2164 	return flags & BPF_F_INGRESS ?
2165 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2166 }
2167 
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2168 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2169 			  u32 flags)
2170 {
2171 	if (dev_is_mac_header_xmit(dev))
2172 		return __bpf_redirect_common(skb, dev, flags);
2173 	else
2174 		return __bpf_redirect_no_mac(skb, dev, flags);
2175 }
2176 
2177 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2178 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2179 			    struct net_device *dev, struct bpf_nh_params *nh)
2180 {
2181 	u32 hh_len = LL_RESERVED_SPACE(dev);
2182 	const struct in6_addr *nexthop;
2183 	struct dst_entry *dst = NULL;
2184 	struct neighbour *neigh;
2185 
2186 	if (dev_xmit_recursion()) {
2187 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2188 		goto out_drop;
2189 	}
2190 
2191 	skb->dev = dev;
2192 	skb_clear_tstamp(skb);
2193 
2194 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2195 		skb = skb_expand_head(skb, hh_len);
2196 		if (!skb)
2197 			return -ENOMEM;
2198 	}
2199 
2200 	rcu_read_lock();
2201 	if (!nh) {
2202 		dst = skb_dst(skb);
2203 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2204 				      &ipv6_hdr(skb)->daddr);
2205 	} else {
2206 		nexthop = &nh->ipv6_nh;
2207 	}
2208 	neigh = ip_neigh_gw6(dev, nexthop);
2209 	if (likely(!IS_ERR(neigh))) {
2210 		int ret;
2211 
2212 		sock_confirm_neigh(skb, neigh);
2213 		local_bh_disable();
2214 		dev_xmit_recursion_inc();
2215 		ret = neigh_output(neigh, skb, false);
2216 		dev_xmit_recursion_dec();
2217 		local_bh_enable();
2218 		rcu_read_unlock();
2219 		return ret;
2220 	}
2221 	rcu_read_unlock_bh();
2222 	if (dst)
2223 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2224 out_drop:
2225 	kfree_skb(skb);
2226 	return -ENETDOWN;
2227 }
2228 
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2229 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2230 				   struct bpf_nh_params *nh)
2231 {
2232 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2233 	struct net *net = dev_net(dev);
2234 	int err, ret = NET_XMIT_DROP;
2235 
2236 	if (!nh) {
2237 		struct dst_entry *dst;
2238 		struct flowi6 fl6 = {
2239 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2240 			.flowi6_mark  = skb->mark,
2241 			.flowlabel    = ip6_flowinfo(ip6h),
2242 			.flowi6_oif   = dev->ifindex,
2243 			.flowi6_proto = ip6h->nexthdr,
2244 			.daddr	      = ip6h->daddr,
2245 			.saddr	      = ip6h->saddr,
2246 		};
2247 
2248 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2249 		if (IS_ERR(dst))
2250 			goto out_drop;
2251 
2252 		skb_dst_set(skb, dst);
2253 	} else if (nh->nh_family != AF_INET6) {
2254 		goto out_drop;
2255 	}
2256 
2257 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2258 	if (unlikely(net_xmit_eval(err)))
2259 		dev->stats.tx_errors++;
2260 	else
2261 		ret = NET_XMIT_SUCCESS;
2262 	goto out_xmit;
2263 out_drop:
2264 	dev->stats.tx_errors++;
2265 	kfree_skb(skb);
2266 out_xmit:
2267 	return ret;
2268 }
2269 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2270 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2271 				   struct bpf_nh_params *nh)
2272 {
2273 	kfree_skb(skb);
2274 	return NET_XMIT_DROP;
2275 }
2276 #endif /* CONFIG_IPV6 */
2277 
2278 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2279 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2280 			    struct net_device *dev, struct bpf_nh_params *nh)
2281 {
2282 	u32 hh_len = LL_RESERVED_SPACE(dev);
2283 	struct neighbour *neigh;
2284 	bool is_v6gw = false;
2285 
2286 	if (dev_xmit_recursion()) {
2287 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2288 		goto out_drop;
2289 	}
2290 
2291 	skb->dev = dev;
2292 	skb_clear_tstamp(skb);
2293 
2294 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2295 		skb = skb_expand_head(skb, hh_len);
2296 		if (!skb)
2297 			return -ENOMEM;
2298 	}
2299 
2300 	rcu_read_lock();
2301 	if (!nh) {
2302 		struct dst_entry *dst = skb_dst(skb);
2303 		struct rtable *rt = container_of(dst, struct rtable, dst);
2304 
2305 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2306 	} else if (nh->nh_family == AF_INET6) {
2307 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2308 		is_v6gw = true;
2309 	} else if (nh->nh_family == AF_INET) {
2310 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2311 	} else {
2312 		rcu_read_unlock();
2313 		goto out_drop;
2314 	}
2315 
2316 	if (likely(!IS_ERR(neigh))) {
2317 		int ret;
2318 
2319 		sock_confirm_neigh(skb, neigh);
2320 		local_bh_disable();
2321 		dev_xmit_recursion_inc();
2322 		ret = neigh_output(neigh, skb, is_v6gw);
2323 		dev_xmit_recursion_dec();
2324 		local_bh_enable();
2325 		rcu_read_unlock();
2326 		return ret;
2327 	}
2328 	rcu_read_unlock();
2329 out_drop:
2330 	kfree_skb(skb);
2331 	return -ENETDOWN;
2332 }
2333 
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2334 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2335 				   struct bpf_nh_params *nh)
2336 {
2337 	const struct iphdr *ip4h = ip_hdr(skb);
2338 	struct net *net = dev_net(dev);
2339 	int err, ret = NET_XMIT_DROP;
2340 
2341 	if (!nh) {
2342 		struct flowi4 fl4 = {
2343 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2344 			.flowi4_mark  = skb->mark,
2345 			.flowi4_tos   = RT_TOS(ip4h->tos),
2346 			.flowi4_oif   = dev->ifindex,
2347 			.flowi4_proto = ip4h->protocol,
2348 			.daddr	      = ip4h->daddr,
2349 			.saddr	      = ip4h->saddr,
2350 		};
2351 		struct rtable *rt;
2352 
2353 		rt = ip_route_output_flow(net, &fl4, NULL);
2354 		if (IS_ERR(rt))
2355 			goto out_drop;
2356 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2357 			ip_rt_put(rt);
2358 			goto out_drop;
2359 		}
2360 
2361 		skb_dst_set(skb, &rt->dst);
2362 	}
2363 
2364 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2365 	if (unlikely(net_xmit_eval(err)))
2366 		dev->stats.tx_errors++;
2367 	else
2368 		ret = NET_XMIT_SUCCESS;
2369 	goto out_xmit;
2370 out_drop:
2371 	dev->stats.tx_errors++;
2372 	kfree_skb(skb);
2373 out_xmit:
2374 	return ret;
2375 }
2376 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2377 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2378 				   struct bpf_nh_params *nh)
2379 {
2380 	kfree_skb(skb);
2381 	return NET_XMIT_DROP;
2382 }
2383 #endif /* CONFIG_INET */
2384 
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2385 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2386 				struct bpf_nh_params *nh)
2387 {
2388 	struct ethhdr *ethh = eth_hdr(skb);
2389 
2390 	if (unlikely(skb->mac_header >= skb->network_header))
2391 		goto out;
2392 	bpf_push_mac_rcsum(skb);
2393 	if (is_multicast_ether_addr(ethh->h_dest))
2394 		goto out;
2395 
2396 	skb_pull(skb, sizeof(*ethh));
2397 	skb_unset_mac_header(skb);
2398 	skb_reset_network_header(skb);
2399 
2400 	if (skb->protocol == htons(ETH_P_IP))
2401 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2402 	else if (skb->protocol == htons(ETH_P_IPV6))
2403 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2404 out:
2405 	kfree_skb(skb);
2406 	return -ENOTSUPP;
2407 }
2408 
2409 /* Internal, non-exposed redirect flags. */
2410 enum {
2411 	BPF_F_NEIGH	= (1ULL << 1),
2412 	BPF_F_PEER	= (1ULL << 2),
2413 	BPF_F_NEXTHOP	= (1ULL << 3),
2414 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2415 };
2416 
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2417 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2418 {
2419 	struct net_device *dev;
2420 	struct sk_buff *clone;
2421 	int ret;
2422 
2423 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2424 		return -EINVAL;
2425 
2426 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2427 	if (unlikely(!dev))
2428 		return -EINVAL;
2429 
2430 	clone = skb_clone(skb, GFP_ATOMIC);
2431 	if (unlikely(!clone))
2432 		return -ENOMEM;
2433 
2434 	/* For direct write, we need to keep the invariant that the skbs
2435 	 * we're dealing with need to be uncloned. Should uncloning fail
2436 	 * here, we need to free the just generated clone to unclone once
2437 	 * again.
2438 	 */
2439 	ret = bpf_try_make_head_writable(skb);
2440 	if (unlikely(ret)) {
2441 		kfree_skb(clone);
2442 		return -ENOMEM;
2443 	}
2444 
2445 	return __bpf_redirect(clone, dev, flags);
2446 }
2447 
2448 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2449 	.func           = bpf_clone_redirect,
2450 	.gpl_only       = false,
2451 	.ret_type       = RET_INTEGER,
2452 	.arg1_type      = ARG_PTR_TO_CTX,
2453 	.arg2_type      = ARG_ANYTHING,
2454 	.arg3_type      = ARG_ANYTHING,
2455 };
2456 
2457 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2458 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2459 
skb_do_redirect(struct sk_buff * skb)2460 int skb_do_redirect(struct sk_buff *skb)
2461 {
2462 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2463 	struct net *net = dev_net(skb->dev);
2464 	struct net_device *dev;
2465 	u32 flags = ri->flags;
2466 
2467 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2468 	ri->tgt_index = 0;
2469 	ri->flags = 0;
2470 	if (unlikely(!dev))
2471 		goto out_drop;
2472 	if (flags & BPF_F_PEER) {
2473 		const struct net_device_ops *ops = dev->netdev_ops;
2474 
2475 		if (unlikely(!ops->ndo_get_peer_dev ||
2476 			     !skb_at_tc_ingress(skb)))
2477 			goto out_drop;
2478 		dev = ops->ndo_get_peer_dev(dev);
2479 		if (unlikely(!dev ||
2480 			     !(dev->flags & IFF_UP) ||
2481 			     net_eq(net, dev_net(dev))))
2482 			goto out_drop;
2483 		skb->dev = dev;
2484 		return -EAGAIN;
2485 	}
2486 	return flags & BPF_F_NEIGH ?
2487 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2488 				    &ri->nh : NULL) :
2489 	       __bpf_redirect(skb, dev, flags);
2490 out_drop:
2491 	kfree_skb(skb);
2492 	return -EINVAL;
2493 }
2494 
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2495 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2496 {
2497 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2498 
2499 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2500 		return TC_ACT_SHOT;
2501 
2502 	ri->flags = flags;
2503 	ri->tgt_index = ifindex;
2504 
2505 	return TC_ACT_REDIRECT;
2506 }
2507 
2508 static const struct bpf_func_proto bpf_redirect_proto = {
2509 	.func           = bpf_redirect,
2510 	.gpl_only       = false,
2511 	.ret_type       = RET_INTEGER,
2512 	.arg1_type      = ARG_ANYTHING,
2513 	.arg2_type      = ARG_ANYTHING,
2514 };
2515 
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2516 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2517 {
2518 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2519 
2520 	if (unlikely(flags))
2521 		return TC_ACT_SHOT;
2522 
2523 	ri->flags = BPF_F_PEER;
2524 	ri->tgt_index = ifindex;
2525 
2526 	return TC_ACT_REDIRECT;
2527 }
2528 
2529 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2530 	.func           = bpf_redirect_peer,
2531 	.gpl_only       = false,
2532 	.ret_type       = RET_INTEGER,
2533 	.arg1_type      = ARG_ANYTHING,
2534 	.arg2_type      = ARG_ANYTHING,
2535 };
2536 
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2537 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2538 	   int, plen, u64, flags)
2539 {
2540 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2541 
2542 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2543 		return TC_ACT_SHOT;
2544 
2545 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2546 	ri->tgt_index = ifindex;
2547 
2548 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2549 	if (plen)
2550 		memcpy(&ri->nh, params, sizeof(ri->nh));
2551 
2552 	return TC_ACT_REDIRECT;
2553 }
2554 
2555 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2556 	.func		= bpf_redirect_neigh,
2557 	.gpl_only	= false,
2558 	.ret_type	= RET_INTEGER,
2559 	.arg1_type	= ARG_ANYTHING,
2560 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2561 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2562 	.arg4_type	= ARG_ANYTHING,
2563 };
2564 
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2565 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2566 {
2567 	msg->apply_bytes = bytes;
2568 	return 0;
2569 }
2570 
2571 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2572 	.func           = bpf_msg_apply_bytes,
2573 	.gpl_only       = false,
2574 	.ret_type       = RET_INTEGER,
2575 	.arg1_type	= ARG_PTR_TO_CTX,
2576 	.arg2_type      = ARG_ANYTHING,
2577 };
2578 
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2579 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2580 {
2581 	msg->cork_bytes = bytes;
2582 	return 0;
2583 }
2584 
sk_msg_reset_curr(struct sk_msg * msg)2585 static void sk_msg_reset_curr(struct sk_msg *msg)
2586 {
2587 	u32 i = msg->sg.start;
2588 	u32 len = 0;
2589 
2590 	do {
2591 		len += sk_msg_elem(msg, i)->length;
2592 		sk_msg_iter_var_next(i);
2593 		if (len >= msg->sg.size)
2594 			break;
2595 	} while (i != msg->sg.end);
2596 
2597 	msg->sg.curr = i;
2598 	msg->sg.copybreak = 0;
2599 }
2600 
2601 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2602 	.func           = bpf_msg_cork_bytes,
2603 	.gpl_only       = false,
2604 	.ret_type       = RET_INTEGER,
2605 	.arg1_type	= ARG_PTR_TO_CTX,
2606 	.arg2_type      = ARG_ANYTHING,
2607 };
2608 
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2609 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2610 	   u32, end, u64, flags)
2611 {
2612 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2613 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2614 	struct scatterlist *sge;
2615 	u8 *raw, *to, *from;
2616 	struct page *page;
2617 
2618 	if (unlikely(flags || end <= start))
2619 		return -EINVAL;
2620 
2621 	/* First find the starting scatterlist element */
2622 	i = msg->sg.start;
2623 	do {
2624 		offset += len;
2625 		len = sk_msg_elem(msg, i)->length;
2626 		if (start < offset + len)
2627 			break;
2628 		sk_msg_iter_var_next(i);
2629 	} while (i != msg->sg.end);
2630 
2631 	if (unlikely(start >= offset + len))
2632 		return -EINVAL;
2633 
2634 	first_sge = i;
2635 	/* The start may point into the sg element so we need to also
2636 	 * account for the headroom.
2637 	 */
2638 	bytes_sg_total = start - offset + bytes;
2639 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2640 		goto out;
2641 
2642 	/* At this point we need to linearize multiple scatterlist
2643 	 * elements or a single shared page. Either way we need to
2644 	 * copy into a linear buffer exclusively owned by BPF. Then
2645 	 * place the buffer in the scatterlist and fixup the original
2646 	 * entries by removing the entries now in the linear buffer
2647 	 * and shifting the remaining entries. For now we do not try
2648 	 * to copy partial entries to avoid complexity of running out
2649 	 * of sg_entry slots. The downside is reading a single byte
2650 	 * will copy the entire sg entry.
2651 	 */
2652 	do {
2653 		copy += sk_msg_elem(msg, i)->length;
2654 		sk_msg_iter_var_next(i);
2655 		if (bytes_sg_total <= copy)
2656 			break;
2657 	} while (i != msg->sg.end);
2658 	last_sge = i;
2659 
2660 	if (unlikely(bytes_sg_total > copy))
2661 		return -EINVAL;
2662 
2663 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2664 			   get_order(copy));
2665 	if (unlikely(!page))
2666 		return -ENOMEM;
2667 
2668 	raw = page_address(page);
2669 	i = first_sge;
2670 	do {
2671 		sge = sk_msg_elem(msg, i);
2672 		from = sg_virt(sge);
2673 		len = sge->length;
2674 		to = raw + poffset;
2675 
2676 		memcpy(to, from, len);
2677 		poffset += len;
2678 		sge->length = 0;
2679 		put_page(sg_page(sge));
2680 
2681 		sk_msg_iter_var_next(i);
2682 	} while (i != last_sge);
2683 
2684 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2685 
2686 	/* To repair sg ring we need to shift entries. If we only
2687 	 * had a single entry though we can just replace it and
2688 	 * be done. Otherwise walk the ring and shift the entries.
2689 	 */
2690 	WARN_ON_ONCE(last_sge == first_sge);
2691 	shift = last_sge > first_sge ?
2692 		last_sge - first_sge - 1 :
2693 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2694 	if (!shift)
2695 		goto out;
2696 
2697 	i = first_sge;
2698 	sk_msg_iter_var_next(i);
2699 	do {
2700 		u32 move_from;
2701 
2702 		if (i + shift >= NR_MSG_FRAG_IDS)
2703 			move_from = i + shift - NR_MSG_FRAG_IDS;
2704 		else
2705 			move_from = i + shift;
2706 		if (move_from == msg->sg.end)
2707 			break;
2708 
2709 		msg->sg.data[i] = msg->sg.data[move_from];
2710 		msg->sg.data[move_from].length = 0;
2711 		msg->sg.data[move_from].page_link = 0;
2712 		msg->sg.data[move_from].offset = 0;
2713 		sk_msg_iter_var_next(i);
2714 	} while (1);
2715 
2716 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2717 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2718 		      msg->sg.end - shift;
2719 out:
2720 	sk_msg_reset_curr(msg);
2721 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2722 	msg->data_end = msg->data + bytes;
2723 	return 0;
2724 }
2725 
2726 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2727 	.func		= bpf_msg_pull_data,
2728 	.gpl_only	= false,
2729 	.ret_type	= RET_INTEGER,
2730 	.arg1_type	= ARG_PTR_TO_CTX,
2731 	.arg2_type	= ARG_ANYTHING,
2732 	.arg3_type	= ARG_ANYTHING,
2733 	.arg4_type	= ARG_ANYTHING,
2734 };
2735 
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2736 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2737 	   u32, len, u64, flags)
2738 {
2739 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2740 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2741 	u8 *raw, *to, *from;
2742 	struct page *page;
2743 
2744 	if (unlikely(flags))
2745 		return -EINVAL;
2746 
2747 	if (unlikely(len == 0))
2748 		return 0;
2749 
2750 	/* First find the starting scatterlist element */
2751 	i = msg->sg.start;
2752 	do {
2753 		offset += l;
2754 		l = sk_msg_elem(msg, i)->length;
2755 
2756 		if (start < offset + l)
2757 			break;
2758 		sk_msg_iter_var_next(i);
2759 	} while (i != msg->sg.end);
2760 
2761 	if (start >= offset + l)
2762 		return -EINVAL;
2763 
2764 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2765 
2766 	/* If no space available will fallback to copy, we need at
2767 	 * least one scatterlist elem available to push data into
2768 	 * when start aligns to the beginning of an element or two
2769 	 * when it falls inside an element. We handle the start equals
2770 	 * offset case because its the common case for inserting a
2771 	 * header.
2772 	 */
2773 	if (!space || (space == 1 && start != offset))
2774 		copy = msg->sg.data[i].length;
2775 
2776 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2777 			   get_order(copy + len));
2778 	if (unlikely(!page))
2779 		return -ENOMEM;
2780 
2781 	if (copy) {
2782 		int front, back;
2783 
2784 		raw = page_address(page);
2785 
2786 		psge = sk_msg_elem(msg, i);
2787 		front = start - offset;
2788 		back = psge->length - front;
2789 		from = sg_virt(psge);
2790 
2791 		if (front)
2792 			memcpy(raw, from, front);
2793 
2794 		if (back) {
2795 			from += front;
2796 			to = raw + front + len;
2797 
2798 			memcpy(to, from, back);
2799 		}
2800 
2801 		put_page(sg_page(psge));
2802 	} else if (start - offset) {
2803 		psge = sk_msg_elem(msg, i);
2804 		rsge = sk_msg_elem_cpy(msg, i);
2805 
2806 		psge->length = start - offset;
2807 		rsge.length -= psge->length;
2808 		rsge.offset += start;
2809 
2810 		sk_msg_iter_var_next(i);
2811 		sg_unmark_end(psge);
2812 		sg_unmark_end(&rsge);
2813 		sk_msg_iter_next(msg, end);
2814 	}
2815 
2816 	/* Slot(s) to place newly allocated data */
2817 	new = i;
2818 
2819 	/* Shift one or two slots as needed */
2820 	if (!copy) {
2821 		sge = sk_msg_elem_cpy(msg, i);
2822 
2823 		sk_msg_iter_var_next(i);
2824 		sg_unmark_end(&sge);
2825 		sk_msg_iter_next(msg, end);
2826 
2827 		nsge = sk_msg_elem_cpy(msg, i);
2828 		if (rsge.length) {
2829 			sk_msg_iter_var_next(i);
2830 			nnsge = sk_msg_elem_cpy(msg, i);
2831 		}
2832 
2833 		while (i != msg->sg.end) {
2834 			msg->sg.data[i] = sge;
2835 			sge = nsge;
2836 			sk_msg_iter_var_next(i);
2837 			if (rsge.length) {
2838 				nsge = nnsge;
2839 				nnsge = sk_msg_elem_cpy(msg, i);
2840 			} else {
2841 				nsge = sk_msg_elem_cpy(msg, i);
2842 			}
2843 		}
2844 	}
2845 
2846 	/* Place newly allocated data buffer */
2847 	sk_mem_charge(msg->sk, len);
2848 	msg->sg.size += len;
2849 	__clear_bit(new, msg->sg.copy);
2850 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2851 	if (rsge.length) {
2852 		get_page(sg_page(&rsge));
2853 		sk_msg_iter_var_next(new);
2854 		msg->sg.data[new] = rsge;
2855 	}
2856 
2857 	sk_msg_reset_curr(msg);
2858 	sk_msg_compute_data_pointers(msg);
2859 	return 0;
2860 }
2861 
2862 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2863 	.func		= bpf_msg_push_data,
2864 	.gpl_only	= false,
2865 	.ret_type	= RET_INTEGER,
2866 	.arg1_type	= ARG_PTR_TO_CTX,
2867 	.arg2_type	= ARG_ANYTHING,
2868 	.arg3_type	= ARG_ANYTHING,
2869 	.arg4_type	= ARG_ANYTHING,
2870 };
2871 
sk_msg_shift_left(struct sk_msg * msg,int i)2872 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2873 {
2874 	int prev;
2875 
2876 	do {
2877 		prev = i;
2878 		sk_msg_iter_var_next(i);
2879 		msg->sg.data[prev] = msg->sg.data[i];
2880 	} while (i != msg->sg.end);
2881 
2882 	sk_msg_iter_prev(msg, end);
2883 }
2884 
sk_msg_shift_right(struct sk_msg * msg,int i)2885 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2886 {
2887 	struct scatterlist tmp, sge;
2888 
2889 	sk_msg_iter_next(msg, end);
2890 	sge = sk_msg_elem_cpy(msg, i);
2891 	sk_msg_iter_var_next(i);
2892 	tmp = sk_msg_elem_cpy(msg, i);
2893 
2894 	while (i != msg->sg.end) {
2895 		msg->sg.data[i] = sge;
2896 		sk_msg_iter_var_next(i);
2897 		sge = tmp;
2898 		tmp = sk_msg_elem_cpy(msg, i);
2899 	}
2900 }
2901 
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2902 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2903 	   u32, len, u64, flags)
2904 {
2905 	u32 i = 0, l = 0, space, offset = 0;
2906 	u64 last = start + len;
2907 	int pop;
2908 
2909 	if (unlikely(flags))
2910 		return -EINVAL;
2911 
2912 	/* First find the starting scatterlist element */
2913 	i = msg->sg.start;
2914 	do {
2915 		offset += l;
2916 		l = sk_msg_elem(msg, i)->length;
2917 
2918 		if (start < offset + l)
2919 			break;
2920 		sk_msg_iter_var_next(i);
2921 	} while (i != msg->sg.end);
2922 
2923 	/* Bounds checks: start and pop must be inside message */
2924 	if (start >= offset + l || last >= msg->sg.size)
2925 		return -EINVAL;
2926 
2927 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2928 
2929 	pop = len;
2930 	/* --------------| offset
2931 	 * -| start      |-------- len -------|
2932 	 *
2933 	 *  |----- a ----|-------- pop -------|----- b ----|
2934 	 *  |______________________________________________| length
2935 	 *
2936 	 *
2937 	 * a:   region at front of scatter element to save
2938 	 * b:   region at back of scatter element to save when length > A + pop
2939 	 * pop: region to pop from element, same as input 'pop' here will be
2940 	 *      decremented below per iteration.
2941 	 *
2942 	 * Two top-level cases to handle when start != offset, first B is non
2943 	 * zero and second B is zero corresponding to when a pop includes more
2944 	 * than one element.
2945 	 *
2946 	 * Then if B is non-zero AND there is no space allocate space and
2947 	 * compact A, B regions into page. If there is space shift ring to
2948 	 * the rigth free'ing the next element in ring to place B, leaving
2949 	 * A untouched except to reduce length.
2950 	 */
2951 	if (start != offset) {
2952 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2953 		int a = start;
2954 		int b = sge->length - pop - a;
2955 
2956 		sk_msg_iter_var_next(i);
2957 
2958 		if (pop < sge->length - a) {
2959 			if (space) {
2960 				sge->length = a;
2961 				sk_msg_shift_right(msg, i);
2962 				nsge = sk_msg_elem(msg, i);
2963 				get_page(sg_page(sge));
2964 				sg_set_page(nsge,
2965 					    sg_page(sge),
2966 					    b, sge->offset + pop + a);
2967 			} else {
2968 				struct page *page, *orig;
2969 				u8 *to, *from;
2970 
2971 				page = alloc_pages(__GFP_NOWARN |
2972 						   __GFP_COMP   | GFP_ATOMIC,
2973 						   get_order(a + b));
2974 				if (unlikely(!page))
2975 					return -ENOMEM;
2976 
2977 				sge->length = a;
2978 				orig = sg_page(sge);
2979 				from = sg_virt(sge);
2980 				to = page_address(page);
2981 				memcpy(to, from, a);
2982 				memcpy(to + a, from + a + pop, b);
2983 				sg_set_page(sge, page, a + b, 0);
2984 				put_page(orig);
2985 			}
2986 			pop = 0;
2987 		} else if (pop >= sge->length - a) {
2988 			pop -= (sge->length - a);
2989 			sge->length = a;
2990 		}
2991 	}
2992 
2993 	/* From above the current layout _must_ be as follows,
2994 	 *
2995 	 * -| offset
2996 	 * -| start
2997 	 *
2998 	 *  |---- pop ---|---------------- b ------------|
2999 	 *  |____________________________________________| length
3000 	 *
3001 	 * Offset and start of the current msg elem are equal because in the
3002 	 * previous case we handled offset != start and either consumed the
3003 	 * entire element and advanced to the next element OR pop == 0.
3004 	 *
3005 	 * Two cases to handle here are first pop is less than the length
3006 	 * leaving some remainder b above. Simply adjust the element's layout
3007 	 * in this case. Or pop >= length of the element so that b = 0. In this
3008 	 * case advance to next element decrementing pop.
3009 	 */
3010 	while (pop) {
3011 		struct scatterlist *sge = sk_msg_elem(msg, i);
3012 
3013 		if (pop < sge->length) {
3014 			sge->length -= pop;
3015 			sge->offset += pop;
3016 			pop = 0;
3017 		} else {
3018 			pop -= sge->length;
3019 			sk_msg_shift_left(msg, i);
3020 		}
3021 		sk_msg_iter_var_next(i);
3022 	}
3023 
3024 	sk_mem_uncharge(msg->sk, len - pop);
3025 	msg->sg.size -= (len - pop);
3026 	sk_msg_reset_curr(msg);
3027 	sk_msg_compute_data_pointers(msg);
3028 	return 0;
3029 }
3030 
3031 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3032 	.func		= bpf_msg_pop_data,
3033 	.gpl_only	= false,
3034 	.ret_type	= RET_INTEGER,
3035 	.arg1_type	= ARG_PTR_TO_CTX,
3036 	.arg2_type	= ARG_ANYTHING,
3037 	.arg3_type	= ARG_ANYTHING,
3038 	.arg4_type	= ARG_ANYTHING,
3039 };
3040 
3041 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3042 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3043 {
3044 	return __task_get_classid(current);
3045 }
3046 
3047 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3048 	.func		= bpf_get_cgroup_classid_curr,
3049 	.gpl_only	= false,
3050 	.ret_type	= RET_INTEGER,
3051 };
3052 
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3053 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3054 {
3055 	struct sock *sk = skb_to_full_sk(skb);
3056 
3057 	if (!sk || !sk_fullsock(sk))
3058 		return 0;
3059 
3060 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3061 }
3062 
3063 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3064 	.func		= bpf_skb_cgroup_classid,
3065 	.gpl_only	= false,
3066 	.ret_type	= RET_INTEGER,
3067 	.arg1_type	= ARG_PTR_TO_CTX,
3068 };
3069 #endif
3070 
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3071 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3072 {
3073 	return task_get_classid(skb);
3074 }
3075 
3076 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3077 	.func           = bpf_get_cgroup_classid,
3078 	.gpl_only       = false,
3079 	.ret_type       = RET_INTEGER,
3080 	.arg1_type      = ARG_PTR_TO_CTX,
3081 };
3082 
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3083 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3084 {
3085 	return dst_tclassid(skb);
3086 }
3087 
3088 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3089 	.func           = bpf_get_route_realm,
3090 	.gpl_only       = false,
3091 	.ret_type       = RET_INTEGER,
3092 	.arg1_type      = ARG_PTR_TO_CTX,
3093 };
3094 
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3095 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3096 {
3097 	/* If skb_clear_hash() was called due to mangling, we can
3098 	 * trigger SW recalculation here. Later access to hash
3099 	 * can then use the inline skb->hash via context directly
3100 	 * instead of calling this helper again.
3101 	 */
3102 	return skb_get_hash(skb);
3103 }
3104 
3105 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3106 	.func		= bpf_get_hash_recalc,
3107 	.gpl_only	= false,
3108 	.ret_type	= RET_INTEGER,
3109 	.arg1_type	= ARG_PTR_TO_CTX,
3110 };
3111 
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3112 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3113 {
3114 	/* After all direct packet write, this can be used once for
3115 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3116 	 */
3117 	skb_clear_hash(skb);
3118 	return 0;
3119 }
3120 
3121 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3122 	.func		= bpf_set_hash_invalid,
3123 	.gpl_only	= false,
3124 	.ret_type	= RET_INTEGER,
3125 	.arg1_type	= ARG_PTR_TO_CTX,
3126 };
3127 
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3128 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3129 {
3130 	/* Set user specified hash as L4(+), so that it gets returned
3131 	 * on skb_get_hash() call unless BPF prog later on triggers a
3132 	 * skb_clear_hash().
3133 	 */
3134 	__skb_set_sw_hash(skb, hash, true);
3135 	return 0;
3136 }
3137 
3138 static const struct bpf_func_proto bpf_set_hash_proto = {
3139 	.func		= bpf_set_hash,
3140 	.gpl_only	= false,
3141 	.ret_type	= RET_INTEGER,
3142 	.arg1_type	= ARG_PTR_TO_CTX,
3143 	.arg2_type	= ARG_ANYTHING,
3144 };
3145 
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3146 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3147 	   u16, vlan_tci)
3148 {
3149 	int ret;
3150 
3151 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3152 		     vlan_proto != htons(ETH_P_8021AD)))
3153 		vlan_proto = htons(ETH_P_8021Q);
3154 
3155 	bpf_push_mac_rcsum(skb);
3156 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3157 	bpf_pull_mac_rcsum(skb);
3158 
3159 	bpf_compute_data_pointers(skb);
3160 	return ret;
3161 }
3162 
3163 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3164 	.func           = bpf_skb_vlan_push,
3165 	.gpl_only       = false,
3166 	.ret_type       = RET_INTEGER,
3167 	.arg1_type      = ARG_PTR_TO_CTX,
3168 	.arg2_type      = ARG_ANYTHING,
3169 	.arg3_type      = ARG_ANYTHING,
3170 };
3171 
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3172 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3173 {
3174 	int ret;
3175 
3176 	bpf_push_mac_rcsum(skb);
3177 	ret = skb_vlan_pop(skb);
3178 	bpf_pull_mac_rcsum(skb);
3179 
3180 	bpf_compute_data_pointers(skb);
3181 	return ret;
3182 }
3183 
3184 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3185 	.func           = bpf_skb_vlan_pop,
3186 	.gpl_only       = false,
3187 	.ret_type       = RET_INTEGER,
3188 	.arg1_type      = ARG_PTR_TO_CTX,
3189 };
3190 
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3191 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3192 {
3193 	/* Caller already did skb_cow() with len as headroom,
3194 	 * so no need to do it here.
3195 	 */
3196 	skb_push(skb, len);
3197 	memmove(skb->data, skb->data + len, off);
3198 	memset(skb->data + off, 0, len);
3199 
3200 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3201 	 * needed here as it does not change the skb->csum
3202 	 * result for checksum complete when summing over
3203 	 * zeroed blocks.
3204 	 */
3205 	return 0;
3206 }
3207 
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3208 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3209 {
3210 	void *old_data;
3211 
3212 	/* skb_ensure_writable() is not needed here, as we're
3213 	 * already working on an uncloned skb.
3214 	 */
3215 	if (unlikely(!pskb_may_pull(skb, off + len)))
3216 		return -ENOMEM;
3217 
3218 	old_data = skb->data;
3219 	__skb_pull(skb, len);
3220 	skb_postpull_rcsum(skb, old_data + off, len);
3221 	memmove(skb->data, old_data, off);
3222 
3223 	return 0;
3224 }
3225 
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3226 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3227 {
3228 	bool trans_same = skb->transport_header == skb->network_header;
3229 	int ret;
3230 
3231 	/* There's no need for __skb_push()/__skb_pull() pair to
3232 	 * get to the start of the mac header as we're guaranteed
3233 	 * to always start from here under eBPF.
3234 	 */
3235 	ret = bpf_skb_generic_push(skb, off, len);
3236 	if (likely(!ret)) {
3237 		skb->mac_header -= len;
3238 		skb->network_header -= len;
3239 		if (trans_same)
3240 			skb->transport_header = skb->network_header;
3241 	}
3242 
3243 	return ret;
3244 }
3245 
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3246 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3247 {
3248 	bool trans_same = skb->transport_header == skb->network_header;
3249 	int ret;
3250 
3251 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3252 	ret = bpf_skb_generic_pop(skb, off, len);
3253 	if (likely(!ret)) {
3254 		skb->mac_header += len;
3255 		skb->network_header += len;
3256 		if (trans_same)
3257 			skb->transport_header = skb->network_header;
3258 	}
3259 
3260 	return ret;
3261 }
3262 
bpf_skb_proto_4_to_6(struct sk_buff * skb)3263 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3264 {
3265 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3266 	u32 off = skb_mac_header_len(skb);
3267 	int ret;
3268 
3269 	ret = skb_cow(skb, len_diff);
3270 	if (unlikely(ret < 0))
3271 		return ret;
3272 
3273 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3274 	if (unlikely(ret < 0))
3275 		return ret;
3276 
3277 	if (skb_is_gso(skb)) {
3278 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3279 
3280 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3281 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3282 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3283 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3284 		}
3285 	}
3286 
3287 	skb->protocol = htons(ETH_P_IPV6);
3288 	skb_clear_hash(skb);
3289 
3290 	return 0;
3291 }
3292 
bpf_skb_proto_6_to_4(struct sk_buff * skb)3293 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3294 {
3295 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3296 	u32 off = skb_mac_header_len(skb);
3297 	int ret;
3298 
3299 	ret = skb_unclone(skb, GFP_ATOMIC);
3300 	if (unlikely(ret < 0))
3301 		return ret;
3302 
3303 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3304 	if (unlikely(ret < 0))
3305 		return ret;
3306 
3307 	if (skb_is_gso(skb)) {
3308 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3309 
3310 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3311 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3312 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3313 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3314 		}
3315 	}
3316 
3317 	skb->protocol = htons(ETH_P_IP);
3318 	skb_clear_hash(skb);
3319 
3320 	return 0;
3321 }
3322 
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3323 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3324 {
3325 	__be16 from_proto = skb->protocol;
3326 
3327 	if (from_proto == htons(ETH_P_IP) &&
3328 	      to_proto == htons(ETH_P_IPV6))
3329 		return bpf_skb_proto_4_to_6(skb);
3330 
3331 	if (from_proto == htons(ETH_P_IPV6) &&
3332 	      to_proto == htons(ETH_P_IP))
3333 		return bpf_skb_proto_6_to_4(skb);
3334 
3335 	return -ENOTSUPP;
3336 }
3337 
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3338 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3339 	   u64, flags)
3340 {
3341 	int ret;
3342 
3343 	if (unlikely(flags))
3344 		return -EINVAL;
3345 
3346 	/* General idea is that this helper does the basic groundwork
3347 	 * needed for changing the protocol, and eBPF program fills the
3348 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3349 	 * and other helpers, rather than passing a raw buffer here.
3350 	 *
3351 	 * The rationale is to keep this minimal and without a need to
3352 	 * deal with raw packet data. F.e. even if we would pass buffers
3353 	 * here, the program still needs to call the bpf_lX_csum_replace()
3354 	 * helpers anyway. Plus, this way we keep also separation of
3355 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3356 	 * care of stores.
3357 	 *
3358 	 * Currently, additional options and extension header space are
3359 	 * not supported, but flags register is reserved so we can adapt
3360 	 * that. For offloads, we mark packet as dodgy, so that headers
3361 	 * need to be verified first.
3362 	 */
3363 	ret = bpf_skb_proto_xlat(skb, proto);
3364 	bpf_compute_data_pointers(skb);
3365 	return ret;
3366 }
3367 
3368 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3369 	.func		= bpf_skb_change_proto,
3370 	.gpl_only	= false,
3371 	.ret_type	= RET_INTEGER,
3372 	.arg1_type	= ARG_PTR_TO_CTX,
3373 	.arg2_type	= ARG_ANYTHING,
3374 	.arg3_type	= ARG_ANYTHING,
3375 };
3376 
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3377 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3378 {
3379 	/* We only allow a restricted subset to be changed for now. */
3380 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3381 		     !skb_pkt_type_ok(pkt_type)))
3382 		return -EINVAL;
3383 
3384 	skb->pkt_type = pkt_type;
3385 	return 0;
3386 }
3387 
3388 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3389 	.func		= bpf_skb_change_type,
3390 	.gpl_only	= false,
3391 	.ret_type	= RET_INTEGER,
3392 	.arg1_type	= ARG_PTR_TO_CTX,
3393 	.arg2_type	= ARG_ANYTHING,
3394 };
3395 
bpf_skb_net_base_len(const struct sk_buff * skb)3396 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3397 {
3398 	switch (skb->protocol) {
3399 	case htons(ETH_P_IP):
3400 		return sizeof(struct iphdr);
3401 	case htons(ETH_P_IPV6):
3402 		return sizeof(struct ipv6hdr);
3403 	default:
3404 		return ~0U;
3405 	}
3406 }
3407 
3408 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3409 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3410 
3411 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3412 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3413 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3414 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3415 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3416 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3417 					  BPF_ADJ_ROOM_ENCAP_L2_MASK))
3418 
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3419 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3420 			    u64 flags)
3421 {
3422 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3423 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3424 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3425 	unsigned int gso_type = SKB_GSO_DODGY;
3426 	int ret;
3427 
3428 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3429 		/* udp gso_size delineates datagrams, only allow if fixed */
3430 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3431 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3432 			return -ENOTSUPP;
3433 	}
3434 
3435 	ret = skb_cow_head(skb, len_diff);
3436 	if (unlikely(ret < 0))
3437 		return ret;
3438 
3439 	if (encap) {
3440 		if (skb->protocol != htons(ETH_P_IP) &&
3441 		    skb->protocol != htons(ETH_P_IPV6))
3442 			return -ENOTSUPP;
3443 
3444 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3445 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3446 			return -EINVAL;
3447 
3448 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3449 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3450 			return -EINVAL;
3451 
3452 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3453 		    inner_mac_len < ETH_HLEN)
3454 			return -EINVAL;
3455 
3456 		if (skb->encapsulation)
3457 			return -EALREADY;
3458 
3459 		mac_len = skb->network_header - skb->mac_header;
3460 		inner_net = skb->network_header;
3461 		if (inner_mac_len > len_diff)
3462 			return -EINVAL;
3463 		inner_trans = skb->transport_header;
3464 	}
3465 
3466 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3467 	if (unlikely(ret < 0))
3468 		return ret;
3469 
3470 	if (encap) {
3471 		skb->inner_mac_header = inner_net - inner_mac_len;
3472 		skb->inner_network_header = inner_net;
3473 		skb->inner_transport_header = inner_trans;
3474 
3475 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3476 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3477 		else
3478 			skb_set_inner_protocol(skb, skb->protocol);
3479 
3480 		skb->encapsulation = 1;
3481 		skb_set_network_header(skb, mac_len);
3482 
3483 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3484 			gso_type |= SKB_GSO_UDP_TUNNEL;
3485 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3486 			gso_type |= SKB_GSO_GRE;
3487 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3488 			gso_type |= SKB_GSO_IPXIP6;
3489 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3490 			gso_type |= SKB_GSO_IPXIP4;
3491 
3492 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3493 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3494 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3495 					sizeof(struct ipv6hdr) :
3496 					sizeof(struct iphdr);
3497 
3498 			skb_set_transport_header(skb, mac_len + nh_len);
3499 		}
3500 
3501 		/* Match skb->protocol to new outer l3 protocol */
3502 		if (skb->protocol == htons(ETH_P_IP) &&
3503 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3504 			skb->protocol = htons(ETH_P_IPV6);
3505 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3506 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3507 			skb->protocol = htons(ETH_P_IP);
3508 	}
3509 
3510 	if (skb_is_gso(skb)) {
3511 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3512 
3513 		/* Due to header grow, MSS needs to be downgraded. */
3514 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3515 			skb_decrease_gso_size(shinfo, len_diff);
3516 
3517 		/* Header must be checked, and gso_segs recomputed. */
3518 		shinfo->gso_type |= gso_type;
3519 		shinfo->gso_segs = 0;
3520 	}
3521 
3522 	return 0;
3523 }
3524 
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3525 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3526 			      u64 flags)
3527 {
3528 	int ret;
3529 
3530 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3531 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3532 		return -EINVAL;
3533 
3534 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3535 		/* udp gso_size delineates datagrams, only allow if fixed */
3536 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3537 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3538 			return -ENOTSUPP;
3539 	}
3540 
3541 	ret = skb_unclone(skb, GFP_ATOMIC);
3542 	if (unlikely(ret < 0))
3543 		return ret;
3544 
3545 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3546 	if (unlikely(ret < 0))
3547 		return ret;
3548 
3549 	if (skb_is_gso(skb)) {
3550 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3551 
3552 		/* Due to header shrink, MSS can be upgraded. */
3553 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3554 			skb_increase_gso_size(shinfo, len_diff);
3555 
3556 		/* Header must be checked, and gso_segs recomputed. */
3557 		shinfo->gso_type |= SKB_GSO_DODGY;
3558 		shinfo->gso_segs = 0;
3559 	}
3560 
3561 	return 0;
3562 }
3563 
3564 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3565 
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3566 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3567 	   u32, mode, u64, flags)
3568 {
3569 	u32 len_diff_abs = abs(len_diff);
3570 	bool shrink = len_diff < 0;
3571 	int ret = 0;
3572 
3573 	if (unlikely(flags || mode))
3574 		return -EINVAL;
3575 	if (unlikely(len_diff_abs > 0xfffU))
3576 		return -EFAULT;
3577 
3578 	if (!shrink) {
3579 		ret = skb_cow(skb, len_diff);
3580 		if (unlikely(ret < 0))
3581 			return ret;
3582 		__skb_push(skb, len_diff_abs);
3583 		memset(skb->data, 0, len_diff_abs);
3584 	} else {
3585 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3586 			return -ENOMEM;
3587 		__skb_pull(skb, len_diff_abs);
3588 	}
3589 	if (tls_sw_has_ctx_rx(skb->sk)) {
3590 		struct strp_msg *rxm = strp_msg(skb);
3591 
3592 		rxm->full_len += len_diff;
3593 	}
3594 	return ret;
3595 }
3596 
3597 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3598 	.func		= sk_skb_adjust_room,
3599 	.gpl_only	= false,
3600 	.ret_type	= RET_INTEGER,
3601 	.arg1_type	= ARG_PTR_TO_CTX,
3602 	.arg2_type	= ARG_ANYTHING,
3603 	.arg3_type	= ARG_ANYTHING,
3604 	.arg4_type	= ARG_ANYTHING,
3605 };
3606 
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3607 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3608 	   u32, mode, u64, flags)
3609 {
3610 	u32 len_cur, len_diff_abs = abs(len_diff);
3611 	u32 len_min = bpf_skb_net_base_len(skb);
3612 	u32 len_max = BPF_SKB_MAX_LEN;
3613 	__be16 proto = skb->protocol;
3614 	bool shrink = len_diff < 0;
3615 	u32 off;
3616 	int ret;
3617 
3618 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3619 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3620 		return -EINVAL;
3621 	if (unlikely(len_diff_abs > 0xfffU))
3622 		return -EFAULT;
3623 	if (unlikely(proto != htons(ETH_P_IP) &&
3624 		     proto != htons(ETH_P_IPV6)))
3625 		return -ENOTSUPP;
3626 
3627 	off = skb_mac_header_len(skb);
3628 	switch (mode) {
3629 	case BPF_ADJ_ROOM_NET:
3630 		off += bpf_skb_net_base_len(skb);
3631 		break;
3632 	case BPF_ADJ_ROOM_MAC:
3633 		break;
3634 	default:
3635 		return -ENOTSUPP;
3636 	}
3637 
3638 	len_cur = skb->len - skb_network_offset(skb);
3639 	if ((shrink && (len_diff_abs >= len_cur ||
3640 			len_cur - len_diff_abs < len_min)) ||
3641 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3642 			 !skb_is_gso(skb))))
3643 		return -ENOTSUPP;
3644 
3645 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3646 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3647 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3648 		__skb_reset_checksum_unnecessary(skb);
3649 
3650 	bpf_compute_data_pointers(skb);
3651 	return ret;
3652 }
3653 
3654 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3655 	.func		= bpf_skb_adjust_room,
3656 	.gpl_only	= false,
3657 	.ret_type	= RET_INTEGER,
3658 	.arg1_type	= ARG_PTR_TO_CTX,
3659 	.arg2_type	= ARG_ANYTHING,
3660 	.arg3_type	= ARG_ANYTHING,
3661 	.arg4_type	= ARG_ANYTHING,
3662 };
3663 
__bpf_skb_min_len(const struct sk_buff * skb)3664 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3665 {
3666 	u32 min_len = skb_network_offset(skb);
3667 
3668 	if (skb_transport_header_was_set(skb))
3669 		min_len = skb_transport_offset(skb);
3670 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3671 		min_len = skb_checksum_start_offset(skb) +
3672 			  skb->csum_offset + sizeof(__sum16);
3673 	return min_len;
3674 }
3675 
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3676 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3677 {
3678 	unsigned int old_len = skb->len;
3679 	int ret;
3680 
3681 	ret = __skb_grow_rcsum(skb, new_len);
3682 	if (!ret)
3683 		memset(skb->data + old_len, 0, new_len - old_len);
3684 	return ret;
3685 }
3686 
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3687 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3688 {
3689 	return __skb_trim_rcsum(skb, new_len);
3690 }
3691 
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3692 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3693 					u64 flags)
3694 {
3695 	u32 max_len = BPF_SKB_MAX_LEN;
3696 	u32 min_len = __bpf_skb_min_len(skb);
3697 	int ret;
3698 
3699 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3700 		return -EINVAL;
3701 	if (skb->encapsulation)
3702 		return -ENOTSUPP;
3703 
3704 	/* The basic idea of this helper is that it's performing the
3705 	 * needed work to either grow or trim an skb, and eBPF program
3706 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3707 	 * bpf_lX_csum_replace() and others rather than passing a raw
3708 	 * buffer here. This one is a slow path helper and intended
3709 	 * for replies with control messages.
3710 	 *
3711 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3712 	 * minimal and without protocol specifics so that we are able
3713 	 * to separate concerns as in bpf_skb_store_bytes() should only
3714 	 * be the one responsible for writing buffers.
3715 	 *
3716 	 * It's really expected to be a slow path operation here for
3717 	 * control message replies, so we're implicitly linearizing,
3718 	 * uncloning and drop offloads from the skb by this.
3719 	 */
3720 	ret = __bpf_try_make_writable(skb, skb->len);
3721 	if (!ret) {
3722 		if (new_len > skb->len)
3723 			ret = bpf_skb_grow_rcsum(skb, new_len);
3724 		else if (new_len < skb->len)
3725 			ret = bpf_skb_trim_rcsum(skb, new_len);
3726 		if (!ret && skb_is_gso(skb))
3727 			skb_gso_reset(skb);
3728 	}
3729 	return ret;
3730 }
3731 
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3732 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3733 	   u64, flags)
3734 {
3735 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3736 
3737 	bpf_compute_data_pointers(skb);
3738 	return ret;
3739 }
3740 
3741 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3742 	.func		= bpf_skb_change_tail,
3743 	.gpl_only	= false,
3744 	.ret_type	= RET_INTEGER,
3745 	.arg1_type	= ARG_PTR_TO_CTX,
3746 	.arg2_type	= ARG_ANYTHING,
3747 	.arg3_type	= ARG_ANYTHING,
3748 };
3749 
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3750 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3751 	   u64, flags)
3752 {
3753 	return __bpf_skb_change_tail(skb, new_len, flags);
3754 }
3755 
3756 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3757 	.func		= sk_skb_change_tail,
3758 	.gpl_only	= false,
3759 	.ret_type	= RET_INTEGER,
3760 	.arg1_type	= ARG_PTR_TO_CTX,
3761 	.arg2_type	= ARG_ANYTHING,
3762 	.arg3_type	= ARG_ANYTHING,
3763 };
3764 
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3765 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3766 					u64 flags)
3767 {
3768 	u32 max_len = BPF_SKB_MAX_LEN;
3769 	u32 new_len = skb->len + head_room;
3770 	int ret;
3771 
3772 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3773 		     new_len < skb->len))
3774 		return -EINVAL;
3775 
3776 	ret = skb_cow(skb, head_room);
3777 	if (likely(!ret)) {
3778 		/* Idea for this helper is that we currently only
3779 		 * allow to expand on mac header. This means that
3780 		 * skb->protocol network header, etc, stay as is.
3781 		 * Compared to bpf_skb_change_tail(), we're more
3782 		 * flexible due to not needing to linearize or
3783 		 * reset GSO. Intention for this helper is to be
3784 		 * used by an L3 skb that needs to push mac header
3785 		 * for redirection into L2 device.
3786 		 */
3787 		__skb_push(skb, head_room);
3788 		memset(skb->data, 0, head_room);
3789 		skb_reset_mac_header(skb);
3790 		skb_reset_mac_len(skb);
3791 	}
3792 
3793 	return ret;
3794 }
3795 
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3796 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3797 	   u64, flags)
3798 {
3799 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3800 
3801 	bpf_compute_data_pointers(skb);
3802 	return ret;
3803 }
3804 
3805 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3806 	.func		= bpf_skb_change_head,
3807 	.gpl_only	= false,
3808 	.ret_type	= RET_INTEGER,
3809 	.arg1_type	= ARG_PTR_TO_CTX,
3810 	.arg2_type	= ARG_ANYTHING,
3811 	.arg3_type	= ARG_ANYTHING,
3812 };
3813 
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3814 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3815 	   u64, flags)
3816 {
3817 	return __bpf_skb_change_head(skb, head_room, flags);
3818 }
3819 
3820 static const struct bpf_func_proto sk_skb_change_head_proto = {
3821 	.func		= sk_skb_change_head,
3822 	.gpl_only	= false,
3823 	.ret_type	= RET_INTEGER,
3824 	.arg1_type	= ARG_PTR_TO_CTX,
3825 	.arg2_type	= ARG_ANYTHING,
3826 	.arg3_type	= ARG_ANYTHING,
3827 };
3828 
BPF_CALL_1(bpf_xdp_get_buff_len,struct xdp_buff *,xdp)3829 BPF_CALL_1(bpf_xdp_get_buff_len, struct  xdp_buff*, xdp)
3830 {
3831 	return xdp_get_buff_len(xdp);
3832 }
3833 
3834 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3835 	.func		= bpf_xdp_get_buff_len,
3836 	.gpl_only	= false,
3837 	.ret_type	= RET_INTEGER,
3838 	.arg1_type	= ARG_PTR_TO_CTX,
3839 };
3840 
3841 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3842 
3843 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3844 	.func		= bpf_xdp_get_buff_len,
3845 	.gpl_only	= false,
3846 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3847 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3848 };
3849 
xdp_get_metalen(const struct xdp_buff * xdp)3850 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3851 {
3852 	return xdp_data_meta_unsupported(xdp) ? 0 :
3853 	       xdp->data - xdp->data_meta;
3854 }
3855 
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3856 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3857 {
3858 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3859 	unsigned long metalen = xdp_get_metalen(xdp);
3860 	void *data_start = xdp_frame_end + metalen;
3861 	void *data = xdp->data + offset;
3862 
3863 	if (unlikely(data < data_start ||
3864 		     data > xdp->data_end - ETH_HLEN))
3865 		return -EINVAL;
3866 
3867 	if (metalen)
3868 		memmove(xdp->data_meta + offset,
3869 			xdp->data_meta, metalen);
3870 	xdp->data_meta += offset;
3871 	xdp->data = data;
3872 
3873 	return 0;
3874 }
3875 
3876 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3877 	.func		= bpf_xdp_adjust_head,
3878 	.gpl_only	= false,
3879 	.ret_type	= RET_INTEGER,
3880 	.arg1_type	= ARG_PTR_TO_CTX,
3881 	.arg2_type	= ARG_ANYTHING,
3882 };
3883 
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)3884 static void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3885 			     void *buf, unsigned long len, bool flush)
3886 {
3887 	unsigned long ptr_len, ptr_off = 0;
3888 	skb_frag_t *next_frag, *end_frag;
3889 	struct skb_shared_info *sinfo;
3890 	void *src, *dst;
3891 	u8 *ptr_buf;
3892 
3893 	if (likely(xdp->data_end - xdp->data >= off + len)) {
3894 		src = flush ? buf : xdp->data + off;
3895 		dst = flush ? xdp->data + off : buf;
3896 		memcpy(dst, src, len);
3897 		return;
3898 	}
3899 
3900 	sinfo = xdp_get_shared_info_from_buff(xdp);
3901 	end_frag = &sinfo->frags[sinfo->nr_frags];
3902 	next_frag = &sinfo->frags[0];
3903 
3904 	ptr_len = xdp->data_end - xdp->data;
3905 	ptr_buf = xdp->data;
3906 
3907 	while (true) {
3908 		if (off < ptr_off + ptr_len) {
3909 			unsigned long copy_off = off - ptr_off;
3910 			unsigned long copy_len = min(len, ptr_len - copy_off);
3911 
3912 			src = flush ? buf : ptr_buf + copy_off;
3913 			dst = flush ? ptr_buf + copy_off : buf;
3914 			memcpy(dst, src, copy_len);
3915 
3916 			off += copy_len;
3917 			len -= copy_len;
3918 			buf += copy_len;
3919 		}
3920 
3921 		if (!len || next_frag == end_frag)
3922 			break;
3923 
3924 		ptr_off += ptr_len;
3925 		ptr_buf = skb_frag_address(next_frag);
3926 		ptr_len = skb_frag_size(next_frag);
3927 		next_frag++;
3928 	}
3929 }
3930 
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)3931 static void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3932 {
3933 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3934 	u32 size = xdp->data_end - xdp->data;
3935 	void *addr = xdp->data;
3936 	int i;
3937 
3938 	if (unlikely(offset > 0xffff || len > 0xffff))
3939 		return ERR_PTR(-EFAULT);
3940 
3941 	if (offset + len > xdp_get_buff_len(xdp))
3942 		return ERR_PTR(-EINVAL);
3943 
3944 	if (offset < size) /* linear area */
3945 		goto out;
3946 
3947 	offset -= size;
3948 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3949 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3950 
3951 		if  (offset < frag_size) {
3952 			addr = skb_frag_address(&sinfo->frags[i]);
3953 			size = frag_size;
3954 			break;
3955 		}
3956 		offset -= frag_size;
3957 	}
3958 out:
3959 	return offset + len <= size ? addr + offset : NULL;
3960 }
3961 
BPF_CALL_4(bpf_xdp_load_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)3962 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
3963 	   void *, buf, u32, len)
3964 {
3965 	void *ptr;
3966 
3967 	ptr = bpf_xdp_pointer(xdp, offset, len);
3968 	if (IS_ERR(ptr))
3969 		return PTR_ERR(ptr);
3970 
3971 	if (!ptr)
3972 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
3973 	else
3974 		memcpy(buf, ptr, len);
3975 
3976 	return 0;
3977 }
3978 
3979 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
3980 	.func		= bpf_xdp_load_bytes,
3981 	.gpl_only	= false,
3982 	.ret_type	= RET_INTEGER,
3983 	.arg1_type	= ARG_PTR_TO_CTX,
3984 	.arg2_type	= ARG_ANYTHING,
3985 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
3986 	.arg4_type	= ARG_CONST_SIZE,
3987 };
3988 
BPF_CALL_4(bpf_xdp_store_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)3989 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
3990 	   void *, buf, u32, len)
3991 {
3992 	void *ptr;
3993 
3994 	ptr = bpf_xdp_pointer(xdp, offset, len);
3995 	if (IS_ERR(ptr))
3996 		return PTR_ERR(ptr);
3997 
3998 	if (!ptr)
3999 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4000 	else
4001 		memcpy(ptr, buf, len);
4002 
4003 	return 0;
4004 }
4005 
4006 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4007 	.func		= bpf_xdp_store_bytes,
4008 	.gpl_only	= false,
4009 	.ret_type	= RET_INTEGER,
4010 	.arg1_type	= ARG_PTR_TO_CTX,
4011 	.arg2_type	= ARG_ANYTHING,
4012 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4013 	.arg4_type	= ARG_CONST_SIZE,
4014 };
4015 
bpf_xdp_frags_increase_tail(struct xdp_buff * xdp,int offset)4016 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4017 {
4018 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4019 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4020 	struct xdp_rxq_info *rxq = xdp->rxq;
4021 	unsigned int tailroom;
4022 
4023 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4024 		return -EOPNOTSUPP;
4025 
4026 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4027 	if (unlikely(offset > tailroom))
4028 		return -EINVAL;
4029 
4030 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4031 	skb_frag_size_add(frag, offset);
4032 	sinfo->xdp_frags_size += offset;
4033 
4034 	return 0;
4035 }
4036 
bpf_xdp_frags_shrink_tail(struct xdp_buff * xdp,int offset)4037 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4038 {
4039 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4040 	int i, n_frags_free = 0, len_free = 0;
4041 
4042 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4043 		return -EINVAL;
4044 
4045 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4046 		skb_frag_t *frag = &sinfo->frags[i];
4047 		int shrink = min_t(int, offset, skb_frag_size(frag));
4048 
4049 		len_free += shrink;
4050 		offset -= shrink;
4051 
4052 		if (skb_frag_size(frag) == shrink) {
4053 			struct page *page = skb_frag_page(frag);
4054 
4055 			__xdp_return(page_address(page), &xdp->rxq->mem,
4056 				     false, NULL);
4057 			n_frags_free++;
4058 		} else {
4059 			skb_frag_size_sub(frag, shrink);
4060 			break;
4061 		}
4062 	}
4063 	sinfo->nr_frags -= n_frags_free;
4064 	sinfo->xdp_frags_size -= len_free;
4065 
4066 	if (unlikely(!sinfo->nr_frags)) {
4067 		xdp_buff_clear_frags_flag(xdp);
4068 		xdp->data_end -= offset;
4069 	}
4070 
4071 	return 0;
4072 }
4073 
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)4074 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4075 {
4076 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4077 	void *data_end = xdp->data_end + offset;
4078 
4079 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4080 		if (offset < 0)
4081 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4082 
4083 		return bpf_xdp_frags_increase_tail(xdp, offset);
4084 	}
4085 
4086 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4087 	if (unlikely(data_end > data_hard_end))
4088 		return -EINVAL;
4089 
4090 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4091 		return -EINVAL;
4092 
4093 	/* Clear memory area on grow, can contain uninit kernel memory */
4094 	if (offset > 0)
4095 		memset(xdp->data_end, 0, offset);
4096 
4097 	xdp->data_end = data_end;
4098 
4099 	return 0;
4100 }
4101 
4102 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4103 	.func		= bpf_xdp_adjust_tail,
4104 	.gpl_only	= false,
4105 	.ret_type	= RET_INTEGER,
4106 	.arg1_type	= ARG_PTR_TO_CTX,
4107 	.arg2_type	= ARG_ANYTHING,
4108 };
4109 
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)4110 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4111 {
4112 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4113 	void *meta = xdp->data_meta + offset;
4114 	unsigned long metalen = xdp->data - meta;
4115 
4116 	if (xdp_data_meta_unsupported(xdp))
4117 		return -ENOTSUPP;
4118 	if (unlikely(meta < xdp_frame_end ||
4119 		     meta > xdp->data))
4120 		return -EINVAL;
4121 	if (unlikely(xdp_metalen_invalid(metalen)))
4122 		return -EACCES;
4123 
4124 	xdp->data_meta = meta;
4125 
4126 	return 0;
4127 }
4128 
4129 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4130 	.func		= bpf_xdp_adjust_meta,
4131 	.gpl_only	= false,
4132 	.ret_type	= RET_INTEGER,
4133 	.arg1_type	= ARG_PTR_TO_CTX,
4134 	.arg2_type	= ARG_ANYTHING,
4135 };
4136 
4137 /* XDP_REDIRECT works by a three-step process, implemented in the functions
4138  * below:
4139  *
4140  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4141  *    of the redirect and store it (along with some other metadata) in a per-CPU
4142  *    struct bpf_redirect_info.
4143  *
4144  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4145  *    call xdp_do_redirect() which will use the information in struct
4146  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4147  *    bulk queue structure.
4148  *
4149  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
4150  *    which will flush all the different bulk queues, thus completing the
4151  *    redirect.
4152  *
4153  * Pointers to the map entries will be kept around for this whole sequence of
4154  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4155  * the core code; instead, the RCU protection relies on everything happening
4156  * inside a single NAPI poll sequence, which means it's between a pair of calls
4157  * to local_bh_disable()/local_bh_enable().
4158  *
4159  * The map entries are marked as __rcu and the map code makes sure to
4160  * dereference those pointers with rcu_dereference_check() in a way that works
4161  * for both sections that to hold an rcu_read_lock() and sections that are
4162  * called from NAPI without a separate rcu_read_lock(). The code below does not
4163  * use RCU annotations, but relies on those in the map code.
4164  */
xdp_do_flush(void)4165 void xdp_do_flush(void)
4166 {
4167 	__dev_flush();
4168 	__cpu_map_flush();
4169 	__xsk_map_flush();
4170 }
4171 EXPORT_SYMBOL_GPL(xdp_do_flush);
4172 
bpf_clear_redirect_map(struct bpf_map * map)4173 void bpf_clear_redirect_map(struct bpf_map *map)
4174 {
4175 	struct bpf_redirect_info *ri;
4176 	int cpu;
4177 
4178 	for_each_possible_cpu(cpu) {
4179 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4180 		/* Avoid polluting remote cacheline due to writes if
4181 		 * not needed. Once we pass this test, we need the
4182 		 * cmpxchg() to make sure it hasn't been changed in
4183 		 * the meantime by remote CPU.
4184 		 */
4185 		if (unlikely(READ_ONCE(ri->map) == map))
4186 			cmpxchg(&ri->map, map, NULL);
4187 	}
4188 }
4189 
4190 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4191 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4192 
xdp_master_redirect(struct xdp_buff * xdp)4193 u32 xdp_master_redirect(struct xdp_buff *xdp)
4194 {
4195 	struct net_device *master, *slave;
4196 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4197 
4198 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4199 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4200 	if (slave && slave != xdp->rxq->dev) {
4201 		/* The target device is different from the receiving device, so
4202 		 * redirect it to the new device.
4203 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4204 		 * drivers to unmap the packet from their rx ring.
4205 		 */
4206 		ri->tgt_index = slave->ifindex;
4207 		ri->map_id = INT_MAX;
4208 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4209 		return XDP_REDIRECT;
4210 	}
4211 	return XDP_TX;
4212 }
4213 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4214 
__xdp_do_redirect_xsk(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4215 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4216 					struct net_device *dev,
4217 					struct xdp_buff *xdp,
4218 					struct bpf_prog *xdp_prog)
4219 {
4220 	enum bpf_map_type map_type = ri->map_type;
4221 	void *fwd = ri->tgt_value;
4222 	u32 map_id = ri->map_id;
4223 	int err;
4224 
4225 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4226 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4227 
4228 	err = __xsk_map_redirect(fwd, xdp);
4229 	if (unlikely(err))
4230 		goto err;
4231 
4232 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4233 	return 0;
4234 err:
4235 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4236 	return err;
4237 }
4238 
__xdp_do_redirect_frame(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_frame * xdpf,struct bpf_prog * xdp_prog)4239 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4240 						   struct net_device *dev,
4241 						   struct xdp_frame *xdpf,
4242 						   struct bpf_prog *xdp_prog)
4243 {
4244 	enum bpf_map_type map_type = ri->map_type;
4245 	void *fwd = ri->tgt_value;
4246 	u32 map_id = ri->map_id;
4247 	struct bpf_map *map;
4248 	int err;
4249 
4250 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4251 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4252 
4253 	if (unlikely(!xdpf)) {
4254 		err = -EOVERFLOW;
4255 		goto err;
4256 	}
4257 
4258 	switch (map_type) {
4259 	case BPF_MAP_TYPE_DEVMAP:
4260 		fallthrough;
4261 	case BPF_MAP_TYPE_DEVMAP_HASH:
4262 		map = READ_ONCE(ri->map);
4263 		if (unlikely(map)) {
4264 			WRITE_ONCE(ri->map, NULL);
4265 			err = dev_map_enqueue_multi(xdpf, dev, map,
4266 						    ri->flags & BPF_F_EXCLUDE_INGRESS);
4267 		} else {
4268 			err = dev_map_enqueue(fwd, xdpf, dev);
4269 		}
4270 		break;
4271 	case BPF_MAP_TYPE_CPUMAP:
4272 		err = cpu_map_enqueue(fwd, xdpf, dev);
4273 		break;
4274 	case BPF_MAP_TYPE_UNSPEC:
4275 		if (map_id == INT_MAX) {
4276 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4277 			if (unlikely(!fwd)) {
4278 				err = -EINVAL;
4279 				break;
4280 			}
4281 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4282 			break;
4283 		}
4284 		fallthrough;
4285 	default:
4286 		err = -EBADRQC;
4287 	}
4288 
4289 	if (unlikely(err))
4290 		goto err;
4291 
4292 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4293 	return 0;
4294 err:
4295 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4296 	return err;
4297 }
4298 
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4299 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4300 		    struct bpf_prog *xdp_prog)
4301 {
4302 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4303 	enum bpf_map_type map_type = ri->map_type;
4304 
4305 	/* XDP_REDIRECT is not fully supported yet for xdp frags since
4306 	 * not all XDP capable drivers can map non-linear xdp_frame in
4307 	 * ndo_xdp_xmit.
4308 	 */
4309 	if (unlikely(xdp_buff_has_frags(xdp) &&
4310 		     map_type != BPF_MAP_TYPE_CPUMAP))
4311 		return -EOPNOTSUPP;
4312 
4313 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4314 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4315 
4316 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4317 				       xdp_prog);
4318 }
4319 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4320 
xdp_do_redirect_frame(struct net_device * dev,struct xdp_buff * xdp,struct xdp_frame * xdpf,struct bpf_prog * xdp_prog)4321 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4322 			  struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4323 {
4324 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4325 	enum bpf_map_type map_type = ri->map_type;
4326 
4327 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4328 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4329 
4330 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4331 }
4332 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4333 
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,void * fwd,enum bpf_map_type map_type,u32 map_id)4334 static int xdp_do_generic_redirect_map(struct net_device *dev,
4335 				       struct sk_buff *skb,
4336 				       struct xdp_buff *xdp,
4337 				       struct bpf_prog *xdp_prog,
4338 				       void *fwd,
4339 				       enum bpf_map_type map_type, u32 map_id)
4340 {
4341 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4342 	struct bpf_map *map;
4343 	int err;
4344 
4345 	switch (map_type) {
4346 	case BPF_MAP_TYPE_DEVMAP:
4347 		fallthrough;
4348 	case BPF_MAP_TYPE_DEVMAP_HASH:
4349 		map = READ_ONCE(ri->map);
4350 		if (unlikely(map)) {
4351 			WRITE_ONCE(ri->map, NULL);
4352 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4353 						     ri->flags & BPF_F_EXCLUDE_INGRESS);
4354 		} else {
4355 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4356 		}
4357 		if (unlikely(err))
4358 			goto err;
4359 		break;
4360 	case BPF_MAP_TYPE_XSKMAP:
4361 		err = xsk_generic_rcv(fwd, xdp);
4362 		if (err)
4363 			goto err;
4364 		consume_skb(skb);
4365 		break;
4366 	case BPF_MAP_TYPE_CPUMAP:
4367 		err = cpu_map_generic_redirect(fwd, skb);
4368 		if (unlikely(err))
4369 			goto err;
4370 		break;
4371 	default:
4372 		err = -EBADRQC;
4373 		goto err;
4374 	}
4375 
4376 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4377 	return 0;
4378 err:
4379 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4380 	return err;
4381 }
4382 
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4383 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4384 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4385 {
4386 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4387 	enum bpf_map_type map_type = ri->map_type;
4388 	void *fwd = ri->tgt_value;
4389 	u32 map_id = ri->map_id;
4390 	int err;
4391 
4392 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4393 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4394 
4395 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4396 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4397 		if (unlikely(!fwd)) {
4398 			err = -EINVAL;
4399 			goto err;
4400 		}
4401 
4402 		err = xdp_ok_fwd_dev(fwd, skb->len);
4403 		if (unlikely(err))
4404 			goto err;
4405 
4406 		skb->dev = fwd;
4407 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4408 		generic_xdp_tx(skb, xdp_prog);
4409 		return 0;
4410 	}
4411 
4412 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4413 err:
4414 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4415 	return err;
4416 }
4417 
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4418 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4419 {
4420 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4421 
4422 	if (unlikely(flags))
4423 		return XDP_ABORTED;
4424 
4425 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4426 	 * by map_idr) is used for ifindex based XDP redirect.
4427 	 */
4428 	ri->tgt_index = ifindex;
4429 	ri->map_id = INT_MAX;
4430 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4431 
4432 	return XDP_REDIRECT;
4433 }
4434 
4435 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4436 	.func           = bpf_xdp_redirect,
4437 	.gpl_only       = false,
4438 	.ret_type       = RET_INTEGER,
4439 	.arg1_type      = ARG_ANYTHING,
4440 	.arg2_type      = ARG_ANYTHING,
4441 };
4442 
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u32,ifindex,u64,flags)4443 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4444 	   u64, flags)
4445 {
4446 	return map->ops->map_redirect(map, ifindex, flags);
4447 }
4448 
4449 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4450 	.func           = bpf_xdp_redirect_map,
4451 	.gpl_only       = false,
4452 	.ret_type       = RET_INTEGER,
4453 	.arg1_type      = ARG_CONST_MAP_PTR,
4454 	.arg2_type      = ARG_ANYTHING,
4455 	.arg3_type      = ARG_ANYTHING,
4456 };
4457 
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4458 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4459 				  unsigned long off, unsigned long len)
4460 {
4461 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4462 
4463 	if (unlikely(!ptr))
4464 		return len;
4465 	if (ptr != dst_buff)
4466 		memcpy(dst_buff, ptr, len);
4467 
4468 	return 0;
4469 }
4470 
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4471 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4472 	   u64, flags, void *, meta, u64, meta_size)
4473 {
4474 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4475 
4476 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4477 		return -EINVAL;
4478 	if (unlikely(!skb || skb_size > skb->len))
4479 		return -EFAULT;
4480 
4481 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4482 				bpf_skb_copy);
4483 }
4484 
4485 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4486 	.func		= bpf_skb_event_output,
4487 	.gpl_only	= true,
4488 	.ret_type	= RET_INTEGER,
4489 	.arg1_type	= ARG_PTR_TO_CTX,
4490 	.arg2_type	= ARG_CONST_MAP_PTR,
4491 	.arg3_type	= ARG_ANYTHING,
4492 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4493 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4494 };
4495 
4496 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4497 
4498 const struct bpf_func_proto bpf_skb_output_proto = {
4499 	.func		= bpf_skb_event_output,
4500 	.gpl_only	= true,
4501 	.ret_type	= RET_INTEGER,
4502 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4503 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4504 	.arg2_type	= ARG_CONST_MAP_PTR,
4505 	.arg3_type	= ARG_ANYTHING,
4506 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4507 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4508 };
4509 
bpf_tunnel_key_af(u64 flags)4510 static unsigned short bpf_tunnel_key_af(u64 flags)
4511 {
4512 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4513 }
4514 
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4515 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4516 	   u32, size, u64, flags)
4517 {
4518 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4519 	u8 compat[sizeof(struct bpf_tunnel_key)];
4520 	void *to_orig = to;
4521 	int err;
4522 
4523 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4524 					 BPF_F_TUNINFO_FLAGS)))) {
4525 		err = -EINVAL;
4526 		goto err_clear;
4527 	}
4528 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4529 		err = -EPROTO;
4530 		goto err_clear;
4531 	}
4532 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4533 		err = -EINVAL;
4534 		switch (size) {
4535 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4536 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4537 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4538 			goto set_compat;
4539 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4540 			/* Fixup deprecated structure layouts here, so we have
4541 			 * a common path later on.
4542 			 */
4543 			if (ip_tunnel_info_af(info) != AF_INET)
4544 				goto err_clear;
4545 set_compat:
4546 			to = (struct bpf_tunnel_key *)compat;
4547 			break;
4548 		default:
4549 			goto err_clear;
4550 		}
4551 	}
4552 
4553 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4554 	to->tunnel_tos = info->key.tos;
4555 	to->tunnel_ttl = info->key.ttl;
4556 	if (flags & BPF_F_TUNINFO_FLAGS)
4557 		to->tunnel_flags = info->key.tun_flags;
4558 	else
4559 		to->tunnel_ext = 0;
4560 
4561 	if (flags & BPF_F_TUNINFO_IPV6) {
4562 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4563 		       sizeof(to->remote_ipv6));
4564 		memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4565 		       sizeof(to->local_ipv6));
4566 		to->tunnel_label = be32_to_cpu(info->key.label);
4567 	} else {
4568 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4569 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4570 		to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4571 		memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4572 		to->tunnel_label = 0;
4573 	}
4574 
4575 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4576 		memcpy(to_orig, to, size);
4577 
4578 	return 0;
4579 err_clear:
4580 	memset(to_orig, 0, size);
4581 	return err;
4582 }
4583 
4584 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4585 	.func		= bpf_skb_get_tunnel_key,
4586 	.gpl_only	= false,
4587 	.ret_type	= RET_INTEGER,
4588 	.arg1_type	= ARG_PTR_TO_CTX,
4589 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4590 	.arg3_type	= ARG_CONST_SIZE,
4591 	.arg4_type	= ARG_ANYTHING,
4592 };
4593 
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4594 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4595 {
4596 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4597 	int err;
4598 
4599 	if (unlikely(!info ||
4600 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4601 		err = -ENOENT;
4602 		goto err_clear;
4603 	}
4604 	if (unlikely(size < info->options_len)) {
4605 		err = -ENOMEM;
4606 		goto err_clear;
4607 	}
4608 
4609 	ip_tunnel_info_opts_get(to, info);
4610 	if (size > info->options_len)
4611 		memset(to + info->options_len, 0, size - info->options_len);
4612 
4613 	return info->options_len;
4614 err_clear:
4615 	memset(to, 0, size);
4616 	return err;
4617 }
4618 
4619 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4620 	.func		= bpf_skb_get_tunnel_opt,
4621 	.gpl_only	= false,
4622 	.ret_type	= RET_INTEGER,
4623 	.arg1_type	= ARG_PTR_TO_CTX,
4624 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4625 	.arg3_type	= ARG_CONST_SIZE,
4626 };
4627 
4628 static struct metadata_dst __percpu *md_dst;
4629 
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4630 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4631 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4632 {
4633 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4634 	u8 compat[sizeof(struct bpf_tunnel_key)];
4635 	struct ip_tunnel_info *info;
4636 
4637 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4638 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4639 		return -EINVAL;
4640 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4641 		switch (size) {
4642 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4643 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4644 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4645 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4646 			/* Fixup deprecated structure layouts here, so we have
4647 			 * a common path later on.
4648 			 */
4649 			memcpy(compat, from, size);
4650 			memset(compat + size, 0, sizeof(compat) - size);
4651 			from = (const struct bpf_tunnel_key *) compat;
4652 			break;
4653 		default:
4654 			return -EINVAL;
4655 		}
4656 	}
4657 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4658 		     from->tunnel_ext))
4659 		return -EINVAL;
4660 
4661 	skb_dst_drop(skb);
4662 	dst_hold((struct dst_entry *) md);
4663 	skb_dst_set(skb, (struct dst_entry *) md);
4664 
4665 	info = &md->u.tun_info;
4666 	memset(info, 0, sizeof(*info));
4667 	info->mode = IP_TUNNEL_INFO_TX;
4668 
4669 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4670 	if (flags & BPF_F_DONT_FRAGMENT)
4671 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4672 	if (flags & BPF_F_ZERO_CSUM_TX)
4673 		info->key.tun_flags &= ~TUNNEL_CSUM;
4674 	if (flags & BPF_F_SEQ_NUMBER)
4675 		info->key.tun_flags |= TUNNEL_SEQ;
4676 
4677 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4678 	info->key.tos = from->tunnel_tos;
4679 	info->key.ttl = from->tunnel_ttl;
4680 
4681 	if (flags & BPF_F_TUNINFO_IPV6) {
4682 		info->mode |= IP_TUNNEL_INFO_IPV6;
4683 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4684 		       sizeof(from->remote_ipv6));
4685 		memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4686 		       sizeof(from->local_ipv6));
4687 		info->key.label = cpu_to_be32(from->tunnel_label) &
4688 				  IPV6_FLOWLABEL_MASK;
4689 	} else {
4690 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4691 		info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4692 		info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4693 	}
4694 
4695 	return 0;
4696 }
4697 
4698 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4699 	.func		= bpf_skb_set_tunnel_key,
4700 	.gpl_only	= false,
4701 	.ret_type	= RET_INTEGER,
4702 	.arg1_type	= ARG_PTR_TO_CTX,
4703 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4704 	.arg3_type	= ARG_CONST_SIZE,
4705 	.arg4_type	= ARG_ANYTHING,
4706 };
4707 
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4708 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4709 	   const u8 *, from, u32, size)
4710 {
4711 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4712 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4713 
4714 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4715 		return -EINVAL;
4716 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4717 		return -ENOMEM;
4718 
4719 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4720 
4721 	return 0;
4722 }
4723 
4724 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4725 	.func		= bpf_skb_set_tunnel_opt,
4726 	.gpl_only	= false,
4727 	.ret_type	= RET_INTEGER,
4728 	.arg1_type	= ARG_PTR_TO_CTX,
4729 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4730 	.arg3_type	= ARG_CONST_SIZE,
4731 };
4732 
4733 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4734 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4735 {
4736 	if (!md_dst) {
4737 		struct metadata_dst __percpu *tmp;
4738 
4739 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4740 						METADATA_IP_TUNNEL,
4741 						GFP_KERNEL);
4742 		if (!tmp)
4743 			return NULL;
4744 		if (cmpxchg(&md_dst, NULL, tmp))
4745 			metadata_dst_free_percpu(tmp);
4746 	}
4747 
4748 	switch (which) {
4749 	case BPF_FUNC_skb_set_tunnel_key:
4750 		return &bpf_skb_set_tunnel_key_proto;
4751 	case BPF_FUNC_skb_set_tunnel_opt:
4752 		return &bpf_skb_set_tunnel_opt_proto;
4753 	default:
4754 		return NULL;
4755 	}
4756 }
4757 
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4758 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4759 	   u32, idx)
4760 {
4761 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4762 	struct cgroup *cgrp;
4763 	struct sock *sk;
4764 
4765 	sk = skb_to_full_sk(skb);
4766 	if (!sk || !sk_fullsock(sk))
4767 		return -ENOENT;
4768 	if (unlikely(idx >= array->map.max_entries))
4769 		return -E2BIG;
4770 
4771 	cgrp = READ_ONCE(array->ptrs[idx]);
4772 	if (unlikely(!cgrp))
4773 		return -EAGAIN;
4774 
4775 	return sk_under_cgroup_hierarchy(sk, cgrp);
4776 }
4777 
4778 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4779 	.func		= bpf_skb_under_cgroup,
4780 	.gpl_only	= false,
4781 	.ret_type	= RET_INTEGER,
4782 	.arg1_type	= ARG_PTR_TO_CTX,
4783 	.arg2_type	= ARG_CONST_MAP_PTR,
4784 	.arg3_type	= ARG_ANYTHING,
4785 };
4786 
4787 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4788 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4789 {
4790 	struct cgroup *cgrp;
4791 
4792 	sk = sk_to_full_sk(sk);
4793 	if (!sk || !sk_fullsock(sk))
4794 		return 0;
4795 
4796 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4797 	return cgroup_id(cgrp);
4798 }
4799 
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4800 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4801 {
4802 	return __bpf_sk_cgroup_id(skb->sk);
4803 }
4804 
4805 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4806 	.func           = bpf_skb_cgroup_id,
4807 	.gpl_only       = false,
4808 	.ret_type       = RET_INTEGER,
4809 	.arg1_type      = ARG_PTR_TO_CTX,
4810 };
4811 
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)4812 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4813 					      int ancestor_level)
4814 {
4815 	struct cgroup *ancestor;
4816 	struct cgroup *cgrp;
4817 
4818 	sk = sk_to_full_sk(sk);
4819 	if (!sk || !sk_fullsock(sk))
4820 		return 0;
4821 
4822 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4823 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4824 	if (!ancestor)
4825 		return 0;
4826 
4827 	return cgroup_id(ancestor);
4828 }
4829 
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)4830 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4831 	   ancestor_level)
4832 {
4833 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4834 }
4835 
4836 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4837 	.func           = bpf_skb_ancestor_cgroup_id,
4838 	.gpl_only       = false,
4839 	.ret_type       = RET_INTEGER,
4840 	.arg1_type      = ARG_PTR_TO_CTX,
4841 	.arg2_type      = ARG_ANYTHING,
4842 };
4843 
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)4844 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4845 {
4846 	return __bpf_sk_cgroup_id(sk);
4847 }
4848 
4849 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4850 	.func           = bpf_sk_cgroup_id,
4851 	.gpl_only       = false,
4852 	.ret_type       = RET_INTEGER,
4853 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4854 };
4855 
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)4856 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4857 {
4858 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4859 }
4860 
4861 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4862 	.func           = bpf_sk_ancestor_cgroup_id,
4863 	.gpl_only       = false,
4864 	.ret_type       = RET_INTEGER,
4865 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4866 	.arg2_type      = ARG_ANYTHING,
4867 };
4868 #endif
4869 
bpf_xdp_copy(void * dst,const void * ctx,unsigned long off,unsigned long len)4870 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4871 				  unsigned long off, unsigned long len)
4872 {
4873 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4874 
4875 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
4876 	return 0;
4877 }
4878 
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4879 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4880 	   u64, flags, void *, meta, u64, meta_size)
4881 {
4882 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4883 
4884 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4885 		return -EINVAL;
4886 
4887 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4888 		return -EFAULT;
4889 
4890 	return bpf_event_output(map, flags, meta, meta_size, xdp,
4891 				xdp_size, bpf_xdp_copy);
4892 }
4893 
4894 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4895 	.func		= bpf_xdp_event_output,
4896 	.gpl_only	= true,
4897 	.ret_type	= RET_INTEGER,
4898 	.arg1_type	= ARG_PTR_TO_CTX,
4899 	.arg2_type	= ARG_CONST_MAP_PTR,
4900 	.arg3_type	= ARG_ANYTHING,
4901 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4902 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4903 };
4904 
4905 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4906 
4907 const struct bpf_func_proto bpf_xdp_output_proto = {
4908 	.func		= bpf_xdp_event_output,
4909 	.gpl_only	= true,
4910 	.ret_type	= RET_INTEGER,
4911 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4912 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
4913 	.arg2_type	= ARG_CONST_MAP_PTR,
4914 	.arg3_type	= ARG_ANYTHING,
4915 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4916 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4917 };
4918 
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)4919 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4920 {
4921 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4922 }
4923 
4924 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4925 	.func           = bpf_get_socket_cookie,
4926 	.gpl_only       = false,
4927 	.ret_type       = RET_INTEGER,
4928 	.arg1_type      = ARG_PTR_TO_CTX,
4929 };
4930 
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)4931 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4932 {
4933 	return __sock_gen_cookie(ctx->sk);
4934 }
4935 
4936 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4937 	.func		= bpf_get_socket_cookie_sock_addr,
4938 	.gpl_only	= false,
4939 	.ret_type	= RET_INTEGER,
4940 	.arg1_type	= ARG_PTR_TO_CTX,
4941 };
4942 
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)4943 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4944 {
4945 	return __sock_gen_cookie(ctx);
4946 }
4947 
4948 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4949 	.func		= bpf_get_socket_cookie_sock,
4950 	.gpl_only	= false,
4951 	.ret_type	= RET_INTEGER,
4952 	.arg1_type	= ARG_PTR_TO_CTX,
4953 };
4954 
BPF_CALL_1(bpf_get_socket_ptr_cookie,struct sock *,sk)4955 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4956 {
4957 	return sk ? sock_gen_cookie(sk) : 0;
4958 }
4959 
4960 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4961 	.func		= bpf_get_socket_ptr_cookie,
4962 	.gpl_only	= false,
4963 	.ret_type	= RET_INTEGER,
4964 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4965 };
4966 
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)4967 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4968 {
4969 	return __sock_gen_cookie(ctx->sk);
4970 }
4971 
4972 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4973 	.func		= bpf_get_socket_cookie_sock_ops,
4974 	.gpl_only	= false,
4975 	.ret_type	= RET_INTEGER,
4976 	.arg1_type	= ARG_PTR_TO_CTX,
4977 };
4978 
__bpf_get_netns_cookie(struct sock * sk)4979 static u64 __bpf_get_netns_cookie(struct sock *sk)
4980 {
4981 	const struct net *net = sk ? sock_net(sk) : &init_net;
4982 
4983 	return net->net_cookie;
4984 }
4985 
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)4986 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4987 {
4988 	return __bpf_get_netns_cookie(ctx);
4989 }
4990 
4991 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4992 	.func		= bpf_get_netns_cookie_sock,
4993 	.gpl_only	= false,
4994 	.ret_type	= RET_INTEGER,
4995 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4996 };
4997 
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)4998 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4999 {
5000 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5001 }
5002 
5003 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5004 	.func		= bpf_get_netns_cookie_sock_addr,
5005 	.gpl_only	= false,
5006 	.ret_type	= RET_INTEGER,
5007 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5008 };
5009 
BPF_CALL_1(bpf_get_netns_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5010 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5011 {
5012 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5013 }
5014 
5015 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5016 	.func		= bpf_get_netns_cookie_sock_ops,
5017 	.gpl_only	= false,
5018 	.ret_type	= RET_INTEGER,
5019 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5020 };
5021 
BPF_CALL_1(bpf_get_netns_cookie_sk_msg,struct sk_msg *,ctx)5022 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5023 {
5024 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5025 }
5026 
5027 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5028 	.func		= bpf_get_netns_cookie_sk_msg,
5029 	.gpl_only	= false,
5030 	.ret_type	= RET_INTEGER,
5031 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5032 };
5033 
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)5034 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5035 {
5036 	struct sock *sk = sk_to_full_sk(skb->sk);
5037 	kuid_t kuid;
5038 
5039 	if (!sk || !sk_fullsock(sk))
5040 		return overflowuid;
5041 	kuid = sock_net_uid(sock_net(sk), sk);
5042 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5043 }
5044 
5045 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5046 	.func           = bpf_get_socket_uid,
5047 	.gpl_only       = false,
5048 	.ret_type       = RET_INTEGER,
5049 	.arg1_type      = ARG_PTR_TO_CTX,
5050 };
5051 
sol_socket_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5052 static int sol_socket_sockopt(struct sock *sk, int optname,
5053 			      char *optval, int *optlen,
5054 			      bool getopt)
5055 {
5056 	switch (optname) {
5057 	case SO_REUSEADDR:
5058 	case SO_SNDBUF:
5059 	case SO_RCVBUF:
5060 	case SO_KEEPALIVE:
5061 	case SO_PRIORITY:
5062 	case SO_REUSEPORT:
5063 	case SO_RCVLOWAT:
5064 	case SO_MARK:
5065 	case SO_MAX_PACING_RATE:
5066 	case SO_BINDTOIFINDEX:
5067 	case SO_TXREHASH:
5068 		if (*optlen != sizeof(int))
5069 			return -EINVAL;
5070 		break;
5071 	case SO_BINDTODEVICE:
5072 		break;
5073 	default:
5074 		return -EINVAL;
5075 	}
5076 
5077 	if (getopt) {
5078 		if (optname == SO_BINDTODEVICE)
5079 			return -EINVAL;
5080 		return sk_getsockopt(sk, SOL_SOCKET, optname,
5081 				     KERNEL_SOCKPTR(optval),
5082 				     KERNEL_SOCKPTR(optlen));
5083 	}
5084 
5085 	return sk_setsockopt(sk, SOL_SOCKET, optname,
5086 			     KERNEL_SOCKPTR(optval), *optlen);
5087 }
5088 
bpf_sol_tcp_setsockopt(struct sock * sk,int optname,char * optval,int optlen)5089 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5090 				  char *optval, int optlen)
5091 {
5092 	struct tcp_sock *tp = tcp_sk(sk);
5093 	unsigned long timeout;
5094 	int val;
5095 
5096 	if (optlen != sizeof(int))
5097 		return -EINVAL;
5098 
5099 	val = *(int *)optval;
5100 
5101 	/* Only some options are supported */
5102 	switch (optname) {
5103 	case TCP_BPF_IW:
5104 		if (val <= 0 || tp->data_segs_out > tp->syn_data)
5105 			return -EINVAL;
5106 		tcp_snd_cwnd_set(tp, val);
5107 		break;
5108 	case TCP_BPF_SNDCWND_CLAMP:
5109 		if (val <= 0)
5110 			return -EINVAL;
5111 		tp->snd_cwnd_clamp = val;
5112 		tp->snd_ssthresh = val;
5113 		break;
5114 	case TCP_BPF_DELACK_MAX:
5115 		timeout = usecs_to_jiffies(val);
5116 		if (timeout > TCP_DELACK_MAX ||
5117 		    timeout < TCP_TIMEOUT_MIN)
5118 			return -EINVAL;
5119 		inet_csk(sk)->icsk_delack_max = timeout;
5120 		break;
5121 	case TCP_BPF_RTO_MIN:
5122 		timeout = usecs_to_jiffies(val);
5123 		if (timeout > TCP_RTO_MIN ||
5124 		    timeout < TCP_TIMEOUT_MIN)
5125 			return -EINVAL;
5126 		inet_csk(sk)->icsk_rto_min = timeout;
5127 		break;
5128 	default:
5129 		return -EINVAL;
5130 	}
5131 
5132 	return 0;
5133 }
5134 
sol_tcp_sockopt_congestion(struct sock * sk,char * optval,int * optlen,bool getopt)5135 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5136 				      int *optlen, bool getopt)
5137 {
5138 	struct tcp_sock *tp;
5139 	int ret;
5140 
5141 	if (*optlen < 2)
5142 		return -EINVAL;
5143 
5144 	if (getopt) {
5145 		if (!inet_csk(sk)->icsk_ca_ops)
5146 			return -EINVAL;
5147 		/* BPF expects NULL-terminated tcp-cc string */
5148 		optval[--(*optlen)] = '\0';
5149 		return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5150 					 KERNEL_SOCKPTR(optval),
5151 					 KERNEL_SOCKPTR(optlen));
5152 	}
5153 
5154 	/* "cdg" is the only cc that alloc a ptr
5155 	 * in inet_csk_ca area.  The bpf-tcp-cc may
5156 	 * overwrite this ptr after switching to cdg.
5157 	 */
5158 	if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5159 		return -ENOTSUPP;
5160 
5161 	/* It stops this looping
5162 	 *
5163 	 * .init => bpf_setsockopt(tcp_cc) => .init =>
5164 	 * bpf_setsockopt(tcp_cc)" => .init => ....
5165 	 *
5166 	 * The second bpf_setsockopt(tcp_cc) is not allowed
5167 	 * in order to break the loop when both .init
5168 	 * are the same bpf prog.
5169 	 *
5170 	 * This applies even the second bpf_setsockopt(tcp_cc)
5171 	 * does not cause a loop.  This limits only the first
5172 	 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5173 	 * pick a fallback cc (eg. peer does not support ECN)
5174 	 * and the second '.init' cannot fallback to
5175 	 * another.
5176 	 */
5177 	tp = tcp_sk(sk);
5178 	if (tp->bpf_chg_cc_inprogress)
5179 		return -EBUSY;
5180 
5181 	tp->bpf_chg_cc_inprogress = 1;
5182 	ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5183 				KERNEL_SOCKPTR(optval), *optlen);
5184 	tp->bpf_chg_cc_inprogress = 0;
5185 	return ret;
5186 }
5187 
sol_tcp_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5188 static int sol_tcp_sockopt(struct sock *sk, int optname,
5189 			   char *optval, int *optlen,
5190 			   bool getopt)
5191 {
5192 	if (sk->sk_prot->setsockopt != tcp_setsockopt)
5193 		return -EINVAL;
5194 
5195 	switch (optname) {
5196 	case TCP_NODELAY:
5197 	case TCP_MAXSEG:
5198 	case TCP_KEEPIDLE:
5199 	case TCP_KEEPINTVL:
5200 	case TCP_KEEPCNT:
5201 	case TCP_SYNCNT:
5202 	case TCP_WINDOW_CLAMP:
5203 	case TCP_THIN_LINEAR_TIMEOUTS:
5204 	case TCP_USER_TIMEOUT:
5205 	case TCP_NOTSENT_LOWAT:
5206 	case TCP_SAVE_SYN:
5207 		if (*optlen != sizeof(int))
5208 			return -EINVAL;
5209 		break;
5210 	case TCP_CONGESTION:
5211 		return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5212 	case TCP_SAVED_SYN:
5213 		if (*optlen < 1)
5214 			return -EINVAL;
5215 		break;
5216 	default:
5217 		if (getopt)
5218 			return -EINVAL;
5219 		return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5220 	}
5221 
5222 	if (getopt) {
5223 		if (optname == TCP_SAVED_SYN) {
5224 			struct tcp_sock *tp = tcp_sk(sk);
5225 
5226 			if (!tp->saved_syn ||
5227 			    *optlen > tcp_saved_syn_len(tp->saved_syn))
5228 				return -EINVAL;
5229 			memcpy(optval, tp->saved_syn->data, *optlen);
5230 			/* It cannot free tp->saved_syn here because it
5231 			 * does not know if the user space still needs it.
5232 			 */
5233 			return 0;
5234 		}
5235 
5236 		return do_tcp_getsockopt(sk, SOL_TCP, optname,
5237 					 KERNEL_SOCKPTR(optval),
5238 					 KERNEL_SOCKPTR(optlen));
5239 	}
5240 
5241 	return do_tcp_setsockopt(sk, SOL_TCP, optname,
5242 				 KERNEL_SOCKPTR(optval), *optlen);
5243 }
5244 
sol_ip_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5245 static int sol_ip_sockopt(struct sock *sk, int optname,
5246 			  char *optval, int *optlen,
5247 			  bool getopt)
5248 {
5249 	if (sk->sk_family != AF_INET)
5250 		return -EINVAL;
5251 
5252 	switch (optname) {
5253 	case IP_TOS:
5254 		if (*optlen != sizeof(int))
5255 			return -EINVAL;
5256 		break;
5257 	default:
5258 		return -EINVAL;
5259 	}
5260 
5261 	if (getopt)
5262 		return do_ip_getsockopt(sk, SOL_IP, optname,
5263 					KERNEL_SOCKPTR(optval),
5264 					KERNEL_SOCKPTR(optlen));
5265 
5266 	return do_ip_setsockopt(sk, SOL_IP, optname,
5267 				KERNEL_SOCKPTR(optval), *optlen);
5268 }
5269 
sol_ipv6_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5270 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5271 			    char *optval, int *optlen,
5272 			    bool getopt)
5273 {
5274 	if (sk->sk_family != AF_INET6)
5275 		return -EINVAL;
5276 
5277 	switch (optname) {
5278 	case IPV6_TCLASS:
5279 	case IPV6_AUTOFLOWLABEL:
5280 		if (*optlen != sizeof(int))
5281 			return -EINVAL;
5282 		break;
5283 	default:
5284 		return -EINVAL;
5285 	}
5286 
5287 	if (getopt)
5288 		return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5289 						      KERNEL_SOCKPTR(optval),
5290 						      KERNEL_SOCKPTR(optlen));
5291 
5292 	return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5293 					      KERNEL_SOCKPTR(optval), *optlen);
5294 }
5295 
__bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5296 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5297 			    char *optval, int optlen)
5298 {
5299 	if (!sk_fullsock(sk))
5300 		return -EINVAL;
5301 
5302 	if (level == SOL_SOCKET)
5303 		return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5304 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5305 		return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5306 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5307 		return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5308 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5309 		return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5310 
5311 	return -EINVAL;
5312 }
5313 
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5314 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5315 			   char *optval, int optlen)
5316 {
5317 	if (sk_fullsock(sk))
5318 		sock_owned_by_me(sk);
5319 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5320 }
5321 
__bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5322 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5323 			    char *optval, int optlen)
5324 {
5325 	int err, saved_optlen = optlen;
5326 
5327 	if (!sk_fullsock(sk)) {
5328 		err = -EINVAL;
5329 		goto done;
5330 	}
5331 
5332 	if (level == SOL_SOCKET)
5333 		err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5334 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5335 		err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5336 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5337 		err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5338 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5339 		err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5340 	else
5341 		err = -EINVAL;
5342 
5343 done:
5344 	if (err)
5345 		optlen = 0;
5346 	if (optlen < saved_optlen)
5347 		memset(optval + optlen, 0, saved_optlen - optlen);
5348 	return err;
5349 }
5350 
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5351 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5352 			   char *optval, int optlen)
5353 {
5354 	if (sk_fullsock(sk))
5355 		sock_owned_by_me(sk);
5356 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5357 }
5358 
BPF_CALL_5(bpf_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5359 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5360 	   int, optname, char *, optval, int, optlen)
5361 {
5362 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5363 }
5364 
5365 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5366 	.func		= bpf_sk_setsockopt,
5367 	.gpl_only	= false,
5368 	.ret_type	= RET_INTEGER,
5369 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5370 	.arg2_type	= ARG_ANYTHING,
5371 	.arg3_type	= ARG_ANYTHING,
5372 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5373 	.arg5_type	= ARG_CONST_SIZE,
5374 };
5375 
BPF_CALL_5(bpf_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5376 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5377 	   int, optname, char *, optval, int, optlen)
5378 {
5379 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5380 }
5381 
5382 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5383 	.func		= bpf_sk_getsockopt,
5384 	.gpl_only	= false,
5385 	.ret_type	= RET_INTEGER,
5386 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5387 	.arg2_type	= ARG_ANYTHING,
5388 	.arg3_type	= ARG_ANYTHING,
5389 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5390 	.arg5_type	= ARG_CONST_SIZE,
5391 };
5392 
BPF_CALL_5(bpf_unlocked_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5393 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5394 	   int, optname, char *, optval, int, optlen)
5395 {
5396 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5397 }
5398 
5399 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5400 	.func		= bpf_unlocked_sk_setsockopt,
5401 	.gpl_only	= false,
5402 	.ret_type	= RET_INTEGER,
5403 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5404 	.arg2_type	= ARG_ANYTHING,
5405 	.arg3_type	= ARG_ANYTHING,
5406 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5407 	.arg5_type	= ARG_CONST_SIZE,
5408 };
5409 
BPF_CALL_5(bpf_unlocked_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5410 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5411 	   int, optname, char *, optval, int, optlen)
5412 {
5413 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5414 }
5415 
5416 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5417 	.func		= bpf_unlocked_sk_getsockopt,
5418 	.gpl_only	= false,
5419 	.ret_type	= RET_INTEGER,
5420 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5421 	.arg2_type	= ARG_ANYTHING,
5422 	.arg3_type	= ARG_ANYTHING,
5423 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5424 	.arg5_type	= ARG_CONST_SIZE,
5425 };
5426 
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5427 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5428 	   int, level, int, optname, char *, optval, int, optlen)
5429 {
5430 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5431 }
5432 
5433 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5434 	.func		= bpf_sock_addr_setsockopt,
5435 	.gpl_only	= false,
5436 	.ret_type	= RET_INTEGER,
5437 	.arg1_type	= ARG_PTR_TO_CTX,
5438 	.arg2_type	= ARG_ANYTHING,
5439 	.arg3_type	= ARG_ANYTHING,
5440 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5441 	.arg5_type	= ARG_CONST_SIZE,
5442 };
5443 
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5444 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5445 	   int, level, int, optname, char *, optval, int, optlen)
5446 {
5447 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5448 }
5449 
5450 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5451 	.func		= bpf_sock_addr_getsockopt,
5452 	.gpl_only	= false,
5453 	.ret_type	= RET_INTEGER,
5454 	.arg1_type	= ARG_PTR_TO_CTX,
5455 	.arg2_type	= ARG_ANYTHING,
5456 	.arg3_type	= ARG_ANYTHING,
5457 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5458 	.arg5_type	= ARG_CONST_SIZE,
5459 };
5460 
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5461 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5462 	   int, level, int, optname, char *, optval, int, optlen)
5463 {
5464 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5465 }
5466 
5467 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5468 	.func		= bpf_sock_ops_setsockopt,
5469 	.gpl_only	= false,
5470 	.ret_type	= RET_INTEGER,
5471 	.arg1_type	= ARG_PTR_TO_CTX,
5472 	.arg2_type	= ARG_ANYTHING,
5473 	.arg3_type	= ARG_ANYTHING,
5474 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5475 	.arg5_type	= ARG_CONST_SIZE,
5476 };
5477 
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5478 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5479 				int optname, const u8 **start)
5480 {
5481 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5482 	const u8 *hdr_start;
5483 	int ret;
5484 
5485 	if (syn_skb) {
5486 		/* sk is a request_sock here */
5487 
5488 		if (optname == TCP_BPF_SYN) {
5489 			hdr_start = syn_skb->data;
5490 			ret = tcp_hdrlen(syn_skb);
5491 		} else if (optname == TCP_BPF_SYN_IP) {
5492 			hdr_start = skb_network_header(syn_skb);
5493 			ret = skb_network_header_len(syn_skb) +
5494 				tcp_hdrlen(syn_skb);
5495 		} else {
5496 			/* optname == TCP_BPF_SYN_MAC */
5497 			hdr_start = skb_mac_header(syn_skb);
5498 			ret = skb_mac_header_len(syn_skb) +
5499 				skb_network_header_len(syn_skb) +
5500 				tcp_hdrlen(syn_skb);
5501 		}
5502 	} else {
5503 		struct sock *sk = bpf_sock->sk;
5504 		struct saved_syn *saved_syn;
5505 
5506 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5507 			/* synack retransmit. bpf_sock->syn_skb will
5508 			 * not be available.  It has to resort to
5509 			 * saved_syn (if it is saved).
5510 			 */
5511 			saved_syn = inet_reqsk(sk)->saved_syn;
5512 		else
5513 			saved_syn = tcp_sk(sk)->saved_syn;
5514 
5515 		if (!saved_syn)
5516 			return -ENOENT;
5517 
5518 		if (optname == TCP_BPF_SYN) {
5519 			hdr_start = saved_syn->data +
5520 				saved_syn->mac_hdrlen +
5521 				saved_syn->network_hdrlen;
5522 			ret = saved_syn->tcp_hdrlen;
5523 		} else if (optname == TCP_BPF_SYN_IP) {
5524 			hdr_start = saved_syn->data +
5525 				saved_syn->mac_hdrlen;
5526 			ret = saved_syn->network_hdrlen +
5527 				saved_syn->tcp_hdrlen;
5528 		} else {
5529 			/* optname == TCP_BPF_SYN_MAC */
5530 
5531 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5532 			if (!saved_syn->mac_hdrlen)
5533 				return -ENOENT;
5534 
5535 			hdr_start = saved_syn->data;
5536 			ret = saved_syn->mac_hdrlen +
5537 				saved_syn->network_hdrlen +
5538 				saved_syn->tcp_hdrlen;
5539 		}
5540 	}
5541 
5542 	*start = hdr_start;
5543 	return ret;
5544 }
5545 
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5546 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5547 	   int, level, int, optname, char *, optval, int, optlen)
5548 {
5549 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5550 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5551 		int ret, copy_len = 0;
5552 		const u8 *start;
5553 
5554 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5555 		if (ret > 0) {
5556 			copy_len = ret;
5557 			if (optlen < copy_len) {
5558 				copy_len = optlen;
5559 				ret = -ENOSPC;
5560 			}
5561 
5562 			memcpy(optval, start, copy_len);
5563 		}
5564 
5565 		/* Zero out unused buffer at the end */
5566 		memset(optval + copy_len, 0, optlen - copy_len);
5567 
5568 		return ret;
5569 	}
5570 
5571 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5572 }
5573 
5574 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5575 	.func		= bpf_sock_ops_getsockopt,
5576 	.gpl_only	= false,
5577 	.ret_type	= RET_INTEGER,
5578 	.arg1_type	= ARG_PTR_TO_CTX,
5579 	.arg2_type	= ARG_ANYTHING,
5580 	.arg3_type	= ARG_ANYTHING,
5581 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5582 	.arg5_type	= ARG_CONST_SIZE,
5583 };
5584 
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5585 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5586 	   int, argval)
5587 {
5588 	struct sock *sk = bpf_sock->sk;
5589 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5590 
5591 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5592 		return -EINVAL;
5593 
5594 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5595 
5596 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5597 }
5598 
5599 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5600 	.func		= bpf_sock_ops_cb_flags_set,
5601 	.gpl_only	= false,
5602 	.ret_type	= RET_INTEGER,
5603 	.arg1_type	= ARG_PTR_TO_CTX,
5604 	.arg2_type	= ARG_ANYTHING,
5605 };
5606 
5607 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5608 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5609 
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5610 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5611 	   int, addr_len)
5612 {
5613 #ifdef CONFIG_INET
5614 	struct sock *sk = ctx->sk;
5615 	u32 flags = BIND_FROM_BPF;
5616 	int err;
5617 
5618 	err = -EINVAL;
5619 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5620 		return err;
5621 	if (addr->sa_family == AF_INET) {
5622 		if (addr_len < sizeof(struct sockaddr_in))
5623 			return err;
5624 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5625 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5626 		return __inet_bind(sk, addr, addr_len, flags);
5627 #if IS_ENABLED(CONFIG_IPV6)
5628 	} else if (addr->sa_family == AF_INET6) {
5629 		if (addr_len < SIN6_LEN_RFC2133)
5630 			return err;
5631 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5632 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5633 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5634 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5635 		 */
5636 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5637 #endif /* CONFIG_IPV6 */
5638 	}
5639 #endif /* CONFIG_INET */
5640 
5641 	return -EAFNOSUPPORT;
5642 }
5643 
5644 static const struct bpf_func_proto bpf_bind_proto = {
5645 	.func		= bpf_bind,
5646 	.gpl_only	= false,
5647 	.ret_type	= RET_INTEGER,
5648 	.arg1_type	= ARG_PTR_TO_CTX,
5649 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5650 	.arg3_type	= ARG_CONST_SIZE,
5651 };
5652 
5653 #ifdef CONFIG_XFRM
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5654 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5655 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5656 {
5657 	const struct sec_path *sp = skb_sec_path(skb);
5658 	const struct xfrm_state *x;
5659 
5660 	if (!sp || unlikely(index >= sp->len || flags))
5661 		goto err_clear;
5662 
5663 	x = sp->xvec[index];
5664 
5665 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5666 		goto err_clear;
5667 
5668 	to->reqid = x->props.reqid;
5669 	to->spi = x->id.spi;
5670 	to->family = x->props.family;
5671 	to->ext = 0;
5672 
5673 	if (to->family == AF_INET6) {
5674 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5675 		       sizeof(to->remote_ipv6));
5676 	} else {
5677 		to->remote_ipv4 = x->props.saddr.a4;
5678 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5679 	}
5680 
5681 	return 0;
5682 err_clear:
5683 	memset(to, 0, size);
5684 	return -EINVAL;
5685 }
5686 
5687 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5688 	.func		= bpf_skb_get_xfrm_state,
5689 	.gpl_only	= false,
5690 	.ret_type	= RET_INTEGER,
5691 	.arg1_type	= ARG_PTR_TO_CTX,
5692 	.arg2_type	= ARG_ANYTHING,
5693 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5694 	.arg4_type	= ARG_CONST_SIZE,
5695 	.arg5_type	= ARG_ANYTHING,
5696 };
5697 #endif
5698 
5699 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,u32 mtu)5700 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5701 {
5702 	params->h_vlan_TCI = 0;
5703 	params->h_vlan_proto = 0;
5704 	if (mtu)
5705 		params->mtu_result = mtu; /* union with tot_len */
5706 
5707 	return 0;
5708 }
5709 #endif
5710 
5711 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5712 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5713 			       u32 flags, bool check_mtu)
5714 {
5715 	struct fib_nh_common *nhc;
5716 	struct in_device *in_dev;
5717 	struct neighbour *neigh;
5718 	struct net_device *dev;
5719 	struct fib_result res;
5720 	struct flowi4 fl4;
5721 	u32 mtu = 0;
5722 	int err;
5723 
5724 	dev = dev_get_by_index_rcu(net, params->ifindex);
5725 	if (unlikely(!dev))
5726 		return -ENODEV;
5727 
5728 	/* verify forwarding is enabled on this interface */
5729 	in_dev = __in_dev_get_rcu(dev);
5730 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5731 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5732 
5733 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5734 		fl4.flowi4_iif = 1;
5735 		fl4.flowi4_oif = params->ifindex;
5736 	} else {
5737 		fl4.flowi4_iif = params->ifindex;
5738 		fl4.flowi4_oif = 0;
5739 	}
5740 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5741 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5742 	fl4.flowi4_flags = 0;
5743 
5744 	fl4.flowi4_proto = params->l4_protocol;
5745 	fl4.daddr = params->ipv4_dst;
5746 	fl4.saddr = params->ipv4_src;
5747 	fl4.fl4_sport = params->sport;
5748 	fl4.fl4_dport = params->dport;
5749 	fl4.flowi4_multipath_hash = 0;
5750 
5751 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5752 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5753 		struct fib_table *tb;
5754 
5755 		tb = fib_get_table(net, tbid);
5756 		if (unlikely(!tb))
5757 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5758 
5759 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5760 	} else {
5761 		fl4.flowi4_mark = 0;
5762 		fl4.flowi4_secid = 0;
5763 		fl4.flowi4_tun_key.tun_id = 0;
5764 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5765 
5766 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5767 	}
5768 
5769 	if (err) {
5770 		/* map fib lookup errors to RTN_ type */
5771 		if (err == -EINVAL)
5772 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5773 		if (err == -EHOSTUNREACH)
5774 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5775 		if (err == -EACCES)
5776 			return BPF_FIB_LKUP_RET_PROHIBIT;
5777 
5778 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5779 	}
5780 
5781 	if (res.type != RTN_UNICAST)
5782 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5783 
5784 	if (fib_info_num_path(res.fi) > 1)
5785 		fib_select_path(net, &res, &fl4, NULL);
5786 
5787 	if (check_mtu) {
5788 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5789 		if (params->tot_len > mtu) {
5790 			params->mtu_result = mtu; /* union with tot_len */
5791 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5792 		}
5793 	}
5794 
5795 	nhc = res.nhc;
5796 
5797 	/* do not handle lwt encaps right now */
5798 	if (nhc->nhc_lwtstate)
5799 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5800 
5801 	dev = nhc->nhc_dev;
5802 
5803 	params->rt_metric = res.fi->fib_priority;
5804 	params->ifindex = dev->ifindex;
5805 
5806 	/* xdp and cls_bpf programs are run in RCU-bh so
5807 	 * rcu_read_lock_bh is not needed here
5808 	 */
5809 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5810 		if (nhc->nhc_gw_family)
5811 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5812 	} else {
5813 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5814 
5815 		params->family = AF_INET6;
5816 		*dst = nhc->nhc_gw.ipv6;
5817 	}
5818 
5819 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5820 		goto set_fwd_params;
5821 
5822 	if (likely(nhc->nhc_gw_family != AF_INET6))
5823 		neigh = __ipv4_neigh_lookup_noref(dev,
5824 						  (__force u32)params->ipv4_dst);
5825 	else
5826 		neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
5827 
5828 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
5829 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5830 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5831 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5832 
5833 set_fwd_params:
5834 	return bpf_fib_set_fwd_params(params, mtu);
5835 }
5836 #endif
5837 
5838 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5839 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5840 			       u32 flags, bool check_mtu)
5841 {
5842 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5843 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5844 	struct fib6_result res = {};
5845 	struct neighbour *neigh;
5846 	struct net_device *dev;
5847 	struct inet6_dev *idev;
5848 	struct flowi6 fl6;
5849 	int strict = 0;
5850 	int oif, err;
5851 	u32 mtu = 0;
5852 
5853 	/* link local addresses are never forwarded */
5854 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5855 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5856 
5857 	dev = dev_get_by_index_rcu(net, params->ifindex);
5858 	if (unlikely(!dev))
5859 		return -ENODEV;
5860 
5861 	idev = __in6_dev_get_safely(dev);
5862 	if (unlikely(!idev || !idev->cnf.forwarding))
5863 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5864 
5865 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5866 		fl6.flowi6_iif = 1;
5867 		oif = fl6.flowi6_oif = params->ifindex;
5868 	} else {
5869 		oif = fl6.flowi6_iif = params->ifindex;
5870 		fl6.flowi6_oif = 0;
5871 		strict = RT6_LOOKUP_F_HAS_SADDR;
5872 	}
5873 	fl6.flowlabel = params->flowinfo;
5874 	fl6.flowi6_scope = 0;
5875 	fl6.flowi6_flags = 0;
5876 	fl6.mp_hash = 0;
5877 
5878 	fl6.flowi6_proto = params->l4_protocol;
5879 	fl6.daddr = *dst;
5880 	fl6.saddr = *src;
5881 	fl6.fl6_sport = params->sport;
5882 	fl6.fl6_dport = params->dport;
5883 
5884 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5885 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5886 		struct fib6_table *tb;
5887 
5888 		tb = ipv6_stub->fib6_get_table(net, tbid);
5889 		if (unlikely(!tb))
5890 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5891 
5892 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5893 						   strict);
5894 	} else {
5895 		fl6.flowi6_mark = 0;
5896 		fl6.flowi6_secid = 0;
5897 		fl6.flowi6_tun_key.tun_id = 0;
5898 		fl6.flowi6_uid = sock_net_uid(net, NULL);
5899 
5900 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5901 	}
5902 
5903 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5904 		     res.f6i == net->ipv6.fib6_null_entry))
5905 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5906 
5907 	switch (res.fib6_type) {
5908 	/* only unicast is forwarded */
5909 	case RTN_UNICAST:
5910 		break;
5911 	case RTN_BLACKHOLE:
5912 		return BPF_FIB_LKUP_RET_BLACKHOLE;
5913 	case RTN_UNREACHABLE:
5914 		return BPF_FIB_LKUP_RET_UNREACHABLE;
5915 	case RTN_PROHIBIT:
5916 		return BPF_FIB_LKUP_RET_PROHIBIT;
5917 	default:
5918 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5919 	}
5920 
5921 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5922 				    fl6.flowi6_oif != 0, NULL, strict);
5923 
5924 	if (check_mtu) {
5925 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5926 		if (params->tot_len > mtu) {
5927 			params->mtu_result = mtu; /* union with tot_len */
5928 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5929 		}
5930 	}
5931 
5932 	if (res.nh->fib_nh_lws)
5933 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5934 
5935 	if (res.nh->fib_nh_gw_family)
5936 		*dst = res.nh->fib_nh_gw6;
5937 
5938 	dev = res.nh->fib_nh_dev;
5939 	params->rt_metric = res.f6i->fib6_metric;
5940 	params->ifindex = dev->ifindex;
5941 
5942 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5943 		goto set_fwd_params;
5944 
5945 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5946 	 * not needed here.
5947 	 */
5948 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5949 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
5950 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5951 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5952 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5953 
5954 set_fwd_params:
5955 	return bpf_fib_set_fwd_params(params, mtu);
5956 }
5957 #endif
5958 
5959 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
5960 			     BPF_FIB_LOOKUP_SKIP_NEIGH)
5961 
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)5962 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5963 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5964 {
5965 	if (plen < sizeof(*params))
5966 		return -EINVAL;
5967 
5968 	if (flags & ~BPF_FIB_LOOKUP_MASK)
5969 		return -EINVAL;
5970 
5971 	switch (params->family) {
5972 #if IS_ENABLED(CONFIG_INET)
5973 	case AF_INET:
5974 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5975 					   flags, true);
5976 #endif
5977 #if IS_ENABLED(CONFIG_IPV6)
5978 	case AF_INET6:
5979 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5980 					   flags, true);
5981 #endif
5982 	}
5983 	return -EAFNOSUPPORT;
5984 }
5985 
5986 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5987 	.func		= bpf_xdp_fib_lookup,
5988 	.gpl_only	= true,
5989 	.ret_type	= RET_INTEGER,
5990 	.arg1_type      = ARG_PTR_TO_CTX,
5991 	.arg2_type      = ARG_PTR_TO_MEM,
5992 	.arg3_type      = ARG_CONST_SIZE,
5993 	.arg4_type	= ARG_ANYTHING,
5994 };
5995 
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)5996 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5997 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5998 {
5999 	struct net *net = dev_net(skb->dev);
6000 	int rc = -EAFNOSUPPORT;
6001 	bool check_mtu = false;
6002 
6003 	if (plen < sizeof(*params))
6004 		return -EINVAL;
6005 
6006 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6007 		return -EINVAL;
6008 
6009 	if (params->tot_len)
6010 		check_mtu = true;
6011 
6012 	switch (params->family) {
6013 #if IS_ENABLED(CONFIG_INET)
6014 	case AF_INET:
6015 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6016 		break;
6017 #endif
6018 #if IS_ENABLED(CONFIG_IPV6)
6019 	case AF_INET6:
6020 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6021 		break;
6022 #endif
6023 	}
6024 
6025 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6026 		struct net_device *dev;
6027 
6028 		/* When tot_len isn't provided by user, check skb
6029 		 * against MTU of FIB lookup resulting net_device
6030 		 */
6031 		dev = dev_get_by_index_rcu(net, params->ifindex);
6032 		if (!is_skb_forwardable(dev, skb))
6033 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6034 
6035 		params->mtu_result = dev->mtu; /* union with tot_len */
6036 	}
6037 
6038 	return rc;
6039 }
6040 
6041 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6042 	.func		= bpf_skb_fib_lookup,
6043 	.gpl_only	= true,
6044 	.ret_type	= RET_INTEGER,
6045 	.arg1_type      = ARG_PTR_TO_CTX,
6046 	.arg2_type      = ARG_PTR_TO_MEM,
6047 	.arg3_type      = ARG_CONST_SIZE,
6048 	.arg4_type	= ARG_ANYTHING,
6049 };
6050 
__dev_via_ifindex(struct net_device * dev_curr,u32 ifindex)6051 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6052 					    u32 ifindex)
6053 {
6054 	struct net *netns = dev_net(dev_curr);
6055 
6056 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6057 	if (ifindex == 0)
6058 		return dev_curr;
6059 
6060 	return dev_get_by_index_rcu(netns, ifindex);
6061 }
6062 
BPF_CALL_5(bpf_skb_check_mtu,struct sk_buff *,skb,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6063 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6064 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6065 {
6066 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6067 	struct net_device *dev = skb->dev;
6068 	int skb_len, dev_len;
6069 	int mtu;
6070 
6071 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6072 		return -EINVAL;
6073 
6074 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6075 		return -EINVAL;
6076 
6077 	dev = __dev_via_ifindex(dev, ifindex);
6078 	if (unlikely(!dev))
6079 		return -ENODEV;
6080 
6081 	mtu = READ_ONCE(dev->mtu);
6082 
6083 	dev_len = mtu + dev->hard_header_len;
6084 
6085 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6086 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6087 
6088 	skb_len += len_diff; /* minus result pass check */
6089 	if (skb_len <= dev_len) {
6090 		ret = BPF_MTU_CHK_RET_SUCCESS;
6091 		goto out;
6092 	}
6093 	/* At this point, skb->len exceed MTU, but as it include length of all
6094 	 * segments, it can still be below MTU.  The SKB can possibly get
6095 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6096 	 * must choose if segs are to be MTU checked.
6097 	 */
6098 	if (skb_is_gso(skb)) {
6099 		ret = BPF_MTU_CHK_RET_SUCCESS;
6100 
6101 		if (flags & BPF_MTU_CHK_SEGS &&
6102 		    !skb_gso_validate_network_len(skb, mtu))
6103 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6104 	}
6105 out:
6106 	/* BPF verifier guarantees valid pointer */
6107 	*mtu_len = mtu;
6108 
6109 	return ret;
6110 }
6111 
BPF_CALL_5(bpf_xdp_check_mtu,struct xdp_buff *,xdp,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6112 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6113 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6114 {
6115 	struct net_device *dev = xdp->rxq->dev;
6116 	int xdp_len = xdp->data_end - xdp->data;
6117 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6118 	int mtu, dev_len;
6119 
6120 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6121 	if (unlikely(flags))
6122 		return -EINVAL;
6123 
6124 	dev = __dev_via_ifindex(dev, ifindex);
6125 	if (unlikely(!dev))
6126 		return -ENODEV;
6127 
6128 	mtu = READ_ONCE(dev->mtu);
6129 
6130 	/* Add L2-header as dev MTU is L3 size */
6131 	dev_len = mtu + dev->hard_header_len;
6132 
6133 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6134 	if (*mtu_len)
6135 		xdp_len = *mtu_len + dev->hard_header_len;
6136 
6137 	xdp_len += len_diff; /* minus result pass check */
6138 	if (xdp_len > dev_len)
6139 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6140 
6141 	/* BPF verifier guarantees valid pointer */
6142 	*mtu_len = mtu;
6143 
6144 	return ret;
6145 }
6146 
6147 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6148 	.func		= bpf_skb_check_mtu,
6149 	.gpl_only	= true,
6150 	.ret_type	= RET_INTEGER,
6151 	.arg1_type      = ARG_PTR_TO_CTX,
6152 	.arg2_type      = ARG_ANYTHING,
6153 	.arg3_type      = ARG_PTR_TO_INT,
6154 	.arg4_type      = ARG_ANYTHING,
6155 	.arg5_type      = ARG_ANYTHING,
6156 };
6157 
6158 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6159 	.func		= bpf_xdp_check_mtu,
6160 	.gpl_only	= true,
6161 	.ret_type	= RET_INTEGER,
6162 	.arg1_type      = ARG_PTR_TO_CTX,
6163 	.arg2_type      = ARG_ANYTHING,
6164 	.arg3_type      = ARG_PTR_TO_INT,
6165 	.arg4_type      = ARG_ANYTHING,
6166 	.arg5_type      = ARG_ANYTHING,
6167 };
6168 
6169 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)6170 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6171 {
6172 	int err;
6173 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6174 
6175 	if (!seg6_validate_srh(srh, len, false))
6176 		return -EINVAL;
6177 
6178 	switch (type) {
6179 	case BPF_LWT_ENCAP_SEG6_INLINE:
6180 		if (skb->protocol != htons(ETH_P_IPV6))
6181 			return -EBADMSG;
6182 
6183 		err = seg6_do_srh_inline(skb, srh);
6184 		break;
6185 	case BPF_LWT_ENCAP_SEG6:
6186 		skb_reset_inner_headers(skb);
6187 		skb->encapsulation = 1;
6188 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6189 		break;
6190 	default:
6191 		return -EINVAL;
6192 	}
6193 
6194 	bpf_compute_data_pointers(skb);
6195 	if (err)
6196 		return err;
6197 
6198 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6199 
6200 	return seg6_lookup_nexthop(skb, NULL, 0);
6201 }
6202 #endif /* CONFIG_IPV6_SEG6_BPF */
6203 
6204 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)6205 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6206 			     bool ingress)
6207 {
6208 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6209 }
6210 #endif
6211 
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6212 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6213 	   u32, len)
6214 {
6215 	switch (type) {
6216 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6217 	case BPF_LWT_ENCAP_SEG6:
6218 	case BPF_LWT_ENCAP_SEG6_INLINE:
6219 		return bpf_push_seg6_encap(skb, type, hdr, len);
6220 #endif
6221 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6222 	case BPF_LWT_ENCAP_IP:
6223 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6224 #endif
6225 	default:
6226 		return -EINVAL;
6227 	}
6228 }
6229 
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6230 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6231 	   void *, hdr, u32, len)
6232 {
6233 	switch (type) {
6234 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6235 	case BPF_LWT_ENCAP_IP:
6236 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6237 #endif
6238 	default:
6239 		return -EINVAL;
6240 	}
6241 }
6242 
6243 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6244 	.func		= bpf_lwt_in_push_encap,
6245 	.gpl_only	= false,
6246 	.ret_type	= RET_INTEGER,
6247 	.arg1_type	= ARG_PTR_TO_CTX,
6248 	.arg2_type	= ARG_ANYTHING,
6249 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6250 	.arg4_type	= ARG_CONST_SIZE
6251 };
6252 
6253 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6254 	.func		= bpf_lwt_xmit_push_encap,
6255 	.gpl_only	= false,
6256 	.ret_type	= RET_INTEGER,
6257 	.arg1_type	= ARG_PTR_TO_CTX,
6258 	.arg2_type	= ARG_ANYTHING,
6259 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6260 	.arg4_type	= ARG_CONST_SIZE
6261 };
6262 
6263 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)6264 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6265 	   const void *, from, u32, len)
6266 {
6267 	struct seg6_bpf_srh_state *srh_state =
6268 		this_cpu_ptr(&seg6_bpf_srh_states);
6269 	struct ipv6_sr_hdr *srh = srh_state->srh;
6270 	void *srh_tlvs, *srh_end, *ptr;
6271 	int srhoff = 0;
6272 
6273 	if (srh == NULL)
6274 		return -EINVAL;
6275 
6276 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6277 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6278 
6279 	ptr = skb->data + offset;
6280 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6281 		srh_state->valid = false;
6282 	else if (ptr < (void *)&srh->flags ||
6283 		 ptr + len > (void *)&srh->segments)
6284 		return -EFAULT;
6285 
6286 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6287 		return -EFAULT;
6288 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6289 		return -EINVAL;
6290 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6291 
6292 	memcpy(skb->data + offset, from, len);
6293 	return 0;
6294 }
6295 
6296 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6297 	.func		= bpf_lwt_seg6_store_bytes,
6298 	.gpl_only	= false,
6299 	.ret_type	= RET_INTEGER,
6300 	.arg1_type	= ARG_PTR_TO_CTX,
6301 	.arg2_type	= ARG_ANYTHING,
6302 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6303 	.arg4_type	= ARG_CONST_SIZE
6304 };
6305 
bpf_update_srh_state(struct sk_buff * skb)6306 static void bpf_update_srh_state(struct sk_buff *skb)
6307 {
6308 	struct seg6_bpf_srh_state *srh_state =
6309 		this_cpu_ptr(&seg6_bpf_srh_states);
6310 	int srhoff = 0;
6311 
6312 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6313 		srh_state->srh = NULL;
6314 	} else {
6315 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6316 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6317 		srh_state->valid = true;
6318 	}
6319 }
6320 
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)6321 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6322 	   u32, action, void *, param, u32, param_len)
6323 {
6324 	struct seg6_bpf_srh_state *srh_state =
6325 		this_cpu_ptr(&seg6_bpf_srh_states);
6326 	int hdroff = 0;
6327 	int err;
6328 
6329 	switch (action) {
6330 	case SEG6_LOCAL_ACTION_END_X:
6331 		if (!seg6_bpf_has_valid_srh(skb))
6332 			return -EBADMSG;
6333 		if (param_len != sizeof(struct in6_addr))
6334 			return -EINVAL;
6335 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6336 	case SEG6_LOCAL_ACTION_END_T:
6337 		if (!seg6_bpf_has_valid_srh(skb))
6338 			return -EBADMSG;
6339 		if (param_len != sizeof(int))
6340 			return -EINVAL;
6341 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6342 	case SEG6_LOCAL_ACTION_END_DT6:
6343 		if (!seg6_bpf_has_valid_srh(skb))
6344 			return -EBADMSG;
6345 		if (param_len != sizeof(int))
6346 			return -EINVAL;
6347 
6348 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6349 			return -EBADMSG;
6350 		if (!pskb_pull(skb, hdroff))
6351 			return -EBADMSG;
6352 
6353 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6354 		skb_reset_network_header(skb);
6355 		skb_reset_transport_header(skb);
6356 		skb->encapsulation = 0;
6357 
6358 		bpf_compute_data_pointers(skb);
6359 		bpf_update_srh_state(skb);
6360 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6361 	case SEG6_LOCAL_ACTION_END_B6:
6362 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6363 			return -EBADMSG;
6364 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6365 					  param, param_len);
6366 		if (!err)
6367 			bpf_update_srh_state(skb);
6368 
6369 		return err;
6370 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6371 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6372 			return -EBADMSG;
6373 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6374 					  param, param_len);
6375 		if (!err)
6376 			bpf_update_srh_state(skb);
6377 
6378 		return err;
6379 	default:
6380 		return -EINVAL;
6381 	}
6382 }
6383 
6384 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6385 	.func		= bpf_lwt_seg6_action,
6386 	.gpl_only	= false,
6387 	.ret_type	= RET_INTEGER,
6388 	.arg1_type	= ARG_PTR_TO_CTX,
6389 	.arg2_type	= ARG_ANYTHING,
6390 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6391 	.arg4_type	= ARG_CONST_SIZE
6392 };
6393 
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)6394 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6395 	   s32, len)
6396 {
6397 	struct seg6_bpf_srh_state *srh_state =
6398 		this_cpu_ptr(&seg6_bpf_srh_states);
6399 	struct ipv6_sr_hdr *srh = srh_state->srh;
6400 	void *srh_end, *srh_tlvs, *ptr;
6401 	struct ipv6hdr *hdr;
6402 	int srhoff = 0;
6403 	int ret;
6404 
6405 	if (unlikely(srh == NULL))
6406 		return -EINVAL;
6407 
6408 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6409 			((srh->first_segment + 1) << 4));
6410 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6411 			srh_state->hdrlen);
6412 	ptr = skb->data + offset;
6413 
6414 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6415 		return -EFAULT;
6416 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6417 		return -EFAULT;
6418 
6419 	if (len > 0) {
6420 		ret = skb_cow_head(skb, len);
6421 		if (unlikely(ret < 0))
6422 			return ret;
6423 
6424 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6425 	} else {
6426 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6427 	}
6428 
6429 	bpf_compute_data_pointers(skb);
6430 	if (unlikely(ret < 0))
6431 		return ret;
6432 
6433 	hdr = (struct ipv6hdr *)skb->data;
6434 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6435 
6436 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6437 		return -EINVAL;
6438 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6439 	srh_state->hdrlen += len;
6440 	srh_state->valid = false;
6441 	return 0;
6442 }
6443 
6444 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6445 	.func		= bpf_lwt_seg6_adjust_srh,
6446 	.gpl_only	= false,
6447 	.ret_type	= RET_INTEGER,
6448 	.arg1_type	= ARG_PTR_TO_CTX,
6449 	.arg2_type	= ARG_ANYTHING,
6450 	.arg3_type	= ARG_ANYTHING,
6451 };
6452 #endif /* CONFIG_IPV6_SEG6_BPF */
6453 
6454 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)6455 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6456 			      int dif, int sdif, u8 family, u8 proto)
6457 {
6458 	struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6459 	bool refcounted = false;
6460 	struct sock *sk = NULL;
6461 
6462 	if (family == AF_INET) {
6463 		__be32 src4 = tuple->ipv4.saddr;
6464 		__be32 dst4 = tuple->ipv4.daddr;
6465 
6466 		if (proto == IPPROTO_TCP)
6467 			sk = __inet_lookup(net, hinfo, NULL, 0,
6468 					   src4, tuple->ipv4.sport,
6469 					   dst4, tuple->ipv4.dport,
6470 					   dif, sdif, &refcounted);
6471 		else
6472 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6473 					       dst4, tuple->ipv4.dport,
6474 					       dif, sdif, &udp_table, NULL);
6475 #if IS_ENABLED(CONFIG_IPV6)
6476 	} else {
6477 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6478 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6479 
6480 		if (proto == IPPROTO_TCP)
6481 			sk = __inet6_lookup(net, hinfo, NULL, 0,
6482 					    src6, tuple->ipv6.sport,
6483 					    dst6, ntohs(tuple->ipv6.dport),
6484 					    dif, sdif, &refcounted);
6485 		else if (likely(ipv6_bpf_stub))
6486 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6487 							    src6, tuple->ipv6.sport,
6488 							    dst6, tuple->ipv6.dport,
6489 							    dif, sdif,
6490 							    &udp_table, NULL);
6491 #endif
6492 	}
6493 
6494 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6495 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6496 		sk = NULL;
6497 	}
6498 	return sk;
6499 }
6500 
6501 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6502  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6503  */
6504 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6505 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6506 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6507 		 u64 flags, int sdif)
6508 {
6509 	struct sock *sk = NULL;
6510 	struct net *net;
6511 	u8 family;
6512 
6513 	if (len == sizeof(tuple->ipv4))
6514 		family = AF_INET;
6515 	else if (len == sizeof(tuple->ipv6))
6516 		family = AF_INET6;
6517 	else
6518 		return NULL;
6519 
6520 	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6521 		goto out;
6522 
6523 	if (sdif < 0) {
6524 		if (family == AF_INET)
6525 			sdif = inet_sdif(skb);
6526 		else
6527 			sdif = inet6_sdif(skb);
6528 	}
6529 
6530 	if ((s32)netns_id < 0) {
6531 		net = caller_net;
6532 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6533 	} else {
6534 		net = get_net_ns_by_id(caller_net, netns_id);
6535 		if (unlikely(!net))
6536 			goto out;
6537 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6538 		put_net(net);
6539 	}
6540 
6541 out:
6542 	return sk;
6543 }
6544 
6545 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6546 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6547 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6548 		u64 flags, int sdif)
6549 {
6550 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6551 					   ifindex, proto, netns_id, flags,
6552 					   sdif);
6553 
6554 	if (sk) {
6555 		struct sock *sk2 = sk_to_full_sk(sk);
6556 
6557 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6558 		 * sock refcnt is decremented to prevent a request_sock leak.
6559 		 */
6560 		if (!sk_fullsock(sk2))
6561 			sk2 = NULL;
6562 		if (sk2 != sk) {
6563 			sock_gen_put(sk);
6564 			/* Ensure there is no need to bump sk2 refcnt */
6565 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6566 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6567 				return NULL;
6568 			}
6569 			sk = sk2;
6570 		}
6571 	}
6572 
6573 	return sk;
6574 }
6575 
6576 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6577 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6578 	       u8 proto, u64 netns_id, u64 flags)
6579 {
6580 	struct net *caller_net;
6581 	int ifindex;
6582 
6583 	if (skb->dev) {
6584 		caller_net = dev_net(skb->dev);
6585 		ifindex = skb->dev->ifindex;
6586 	} else {
6587 		caller_net = sock_net(skb->sk);
6588 		ifindex = 0;
6589 	}
6590 
6591 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6592 				netns_id, flags, -1);
6593 }
6594 
6595 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6596 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6597 	      u8 proto, u64 netns_id, u64 flags)
6598 {
6599 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6600 					 flags);
6601 
6602 	if (sk) {
6603 		struct sock *sk2 = sk_to_full_sk(sk);
6604 
6605 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6606 		 * sock refcnt is decremented to prevent a request_sock leak.
6607 		 */
6608 		if (!sk_fullsock(sk2))
6609 			sk2 = NULL;
6610 		if (sk2 != sk) {
6611 			sock_gen_put(sk);
6612 			/* Ensure there is no need to bump sk2 refcnt */
6613 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6614 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6615 				return NULL;
6616 			}
6617 			sk = sk2;
6618 		}
6619 	}
6620 
6621 	return sk;
6622 }
6623 
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6624 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6625 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6626 {
6627 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6628 					     netns_id, flags);
6629 }
6630 
6631 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6632 	.func		= bpf_skc_lookup_tcp,
6633 	.gpl_only	= false,
6634 	.pkt_access	= true,
6635 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6636 	.arg1_type	= ARG_PTR_TO_CTX,
6637 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6638 	.arg3_type	= ARG_CONST_SIZE,
6639 	.arg4_type	= ARG_ANYTHING,
6640 	.arg5_type	= ARG_ANYTHING,
6641 };
6642 
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6643 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6644 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6645 {
6646 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6647 					    netns_id, flags);
6648 }
6649 
6650 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6651 	.func		= bpf_sk_lookup_tcp,
6652 	.gpl_only	= false,
6653 	.pkt_access	= true,
6654 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6655 	.arg1_type	= ARG_PTR_TO_CTX,
6656 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6657 	.arg3_type	= ARG_CONST_SIZE,
6658 	.arg4_type	= ARG_ANYTHING,
6659 	.arg5_type	= ARG_ANYTHING,
6660 };
6661 
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6662 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6663 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6664 {
6665 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6666 					    netns_id, flags);
6667 }
6668 
6669 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6670 	.func		= bpf_sk_lookup_udp,
6671 	.gpl_only	= false,
6672 	.pkt_access	= true,
6673 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6674 	.arg1_type	= ARG_PTR_TO_CTX,
6675 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6676 	.arg3_type	= ARG_CONST_SIZE,
6677 	.arg4_type	= ARG_ANYTHING,
6678 	.arg5_type	= ARG_ANYTHING,
6679 };
6680 
BPF_CALL_5(bpf_tc_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6681 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6682 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6683 {
6684 	struct net_device *dev = skb->dev;
6685 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6686 	struct net *caller_net = dev_net(dev);
6687 
6688 	return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6689 					       ifindex, IPPROTO_TCP, netns_id,
6690 					       flags, sdif);
6691 }
6692 
6693 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6694 	.func		= bpf_tc_skc_lookup_tcp,
6695 	.gpl_only	= false,
6696 	.pkt_access	= true,
6697 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6698 	.arg1_type	= ARG_PTR_TO_CTX,
6699 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6700 	.arg3_type	= ARG_CONST_SIZE,
6701 	.arg4_type	= ARG_ANYTHING,
6702 	.arg5_type	= ARG_ANYTHING,
6703 };
6704 
BPF_CALL_5(bpf_tc_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6705 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
6706 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6707 {
6708 	struct net_device *dev = skb->dev;
6709 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6710 	struct net *caller_net = dev_net(dev);
6711 
6712 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6713 					      ifindex, IPPROTO_TCP, netns_id,
6714 					      flags, sdif);
6715 }
6716 
6717 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
6718 	.func		= bpf_tc_sk_lookup_tcp,
6719 	.gpl_only	= false,
6720 	.pkt_access	= true,
6721 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6722 	.arg1_type	= ARG_PTR_TO_CTX,
6723 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6724 	.arg3_type	= ARG_CONST_SIZE,
6725 	.arg4_type	= ARG_ANYTHING,
6726 	.arg5_type	= ARG_ANYTHING,
6727 };
6728 
BPF_CALL_5(bpf_tc_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6729 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
6730 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6731 {
6732 	struct net_device *dev = skb->dev;
6733 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6734 	struct net *caller_net = dev_net(dev);
6735 
6736 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6737 					      ifindex, IPPROTO_UDP, netns_id,
6738 					      flags, sdif);
6739 }
6740 
6741 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
6742 	.func		= bpf_tc_sk_lookup_udp,
6743 	.gpl_only	= false,
6744 	.pkt_access	= true,
6745 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6746 	.arg1_type	= ARG_PTR_TO_CTX,
6747 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6748 	.arg3_type	= ARG_CONST_SIZE,
6749 	.arg4_type	= ARG_ANYTHING,
6750 	.arg5_type	= ARG_ANYTHING,
6751 };
6752 
BPF_CALL_1(bpf_sk_release,struct sock *,sk)6753 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6754 {
6755 	if (sk && sk_is_refcounted(sk))
6756 		sock_gen_put(sk);
6757 	return 0;
6758 }
6759 
6760 static const struct bpf_func_proto bpf_sk_release_proto = {
6761 	.func		= bpf_sk_release,
6762 	.gpl_only	= false,
6763 	.ret_type	= RET_INTEGER,
6764 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6765 };
6766 
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6767 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6768 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6769 {
6770 	struct net_device *dev = ctx->rxq->dev;
6771 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6772 	struct net *caller_net = dev_net(dev);
6773 
6774 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6775 					      ifindex, IPPROTO_UDP, netns_id,
6776 					      flags, sdif);
6777 }
6778 
6779 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6780 	.func           = bpf_xdp_sk_lookup_udp,
6781 	.gpl_only       = false,
6782 	.pkt_access     = true,
6783 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6784 	.arg1_type      = ARG_PTR_TO_CTX,
6785 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6786 	.arg3_type      = ARG_CONST_SIZE,
6787 	.arg4_type      = ARG_ANYTHING,
6788 	.arg5_type      = ARG_ANYTHING,
6789 };
6790 
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6791 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6792 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6793 {
6794 	struct net_device *dev = ctx->rxq->dev;
6795 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6796 	struct net *caller_net = dev_net(dev);
6797 
6798 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6799 					       ifindex, IPPROTO_TCP, netns_id,
6800 					       flags, sdif);
6801 }
6802 
6803 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6804 	.func           = bpf_xdp_skc_lookup_tcp,
6805 	.gpl_only       = false,
6806 	.pkt_access     = true,
6807 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6808 	.arg1_type      = ARG_PTR_TO_CTX,
6809 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6810 	.arg3_type      = ARG_CONST_SIZE,
6811 	.arg4_type      = ARG_ANYTHING,
6812 	.arg5_type      = ARG_ANYTHING,
6813 };
6814 
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6815 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6816 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6817 {
6818 	struct net_device *dev = ctx->rxq->dev;
6819 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6820 	struct net *caller_net = dev_net(dev);
6821 
6822 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6823 					      ifindex, IPPROTO_TCP, netns_id,
6824 					      flags, sdif);
6825 }
6826 
6827 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6828 	.func           = bpf_xdp_sk_lookup_tcp,
6829 	.gpl_only       = false,
6830 	.pkt_access     = true,
6831 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6832 	.arg1_type      = ARG_PTR_TO_CTX,
6833 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6834 	.arg3_type      = ARG_CONST_SIZE,
6835 	.arg4_type      = ARG_ANYTHING,
6836 	.arg5_type      = ARG_ANYTHING,
6837 };
6838 
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6839 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6840 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6841 {
6842 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6843 					       sock_net(ctx->sk), 0,
6844 					       IPPROTO_TCP, netns_id, flags,
6845 					       -1);
6846 }
6847 
6848 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6849 	.func		= bpf_sock_addr_skc_lookup_tcp,
6850 	.gpl_only	= false,
6851 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6852 	.arg1_type	= ARG_PTR_TO_CTX,
6853 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6854 	.arg3_type	= ARG_CONST_SIZE,
6855 	.arg4_type	= ARG_ANYTHING,
6856 	.arg5_type	= ARG_ANYTHING,
6857 };
6858 
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6859 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6860 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6861 {
6862 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6863 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
6864 					      netns_id, flags, -1);
6865 }
6866 
6867 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6868 	.func		= bpf_sock_addr_sk_lookup_tcp,
6869 	.gpl_only	= false,
6870 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6871 	.arg1_type	= ARG_PTR_TO_CTX,
6872 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6873 	.arg3_type	= ARG_CONST_SIZE,
6874 	.arg4_type	= ARG_ANYTHING,
6875 	.arg5_type	= ARG_ANYTHING,
6876 };
6877 
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6878 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6879 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6880 {
6881 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6882 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
6883 					      netns_id, flags, -1);
6884 }
6885 
6886 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6887 	.func		= bpf_sock_addr_sk_lookup_udp,
6888 	.gpl_only	= false,
6889 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6890 	.arg1_type	= ARG_PTR_TO_CTX,
6891 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6892 	.arg3_type	= ARG_CONST_SIZE,
6893 	.arg4_type	= ARG_ANYTHING,
6894 	.arg5_type	= ARG_ANYTHING,
6895 };
6896 
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)6897 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6898 				  struct bpf_insn_access_aux *info)
6899 {
6900 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6901 					  icsk_retransmits))
6902 		return false;
6903 
6904 	if (off % size != 0)
6905 		return false;
6906 
6907 	switch (off) {
6908 	case offsetof(struct bpf_tcp_sock, bytes_received):
6909 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6910 		return size == sizeof(__u64);
6911 	default:
6912 		return size == sizeof(__u32);
6913 	}
6914 }
6915 
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6916 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6917 				    const struct bpf_insn *si,
6918 				    struct bpf_insn *insn_buf,
6919 				    struct bpf_prog *prog, u32 *target_size)
6920 {
6921 	struct bpf_insn *insn = insn_buf;
6922 
6923 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
6924 	do {								\
6925 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
6926 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6927 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6928 				      si->dst_reg, si->src_reg,		\
6929 				      offsetof(struct tcp_sock, FIELD)); \
6930 	} while (0)
6931 
6932 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
6933 	do {								\
6934 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
6935 					  FIELD) >			\
6936 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6937 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
6938 					struct inet_connection_sock,	\
6939 					FIELD),				\
6940 				      si->dst_reg, si->src_reg,		\
6941 				      offsetof(				\
6942 					struct inet_connection_sock,	\
6943 					FIELD));			\
6944 	} while (0)
6945 
6946 	if (insn > insn_buf)
6947 		return insn - insn_buf;
6948 
6949 	switch (si->off) {
6950 	case offsetof(struct bpf_tcp_sock, rtt_min):
6951 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6952 			     sizeof(struct minmax));
6953 		BUILD_BUG_ON(sizeof(struct minmax) <
6954 			     sizeof(struct minmax_sample));
6955 
6956 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6957 				      offsetof(struct tcp_sock, rtt_min) +
6958 				      offsetof(struct minmax_sample, v));
6959 		break;
6960 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
6961 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6962 		break;
6963 	case offsetof(struct bpf_tcp_sock, srtt_us):
6964 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
6965 		break;
6966 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6967 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6968 		break;
6969 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
6970 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6971 		break;
6972 	case offsetof(struct bpf_tcp_sock, snd_nxt):
6973 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6974 		break;
6975 	case offsetof(struct bpf_tcp_sock, snd_una):
6976 		BPF_TCP_SOCK_GET_COMMON(snd_una);
6977 		break;
6978 	case offsetof(struct bpf_tcp_sock, mss_cache):
6979 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
6980 		break;
6981 	case offsetof(struct bpf_tcp_sock, ecn_flags):
6982 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6983 		break;
6984 	case offsetof(struct bpf_tcp_sock, rate_delivered):
6985 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6986 		break;
6987 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
6988 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6989 		break;
6990 	case offsetof(struct bpf_tcp_sock, packets_out):
6991 		BPF_TCP_SOCK_GET_COMMON(packets_out);
6992 		break;
6993 	case offsetof(struct bpf_tcp_sock, retrans_out):
6994 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
6995 		break;
6996 	case offsetof(struct bpf_tcp_sock, total_retrans):
6997 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
6998 		break;
6999 	case offsetof(struct bpf_tcp_sock, segs_in):
7000 		BPF_TCP_SOCK_GET_COMMON(segs_in);
7001 		break;
7002 	case offsetof(struct bpf_tcp_sock, data_segs_in):
7003 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7004 		break;
7005 	case offsetof(struct bpf_tcp_sock, segs_out):
7006 		BPF_TCP_SOCK_GET_COMMON(segs_out);
7007 		break;
7008 	case offsetof(struct bpf_tcp_sock, data_segs_out):
7009 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7010 		break;
7011 	case offsetof(struct bpf_tcp_sock, lost_out):
7012 		BPF_TCP_SOCK_GET_COMMON(lost_out);
7013 		break;
7014 	case offsetof(struct bpf_tcp_sock, sacked_out):
7015 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
7016 		break;
7017 	case offsetof(struct bpf_tcp_sock, bytes_received):
7018 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
7019 		break;
7020 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7021 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7022 		break;
7023 	case offsetof(struct bpf_tcp_sock, dsack_dups):
7024 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7025 		break;
7026 	case offsetof(struct bpf_tcp_sock, delivered):
7027 		BPF_TCP_SOCK_GET_COMMON(delivered);
7028 		break;
7029 	case offsetof(struct bpf_tcp_sock, delivered_ce):
7030 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7031 		break;
7032 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7033 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7034 		break;
7035 	}
7036 
7037 	return insn - insn_buf;
7038 }
7039 
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)7040 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7041 {
7042 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7043 		return (unsigned long)sk;
7044 
7045 	return (unsigned long)NULL;
7046 }
7047 
7048 const struct bpf_func_proto bpf_tcp_sock_proto = {
7049 	.func		= bpf_tcp_sock,
7050 	.gpl_only	= false,
7051 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
7052 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7053 };
7054 
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)7055 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7056 {
7057 	sk = sk_to_full_sk(sk);
7058 
7059 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7060 		return (unsigned long)sk;
7061 
7062 	return (unsigned long)NULL;
7063 }
7064 
7065 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7066 	.func		= bpf_get_listener_sock,
7067 	.gpl_only	= false,
7068 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7069 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7070 };
7071 
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)7072 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7073 {
7074 	unsigned int iphdr_len;
7075 
7076 	switch (skb_protocol(skb, true)) {
7077 	case cpu_to_be16(ETH_P_IP):
7078 		iphdr_len = sizeof(struct iphdr);
7079 		break;
7080 	case cpu_to_be16(ETH_P_IPV6):
7081 		iphdr_len = sizeof(struct ipv6hdr);
7082 		break;
7083 	default:
7084 		return 0;
7085 	}
7086 
7087 	if (skb_headlen(skb) < iphdr_len)
7088 		return 0;
7089 
7090 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7091 		return 0;
7092 
7093 	return INET_ECN_set_ce(skb);
7094 }
7095 
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7096 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7097 				  struct bpf_insn_access_aux *info)
7098 {
7099 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7100 		return false;
7101 
7102 	if (off % size != 0)
7103 		return false;
7104 
7105 	switch (off) {
7106 	default:
7107 		return size == sizeof(__u32);
7108 	}
7109 }
7110 
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7111 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7112 				    const struct bpf_insn *si,
7113 				    struct bpf_insn *insn_buf,
7114 				    struct bpf_prog *prog, u32 *target_size)
7115 {
7116 	struct bpf_insn *insn = insn_buf;
7117 
7118 #define BPF_XDP_SOCK_GET(FIELD)						\
7119 	do {								\
7120 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
7121 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
7122 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7123 				      si->dst_reg, si->src_reg,		\
7124 				      offsetof(struct xdp_sock, FIELD)); \
7125 	} while (0)
7126 
7127 	switch (si->off) {
7128 	case offsetof(struct bpf_xdp_sock, queue_id):
7129 		BPF_XDP_SOCK_GET(queue_id);
7130 		break;
7131 	}
7132 
7133 	return insn - insn_buf;
7134 }
7135 
7136 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7137 	.func           = bpf_skb_ecn_set_ce,
7138 	.gpl_only       = false,
7139 	.ret_type       = RET_INTEGER,
7140 	.arg1_type      = ARG_PTR_TO_CTX,
7141 };
7142 
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7143 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7144 	   struct tcphdr *, th, u32, th_len)
7145 {
7146 #ifdef CONFIG_SYN_COOKIES
7147 	u32 cookie;
7148 	int ret;
7149 
7150 	if (unlikely(!sk || th_len < sizeof(*th)))
7151 		return -EINVAL;
7152 
7153 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7154 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7155 		return -EINVAL;
7156 
7157 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7158 		return -EINVAL;
7159 
7160 	if (!th->ack || th->rst || th->syn)
7161 		return -ENOENT;
7162 
7163 	if (unlikely(iph_len < sizeof(struct iphdr)))
7164 		return -EINVAL;
7165 
7166 	if (tcp_synq_no_recent_overflow(sk))
7167 		return -ENOENT;
7168 
7169 	cookie = ntohl(th->ack_seq) - 1;
7170 
7171 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7172 	 * same offset so we can cast to the shorter header (struct iphdr).
7173 	 */
7174 	switch (((struct iphdr *)iph)->version) {
7175 	case 4:
7176 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7177 			return -EINVAL;
7178 
7179 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7180 		break;
7181 
7182 #if IS_BUILTIN(CONFIG_IPV6)
7183 	case 6:
7184 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7185 			return -EINVAL;
7186 
7187 		if (sk->sk_family != AF_INET6)
7188 			return -EINVAL;
7189 
7190 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7191 		break;
7192 #endif /* CONFIG_IPV6 */
7193 
7194 	default:
7195 		return -EPROTONOSUPPORT;
7196 	}
7197 
7198 	if (ret > 0)
7199 		return 0;
7200 
7201 	return -ENOENT;
7202 #else
7203 	return -ENOTSUPP;
7204 #endif
7205 }
7206 
7207 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7208 	.func		= bpf_tcp_check_syncookie,
7209 	.gpl_only	= true,
7210 	.pkt_access	= true,
7211 	.ret_type	= RET_INTEGER,
7212 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7213 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7214 	.arg3_type	= ARG_CONST_SIZE,
7215 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7216 	.arg5_type	= ARG_CONST_SIZE,
7217 };
7218 
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7219 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7220 	   struct tcphdr *, th, u32, th_len)
7221 {
7222 #ifdef CONFIG_SYN_COOKIES
7223 	u32 cookie;
7224 	u16 mss;
7225 
7226 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7227 		return -EINVAL;
7228 
7229 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7230 		return -EINVAL;
7231 
7232 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7233 		return -ENOENT;
7234 
7235 	if (!th->syn || th->ack || th->fin || th->rst)
7236 		return -EINVAL;
7237 
7238 	if (unlikely(iph_len < sizeof(struct iphdr)))
7239 		return -EINVAL;
7240 
7241 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7242 	 * same offset so we can cast to the shorter header (struct iphdr).
7243 	 */
7244 	switch (((struct iphdr *)iph)->version) {
7245 	case 4:
7246 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7247 			return -EINVAL;
7248 
7249 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7250 		break;
7251 
7252 #if IS_BUILTIN(CONFIG_IPV6)
7253 	case 6:
7254 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7255 			return -EINVAL;
7256 
7257 		if (sk->sk_family != AF_INET6)
7258 			return -EINVAL;
7259 
7260 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7261 		break;
7262 #endif /* CONFIG_IPV6 */
7263 
7264 	default:
7265 		return -EPROTONOSUPPORT;
7266 	}
7267 	if (mss == 0)
7268 		return -ENOENT;
7269 
7270 	return cookie | ((u64)mss << 32);
7271 #else
7272 	return -EOPNOTSUPP;
7273 #endif /* CONFIG_SYN_COOKIES */
7274 }
7275 
7276 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7277 	.func		= bpf_tcp_gen_syncookie,
7278 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7279 	.pkt_access	= true,
7280 	.ret_type	= RET_INTEGER,
7281 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7282 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7283 	.arg3_type	= ARG_CONST_SIZE,
7284 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7285 	.arg5_type	= ARG_CONST_SIZE,
7286 };
7287 
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)7288 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7289 {
7290 	if (!sk || flags != 0)
7291 		return -EINVAL;
7292 	if (!skb_at_tc_ingress(skb))
7293 		return -EOPNOTSUPP;
7294 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7295 		return -ENETUNREACH;
7296 	if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
7297 		return -ESOCKTNOSUPPORT;
7298 	if (sk_unhashed(sk))
7299 		return -EOPNOTSUPP;
7300 	if (sk_is_refcounted(sk) &&
7301 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7302 		return -ENOENT;
7303 
7304 	skb_orphan(skb);
7305 	skb->sk = sk;
7306 	skb->destructor = sock_pfree;
7307 
7308 	return 0;
7309 }
7310 
7311 static const struct bpf_func_proto bpf_sk_assign_proto = {
7312 	.func		= bpf_sk_assign,
7313 	.gpl_only	= false,
7314 	.ret_type	= RET_INTEGER,
7315 	.arg1_type      = ARG_PTR_TO_CTX,
7316 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7317 	.arg3_type	= ARG_ANYTHING,
7318 };
7319 
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)7320 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7321 				    u8 search_kind, const u8 *magic,
7322 				    u8 magic_len, bool *eol)
7323 {
7324 	u8 kind, kind_len;
7325 
7326 	*eol = false;
7327 
7328 	while (op < opend) {
7329 		kind = op[0];
7330 
7331 		if (kind == TCPOPT_EOL) {
7332 			*eol = true;
7333 			return ERR_PTR(-ENOMSG);
7334 		} else if (kind == TCPOPT_NOP) {
7335 			op++;
7336 			continue;
7337 		}
7338 
7339 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7340 			/* Something is wrong in the received header.
7341 			 * Follow the TCP stack's tcp_parse_options()
7342 			 * and just bail here.
7343 			 */
7344 			return ERR_PTR(-EFAULT);
7345 
7346 		kind_len = op[1];
7347 		if (search_kind == kind) {
7348 			if (!magic_len)
7349 				return op;
7350 
7351 			if (magic_len > kind_len - 2)
7352 				return ERR_PTR(-ENOMSG);
7353 
7354 			if (!memcmp(&op[2], magic, magic_len))
7355 				return op;
7356 		}
7357 
7358 		op += kind_len;
7359 	}
7360 
7361 	return ERR_PTR(-ENOMSG);
7362 }
7363 
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)7364 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7365 	   void *, search_res, u32, len, u64, flags)
7366 {
7367 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7368 	const u8 *op, *opend, *magic, *search = search_res;
7369 	u8 search_kind, search_len, copy_len, magic_len;
7370 	int ret;
7371 
7372 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7373 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7374 	 * and this helper disallow loading them also.
7375 	 */
7376 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7377 		return -EINVAL;
7378 
7379 	search_kind = search[0];
7380 	search_len = search[1];
7381 
7382 	if (search_len > len || search_kind == TCPOPT_NOP ||
7383 	    search_kind == TCPOPT_EOL)
7384 		return -EINVAL;
7385 
7386 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7387 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7388 		if (search_len != 4 && search_len != 6)
7389 			return -EINVAL;
7390 		magic = &search[2];
7391 		magic_len = search_len - 2;
7392 	} else {
7393 		if (search_len)
7394 			return -EINVAL;
7395 		magic = NULL;
7396 		magic_len = 0;
7397 	}
7398 
7399 	if (load_syn) {
7400 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7401 		if (ret < 0)
7402 			return ret;
7403 
7404 		opend = op + ret;
7405 		op += sizeof(struct tcphdr);
7406 	} else {
7407 		if (!bpf_sock->skb ||
7408 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7409 			/* This bpf_sock->op cannot call this helper */
7410 			return -EPERM;
7411 
7412 		opend = bpf_sock->skb_data_end;
7413 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7414 	}
7415 
7416 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7417 				&eol);
7418 	if (IS_ERR(op))
7419 		return PTR_ERR(op);
7420 
7421 	copy_len = op[1];
7422 	ret = copy_len;
7423 	if (copy_len > len) {
7424 		ret = -ENOSPC;
7425 		copy_len = len;
7426 	}
7427 
7428 	memcpy(search_res, op, copy_len);
7429 	return ret;
7430 }
7431 
7432 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7433 	.func		= bpf_sock_ops_load_hdr_opt,
7434 	.gpl_only	= false,
7435 	.ret_type	= RET_INTEGER,
7436 	.arg1_type	= ARG_PTR_TO_CTX,
7437 	.arg2_type	= ARG_PTR_TO_MEM,
7438 	.arg3_type	= ARG_CONST_SIZE,
7439 	.arg4_type	= ARG_ANYTHING,
7440 };
7441 
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)7442 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7443 	   const void *, from, u32, len, u64, flags)
7444 {
7445 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7446 	const u8 *op, *new_op, *magic = NULL;
7447 	struct sk_buff *skb;
7448 	bool eol;
7449 
7450 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7451 		return -EPERM;
7452 
7453 	if (len < 2 || flags)
7454 		return -EINVAL;
7455 
7456 	new_op = from;
7457 	new_kind = new_op[0];
7458 	new_kind_len = new_op[1];
7459 
7460 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7461 	    new_kind == TCPOPT_EOL)
7462 		return -EINVAL;
7463 
7464 	if (new_kind_len > bpf_sock->remaining_opt_len)
7465 		return -ENOSPC;
7466 
7467 	/* 253 is another experimental kind */
7468 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7469 		if (new_kind_len < 4)
7470 			return -EINVAL;
7471 		/* Match for the 2 byte magic also.
7472 		 * RFC 6994: the magic could be 2 or 4 bytes.
7473 		 * Hence, matching by 2 byte only is on the
7474 		 * conservative side but it is the right
7475 		 * thing to do for the 'search-for-duplication'
7476 		 * purpose.
7477 		 */
7478 		magic = &new_op[2];
7479 		magic_len = 2;
7480 	}
7481 
7482 	/* Check for duplication */
7483 	skb = bpf_sock->skb;
7484 	op = skb->data + sizeof(struct tcphdr);
7485 	opend = bpf_sock->skb_data_end;
7486 
7487 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7488 				&eol);
7489 	if (!IS_ERR(op))
7490 		return -EEXIST;
7491 
7492 	if (PTR_ERR(op) != -ENOMSG)
7493 		return PTR_ERR(op);
7494 
7495 	if (eol)
7496 		/* The option has been ended.  Treat it as no more
7497 		 * header option can be written.
7498 		 */
7499 		return -ENOSPC;
7500 
7501 	/* No duplication found.  Store the header option. */
7502 	memcpy(opend, from, new_kind_len);
7503 
7504 	bpf_sock->remaining_opt_len -= new_kind_len;
7505 	bpf_sock->skb_data_end += new_kind_len;
7506 
7507 	return 0;
7508 }
7509 
7510 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7511 	.func		= bpf_sock_ops_store_hdr_opt,
7512 	.gpl_only	= false,
7513 	.ret_type	= RET_INTEGER,
7514 	.arg1_type	= ARG_PTR_TO_CTX,
7515 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7516 	.arg3_type	= ARG_CONST_SIZE,
7517 	.arg4_type	= ARG_ANYTHING,
7518 };
7519 
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)7520 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7521 	   u32, len, u64, flags)
7522 {
7523 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7524 		return -EPERM;
7525 
7526 	if (flags || len < 2)
7527 		return -EINVAL;
7528 
7529 	if (len > bpf_sock->remaining_opt_len)
7530 		return -ENOSPC;
7531 
7532 	bpf_sock->remaining_opt_len -= len;
7533 
7534 	return 0;
7535 }
7536 
7537 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7538 	.func		= bpf_sock_ops_reserve_hdr_opt,
7539 	.gpl_only	= false,
7540 	.ret_type	= RET_INTEGER,
7541 	.arg1_type	= ARG_PTR_TO_CTX,
7542 	.arg2_type	= ARG_ANYTHING,
7543 	.arg3_type	= ARG_ANYTHING,
7544 };
7545 
BPF_CALL_3(bpf_skb_set_tstamp,struct sk_buff *,skb,u64,tstamp,u32,tstamp_type)7546 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7547 	   u64, tstamp, u32, tstamp_type)
7548 {
7549 	/* skb_clear_delivery_time() is done for inet protocol */
7550 	if (skb->protocol != htons(ETH_P_IP) &&
7551 	    skb->protocol != htons(ETH_P_IPV6))
7552 		return -EOPNOTSUPP;
7553 
7554 	switch (tstamp_type) {
7555 	case BPF_SKB_TSTAMP_DELIVERY_MONO:
7556 		if (!tstamp)
7557 			return -EINVAL;
7558 		skb->tstamp = tstamp;
7559 		skb->mono_delivery_time = 1;
7560 		break;
7561 	case BPF_SKB_TSTAMP_UNSPEC:
7562 		if (tstamp)
7563 			return -EINVAL;
7564 		skb->tstamp = 0;
7565 		skb->mono_delivery_time = 0;
7566 		break;
7567 	default:
7568 		return -EINVAL;
7569 	}
7570 
7571 	return 0;
7572 }
7573 
7574 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7575 	.func           = bpf_skb_set_tstamp,
7576 	.gpl_only       = false,
7577 	.ret_type       = RET_INTEGER,
7578 	.arg1_type      = ARG_PTR_TO_CTX,
7579 	.arg2_type      = ARG_ANYTHING,
7580 	.arg3_type      = ARG_ANYTHING,
7581 };
7582 
7583 #ifdef CONFIG_SYN_COOKIES
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th,u32,th_len)7584 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7585 	   struct tcphdr *, th, u32, th_len)
7586 {
7587 	u32 cookie;
7588 	u16 mss;
7589 
7590 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7591 		return -EINVAL;
7592 
7593 	mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7594 	cookie = __cookie_v4_init_sequence(iph, th, &mss);
7595 
7596 	return cookie | ((u64)mss << 32);
7597 }
7598 
7599 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7600 	.func		= bpf_tcp_raw_gen_syncookie_ipv4,
7601 	.gpl_only	= true, /* __cookie_v4_init_sequence() is GPL */
7602 	.pkt_access	= true,
7603 	.ret_type	= RET_INTEGER,
7604 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7605 	.arg1_size	= sizeof(struct iphdr),
7606 	.arg2_type	= ARG_PTR_TO_MEM,
7607 	.arg3_type	= ARG_CONST_SIZE,
7608 };
7609 
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th,u32,th_len)7610 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7611 	   struct tcphdr *, th, u32, th_len)
7612 {
7613 #if IS_BUILTIN(CONFIG_IPV6)
7614 	const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7615 		sizeof(struct ipv6hdr);
7616 	u32 cookie;
7617 	u16 mss;
7618 
7619 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7620 		return -EINVAL;
7621 
7622 	mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7623 	cookie = __cookie_v6_init_sequence(iph, th, &mss);
7624 
7625 	return cookie | ((u64)mss << 32);
7626 #else
7627 	return -EPROTONOSUPPORT;
7628 #endif
7629 }
7630 
7631 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7632 	.func		= bpf_tcp_raw_gen_syncookie_ipv6,
7633 	.gpl_only	= true, /* __cookie_v6_init_sequence() is GPL */
7634 	.pkt_access	= true,
7635 	.ret_type	= RET_INTEGER,
7636 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7637 	.arg1_size	= sizeof(struct ipv6hdr),
7638 	.arg2_type	= ARG_PTR_TO_MEM,
7639 	.arg3_type	= ARG_CONST_SIZE,
7640 };
7641 
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th)7642 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7643 	   struct tcphdr *, th)
7644 {
7645 	u32 cookie = ntohl(th->ack_seq) - 1;
7646 
7647 	if (__cookie_v4_check(iph, th, cookie) > 0)
7648 		return 0;
7649 
7650 	return -EACCES;
7651 }
7652 
7653 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7654 	.func		= bpf_tcp_raw_check_syncookie_ipv4,
7655 	.gpl_only	= true, /* __cookie_v4_check is GPL */
7656 	.pkt_access	= true,
7657 	.ret_type	= RET_INTEGER,
7658 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7659 	.arg1_size	= sizeof(struct iphdr),
7660 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7661 	.arg2_size	= sizeof(struct tcphdr),
7662 };
7663 
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th)7664 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7665 	   struct tcphdr *, th)
7666 {
7667 #if IS_BUILTIN(CONFIG_IPV6)
7668 	u32 cookie = ntohl(th->ack_seq) - 1;
7669 
7670 	if (__cookie_v6_check(iph, th, cookie) > 0)
7671 		return 0;
7672 
7673 	return -EACCES;
7674 #else
7675 	return -EPROTONOSUPPORT;
7676 #endif
7677 }
7678 
7679 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7680 	.func		= bpf_tcp_raw_check_syncookie_ipv6,
7681 	.gpl_only	= true, /* __cookie_v6_check is GPL */
7682 	.pkt_access	= true,
7683 	.ret_type	= RET_INTEGER,
7684 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7685 	.arg1_size	= sizeof(struct ipv6hdr),
7686 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7687 	.arg2_size	= sizeof(struct tcphdr),
7688 };
7689 #endif /* CONFIG_SYN_COOKIES */
7690 
7691 #endif /* CONFIG_INET */
7692 
bpf_helper_changes_pkt_data(void * func)7693 bool bpf_helper_changes_pkt_data(void *func)
7694 {
7695 	if (func == bpf_skb_vlan_push ||
7696 	    func == bpf_skb_vlan_pop ||
7697 	    func == bpf_skb_store_bytes ||
7698 	    func == bpf_skb_change_proto ||
7699 	    func == bpf_skb_change_head ||
7700 	    func == sk_skb_change_head ||
7701 	    func == bpf_skb_change_tail ||
7702 	    func == sk_skb_change_tail ||
7703 	    func == bpf_skb_adjust_room ||
7704 	    func == sk_skb_adjust_room ||
7705 	    func == bpf_skb_pull_data ||
7706 	    func == sk_skb_pull_data ||
7707 	    func == bpf_clone_redirect ||
7708 	    func == bpf_l3_csum_replace ||
7709 	    func == bpf_l4_csum_replace ||
7710 	    func == bpf_xdp_adjust_head ||
7711 	    func == bpf_xdp_adjust_meta ||
7712 	    func == bpf_msg_pull_data ||
7713 	    func == bpf_msg_push_data ||
7714 	    func == bpf_msg_pop_data ||
7715 	    func == bpf_xdp_adjust_tail ||
7716 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7717 	    func == bpf_lwt_seg6_store_bytes ||
7718 	    func == bpf_lwt_seg6_adjust_srh ||
7719 	    func == bpf_lwt_seg6_action ||
7720 #endif
7721 #ifdef CONFIG_INET
7722 	    func == bpf_sock_ops_store_hdr_opt ||
7723 #endif
7724 	    func == bpf_lwt_in_push_encap ||
7725 	    func == bpf_lwt_xmit_push_encap)
7726 		return true;
7727 
7728 	return false;
7729 }
7730 
7731 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7732 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7733 
7734 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7735 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7736 {
7737 	const struct bpf_func_proto *func_proto;
7738 
7739 	func_proto = cgroup_common_func_proto(func_id, prog);
7740 	if (func_proto)
7741 		return func_proto;
7742 
7743 	func_proto = cgroup_current_func_proto(func_id, prog);
7744 	if (func_proto)
7745 		return func_proto;
7746 
7747 	switch (func_id) {
7748 	case BPF_FUNC_get_socket_cookie:
7749 		return &bpf_get_socket_cookie_sock_proto;
7750 	case BPF_FUNC_get_netns_cookie:
7751 		return &bpf_get_netns_cookie_sock_proto;
7752 	case BPF_FUNC_perf_event_output:
7753 		return &bpf_event_output_data_proto;
7754 	case BPF_FUNC_sk_storage_get:
7755 		return &bpf_sk_storage_get_cg_sock_proto;
7756 	case BPF_FUNC_ktime_get_coarse_ns:
7757 		return &bpf_ktime_get_coarse_ns_proto;
7758 	default:
7759 		return bpf_base_func_proto(func_id);
7760 	}
7761 }
7762 
7763 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7764 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7765 {
7766 	const struct bpf_func_proto *func_proto;
7767 
7768 	func_proto = cgroup_common_func_proto(func_id, prog);
7769 	if (func_proto)
7770 		return func_proto;
7771 
7772 	func_proto = cgroup_current_func_proto(func_id, prog);
7773 	if (func_proto)
7774 		return func_proto;
7775 
7776 	switch (func_id) {
7777 	case BPF_FUNC_bind:
7778 		switch (prog->expected_attach_type) {
7779 		case BPF_CGROUP_INET4_CONNECT:
7780 		case BPF_CGROUP_INET6_CONNECT:
7781 			return &bpf_bind_proto;
7782 		default:
7783 			return NULL;
7784 		}
7785 	case BPF_FUNC_get_socket_cookie:
7786 		return &bpf_get_socket_cookie_sock_addr_proto;
7787 	case BPF_FUNC_get_netns_cookie:
7788 		return &bpf_get_netns_cookie_sock_addr_proto;
7789 	case BPF_FUNC_perf_event_output:
7790 		return &bpf_event_output_data_proto;
7791 #ifdef CONFIG_INET
7792 	case BPF_FUNC_sk_lookup_tcp:
7793 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7794 	case BPF_FUNC_sk_lookup_udp:
7795 		return &bpf_sock_addr_sk_lookup_udp_proto;
7796 	case BPF_FUNC_sk_release:
7797 		return &bpf_sk_release_proto;
7798 	case BPF_FUNC_skc_lookup_tcp:
7799 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7800 #endif /* CONFIG_INET */
7801 	case BPF_FUNC_sk_storage_get:
7802 		return &bpf_sk_storage_get_proto;
7803 	case BPF_FUNC_sk_storage_delete:
7804 		return &bpf_sk_storage_delete_proto;
7805 	case BPF_FUNC_setsockopt:
7806 		switch (prog->expected_attach_type) {
7807 		case BPF_CGROUP_INET4_BIND:
7808 		case BPF_CGROUP_INET6_BIND:
7809 		case BPF_CGROUP_INET4_CONNECT:
7810 		case BPF_CGROUP_INET6_CONNECT:
7811 		case BPF_CGROUP_UDP4_RECVMSG:
7812 		case BPF_CGROUP_UDP6_RECVMSG:
7813 		case BPF_CGROUP_UDP4_SENDMSG:
7814 		case BPF_CGROUP_UDP6_SENDMSG:
7815 		case BPF_CGROUP_INET4_GETPEERNAME:
7816 		case BPF_CGROUP_INET6_GETPEERNAME:
7817 		case BPF_CGROUP_INET4_GETSOCKNAME:
7818 		case BPF_CGROUP_INET6_GETSOCKNAME:
7819 			return &bpf_sock_addr_setsockopt_proto;
7820 		default:
7821 			return NULL;
7822 		}
7823 	case BPF_FUNC_getsockopt:
7824 		switch (prog->expected_attach_type) {
7825 		case BPF_CGROUP_INET4_BIND:
7826 		case BPF_CGROUP_INET6_BIND:
7827 		case BPF_CGROUP_INET4_CONNECT:
7828 		case BPF_CGROUP_INET6_CONNECT:
7829 		case BPF_CGROUP_UDP4_RECVMSG:
7830 		case BPF_CGROUP_UDP6_RECVMSG:
7831 		case BPF_CGROUP_UDP4_SENDMSG:
7832 		case BPF_CGROUP_UDP6_SENDMSG:
7833 		case BPF_CGROUP_INET4_GETPEERNAME:
7834 		case BPF_CGROUP_INET6_GETPEERNAME:
7835 		case BPF_CGROUP_INET4_GETSOCKNAME:
7836 		case BPF_CGROUP_INET6_GETSOCKNAME:
7837 			return &bpf_sock_addr_getsockopt_proto;
7838 		default:
7839 			return NULL;
7840 		}
7841 	default:
7842 		return bpf_sk_base_func_proto(func_id);
7843 	}
7844 }
7845 
7846 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7847 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7848 {
7849 	switch (func_id) {
7850 	case BPF_FUNC_skb_load_bytes:
7851 		return &bpf_skb_load_bytes_proto;
7852 	case BPF_FUNC_skb_load_bytes_relative:
7853 		return &bpf_skb_load_bytes_relative_proto;
7854 	case BPF_FUNC_get_socket_cookie:
7855 		return &bpf_get_socket_cookie_proto;
7856 	case BPF_FUNC_get_socket_uid:
7857 		return &bpf_get_socket_uid_proto;
7858 	case BPF_FUNC_perf_event_output:
7859 		return &bpf_skb_event_output_proto;
7860 	default:
7861 		return bpf_sk_base_func_proto(func_id);
7862 	}
7863 }
7864 
7865 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7866 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7867 
7868 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7869 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7870 {
7871 	const struct bpf_func_proto *func_proto;
7872 
7873 	func_proto = cgroup_common_func_proto(func_id, prog);
7874 	if (func_proto)
7875 		return func_proto;
7876 
7877 	switch (func_id) {
7878 	case BPF_FUNC_sk_fullsock:
7879 		return &bpf_sk_fullsock_proto;
7880 	case BPF_FUNC_sk_storage_get:
7881 		return &bpf_sk_storage_get_proto;
7882 	case BPF_FUNC_sk_storage_delete:
7883 		return &bpf_sk_storage_delete_proto;
7884 	case BPF_FUNC_perf_event_output:
7885 		return &bpf_skb_event_output_proto;
7886 #ifdef CONFIG_SOCK_CGROUP_DATA
7887 	case BPF_FUNC_skb_cgroup_id:
7888 		return &bpf_skb_cgroup_id_proto;
7889 	case BPF_FUNC_skb_ancestor_cgroup_id:
7890 		return &bpf_skb_ancestor_cgroup_id_proto;
7891 	case BPF_FUNC_sk_cgroup_id:
7892 		return &bpf_sk_cgroup_id_proto;
7893 	case BPF_FUNC_sk_ancestor_cgroup_id:
7894 		return &bpf_sk_ancestor_cgroup_id_proto;
7895 #endif
7896 #ifdef CONFIG_INET
7897 	case BPF_FUNC_sk_lookup_tcp:
7898 		return &bpf_sk_lookup_tcp_proto;
7899 	case BPF_FUNC_sk_lookup_udp:
7900 		return &bpf_sk_lookup_udp_proto;
7901 	case BPF_FUNC_sk_release:
7902 		return &bpf_sk_release_proto;
7903 	case BPF_FUNC_skc_lookup_tcp:
7904 		return &bpf_skc_lookup_tcp_proto;
7905 	case BPF_FUNC_tcp_sock:
7906 		return &bpf_tcp_sock_proto;
7907 	case BPF_FUNC_get_listener_sock:
7908 		return &bpf_get_listener_sock_proto;
7909 	case BPF_FUNC_skb_ecn_set_ce:
7910 		return &bpf_skb_ecn_set_ce_proto;
7911 #endif
7912 	default:
7913 		return sk_filter_func_proto(func_id, prog);
7914 	}
7915 }
7916 
7917 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7918 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7919 {
7920 	switch (func_id) {
7921 	case BPF_FUNC_skb_store_bytes:
7922 		return &bpf_skb_store_bytes_proto;
7923 	case BPF_FUNC_skb_load_bytes:
7924 		return &bpf_skb_load_bytes_proto;
7925 	case BPF_FUNC_skb_load_bytes_relative:
7926 		return &bpf_skb_load_bytes_relative_proto;
7927 	case BPF_FUNC_skb_pull_data:
7928 		return &bpf_skb_pull_data_proto;
7929 	case BPF_FUNC_csum_diff:
7930 		return &bpf_csum_diff_proto;
7931 	case BPF_FUNC_csum_update:
7932 		return &bpf_csum_update_proto;
7933 	case BPF_FUNC_csum_level:
7934 		return &bpf_csum_level_proto;
7935 	case BPF_FUNC_l3_csum_replace:
7936 		return &bpf_l3_csum_replace_proto;
7937 	case BPF_FUNC_l4_csum_replace:
7938 		return &bpf_l4_csum_replace_proto;
7939 	case BPF_FUNC_clone_redirect:
7940 		return &bpf_clone_redirect_proto;
7941 	case BPF_FUNC_get_cgroup_classid:
7942 		return &bpf_get_cgroup_classid_proto;
7943 	case BPF_FUNC_skb_vlan_push:
7944 		return &bpf_skb_vlan_push_proto;
7945 	case BPF_FUNC_skb_vlan_pop:
7946 		return &bpf_skb_vlan_pop_proto;
7947 	case BPF_FUNC_skb_change_proto:
7948 		return &bpf_skb_change_proto_proto;
7949 	case BPF_FUNC_skb_change_type:
7950 		return &bpf_skb_change_type_proto;
7951 	case BPF_FUNC_skb_adjust_room:
7952 		return &bpf_skb_adjust_room_proto;
7953 	case BPF_FUNC_skb_change_tail:
7954 		return &bpf_skb_change_tail_proto;
7955 	case BPF_FUNC_skb_change_head:
7956 		return &bpf_skb_change_head_proto;
7957 	case BPF_FUNC_skb_get_tunnel_key:
7958 		return &bpf_skb_get_tunnel_key_proto;
7959 	case BPF_FUNC_skb_set_tunnel_key:
7960 		return bpf_get_skb_set_tunnel_proto(func_id);
7961 	case BPF_FUNC_skb_get_tunnel_opt:
7962 		return &bpf_skb_get_tunnel_opt_proto;
7963 	case BPF_FUNC_skb_set_tunnel_opt:
7964 		return bpf_get_skb_set_tunnel_proto(func_id);
7965 	case BPF_FUNC_redirect:
7966 		return &bpf_redirect_proto;
7967 	case BPF_FUNC_redirect_neigh:
7968 		return &bpf_redirect_neigh_proto;
7969 	case BPF_FUNC_redirect_peer:
7970 		return &bpf_redirect_peer_proto;
7971 	case BPF_FUNC_get_route_realm:
7972 		return &bpf_get_route_realm_proto;
7973 	case BPF_FUNC_get_hash_recalc:
7974 		return &bpf_get_hash_recalc_proto;
7975 	case BPF_FUNC_set_hash_invalid:
7976 		return &bpf_set_hash_invalid_proto;
7977 	case BPF_FUNC_set_hash:
7978 		return &bpf_set_hash_proto;
7979 	case BPF_FUNC_perf_event_output:
7980 		return &bpf_skb_event_output_proto;
7981 	case BPF_FUNC_get_smp_processor_id:
7982 		return &bpf_get_smp_processor_id_proto;
7983 	case BPF_FUNC_skb_under_cgroup:
7984 		return &bpf_skb_under_cgroup_proto;
7985 	case BPF_FUNC_get_socket_cookie:
7986 		return &bpf_get_socket_cookie_proto;
7987 	case BPF_FUNC_get_socket_uid:
7988 		return &bpf_get_socket_uid_proto;
7989 	case BPF_FUNC_fib_lookup:
7990 		return &bpf_skb_fib_lookup_proto;
7991 	case BPF_FUNC_check_mtu:
7992 		return &bpf_skb_check_mtu_proto;
7993 	case BPF_FUNC_sk_fullsock:
7994 		return &bpf_sk_fullsock_proto;
7995 	case BPF_FUNC_sk_storage_get:
7996 		return &bpf_sk_storage_get_proto;
7997 	case BPF_FUNC_sk_storage_delete:
7998 		return &bpf_sk_storage_delete_proto;
7999 #ifdef CONFIG_XFRM
8000 	case BPF_FUNC_skb_get_xfrm_state:
8001 		return &bpf_skb_get_xfrm_state_proto;
8002 #endif
8003 #ifdef CONFIG_CGROUP_NET_CLASSID
8004 	case BPF_FUNC_skb_cgroup_classid:
8005 		return &bpf_skb_cgroup_classid_proto;
8006 #endif
8007 #ifdef CONFIG_SOCK_CGROUP_DATA
8008 	case BPF_FUNC_skb_cgroup_id:
8009 		return &bpf_skb_cgroup_id_proto;
8010 	case BPF_FUNC_skb_ancestor_cgroup_id:
8011 		return &bpf_skb_ancestor_cgroup_id_proto;
8012 #endif
8013 #ifdef CONFIG_INET
8014 	case BPF_FUNC_sk_lookup_tcp:
8015 		return &bpf_tc_sk_lookup_tcp_proto;
8016 	case BPF_FUNC_sk_lookup_udp:
8017 		return &bpf_tc_sk_lookup_udp_proto;
8018 	case BPF_FUNC_sk_release:
8019 		return &bpf_sk_release_proto;
8020 	case BPF_FUNC_tcp_sock:
8021 		return &bpf_tcp_sock_proto;
8022 	case BPF_FUNC_get_listener_sock:
8023 		return &bpf_get_listener_sock_proto;
8024 	case BPF_FUNC_skc_lookup_tcp:
8025 		return &bpf_tc_skc_lookup_tcp_proto;
8026 	case BPF_FUNC_tcp_check_syncookie:
8027 		return &bpf_tcp_check_syncookie_proto;
8028 	case BPF_FUNC_skb_ecn_set_ce:
8029 		return &bpf_skb_ecn_set_ce_proto;
8030 	case BPF_FUNC_tcp_gen_syncookie:
8031 		return &bpf_tcp_gen_syncookie_proto;
8032 	case BPF_FUNC_sk_assign:
8033 		return &bpf_sk_assign_proto;
8034 	case BPF_FUNC_skb_set_tstamp:
8035 		return &bpf_skb_set_tstamp_proto;
8036 #ifdef CONFIG_SYN_COOKIES
8037 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8038 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8039 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8040 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8041 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8042 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8043 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8044 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8045 #endif
8046 #endif
8047 	default:
8048 		return bpf_sk_base_func_proto(func_id);
8049 	}
8050 }
8051 
8052 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8053 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8054 {
8055 	switch (func_id) {
8056 	case BPF_FUNC_perf_event_output:
8057 		return &bpf_xdp_event_output_proto;
8058 	case BPF_FUNC_get_smp_processor_id:
8059 		return &bpf_get_smp_processor_id_proto;
8060 	case BPF_FUNC_csum_diff:
8061 		return &bpf_csum_diff_proto;
8062 	case BPF_FUNC_xdp_adjust_head:
8063 		return &bpf_xdp_adjust_head_proto;
8064 	case BPF_FUNC_xdp_adjust_meta:
8065 		return &bpf_xdp_adjust_meta_proto;
8066 	case BPF_FUNC_redirect:
8067 		return &bpf_xdp_redirect_proto;
8068 	case BPF_FUNC_redirect_map:
8069 		return &bpf_xdp_redirect_map_proto;
8070 	case BPF_FUNC_xdp_adjust_tail:
8071 		return &bpf_xdp_adjust_tail_proto;
8072 	case BPF_FUNC_xdp_get_buff_len:
8073 		return &bpf_xdp_get_buff_len_proto;
8074 	case BPF_FUNC_xdp_load_bytes:
8075 		return &bpf_xdp_load_bytes_proto;
8076 	case BPF_FUNC_xdp_store_bytes:
8077 		return &bpf_xdp_store_bytes_proto;
8078 	case BPF_FUNC_fib_lookup:
8079 		return &bpf_xdp_fib_lookup_proto;
8080 	case BPF_FUNC_check_mtu:
8081 		return &bpf_xdp_check_mtu_proto;
8082 #ifdef CONFIG_INET
8083 	case BPF_FUNC_sk_lookup_udp:
8084 		return &bpf_xdp_sk_lookup_udp_proto;
8085 	case BPF_FUNC_sk_lookup_tcp:
8086 		return &bpf_xdp_sk_lookup_tcp_proto;
8087 	case BPF_FUNC_sk_release:
8088 		return &bpf_sk_release_proto;
8089 	case BPF_FUNC_skc_lookup_tcp:
8090 		return &bpf_xdp_skc_lookup_tcp_proto;
8091 	case BPF_FUNC_tcp_check_syncookie:
8092 		return &bpf_tcp_check_syncookie_proto;
8093 	case BPF_FUNC_tcp_gen_syncookie:
8094 		return &bpf_tcp_gen_syncookie_proto;
8095 #ifdef CONFIG_SYN_COOKIES
8096 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8097 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8098 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8099 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8100 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8101 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8102 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8103 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8104 #endif
8105 #endif
8106 	default:
8107 		return bpf_sk_base_func_proto(func_id);
8108 	}
8109 
8110 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8111 	/* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8112 	 * kfuncs are defined in two different modules, and we want to be able
8113 	 * to use them interchangably with the same BTF type ID. Because modules
8114 	 * can't de-duplicate BTF IDs between each other, we need the type to be
8115 	 * referenced in the vmlinux BTF or the verifier will get confused about
8116 	 * the different types. So we add this dummy type reference which will
8117 	 * be included in vmlinux BTF, allowing both modules to refer to the
8118 	 * same type ID.
8119 	 */
8120 	BTF_TYPE_EMIT(struct nf_conn___init);
8121 #endif
8122 }
8123 
8124 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8125 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8126 
8127 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8128 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8129 {
8130 	const struct bpf_func_proto *func_proto;
8131 
8132 	func_proto = cgroup_common_func_proto(func_id, prog);
8133 	if (func_proto)
8134 		return func_proto;
8135 
8136 	switch (func_id) {
8137 	case BPF_FUNC_setsockopt:
8138 		return &bpf_sock_ops_setsockopt_proto;
8139 	case BPF_FUNC_getsockopt:
8140 		return &bpf_sock_ops_getsockopt_proto;
8141 	case BPF_FUNC_sock_ops_cb_flags_set:
8142 		return &bpf_sock_ops_cb_flags_set_proto;
8143 	case BPF_FUNC_sock_map_update:
8144 		return &bpf_sock_map_update_proto;
8145 	case BPF_FUNC_sock_hash_update:
8146 		return &bpf_sock_hash_update_proto;
8147 	case BPF_FUNC_get_socket_cookie:
8148 		return &bpf_get_socket_cookie_sock_ops_proto;
8149 	case BPF_FUNC_perf_event_output:
8150 		return &bpf_event_output_data_proto;
8151 	case BPF_FUNC_sk_storage_get:
8152 		return &bpf_sk_storage_get_proto;
8153 	case BPF_FUNC_sk_storage_delete:
8154 		return &bpf_sk_storage_delete_proto;
8155 	case BPF_FUNC_get_netns_cookie:
8156 		return &bpf_get_netns_cookie_sock_ops_proto;
8157 #ifdef CONFIG_INET
8158 	case BPF_FUNC_load_hdr_opt:
8159 		return &bpf_sock_ops_load_hdr_opt_proto;
8160 	case BPF_FUNC_store_hdr_opt:
8161 		return &bpf_sock_ops_store_hdr_opt_proto;
8162 	case BPF_FUNC_reserve_hdr_opt:
8163 		return &bpf_sock_ops_reserve_hdr_opt_proto;
8164 	case BPF_FUNC_tcp_sock:
8165 		return &bpf_tcp_sock_proto;
8166 #endif /* CONFIG_INET */
8167 	default:
8168 		return bpf_sk_base_func_proto(func_id);
8169 	}
8170 }
8171 
8172 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8173 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8174 
8175 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8176 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8177 {
8178 	switch (func_id) {
8179 	case BPF_FUNC_msg_redirect_map:
8180 		return &bpf_msg_redirect_map_proto;
8181 	case BPF_FUNC_msg_redirect_hash:
8182 		return &bpf_msg_redirect_hash_proto;
8183 	case BPF_FUNC_msg_apply_bytes:
8184 		return &bpf_msg_apply_bytes_proto;
8185 	case BPF_FUNC_msg_cork_bytes:
8186 		return &bpf_msg_cork_bytes_proto;
8187 	case BPF_FUNC_msg_pull_data:
8188 		return &bpf_msg_pull_data_proto;
8189 	case BPF_FUNC_msg_push_data:
8190 		return &bpf_msg_push_data_proto;
8191 	case BPF_FUNC_msg_pop_data:
8192 		return &bpf_msg_pop_data_proto;
8193 	case BPF_FUNC_perf_event_output:
8194 		return &bpf_event_output_data_proto;
8195 	case BPF_FUNC_get_current_uid_gid:
8196 		return &bpf_get_current_uid_gid_proto;
8197 	case BPF_FUNC_get_current_pid_tgid:
8198 		return &bpf_get_current_pid_tgid_proto;
8199 	case BPF_FUNC_sk_storage_get:
8200 		return &bpf_sk_storage_get_proto;
8201 	case BPF_FUNC_sk_storage_delete:
8202 		return &bpf_sk_storage_delete_proto;
8203 	case BPF_FUNC_get_netns_cookie:
8204 		return &bpf_get_netns_cookie_sk_msg_proto;
8205 #ifdef CONFIG_CGROUPS
8206 	case BPF_FUNC_get_current_cgroup_id:
8207 		return &bpf_get_current_cgroup_id_proto;
8208 	case BPF_FUNC_get_current_ancestor_cgroup_id:
8209 		return &bpf_get_current_ancestor_cgroup_id_proto;
8210 #endif
8211 #ifdef CONFIG_CGROUP_NET_CLASSID
8212 	case BPF_FUNC_get_cgroup_classid:
8213 		return &bpf_get_cgroup_classid_curr_proto;
8214 #endif
8215 	default:
8216 		return bpf_sk_base_func_proto(func_id);
8217 	}
8218 }
8219 
8220 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8221 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8222 
8223 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8224 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8225 {
8226 	switch (func_id) {
8227 	case BPF_FUNC_skb_store_bytes:
8228 		return &bpf_skb_store_bytes_proto;
8229 	case BPF_FUNC_skb_load_bytes:
8230 		return &bpf_skb_load_bytes_proto;
8231 	case BPF_FUNC_skb_pull_data:
8232 		return &sk_skb_pull_data_proto;
8233 	case BPF_FUNC_skb_change_tail:
8234 		return &sk_skb_change_tail_proto;
8235 	case BPF_FUNC_skb_change_head:
8236 		return &sk_skb_change_head_proto;
8237 	case BPF_FUNC_skb_adjust_room:
8238 		return &sk_skb_adjust_room_proto;
8239 	case BPF_FUNC_get_socket_cookie:
8240 		return &bpf_get_socket_cookie_proto;
8241 	case BPF_FUNC_get_socket_uid:
8242 		return &bpf_get_socket_uid_proto;
8243 	case BPF_FUNC_sk_redirect_map:
8244 		return &bpf_sk_redirect_map_proto;
8245 	case BPF_FUNC_sk_redirect_hash:
8246 		return &bpf_sk_redirect_hash_proto;
8247 	case BPF_FUNC_perf_event_output:
8248 		return &bpf_skb_event_output_proto;
8249 #ifdef CONFIG_INET
8250 	case BPF_FUNC_sk_lookup_tcp:
8251 		return &bpf_sk_lookup_tcp_proto;
8252 	case BPF_FUNC_sk_lookup_udp:
8253 		return &bpf_sk_lookup_udp_proto;
8254 	case BPF_FUNC_sk_release:
8255 		return &bpf_sk_release_proto;
8256 	case BPF_FUNC_skc_lookup_tcp:
8257 		return &bpf_skc_lookup_tcp_proto;
8258 #endif
8259 	default:
8260 		return bpf_sk_base_func_proto(func_id);
8261 	}
8262 }
8263 
8264 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8265 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8266 {
8267 	switch (func_id) {
8268 	case BPF_FUNC_skb_load_bytes:
8269 		return &bpf_flow_dissector_load_bytes_proto;
8270 	default:
8271 		return bpf_sk_base_func_proto(func_id);
8272 	}
8273 }
8274 
8275 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8276 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8277 {
8278 	switch (func_id) {
8279 	case BPF_FUNC_skb_load_bytes:
8280 		return &bpf_skb_load_bytes_proto;
8281 	case BPF_FUNC_skb_pull_data:
8282 		return &bpf_skb_pull_data_proto;
8283 	case BPF_FUNC_csum_diff:
8284 		return &bpf_csum_diff_proto;
8285 	case BPF_FUNC_get_cgroup_classid:
8286 		return &bpf_get_cgroup_classid_proto;
8287 	case BPF_FUNC_get_route_realm:
8288 		return &bpf_get_route_realm_proto;
8289 	case BPF_FUNC_get_hash_recalc:
8290 		return &bpf_get_hash_recalc_proto;
8291 	case BPF_FUNC_perf_event_output:
8292 		return &bpf_skb_event_output_proto;
8293 	case BPF_FUNC_get_smp_processor_id:
8294 		return &bpf_get_smp_processor_id_proto;
8295 	case BPF_FUNC_skb_under_cgroup:
8296 		return &bpf_skb_under_cgroup_proto;
8297 	default:
8298 		return bpf_sk_base_func_proto(func_id);
8299 	}
8300 }
8301 
8302 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8303 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8304 {
8305 	switch (func_id) {
8306 	case BPF_FUNC_lwt_push_encap:
8307 		return &bpf_lwt_in_push_encap_proto;
8308 	default:
8309 		return lwt_out_func_proto(func_id, prog);
8310 	}
8311 }
8312 
8313 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8314 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8315 {
8316 	switch (func_id) {
8317 	case BPF_FUNC_skb_get_tunnel_key:
8318 		return &bpf_skb_get_tunnel_key_proto;
8319 	case BPF_FUNC_skb_set_tunnel_key:
8320 		return bpf_get_skb_set_tunnel_proto(func_id);
8321 	case BPF_FUNC_skb_get_tunnel_opt:
8322 		return &bpf_skb_get_tunnel_opt_proto;
8323 	case BPF_FUNC_skb_set_tunnel_opt:
8324 		return bpf_get_skb_set_tunnel_proto(func_id);
8325 	case BPF_FUNC_redirect:
8326 		return &bpf_redirect_proto;
8327 	case BPF_FUNC_clone_redirect:
8328 		return &bpf_clone_redirect_proto;
8329 	case BPF_FUNC_skb_change_tail:
8330 		return &bpf_skb_change_tail_proto;
8331 	case BPF_FUNC_skb_change_head:
8332 		return &bpf_skb_change_head_proto;
8333 	case BPF_FUNC_skb_store_bytes:
8334 		return &bpf_skb_store_bytes_proto;
8335 	case BPF_FUNC_csum_update:
8336 		return &bpf_csum_update_proto;
8337 	case BPF_FUNC_csum_level:
8338 		return &bpf_csum_level_proto;
8339 	case BPF_FUNC_l3_csum_replace:
8340 		return &bpf_l3_csum_replace_proto;
8341 	case BPF_FUNC_l4_csum_replace:
8342 		return &bpf_l4_csum_replace_proto;
8343 	case BPF_FUNC_set_hash_invalid:
8344 		return &bpf_set_hash_invalid_proto;
8345 	case BPF_FUNC_lwt_push_encap:
8346 		return &bpf_lwt_xmit_push_encap_proto;
8347 	default:
8348 		return lwt_out_func_proto(func_id, prog);
8349 	}
8350 }
8351 
8352 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8353 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8354 {
8355 	switch (func_id) {
8356 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8357 	case BPF_FUNC_lwt_seg6_store_bytes:
8358 		return &bpf_lwt_seg6_store_bytes_proto;
8359 	case BPF_FUNC_lwt_seg6_action:
8360 		return &bpf_lwt_seg6_action_proto;
8361 	case BPF_FUNC_lwt_seg6_adjust_srh:
8362 		return &bpf_lwt_seg6_adjust_srh_proto;
8363 #endif
8364 	default:
8365 		return lwt_out_func_proto(func_id, prog);
8366 	}
8367 }
8368 
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8369 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8370 				    const struct bpf_prog *prog,
8371 				    struct bpf_insn_access_aux *info)
8372 {
8373 	const int size_default = sizeof(__u32);
8374 
8375 	if (off < 0 || off >= sizeof(struct __sk_buff))
8376 		return false;
8377 
8378 	/* The verifier guarantees that size > 0. */
8379 	if (off % size != 0)
8380 		return false;
8381 
8382 	switch (off) {
8383 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8384 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8385 			return false;
8386 		break;
8387 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8388 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8389 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8390 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8391 	case bpf_ctx_range(struct __sk_buff, data):
8392 	case bpf_ctx_range(struct __sk_buff, data_meta):
8393 	case bpf_ctx_range(struct __sk_buff, data_end):
8394 		if (size != size_default)
8395 			return false;
8396 		break;
8397 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8398 		return false;
8399 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8400 		if (type == BPF_WRITE || size != sizeof(__u64))
8401 			return false;
8402 		break;
8403 	case bpf_ctx_range(struct __sk_buff, tstamp):
8404 		if (size != sizeof(__u64))
8405 			return false;
8406 		break;
8407 	case offsetof(struct __sk_buff, sk):
8408 		if (type == BPF_WRITE || size != sizeof(__u64))
8409 			return false;
8410 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8411 		break;
8412 	case offsetof(struct __sk_buff, tstamp_type):
8413 		return false;
8414 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8415 		/* Explicitly prohibit access to padding in __sk_buff. */
8416 		return false;
8417 	default:
8418 		/* Only narrow read access allowed for now. */
8419 		if (type == BPF_WRITE) {
8420 			if (size != size_default)
8421 				return false;
8422 		} else {
8423 			bpf_ctx_record_field_size(info, size_default);
8424 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8425 				return false;
8426 		}
8427 	}
8428 
8429 	return true;
8430 }
8431 
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8432 static bool sk_filter_is_valid_access(int off, int size,
8433 				      enum bpf_access_type type,
8434 				      const struct bpf_prog *prog,
8435 				      struct bpf_insn_access_aux *info)
8436 {
8437 	switch (off) {
8438 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8439 	case bpf_ctx_range(struct __sk_buff, data):
8440 	case bpf_ctx_range(struct __sk_buff, data_meta):
8441 	case bpf_ctx_range(struct __sk_buff, data_end):
8442 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8443 	case bpf_ctx_range(struct __sk_buff, tstamp):
8444 	case bpf_ctx_range(struct __sk_buff, wire_len):
8445 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8446 		return false;
8447 	}
8448 
8449 	if (type == BPF_WRITE) {
8450 		switch (off) {
8451 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8452 			break;
8453 		default:
8454 			return false;
8455 		}
8456 	}
8457 
8458 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8459 }
8460 
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8461 static bool cg_skb_is_valid_access(int off, int size,
8462 				   enum bpf_access_type type,
8463 				   const struct bpf_prog *prog,
8464 				   struct bpf_insn_access_aux *info)
8465 {
8466 	switch (off) {
8467 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8468 	case bpf_ctx_range(struct __sk_buff, data_meta):
8469 	case bpf_ctx_range(struct __sk_buff, wire_len):
8470 		return false;
8471 	case bpf_ctx_range(struct __sk_buff, data):
8472 	case bpf_ctx_range(struct __sk_buff, data_end):
8473 		if (!bpf_capable())
8474 			return false;
8475 		break;
8476 	}
8477 
8478 	if (type == BPF_WRITE) {
8479 		switch (off) {
8480 		case bpf_ctx_range(struct __sk_buff, mark):
8481 		case bpf_ctx_range(struct __sk_buff, priority):
8482 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8483 			break;
8484 		case bpf_ctx_range(struct __sk_buff, tstamp):
8485 			if (!bpf_capable())
8486 				return false;
8487 			break;
8488 		default:
8489 			return false;
8490 		}
8491 	}
8492 
8493 	switch (off) {
8494 	case bpf_ctx_range(struct __sk_buff, data):
8495 		info->reg_type = PTR_TO_PACKET;
8496 		break;
8497 	case bpf_ctx_range(struct __sk_buff, data_end):
8498 		info->reg_type = PTR_TO_PACKET_END;
8499 		break;
8500 	}
8501 
8502 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8503 }
8504 
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8505 static bool lwt_is_valid_access(int off, int size,
8506 				enum bpf_access_type type,
8507 				const struct bpf_prog *prog,
8508 				struct bpf_insn_access_aux *info)
8509 {
8510 	switch (off) {
8511 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8512 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8513 	case bpf_ctx_range(struct __sk_buff, data_meta):
8514 	case bpf_ctx_range(struct __sk_buff, tstamp):
8515 	case bpf_ctx_range(struct __sk_buff, wire_len):
8516 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8517 		return false;
8518 	}
8519 
8520 	if (type == BPF_WRITE) {
8521 		switch (off) {
8522 		case bpf_ctx_range(struct __sk_buff, mark):
8523 		case bpf_ctx_range(struct __sk_buff, priority):
8524 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8525 			break;
8526 		default:
8527 			return false;
8528 		}
8529 	}
8530 
8531 	switch (off) {
8532 	case bpf_ctx_range(struct __sk_buff, data):
8533 		info->reg_type = PTR_TO_PACKET;
8534 		break;
8535 	case bpf_ctx_range(struct __sk_buff, data_end):
8536 		info->reg_type = PTR_TO_PACKET_END;
8537 		break;
8538 	}
8539 
8540 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8541 }
8542 
8543 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)8544 static bool __sock_filter_check_attach_type(int off,
8545 					    enum bpf_access_type access_type,
8546 					    enum bpf_attach_type attach_type)
8547 {
8548 	switch (off) {
8549 	case offsetof(struct bpf_sock, bound_dev_if):
8550 	case offsetof(struct bpf_sock, mark):
8551 	case offsetof(struct bpf_sock, priority):
8552 		switch (attach_type) {
8553 		case BPF_CGROUP_INET_SOCK_CREATE:
8554 		case BPF_CGROUP_INET_SOCK_RELEASE:
8555 			goto full_access;
8556 		default:
8557 			return false;
8558 		}
8559 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8560 		switch (attach_type) {
8561 		case BPF_CGROUP_INET4_POST_BIND:
8562 			goto read_only;
8563 		default:
8564 			return false;
8565 		}
8566 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8567 		switch (attach_type) {
8568 		case BPF_CGROUP_INET6_POST_BIND:
8569 			goto read_only;
8570 		default:
8571 			return false;
8572 		}
8573 	case bpf_ctx_range(struct bpf_sock, src_port):
8574 		switch (attach_type) {
8575 		case BPF_CGROUP_INET4_POST_BIND:
8576 		case BPF_CGROUP_INET6_POST_BIND:
8577 			goto read_only;
8578 		default:
8579 			return false;
8580 		}
8581 	}
8582 read_only:
8583 	return access_type == BPF_READ;
8584 full_access:
8585 	return true;
8586 }
8587 
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8588 bool bpf_sock_common_is_valid_access(int off, int size,
8589 				     enum bpf_access_type type,
8590 				     struct bpf_insn_access_aux *info)
8591 {
8592 	switch (off) {
8593 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8594 		return false;
8595 	default:
8596 		return bpf_sock_is_valid_access(off, size, type, info);
8597 	}
8598 }
8599 
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8600 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8601 			      struct bpf_insn_access_aux *info)
8602 {
8603 	const int size_default = sizeof(__u32);
8604 	int field_size;
8605 
8606 	if (off < 0 || off >= sizeof(struct bpf_sock))
8607 		return false;
8608 	if (off % size != 0)
8609 		return false;
8610 
8611 	switch (off) {
8612 	case offsetof(struct bpf_sock, state):
8613 	case offsetof(struct bpf_sock, family):
8614 	case offsetof(struct bpf_sock, type):
8615 	case offsetof(struct bpf_sock, protocol):
8616 	case offsetof(struct bpf_sock, src_port):
8617 	case offsetof(struct bpf_sock, rx_queue_mapping):
8618 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8619 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8620 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8621 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8622 		bpf_ctx_record_field_size(info, size_default);
8623 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8624 	case bpf_ctx_range(struct bpf_sock, dst_port):
8625 		field_size = size == size_default ?
8626 			size_default : sizeof_field(struct bpf_sock, dst_port);
8627 		bpf_ctx_record_field_size(info, field_size);
8628 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8629 	case offsetofend(struct bpf_sock, dst_port) ...
8630 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8631 		return false;
8632 	}
8633 
8634 	return size == size_default;
8635 }
8636 
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8637 static bool sock_filter_is_valid_access(int off, int size,
8638 					enum bpf_access_type type,
8639 					const struct bpf_prog *prog,
8640 					struct bpf_insn_access_aux *info)
8641 {
8642 	if (!bpf_sock_is_valid_access(off, size, type, info))
8643 		return false;
8644 	return __sock_filter_check_attach_type(off, type,
8645 					       prog->expected_attach_type);
8646 }
8647 
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8648 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8649 			     const struct bpf_prog *prog)
8650 {
8651 	/* Neither direct read nor direct write requires any preliminary
8652 	 * action.
8653 	 */
8654 	return 0;
8655 }
8656 
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)8657 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8658 				const struct bpf_prog *prog, int drop_verdict)
8659 {
8660 	struct bpf_insn *insn = insn_buf;
8661 
8662 	if (!direct_write)
8663 		return 0;
8664 
8665 	/* if (!skb->cloned)
8666 	 *       goto start;
8667 	 *
8668 	 * (Fast-path, otherwise approximation that we might be
8669 	 *  a clone, do the rest in helper.)
8670 	 */
8671 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8672 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8673 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8674 
8675 	/* ret = bpf_skb_pull_data(skb, 0); */
8676 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8677 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8678 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8679 			       BPF_FUNC_skb_pull_data);
8680 	/* if (!ret)
8681 	 *      goto restore;
8682 	 * return TC_ACT_SHOT;
8683 	 */
8684 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8685 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8686 	*insn++ = BPF_EXIT_INSN();
8687 
8688 	/* restore: */
8689 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8690 	/* start: */
8691 	*insn++ = prog->insnsi[0];
8692 
8693 	return insn - insn_buf;
8694 }
8695 
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)8696 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8697 			  struct bpf_insn *insn_buf)
8698 {
8699 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8700 	struct bpf_insn *insn = insn_buf;
8701 
8702 	if (!indirect) {
8703 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8704 	} else {
8705 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8706 		if (orig->imm)
8707 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8708 	}
8709 	/* We're guaranteed here that CTX is in R6. */
8710 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8711 
8712 	switch (BPF_SIZE(orig->code)) {
8713 	case BPF_B:
8714 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8715 		break;
8716 	case BPF_H:
8717 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8718 		break;
8719 	case BPF_W:
8720 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8721 		break;
8722 	}
8723 
8724 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8725 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8726 	*insn++ = BPF_EXIT_INSN();
8727 
8728 	return insn - insn_buf;
8729 }
8730 
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8731 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8732 			       const struct bpf_prog *prog)
8733 {
8734 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8735 }
8736 
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8737 static bool tc_cls_act_is_valid_access(int off, int size,
8738 				       enum bpf_access_type type,
8739 				       const struct bpf_prog *prog,
8740 				       struct bpf_insn_access_aux *info)
8741 {
8742 	if (type == BPF_WRITE) {
8743 		switch (off) {
8744 		case bpf_ctx_range(struct __sk_buff, mark):
8745 		case bpf_ctx_range(struct __sk_buff, tc_index):
8746 		case bpf_ctx_range(struct __sk_buff, priority):
8747 		case bpf_ctx_range(struct __sk_buff, tc_classid):
8748 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8749 		case bpf_ctx_range(struct __sk_buff, tstamp):
8750 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
8751 			break;
8752 		default:
8753 			return false;
8754 		}
8755 	}
8756 
8757 	switch (off) {
8758 	case bpf_ctx_range(struct __sk_buff, data):
8759 		info->reg_type = PTR_TO_PACKET;
8760 		break;
8761 	case bpf_ctx_range(struct __sk_buff, data_meta):
8762 		info->reg_type = PTR_TO_PACKET_META;
8763 		break;
8764 	case bpf_ctx_range(struct __sk_buff, data_end):
8765 		info->reg_type = PTR_TO_PACKET_END;
8766 		break;
8767 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8768 		return false;
8769 	case offsetof(struct __sk_buff, tstamp_type):
8770 		/* The convert_ctx_access() on reading and writing
8771 		 * __sk_buff->tstamp depends on whether the bpf prog
8772 		 * has used __sk_buff->tstamp_type or not.
8773 		 * Thus, we need to set prog->tstamp_type_access
8774 		 * earlier during is_valid_access() here.
8775 		 */
8776 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
8777 		return size == sizeof(__u8);
8778 	}
8779 
8780 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8781 }
8782 
8783 DEFINE_MUTEX(nf_conn_btf_access_lock);
8784 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8785 
8786 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log, const struct btf *btf,
8787 			      const struct btf_type *t, int off, int size,
8788 			      enum bpf_access_type atype, u32 *next_btf_id,
8789 			      enum bpf_type_flag *flag);
8790 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
8791 
tc_cls_act_btf_struct_access(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,int off,int size,enum bpf_access_type atype,u32 * next_btf_id,enum bpf_type_flag * flag)8792 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
8793 					const struct btf *btf,
8794 					const struct btf_type *t, int off,
8795 					int size, enum bpf_access_type atype,
8796 					u32 *next_btf_id,
8797 					enum bpf_type_flag *flag)
8798 {
8799 	int ret = -EACCES;
8800 
8801 	if (atype == BPF_READ)
8802 		return btf_struct_access(log, btf, t, off, size, atype, next_btf_id,
8803 					 flag);
8804 
8805 	mutex_lock(&nf_conn_btf_access_lock);
8806 	if (nfct_btf_struct_access)
8807 		ret = nfct_btf_struct_access(log, btf, t, off, size, atype, next_btf_id, flag);
8808 	mutex_unlock(&nf_conn_btf_access_lock);
8809 
8810 	return ret;
8811 }
8812 
__is_valid_xdp_access(int off,int size)8813 static bool __is_valid_xdp_access(int off, int size)
8814 {
8815 	if (off < 0 || off >= sizeof(struct xdp_md))
8816 		return false;
8817 	if (off % size != 0)
8818 		return false;
8819 	if (size != sizeof(__u32))
8820 		return false;
8821 
8822 	return true;
8823 }
8824 
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8825 static bool xdp_is_valid_access(int off, int size,
8826 				enum bpf_access_type type,
8827 				const struct bpf_prog *prog,
8828 				struct bpf_insn_access_aux *info)
8829 {
8830 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8831 		switch (off) {
8832 		case offsetof(struct xdp_md, egress_ifindex):
8833 			return false;
8834 		}
8835 	}
8836 
8837 	if (type == BPF_WRITE) {
8838 		if (bpf_prog_is_dev_bound(prog->aux)) {
8839 			switch (off) {
8840 			case offsetof(struct xdp_md, rx_queue_index):
8841 				return __is_valid_xdp_access(off, size);
8842 			}
8843 		}
8844 		return false;
8845 	}
8846 
8847 	switch (off) {
8848 	case offsetof(struct xdp_md, data):
8849 		info->reg_type = PTR_TO_PACKET;
8850 		break;
8851 	case offsetof(struct xdp_md, data_meta):
8852 		info->reg_type = PTR_TO_PACKET_META;
8853 		break;
8854 	case offsetof(struct xdp_md, data_end):
8855 		info->reg_type = PTR_TO_PACKET_END;
8856 		break;
8857 	}
8858 
8859 	return __is_valid_xdp_access(off, size);
8860 }
8861 
bpf_warn_invalid_xdp_action(struct net_device * dev,struct bpf_prog * prog,u32 act)8862 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8863 {
8864 	const u32 act_max = XDP_REDIRECT;
8865 
8866 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8867 		     act > act_max ? "Illegal" : "Driver unsupported",
8868 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8869 }
8870 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8871 
xdp_btf_struct_access(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,int off,int size,enum bpf_access_type atype,u32 * next_btf_id,enum bpf_type_flag * flag)8872 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
8873 				 const struct btf *btf,
8874 				 const struct btf_type *t, int off,
8875 				 int size, enum bpf_access_type atype,
8876 				 u32 *next_btf_id,
8877 				 enum bpf_type_flag *flag)
8878 {
8879 	int ret = -EACCES;
8880 
8881 	if (atype == BPF_READ)
8882 		return btf_struct_access(log, btf, t, off, size, atype, next_btf_id,
8883 					 flag);
8884 
8885 	mutex_lock(&nf_conn_btf_access_lock);
8886 	if (nfct_btf_struct_access)
8887 		ret = nfct_btf_struct_access(log, btf, t, off, size, atype, next_btf_id, flag);
8888 	mutex_unlock(&nf_conn_btf_access_lock);
8889 
8890 	return ret;
8891 }
8892 
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8893 static bool sock_addr_is_valid_access(int off, int size,
8894 				      enum bpf_access_type type,
8895 				      const struct bpf_prog *prog,
8896 				      struct bpf_insn_access_aux *info)
8897 {
8898 	const int size_default = sizeof(__u32);
8899 
8900 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8901 		return false;
8902 	if (off % size != 0)
8903 		return false;
8904 
8905 	/* Disallow access to IPv6 fields from IPv4 contex and vise
8906 	 * versa.
8907 	 */
8908 	switch (off) {
8909 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8910 		switch (prog->expected_attach_type) {
8911 		case BPF_CGROUP_INET4_BIND:
8912 		case BPF_CGROUP_INET4_CONNECT:
8913 		case BPF_CGROUP_INET4_GETPEERNAME:
8914 		case BPF_CGROUP_INET4_GETSOCKNAME:
8915 		case BPF_CGROUP_UDP4_SENDMSG:
8916 		case BPF_CGROUP_UDP4_RECVMSG:
8917 			break;
8918 		default:
8919 			return false;
8920 		}
8921 		break;
8922 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8923 		switch (prog->expected_attach_type) {
8924 		case BPF_CGROUP_INET6_BIND:
8925 		case BPF_CGROUP_INET6_CONNECT:
8926 		case BPF_CGROUP_INET6_GETPEERNAME:
8927 		case BPF_CGROUP_INET6_GETSOCKNAME:
8928 		case BPF_CGROUP_UDP6_SENDMSG:
8929 		case BPF_CGROUP_UDP6_RECVMSG:
8930 			break;
8931 		default:
8932 			return false;
8933 		}
8934 		break;
8935 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8936 		switch (prog->expected_attach_type) {
8937 		case BPF_CGROUP_UDP4_SENDMSG:
8938 			break;
8939 		default:
8940 			return false;
8941 		}
8942 		break;
8943 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8944 				msg_src_ip6[3]):
8945 		switch (prog->expected_attach_type) {
8946 		case BPF_CGROUP_UDP6_SENDMSG:
8947 			break;
8948 		default:
8949 			return false;
8950 		}
8951 		break;
8952 	}
8953 
8954 	switch (off) {
8955 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8956 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8957 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8958 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8959 				msg_src_ip6[3]):
8960 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
8961 		if (type == BPF_READ) {
8962 			bpf_ctx_record_field_size(info, size_default);
8963 
8964 			if (bpf_ctx_wide_access_ok(off, size,
8965 						   struct bpf_sock_addr,
8966 						   user_ip6))
8967 				return true;
8968 
8969 			if (bpf_ctx_wide_access_ok(off, size,
8970 						   struct bpf_sock_addr,
8971 						   msg_src_ip6))
8972 				return true;
8973 
8974 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8975 				return false;
8976 		} else {
8977 			if (bpf_ctx_wide_access_ok(off, size,
8978 						   struct bpf_sock_addr,
8979 						   user_ip6))
8980 				return true;
8981 
8982 			if (bpf_ctx_wide_access_ok(off, size,
8983 						   struct bpf_sock_addr,
8984 						   msg_src_ip6))
8985 				return true;
8986 
8987 			if (size != size_default)
8988 				return false;
8989 		}
8990 		break;
8991 	case offsetof(struct bpf_sock_addr, sk):
8992 		if (type != BPF_READ)
8993 			return false;
8994 		if (size != sizeof(__u64))
8995 			return false;
8996 		info->reg_type = PTR_TO_SOCKET;
8997 		break;
8998 	default:
8999 		if (type == BPF_READ) {
9000 			if (size != size_default)
9001 				return false;
9002 		} else {
9003 			return false;
9004 		}
9005 	}
9006 
9007 	return true;
9008 }
9009 
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9010 static bool sock_ops_is_valid_access(int off, int size,
9011 				     enum bpf_access_type type,
9012 				     const struct bpf_prog *prog,
9013 				     struct bpf_insn_access_aux *info)
9014 {
9015 	const int size_default = sizeof(__u32);
9016 
9017 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9018 		return false;
9019 
9020 	/* The verifier guarantees that size > 0. */
9021 	if (off % size != 0)
9022 		return false;
9023 
9024 	if (type == BPF_WRITE) {
9025 		switch (off) {
9026 		case offsetof(struct bpf_sock_ops, reply):
9027 		case offsetof(struct bpf_sock_ops, sk_txhash):
9028 			if (size != size_default)
9029 				return false;
9030 			break;
9031 		default:
9032 			return false;
9033 		}
9034 	} else {
9035 		switch (off) {
9036 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9037 					bytes_acked):
9038 			if (size != sizeof(__u64))
9039 				return false;
9040 			break;
9041 		case offsetof(struct bpf_sock_ops, sk):
9042 			if (size != sizeof(__u64))
9043 				return false;
9044 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
9045 			break;
9046 		case offsetof(struct bpf_sock_ops, skb_data):
9047 			if (size != sizeof(__u64))
9048 				return false;
9049 			info->reg_type = PTR_TO_PACKET;
9050 			break;
9051 		case offsetof(struct bpf_sock_ops, skb_data_end):
9052 			if (size != sizeof(__u64))
9053 				return false;
9054 			info->reg_type = PTR_TO_PACKET_END;
9055 			break;
9056 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9057 			bpf_ctx_record_field_size(info, size_default);
9058 			return bpf_ctx_narrow_access_ok(off, size,
9059 							size_default);
9060 		default:
9061 			if (size != size_default)
9062 				return false;
9063 			break;
9064 		}
9065 	}
9066 
9067 	return true;
9068 }
9069 
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9070 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9071 			   const struct bpf_prog *prog)
9072 {
9073 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9074 }
9075 
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9076 static bool sk_skb_is_valid_access(int off, int size,
9077 				   enum bpf_access_type type,
9078 				   const struct bpf_prog *prog,
9079 				   struct bpf_insn_access_aux *info)
9080 {
9081 	switch (off) {
9082 	case bpf_ctx_range(struct __sk_buff, tc_classid):
9083 	case bpf_ctx_range(struct __sk_buff, data_meta):
9084 	case bpf_ctx_range(struct __sk_buff, tstamp):
9085 	case bpf_ctx_range(struct __sk_buff, wire_len):
9086 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
9087 		return false;
9088 	}
9089 
9090 	if (type == BPF_WRITE) {
9091 		switch (off) {
9092 		case bpf_ctx_range(struct __sk_buff, tc_index):
9093 		case bpf_ctx_range(struct __sk_buff, priority):
9094 			break;
9095 		default:
9096 			return false;
9097 		}
9098 	}
9099 
9100 	switch (off) {
9101 	case bpf_ctx_range(struct __sk_buff, mark):
9102 		return false;
9103 	case bpf_ctx_range(struct __sk_buff, data):
9104 		info->reg_type = PTR_TO_PACKET;
9105 		break;
9106 	case bpf_ctx_range(struct __sk_buff, data_end):
9107 		info->reg_type = PTR_TO_PACKET_END;
9108 		break;
9109 	}
9110 
9111 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9112 }
9113 
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9114 static bool sk_msg_is_valid_access(int off, int size,
9115 				   enum bpf_access_type type,
9116 				   const struct bpf_prog *prog,
9117 				   struct bpf_insn_access_aux *info)
9118 {
9119 	if (type == BPF_WRITE)
9120 		return false;
9121 
9122 	if (off % size != 0)
9123 		return false;
9124 
9125 	switch (off) {
9126 	case offsetof(struct sk_msg_md, data):
9127 		info->reg_type = PTR_TO_PACKET;
9128 		if (size != sizeof(__u64))
9129 			return false;
9130 		break;
9131 	case offsetof(struct sk_msg_md, data_end):
9132 		info->reg_type = PTR_TO_PACKET_END;
9133 		if (size != sizeof(__u64))
9134 			return false;
9135 		break;
9136 	case offsetof(struct sk_msg_md, sk):
9137 		if (size != sizeof(__u64))
9138 			return false;
9139 		info->reg_type = PTR_TO_SOCKET;
9140 		break;
9141 	case bpf_ctx_range(struct sk_msg_md, family):
9142 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9143 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
9144 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9145 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9146 	case bpf_ctx_range(struct sk_msg_md, remote_port):
9147 	case bpf_ctx_range(struct sk_msg_md, local_port):
9148 	case bpf_ctx_range(struct sk_msg_md, size):
9149 		if (size != sizeof(__u32))
9150 			return false;
9151 		break;
9152 	default:
9153 		return false;
9154 	}
9155 	return true;
9156 }
9157 
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9158 static bool flow_dissector_is_valid_access(int off, int size,
9159 					   enum bpf_access_type type,
9160 					   const struct bpf_prog *prog,
9161 					   struct bpf_insn_access_aux *info)
9162 {
9163 	const int size_default = sizeof(__u32);
9164 
9165 	if (off < 0 || off >= sizeof(struct __sk_buff))
9166 		return false;
9167 
9168 	if (type == BPF_WRITE)
9169 		return false;
9170 
9171 	switch (off) {
9172 	case bpf_ctx_range(struct __sk_buff, data):
9173 		if (size != size_default)
9174 			return false;
9175 		info->reg_type = PTR_TO_PACKET;
9176 		return true;
9177 	case bpf_ctx_range(struct __sk_buff, data_end):
9178 		if (size != size_default)
9179 			return false;
9180 		info->reg_type = PTR_TO_PACKET_END;
9181 		return true;
9182 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9183 		if (size != sizeof(__u64))
9184 			return false;
9185 		info->reg_type = PTR_TO_FLOW_KEYS;
9186 		return true;
9187 	default:
9188 		return false;
9189 	}
9190 }
9191 
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9192 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9193 					     const struct bpf_insn *si,
9194 					     struct bpf_insn *insn_buf,
9195 					     struct bpf_prog *prog,
9196 					     u32 *target_size)
9197 
9198 {
9199 	struct bpf_insn *insn = insn_buf;
9200 
9201 	switch (si->off) {
9202 	case offsetof(struct __sk_buff, data):
9203 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9204 				      si->dst_reg, si->src_reg,
9205 				      offsetof(struct bpf_flow_dissector, data));
9206 		break;
9207 
9208 	case offsetof(struct __sk_buff, data_end):
9209 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9210 				      si->dst_reg, si->src_reg,
9211 				      offsetof(struct bpf_flow_dissector, data_end));
9212 		break;
9213 
9214 	case offsetof(struct __sk_buff, flow_keys):
9215 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9216 				      si->dst_reg, si->src_reg,
9217 				      offsetof(struct bpf_flow_dissector, flow_keys));
9218 		break;
9219 	}
9220 
9221 	return insn - insn_buf;
9222 }
9223 
bpf_convert_tstamp_type_read(const struct bpf_insn * si,struct bpf_insn * insn)9224 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9225 						     struct bpf_insn *insn)
9226 {
9227 	__u8 value_reg = si->dst_reg;
9228 	__u8 skb_reg = si->src_reg;
9229 	/* AX is needed because src_reg and dst_reg could be the same */
9230 	__u8 tmp_reg = BPF_REG_AX;
9231 
9232 	*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9233 			      PKT_VLAN_PRESENT_OFFSET);
9234 	*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9235 				SKB_MONO_DELIVERY_TIME_MASK, 2);
9236 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9237 	*insn++ = BPF_JMP_A(1);
9238 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9239 
9240 	return insn;
9241 }
9242 
bpf_convert_shinfo_access(const struct bpf_insn * si,struct bpf_insn * insn)9243 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
9244 						  struct bpf_insn *insn)
9245 {
9246 	/* si->dst_reg = skb_shinfo(SKB); */
9247 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9248 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9249 			      BPF_REG_AX, si->src_reg,
9250 			      offsetof(struct sk_buff, end));
9251 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9252 			      si->dst_reg, si->src_reg,
9253 			      offsetof(struct sk_buff, head));
9254 	*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
9255 #else
9256 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9257 			      si->dst_reg, si->src_reg,
9258 			      offsetof(struct sk_buff, end));
9259 #endif
9260 
9261 	return insn;
9262 }
9263 
bpf_convert_tstamp_read(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9264 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9265 						const struct bpf_insn *si,
9266 						struct bpf_insn *insn)
9267 {
9268 	__u8 value_reg = si->dst_reg;
9269 	__u8 skb_reg = si->src_reg;
9270 
9271 #ifdef CONFIG_NET_CLS_ACT
9272 	/* If the tstamp_type is read,
9273 	 * the bpf prog is aware the tstamp could have delivery time.
9274 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9275 	 */
9276 	if (!prog->tstamp_type_access) {
9277 		/* AX is needed because src_reg and dst_reg could be the same */
9278 		__u8 tmp_reg = BPF_REG_AX;
9279 
9280 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9281 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9282 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9283 		*insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9284 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9285 		/* skb->tc_at_ingress && skb->mono_delivery_time,
9286 		 * read 0 as the (rcv) timestamp.
9287 		 */
9288 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
9289 		*insn++ = BPF_JMP_A(1);
9290 	}
9291 #endif
9292 
9293 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9294 			      offsetof(struct sk_buff, tstamp));
9295 	return insn;
9296 }
9297 
bpf_convert_tstamp_write(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9298 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9299 						 const struct bpf_insn *si,
9300 						 struct bpf_insn *insn)
9301 {
9302 	__u8 value_reg = si->src_reg;
9303 	__u8 skb_reg = si->dst_reg;
9304 
9305 #ifdef CONFIG_NET_CLS_ACT
9306 	/* If the tstamp_type is read,
9307 	 * the bpf prog is aware the tstamp could have delivery time.
9308 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9309 	 * Otherwise, writing at ingress will have to clear the
9310 	 * mono_delivery_time bit also.
9311 	 */
9312 	if (!prog->tstamp_type_access) {
9313 		__u8 tmp_reg = BPF_REG_AX;
9314 
9315 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9316 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
9317 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9318 		/* goto <store> */
9319 		*insn++ = BPF_JMP_A(2);
9320 		/* <clear>: mono_delivery_time */
9321 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9322 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, PKT_VLAN_PRESENT_OFFSET);
9323 	}
9324 #endif
9325 
9326 	/* <store>: skb->tstamp = tstamp */
9327 	*insn++ = BPF_STX_MEM(BPF_DW, skb_reg, value_reg,
9328 			      offsetof(struct sk_buff, tstamp));
9329 	return insn;
9330 }
9331 
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9332 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9333 				  const struct bpf_insn *si,
9334 				  struct bpf_insn *insn_buf,
9335 				  struct bpf_prog *prog, u32 *target_size)
9336 {
9337 	struct bpf_insn *insn = insn_buf;
9338 	int off;
9339 
9340 	switch (si->off) {
9341 	case offsetof(struct __sk_buff, len):
9342 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9343 				      bpf_target_off(struct sk_buff, len, 4,
9344 						     target_size));
9345 		break;
9346 
9347 	case offsetof(struct __sk_buff, protocol):
9348 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9349 				      bpf_target_off(struct sk_buff, protocol, 2,
9350 						     target_size));
9351 		break;
9352 
9353 	case offsetof(struct __sk_buff, vlan_proto):
9354 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9355 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9356 						     target_size));
9357 		break;
9358 
9359 	case offsetof(struct __sk_buff, priority):
9360 		if (type == BPF_WRITE)
9361 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9362 					      bpf_target_off(struct sk_buff, priority, 4,
9363 							     target_size));
9364 		else
9365 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9366 					      bpf_target_off(struct sk_buff, priority, 4,
9367 							     target_size));
9368 		break;
9369 
9370 	case offsetof(struct __sk_buff, ingress_ifindex):
9371 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9372 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9373 						     target_size));
9374 		break;
9375 
9376 	case offsetof(struct __sk_buff, ifindex):
9377 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9378 				      si->dst_reg, si->src_reg,
9379 				      offsetof(struct sk_buff, dev));
9380 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9381 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9382 				      bpf_target_off(struct net_device, ifindex, 4,
9383 						     target_size));
9384 		break;
9385 
9386 	case offsetof(struct __sk_buff, hash):
9387 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9388 				      bpf_target_off(struct sk_buff, hash, 4,
9389 						     target_size));
9390 		break;
9391 
9392 	case offsetof(struct __sk_buff, mark):
9393 		if (type == BPF_WRITE)
9394 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9395 					      bpf_target_off(struct sk_buff, mark, 4,
9396 							     target_size));
9397 		else
9398 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9399 					      bpf_target_off(struct sk_buff, mark, 4,
9400 							     target_size));
9401 		break;
9402 
9403 	case offsetof(struct __sk_buff, pkt_type):
9404 		*target_size = 1;
9405 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9406 				      PKT_TYPE_OFFSET);
9407 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9408 #ifdef __BIG_ENDIAN_BITFIELD
9409 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9410 #endif
9411 		break;
9412 
9413 	case offsetof(struct __sk_buff, queue_mapping):
9414 		if (type == BPF_WRITE) {
9415 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9416 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9417 					      bpf_target_off(struct sk_buff,
9418 							     queue_mapping,
9419 							     2, target_size));
9420 		} else {
9421 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9422 					      bpf_target_off(struct sk_buff,
9423 							     queue_mapping,
9424 							     2, target_size));
9425 		}
9426 		break;
9427 
9428 	case offsetof(struct __sk_buff, vlan_present):
9429 		*target_size = 1;
9430 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9431 				      PKT_VLAN_PRESENT_OFFSET);
9432 		if (PKT_VLAN_PRESENT_BIT)
9433 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
9434 		if (PKT_VLAN_PRESENT_BIT < 7)
9435 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
9436 		break;
9437 
9438 	case offsetof(struct __sk_buff, vlan_tci):
9439 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9440 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9441 						     target_size));
9442 		break;
9443 
9444 	case offsetof(struct __sk_buff, cb[0]) ...
9445 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9446 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9447 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9448 			      offsetof(struct qdisc_skb_cb, data)) %
9449 			     sizeof(__u64));
9450 
9451 		prog->cb_access = 1;
9452 		off  = si->off;
9453 		off -= offsetof(struct __sk_buff, cb[0]);
9454 		off += offsetof(struct sk_buff, cb);
9455 		off += offsetof(struct qdisc_skb_cb, data);
9456 		if (type == BPF_WRITE)
9457 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9458 					      si->src_reg, off);
9459 		else
9460 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9461 					      si->src_reg, off);
9462 		break;
9463 
9464 	case offsetof(struct __sk_buff, tc_classid):
9465 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9466 
9467 		off  = si->off;
9468 		off -= offsetof(struct __sk_buff, tc_classid);
9469 		off += offsetof(struct sk_buff, cb);
9470 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9471 		*target_size = 2;
9472 		if (type == BPF_WRITE)
9473 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
9474 					      si->src_reg, off);
9475 		else
9476 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9477 					      si->src_reg, off);
9478 		break;
9479 
9480 	case offsetof(struct __sk_buff, data):
9481 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9482 				      si->dst_reg, si->src_reg,
9483 				      offsetof(struct sk_buff, data));
9484 		break;
9485 
9486 	case offsetof(struct __sk_buff, data_meta):
9487 		off  = si->off;
9488 		off -= offsetof(struct __sk_buff, data_meta);
9489 		off += offsetof(struct sk_buff, cb);
9490 		off += offsetof(struct bpf_skb_data_end, data_meta);
9491 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9492 				      si->src_reg, off);
9493 		break;
9494 
9495 	case offsetof(struct __sk_buff, data_end):
9496 		off  = si->off;
9497 		off -= offsetof(struct __sk_buff, data_end);
9498 		off += offsetof(struct sk_buff, cb);
9499 		off += offsetof(struct bpf_skb_data_end, data_end);
9500 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9501 				      si->src_reg, off);
9502 		break;
9503 
9504 	case offsetof(struct __sk_buff, tc_index):
9505 #ifdef CONFIG_NET_SCHED
9506 		if (type == BPF_WRITE)
9507 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9508 					      bpf_target_off(struct sk_buff, tc_index, 2,
9509 							     target_size));
9510 		else
9511 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9512 					      bpf_target_off(struct sk_buff, tc_index, 2,
9513 							     target_size));
9514 #else
9515 		*target_size = 2;
9516 		if (type == BPF_WRITE)
9517 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9518 		else
9519 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9520 #endif
9521 		break;
9522 
9523 	case offsetof(struct __sk_buff, napi_id):
9524 #if defined(CONFIG_NET_RX_BUSY_POLL)
9525 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9526 				      bpf_target_off(struct sk_buff, napi_id, 4,
9527 						     target_size));
9528 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9529 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9530 #else
9531 		*target_size = 4;
9532 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9533 #endif
9534 		break;
9535 	case offsetof(struct __sk_buff, family):
9536 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9537 
9538 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9539 				      si->dst_reg, si->src_reg,
9540 				      offsetof(struct sk_buff, sk));
9541 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9542 				      bpf_target_off(struct sock_common,
9543 						     skc_family,
9544 						     2, target_size));
9545 		break;
9546 	case offsetof(struct __sk_buff, remote_ip4):
9547 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9548 
9549 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9550 				      si->dst_reg, si->src_reg,
9551 				      offsetof(struct sk_buff, sk));
9552 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9553 				      bpf_target_off(struct sock_common,
9554 						     skc_daddr,
9555 						     4, target_size));
9556 		break;
9557 	case offsetof(struct __sk_buff, local_ip4):
9558 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9559 					  skc_rcv_saddr) != 4);
9560 
9561 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9562 				      si->dst_reg, si->src_reg,
9563 				      offsetof(struct sk_buff, sk));
9564 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9565 				      bpf_target_off(struct sock_common,
9566 						     skc_rcv_saddr,
9567 						     4, target_size));
9568 		break;
9569 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9570 	     offsetof(struct __sk_buff, remote_ip6[3]):
9571 #if IS_ENABLED(CONFIG_IPV6)
9572 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9573 					  skc_v6_daddr.s6_addr32[0]) != 4);
9574 
9575 		off = si->off;
9576 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9577 
9578 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9579 				      si->dst_reg, si->src_reg,
9580 				      offsetof(struct sk_buff, sk));
9581 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9582 				      offsetof(struct sock_common,
9583 					       skc_v6_daddr.s6_addr32[0]) +
9584 				      off);
9585 #else
9586 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9587 #endif
9588 		break;
9589 	case offsetof(struct __sk_buff, local_ip6[0]) ...
9590 	     offsetof(struct __sk_buff, local_ip6[3]):
9591 #if IS_ENABLED(CONFIG_IPV6)
9592 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9593 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9594 
9595 		off = si->off;
9596 		off -= offsetof(struct __sk_buff, local_ip6[0]);
9597 
9598 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9599 				      si->dst_reg, si->src_reg,
9600 				      offsetof(struct sk_buff, sk));
9601 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9602 				      offsetof(struct sock_common,
9603 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9604 				      off);
9605 #else
9606 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9607 #endif
9608 		break;
9609 
9610 	case offsetof(struct __sk_buff, remote_port):
9611 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9612 
9613 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9614 				      si->dst_reg, si->src_reg,
9615 				      offsetof(struct sk_buff, sk));
9616 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9617 				      bpf_target_off(struct sock_common,
9618 						     skc_dport,
9619 						     2, target_size));
9620 #ifndef __BIG_ENDIAN_BITFIELD
9621 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9622 #endif
9623 		break;
9624 
9625 	case offsetof(struct __sk_buff, local_port):
9626 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9627 
9628 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9629 				      si->dst_reg, si->src_reg,
9630 				      offsetof(struct sk_buff, sk));
9631 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9632 				      bpf_target_off(struct sock_common,
9633 						     skc_num, 2, target_size));
9634 		break;
9635 
9636 	case offsetof(struct __sk_buff, tstamp):
9637 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9638 
9639 		if (type == BPF_WRITE)
9640 			insn = bpf_convert_tstamp_write(prog, si, insn);
9641 		else
9642 			insn = bpf_convert_tstamp_read(prog, si, insn);
9643 		break;
9644 
9645 	case offsetof(struct __sk_buff, tstamp_type):
9646 		insn = bpf_convert_tstamp_type_read(si, insn);
9647 		break;
9648 
9649 	case offsetof(struct __sk_buff, gso_segs):
9650 		insn = bpf_convert_shinfo_access(si, insn);
9651 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9652 				      si->dst_reg, si->dst_reg,
9653 				      bpf_target_off(struct skb_shared_info,
9654 						     gso_segs, 2,
9655 						     target_size));
9656 		break;
9657 	case offsetof(struct __sk_buff, gso_size):
9658 		insn = bpf_convert_shinfo_access(si, insn);
9659 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9660 				      si->dst_reg, si->dst_reg,
9661 				      bpf_target_off(struct skb_shared_info,
9662 						     gso_size, 2,
9663 						     target_size));
9664 		break;
9665 	case offsetof(struct __sk_buff, wire_len):
9666 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9667 
9668 		off = si->off;
9669 		off -= offsetof(struct __sk_buff, wire_len);
9670 		off += offsetof(struct sk_buff, cb);
9671 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9672 		*target_size = 4;
9673 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9674 		break;
9675 
9676 	case offsetof(struct __sk_buff, sk):
9677 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9678 				      si->dst_reg, si->src_reg,
9679 				      offsetof(struct sk_buff, sk));
9680 		break;
9681 	case offsetof(struct __sk_buff, hwtstamp):
9682 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9683 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9684 
9685 		insn = bpf_convert_shinfo_access(si, insn);
9686 		*insn++ = BPF_LDX_MEM(BPF_DW,
9687 				      si->dst_reg, si->dst_reg,
9688 				      bpf_target_off(struct skb_shared_info,
9689 						     hwtstamps, 8,
9690 						     target_size));
9691 		break;
9692 	}
9693 
9694 	return insn - insn_buf;
9695 }
9696 
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9697 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9698 				const struct bpf_insn *si,
9699 				struct bpf_insn *insn_buf,
9700 				struct bpf_prog *prog, u32 *target_size)
9701 {
9702 	struct bpf_insn *insn = insn_buf;
9703 	int off;
9704 
9705 	switch (si->off) {
9706 	case offsetof(struct bpf_sock, bound_dev_if):
9707 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9708 
9709 		if (type == BPF_WRITE)
9710 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9711 					offsetof(struct sock, sk_bound_dev_if));
9712 		else
9713 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9714 				      offsetof(struct sock, sk_bound_dev_if));
9715 		break;
9716 
9717 	case offsetof(struct bpf_sock, mark):
9718 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9719 
9720 		if (type == BPF_WRITE)
9721 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9722 					offsetof(struct sock, sk_mark));
9723 		else
9724 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9725 				      offsetof(struct sock, sk_mark));
9726 		break;
9727 
9728 	case offsetof(struct bpf_sock, priority):
9729 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9730 
9731 		if (type == BPF_WRITE)
9732 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9733 					offsetof(struct sock, sk_priority));
9734 		else
9735 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9736 				      offsetof(struct sock, sk_priority));
9737 		break;
9738 
9739 	case offsetof(struct bpf_sock, family):
9740 		*insn++ = BPF_LDX_MEM(
9741 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9742 			si->dst_reg, si->src_reg,
9743 			bpf_target_off(struct sock_common,
9744 				       skc_family,
9745 				       sizeof_field(struct sock_common,
9746 						    skc_family),
9747 				       target_size));
9748 		break;
9749 
9750 	case offsetof(struct bpf_sock, type):
9751 		*insn++ = BPF_LDX_MEM(
9752 			BPF_FIELD_SIZEOF(struct sock, sk_type),
9753 			si->dst_reg, si->src_reg,
9754 			bpf_target_off(struct sock, sk_type,
9755 				       sizeof_field(struct sock, sk_type),
9756 				       target_size));
9757 		break;
9758 
9759 	case offsetof(struct bpf_sock, protocol):
9760 		*insn++ = BPF_LDX_MEM(
9761 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9762 			si->dst_reg, si->src_reg,
9763 			bpf_target_off(struct sock, sk_protocol,
9764 				       sizeof_field(struct sock, sk_protocol),
9765 				       target_size));
9766 		break;
9767 
9768 	case offsetof(struct bpf_sock, src_ip4):
9769 		*insn++ = BPF_LDX_MEM(
9770 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9771 			bpf_target_off(struct sock_common, skc_rcv_saddr,
9772 				       sizeof_field(struct sock_common,
9773 						    skc_rcv_saddr),
9774 				       target_size));
9775 		break;
9776 
9777 	case offsetof(struct bpf_sock, dst_ip4):
9778 		*insn++ = BPF_LDX_MEM(
9779 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9780 			bpf_target_off(struct sock_common, skc_daddr,
9781 				       sizeof_field(struct sock_common,
9782 						    skc_daddr),
9783 				       target_size));
9784 		break;
9785 
9786 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9787 #if IS_ENABLED(CONFIG_IPV6)
9788 		off = si->off;
9789 		off -= offsetof(struct bpf_sock, src_ip6[0]);
9790 		*insn++ = BPF_LDX_MEM(
9791 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9792 			bpf_target_off(
9793 				struct sock_common,
9794 				skc_v6_rcv_saddr.s6_addr32[0],
9795 				sizeof_field(struct sock_common,
9796 					     skc_v6_rcv_saddr.s6_addr32[0]),
9797 				target_size) + off);
9798 #else
9799 		(void)off;
9800 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9801 #endif
9802 		break;
9803 
9804 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9805 #if IS_ENABLED(CONFIG_IPV6)
9806 		off = si->off;
9807 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
9808 		*insn++ = BPF_LDX_MEM(
9809 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9810 			bpf_target_off(struct sock_common,
9811 				       skc_v6_daddr.s6_addr32[0],
9812 				       sizeof_field(struct sock_common,
9813 						    skc_v6_daddr.s6_addr32[0]),
9814 				       target_size) + off);
9815 #else
9816 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9817 		*target_size = 4;
9818 #endif
9819 		break;
9820 
9821 	case offsetof(struct bpf_sock, src_port):
9822 		*insn++ = BPF_LDX_MEM(
9823 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9824 			si->dst_reg, si->src_reg,
9825 			bpf_target_off(struct sock_common, skc_num,
9826 				       sizeof_field(struct sock_common,
9827 						    skc_num),
9828 				       target_size));
9829 		break;
9830 
9831 	case offsetof(struct bpf_sock, dst_port):
9832 		*insn++ = BPF_LDX_MEM(
9833 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9834 			si->dst_reg, si->src_reg,
9835 			bpf_target_off(struct sock_common, skc_dport,
9836 				       sizeof_field(struct sock_common,
9837 						    skc_dport),
9838 				       target_size));
9839 		break;
9840 
9841 	case offsetof(struct bpf_sock, state):
9842 		*insn++ = BPF_LDX_MEM(
9843 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9844 			si->dst_reg, si->src_reg,
9845 			bpf_target_off(struct sock_common, skc_state,
9846 				       sizeof_field(struct sock_common,
9847 						    skc_state),
9848 				       target_size));
9849 		break;
9850 	case offsetof(struct bpf_sock, rx_queue_mapping):
9851 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9852 		*insn++ = BPF_LDX_MEM(
9853 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9854 			si->dst_reg, si->src_reg,
9855 			bpf_target_off(struct sock, sk_rx_queue_mapping,
9856 				       sizeof_field(struct sock,
9857 						    sk_rx_queue_mapping),
9858 				       target_size));
9859 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9860 				      1);
9861 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9862 #else
9863 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9864 		*target_size = 2;
9865 #endif
9866 		break;
9867 	}
9868 
9869 	return insn - insn_buf;
9870 }
9871 
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9872 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9873 					 const struct bpf_insn *si,
9874 					 struct bpf_insn *insn_buf,
9875 					 struct bpf_prog *prog, u32 *target_size)
9876 {
9877 	struct bpf_insn *insn = insn_buf;
9878 
9879 	switch (si->off) {
9880 	case offsetof(struct __sk_buff, ifindex):
9881 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9882 				      si->dst_reg, si->src_reg,
9883 				      offsetof(struct sk_buff, dev));
9884 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9885 				      bpf_target_off(struct net_device, ifindex, 4,
9886 						     target_size));
9887 		break;
9888 	default:
9889 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9890 					      target_size);
9891 	}
9892 
9893 	return insn - insn_buf;
9894 }
9895 
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9896 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9897 				  const struct bpf_insn *si,
9898 				  struct bpf_insn *insn_buf,
9899 				  struct bpf_prog *prog, u32 *target_size)
9900 {
9901 	struct bpf_insn *insn = insn_buf;
9902 
9903 	switch (si->off) {
9904 	case offsetof(struct xdp_md, data):
9905 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9906 				      si->dst_reg, si->src_reg,
9907 				      offsetof(struct xdp_buff, data));
9908 		break;
9909 	case offsetof(struct xdp_md, data_meta):
9910 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9911 				      si->dst_reg, si->src_reg,
9912 				      offsetof(struct xdp_buff, data_meta));
9913 		break;
9914 	case offsetof(struct xdp_md, data_end):
9915 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9916 				      si->dst_reg, si->src_reg,
9917 				      offsetof(struct xdp_buff, data_end));
9918 		break;
9919 	case offsetof(struct xdp_md, ingress_ifindex):
9920 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9921 				      si->dst_reg, si->src_reg,
9922 				      offsetof(struct xdp_buff, rxq));
9923 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9924 				      si->dst_reg, si->dst_reg,
9925 				      offsetof(struct xdp_rxq_info, dev));
9926 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9927 				      offsetof(struct net_device, ifindex));
9928 		break;
9929 	case offsetof(struct xdp_md, rx_queue_index):
9930 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9931 				      si->dst_reg, si->src_reg,
9932 				      offsetof(struct xdp_buff, rxq));
9933 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9934 				      offsetof(struct xdp_rxq_info,
9935 					       queue_index));
9936 		break;
9937 	case offsetof(struct xdp_md, egress_ifindex):
9938 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9939 				      si->dst_reg, si->src_reg,
9940 				      offsetof(struct xdp_buff, txq));
9941 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9942 				      si->dst_reg, si->dst_reg,
9943 				      offsetof(struct xdp_txq_info, dev));
9944 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9945 				      offsetof(struct net_device, ifindex));
9946 		break;
9947 	}
9948 
9949 	return insn - insn_buf;
9950 }
9951 
9952 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9953  * context Structure, F is Field in context structure that contains a pointer
9954  * to Nested Structure of type NS that has the field NF.
9955  *
9956  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9957  * sure that SIZE is not greater than actual size of S.F.NF.
9958  *
9959  * If offset OFF is provided, the load happens from that offset relative to
9960  * offset of NF.
9961  */
9962 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
9963 	do {								       \
9964 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9965 				      si->src_reg, offsetof(S, F));	       \
9966 		*insn++ = BPF_LDX_MEM(					       \
9967 			SIZE, si->dst_reg, si->dst_reg,			       \
9968 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9969 				       target_size)			       \
9970 				+ OFF);					       \
9971 	} while (0)
9972 
9973 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
9974 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
9975 					     BPF_FIELD_SIZEOF(NS, NF), 0)
9976 
9977 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9978  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9979  *
9980  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9981  * "register" since two registers available in convert_ctx_access are not
9982  * enough: we can't override neither SRC, since it contains value to store, nor
9983  * DST since it contains pointer to context that may be used by later
9984  * instructions. But we need a temporary place to save pointer to nested
9985  * structure whose field we want to store to.
9986  */
9987 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
9988 	do {								       \
9989 		int tmp_reg = BPF_REG_9;				       \
9990 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9991 			--tmp_reg;					       \
9992 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9993 			--tmp_reg;					       \
9994 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
9995 				      offsetof(S, TF));			       \
9996 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
9997 				      si->dst_reg, offsetof(S, F));	       \
9998 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
9999 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10000 				       target_size)			       \
10001 				+ OFF);					       \
10002 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
10003 				      offsetof(S, TF));			       \
10004 	} while (0)
10005 
10006 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10007 						      TF)		       \
10008 	do {								       \
10009 		if (type == BPF_WRITE) {				       \
10010 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
10011 							 OFF, TF);	       \
10012 		} else {						       \
10013 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
10014 				S, NS, F, NF, SIZE, OFF);  \
10015 		}							       \
10016 	} while (0)
10017 
10018 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
10019 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
10020 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
10021 
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10022 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10023 					const struct bpf_insn *si,
10024 					struct bpf_insn *insn_buf,
10025 					struct bpf_prog *prog, u32 *target_size)
10026 {
10027 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10028 	struct bpf_insn *insn = insn_buf;
10029 
10030 	switch (si->off) {
10031 	case offsetof(struct bpf_sock_addr, user_family):
10032 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10033 					    struct sockaddr, uaddr, sa_family);
10034 		break;
10035 
10036 	case offsetof(struct bpf_sock_addr, user_ip4):
10037 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10038 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10039 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10040 		break;
10041 
10042 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10043 		off = si->off;
10044 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10045 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10046 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10047 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10048 			tmp_reg);
10049 		break;
10050 
10051 	case offsetof(struct bpf_sock_addr, user_port):
10052 		/* To get port we need to know sa_family first and then treat
10053 		 * sockaddr as either sockaddr_in or sockaddr_in6.
10054 		 * Though we can simplify since port field has same offset and
10055 		 * size in both structures.
10056 		 * Here we check this invariant and use just one of the
10057 		 * structures if it's true.
10058 		 */
10059 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10060 			     offsetof(struct sockaddr_in6, sin6_port));
10061 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10062 			     sizeof_field(struct sockaddr_in6, sin6_port));
10063 		/* Account for sin6_port being smaller than user_port. */
10064 		port_size = min(port_size, BPF_LDST_BYTES(si));
10065 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10066 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10067 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10068 		break;
10069 
10070 	case offsetof(struct bpf_sock_addr, family):
10071 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10072 					    struct sock, sk, sk_family);
10073 		break;
10074 
10075 	case offsetof(struct bpf_sock_addr, type):
10076 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10077 					    struct sock, sk, sk_type);
10078 		break;
10079 
10080 	case offsetof(struct bpf_sock_addr, protocol):
10081 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10082 					    struct sock, sk, sk_protocol);
10083 		break;
10084 
10085 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
10086 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
10087 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10088 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10089 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10090 		break;
10091 
10092 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10093 				msg_src_ip6[3]):
10094 		off = si->off;
10095 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10096 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10097 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10098 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10099 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10100 		break;
10101 	case offsetof(struct bpf_sock_addr, sk):
10102 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10103 				      si->dst_reg, si->src_reg,
10104 				      offsetof(struct bpf_sock_addr_kern, sk));
10105 		break;
10106 	}
10107 
10108 	return insn - insn_buf;
10109 }
10110 
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10111 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10112 				       const struct bpf_insn *si,
10113 				       struct bpf_insn *insn_buf,
10114 				       struct bpf_prog *prog,
10115 				       u32 *target_size)
10116 {
10117 	struct bpf_insn *insn = insn_buf;
10118 	int off;
10119 
10120 /* Helper macro for adding read access to tcp_sock or sock fields. */
10121 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10122 	do {								      \
10123 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10124 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10125 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10126 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10127 			reg--;						      \
10128 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10129 			reg--;						      \
10130 		if (si->dst_reg == si->src_reg) {			      \
10131 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10132 					  offsetof(struct bpf_sock_ops_kern,  \
10133 					  temp));			      \
10134 			fullsock_reg = reg;				      \
10135 			jmp += 2;					      \
10136 		}							      \
10137 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10138 						struct bpf_sock_ops_kern,     \
10139 						is_fullsock),		      \
10140 				      fullsock_reg, si->src_reg,	      \
10141 				      offsetof(struct bpf_sock_ops_kern,      \
10142 					       is_fullsock));		      \
10143 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10144 		if (si->dst_reg == si->src_reg)				      \
10145 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10146 				      offsetof(struct bpf_sock_ops_kern,      \
10147 				      temp));				      \
10148 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10149 						struct bpf_sock_ops_kern, sk),\
10150 				      si->dst_reg, si->src_reg,		      \
10151 				      offsetof(struct bpf_sock_ops_kern, sk));\
10152 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
10153 						       OBJ_FIELD),	      \
10154 				      si->dst_reg, si->dst_reg,		      \
10155 				      offsetof(OBJ, OBJ_FIELD));	      \
10156 		if (si->dst_reg == si->src_reg)	{			      \
10157 			*insn++ = BPF_JMP_A(1);				      \
10158 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10159 				      offsetof(struct bpf_sock_ops_kern,      \
10160 				      temp));				      \
10161 		}							      \
10162 	} while (0)
10163 
10164 #define SOCK_OPS_GET_SK()							      \
10165 	do {								      \
10166 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10167 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10168 			reg--;						      \
10169 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10170 			reg--;						      \
10171 		if (si->dst_reg == si->src_reg) {			      \
10172 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10173 					  offsetof(struct bpf_sock_ops_kern,  \
10174 					  temp));			      \
10175 			fullsock_reg = reg;				      \
10176 			jmp += 2;					      \
10177 		}							      \
10178 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10179 						struct bpf_sock_ops_kern,     \
10180 						is_fullsock),		      \
10181 				      fullsock_reg, si->src_reg,	      \
10182 				      offsetof(struct bpf_sock_ops_kern,      \
10183 					       is_fullsock));		      \
10184 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10185 		if (si->dst_reg == si->src_reg)				      \
10186 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10187 				      offsetof(struct bpf_sock_ops_kern,      \
10188 				      temp));				      \
10189 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10190 						struct bpf_sock_ops_kern, sk),\
10191 				      si->dst_reg, si->src_reg,		      \
10192 				      offsetof(struct bpf_sock_ops_kern, sk));\
10193 		if (si->dst_reg == si->src_reg)	{			      \
10194 			*insn++ = BPF_JMP_A(1);				      \
10195 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10196 				      offsetof(struct bpf_sock_ops_kern,      \
10197 				      temp));				      \
10198 		}							      \
10199 	} while (0)
10200 
10201 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10202 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10203 
10204 /* Helper macro for adding write access to tcp_sock or sock fields.
10205  * The macro is called with two registers, dst_reg which contains a pointer
10206  * to ctx (context) and src_reg which contains the value that should be
10207  * stored. However, we need an additional register since we cannot overwrite
10208  * dst_reg because it may be used later in the program.
10209  * Instead we "borrow" one of the other register. We first save its value
10210  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10211  * it at the end of the macro.
10212  */
10213 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10214 	do {								      \
10215 		int reg = BPF_REG_9;					      \
10216 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10217 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10218 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10219 			reg--;						      \
10220 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10221 			reg--;						      \
10222 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
10223 				      offsetof(struct bpf_sock_ops_kern,      \
10224 					       temp));			      \
10225 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10226 						struct bpf_sock_ops_kern,     \
10227 						is_fullsock),		      \
10228 				      reg, si->dst_reg,			      \
10229 				      offsetof(struct bpf_sock_ops_kern,      \
10230 					       is_fullsock));		      \
10231 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
10232 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10233 						struct bpf_sock_ops_kern, sk),\
10234 				      reg, si->dst_reg,			      \
10235 				      offsetof(struct bpf_sock_ops_kern, sk));\
10236 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
10237 				      reg, si->src_reg,			      \
10238 				      offsetof(OBJ, OBJ_FIELD));	      \
10239 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
10240 				      offsetof(struct bpf_sock_ops_kern,      \
10241 					       temp));			      \
10242 	} while (0)
10243 
10244 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
10245 	do {								      \
10246 		if (TYPE == BPF_WRITE)					      \
10247 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10248 		else							      \
10249 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10250 	} while (0)
10251 
10252 	if (insn > insn_buf)
10253 		return insn - insn_buf;
10254 
10255 	switch (si->off) {
10256 	case offsetof(struct bpf_sock_ops, op):
10257 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10258 						       op),
10259 				      si->dst_reg, si->src_reg,
10260 				      offsetof(struct bpf_sock_ops_kern, op));
10261 		break;
10262 
10263 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
10264 	     offsetof(struct bpf_sock_ops, replylong[3]):
10265 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10266 			     sizeof_field(struct bpf_sock_ops_kern, reply));
10267 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10268 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
10269 		off = si->off;
10270 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
10271 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10272 		if (type == BPF_WRITE)
10273 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
10274 					      off);
10275 		else
10276 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10277 					      off);
10278 		break;
10279 
10280 	case offsetof(struct bpf_sock_ops, family):
10281 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10282 
10283 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10284 					      struct bpf_sock_ops_kern, sk),
10285 				      si->dst_reg, si->src_reg,
10286 				      offsetof(struct bpf_sock_ops_kern, sk));
10287 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10288 				      offsetof(struct sock_common, skc_family));
10289 		break;
10290 
10291 	case offsetof(struct bpf_sock_ops, remote_ip4):
10292 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10293 
10294 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10295 						struct bpf_sock_ops_kern, sk),
10296 				      si->dst_reg, si->src_reg,
10297 				      offsetof(struct bpf_sock_ops_kern, sk));
10298 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10299 				      offsetof(struct sock_common, skc_daddr));
10300 		break;
10301 
10302 	case offsetof(struct bpf_sock_ops, local_ip4):
10303 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10304 					  skc_rcv_saddr) != 4);
10305 
10306 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10307 					      struct bpf_sock_ops_kern, sk),
10308 				      si->dst_reg, si->src_reg,
10309 				      offsetof(struct bpf_sock_ops_kern, sk));
10310 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10311 				      offsetof(struct sock_common,
10312 					       skc_rcv_saddr));
10313 		break;
10314 
10315 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10316 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
10317 #if IS_ENABLED(CONFIG_IPV6)
10318 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10319 					  skc_v6_daddr.s6_addr32[0]) != 4);
10320 
10321 		off = si->off;
10322 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10323 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10324 						struct bpf_sock_ops_kern, sk),
10325 				      si->dst_reg, si->src_reg,
10326 				      offsetof(struct bpf_sock_ops_kern, sk));
10327 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10328 				      offsetof(struct sock_common,
10329 					       skc_v6_daddr.s6_addr32[0]) +
10330 				      off);
10331 #else
10332 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10333 #endif
10334 		break;
10335 
10336 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10337 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10338 #if IS_ENABLED(CONFIG_IPV6)
10339 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10340 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10341 
10342 		off = si->off;
10343 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10344 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10345 						struct bpf_sock_ops_kern, sk),
10346 				      si->dst_reg, si->src_reg,
10347 				      offsetof(struct bpf_sock_ops_kern, sk));
10348 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10349 				      offsetof(struct sock_common,
10350 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10351 				      off);
10352 #else
10353 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10354 #endif
10355 		break;
10356 
10357 	case offsetof(struct bpf_sock_ops, remote_port):
10358 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10359 
10360 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10361 						struct bpf_sock_ops_kern, sk),
10362 				      si->dst_reg, si->src_reg,
10363 				      offsetof(struct bpf_sock_ops_kern, sk));
10364 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10365 				      offsetof(struct sock_common, skc_dport));
10366 #ifndef __BIG_ENDIAN_BITFIELD
10367 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10368 #endif
10369 		break;
10370 
10371 	case offsetof(struct bpf_sock_ops, local_port):
10372 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10373 
10374 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10375 						struct bpf_sock_ops_kern, sk),
10376 				      si->dst_reg, si->src_reg,
10377 				      offsetof(struct bpf_sock_ops_kern, sk));
10378 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10379 				      offsetof(struct sock_common, skc_num));
10380 		break;
10381 
10382 	case offsetof(struct bpf_sock_ops, is_fullsock):
10383 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10384 						struct bpf_sock_ops_kern,
10385 						is_fullsock),
10386 				      si->dst_reg, si->src_reg,
10387 				      offsetof(struct bpf_sock_ops_kern,
10388 					       is_fullsock));
10389 		break;
10390 
10391 	case offsetof(struct bpf_sock_ops, state):
10392 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10393 
10394 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10395 						struct bpf_sock_ops_kern, sk),
10396 				      si->dst_reg, si->src_reg,
10397 				      offsetof(struct bpf_sock_ops_kern, sk));
10398 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10399 				      offsetof(struct sock_common, skc_state));
10400 		break;
10401 
10402 	case offsetof(struct bpf_sock_ops, rtt_min):
10403 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10404 			     sizeof(struct minmax));
10405 		BUILD_BUG_ON(sizeof(struct minmax) <
10406 			     sizeof(struct minmax_sample));
10407 
10408 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10409 						struct bpf_sock_ops_kern, sk),
10410 				      si->dst_reg, si->src_reg,
10411 				      offsetof(struct bpf_sock_ops_kern, sk));
10412 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10413 				      offsetof(struct tcp_sock, rtt_min) +
10414 				      sizeof_field(struct minmax_sample, t));
10415 		break;
10416 
10417 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10418 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10419 				   struct tcp_sock);
10420 		break;
10421 
10422 	case offsetof(struct bpf_sock_ops, sk_txhash):
10423 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10424 					  struct sock, type);
10425 		break;
10426 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10427 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10428 		break;
10429 	case offsetof(struct bpf_sock_ops, srtt_us):
10430 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10431 		break;
10432 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10433 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10434 		break;
10435 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10436 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10437 		break;
10438 	case offsetof(struct bpf_sock_ops, snd_nxt):
10439 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10440 		break;
10441 	case offsetof(struct bpf_sock_ops, snd_una):
10442 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10443 		break;
10444 	case offsetof(struct bpf_sock_ops, mss_cache):
10445 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10446 		break;
10447 	case offsetof(struct bpf_sock_ops, ecn_flags):
10448 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10449 		break;
10450 	case offsetof(struct bpf_sock_ops, rate_delivered):
10451 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10452 		break;
10453 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10454 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10455 		break;
10456 	case offsetof(struct bpf_sock_ops, packets_out):
10457 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10458 		break;
10459 	case offsetof(struct bpf_sock_ops, retrans_out):
10460 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10461 		break;
10462 	case offsetof(struct bpf_sock_ops, total_retrans):
10463 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10464 		break;
10465 	case offsetof(struct bpf_sock_ops, segs_in):
10466 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10467 		break;
10468 	case offsetof(struct bpf_sock_ops, data_segs_in):
10469 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10470 		break;
10471 	case offsetof(struct bpf_sock_ops, segs_out):
10472 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10473 		break;
10474 	case offsetof(struct bpf_sock_ops, data_segs_out):
10475 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10476 		break;
10477 	case offsetof(struct bpf_sock_ops, lost_out):
10478 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10479 		break;
10480 	case offsetof(struct bpf_sock_ops, sacked_out):
10481 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10482 		break;
10483 	case offsetof(struct bpf_sock_ops, bytes_received):
10484 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10485 		break;
10486 	case offsetof(struct bpf_sock_ops, bytes_acked):
10487 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10488 		break;
10489 	case offsetof(struct bpf_sock_ops, sk):
10490 		SOCK_OPS_GET_SK();
10491 		break;
10492 	case offsetof(struct bpf_sock_ops, skb_data_end):
10493 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10494 						       skb_data_end),
10495 				      si->dst_reg, si->src_reg,
10496 				      offsetof(struct bpf_sock_ops_kern,
10497 					       skb_data_end));
10498 		break;
10499 	case offsetof(struct bpf_sock_ops, skb_data):
10500 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10501 						       skb),
10502 				      si->dst_reg, si->src_reg,
10503 				      offsetof(struct bpf_sock_ops_kern,
10504 					       skb));
10505 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10506 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10507 				      si->dst_reg, si->dst_reg,
10508 				      offsetof(struct sk_buff, data));
10509 		break;
10510 	case offsetof(struct bpf_sock_ops, skb_len):
10511 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10512 						       skb),
10513 				      si->dst_reg, si->src_reg,
10514 				      offsetof(struct bpf_sock_ops_kern,
10515 					       skb));
10516 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10517 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10518 				      si->dst_reg, si->dst_reg,
10519 				      offsetof(struct sk_buff, len));
10520 		break;
10521 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10522 		off = offsetof(struct sk_buff, cb);
10523 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10524 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10525 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10526 						       skb),
10527 				      si->dst_reg, si->src_reg,
10528 				      offsetof(struct bpf_sock_ops_kern,
10529 					       skb));
10530 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10531 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10532 						       tcp_flags),
10533 				      si->dst_reg, si->dst_reg, off);
10534 		break;
10535 	}
10536 	return insn - insn_buf;
10537 }
10538 
10539 /* data_end = skb->data + skb_headlen() */
bpf_convert_data_end_access(const struct bpf_insn * si,struct bpf_insn * insn)10540 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10541 						    struct bpf_insn *insn)
10542 {
10543 	int reg;
10544 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10545 			   offsetof(struct sk_skb_cb, temp_reg);
10546 
10547 	if (si->src_reg == si->dst_reg) {
10548 		/* We need an extra register, choose and save a register. */
10549 		reg = BPF_REG_9;
10550 		if (si->src_reg == reg || si->dst_reg == reg)
10551 			reg--;
10552 		if (si->src_reg == reg || si->dst_reg == reg)
10553 			reg--;
10554 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10555 	} else {
10556 		reg = si->dst_reg;
10557 	}
10558 
10559 	/* reg = skb->data */
10560 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10561 			      reg, si->src_reg,
10562 			      offsetof(struct sk_buff, data));
10563 	/* AX = skb->len */
10564 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10565 			      BPF_REG_AX, si->src_reg,
10566 			      offsetof(struct sk_buff, len));
10567 	/* reg = skb->data + skb->len */
10568 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10569 	/* AX = skb->data_len */
10570 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10571 			      BPF_REG_AX, si->src_reg,
10572 			      offsetof(struct sk_buff, data_len));
10573 
10574 	/* reg = skb->data + skb->len - skb->data_len */
10575 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10576 
10577 	if (si->src_reg == si->dst_reg) {
10578 		/* Restore the saved register */
10579 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10580 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10581 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10582 	}
10583 
10584 	return insn;
10585 }
10586 
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10587 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10588 				     const struct bpf_insn *si,
10589 				     struct bpf_insn *insn_buf,
10590 				     struct bpf_prog *prog, u32 *target_size)
10591 {
10592 	struct bpf_insn *insn = insn_buf;
10593 	int off;
10594 
10595 	switch (si->off) {
10596 	case offsetof(struct __sk_buff, data_end):
10597 		insn = bpf_convert_data_end_access(si, insn);
10598 		break;
10599 	case offsetof(struct __sk_buff, cb[0]) ...
10600 	     offsetofend(struct __sk_buff, cb[4]) - 1:
10601 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10602 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10603 			      offsetof(struct sk_skb_cb, data)) %
10604 			     sizeof(__u64));
10605 
10606 		prog->cb_access = 1;
10607 		off  = si->off;
10608 		off -= offsetof(struct __sk_buff, cb[0]);
10609 		off += offsetof(struct sk_buff, cb);
10610 		off += offsetof(struct sk_skb_cb, data);
10611 		if (type == BPF_WRITE)
10612 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
10613 					      si->src_reg, off);
10614 		else
10615 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10616 					      si->src_reg, off);
10617 		break;
10618 
10619 
10620 	default:
10621 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10622 					      target_size);
10623 	}
10624 
10625 	return insn - insn_buf;
10626 }
10627 
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10628 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10629 				     const struct bpf_insn *si,
10630 				     struct bpf_insn *insn_buf,
10631 				     struct bpf_prog *prog, u32 *target_size)
10632 {
10633 	struct bpf_insn *insn = insn_buf;
10634 #if IS_ENABLED(CONFIG_IPV6)
10635 	int off;
10636 #endif
10637 
10638 	/* convert ctx uses the fact sg element is first in struct */
10639 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10640 
10641 	switch (si->off) {
10642 	case offsetof(struct sk_msg_md, data):
10643 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10644 				      si->dst_reg, si->src_reg,
10645 				      offsetof(struct sk_msg, data));
10646 		break;
10647 	case offsetof(struct sk_msg_md, data_end):
10648 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10649 				      si->dst_reg, si->src_reg,
10650 				      offsetof(struct sk_msg, data_end));
10651 		break;
10652 	case offsetof(struct sk_msg_md, family):
10653 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10654 
10655 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10656 					      struct sk_msg, sk),
10657 				      si->dst_reg, si->src_reg,
10658 				      offsetof(struct sk_msg, sk));
10659 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10660 				      offsetof(struct sock_common, skc_family));
10661 		break;
10662 
10663 	case offsetof(struct sk_msg_md, remote_ip4):
10664 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10665 
10666 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10667 						struct sk_msg, sk),
10668 				      si->dst_reg, si->src_reg,
10669 				      offsetof(struct sk_msg, sk));
10670 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10671 				      offsetof(struct sock_common, skc_daddr));
10672 		break;
10673 
10674 	case offsetof(struct sk_msg_md, local_ip4):
10675 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10676 					  skc_rcv_saddr) != 4);
10677 
10678 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10679 					      struct sk_msg, sk),
10680 				      si->dst_reg, si->src_reg,
10681 				      offsetof(struct sk_msg, sk));
10682 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10683 				      offsetof(struct sock_common,
10684 					       skc_rcv_saddr));
10685 		break;
10686 
10687 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10688 	     offsetof(struct sk_msg_md, remote_ip6[3]):
10689 #if IS_ENABLED(CONFIG_IPV6)
10690 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10691 					  skc_v6_daddr.s6_addr32[0]) != 4);
10692 
10693 		off = si->off;
10694 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10695 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10696 						struct sk_msg, sk),
10697 				      si->dst_reg, si->src_reg,
10698 				      offsetof(struct sk_msg, sk));
10699 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10700 				      offsetof(struct sock_common,
10701 					       skc_v6_daddr.s6_addr32[0]) +
10702 				      off);
10703 #else
10704 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10705 #endif
10706 		break;
10707 
10708 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
10709 	     offsetof(struct sk_msg_md, local_ip6[3]):
10710 #if IS_ENABLED(CONFIG_IPV6)
10711 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10712 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10713 
10714 		off = si->off;
10715 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
10716 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10717 						struct sk_msg, sk),
10718 				      si->dst_reg, si->src_reg,
10719 				      offsetof(struct sk_msg, sk));
10720 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10721 				      offsetof(struct sock_common,
10722 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10723 				      off);
10724 #else
10725 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10726 #endif
10727 		break;
10728 
10729 	case offsetof(struct sk_msg_md, remote_port):
10730 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10731 
10732 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10733 						struct sk_msg, sk),
10734 				      si->dst_reg, si->src_reg,
10735 				      offsetof(struct sk_msg, sk));
10736 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10737 				      offsetof(struct sock_common, skc_dport));
10738 #ifndef __BIG_ENDIAN_BITFIELD
10739 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10740 #endif
10741 		break;
10742 
10743 	case offsetof(struct sk_msg_md, local_port):
10744 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10745 
10746 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10747 						struct sk_msg, sk),
10748 				      si->dst_reg, si->src_reg,
10749 				      offsetof(struct sk_msg, sk));
10750 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10751 				      offsetof(struct sock_common, skc_num));
10752 		break;
10753 
10754 	case offsetof(struct sk_msg_md, size):
10755 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10756 				      si->dst_reg, si->src_reg,
10757 				      offsetof(struct sk_msg_sg, size));
10758 		break;
10759 
10760 	case offsetof(struct sk_msg_md, sk):
10761 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10762 				      si->dst_reg, si->src_reg,
10763 				      offsetof(struct sk_msg, sk));
10764 		break;
10765 	}
10766 
10767 	return insn - insn_buf;
10768 }
10769 
10770 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10771 	.get_func_proto		= sk_filter_func_proto,
10772 	.is_valid_access	= sk_filter_is_valid_access,
10773 	.convert_ctx_access	= bpf_convert_ctx_access,
10774 	.gen_ld_abs		= bpf_gen_ld_abs,
10775 };
10776 
10777 const struct bpf_prog_ops sk_filter_prog_ops = {
10778 	.test_run		= bpf_prog_test_run_skb,
10779 };
10780 
10781 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10782 	.get_func_proto		= tc_cls_act_func_proto,
10783 	.is_valid_access	= tc_cls_act_is_valid_access,
10784 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
10785 	.gen_prologue		= tc_cls_act_prologue,
10786 	.gen_ld_abs		= bpf_gen_ld_abs,
10787 	.btf_struct_access	= tc_cls_act_btf_struct_access,
10788 };
10789 
10790 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10791 	.test_run		= bpf_prog_test_run_skb,
10792 };
10793 
10794 const struct bpf_verifier_ops xdp_verifier_ops = {
10795 	.get_func_proto		= xdp_func_proto,
10796 	.is_valid_access	= xdp_is_valid_access,
10797 	.convert_ctx_access	= xdp_convert_ctx_access,
10798 	.gen_prologue		= bpf_noop_prologue,
10799 	.btf_struct_access	= xdp_btf_struct_access,
10800 };
10801 
10802 const struct bpf_prog_ops xdp_prog_ops = {
10803 	.test_run		= bpf_prog_test_run_xdp,
10804 };
10805 
10806 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10807 	.get_func_proto		= cg_skb_func_proto,
10808 	.is_valid_access	= cg_skb_is_valid_access,
10809 	.convert_ctx_access	= bpf_convert_ctx_access,
10810 };
10811 
10812 const struct bpf_prog_ops cg_skb_prog_ops = {
10813 	.test_run		= bpf_prog_test_run_skb,
10814 };
10815 
10816 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10817 	.get_func_proto		= lwt_in_func_proto,
10818 	.is_valid_access	= lwt_is_valid_access,
10819 	.convert_ctx_access	= bpf_convert_ctx_access,
10820 };
10821 
10822 const struct bpf_prog_ops lwt_in_prog_ops = {
10823 	.test_run		= bpf_prog_test_run_skb,
10824 };
10825 
10826 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10827 	.get_func_proto		= lwt_out_func_proto,
10828 	.is_valid_access	= lwt_is_valid_access,
10829 	.convert_ctx_access	= bpf_convert_ctx_access,
10830 };
10831 
10832 const struct bpf_prog_ops lwt_out_prog_ops = {
10833 	.test_run		= bpf_prog_test_run_skb,
10834 };
10835 
10836 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10837 	.get_func_proto		= lwt_xmit_func_proto,
10838 	.is_valid_access	= lwt_is_valid_access,
10839 	.convert_ctx_access	= bpf_convert_ctx_access,
10840 	.gen_prologue		= tc_cls_act_prologue,
10841 };
10842 
10843 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10844 	.test_run		= bpf_prog_test_run_skb,
10845 };
10846 
10847 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10848 	.get_func_proto		= lwt_seg6local_func_proto,
10849 	.is_valid_access	= lwt_is_valid_access,
10850 	.convert_ctx_access	= bpf_convert_ctx_access,
10851 };
10852 
10853 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10854 	.test_run		= bpf_prog_test_run_skb,
10855 };
10856 
10857 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10858 	.get_func_proto		= sock_filter_func_proto,
10859 	.is_valid_access	= sock_filter_is_valid_access,
10860 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
10861 };
10862 
10863 const struct bpf_prog_ops cg_sock_prog_ops = {
10864 };
10865 
10866 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10867 	.get_func_proto		= sock_addr_func_proto,
10868 	.is_valid_access	= sock_addr_is_valid_access,
10869 	.convert_ctx_access	= sock_addr_convert_ctx_access,
10870 };
10871 
10872 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10873 };
10874 
10875 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10876 	.get_func_proto		= sock_ops_func_proto,
10877 	.is_valid_access	= sock_ops_is_valid_access,
10878 	.convert_ctx_access	= sock_ops_convert_ctx_access,
10879 };
10880 
10881 const struct bpf_prog_ops sock_ops_prog_ops = {
10882 };
10883 
10884 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10885 	.get_func_proto		= sk_skb_func_proto,
10886 	.is_valid_access	= sk_skb_is_valid_access,
10887 	.convert_ctx_access	= sk_skb_convert_ctx_access,
10888 	.gen_prologue		= sk_skb_prologue,
10889 };
10890 
10891 const struct bpf_prog_ops sk_skb_prog_ops = {
10892 };
10893 
10894 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10895 	.get_func_proto		= sk_msg_func_proto,
10896 	.is_valid_access	= sk_msg_is_valid_access,
10897 	.convert_ctx_access	= sk_msg_convert_ctx_access,
10898 	.gen_prologue		= bpf_noop_prologue,
10899 };
10900 
10901 const struct bpf_prog_ops sk_msg_prog_ops = {
10902 };
10903 
10904 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10905 	.get_func_proto		= flow_dissector_func_proto,
10906 	.is_valid_access	= flow_dissector_is_valid_access,
10907 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
10908 };
10909 
10910 const struct bpf_prog_ops flow_dissector_prog_ops = {
10911 	.test_run		= bpf_prog_test_run_flow_dissector,
10912 };
10913 
sk_detach_filter(struct sock * sk)10914 int sk_detach_filter(struct sock *sk)
10915 {
10916 	int ret = -ENOENT;
10917 	struct sk_filter *filter;
10918 
10919 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
10920 		return -EPERM;
10921 
10922 	filter = rcu_dereference_protected(sk->sk_filter,
10923 					   lockdep_sock_is_held(sk));
10924 	if (filter) {
10925 		RCU_INIT_POINTER(sk->sk_filter, NULL);
10926 		sk_filter_uncharge(sk, filter);
10927 		ret = 0;
10928 	}
10929 
10930 	return ret;
10931 }
10932 EXPORT_SYMBOL_GPL(sk_detach_filter);
10933 
sk_get_filter(struct sock * sk,sockptr_t optval,unsigned int len)10934 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
10935 {
10936 	struct sock_fprog_kern *fprog;
10937 	struct sk_filter *filter;
10938 	int ret = 0;
10939 
10940 	sockopt_lock_sock(sk);
10941 	filter = rcu_dereference_protected(sk->sk_filter,
10942 					   lockdep_sock_is_held(sk));
10943 	if (!filter)
10944 		goto out;
10945 
10946 	/* We're copying the filter that has been originally attached,
10947 	 * so no conversion/decode needed anymore. eBPF programs that
10948 	 * have no original program cannot be dumped through this.
10949 	 */
10950 	ret = -EACCES;
10951 	fprog = filter->prog->orig_prog;
10952 	if (!fprog)
10953 		goto out;
10954 
10955 	ret = fprog->len;
10956 	if (!len)
10957 		/* User space only enquires number of filter blocks. */
10958 		goto out;
10959 
10960 	ret = -EINVAL;
10961 	if (len < fprog->len)
10962 		goto out;
10963 
10964 	ret = -EFAULT;
10965 	if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
10966 		goto out;
10967 
10968 	/* Instead of bytes, the API requests to return the number
10969 	 * of filter blocks.
10970 	 */
10971 	ret = fprog->len;
10972 out:
10973 	sockopt_release_sock(sk);
10974 	return ret;
10975 }
10976 
10977 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)10978 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10979 				    struct sock_reuseport *reuse,
10980 				    struct sock *sk, struct sk_buff *skb,
10981 				    struct sock *migrating_sk,
10982 				    u32 hash)
10983 {
10984 	reuse_kern->skb = skb;
10985 	reuse_kern->sk = sk;
10986 	reuse_kern->selected_sk = NULL;
10987 	reuse_kern->migrating_sk = migrating_sk;
10988 	reuse_kern->data_end = skb->data + skb_headlen(skb);
10989 	reuse_kern->hash = hash;
10990 	reuse_kern->reuseport_id = reuse->reuseport_id;
10991 	reuse_kern->bind_inany = reuse->bind_inany;
10992 }
10993 
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)10994 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10995 				  struct bpf_prog *prog, struct sk_buff *skb,
10996 				  struct sock *migrating_sk,
10997 				  u32 hash)
10998 {
10999 	struct sk_reuseport_kern reuse_kern;
11000 	enum sk_action action;
11001 
11002 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11003 	action = bpf_prog_run(prog, &reuse_kern);
11004 
11005 	if (action == SK_PASS)
11006 		return reuse_kern.selected_sk;
11007 	else
11008 		return ERR_PTR(-ECONNREFUSED);
11009 }
11010 
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)11011 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11012 	   struct bpf_map *, map, void *, key, u32, flags)
11013 {
11014 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11015 	struct sock_reuseport *reuse;
11016 	struct sock *selected_sk;
11017 
11018 	selected_sk = map->ops->map_lookup_elem(map, key);
11019 	if (!selected_sk)
11020 		return -ENOENT;
11021 
11022 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11023 	if (!reuse) {
11024 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11025 		if (sk_is_refcounted(selected_sk))
11026 			sock_put(selected_sk);
11027 
11028 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
11029 		 * The only (!reuse) case here is - the sk has already been
11030 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
11031 		 *
11032 		 * Other maps (e.g. sock_map) do not provide this guarantee and
11033 		 * the sk may never be in the reuseport group to begin with.
11034 		 */
11035 		return is_sockarray ? -ENOENT : -EINVAL;
11036 	}
11037 
11038 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11039 		struct sock *sk = reuse_kern->sk;
11040 
11041 		if (sk->sk_protocol != selected_sk->sk_protocol)
11042 			return -EPROTOTYPE;
11043 		else if (sk->sk_family != selected_sk->sk_family)
11044 			return -EAFNOSUPPORT;
11045 
11046 		/* Catch all. Likely bound to a different sockaddr. */
11047 		return -EBADFD;
11048 	}
11049 
11050 	reuse_kern->selected_sk = selected_sk;
11051 
11052 	return 0;
11053 }
11054 
11055 static const struct bpf_func_proto sk_select_reuseport_proto = {
11056 	.func           = sk_select_reuseport,
11057 	.gpl_only       = false,
11058 	.ret_type       = RET_INTEGER,
11059 	.arg1_type	= ARG_PTR_TO_CTX,
11060 	.arg2_type      = ARG_CONST_MAP_PTR,
11061 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
11062 	.arg4_type	= ARG_ANYTHING,
11063 };
11064 
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)11065 BPF_CALL_4(sk_reuseport_load_bytes,
11066 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11067 	   void *, to, u32, len)
11068 {
11069 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11070 }
11071 
11072 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11073 	.func		= sk_reuseport_load_bytes,
11074 	.gpl_only	= false,
11075 	.ret_type	= RET_INTEGER,
11076 	.arg1_type	= ARG_PTR_TO_CTX,
11077 	.arg2_type	= ARG_ANYTHING,
11078 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11079 	.arg4_type	= ARG_CONST_SIZE,
11080 };
11081 
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)11082 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11083 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11084 	   void *, to, u32, len, u32, start_header)
11085 {
11086 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11087 					       len, start_header);
11088 }
11089 
11090 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11091 	.func		= sk_reuseport_load_bytes_relative,
11092 	.gpl_only	= false,
11093 	.ret_type	= RET_INTEGER,
11094 	.arg1_type	= ARG_PTR_TO_CTX,
11095 	.arg2_type	= ARG_ANYTHING,
11096 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11097 	.arg4_type	= ARG_CONST_SIZE,
11098 	.arg5_type	= ARG_ANYTHING,
11099 };
11100 
11101 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11102 sk_reuseport_func_proto(enum bpf_func_id func_id,
11103 			const struct bpf_prog *prog)
11104 {
11105 	switch (func_id) {
11106 	case BPF_FUNC_sk_select_reuseport:
11107 		return &sk_select_reuseport_proto;
11108 	case BPF_FUNC_skb_load_bytes:
11109 		return &sk_reuseport_load_bytes_proto;
11110 	case BPF_FUNC_skb_load_bytes_relative:
11111 		return &sk_reuseport_load_bytes_relative_proto;
11112 	case BPF_FUNC_get_socket_cookie:
11113 		return &bpf_get_socket_ptr_cookie_proto;
11114 	case BPF_FUNC_ktime_get_coarse_ns:
11115 		return &bpf_ktime_get_coarse_ns_proto;
11116 	default:
11117 		return bpf_base_func_proto(func_id);
11118 	}
11119 }
11120 
11121 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11122 sk_reuseport_is_valid_access(int off, int size,
11123 			     enum bpf_access_type type,
11124 			     const struct bpf_prog *prog,
11125 			     struct bpf_insn_access_aux *info)
11126 {
11127 	const u32 size_default = sizeof(__u32);
11128 
11129 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11130 	    off % size || type != BPF_READ)
11131 		return false;
11132 
11133 	switch (off) {
11134 	case offsetof(struct sk_reuseport_md, data):
11135 		info->reg_type = PTR_TO_PACKET;
11136 		return size == sizeof(__u64);
11137 
11138 	case offsetof(struct sk_reuseport_md, data_end):
11139 		info->reg_type = PTR_TO_PACKET_END;
11140 		return size == sizeof(__u64);
11141 
11142 	case offsetof(struct sk_reuseport_md, hash):
11143 		return size == size_default;
11144 
11145 	case offsetof(struct sk_reuseport_md, sk):
11146 		info->reg_type = PTR_TO_SOCKET;
11147 		return size == sizeof(__u64);
11148 
11149 	case offsetof(struct sk_reuseport_md, migrating_sk):
11150 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11151 		return size == sizeof(__u64);
11152 
11153 	/* Fields that allow narrowing */
11154 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11155 		if (size < sizeof_field(struct sk_buff, protocol))
11156 			return false;
11157 		fallthrough;
11158 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11159 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11160 	case bpf_ctx_range(struct sk_reuseport_md, len):
11161 		bpf_ctx_record_field_size(info, size_default);
11162 		return bpf_ctx_narrow_access_ok(off, size, size_default);
11163 
11164 	default:
11165 		return false;
11166 	}
11167 }
11168 
11169 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
11170 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11171 			      si->dst_reg, si->src_reg,			\
11172 			      bpf_target_off(struct sk_reuseport_kern, F, \
11173 					     sizeof_field(struct sk_reuseport_kern, F), \
11174 					     target_size));		\
11175 	})
11176 
11177 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
11178 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11179 				    struct sk_buff,			\
11180 				    skb,				\
11181 				    SKB_FIELD)
11182 
11183 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
11184 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11185 				    struct sock,			\
11186 				    sk,					\
11187 				    SK_FIELD)
11188 
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11189 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11190 					   const struct bpf_insn *si,
11191 					   struct bpf_insn *insn_buf,
11192 					   struct bpf_prog *prog,
11193 					   u32 *target_size)
11194 {
11195 	struct bpf_insn *insn = insn_buf;
11196 
11197 	switch (si->off) {
11198 	case offsetof(struct sk_reuseport_md, data):
11199 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
11200 		break;
11201 
11202 	case offsetof(struct sk_reuseport_md, len):
11203 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
11204 		break;
11205 
11206 	case offsetof(struct sk_reuseport_md, eth_protocol):
11207 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11208 		break;
11209 
11210 	case offsetof(struct sk_reuseport_md, ip_protocol):
11211 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11212 		break;
11213 
11214 	case offsetof(struct sk_reuseport_md, data_end):
11215 		SK_REUSEPORT_LOAD_FIELD(data_end);
11216 		break;
11217 
11218 	case offsetof(struct sk_reuseport_md, hash):
11219 		SK_REUSEPORT_LOAD_FIELD(hash);
11220 		break;
11221 
11222 	case offsetof(struct sk_reuseport_md, bind_inany):
11223 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
11224 		break;
11225 
11226 	case offsetof(struct sk_reuseport_md, sk):
11227 		SK_REUSEPORT_LOAD_FIELD(sk);
11228 		break;
11229 
11230 	case offsetof(struct sk_reuseport_md, migrating_sk):
11231 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11232 		break;
11233 	}
11234 
11235 	return insn - insn_buf;
11236 }
11237 
11238 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11239 	.get_func_proto		= sk_reuseport_func_proto,
11240 	.is_valid_access	= sk_reuseport_is_valid_access,
11241 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
11242 };
11243 
11244 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11245 };
11246 
11247 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11248 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11249 
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)11250 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11251 	   struct sock *, sk, u64, flags)
11252 {
11253 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11254 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11255 		return -EINVAL;
11256 	if (unlikely(sk && sk_is_refcounted(sk)))
11257 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11258 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11259 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11260 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11261 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11262 
11263 	/* Check if socket is suitable for packet L3/L4 protocol */
11264 	if (sk && sk->sk_protocol != ctx->protocol)
11265 		return -EPROTOTYPE;
11266 	if (sk && sk->sk_family != ctx->family &&
11267 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11268 		return -EAFNOSUPPORT;
11269 
11270 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11271 		return -EEXIST;
11272 
11273 	/* Select socket as lookup result */
11274 	ctx->selected_sk = sk;
11275 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11276 	return 0;
11277 }
11278 
11279 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11280 	.func		= bpf_sk_lookup_assign,
11281 	.gpl_only	= false,
11282 	.ret_type	= RET_INTEGER,
11283 	.arg1_type	= ARG_PTR_TO_CTX,
11284 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
11285 	.arg3_type	= ARG_ANYTHING,
11286 };
11287 
11288 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11289 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11290 {
11291 	switch (func_id) {
11292 	case BPF_FUNC_perf_event_output:
11293 		return &bpf_event_output_data_proto;
11294 	case BPF_FUNC_sk_assign:
11295 		return &bpf_sk_lookup_assign_proto;
11296 	case BPF_FUNC_sk_release:
11297 		return &bpf_sk_release_proto;
11298 	default:
11299 		return bpf_sk_base_func_proto(func_id);
11300 	}
11301 }
11302 
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11303 static bool sk_lookup_is_valid_access(int off, int size,
11304 				      enum bpf_access_type type,
11305 				      const struct bpf_prog *prog,
11306 				      struct bpf_insn_access_aux *info)
11307 {
11308 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11309 		return false;
11310 	if (off % size != 0)
11311 		return false;
11312 	if (type != BPF_READ)
11313 		return false;
11314 
11315 	switch (off) {
11316 	case offsetof(struct bpf_sk_lookup, sk):
11317 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
11318 		return size == sizeof(__u64);
11319 
11320 	case bpf_ctx_range(struct bpf_sk_lookup, family):
11321 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11322 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11323 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11324 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11325 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11326 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11327 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11328 		bpf_ctx_record_field_size(info, sizeof(__u32));
11329 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11330 
11331 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11332 		/* Allow 4-byte access to 2-byte field for backward compatibility */
11333 		if (size == sizeof(__u32))
11334 			return true;
11335 		bpf_ctx_record_field_size(info, sizeof(__be16));
11336 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11337 
11338 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11339 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11340 		/* Allow access to zero padding for backward compatibility */
11341 		bpf_ctx_record_field_size(info, sizeof(__u16));
11342 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11343 
11344 	default:
11345 		return false;
11346 	}
11347 }
11348 
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11349 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11350 					const struct bpf_insn *si,
11351 					struct bpf_insn *insn_buf,
11352 					struct bpf_prog *prog,
11353 					u32 *target_size)
11354 {
11355 	struct bpf_insn *insn = insn_buf;
11356 
11357 	switch (si->off) {
11358 	case offsetof(struct bpf_sk_lookup, sk):
11359 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11360 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11361 		break;
11362 
11363 	case offsetof(struct bpf_sk_lookup, family):
11364 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11365 				      bpf_target_off(struct bpf_sk_lookup_kern,
11366 						     family, 2, target_size));
11367 		break;
11368 
11369 	case offsetof(struct bpf_sk_lookup, protocol):
11370 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11371 				      bpf_target_off(struct bpf_sk_lookup_kern,
11372 						     protocol, 2, target_size));
11373 		break;
11374 
11375 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11376 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11377 				      bpf_target_off(struct bpf_sk_lookup_kern,
11378 						     v4.saddr, 4, target_size));
11379 		break;
11380 
11381 	case offsetof(struct bpf_sk_lookup, local_ip4):
11382 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11383 				      bpf_target_off(struct bpf_sk_lookup_kern,
11384 						     v4.daddr, 4, target_size));
11385 		break;
11386 
11387 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11388 				remote_ip6[0], remote_ip6[3]): {
11389 #if IS_ENABLED(CONFIG_IPV6)
11390 		int off = si->off;
11391 
11392 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11393 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11394 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11395 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11396 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11397 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11398 #else
11399 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11400 #endif
11401 		break;
11402 	}
11403 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11404 				local_ip6[0], local_ip6[3]): {
11405 #if IS_ENABLED(CONFIG_IPV6)
11406 		int off = si->off;
11407 
11408 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11409 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11410 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11411 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11412 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11413 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11414 #else
11415 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11416 #endif
11417 		break;
11418 	}
11419 	case offsetof(struct bpf_sk_lookup, remote_port):
11420 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11421 				      bpf_target_off(struct bpf_sk_lookup_kern,
11422 						     sport, 2, target_size));
11423 		break;
11424 
11425 	case offsetofend(struct bpf_sk_lookup, remote_port):
11426 		*target_size = 2;
11427 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11428 		break;
11429 
11430 	case offsetof(struct bpf_sk_lookup, local_port):
11431 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11432 				      bpf_target_off(struct bpf_sk_lookup_kern,
11433 						     dport, 2, target_size));
11434 		break;
11435 
11436 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11437 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11438 				      bpf_target_off(struct bpf_sk_lookup_kern,
11439 						     ingress_ifindex, 4, target_size));
11440 		break;
11441 	}
11442 
11443 	return insn - insn_buf;
11444 }
11445 
11446 const struct bpf_prog_ops sk_lookup_prog_ops = {
11447 	.test_run = bpf_prog_test_run_sk_lookup,
11448 };
11449 
11450 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11451 	.get_func_proto		= sk_lookup_func_proto,
11452 	.is_valid_access	= sk_lookup_is_valid_access,
11453 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11454 };
11455 
11456 #endif /* CONFIG_INET */
11457 
DEFINE_BPF_DISPATCHER(xdp)11458 DEFINE_BPF_DISPATCHER(xdp)
11459 
11460 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11461 {
11462 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11463 }
11464 
BTF_ID_LIST_GLOBAL(btf_sock_ids,MAX_BTF_SOCK_TYPE)11465 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11466 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11467 BTF_SOCK_TYPE_xxx
11468 #undef BTF_SOCK_TYPE
11469 
11470 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11471 {
11472 	/* tcp6_sock type is not generated in dwarf and hence btf,
11473 	 * trigger an explicit type generation here.
11474 	 */
11475 	BTF_TYPE_EMIT(struct tcp6_sock);
11476 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11477 	    sk->sk_family == AF_INET6)
11478 		return (unsigned long)sk;
11479 
11480 	return (unsigned long)NULL;
11481 }
11482 
11483 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11484 	.func			= bpf_skc_to_tcp6_sock,
11485 	.gpl_only		= false,
11486 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11487 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11488 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11489 };
11490 
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)11491 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11492 {
11493 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11494 		return (unsigned long)sk;
11495 
11496 	return (unsigned long)NULL;
11497 }
11498 
11499 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11500 	.func			= bpf_skc_to_tcp_sock,
11501 	.gpl_only		= false,
11502 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11503 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11504 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11505 };
11506 
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)11507 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11508 {
11509 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11510 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11511 	 */
11512 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11513 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11514 
11515 #ifdef CONFIG_INET
11516 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11517 		return (unsigned long)sk;
11518 #endif
11519 
11520 #if IS_BUILTIN(CONFIG_IPV6)
11521 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11522 		return (unsigned long)sk;
11523 #endif
11524 
11525 	return (unsigned long)NULL;
11526 }
11527 
11528 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11529 	.func			= bpf_skc_to_tcp_timewait_sock,
11530 	.gpl_only		= false,
11531 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11532 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11533 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11534 };
11535 
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)11536 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11537 {
11538 #ifdef CONFIG_INET
11539 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11540 		return (unsigned long)sk;
11541 #endif
11542 
11543 #if IS_BUILTIN(CONFIG_IPV6)
11544 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11545 		return (unsigned long)sk;
11546 #endif
11547 
11548 	return (unsigned long)NULL;
11549 }
11550 
11551 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11552 	.func			= bpf_skc_to_tcp_request_sock,
11553 	.gpl_only		= false,
11554 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11555 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11556 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11557 };
11558 
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)11559 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11560 {
11561 	/* udp6_sock type is not generated in dwarf and hence btf,
11562 	 * trigger an explicit type generation here.
11563 	 */
11564 	BTF_TYPE_EMIT(struct udp6_sock);
11565 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11566 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11567 		return (unsigned long)sk;
11568 
11569 	return (unsigned long)NULL;
11570 }
11571 
11572 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11573 	.func			= bpf_skc_to_udp6_sock,
11574 	.gpl_only		= false,
11575 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11576 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11577 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11578 };
11579 
BPF_CALL_1(bpf_skc_to_unix_sock,struct sock *,sk)11580 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11581 {
11582 	/* unix_sock type is not generated in dwarf and hence btf,
11583 	 * trigger an explicit type generation here.
11584 	 */
11585 	BTF_TYPE_EMIT(struct unix_sock);
11586 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11587 		return (unsigned long)sk;
11588 
11589 	return (unsigned long)NULL;
11590 }
11591 
11592 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11593 	.func			= bpf_skc_to_unix_sock,
11594 	.gpl_only		= false,
11595 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11596 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11597 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11598 };
11599 
BPF_CALL_1(bpf_skc_to_mptcp_sock,struct sock *,sk)11600 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11601 {
11602 	BTF_TYPE_EMIT(struct mptcp_sock);
11603 	return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11604 }
11605 
11606 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11607 	.func		= bpf_skc_to_mptcp_sock,
11608 	.gpl_only	= false,
11609 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11610 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
11611 	.ret_btf_id	= &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11612 };
11613 
BPF_CALL_1(bpf_sock_from_file,struct file *,file)11614 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11615 {
11616 	return (unsigned long)sock_from_file(file);
11617 }
11618 
11619 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11620 BTF_ID(struct, socket)
11621 BTF_ID(struct, file)
11622 
11623 const struct bpf_func_proto bpf_sock_from_file_proto = {
11624 	.func		= bpf_sock_from_file,
11625 	.gpl_only	= false,
11626 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11627 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
11628 	.arg1_type	= ARG_PTR_TO_BTF_ID,
11629 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
11630 };
11631 
11632 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id)11633 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11634 {
11635 	const struct bpf_func_proto *func;
11636 
11637 	switch (func_id) {
11638 	case BPF_FUNC_skc_to_tcp6_sock:
11639 		func = &bpf_skc_to_tcp6_sock_proto;
11640 		break;
11641 	case BPF_FUNC_skc_to_tcp_sock:
11642 		func = &bpf_skc_to_tcp_sock_proto;
11643 		break;
11644 	case BPF_FUNC_skc_to_tcp_timewait_sock:
11645 		func = &bpf_skc_to_tcp_timewait_sock_proto;
11646 		break;
11647 	case BPF_FUNC_skc_to_tcp_request_sock:
11648 		func = &bpf_skc_to_tcp_request_sock_proto;
11649 		break;
11650 	case BPF_FUNC_skc_to_udp6_sock:
11651 		func = &bpf_skc_to_udp6_sock_proto;
11652 		break;
11653 	case BPF_FUNC_skc_to_unix_sock:
11654 		func = &bpf_skc_to_unix_sock_proto;
11655 		break;
11656 	case BPF_FUNC_skc_to_mptcp_sock:
11657 		func = &bpf_skc_to_mptcp_sock_proto;
11658 		break;
11659 	case BPF_FUNC_ktime_get_coarse_ns:
11660 		return &bpf_ktime_get_coarse_ns_proto;
11661 	default:
11662 		return bpf_base_func_proto(func_id);
11663 	}
11664 
11665 	if (!perfmon_capable())
11666 		return NULL;
11667 
11668 	return func;
11669 }
11670