1 /*
2 * Copyright (C) 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2006 Red Hat GmbH
4 *
5 * This file is released under the GPL.
6 *
7 * Kcopyd provides a simple interface for copying an area of one
8 * block-device to one or more other block-devices, with an asynchronous
9 * completion notification.
10 */
11
12 #include <linux/types.h>
13 #include <linux/atomic.h>
14 #include <linux/blkdev.h>
15 #include <linux/fs.h>
16 #include <linux/init.h>
17 #include <linux/list.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/workqueue.h>
24 #include <linux/mutex.h>
25 #include <linux/delay.h>
26 #include <linux/device-mapper.h>
27 #include <linux/dm-kcopyd.h>
28
29 #include "dm-core.h"
30
31 #define SPLIT_COUNT 8
32 #define MIN_JOBS 8
33
34 #define DEFAULT_SUB_JOB_SIZE_KB 512
35 #define MAX_SUB_JOB_SIZE_KB 1024
36
37 static unsigned int kcopyd_subjob_size_kb = DEFAULT_SUB_JOB_SIZE_KB;
38
39 module_param(kcopyd_subjob_size_kb, uint, S_IRUGO | S_IWUSR);
40 MODULE_PARM_DESC(kcopyd_subjob_size_kb, "Sub-job size for dm-kcopyd clients");
41
dm_get_kcopyd_subjob_size(void)42 static unsigned int dm_get_kcopyd_subjob_size(void)
43 {
44 unsigned int sub_job_size_kb;
45
46 sub_job_size_kb = __dm_get_module_param(&kcopyd_subjob_size_kb,
47 DEFAULT_SUB_JOB_SIZE_KB,
48 MAX_SUB_JOB_SIZE_KB);
49
50 return sub_job_size_kb << 1;
51 }
52
53 /*-----------------------------------------------------------------
54 * Each kcopyd client has its own little pool of preallocated
55 * pages for kcopyd io.
56 *---------------------------------------------------------------*/
57 struct dm_kcopyd_client {
58 struct page_list *pages;
59 unsigned int nr_reserved_pages;
60 unsigned int nr_free_pages;
61 unsigned int sub_job_size;
62
63 struct dm_io_client *io_client;
64
65 wait_queue_head_t destroyq;
66
67 mempool_t job_pool;
68
69 struct workqueue_struct *kcopyd_wq;
70 struct work_struct kcopyd_work;
71
72 struct dm_kcopyd_throttle *throttle;
73
74 atomic_t nr_jobs;
75
76 /*
77 * We maintain four lists of jobs:
78 *
79 * i) jobs waiting for pages
80 * ii) jobs that have pages, and are waiting for the io to be issued.
81 * iii) jobs that don't need to do any IO and just run a callback
82 * iv) jobs that have completed.
83 *
84 * All four of these are protected by job_lock.
85 */
86 spinlock_t job_lock;
87 struct list_head callback_jobs;
88 struct list_head complete_jobs;
89 struct list_head io_jobs;
90 struct list_head pages_jobs;
91 };
92
93 static struct page_list zero_page_list;
94
95 static DEFINE_SPINLOCK(throttle_spinlock);
96
97 /*
98 * IO/IDLE accounting slowly decays after (1 << ACCOUNT_INTERVAL_SHIFT) period.
99 * When total_period >= (1 << ACCOUNT_INTERVAL_SHIFT) the counters are divided
100 * by 2.
101 */
102 #define ACCOUNT_INTERVAL_SHIFT SHIFT_HZ
103
104 /*
105 * Sleep this number of milliseconds.
106 *
107 * The value was decided experimentally.
108 * Smaller values seem to cause an increased copy rate above the limit.
109 * The reason for this is unknown but possibly due to jiffies rounding errors
110 * or read/write cache inside the disk.
111 */
112 #define SLEEP_MSEC 100
113
114 /*
115 * Maximum number of sleep events. There is a theoretical livelock if more
116 * kcopyd clients do work simultaneously which this limit avoids.
117 */
118 #define MAX_SLEEPS 10
119
io_job_start(struct dm_kcopyd_throttle * t)120 static void io_job_start(struct dm_kcopyd_throttle *t)
121 {
122 unsigned int throttle, now, difference;
123 int slept = 0, skew;
124
125 if (unlikely(!t))
126 return;
127
128 try_again:
129 spin_lock_irq(&throttle_spinlock);
130
131 throttle = READ_ONCE(t->throttle);
132
133 if (likely(throttle >= 100))
134 goto skip_limit;
135
136 now = jiffies;
137 difference = now - t->last_jiffies;
138 t->last_jiffies = now;
139 if (t->num_io_jobs)
140 t->io_period += difference;
141 t->total_period += difference;
142
143 /*
144 * Maintain sane values if we got a temporary overflow.
145 */
146 if (unlikely(t->io_period > t->total_period))
147 t->io_period = t->total_period;
148
149 if (unlikely(t->total_period >= (1 << ACCOUNT_INTERVAL_SHIFT))) {
150 int shift = fls(t->total_period >> ACCOUNT_INTERVAL_SHIFT);
151 t->total_period >>= shift;
152 t->io_period >>= shift;
153 }
154
155 skew = t->io_period - throttle * t->total_period / 100;
156
157 if (unlikely(skew > 0) && slept < MAX_SLEEPS) {
158 slept++;
159 spin_unlock_irq(&throttle_spinlock);
160 msleep(SLEEP_MSEC);
161 goto try_again;
162 }
163
164 skip_limit:
165 t->num_io_jobs++;
166
167 spin_unlock_irq(&throttle_spinlock);
168 }
169
io_job_finish(struct dm_kcopyd_throttle * t)170 static void io_job_finish(struct dm_kcopyd_throttle *t)
171 {
172 unsigned long flags;
173
174 if (unlikely(!t))
175 return;
176
177 spin_lock_irqsave(&throttle_spinlock, flags);
178
179 t->num_io_jobs--;
180
181 if (likely(READ_ONCE(t->throttle) >= 100))
182 goto skip_limit;
183
184 if (!t->num_io_jobs) {
185 unsigned int now, difference;
186
187 now = jiffies;
188 difference = now - t->last_jiffies;
189 t->last_jiffies = now;
190
191 t->io_period += difference;
192 t->total_period += difference;
193
194 /*
195 * Maintain sane values if we got a temporary overflow.
196 */
197 if (unlikely(t->io_period > t->total_period))
198 t->io_period = t->total_period;
199 }
200
201 skip_limit:
202 spin_unlock_irqrestore(&throttle_spinlock, flags);
203 }
204
205
wake(struct dm_kcopyd_client * kc)206 static void wake(struct dm_kcopyd_client *kc)
207 {
208 queue_work(kc->kcopyd_wq, &kc->kcopyd_work);
209 }
210
211 /*
212 * Obtain one page for the use of kcopyd.
213 */
alloc_pl(gfp_t gfp)214 static struct page_list *alloc_pl(gfp_t gfp)
215 {
216 struct page_list *pl;
217
218 pl = kmalloc(sizeof(*pl), gfp);
219 if (!pl)
220 return NULL;
221
222 pl->page = alloc_page(gfp | __GFP_HIGHMEM);
223 if (!pl->page) {
224 kfree(pl);
225 return NULL;
226 }
227
228 return pl;
229 }
230
free_pl(struct page_list * pl)231 static void free_pl(struct page_list *pl)
232 {
233 __free_page(pl->page);
234 kfree(pl);
235 }
236
237 /*
238 * Add the provided pages to a client's free page list, releasing
239 * back to the system any beyond the reserved_pages limit.
240 */
kcopyd_put_pages(struct dm_kcopyd_client * kc,struct page_list * pl)241 static void kcopyd_put_pages(struct dm_kcopyd_client *kc, struct page_list *pl)
242 {
243 struct page_list *next;
244
245 do {
246 next = pl->next;
247
248 if (kc->nr_free_pages >= kc->nr_reserved_pages)
249 free_pl(pl);
250 else {
251 pl->next = kc->pages;
252 kc->pages = pl;
253 kc->nr_free_pages++;
254 }
255
256 pl = next;
257 } while (pl);
258 }
259
kcopyd_get_pages(struct dm_kcopyd_client * kc,unsigned int nr,struct page_list ** pages)260 static int kcopyd_get_pages(struct dm_kcopyd_client *kc,
261 unsigned int nr, struct page_list **pages)
262 {
263 struct page_list *pl;
264
265 *pages = NULL;
266
267 do {
268 pl = alloc_pl(__GFP_NOWARN | __GFP_NORETRY | __GFP_KSWAPD_RECLAIM);
269 if (unlikely(!pl)) {
270 /* Use reserved pages */
271 pl = kc->pages;
272 if (unlikely(!pl))
273 goto out_of_memory;
274 kc->pages = pl->next;
275 kc->nr_free_pages--;
276 }
277 pl->next = *pages;
278 *pages = pl;
279 } while (--nr);
280
281 return 0;
282
283 out_of_memory:
284 if (*pages)
285 kcopyd_put_pages(kc, *pages);
286 return -ENOMEM;
287 }
288
289 /*
290 * These three functions resize the page pool.
291 */
drop_pages(struct page_list * pl)292 static void drop_pages(struct page_list *pl)
293 {
294 struct page_list *next;
295
296 while (pl) {
297 next = pl->next;
298 free_pl(pl);
299 pl = next;
300 }
301 }
302
303 /*
304 * Allocate and reserve nr_pages for the use of a specific client.
305 */
client_reserve_pages(struct dm_kcopyd_client * kc,unsigned int nr_pages)306 static int client_reserve_pages(struct dm_kcopyd_client *kc, unsigned int nr_pages)
307 {
308 unsigned int i;
309 struct page_list *pl = NULL, *next;
310
311 for (i = 0; i < nr_pages; i++) {
312 next = alloc_pl(GFP_KERNEL);
313 if (!next) {
314 if (pl)
315 drop_pages(pl);
316 return -ENOMEM;
317 }
318 next->next = pl;
319 pl = next;
320 }
321
322 kc->nr_reserved_pages += nr_pages;
323 kcopyd_put_pages(kc, pl);
324
325 return 0;
326 }
327
client_free_pages(struct dm_kcopyd_client * kc)328 static void client_free_pages(struct dm_kcopyd_client *kc)
329 {
330 BUG_ON(kc->nr_free_pages != kc->nr_reserved_pages);
331 drop_pages(kc->pages);
332 kc->pages = NULL;
333 kc->nr_free_pages = kc->nr_reserved_pages = 0;
334 }
335
336 /*-----------------------------------------------------------------
337 * kcopyd_jobs need to be allocated by the *clients* of kcopyd,
338 * for this reason we use a mempool to prevent the client from
339 * ever having to do io (which could cause a deadlock).
340 *---------------------------------------------------------------*/
341 struct kcopyd_job {
342 struct dm_kcopyd_client *kc;
343 struct list_head list;
344 unsigned int flags;
345
346 /*
347 * Error state of the job.
348 */
349 int read_err;
350 unsigned long write_err;
351
352 /*
353 * REQ_OP_READ, REQ_OP_WRITE or REQ_OP_WRITE_ZEROES.
354 */
355 enum req_op op;
356 struct dm_io_region source;
357
358 /*
359 * The destinations for the transfer.
360 */
361 unsigned int num_dests;
362 struct dm_io_region dests[DM_KCOPYD_MAX_REGIONS];
363
364 struct page_list *pages;
365
366 /*
367 * Set this to ensure you are notified when the job has
368 * completed. 'context' is for callback to use.
369 */
370 dm_kcopyd_notify_fn fn;
371 void *context;
372
373 /*
374 * These fields are only used if the job has been split
375 * into more manageable parts.
376 */
377 struct mutex lock;
378 atomic_t sub_jobs;
379 sector_t progress;
380 sector_t write_offset;
381
382 struct kcopyd_job *master_job;
383 };
384
385 static struct kmem_cache *_job_cache;
386
dm_kcopyd_init(void)387 int __init dm_kcopyd_init(void)
388 {
389 _job_cache = kmem_cache_create("kcopyd_job",
390 sizeof(struct kcopyd_job) * (SPLIT_COUNT + 1),
391 __alignof__(struct kcopyd_job), 0, NULL);
392 if (!_job_cache)
393 return -ENOMEM;
394
395 zero_page_list.next = &zero_page_list;
396 zero_page_list.page = ZERO_PAGE(0);
397
398 return 0;
399 }
400
dm_kcopyd_exit(void)401 void dm_kcopyd_exit(void)
402 {
403 kmem_cache_destroy(_job_cache);
404 _job_cache = NULL;
405 }
406
407 /*
408 * Functions to push and pop a job onto the head of a given job
409 * list.
410 */
pop_io_job(struct list_head * jobs,struct dm_kcopyd_client * kc)411 static struct kcopyd_job *pop_io_job(struct list_head *jobs,
412 struct dm_kcopyd_client *kc)
413 {
414 struct kcopyd_job *job;
415
416 /*
417 * For I/O jobs, pop any read, any write without sequential write
418 * constraint and sequential writes that are at the right position.
419 */
420 list_for_each_entry(job, jobs, list) {
421 if (job->op == REQ_OP_READ ||
422 !(job->flags & BIT(DM_KCOPYD_WRITE_SEQ))) {
423 list_del(&job->list);
424 return job;
425 }
426
427 if (job->write_offset == job->master_job->write_offset) {
428 job->master_job->write_offset += job->source.count;
429 list_del(&job->list);
430 return job;
431 }
432 }
433
434 return NULL;
435 }
436
pop(struct list_head * jobs,struct dm_kcopyd_client * kc)437 static struct kcopyd_job *pop(struct list_head *jobs,
438 struct dm_kcopyd_client *kc)
439 {
440 struct kcopyd_job *job = NULL;
441
442 spin_lock_irq(&kc->job_lock);
443
444 if (!list_empty(jobs)) {
445 if (jobs == &kc->io_jobs)
446 job = pop_io_job(jobs, kc);
447 else {
448 job = list_entry(jobs->next, struct kcopyd_job, list);
449 list_del(&job->list);
450 }
451 }
452 spin_unlock_irq(&kc->job_lock);
453
454 return job;
455 }
456
push(struct list_head * jobs,struct kcopyd_job * job)457 static void push(struct list_head *jobs, struct kcopyd_job *job)
458 {
459 unsigned long flags;
460 struct dm_kcopyd_client *kc = job->kc;
461
462 spin_lock_irqsave(&kc->job_lock, flags);
463 list_add_tail(&job->list, jobs);
464 spin_unlock_irqrestore(&kc->job_lock, flags);
465 }
466
467
push_head(struct list_head * jobs,struct kcopyd_job * job)468 static void push_head(struct list_head *jobs, struct kcopyd_job *job)
469 {
470 struct dm_kcopyd_client *kc = job->kc;
471
472 spin_lock_irq(&kc->job_lock);
473 list_add(&job->list, jobs);
474 spin_unlock_irq(&kc->job_lock);
475 }
476
477 /*
478 * These three functions process 1 item from the corresponding
479 * job list.
480 *
481 * They return:
482 * < 0: error
483 * 0: success
484 * > 0: can't process yet.
485 */
run_complete_job(struct kcopyd_job * job)486 static int run_complete_job(struct kcopyd_job *job)
487 {
488 void *context = job->context;
489 int read_err = job->read_err;
490 unsigned long write_err = job->write_err;
491 dm_kcopyd_notify_fn fn = job->fn;
492 struct dm_kcopyd_client *kc = job->kc;
493
494 if (job->pages && job->pages != &zero_page_list)
495 kcopyd_put_pages(kc, job->pages);
496 /*
497 * If this is the master job, the sub jobs have already
498 * completed so we can free everything.
499 */
500 if (job->master_job == job) {
501 mutex_destroy(&job->lock);
502 mempool_free(job, &kc->job_pool);
503 }
504 fn(read_err, write_err, context);
505
506 if (atomic_dec_and_test(&kc->nr_jobs))
507 wake_up(&kc->destroyq);
508
509 cond_resched();
510
511 return 0;
512 }
513
complete_io(unsigned long error,void * context)514 static void complete_io(unsigned long error, void *context)
515 {
516 struct kcopyd_job *job = (struct kcopyd_job *) context;
517 struct dm_kcopyd_client *kc = job->kc;
518
519 io_job_finish(kc->throttle);
520
521 if (error) {
522 if (op_is_write(job->op))
523 job->write_err |= error;
524 else
525 job->read_err = 1;
526
527 if (!(job->flags & BIT(DM_KCOPYD_IGNORE_ERROR))) {
528 push(&kc->complete_jobs, job);
529 wake(kc);
530 return;
531 }
532 }
533
534 if (op_is_write(job->op))
535 push(&kc->complete_jobs, job);
536
537 else {
538 job->op = REQ_OP_WRITE;
539 push(&kc->io_jobs, job);
540 }
541
542 wake(kc);
543 }
544
545 /*
546 * Request io on as many buffer heads as we can currently get for
547 * a particular job.
548 */
run_io_job(struct kcopyd_job * job)549 static int run_io_job(struct kcopyd_job *job)
550 {
551 int r;
552 struct dm_io_request io_req = {
553 .bi_opf = job->op,
554 .mem.type = DM_IO_PAGE_LIST,
555 .mem.ptr.pl = job->pages,
556 .mem.offset = 0,
557 .notify.fn = complete_io,
558 .notify.context = job,
559 .client = job->kc->io_client,
560 };
561
562 /*
563 * If we need to write sequentially and some reads or writes failed,
564 * no point in continuing.
565 */
566 if (job->flags & BIT(DM_KCOPYD_WRITE_SEQ) &&
567 job->master_job->write_err) {
568 job->write_err = job->master_job->write_err;
569 return -EIO;
570 }
571
572 io_job_start(job->kc->throttle);
573
574 if (job->op == REQ_OP_READ)
575 r = dm_io(&io_req, 1, &job->source, NULL);
576 else
577 r = dm_io(&io_req, job->num_dests, job->dests, NULL);
578
579 return r;
580 }
581
run_pages_job(struct kcopyd_job * job)582 static int run_pages_job(struct kcopyd_job *job)
583 {
584 int r;
585 unsigned int nr_pages = dm_div_up(job->dests[0].count, PAGE_SIZE >> 9);
586
587 r = kcopyd_get_pages(job->kc, nr_pages, &job->pages);
588 if (!r) {
589 /* this job is ready for io */
590 push(&job->kc->io_jobs, job);
591 return 0;
592 }
593
594 if (r == -ENOMEM)
595 /* can't complete now */
596 return 1;
597
598 return r;
599 }
600
601 /*
602 * Run through a list for as long as possible. Returns the count
603 * of successful jobs.
604 */
process_jobs(struct list_head * jobs,struct dm_kcopyd_client * kc,int (* fn)(struct kcopyd_job *))605 static int process_jobs(struct list_head *jobs, struct dm_kcopyd_client *kc,
606 int (*fn) (struct kcopyd_job *))
607 {
608 struct kcopyd_job *job;
609 int r, count = 0;
610
611 while ((job = pop(jobs, kc))) {
612
613 r = fn(job);
614
615 if (r < 0) {
616 /* error this rogue job */
617 if (op_is_write(job->op))
618 job->write_err = (unsigned long) -1L;
619 else
620 job->read_err = 1;
621 push(&kc->complete_jobs, job);
622 wake(kc);
623 break;
624 }
625
626 if (r > 0) {
627 /*
628 * We couldn't service this job ATM, so
629 * push this job back onto the list.
630 */
631 push_head(jobs, job);
632 break;
633 }
634
635 count++;
636 }
637
638 return count;
639 }
640
641 /*
642 * kcopyd does this every time it's woken up.
643 */
do_work(struct work_struct * work)644 static void do_work(struct work_struct *work)
645 {
646 struct dm_kcopyd_client *kc = container_of(work,
647 struct dm_kcopyd_client, kcopyd_work);
648 struct blk_plug plug;
649
650 /*
651 * The order that these are called is *very* important.
652 * complete jobs can free some pages for pages jobs.
653 * Pages jobs when successful will jump onto the io jobs
654 * list. io jobs call wake when they complete and it all
655 * starts again.
656 */
657 spin_lock_irq(&kc->job_lock);
658 list_splice_tail_init(&kc->callback_jobs, &kc->complete_jobs);
659 spin_unlock_irq(&kc->job_lock);
660
661 blk_start_plug(&plug);
662 process_jobs(&kc->complete_jobs, kc, run_complete_job);
663 process_jobs(&kc->pages_jobs, kc, run_pages_job);
664 process_jobs(&kc->io_jobs, kc, run_io_job);
665 blk_finish_plug(&plug);
666 }
667
668 /*
669 * If we are copying a small region we just dispatch a single job
670 * to do the copy, otherwise the io has to be split up into many
671 * jobs.
672 */
dispatch_job(struct kcopyd_job * job)673 static void dispatch_job(struct kcopyd_job *job)
674 {
675 struct dm_kcopyd_client *kc = job->kc;
676 atomic_inc(&kc->nr_jobs);
677 if (unlikely(!job->source.count))
678 push(&kc->callback_jobs, job);
679 else if (job->pages == &zero_page_list)
680 push(&kc->io_jobs, job);
681 else
682 push(&kc->pages_jobs, job);
683 wake(kc);
684 }
685
segment_complete(int read_err,unsigned long write_err,void * context)686 static void segment_complete(int read_err, unsigned long write_err,
687 void *context)
688 {
689 /* FIXME: tidy this function */
690 sector_t progress = 0;
691 sector_t count = 0;
692 struct kcopyd_job *sub_job = (struct kcopyd_job *) context;
693 struct kcopyd_job *job = sub_job->master_job;
694 struct dm_kcopyd_client *kc = job->kc;
695
696 mutex_lock(&job->lock);
697
698 /* update the error */
699 if (read_err)
700 job->read_err = 1;
701
702 if (write_err)
703 job->write_err |= write_err;
704
705 /*
706 * Only dispatch more work if there hasn't been an error.
707 */
708 if ((!job->read_err && !job->write_err) ||
709 job->flags & BIT(DM_KCOPYD_IGNORE_ERROR)) {
710 /* get the next chunk of work */
711 progress = job->progress;
712 count = job->source.count - progress;
713 if (count) {
714 if (count > kc->sub_job_size)
715 count = kc->sub_job_size;
716
717 job->progress += count;
718 }
719 }
720 mutex_unlock(&job->lock);
721
722 if (count) {
723 int i;
724
725 *sub_job = *job;
726 sub_job->write_offset = progress;
727 sub_job->source.sector += progress;
728 sub_job->source.count = count;
729
730 for (i = 0; i < job->num_dests; i++) {
731 sub_job->dests[i].sector += progress;
732 sub_job->dests[i].count = count;
733 }
734
735 sub_job->fn = segment_complete;
736 sub_job->context = sub_job;
737 dispatch_job(sub_job);
738
739 } else if (atomic_dec_and_test(&job->sub_jobs)) {
740
741 /*
742 * Queue the completion callback to the kcopyd thread.
743 *
744 * Some callers assume that all the completions are called
745 * from a single thread and don't race with each other.
746 *
747 * We must not call the callback directly here because this
748 * code may not be executing in the thread.
749 */
750 push(&kc->complete_jobs, job);
751 wake(kc);
752 }
753 }
754
755 /*
756 * Create some sub jobs to share the work between them.
757 */
split_job(struct kcopyd_job * master_job)758 static void split_job(struct kcopyd_job *master_job)
759 {
760 int i;
761
762 atomic_inc(&master_job->kc->nr_jobs);
763
764 atomic_set(&master_job->sub_jobs, SPLIT_COUNT);
765 for (i = 0; i < SPLIT_COUNT; i++) {
766 master_job[i + 1].master_job = master_job;
767 segment_complete(0, 0u, &master_job[i + 1]);
768 }
769 }
770
dm_kcopyd_copy(struct dm_kcopyd_client * kc,struct dm_io_region * from,unsigned int num_dests,struct dm_io_region * dests,unsigned int flags,dm_kcopyd_notify_fn fn,void * context)771 void dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from,
772 unsigned int num_dests, struct dm_io_region *dests,
773 unsigned int flags, dm_kcopyd_notify_fn fn, void *context)
774 {
775 struct kcopyd_job *job;
776 int i;
777
778 /*
779 * Allocate an array of jobs consisting of one master job
780 * followed by SPLIT_COUNT sub jobs.
781 */
782 job = mempool_alloc(&kc->job_pool, GFP_NOIO);
783 mutex_init(&job->lock);
784
785 /*
786 * set up for the read.
787 */
788 job->kc = kc;
789 job->flags = flags;
790 job->read_err = 0;
791 job->write_err = 0;
792
793 job->num_dests = num_dests;
794 memcpy(&job->dests, dests, sizeof(*dests) * num_dests);
795
796 /*
797 * If one of the destination is a host-managed zoned block device,
798 * we need to write sequentially. If one of the destination is a
799 * host-aware device, then leave it to the caller to choose what to do.
800 */
801 if (!(job->flags & BIT(DM_KCOPYD_WRITE_SEQ))) {
802 for (i = 0; i < job->num_dests; i++) {
803 if (bdev_zoned_model(dests[i].bdev) == BLK_ZONED_HM) {
804 job->flags |= BIT(DM_KCOPYD_WRITE_SEQ);
805 break;
806 }
807 }
808 }
809
810 /*
811 * If we need to write sequentially, errors cannot be ignored.
812 */
813 if (job->flags & BIT(DM_KCOPYD_WRITE_SEQ) &&
814 job->flags & BIT(DM_KCOPYD_IGNORE_ERROR))
815 job->flags &= ~BIT(DM_KCOPYD_IGNORE_ERROR);
816
817 if (from) {
818 job->source = *from;
819 job->pages = NULL;
820 job->op = REQ_OP_READ;
821 } else {
822 memset(&job->source, 0, sizeof job->source);
823 job->source.count = job->dests[0].count;
824 job->pages = &zero_page_list;
825
826 /*
827 * Use WRITE ZEROES to optimize zeroing if all dests support it.
828 */
829 job->op = REQ_OP_WRITE_ZEROES;
830 for (i = 0; i < job->num_dests; i++)
831 if (!bdev_write_zeroes_sectors(job->dests[i].bdev)) {
832 job->op = REQ_OP_WRITE;
833 break;
834 }
835 }
836
837 job->fn = fn;
838 job->context = context;
839 job->master_job = job;
840 job->write_offset = 0;
841
842 if (job->source.count <= kc->sub_job_size)
843 dispatch_job(job);
844 else {
845 job->progress = 0;
846 split_job(job);
847 }
848 }
849 EXPORT_SYMBOL(dm_kcopyd_copy);
850
dm_kcopyd_zero(struct dm_kcopyd_client * kc,unsigned int num_dests,struct dm_io_region * dests,unsigned int flags,dm_kcopyd_notify_fn fn,void * context)851 void dm_kcopyd_zero(struct dm_kcopyd_client *kc,
852 unsigned int num_dests, struct dm_io_region *dests,
853 unsigned int flags, dm_kcopyd_notify_fn fn, void *context)
854 {
855 dm_kcopyd_copy(kc, NULL, num_dests, dests, flags, fn, context);
856 }
857 EXPORT_SYMBOL(dm_kcopyd_zero);
858
dm_kcopyd_prepare_callback(struct dm_kcopyd_client * kc,dm_kcopyd_notify_fn fn,void * context)859 void *dm_kcopyd_prepare_callback(struct dm_kcopyd_client *kc,
860 dm_kcopyd_notify_fn fn, void *context)
861 {
862 struct kcopyd_job *job;
863
864 job = mempool_alloc(&kc->job_pool, GFP_NOIO);
865
866 memset(job, 0, sizeof(struct kcopyd_job));
867 job->kc = kc;
868 job->fn = fn;
869 job->context = context;
870 job->master_job = job;
871
872 atomic_inc(&kc->nr_jobs);
873
874 return job;
875 }
876 EXPORT_SYMBOL(dm_kcopyd_prepare_callback);
877
dm_kcopyd_do_callback(void * j,int read_err,unsigned long write_err)878 void dm_kcopyd_do_callback(void *j, int read_err, unsigned long write_err)
879 {
880 struct kcopyd_job *job = j;
881 struct dm_kcopyd_client *kc = job->kc;
882
883 job->read_err = read_err;
884 job->write_err = write_err;
885
886 push(&kc->callback_jobs, job);
887 wake(kc);
888 }
889 EXPORT_SYMBOL(dm_kcopyd_do_callback);
890
891 /*
892 * Cancels a kcopyd job, eg. someone might be deactivating a
893 * mirror.
894 */
895 #if 0
896 int kcopyd_cancel(struct kcopyd_job *job, int block)
897 {
898 /* FIXME: finish */
899 return -1;
900 }
901 #endif /* 0 */
902
903 /*-----------------------------------------------------------------
904 * Client setup
905 *---------------------------------------------------------------*/
dm_kcopyd_client_create(struct dm_kcopyd_throttle * throttle)906 struct dm_kcopyd_client *dm_kcopyd_client_create(struct dm_kcopyd_throttle *throttle)
907 {
908 int r;
909 unsigned int reserve_pages;
910 struct dm_kcopyd_client *kc;
911
912 kc = kzalloc(sizeof(*kc), GFP_KERNEL);
913 if (!kc)
914 return ERR_PTR(-ENOMEM);
915
916 spin_lock_init(&kc->job_lock);
917 INIT_LIST_HEAD(&kc->callback_jobs);
918 INIT_LIST_HEAD(&kc->complete_jobs);
919 INIT_LIST_HEAD(&kc->io_jobs);
920 INIT_LIST_HEAD(&kc->pages_jobs);
921 kc->throttle = throttle;
922
923 r = mempool_init_slab_pool(&kc->job_pool, MIN_JOBS, _job_cache);
924 if (r)
925 goto bad_slab;
926
927 INIT_WORK(&kc->kcopyd_work, do_work);
928 kc->kcopyd_wq = alloc_workqueue("kcopyd", WQ_MEM_RECLAIM, 0);
929 if (!kc->kcopyd_wq) {
930 r = -ENOMEM;
931 goto bad_workqueue;
932 }
933
934 kc->sub_job_size = dm_get_kcopyd_subjob_size();
935 reserve_pages = DIV_ROUND_UP(kc->sub_job_size << SECTOR_SHIFT, PAGE_SIZE);
936
937 kc->pages = NULL;
938 kc->nr_reserved_pages = kc->nr_free_pages = 0;
939 r = client_reserve_pages(kc, reserve_pages);
940 if (r)
941 goto bad_client_pages;
942
943 kc->io_client = dm_io_client_create();
944 if (IS_ERR(kc->io_client)) {
945 r = PTR_ERR(kc->io_client);
946 goto bad_io_client;
947 }
948
949 init_waitqueue_head(&kc->destroyq);
950 atomic_set(&kc->nr_jobs, 0);
951
952 return kc;
953
954 bad_io_client:
955 client_free_pages(kc);
956 bad_client_pages:
957 destroy_workqueue(kc->kcopyd_wq);
958 bad_workqueue:
959 mempool_exit(&kc->job_pool);
960 bad_slab:
961 kfree(kc);
962
963 return ERR_PTR(r);
964 }
965 EXPORT_SYMBOL(dm_kcopyd_client_create);
966
dm_kcopyd_client_destroy(struct dm_kcopyd_client * kc)967 void dm_kcopyd_client_destroy(struct dm_kcopyd_client *kc)
968 {
969 /* Wait for completion of all jobs submitted by this client. */
970 wait_event(kc->destroyq, !atomic_read(&kc->nr_jobs));
971
972 BUG_ON(!list_empty(&kc->callback_jobs));
973 BUG_ON(!list_empty(&kc->complete_jobs));
974 BUG_ON(!list_empty(&kc->io_jobs));
975 BUG_ON(!list_empty(&kc->pages_jobs));
976 destroy_workqueue(kc->kcopyd_wq);
977 dm_io_client_destroy(kc->io_client);
978 client_free_pages(kc);
979 mempool_exit(&kc->job_pool);
980 kfree(kc);
981 }
982 EXPORT_SYMBOL(dm_kcopyd_client_destroy);
983
dm_kcopyd_client_flush(struct dm_kcopyd_client * kc)984 void dm_kcopyd_client_flush(struct dm_kcopyd_client *kc)
985 {
986 flush_workqueue(kc->kcopyd_wq);
987 }
988 EXPORT_SYMBOL(dm_kcopyd_client_flush);
989