• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/err.h>
7 #include <linux/interrupt.h>
8 #include <linux/types.h>
9 #include <crypto/scatterwalk.h>
10 #include <crypto/sha1.h>
11 #include <crypto/sha2.h>
12 
13 #include "cipher.h"
14 #include "common.h"
15 #include "core.h"
16 #include "regs-v5.h"
17 #include "sha.h"
18 #include "aead.h"
19 
qce_read(struct qce_device * qce,u32 offset)20 static inline u32 qce_read(struct qce_device *qce, u32 offset)
21 {
22 	return readl(qce->base + offset);
23 }
24 
qce_write(struct qce_device * qce,u32 offset,u32 val)25 static inline void qce_write(struct qce_device *qce, u32 offset, u32 val)
26 {
27 	writel(val, qce->base + offset);
28 }
29 
qce_write_array(struct qce_device * qce,u32 offset,const u32 * val,unsigned int len)30 static inline void qce_write_array(struct qce_device *qce, u32 offset,
31 				   const u32 *val, unsigned int len)
32 {
33 	int i;
34 
35 	for (i = 0; i < len; i++)
36 		qce_write(qce, offset + i * sizeof(u32), val[i]);
37 }
38 
39 static inline void
qce_clear_array(struct qce_device * qce,u32 offset,unsigned int len)40 qce_clear_array(struct qce_device *qce, u32 offset, unsigned int len)
41 {
42 	int i;
43 
44 	for (i = 0; i < len; i++)
45 		qce_write(qce, offset + i * sizeof(u32), 0);
46 }
47 
qce_config_reg(struct qce_device * qce,int little)48 static u32 qce_config_reg(struct qce_device *qce, int little)
49 {
50 	u32 beats = (qce->burst_size >> 3) - 1;
51 	u32 pipe_pair = qce->pipe_pair_id;
52 	u32 config;
53 
54 	config = (beats << REQ_SIZE_SHIFT) & REQ_SIZE_MASK;
55 	config |= BIT(MASK_DOUT_INTR_SHIFT) | BIT(MASK_DIN_INTR_SHIFT) |
56 		  BIT(MASK_OP_DONE_INTR_SHIFT) | BIT(MASK_ERR_INTR_SHIFT);
57 	config |= (pipe_pair << PIPE_SET_SELECT_SHIFT) & PIPE_SET_SELECT_MASK;
58 	config &= ~HIGH_SPD_EN_N_SHIFT;
59 
60 	if (little)
61 		config |= BIT(LITTLE_ENDIAN_MODE_SHIFT);
62 
63 	return config;
64 }
65 
qce_cpu_to_be32p_array(__be32 * dst,const u8 * src,unsigned int len)66 void qce_cpu_to_be32p_array(__be32 *dst, const u8 *src, unsigned int len)
67 {
68 	__be32 *d = dst;
69 	const u8 *s = src;
70 	unsigned int n;
71 
72 	n = len / sizeof(u32);
73 	for (; n > 0; n--) {
74 		*d = cpu_to_be32p((const __u32 *) s);
75 		s += sizeof(__u32);
76 		d++;
77 	}
78 }
79 
qce_setup_config(struct qce_device * qce)80 static void qce_setup_config(struct qce_device *qce)
81 {
82 	u32 config;
83 
84 	/* get big endianness */
85 	config = qce_config_reg(qce, 0);
86 
87 	/* clear status */
88 	qce_write(qce, REG_STATUS, 0);
89 	qce_write(qce, REG_CONFIG, config);
90 }
91 
qce_crypto_go(struct qce_device * qce,bool result_dump)92 static inline void qce_crypto_go(struct qce_device *qce, bool result_dump)
93 {
94 	if (result_dump)
95 		qce_write(qce, REG_GOPROC, BIT(GO_SHIFT) | BIT(RESULTS_DUMP_SHIFT));
96 	else
97 		qce_write(qce, REG_GOPROC, BIT(GO_SHIFT));
98 }
99 
100 #if defined(CONFIG_CRYPTO_DEV_QCE_SHA) || defined(CONFIG_CRYPTO_DEV_QCE_AEAD)
qce_auth_cfg(unsigned long flags,u32 key_size,u32 auth_size)101 static u32 qce_auth_cfg(unsigned long flags, u32 key_size, u32 auth_size)
102 {
103 	u32 cfg = 0;
104 
105 	if (IS_CCM(flags) || IS_CMAC(flags))
106 		cfg |= AUTH_ALG_AES << AUTH_ALG_SHIFT;
107 	else
108 		cfg |= AUTH_ALG_SHA << AUTH_ALG_SHIFT;
109 
110 	if (IS_CCM(flags) || IS_CMAC(flags)) {
111 		if (key_size == AES_KEYSIZE_128)
112 			cfg |= AUTH_KEY_SZ_AES128 << AUTH_KEY_SIZE_SHIFT;
113 		else if (key_size == AES_KEYSIZE_256)
114 			cfg |= AUTH_KEY_SZ_AES256 << AUTH_KEY_SIZE_SHIFT;
115 	}
116 
117 	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags))
118 		cfg |= AUTH_SIZE_SHA1 << AUTH_SIZE_SHIFT;
119 	else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags))
120 		cfg |= AUTH_SIZE_SHA256 << AUTH_SIZE_SHIFT;
121 	else if (IS_CMAC(flags))
122 		cfg |= AUTH_SIZE_ENUM_16_BYTES << AUTH_SIZE_SHIFT;
123 	else if (IS_CCM(flags))
124 		cfg |= (auth_size - 1) << AUTH_SIZE_SHIFT;
125 
126 	if (IS_SHA1(flags) || IS_SHA256(flags))
127 		cfg |= AUTH_MODE_HASH << AUTH_MODE_SHIFT;
128 	else if (IS_SHA1_HMAC(flags) || IS_SHA256_HMAC(flags))
129 		cfg |= AUTH_MODE_HMAC << AUTH_MODE_SHIFT;
130 	else if (IS_CCM(flags))
131 		cfg |= AUTH_MODE_CCM << AUTH_MODE_SHIFT;
132 	else if (IS_CMAC(flags))
133 		cfg |= AUTH_MODE_CMAC << AUTH_MODE_SHIFT;
134 
135 	if (IS_SHA(flags) || IS_SHA_HMAC(flags))
136 		cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
137 
138 	if (IS_CCM(flags))
139 		cfg |= QCE_MAX_NONCE_WORDS << AUTH_NONCE_NUM_WORDS_SHIFT;
140 
141 	return cfg;
142 }
143 #endif
144 
145 #ifdef CONFIG_CRYPTO_DEV_QCE_SHA
qce_setup_regs_ahash(struct crypto_async_request * async_req)146 static int qce_setup_regs_ahash(struct crypto_async_request *async_req)
147 {
148 	struct ahash_request *req = ahash_request_cast(async_req);
149 	struct crypto_ahash *ahash = __crypto_ahash_cast(async_req->tfm);
150 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
151 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
152 	struct qce_device *qce = tmpl->qce;
153 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
154 	unsigned int blocksize = crypto_tfm_alg_blocksize(async_req->tfm);
155 	__be32 auth[SHA256_DIGEST_SIZE / sizeof(__be32)] = {0};
156 	__be32 mackey[QCE_SHA_HMAC_KEY_SIZE / sizeof(__be32)] = {0};
157 	u32 auth_cfg = 0, config;
158 	unsigned int iv_words;
159 
160 	/* if not the last, the size has to be on the block boundary */
161 	if (!rctx->last_blk && req->nbytes % blocksize)
162 		return -EINVAL;
163 
164 	qce_setup_config(qce);
165 
166 	if (IS_CMAC(rctx->flags)) {
167 		qce_write(qce, REG_AUTH_SEG_CFG, 0);
168 		qce_write(qce, REG_ENCR_SEG_CFG, 0);
169 		qce_write(qce, REG_ENCR_SEG_SIZE, 0);
170 		qce_clear_array(qce, REG_AUTH_IV0, 16);
171 		qce_clear_array(qce, REG_AUTH_KEY0, 16);
172 		qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
173 
174 		auth_cfg = qce_auth_cfg(rctx->flags, rctx->authklen, digestsize);
175 	}
176 
177 	if (IS_SHA_HMAC(rctx->flags) || IS_CMAC(rctx->flags)) {
178 		u32 authkey_words = rctx->authklen / sizeof(u32);
179 
180 		qce_cpu_to_be32p_array(mackey, rctx->authkey, rctx->authklen);
181 		qce_write_array(qce, REG_AUTH_KEY0, (u32 *)mackey,
182 				authkey_words);
183 	}
184 
185 	if (IS_CMAC(rctx->flags))
186 		goto go_proc;
187 
188 	if (rctx->first_blk)
189 		memcpy(auth, rctx->digest, digestsize);
190 	else
191 		qce_cpu_to_be32p_array(auth, rctx->digest, digestsize);
192 
193 	iv_words = (IS_SHA1(rctx->flags) || IS_SHA1_HMAC(rctx->flags)) ? 5 : 8;
194 	qce_write_array(qce, REG_AUTH_IV0, (u32 *)auth, iv_words);
195 
196 	if (rctx->first_blk)
197 		qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
198 	else
199 		qce_write_array(qce, REG_AUTH_BYTECNT0,
200 				(u32 *)rctx->byte_count, 2);
201 
202 	auth_cfg = qce_auth_cfg(rctx->flags, 0, digestsize);
203 
204 	if (rctx->last_blk)
205 		auth_cfg |= BIT(AUTH_LAST_SHIFT);
206 	else
207 		auth_cfg &= ~BIT(AUTH_LAST_SHIFT);
208 
209 	if (rctx->first_blk)
210 		auth_cfg |= BIT(AUTH_FIRST_SHIFT);
211 	else
212 		auth_cfg &= ~BIT(AUTH_FIRST_SHIFT);
213 
214 go_proc:
215 	qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
216 	qce_write(qce, REG_AUTH_SEG_SIZE, req->nbytes);
217 	qce_write(qce, REG_AUTH_SEG_START, 0);
218 	qce_write(qce, REG_ENCR_SEG_CFG, 0);
219 	qce_write(qce, REG_SEG_SIZE, req->nbytes);
220 
221 	/* get little endianness */
222 	config = qce_config_reg(qce, 1);
223 	qce_write(qce, REG_CONFIG, config);
224 
225 	qce_crypto_go(qce, true);
226 
227 	return 0;
228 }
229 #endif
230 
231 #if defined(CONFIG_CRYPTO_DEV_QCE_SKCIPHER) || defined(CONFIG_CRYPTO_DEV_QCE_AEAD)
qce_encr_cfg(unsigned long flags,u32 aes_key_size)232 static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size)
233 {
234 	u32 cfg = 0;
235 
236 	if (IS_AES(flags)) {
237 		if (aes_key_size == AES_KEYSIZE_128)
238 			cfg |= ENCR_KEY_SZ_AES128 << ENCR_KEY_SZ_SHIFT;
239 		else if (aes_key_size == AES_KEYSIZE_256)
240 			cfg |= ENCR_KEY_SZ_AES256 << ENCR_KEY_SZ_SHIFT;
241 	}
242 
243 	if (IS_AES(flags))
244 		cfg |= ENCR_ALG_AES << ENCR_ALG_SHIFT;
245 	else if (IS_DES(flags) || IS_3DES(flags))
246 		cfg |= ENCR_ALG_DES << ENCR_ALG_SHIFT;
247 
248 	if (IS_DES(flags))
249 		cfg |= ENCR_KEY_SZ_DES << ENCR_KEY_SZ_SHIFT;
250 
251 	if (IS_3DES(flags))
252 		cfg |= ENCR_KEY_SZ_3DES << ENCR_KEY_SZ_SHIFT;
253 
254 	switch (flags & QCE_MODE_MASK) {
255 	case QCE_MODE_ECB:
256 		cfg |= ENCR_MODE_ECB << ENCR_MODE_SHIFT;
257 		break;
258 	case QCE_MODE_CBC:
259 		cfg |= ENCR_MODE_CBC << ENCR_MODE_SHIFT;
260 		break;
261 	case QCE_MODE_CTR:
262 		cfg |= ENCR_MODE_CTR << ENCR_MODE_SHIFT;
263 		break;
264 	case QCE_MODE_XTS:
265 		cfg |= ENCR_MODE_XTS << ENCR_MODE_SHIFT;
266 		break;
267 	case QCE_MODE_CCM:
268 		cfg |= ENCR_MODE_CCM << ENCR_MODE_SHIFT;
269 		cfg |= LAST_CCM_XFR << LAST_CCM_SHIFT;
270 		break;
271 	default:
272 		return ~0;
273 	}
274 
275 	return cfg;
276 }
277 #endif
278 
279 #ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
qce_xts_swapiv(__be32 * dst,const u8 * src,unsigned int ivsize)280 static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize)
281 {
282 	u8 swap[QCE_AES_IV_LENGTH];
283 	u32 i, j;
284 
285 	if (ivsize > QCE_AES_IV_LENGTH)
286 		return;
287 
288 	memset(swap, 0, QCE_AES_IV_LENGTH);
289 
290 	for (i = (QCE_AES_IV_LENGTH - ivsize), j = ivsize - 1;
291 	     i < QCE_AES_IV_LENGTH; i++, j--)
292 		swap[i] = src[j];
293 
294 	qce_cpu_to_be32p_array(dst, swap, QCE_AES_IV_LENGTH);
295 }
296 
qce_xtskey(struct qce_device * qce,const u8 * enckey,unsigned int enckeylen,unsigned int cryptlen)297 static void qce_xtskey(struct qce_device *qce, const u8 *enckey,
298 		       unsigned int enckeylen, unsigned int cryptlen)
299 {
300 	u32 xtskey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
301 	unsigned int xtsklen = enckeylen / (2 * sizeof(u32));
302 
303 	qce_cpu_to_be32p_array((__be32 *)xtskey, enckey + enckeylen / 2,
304 			       enckeylen / 2);
305 	qce_write_array(qce, REG_ENCR_XTS_KEY0, xtskey, xtsklen);
306 
307 	/* Set data unit size to cryptlen. Anything else causes
308 	 * crypto engine to return back incorrect results.
309 	 */
310 	qce_write(qce, REG_ENCR_XTS_DU_SIZE, cryptlen);
311 }
312 
qce_setup_regs_skcipher(struct crypto_async_request * async_req)313 static int qce_setup_regs_skcipher(struct crypto_async_request *async_req)
314 {
315 	struct skcipher_request *req = skcipher_request_cast(async_req);
316 	struct qce_cipher_reqctx *rctx = skcipher_request_ctx(req);
317 	struct qce_cipher_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
318 	struct qce_alg_template *tmpl = to_cipher_tmpl(crypto_skcipher_reqtfm(req));
319 	struct qce_device *qce = tmpl->qce;
320 	__be32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(__be32)] = {0};
321 	__be32 enciv[QCE_MAX_IV_SIZE / sizeof(__be32)] = {0};
322 	unsigned int enckey_words, enciv_words;
323 	unsigned int keylen;
324 	u32 encr_cfg = 0, auth_cfg = 0, config;
325 	unsigned int ivsize = rctx->ivsize;
326 	unsigned long flags = rctx->flags;
327 
328 	qce_setup_config(qce);
329 
330 	if (IS_XTS(flags))
331 		keylen = ctx->enc_keylen / 2;
332 	else
333 		keylen = ctx->enc_keylen;
334 
335 	qce_cpu_to_be32p_array(enckey, ctx->enc_key, keylen);
336 	enckey_words = keylen / sizeof(u32);
337 
338 	qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
339 
340 	encr_cfg = qce_encr_cfg(flags, keylen);
341 
342 	if (IS_DES(flags)) {
343 		enciv_words = 2;
344 		enckey_words = 2;
345 	} else if (IS_3DES(flags)) {
346 		enciv_words = 2;
347 		enckey_words = 6;
348 	} else if (IS_AES(flags)) {
349 		if (IS_XTS(flags))
350 			qce_xtskey(qce, ctx->enc_key, ctx->enc_keylen,
351 				   rctx->cryptlen);
352 		enciv_words = 4;
353 	} else {
354 		return -EINVAL;
355 	}
356 
357 	qce_write_array(qce, REG_ENCR_KEY0, (u32 *)enckey, enckey_words);
358 
359 	if (!IS_ECB(flags)) {
360 		if (IS_XTS(flags))
361 			qce_xts_swapiv(enciv, rctx->iv, ivsize);
362 		else
363 			qce_cpu_to_be32p_array(enciv, rctx->iv, ivsize);
364 
365 		qce_write_array(qce, REG_CNTR0_IV0, (u32 *)enciv, enciv_words);
366 	}
367 
368 	if (IS_ENCRYPT(flags))
369 		encr_cfg |= BIT(ENCODE_SHIFT);
370 
371 	qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
372 	qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
373 	qce_write(qce, REG_ENCR_SEG_START, 0);
374 
375 	if (IS_CTR(flags)) {
376 		qce_write(qce, REG_CNTR_MASK, ~0);
377 		qce_write(qce, REG_CNTR_MASK0, ~0);
378 		qce_write(qce, REG_CNTR_MASK1, ~0);
379 		qce_write(qce, REG_CNTR_MASK2, ~0);
380 	}
381 
382 	qce_write(qce, REG_SEG_SIZE, rctx->cryptlen);
383 
384 	/* get little endianness */
385 	config = qce_config_reg(qce, 1);
386 	qce_write(qce, REG_CONFIG, config);
387 
388 	qce_crypto_go(qce, true);
389 
390 	return 0;
391 }
392 #endif
393 
394 #ifdef CONFIG_CRYPTO_DEV_QCE_AEAD
395 static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
396 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
397 };
398 
399 static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
400 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
401 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
402 };
403 
qce_be32_to_cpu_array(u32 * dst,const u8 * src,unsigned int len)404 static unsigned int qce_be32_to_cpu_array(u32 *dst, const u8 *src, unsigned int len)
405 {
406 	u32 *d = dst;
407 	const u8 *s = src;
408 	unsigned int n;
409 
410 	n = len / sizeof(u32);
411 	for (; n > 0; n--) {
412 		*d = be32_to_cpup((const __be32 *)s);
413 		s += sizeof(u32);
414 		d++;
415 	}
416 	return DIV_ROUND_UP(len, sizeof(u32));
417 }
418 
qce_setup_regs_aead(struct crypto_async_request * async_req)419 static int qce_setup_regs_aead(struct crypto_async_request *async_req)
420 {
421 	struct aead_request *req = aead_request_cast(async_req);
422 	struct qce_aead_reqctx *rctx = aead_request_ctx(req);
423 	struct qce_aead_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
424 	struct qce_alg_template *tmpl = to_aead_tmpl(crypto_aead_reqtfm(req));
425 	struct qce_device *qce = tmpl->qce;
426 	u32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
427 	u32 enciv[QCE_MAX_IV_SIZE / sizeof(u32)] = {0};
428 	u32 authkey[QCE_SHA_HMAC_KEY_SIZE / sizeof(u32)] = {0};
429 	u32 authiv[SHA256_DIGEST_SIZE / sizeof(u32)] = {0};
430 	u32 authnonce[QCE_MAX_NONCE / sizeof(u32)] = {0};
431 	unsigned int enc_keylen = ctx->enc_keylen;
432 	unsigned int auth_keylen = ctx->auth_keylen;
433 	unsigned int enc_ivsize = rctx->ivsize;
434 	unsigned int auth_ivsize = 0;
435 	unsigned int enckey_words, enciv_words;
436 	unsigned int authkey_words, authiv_words, authnonce_words;
437 	unsigned long flags = rctx->flags;
438 	u32 encr_cfg, auth_cfg, config, totallen;
439 	u32 iv_last_word;
440 
441 	qce_setup_config(qce);
442 
443 	/* Write encryption key */
444 	enckey_words = qce_be32_to_cpu_array(enckey, ctx->enc_key, enc_keylen);
445 	qce_write_array(qce, REG_ENCR_KEY0, enckey, enckey_words);
446 
447 	/* Write encryption iv */
448 	enciv_words = qce_be32_to_cpu_array(enciv, rctx->iv, enc_ivsize);
449 	qce_write_array(qce, REG_CNTR0_IV0, enciv, enciv_words);
450 
451 	if (IS_CCM(rctx->flags)) {
452 		iv_last_word = enciv[enciv_words - 1];
453 		qce_write(qce, REG_CNTR3_IV3, iv_last_word + 1);
454 		qce_write_array(qce, REG_ENCR_CCM_INT_CNTR0, (u32 *)enciv, enciv_words);
455 		qce_write(qce, REG_CNTR_MASK, ~0);
456 		qce_write(qce, REG_CNTR_MASK0, ~0);
457 		qce_write(qce, REG_CNTR_MASK1, ~0);
458 		qce_write(qce, REG_CNTR_MASK2, ~0);
459 	}
460 
461 	/* Clear authentication IV and KEY registers of previous values */
462 	qce_clear_array(qce, REG_AUTH_IV0, 16);
463 	qce_clear_array(qce, REG_AUTH_KEY0, 16);
464 
465 	/* Clear byte count */
466 	qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
467 
468 	/* Write authentication key */
469 	authkey_words = qce_be32_to_cpu_array(authkey, ctx->auth_key, auth_keylen);
470 	qce_write_array(qce, REG_AUTH_KEY0, (u32 *)authkey, authkey_words);
471 
472 	/* Write initial authentication IV only for HMAC algorithms */
473 	if (IS_SHA_HMAC(rctx->flags)) {
474 		/* Write default authentication iv */
475 		if (IS_SHA1_HMAC(rctx->flags)) {
476 			auth_ivsize = SHA1_DIGEST_SIZE;
477 			memcpy(authiv, std_iv_sha1, auth_ivsize);
478 		} else if (IS_SHA256_HMAC(rctx->flags)) {
479 			auth_ivsize = SHA256_DIGEST_SIZE;
480 			memcpy(authiv, std_iv_sha256, auth_ivsize);
481 		}
482 		authiv_words = auth_ivsize / sizeof(u32);
483 		qce_write_array(qce, REG_AUTH_IV0, (u32 *)authiv, authiv_words);
484 	} else if (IS_CCM(rctx->flags)) {
485 		/* Write nonce for CCM algorithms */
486 		authnonce_words = qce_be32_to_cpu_array(authnonce, rctx->ccm_nonce, QCE_MAX_NONCE);
487 		qce_write_array(qce, REG_AUTH_INFO_NONCE0, authnonce, authnonce_words);
488 	}
489 
490 	/* Set up ENCR_SEG_CFG */
491 	encr_cfg = qce_encr_cfg(flags, enc_keylen);
492 	if (IS_ENCRYPT(flags))
493 		encr_cfg |= BIT(ENCODE_SHIFT);
494 	qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
495 
496 	/* Set up AUTH_SEG_CFG */
497 	auth_cfg = qce_auth_cfg(rctx->flags, auth_keylen, ctx->authsize);
498 	auth_cfg |= BIT(AUTH_LAST_SHIFT);
499 	auth_cfg |= BIT(AUTH_FIRST_SHIFT);
500 	if (IS_ENCRYPT(flags)) {
501 		if (IS_CCM(rctx->flags))
502 			auth_cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
503 		else
504 			auth_cfg |= AUTH_POS_AFTER << AUTH_POS_SHIFT;
505 	} else {
506 		if (IS_CCM(rctx->flags))
507 			auth_cfg |= AUTH_POS_AFTER << AUTH_POS_SHIFT;
508 		else
509 			auth_cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
510 	}
511 	qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
512 
513 	totallen = rctx->cryptlen + rctx->assoclen;
514 
515 	/* Set the encryption size and start offset */
516 	if (IS_CCM(rctx->flags) && IS_DECRYPT(rctx->flags))
517 		qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen + ctx->authsize);
518 	else
519 		qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
520 	qce_write(qce, REG_ENCR_SEG_START, rctx->assoclen & 0xffff);
521 
522 	/* Set the authentication size and start offset */
523 	qce_write(qce, REG_AUTH_SEG_SIZE, totallen);
524 	qce_write(qce, REG_AUTH_SEG_START, 0);
525 
526 	/* Write total length */
527 	if (IS_CCM(rctx->flags) && IS_DECRYPT(rctx->flags))
528 		qce_write(qce, REG_SEG_SIZE, totallen + ctx->authsize);
529 	else
530 		qce_write(qce, REG_SEG_SIZE, totallen);
531 
532 	/* get little endianness */
533 	config = qce_config_reg(qce, 1);
534 	qce_write(qce, REG_CONFIG, config);
535 
536 	/* Start the process */
537 	qce_crypto_go(qce, !IS_CCM(flags));
538 
539 	return 0;
540 }
541 #endif
542 
qce_start(struct crypto_async_request * async_req,u32 type)543 int qce_start(struct crypto_async_request *async_req, u32 type)
544 {
545 	switch (type) {
546 #ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
547 	case CRYPTO_ALG_TYPE_SKCIPHER:
548 		return qce_setup_regs_skcipher(async_req);
549 #endif
550 #ifdef CONFIG_CRYPTO_DEV_QCE_SHA
551 	case CRYPTO_ALG_TYPE_AHASH:
552 		return qce_setup_regs_ahash(async_req);
553 #endif
554 #ifdef CONFIG_CRYPTO_DEV_QCE_AEAD
555 	case CRYPTO_ALG_TYPE_AEAD:
556 		return qce_setup_regs_aead(async_req);
557 #endif
558 	default:
559 		return -EINVAL;
560 	}
561 }
562 
563 #define STATUS_ERRORS	\
564 		(BIT(SW_ERR_SHIFT) | BIT(AXI_ERR_SHIFT) | BIT(HSD_ERR_SHIFT))
565 
qce_check_status(struct qce_device * qce,u32 * status)566 int qce_check_status(struct qce_device *qce, u32 *status)
567 {
568 	int ret = 0;
569 
570 	*status = qce_read(qce, REG_STATUS);
571 
572 	/*
573 	 * Don't use result dump status. The operation may not be complete.
574 	 * Instead, use the status we just read from device. In case, we need to
575 	 * use result_status from result dump the result_status needs to be byte
576 	 * swapped, since we set the device to little endian.
577 	 */
578 	if (*status & STATUS_ERRORS || !(*status & BIT(OPERATION_DONE_SHIFT)))
579 		ret = -ENXIO;
580 	else if (*status & BIT(MAC_FAILED_SHIFT))
581 		ret = -EBADMSG;
582 
583 	return ret;
584 }
585 
qce_get_version(struct qce_device * qce,u32 * major,u32 * minor,u32 * step)586 void qce_get_version(struct qce_device *qce, u32 *major, u32 *minor, u32 *step)
587 {
588 	u32 val;
589 
590 	val = qce_read(qce, REG_VERSION);
591 	*major = (val & CORE_MAJOR_REV_MASK) >> CORE_MAJOR_REV_SHIFT;
592 	*minor = (val & CORE_MINOR_REV_MASK) >> CORE_MINOR_REV_SHIFT;
593 	*step = (val & CORE_STEP_REV_MASK) >> CORE_STEP_REV_SHIFT;
594 }
595