1 /* SPDX-License-Identifier: GPL-2.0
2 *
3 * Copyright 2016-2022 HabanaLabs, Ltd.
4 * All Rights Reserved.
5 *
6 */
7
8 #ifndef HABANALABSP_H_
9 #define HABANALABSP_H_
10
11 #include "../include/common/cpucp_if.h"
12 #include "../include/common/qman_if.h"
13 #include "../include/hw_ip/mmu/mmu_general.h"
14 #include <uapi/misc/habanalabs.h>
15
16 #include <linux/cdev.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqreturn.h>
19 #include <linux/dma-direction.h>
20 #include <linux/scatterlist.h>
21 #include <linux/hashtable.h>
22 #include <linux/debugfs.h>
23 #include <linux/rwsem.h>
24 #include <linux/eventfd.h>
25 #include <linux/bitfield.h>
26 #include <linux/genalloc.h>
27 #include <linux/sched/signal.h>
28 #include <linux/io-64-nonatomic-lo-hi.h>
29 #include <linux/coresight.h>
30 #include <linux/dma-buf.h>
31
32 #define HL_NAME "habanalabs"
33
34 struct hl_device;
35 struct hl_fpriv;
36
37 #define PCI_VENDOR_ID_HABANALABS 0x1da3
38
39 /* Use upper bits of mmap offset to store habana driver specific information.
40 * bits[63:59] - Encode mmap type
41 * bits[45:0] - mmap offset value
42 *
43 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
44 * defines are w.r.t to PAGE_SIZE
45 */
46 #define HL_MMAP_TYPE_SHIFT (59 - PAGE_SHIFT)
47 #define HL_MMAP_TYPE_MASK (0x1full << HL_MMAP_TYPE_SHIFT)
48 #define HL_MMAP_TYPE_TS_BUFF (0x10ull << HL_MMAP_TYPE_SHIFT)
49 #define HL_MMAP_TYPE_BLOCK (0x4ull << HL_MMAP_TYPE_SHIFT)
50 #define HL_MMAP_TYPE_CB (0x2ull << HL_MMAP_TYPE_SHIFT)
51
52 #define HL_MMAP_OFFSET_VALUE_MASK (0x1FFFFFFFFFFFull >> PAGE_SHIFT)
53 #define HL_MMAP_OFFSET_VALUE_GET(off) (off & HL_MMAP_OFFSET_VALUE_MASK)
54
55 #define HL_PENDING_RESET_PER_SEC 10
56 #define HL_PENDING_RESET_MAX_TRIALS 60 /* 10 minutes */
57 #define HL_PENDING_RESET_LONG_SEC 60
58
59 #define HL_HARD_RESET_MAX_TIMEOUT 120
60 #define HL_PLDM_HARD_RESET_MAX_TIMEOUT (HL_HARD_RESET_MAX_TIMEOUT * 3)
61
62 #define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */
63
64 #define HL_HEARTBEAT_PER_USEC 5000000 /* 5 s */
65
66 #define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */
67
68 #define HL_CPUCP_INFO_TIMEOUT_USEC 10000000 /* 10s */
69 #define HL_CPUCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */
70 #define HL_CPUCP_MON_DUMP_TIMEOUT_USEC 10000000 /* 10s */
71 #define HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC 10000000 /* 10s */
72
73 #define HL_FW_STATUS_POLL_INTERVAL_USEC 10000 /* 10ms */
74 #define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC 1000000 /* 1s */
75
76 #define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */
77
78 #define HL_SIM_MAX_TIMEOUT_US 100000000 /* 100s */
79
80 #define HL_INVALID_QUEUE UINT_MAX
81
82 #define HL_COMMON_USER_CQ_INTERRUPT_ID 0xFFF
83 #define HL_COMMON_DEC_INTERRUPT_ID 0xFFE
84
85 #define HL_STATE_DUMP_HIST_LEN 5
86
87 /* Default value for device reset trigger , an invalid value */
88 #define HL_RESET_TRIGGER_DEFAULT 0xFF
89
90 #define OBJ_NAMES_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
91 #define SYNC_TO_ENGINE_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
92
93 /* Memory */
94 #define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
95
96 /* MMU */
97 #define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
98
99 /**
100 * enum hl_mmu_page_table_location - mmu page table location
101 * @MMU_DR_PGT: page-table is located on device DRAM.
102 * @MMU_HR_PGT: page-table is located on host memory.
103 * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported.
104 */
105 enum hl_mmu_page_table_location {
106 MMU_DR_PGT = 0, /* device-dram-resident MMU PGT */
107 MMU_HR_PGT, /* host resident MMU PGT */
108 MMU_NUM_PGT_LOCATIONS /* num of PGT locations */
109 };
110
111 /**
112 * enum hl_mmu_enablement - what mmu modules to enable
113 * @MMU_EN_NONE: mmu disabled.
114 * @MMU_EN_ALL: enable all.
115 * @MMU_EN_PMMU_ONLY: Enable only the PMMU leaving the DMMU disabled.
116 */
117 enum hl_mmu_enablement {
118 MMU_EN_NONE = 0,
119 MMU_EN_ALL = 1,
120 MMU_EN_PMMU_ONLY = 3, /* N/A for Goya/Gaudi */
121 };
122
123 /*
124 * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream
125 * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream
126 */
127 #define HL_RSVD_SOBS 2
128 #define HL_RSVD_MONS 1
129
130 /*
131 * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream
132 */
133 #define HL_COLLECTIVE_RSVD_MSTR_MONS 2
134
135 #define HL_MAX_SOB_VAL (1 << 15)
136
137 #define IS_POWER_OF_2(n) (n != 0 && ((n & (n - 1)) == 0))
138 #define IS_MAX_PENDING_CS_VALID(n) (IS_POWER_OF_2(n) && (n > 1))
139
140 #define HL_PCI_NUM_BARS 6
141
142 /* Completion queue entry relates to completed job */
143 #define HL_COMPLETION_MODE_JOB 0
144 /* Completion queue entry relates to completed command submission */
145 #define HL_COMPLETION_MODE_CS 1
146
147 #define HL_MAX_DCORES 8
148
149 /* DMA alloc/free wrappers */
150 #define hl_asic_dma_alloc_coherent(hdev, size, dma_handle, flags) \
151 hl_asic_dma_alloc_coherent_caller(hdev, size, dma_handle, flags, __func__)
152
153 #define hl_cpu_accessible_dma_pool_alloc(hdev, size, dma_handle) \
154 hl_cpu_accessible_dma_pool_alloc_caller(hdev, size, dma_handle, __func__)
155
156 #define hl_asic_dma_pool_zalloc(hdev, size, mem_flags, dma_handle) \
157 hl_asic_dma_pool_zalloc_caller(hdev, size, mem_flags, dma_handle, __func__)
158
159 #define hl_asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle) \
160 hl_asic_dma_free_coherent_caller(hdev, size, cpu_addr, dma_handle, __func__)
161
162 #define hl_cpu_accessible_dma_pool_free(hdev, size, vaddr) \
163 hl_cpu_accessible_dma_pool_free_caller(hdev, size, vaddr, __func__)
164
165 #define hl_asic_dma_pool_free(hdev, vaddr, dma_addr) \
166 hl_asic_dma_pool_free_caller(hdev, vaddr, dma_addr, __func__)
167
168 /*
169 * Reset Flags
170 *
171 * - HL_DRV_RESET_HARD
172 * If set do hard reset to all engines. If not set reset just
173 * compute/DMA engines.
174 *
175 * - HL_DRV_RESET_FROM_RESET_THR
176 * Set if the caller is the hard-reset thread
177 *
178 * - HL_DRV_RESET_HEARTBEAT
179 * Set if reset is due to heartbeat
180 *
181 * - HL_DRV_RESET_TDR
182 * Set if reset is due to TDR
183 *
184 * - HL_DRV_RESET_DEV_RELEASE
185 * Set if reset is due to device release
186 *
187 * - HL_DRV_RESET_BYPASS_REQ_TO_FW
188 * F/W will perform the reset. No need to ask it to reset the device. This is relevant
189 * only when running with secured f/w
190 *
191 * - HL_DRV_RESET_FW_FATAL_ERR
192 * Set if reset is due to a fatal error from FW
193 *
194 * - HL_DRV_RESET_DELAY
195 * Set if a delay should be added before the reset
196 */
197
198 #define HL_DRV_RESET_HARD (1 << 0)
199 #define HL_DRV_RESET_FROM_RESET_THR (1 << 1)
200 #define HL_DRV_RESET_HEARTBEAT (1 << 2)
201 #define HL_DRV_RESET_TDR (1 << 3)
202 #define HL_DRV_RESET_DEV_RELEASE (1 << 4)
203 #define HL_DRV_RESET_BYPASS_REQ_TO_FW (1 << 5)
204 #define HL_DRV_RESET_FW_FATAL_ERR (1 << 6)
205 #define HL_DRV_RESET_DELAY (1 << 7)
206
207 /*
208 * Security
209 */
210
211 #define HL_PB_SHARED 1
212 #define HL_PB_NA 0
213 #define HL_PB_SINGLE_INSTANCE 1
214 #define HL_BLOCK_SIZE 0x1000
215 #define HL_BLOCK_GLBL_ERR_MASK 0xF40
216 #define HL_BLOCK_GLBL_ERR_ADDR 0xF44
217 #define HL_BLOCK_GLBL_ERR_CAUSE 0xF48
218 #define HL_BLOCK_GLBL_SEC_OFFS 0xF80
219 #define HL_BLOCK_GLBL_SEC_SIZE (HL_BLOCK_SIZE - HL_BLOCK_GLBL_SEC_OFFS)
220 #define HL_BLOCK_GLBL_SEC_LEN (HL_BLOCK_GLBL_SEC_SIZE / sizeof(u32))
221 #define UNSET_GLBL_SEC_BIT(array, b) ((array)[((b) / 32)] |= (1 << ((b) % 32)))
222
223 enum hl_protection_levels {
224 SECURED_LVL,
225 PRIVILEGED_LVL,
226 NON_SECURED_LVL
227 };
228
229 /**
230 * struct iterate_module_ctx - HW module iterator
231 * @fn: function to apply to each HW module instance
232 * @data: optional internal data to the function iterator
233 * @rc: return code for optional use of iterator/iterator-caller
234 */
235 struct iterate_module_ctx {
236 /*
237 * callback for the HW module iterator
238 * @hdev: pointer to the habanalabs device structure
239 * @block: block (ASIC specific definition can be dcore/hdcore)
240 * @inst: HW module instance within the block
241 * @offset: current HW module instance offset from the 1-st HW module instance
242 * in the 1-st block
243 * @ctx: the iterator context.
244 */
245 void (*fn)(struct hl_device *hdev, int block, int inst, u32 offset,
246 struct iterate_module_ctx *ctx);
247 void *data;
248 int rc;
249 };
250
251 struct hl_block_glbl_sec {
252 u32 sec_array[HL_BLOCK_GLBL_SEC_LEN];
253 };
254
255 #define HL_MAX_SOBS_PER_MONITOR 8
256
257 /**
258 * struct hl_gen_wait_properties - properties for generating a wait CB
259 * @data: command buffer
260 * @q_idx: queue id is used to extract fence register address
261 * @size: offset in command buffer
262 * @sob_base: SOB base to use in this wait CB
263 * @sob_val: SOB value to wait for
264 * @mon_id: monitor to use in this wait CB
265 * @sob_mask: each bit represents a SOB offset from sob_base to be used
266 */
267 struct hl_gen_wait_properties {
268 void *data;
269 u32 q_idx;
270 u32 size;
271 u16 sob_base;
272 u16 sob_val;
273 u16 mon_id;
274 u8 sob_mask;
275 };
276
277 /**
278 * struct pgt_info - MMU hop page info.
279 * @node: hash linked-list node for the pgts on host (shadow pgts for device resident MMU and
280 * actual pgts for host resident MMU).
281 * @phys_addr: physical address of the pgt.
282 * @virt_addr: host virtual address of the pgt (see above device/host resident).
283 * @shadow_addr: shadow hop in the host for device resident MMU.
284 * @ctx: pointer to the owner ctx.
285 * @num_of_ptes: indicates how many ptes are used in the pgt. used only for dynamically
286 * allocated HOPs (all HOPs but HOP0)
287 *
288 * The MMU page tables hierarchy can be placed either on the device's DRAM (in which case shadow
289 * pgts will be stored on host memory) or on host memory (in which case no shadow is required).
290 *
291 * When a new level (hop) is needed during mapping this structure will be used to describe
292 * the newly allocated hop as well as to track number of PTEs in it.
293 * During unmapping, if no valid PTEs remained in the page of a newly allocated hop, it is
294 * freed with its pgt_info structure.
295 */
296 struct pgt_info {
297 struct hlist_node node;
298 u64 phys_addr;
299 u64 virt_addr;
300 u64 shadow_addr;
301 struct hl_ctx *ctx;
302 int num_of_ptes;
303 };
304
305 /**
306 * enum hl_pci_match_mode - pci match mode per region
307 * @PCI_ADDRESS_MATCH_MODE: address match mode
308 * @PCI_BAR_MATCH_MODE: bar match mode
309 */
310 enum hl_pci_match_mode {
311 PCI_ADDRESS_MATCH_MODE,
312 PCI_BAR_MATCH_MODE
313 };
314
315 /**
316 * enum hl_fw_component - F/W components to read version through registers.
317 * @FW_COMP_BOOT_FIT: boot fit.
318 * @FW_COMP_PREBOOT: preboot.
319 * @FW_COMP_LINUX: linux.
320 */
321 enum hl_fw_component {
322 FW_COMP_BOOT_FIT,
323 FW_COMP_PREBOOT,
324 FW_COMP_LINUX,
325 };
326
327 /**
328 * enum hl_fw_types - F/W types present in the system
329 * @FW_TYPE_NONE: no FW component indication
330 * @FW_TYPE_LINUX: Linux image for device CPU
331 * @FW_TYPE_BOOT_CPU: Boot image for device CPU
332 * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system
333 * (preboot, ppboot etc...)
334 * @FW_TYPE_ALL_TYPES: Mask for all types
335 */
336 enum hl_fw_types {
337 FW_TYPE_NONE = 0x0,
338 FW_TYPE_LINUX = 0x1,
339 FW_TYPE_BOOT_CPU = 0x2,
340 FW_TYPE_PREBOOT_CPU = 0x4,
341 FW_TYPE_ALL_TYPES =
342 (FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU)
343 };
344
345 /**
346 * enum hl_queue_type - Supported QUEUE types.
347 * @QUEUE_TYPE_NA: queue is not available.
348 * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
349 * host.
350 * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
351 * memories and/or operates the compute engines.
352 * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
353 * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion
354 * notifications are sent by H/W.
355 */
356 enum hl_queue_type {
357 QUEUE_TYPE_NA,
358 QUEUE_TYPE_EXT,
359 QUEUE_TYPE_INT,
360 QUEUE_TYPE_CPU,
361 QUEUE_TYPE_HW
362 };
363
364 enum hl_cs_type {
365 CS_TYPE_DEFAULT,
366 CS_TYPE_SIGNAL,
367 CS_TYPE_WAIT,
368 CS_TYPE_COLLECTIVE_WAIT,
369 CS_RESERVE_SIGNALS,
370 CS_UNRESERVE_SIGNALS,
371 CS_TYPE_ENGINE_CORE
372 };
373
374 /*
375 * struct hl_inbound_pci_region - inbound region descriptor
376 * @mode: pci match mode for this region
377 * @addr: region target address
378 * @size: region size in bytes
379 * @offset_in_bar: offset within bar (address match mode)
380 * @bar: bar id
381 */
382 struct hl_inbound_pci_region {
383 enum hl_pci_match_mode mode;
384 u64 addr;
385 u64 size;
386 u64 offset_in_bar;
387 u8 bar;
388 };
389
390 /*
391 * struct hl_outbound_pci_region - outbound region descriptor
392 * @addr: region target address
393 * @size: region size in bytes
394 */
395 struct hl_outbound_pci_region {
396 u64 addr;
397 u64 size;
398 };
399
400 /*
401 * enum queue_cb_alloc_flags - Indicates queue support for CBs that
402 * allocated by Kernel or by User
403 * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel
404 * @CB_ALLOC_USER: support only CBs that allocated by User
405 */
406 enum queue_cb_alloc_flags {
407 CB_ALLOC_KERNEL = 0x1,
408 CB_ALLOC_USER = 0x2
409 };
410
411 /*
412 * struct hl_hw_sob - H/W SOB info.
413 * @hdev: habanalabs device structure.
414 * @kref: refcount of this SOB. The SOB will reset once the refcount is zero.
415 * @sob_id: id of this SOB.
416 * @sob_addr: the sob offset from the base address.
417 * @q_idx: the H/W queue that uses this SOB.
418 * @need_reset: reset indication set when switching to the other sob.
419 */
420 struct hl_hw_sob {
421 struct hl_device *hdev;
422 struct kref kref;
423 u32 sob_id;
424 u32 sob_addr;
425 u32 q_idx;
426 bool need_reset;
427 };
428
429 enum hl_collective_mode {
430 HL_COLLECTIVE_NOT_SUPPORTED = 0x0,
431 HL_COLLECTIVE_MASTER = 0x1,
432 HL_COLLECTIVE_SLAVE = 0x2
433 };
434
435 /**
436 * struct hw_queue_properties - queue information.
437 * @type: queue type.
438 * @cb_alloc_flags: bitmap which indicates if the hw queue supports CB
439 * that allocated by the Kernel driver and therefore,
440 * a CB handle can be provided for jobs on this queue.
441 * Otherwise, a CB address must be provided.
442 * @collective_mode: collective mode of current queue
443 * @driver_only: true if only the driver is allowed to send a job to this queue,
444 * false otherwise.
445 * @binned: True if the queue is binned out and should not be used
446 * @supports_sync_stream: True if queue supports sync stream
447 */
448 struct hw_queue_properties {
449 enum hl_queue_type type;
450 enum queue_cb_alloc_flags cb_alloc_flags;
451 enum hl_collective_mode collective_mode;
452 u8 driver_only;
453 u8 binned;
454 u8 supports_sync_stream;
455 };
456
457 /**
458 * enum vm_type - virtual memory mapping request information.
459 * @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
460 * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
461 */
462 enum vm_type {
463 VM_TYPE_USERPTR = 0x1,
464 VM_TYPE_PHYS_PACK = 0x2
465 };
466
467 /**
468 * enum mmu_op_flags - mmu operation relevant information.
469 * @MMU_OP_USERPTR: operation on user memory (host resident).
470 * @MMU_OP_PHYS_PACK: operation on DRAM (device resident).
471 * @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache.
472 * @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation.
473 */
474 enum mmu_op_flags {
475 MMU_OP_USERPTR = 0x1,
476 MMU_OP_PHYS_PACK = 0x2,
477 MMU_OP_CLEAR_MEMCACHE = 0x4,
478 MMU_OP_SKIP_LOW_CACHE_INV = 0x8,
479 };
480
481
482 /**
483 * enum hl_device_hw_state - H/W device state. use this to understand whether
484 * to do reset before hw_init or not
485 * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
486 * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
487 * hw_init
488 */
489 enum hl_device_hw_state {
490 HL_DEVICE_HW_STATE_CLEAN = 0,
491 HL_DEVICE_HW_STATE_DIRTY
492 };
493
494 #define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0
495
496 /**
497 * struct hl_mmu_properties - ASIC specific MMU address translation properties.
498 * @start_addr: virtual start address of the memory region.
499 * @end_addr: virtual end address of the memory region.
500 * @hop_shifts: array holds HOPs shifts.
501 * @hop_masks: array holds HOPs masks.
502 * @last_mask: mask to get the bit indicating this is the last hop.
503 * @pgt_size: size for page tables.
504 * @supported_pages_mask: bitmask for supported page size (relevant only for MMUs
505 * supporting multiple page size).
506 * @page_size: default page size used to allocate memory.
507 * @num_hops: The amount of hops supported by the translation table.
508 * @hop_table_size: HOP table size.
509 * @hop0_tables_total_size: total size for all HOP0 tables.
510 * @host_resident: Should the MMU page table reside in host memory or in the
511 * device DRAM.
512 */
513 struct hl_mmu_properties {
514 u64 start_addr;
515 u64 end_addr;
516 u64 hop_shifts[MMU_HOP_MAX];
517 u64 hop_masks[MMU_HOP_MAX];
518 u64 last_mask;
519 u64 pgt_size;
520 u64 supported_pages_mask;
521 u32 page_size;
522 u32 num_hops;
523 u32 hop_table_size;
524 u32 hop0_tables_total_size;
525 u8 host_resident;
526 };
527
528 /**
529 * struct hl_hints_range - hint addresses reserved va range.
530 * @start_addr: start address of the va range.
531 * @end_addr: end address of the va range.
532 */
533 struct hl_hints_range {
534 u64 start_addr;
535 u64 end_addr;
536 };
537
538 /**
539 * struct asic_fixed_properties - ASIC specific immutable properties.
540 * @hw_queues_props: H/W queues properties.
541 * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g.
542 * available sensors.
543 * @uboot_ver: F/W U-boot version.
544 * @preboot_ver: F/W Preboot version.
545 * @dmmu: DRAM MMU address translation properties.
546 * @pmmu: PCI (host) MMU address translation properties.
547 * @pmmu_huge: PCI (host) MMU address translation properties for memory
548 * allocated with huge pages.
549 * @hints_dram_reserved_va_range: dram hint addresses reserved range.
550 * @hints_host_reserved_va_range: host hint addresses reserved range.
551 * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved
552 * range.
553 * @sram_base_address: SRAM physical start address.
554 * @sram_end_address: SRAM physical end address.
555 * @sram_user_base_address - SRAM physical start address for user access.
556 * @dram_base_address: DRAM physical start address.
557 * @dram_end_address: DRAM physical end address.
558 * @dram_user_base_address: DRAM physical start address for user access.
559 * @dram_size: DRAM total size.
560 * @dram_pci_bar_size: size of PCI bar towards DRAM.
561 * @max_power_default: max power of the device after reset.
562 * @dc_power_default: power consumed by the device in mode idle.
563 * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
564 * fault.
565 * @pcie_dbi_base_address: Base address of the PCIE_DBI block.
566 * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
567 * @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
568 * @mmu_dram_default_page_addr: DRAM default page physical address.
569 * @tpc_enabled_mask: which TPCs are enabled.
570 * @tpc_binning_mask: which TPCs are binned. 0 means usable and 1 means binned.
571 * @dram_enabled_mask: which DRAMs are enabled.
572 * @dram_binning_mask: which DRAMs are binned. 0 means usable, 1 means binned.
573 * @dram_hints_align_mask: dram va hint addresses alignment mask which is used
574 * for hints validity check.
575 * @cfg_base_address: config space base address.
576 * @mmu_cache_mng_addr: address of the MMU cache.
577 * @mmu_cache_mng_size: size of the MMU cache.
578 * @device_dma_offset_for_host_access: the offset to add to host DMA addresses
579 * to enable the device to access them.
580 * @host_base_address: host physical start address for host DMA from device
581 * @host_end_address: host physical end address for host DMA from device
582 * @max_freq_value: current max clk frequency.
583 * @clk_pll_index: clock PLL index that specify which PLL determines the clock
584 * we display to the user
585 * @mmu_pgt_size: MMU page tables total size.
586 * @mmu_pte_size: PTE size in MMU page tables.
587 * @mmu_hop_table_size: MMU hop table size.
588 * @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
589 * @dram_page_size: page size for MMU DRAM allocation.
590 * @cfg_size: configuration space size on SRAM.
591 * @sram_size: total size of SRAM.
592 * @max_asid: maximum number of open contexts (ASIDs).
593 * @num_of_events: number of possible internal H/W IRQs.
594 * @psoc_pci_pll_nr: PCI PLL NR value.
595 * @psoc_pci_pll_nf: PCI PLL NF value.
596 * @psoc_pci_pll_od: PCI PLL OD value.
597 * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
598 * @psoc_timestamp_frequency: frequency of the psoc timestamp clock.
599 * @high_pll: high PLL frequency used by the device.
600 * @cb_pool_cb_cnt: number of CBs in the CB pool.
601 * @cb_pool_cb_size: size of each CB in the CB pool.
602 * @decoder_enabled_mask: which decoders are enabled.
603 * @decoder_binning_mask: which decoders are binned, 0 means usable and 1
604 * means binned (at most one binned decoder per dcore).
605 * @edma_enabled_mask: which EDMAs are enabled.
606 * @edma_binning_mask: which EDMAs are binned, 0 means usable and 1 means
607 * binned (at most one binned DMA).
608 * @max_pending_cs: maximum of concurrent pending command submissions
609 * @max_queues: maximum amount of queues in the system
610 * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu
611 * capabilities reported by FW, bit description
612 * can be found in CPU_BOOT_DEV_STS0
613 * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu
614 * capabilities reported by FW, bit description
615 * can be found in CPU_BOOT_DEV_STS1
616 * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security
617 * status reported by FW, bit description can be
618 * found in CPU_BOOT_DEV_STS0
619 * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security
620 * status reported by FW, bit description can be
621 * found in CPU_BOOT_DEV_STS1
622 * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security
623 * status reported by FW, bit description can be
624 * found in CPU_BOOT_DEV_STS0
625 * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security
626 * status reported by FW, bit description can be
627 * found in CPU_BOOT_DEV_STS1
628 * @max_dec: maximum number of decoders
629 * @hmmu_hif_enabled_mask: mask of HMMUs/HIFs that are not isolated (enabled)
630 * 1- enabled, 0- isolated.
631 * @faulty_dram_cluster_map: mask of faulty DRAM cluster.
632 * 1- faulty cluster, 0- good cluster.
633 * @xbar_edge_enabled_mask: mask of XBAR_EDGEs that are not isolated (enabled)
634 * 1- enabled, 0- isolated.
635 * @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for
636 * which the property supports_user_set_page_size is true
637 * (i.e. the DRAM supports multiple page sizes), otherwise
638 * it will shall be equal to dram_page_size.
639 * @num_engine_cores: number of engine cpu cores
640 * @collective_first_sob: first sync object available for collective use
641 * @collective_first_mon: first monitor available for collective use
642 * @sync_stream_first_sob: first sync object available for sync stream use
643 * @sync_stream_first_mon: first monitor available for sync stream use
644 * @first_available_user_sob: first sob available for the user
645 * @first_available_user_mon: first monitor available for the user
646 * @first_available_user_interrupt: first available interrupt reserved for the user
647 * @first_available_cq: first available CQ for the user.
648 * @user_interrupt_count: number of user interrupts.
649 * @user_dec_intr_count: number of decoder interrupts exposed to user.
650 * @cache_line_size: device cache line size.
651 * @server_type: Server type that the ASIC is currently installed in.
652 * The value is according to enum hl_server_type in uapi file.
653 * @completion_queues_count: number of completion queues.
654 * @completion_mode: 0 - job based completion, 1 - cs based completion
655 * @mme_master_slave_mode: 0 - Each MME works independently, 1 - MME works
656 * in Master/Slave mode
657 * @fw_security_enabled: true if security measures are enabled in firmware,
658 * false otherwise
659 * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from
660 * BOOT_DEV_STS0
661 * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from
662 * BOOT_DEV_STS1
663 * @dram_supports_virtual_memory: is there an MMU towards the DRAM
664 * @hard_reset_done_by_fw: true if firmware is handling hard reset flow
665 * @num_functional_hbms: number of functional HBMs in each DCORE.
666 * @hints_range_reservation: device support hint addresses range reservation.
667 * @iatu_done_by_fw: true if iATU configuration is being done by FW.
668 * @dynamic_fw_load: is dynamic FW load is supported.
669 * @gic_interrupts_enable: true if FW is not blocking GIC controller,
670 * false otherwise.
671 * @use_get_power_for_reset_history: To support backward compatibility for Goya
672 * and Gaudi
673 * @supports_compute_reset: is a reset which is not a hard-reset supported by this asic.
674 * @allow_inference_soft_reset: true if the ASIC supports soft reset that is
675 * initiated by user or TDR. This is only true
676 * in inference ASICs, as there is no real-world
677 * use-case of doing soft-reset in training (due
678 * to the fact that training runs on multiple
679 * devices)
680 * @configurable_stop_on_err: is stop-on-error option configurable via debugfs.
681 * @set_max_power_on_device_init: true if need to set max power in F/W on device init.
682 * @supports_user_set_page_size: true if user can set the allocation page size.
683 * @dma_mask: the dma mask to be set for this device
684 * @supports_advanced_cpucp_rc: true if new cpucp opcodes are supported.
685 */
686 struct asic_fixed_properties {
687 struct hw_queue_properties *hw_queues_props;
688 struct cpucp_info cpucp_info;
689 char uboot_ver[VERSION_MAX_LEN];
690 char preboot_ver[VERSION_MAX_LEN];
691 struct hl_mmu_properties dmmu;
692 struct hl_mmu_properties pmmu;
693 struct hl_mmu_properties pmmu_huge;
694 struct hl_hints_range hints_dram_reserved_va_range;
695 struct hl_hints_range hints_host_reserved_va_range;
696 struct hl_hints_range hints_host_hpage_reserved_va_range;
697 u64 sram_base_address;
698 u64 sram_end_address;
699 u64 sram_user_base_address;
700 u64 dram_base_address;
701 u64 dram_end_address;
702 u64 dram_user_base_address;
703 u64 dram_size;
704 u64 dram_pci_bar_size;
705 u64 max_power_default;
706 u64 dc_power_default;
707 u64 dram_size_for_default_page_mapping;
708 u64 pcie_dbi_base_address;
709 u64 pcie_aux_dbi_reg_addr;
710 u64 mmu_pgt_addr;
711 u64 mmu_dram_default_page_addr;
712 u64 tpc_enabled_mask;
713 u64 tpc_binning_mask;
714 u64 dram_enabled_mask;
715 u64 dram_binning_mask;
716 u64 dram_hints_align_mask;
717 u64 cfg_base_address;
718 u64 mmu_cache_mng_addr;
719 u64 mmu_cache_mng_size;
720 u64 device_dma_offset_for_host_access;
721 u64 host_base_address;
722 u64 host_end_address;
723 u64 max_freq_value;
724 u32 clk_pll_index;
725 u32 mmu_pgt_size;
726 u32 mmu_pte_size;
727 u32 mmu_hop_table_size;
728 u32 mmu_hop0_tables_total_size;
729 u32 dram_page_size;
730 u32 cfg_size;
731 u32 sram_size;
732 u32 max_asid;
733 u32 num_of_events;
734 u32 psoc_pci_pll_nr;
735 u32 psoc_pci_pll_nf;
736 u32 psoc_pci_pll_od;
737 u32 psoc_pci_pll_div_factor;
738 u32 psoc_timestamp_frequency;
739 u32 high_pll;
740 u32 cb_pool_cb_cnt;
741 u32 cb_pool_cb_size;
742 u32 decoder_enabled_mask;
743 u32 decoder_binning_mask;
744 u32 edma_enabled_mask;
745 u32 edma_binning_mask;
746 u32 max_pending_cs;
747 u32 max_queues;
748 u32 fw_preboot_cpu_boot_dev_sts0;
749 u32 fw_preboot_cpu_boot_dev_sts1;
750 u32 fw_bootfit_cpu_boot_dev_sts0;
751 u32 fw_bootfit_cpu_boot_dev_sts1;
752 u32 fw_app_cpu_boot_dev_sts0;
753 u32 fw_app_cpu_boot_dev_sts1;
754 u32 max_dec;
755 u32 hmmu_hif_enabled_mask;
756 u32 faulty_dram_cluster_map;
757 u32 xbar_edge_enabled_mask;
758 u32 device_mem_alloc_default_page_size;
759 u32 num_engine_cores;
760 u16 collective_first_sob;
761 u16 collective_first_mon;
762 u16 sync_stream_first_sob;
763 u16 sync_stream_first_mon;
764 u16 first_available_user_sob[HL_MAX_DCORES];
765 u16 first_available_user_mon[HL_MAX_DCORES];
766 u16 first_available_user_interrupt;
767 u16 first_available_cq[HL_MAX_DCORES];
768 u16 user_interrupt_count;
769 u16 user_dec_intr_count;
770 u16 cache_line_size;
771 u16 server_type;
772 u8 completion_queues_count;
773 u8 completion_mode;
774 u8 mme_master_slave_mode;
775 u8 fw_security_enabled;
776 u8 fw_cpu_boot_dev_sts0_valid;
777 u8 fw_cpu_boot_dev_sts1_valid;
778 u8 dram_supports_virtual_memory;
779 u8 hard_reset_done_by_fw;
780 u8 num_functional_hbms;
781 u8 hints_range_reservation;
782 u8 iatu_done_by_fw;
783 u8 dynamic_fw_load;
784 u8 gic_interrupts_enable;
785 u8 use_get_power_for_reset_history;
786 u8 supports_compute_reset;
787 u8 allow_inference_soft_reset;
788 u8 configurable_stop_on_err;
789 u8 set_max_power_on_device_init;
790 u8 supports_user_set_page_size;
791 u8 dma_mask;
792 u8 supports_advanced_cpucp_rc;
793 };
794
795 /**
796 * struct hl_fence - software synchronization primitive
797 * @completion: fence is implemented using completion
798 * @refcount: refcount for this fence
799 * @cs_sequence: sequence of the corresponding command submission
800 * @stream_master_qid_map: streams masters QID bitmap to represent all streams
801 * masters QIDs that multi cs is waiting on
802 * @error: mark this fence with error
803 * @timestamp: timestamp upon completion
804 * @mcs_handling_done: indicates that corresponding command submission has
805 * finished msc handling, this does not mean it was part
806 * of the mcs
807 */
808 struct hl_fence {
809 struct completion completion;
810 struct kref refcount;
811 u64 cs_sequence;
812 u32 stream_master_qid_map;
813 int error;
814 ktime_t timestamp;
815 u8 mcs_handling_done;
816 };
817
818 /**
819 * struct hl_cs_compl - command submission completion object.
820 * @base_fence: hl fence object.
821 * @lock: spinlock to protect fence.
822 * @hdev: habanalabs device structure.
823 * @hw_sob: the H/W SOB used in this signal/wait CS.
824 * @encaps_sig_hdl: encaps signals handler.
825 * @cs_seq: command submission sequence number.
826 * @type: type of the CS - signal/wait.
827 * @sob_val: the SOB value that is used in this signal/wait CS.
828 * @sob_group: the SOB group that is used in this collective wait CS.
829 * @encaps_signals: indication whether it's a completion object of cs with
830 * encaps signals or not.
831 */
832 struct hl_cs_compl {
833 struct hl_fence base_fence;
834 spinlock_t lock;
835 struct hl_device *hdev;
836 struct hl_hw_sob *hw_sob;
837 struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
838 u64 cs_seq;
839 enum hl_cs_type type;
840 u16 sob_val;
841 u16 sob_group;
842 bool encaps_signals;
843 };
844
845 /*
846 * Command Buffers
847 */
848
849 /**
850 * struct hl_ts_buff - describes a timestamp buffer.
851 * @kernel_buff_address: Holds the internal buffer's kernel virtual address.
852 * @user_buff_address: Holds the user buffer's kernel virtual address.
853 * @kernel_buff_size: Holds the internal kernel buffer size.
854 */
855 struct hl_ts_buff {
856 void *kernel_buff_address;
857 void *user_buff_address;
858 u32 kernel_buff_size;
859 };
860
861 struct hl_mmap_mem_buf;
862
863 /**
864 * struct hl_mem_mgr - describes unified memory manager for mappable memory chunks.
865 * @dev: back pointer to the owning device
866 * @lock: protects handles
867 * @handles: an idr holding all active handles to the memory buffers in the system.
868 */
869 struct hl_mem_mgr {
870 struct device *dev;
871 spinlock_t lock;
872 struct idr handles;
873 };
874
875 /**
876 * struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior
877 * @topic: string identifier used for logging
878 * @mem_id: memory type identifier, embedded in the handle and used to identify
879 * the memory type by handle.
880 * @alloc: callback executed on buffer allocation, shall allocate the memory,
881 * set it under buffer private, and set mappable size.
882 * @mmap: callback executed on mmap, must map the buffer to vma
883 * @release: callback executed on release, must free the resources used by the buffer
884 */
885 struct hl_mmap_mem_buf_behavior {
886 const char *topic;
887 u64 mem_id;
888
889 int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args);
890 int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args);
891 void (*release)(struct hl_mmap_mem_buf *buf);
892 };
893
894 /**
895 * struct hl_mmap_mem_buf - describes a single unified memory buffer
896 * @behavior: buffer behavior
897 * @mmg: back pointer to the unified memory manager
898 * @refcount: reference counter for buffer users
899 * @private: pointer to buffer behavior private data
900 * @mmap: atomic boolean indicating whether or not the buffer is mapped right now
901 * @real_mapped_size: the actual size of buffer mapped, after part of it may be released,
902 * may change at runtime.
903 * @mappable_size: the original mappable size of the buffer, does not change after
904 * the allocation.
905 * @handle: the buffer id in mmg handles store
906 */
907 struct hl_mmap_mem_buf {
908 struct hl_mmap_mem_buf_behavior *behavior;
909 struct hl_mem_mgr *mmg;
910 struct kref refcount;
911 void *private;
912 atomic_t mmap;
913 u64 real_mapped_size;
914 u64 mappable_size;
915 u64 handle;
916 };
917
918 /**
919 * struct hl_cb - describes a Command Buffer.
920 * @hdev: pointer to device this CB belongs to.
921 * @ctx: pointer to the CB owner's context.
922 * @buf: back pointer to the parent mappable memory buffer
923 * @debugfs_list: node in debugfs list of command buffers.
924 * @pool_list: node in pool list of command buffers.
925 * @kernel_address: Holds the CB's kernel virtual address.
926 * @virtual_addr: Holds the CB's virtual address.
927 * @bus_address: Holds the CB's DMA address.
928 * @size: holds the CB's size.
929 * @roundup_size: holds the cb size after roundup to page size.
930 * @cs_cnt: holds number of CS that this CB participates in.
931 * @is_pool: true if CB was acquired from the pool, false otherwise.
932 * @is_internal: internally allocated
933 * @is_mmu_mapped: true if the CB is mapped to the device's MMU.
934 */
935 struct hl_cb {
936 struct hl_device *hdev;
937 struct hl_ctx *ctx;
938 struct hl_mmap_mem_buf *buf;
939 struct list_head debugfs_list;
940 struct list_head pool_list;
941 void *kernel_address;
942 u64 virtual_addr;
943 dma_addr_t bus_address;
944 u32 size;
945 u32 roundup_size;
946 atomic_t cs_cnt;
947 u8 is_pool;
948 u8 is_internal;
949 u8 is_mmu_mapped;
950 };
951
952
953 /*
954 * QUEUES
955 */
956
957 struct hl_cs_job;
958
959 /* Queue length of external and HW queues */
960 #define HL_QUEUE_LENGTH 4096
961 #define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE)
962
963 #if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH)
964 #error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS"
965 #endif
966
967 /* HL_CQ_LENGTH is in units of struct hl_cq_entry */
968 #define HL_CQ_LENGTH HL_QUEUE_LENGTH
969 #define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
970
971 /* Must be power of 2 */
972 #define HL_EQ_LENGTH 64
973 #define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
974
975 /* Host <-> CPU-CP shared memory size */
976 #define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M
977
978 /**
979 * struct hl_sync_stream_properties -
980 * describes a H/W queue sync stream properties
981 * @hw_sob: array of the used H/W SOBs by this H/W queue.
982 * @next_sob_val: the next value to use for the currently used SOB.
983 * @base_sob_id: the base SOB id of the SOBs used by this queue.
984 * @base_mon_id: the base MON id of the MONs used by this queue.
985 * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue
986 * in order to sync with all slave queues.
987 * @collective_slave_mon_id: the MON id used by this slave queue in order to
988 * sync with its master queue.
989 * @collective_sob_id: current SOB id used by this collective slave queue
990 * to signal its collective master queue upon completion.
991 * @curr_sob_offset: the id offset to the currently used SOB from the
992 * HL_RSVD_SOBS that are being used by this queue.
993 */
994 struct hl_sync_stream_properties {
995 struct hl_hw_sob hw_sob[HL_RSVD_SOBS];
996 u16 next_sob_val;
997 u16 base_sob_id;
998 u16 base_mon_id;
999 u16 collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS];
1000 u16 collective_slave_mon_id;
1001 u16 collective_sob_id;
1002 u8 curr_sob_offset;
1003 };
1004
1005 /**
1006 * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals
1007 * handlers manager
1008 * @lock: protects handles.
1009 * @handles: an idr to hold all encapsulated signals handles.
1010 */
1011 struct hl_encaps_signals_mgr {
1012 spinlock_t lock;
1013 struct idr handles;
1014 };
1015
1016 /**
1017 * struct hl_hw_queue - describes a H/W transport queue.
1018 * @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
1019 * @sync_stream_prop: sync stream queue properties
1020 * @queue_type: type of queue.
1021 * @collective_mode: collective mode of current queue
1022 * @kernel_address: holds the queue's kernel virtual address.
1023 * @bus_address: holds the queue's DMA address.
1024 * @pi: holds the queue's pi value.
1025 * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
1026 * @hw_queue_id: the id of the H/W queue.
1027 * @cq_id: the id for the corresponding CQ for this H/W queue.
1028 * @msi_vec: the IRQ number of the H/W queue.
1029 * @int_queue_len: length of internal queue (number of entries).
1030 * @valid: is the queue valid (we have array of 32 queues, not all of them
1031 * exist).
1032 * @supports_sync_stream: True if queue supports sync stream
1033 */
1034 struct hl_hw_queue {
1035 struct hl_cs_job **shadow_queue;
1036 struct hl_sync_stream_properties sync_stream_prop;
1037 enum hl_queue_type queue_type;
1038 enum hl_collective_mode collective_mode;
1039 void *kernel_address;
1040 dma_addr_t bus_address;
1041 u32 pi;
1042 atomic_t ci;
1043 u32 hw_queue_id;
1044 u32 cq_id;
1045 u32 msi_vec;
1046 u16 int_queue_len;
1047 u8 valid;
1048 u8 supports_sync_stream;
1049 };
1050
1051 /**
1052 * struct hl_cq - describes a completion queue
1053 * @hdev: pointer to the device structure
1054 * @kernel_address: holds the queue's kernel virtual address
1055 * @bus_address: holds the queue's DMA address
1056 * @cq_idx: completion queue index in array
1057 * @hw_queue_id: the id of the matching H/W queue
1058 * @ci: ci inside the queue
1059 * @pi: pi inside the queue
1060 * @free_slots_cnt: counter of free slots in queue
1061 */
1062 struct hl_cq {
1063 struct hl_device *hdev;
1064 void *kernel_address;
1065 dma_addr_t bus_address;
1066 u32 cq_idx;
1067 u32 hw_queue_id;
1068 u32 ci;
1069 u32 pi;
1070 atomic_t free_slots_cnt;
1071 };
1072
1073 /**
1074 * struct hl_user_interrupt - holds user interrupt information
1075 * @hdev: pointer to the device structure
1076 * @wait_list_head: head to the list of user threads pending on this interrupt
1077 * @wait_list_lock: protects wait_list_head
1078 * @interrupt_id: msix interrupt id
1079 * @is_decoder: whether this entry represents a decoder interrupt
1080 */
1081 struct hl_user_interrupt {
1082 struct hl_device *hdev;
1083 struct list_head wait_list_head;
1084 spinlock_t wait_list_lock;
1085 u32 interrupt_id;
1086 bool is_decoder;
1087 };
1088
1089 /**
1090 * struct timestamp_reg_free_node - holds the timestamp registration free objects node
1091 * @free_objects_node: node in the list free_obj_jobs
1092 * @cq_cb: pointer to cq command buffer to be freed
1093 * @buf: pointer to timestamp buffer to be freed
1094 */
1095 struct timestamp_reg_free_node {
1096 struct list_head free_objects_node;
1097 struct hl_cb *cq_cb;
1098 struct hl_mmap_mem_buf *buf;
1099 };
1100
1101 /* struct timestamp_reg_work_obj - holds the timestamp registration free objects job
1102 * the job will be to pass over the free_obj_jobs list and put refcount to objects
1103 * in each node of the list
1104 * @free_obj: workqueue object to free timestamp registration node objects
1105 * @hdev: pointer to the device structure
1106 * @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node)
1107 */
1108 struct timestamp_reg_work_obj {
1109 struct work_struct free_obj;
1110 struct hl_device *hdev;
1111 struct list_head *free_obj_head;
1112 };
1113
1114 /* struct timestamp_reg_info - holds the timestamp registration related data.
1115 * @buf: pointer to the timestamp buffer which include both user/kernel buffers.
1116 * relevant only when doing timestamps records registration.
1117 * @cq_cb: pointer to CQ counter CB.
1118 * @timestamp_kernel_addr: timestamp handle address, where to set timestamp
1119 * relevant only when doing timestamps records
1120 * registration.
1121 * @in_use: indicates if the node already in use. relevant only when doing
1122 * timestamps records registration, since in this case the driver
1123 * will have it's own buffer which serve as a records pool instead of
1124 * allocating records dynamically.
1125 */
1126 struct timestamp_reg_info {
1127 struct hl_mmap_mem_buf *buf;
1128 struct hl_cb *cq_cb;
1129 u64 *timestamp_kernel_addr;
1130 u8 in_use;
1131 };
1132
1133 /**
1134 * struct hl_user_pending_interrupt - holds a context to a user thread
1135 * pending on an interrupt
1136 * @ts_reg_info: holds the timestamps registration nodes info
1137 * @wait_list_node: node in the list of user threads pending on an interrupt
1138 * @fence: hl fence object for interrupt completion
1139 * @cq_target_value: CQ target value
1140 * @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt
1141 * handler for target value comparison
1142 */
1143 struct hl_user_pending_interrupt {
1144 struct timestamp_reg_info ts_reg_info;
1145 struct list_head wait_list_node;
1146 struct hl_fence fence;
1147 u64 cq_target_value;
1148 u64 *cq_kernel_addr;
1149 };
1150
1151 /**
1152 * struct hl_eq - describes the event queue (single one per device)
1153 * @hdev: pointer to the device structure
1154 * @kernel_address: holds the queue's kernel virtual address
1155 * @bus_address: holds the queue's DMA address
1156 * @ci: ci inside the queue
1157 * @prev_eqe_index: the index of the previous event queue entry. The index of
1158 * the current entry's index must be +1 of the previous one.
1159 * @check_eqe_index: do we need to check the index of the current entry vs. the
1160 * previous one. This is for backward compatibility with older
1161 * firmwares
1162 */
1163 struct hl_eq {
1164 struct hl_device *hdev;
1165 void *kernel_address;
1166 dma_addr_t bus_address;
1167 u32 ci;
1168 u32 prev_eqe_index;
1169 bool check_eqe_index;
1170 };
1171
1172 /**
1173 * struct hl_dec - describes a decoder sw instance.
1174 * @hdev: pointer to the device structure.
1175 * @completion_abnrm_work: workqueue object to run when decoder generates an error interrupt
1176 * @core_id: ID of the decoder.
1177 * @base_addr: base address of the decoder.
1178 */
1179 struct hl_dec {
1180 struct hl_device *hdev;
1181 struct work_struct completion_abnrm_work;
1182 u32 core_id;
1183 u32 base_addr;
1184 };
1185
1186 /**
1187 * enum hl_asic_type - supported ASIC types.
1188 * @ASIC_INVALID: Invalid ASIC type.
1189 * @ASIC_GOYA: Goya device (HL-1000).
1190 * @ASIC_GAUDI: Gaudi device (HL-2000).
1191 * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000).
1192 * @ASIC_GAUDI2: Gaudi2 device.
1193 * @ASIC_GAUDI2_SEC: Gaudi2 secured device.
1194 */
1195 enum hl_asic_type {
1196 ASIC_INVALID,
1197 ASIC_GOYA,
1198 ASIC_GAUDI,
1199 ASIC_GAUDI_SEC,
1200 ASIC_GAUDI2,
1201 ASIC_GAUDI2_SEC,
1202 };
1203
1204 struct hl_cs_parser;
1205
1206 /**
1207 * enum hl_pm_mng_profile - power management profile.
1208 * @PM_AUTO: internal clock is set by the Linux driver.
1209 * @PM_MANUAL: internal clock is set by the user.
1210 * @PM_LAST: last power management type.
1211 */
1212 enum hl_pm_mng_profile {
1213 PM_AUTO = 1,
1214 PM_MANUAL,
1215 PM_LAST
1216 };
1217
1218 /**
1219 * enum hl_pll_frequency - PLL frequency.
1220 * @PLL_HIGH: high frequency.
1221 * @PLL_LOW: low frequency.
1222 * @PLL_LAST: last frequency values that were configured by the user.
1223 */
1224 enum hl_pll_frequency {
1225 PLL_HIGH = 1,
1226 PLL_LOW,
1227 PLL_LAST
1228 };
1229
1230 #define PLL_REF_CLK 50
1231
1232 enum div_select_defs {
1233 DIV_SEL_REF_CLK = 0,
1234 DIV_SEL_PLL_CLK = 1,
1235 DIV_SEL_DIVIDED_REF = 2,
1236 DIV_SEL_DIVIDED_PLL = 3,
1237 };
1238
1239 enum debugfs_access_type {
1240 DEBUGFS_READ8,
1241 DEBUGFS_WRITE8,
1242 DEBUGFS_READ32,
1243 DEBUGFS_WRITE32,
1244 DEBUGFS_READ64,
1245 DEBUGFS_WRITE64,
1246 };
1247
1248 enum pci_region {
1249 PCI_REGION_CFG,
1250 PCI_REGION_SRAM,
1251 PCI_REGION_DRAM,
1252 PCI_REGION_SP_SRAM,
1253 PCI_REGION_NUMBER,
1254 };
1255
1256 /**
1257 * struct pci_mem_region - describe memory region in a PCI bar
1258 * @region_base: region base address
1259 * @region_size: region size
1260 * @bar_size: size of the BAR
1261 * @offset_in_bar: region offset into the bar
1262 * @bar_id: bar ID of the region
1263 * @used: if used 1, otherwise 0
1264 */
1265 struct pci_mem_region {
1266 u64 region_base;
1267 u64 region_size;
1268 u64 bar_size;
1269 u64 offset_in_bar;
1270 u8 bar_id;
1271 u8 used;
1272 };
1273
1274 /**
1275 * struct static_fw_load_mgr - static FW load manager
1276 * @preboot_version_max_off: max offset to preboot version
1277 * @boot_fit_version_max_off: max offset to boot fit version
1278 * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages
1279 * @cpu_cmd_status_to_host_reg: register address for CPU command status response
1280 * @cpu_boot_status_reg: boot status register
1281 * @cpu_boot_dev_status0_reg: boot device status register 0
1282 * @cpu_boot_dev_status1_reg: boot device status register 1
1283 * @boot_err0_reg: boot error register 0
1284 * @boot_err1_reg: boot error register 1
1285 * @preboot_version_offset_reg: SRAM offset to preboot version register
1286 * @boot_fit_version_offset_reg: SRAM offset to boot fit version register
1287 * @sram_offset_mask: mask for getting offset into the SRAM
1288 * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg
1289 */
1290 struct static_fw_load_mgr {
1291 u64 preboot_version_max_off;
1292 u64 boot_fit_version_max_off;
1293 u32 kmd_msg_to_cpu_reg;
1294 u32 cpu_cmd_status_to_host_reg;
1295 u32 cpu_boot_status_reg;
1296 u32 cpu_boot_dev_status0_reg;
1297 u32 cpu_boot_dev_status1_reg;
1298 u32 boot_err0_reg;
1299 u32 boot_err1_reg;
1300 u32 preboot_version_offset_reg;
1301 u32 boot_fit_version_offset_reg;
1302 u32 sram_offset_mask;
1303 u32 cpu_reset_wait_msec;
1304 };
1305
1306 /**
1307 * struct fw_response - FW response to LKD command
1308 * @ram_offset: descriptor offset into the RAM
1309 * @ram_type: RAM type containing the descriptor (SRAM/DRAM)
1310 * @status: command status
1311 */
1312 struct fw_response {
1313 u32 ram_offset;
1314 u8 ram_type;
1315 u8 status;
1316 };
1317
1318 /**
1319 * struct dynamic_fw_load_mgr - dynamic FW load manager
1320 * @response: FW to LKD response
1321 * @comm_desc: the communication descriptor with FW
1322 * @image_region: region to copy the FW image to
1323 * @fw_image_size: size of FW image to load
1324 * @wait_for_bl_timeout: timeout for waiting for boot loader to respond
1325 * @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used
1326 */
1327 struct dynamic_fw_load_mgr {
1328 struct fw_response response;
1329 struct lkd_fw_comms_desc comm_desc;
1330 struct pci_mem_region *image_region;
1331 size_t fw_image_size;
1332 u32 wait_for_bl_timeout;
1333 bool fw_desc_valid;
1334 };
1335
1336 /**
1337 * struct pre_fw_load_props - needed properties for pre-FW load
1338 * @cpu_boot_status_reg: cpu_boot_status register address
1339 * @sts_boot_dev_sts0_reg: sts_boot_dev_sts0 register address
1340 * @sts_boot_dev_sts1_reg: sts_boot_dev_sts1 register address
1341 * @boot_err0_reg: boot_err0 register address
1342 * @boot_err1_reg: boot_err1 register address
1343 * @wait_for_preboot_timeout: timeout to poll for preboot ready
1344 */
1345 struct pre_fw_load_props {
1346 u32 cpu_boot_status_reg;
1347 u32 sts_boot_dev_sts0_reg;
1348 u32 sts_boot_dev_sts1_reg;
1349 u32 boot_err0_reg;
1350 u32 boot_err1_reg;
1351 u32 wait_for_preboot_timeout;
1352 };
1353
1354 /**
1355 * struct fw_image_props - properties of FW image
1356 * @image_name: name of the image
1357 * @src_off: offset in src FW to copy from
1358 * @copy_size: amount of bytes to copy (0 to copy the whole binary)
1359 */
1360 struct fw_image_props {
1361 char *image_name;
1362 u32 src_off;
1363 u32 copy_size;
1364 };
1365
1366 /**
1367 * struct fw_load_mgr - manager FW loading process
1368 * @dynamic_loader: specific structure for dynamic load
1369 * @static_loader: specific structure for static load
1370 * @pre_fw_load_props: parameter for pre FW load
1371 * @boot_fit_img: boot fit image properties
1372 * @linux_img: linux image properties
1373 * @cpu_timeout: CPU response timeout in usec
1374 * @boot_fit_timeout: Boot fit load timeout in usec
1375 * @skip_bmc: should BMC be skipped
1376 * @sram_bar_id: SRAM bar ID
1377 * @dram_bar_id: DRAM bar ID
1378 * @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded
1379 * component. values are set according to enum hl_fw_types.
1380 */
1381 struct fw_load_mgr {
1382 union {
1383 struct dynamic_fw_load_mgr dynamic_loader;
1384 struct static_fw_load_mgr static_loader;
1385 };
1386 struct pre_fw_load_props pre_fw_load;
1387 struct fw_image_props boot_fit_img;
1388 struct fw_image_props linux_img;
1389 u32 cpu_timeout;
1390 u32 boot_fit_timeout;
1391 u8 skip_bmc;
1392 u8 sram_bar_id;
1393 u8 dram_bar_id;
1394 u8 fw_comp_loaded;
1395 };
1396
1397 struct hl_cs;
1398
1399 /**
1400 * struct engines_data - asic engines data
1401 * @buf: buffer for engines data in ascii
1402 * @actual_size: actual size of data that was written by the driver to the allocated buffer
1403 * @allocated_buf_size: total size of allocated buffer
1404 */
1405 struct engines_data {
1406 char *buf;
1407 int actual_size;
1408 u32 allocated_buf_size;
1409 };
1410
1411 /**
1412 * struct hl_asic_funcs - ASIC specific functions that are can be called from
1413 * common code.
1414 * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
1415 * @early_fini: tears down what was done in early_init.
1416 * @late_init: sets up late driver/hw state (post hw_init) - Optional.
1417 * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
1418 * @sw_init: sets up driver state, does not configure H/W.
1419 * @sw_fini: tears down driver state, does not configure H/W.
1420 * @hw_init: sets up the H/W state.
1421 * @hw_fini: tears down the H/W state.
1422 * @halt_engines: halt engines, needed for reset sequence. This also disables
1423 * interrupts from the device. Should be called before
1424 * hw_fini and before CS rollback.
1425 * @suspend: handles IP specific H/W or SW changes for suspend.
1426 * @resume: handles IP specific H/W or SW changes for resume.
1427 * @mmap: maps a memory.
1428 * @ring_doorbell: increment PI on a given QMAN.
1429 * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
1430 * function because the PQs are located in different memory areas
1431 * per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
1432 * writing the PQE must match the destination memory area
1433 * properties.
1434 * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
1435 * dma_alloc_coherent(). This is ASIC function because
1436 * its implementation is not trivial when the driver
1437 * is loaded in simulation mode (not upstreamed).
1438 * @asic_dma_free_coherent: Free coherent DMA memory by calling
1439 * dma_free_coherent(). This is ASIC function because
1440 * its implementation is not trivial when the driver
1441 * is loaded in simulation mode (not upstreamed).
1442 * @scrub_device_mem: Scrub the entire SRAM and DRAM.
1443 * @scrub_device_dram: Scrub the dram memory of the device.
1444 * @get_int_queue_base: get the internal queue base address.
1445 * @test_queues: run simple test on all queues for sanity check.
1446 * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
1447 * size of allocation is HL_DMA_POOL_BLK_SIZE.
1448 * @asic_dma_pool_free: free small DMA allocation from pool.
1449 * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
1450 * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
1451 * @asic_dma_unmap_single: unmap a single DMA buffer
1452 * @asic_dma_map_single: map a single buffer to a DMA
1453 * @hl_dma_unmap_sgtable: DMA unmap scatter-gather table.
1454 * @cs_parser: parse Command Submission.
1455 * @asic_dma_map_sgtable: DMA map scatter-gather table.
1456 * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
1457 * @update_eq_ci: update event queue CI.
1458 * @context_switch: called upon ASID context switch.
1459 * @restore_phase_topology: clear all SOBs amd MONs.
1460 * @debugfs_read_dma: debug interface for reading up to 2MB from the device's
1461 * internal memory via DMA engine.
1462 * @add_device_attr: add ASIC specific device attributes.
1463 * @handle_eqe: handle event queue entry (IRQ) from CPU-CP.
1464 * @get_events_stat: retrieve event queue entries histogram.
1465 * @read_pte: read MMU page table entry from DRAM.
1466 * @write_pte: write MMU page table entry to DRAM.
1467 * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft
1468 * (L1 only) or hard (L0 & L1) flush.
1469 * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask.
1470 * @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask.
1471 * @send_heartbeat: send is-alive packet to CPU-CP and verify response.
1472 * @debug_coresight: perform certain actions on Coresight for debugging.
1473 * @is_device_idle: return true if device is idle, false otherwise.
1474 * @compute_reset_late_init: perform certain actions needed after a compute reset
1475 * @hw_queues_lock: acquire H/W queues lock.
1476 * @hw_queues_unlock: release H/W queues lock.
1477 * @get_pci_id: retrieve PCI ID.
1478 * @get_eeprom_data: retrieve EEPROM data from F/W.
1479 * @get_monitor_dump: retrieve monitor registers dump from F/W.
1480 * @send_cpu_message: send message to F/W. If the message is timedout, the
1481 * driver will eventually reset the device. The timeout can
1482 * be determined by the calling function or it can be 0 and
1483 * then the timeout is the default timeout for the specific
1484 * ASIC
1485 * @get_hw_state: retrieve the H/W state
1486 * @pci_bars_map: Map PCI BARs.
1487 * @init_iatu: Initialize the iATU unit inside the PCI controller.
1488 * @rreg: Read a register. Needed for simulator support.
1489 * @wreg: Write a register. Needed for simulator support.
1490 * @halt_coresight: stop the ETF and ETR traces.
1491 * @ctx_init: context dependent initialization.
1492 * @ctx_fini: context dependent cleanup.
1493 * @pre_schedule_cs: Perform pre-CS-scheduling operations.
1494 * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index.
1495 * @load_firmware_to_device: load the firmware to the device's memory
1496 * @load_boot_fit_to_device: load boot fit to device's memory
1497 * @get_signal_cb_size: Get signal CB size.
1498 * @get_wait_cb_size: Get wait CB size.
1499 * @gen_signal_cb: Generate a signal CB.
1500 * @gen_wait_cb: Generate a wait CB.
1501 * @reset_sob: Reset a SOB.
1502 * @reset_sob_group: Reset SOB group
1503 * @get_device_time: Get the device time.
1504 * @pb_print_security_errors: print security errors according block and cause
1505 * @collective_wait_init_cs: Generate collective master/slave packets
1506 * and place them in the relevant cs jobs
1507 * @collective_wait_create_jobs: allocate collective wait cs jobs
1508 * @get_dec_base_addr: get the base address of a given decoder.
1509 * @scramble_addr: Routine to scramble the address prior of mapping it
1510 * in the MMU.
1511 * @descramble_addr: Routine to de-scramble the address prior of
1512 * showing it to users.
1513 * @ack_protection_bits_errors: ack and dump all security violations
1514 * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it.
1515 * also returns the size of the block if caller supplies
1516 * a valid pointer for it
1517 * @hw_block_mmap: mmap a HW block with a given id.
1518 * @enable_events_from_fw: send interrupt to firmware to notify them the
1519 * driver is ready to receive asynchronous events. This
1520 * function should be called during the first init and
1521 * after every hard-reset of the device
1522 * @ack_mmu_errors: check and ack mmu errors, page fault, access violation.
1523 * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event
1524 * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to
1525 * generic f/w compatible PLL Indexes
1526 * @init_firmware_preload_params: initialize pre FW-load parameters.
1527 * @init_firmware_loader: initialize data for FW loader.
1528 * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling
1529 * @state_dump_init: initialize constants required for state dump
1530 * @get_sob_addr: get SOB base address offset.
1531 * @set_pci_memory_regions: setting properties of PCI memory regions
1532 * @get_stream_master_qid_arr: get pointer to stream masters QID array
1533 * @check_if_razwi_happened: check if there was a razwi due to RR violation.
1534 * @access_dev_mem: access device memory
1535 * @set_dram_bar_base: set the base of the DRAM BAR
1536 * @set_engine_cores: set a config command to enigne cores
1537 * @send_device_activity: indication to FW about device availability
1538 */
1539 struct hl_asic_funcs {
1540 int (*early_init)(struct hl_device *hdev);
1541 int (*early_fini)(struct hl_device *hdev);
1542 int (*late_init)(struct hl_device *hdev);
1543 void (*late_fini)(struct hl_device *hdev);
1544 int (*sw_init)(struct hl_device *hdev);
1545 int (*sw_fini)(struct hl_device *hdev);
1546 int (*hw_init)(struct hl_device *hdev);
1547 void (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1548 void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1549 int (*suspend)(struct hl_device *hdev);
1550 int (*resume)(struct hl_device *hdev);
1551 int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1552 void *cpu_addr, dma_addr_t dma_addr, size_t size);
1553 void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
1554 void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
1555 struct hl_bd *bd);
1556 void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
1557 dma_addr_t *dma_handle, gfp_t flag);
1558 void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
1559 void *cpu_addr, dma_addr_t dma_handle);
1560 int (*scrub_device_mem)(struct hl_device *hdev);
1561 int (*scrub_device_dram)(struct hl_device *hdev, u64 val);
1562 void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
1563 dma_addr_t *dma_handle, u16 *queue_len);
1564 int (*test_queues)(struct hl_device *hdev);
1565 void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
1566 gfp_t mem_flags, dma_addr_t *dma_handle);
1567 void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
1568 dma_addr_t dma_addr);
1569 void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
1570 size_t size, dma_addr_t *dma_handle);
1571 void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
1572 size_t size, void *vaddr);
1573 void (*asic_dma_unmap_single)(struct hl_device *hdev,
1574 dma_addr_t dma_addr, int len,
1575 enum dma_data_direction dir);
1576 dma_addr_t (*asic_dma_map_single)(struct hl_device *hdev,
1577 void *addr, int len,
1578 enum dma_data_direction dir);
1579 void (*hl_dma_unmap_sgtable)(struct hl_device *hdev,
1580 struct sg_table *sgt,
1581 enum dma_data_direction dir);
1582 int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
1583 int (*asic_dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt,
1584 enum dma_data_direction dir);
1585 void (*add_end_of_cb_packets)(struct hl_device *hdev,
1586 void *kernel_address, u32 len,
1587 u32 original_len,
1588 u64 cq_addr, u32 cq_val, u32 msix_num,
1589 bool eb);
1590 void (*update_eq_ci)(struct hl_device *hdev, u32 val);
1591 int (*context_switch)(struct hl_device *hdev, u32 asid);
1592 void (*restore_phase_topology)(struct hl_device *hdev);
1593 int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size,
1594 void *blob_addr);
1595 void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp,
1596 struct attribute_group *dev_vrm_attr_grp);
1597 void (*handle_eqe)(struct hl_device *hdev,
1598 struct hl_eq_entry *eq_entry);
1599 void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
1600 u32 *size);
1601 u64 (*read_pte)(struct hl_device *hdev, u64 addr);
1602 void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
1603 int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard,
1604 u32 flags);
1605 int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
1606 u32 flags, u32 asid, u64 va, u64 size);
1607 int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
1608 int (*send_heartbeat)(struct hl_device *hdev);
1609 int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data);
1610 bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len,
1611 struct engines_data *e);
1612 int (*compute_reset_late_init)(struct hl_device *hdev);
1613 void (*hw_queues_lock)(struct hl_device *hdev);
1614 void (*hw_queues_unlock)(struct hl_device *hdev);
1615 u32 (*get_pci_id)(struct hl_device *hdev);
1616 int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size);
1617 int (*get_monitor_dump)(struct hl_device *hdev, void *data);
1618 int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
1619 u16 len, u32 timeout, u64 *result);
1620 int (*pci_bars_map)(struct hl_device *hdev);
1621 int (*init_iatu)(struct hl_device *hdev);
1622 u32 (*rreg)(struct hl_device *hdev, u32 reg);
1623 void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
1624 void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx);
1625 int (*ctx_init)(struct hl_ctx *ctx);
1626 void (*ctx_fini)(struct hl_ctx *ctx);
1627 int (*pre_schedule_cs)(struct hl_cs *cs);
1628 u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx);
1629 int (*load_firmware_to_device)(struct hl_device *hdev);
1630 int (*load_boot_fit_to_device)(struct hl_device *hdev);
1631 u32 (*get_signal_cb_size)(struct hl_device *hdev);
1632 u32 (*get_wait_cb_size)(struct hl_device *hdev);
1633 u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id,
1634 u32 size, bool eb);
1635 u32 (*gen_wait_cb)(struct hl_device *hdev,
1636 struct hl_gen_wait_properties *prop);
1637 void (*reset_sob)(struct hl_device *hdev, void *data);
1638 void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group);
1639 u64 (*get_device_time)(struct hl_device *hdev);
1640 void (*pb_print_security_errors)(struct hl_device *hdev,
1641 u32 block_addr, u32 cause, u32 offended_addr);
1642 int (*collective_wait_init_cs)(struct hl_cs *cs);
1643 int (*collective_wait_create_jobs)(struct hl_device *hdev,
1644 struct hl_ctx *ctx, struct hl_cs *cs,
1645 u32 wait_queue_id, u32 collective_engine_id,
1646 u32 encaps_signal_offset);
1647 u32 (*get_dec_base_addr)(struct hl_device *hdev, u32 core_id);
1648 u64 (*scramble_addr)(struct hl_device *hdev, u64 addr);
1649 u64 (*descramble_addr)(struct hl_device *hdev, u64 addr);
1650 void (*ack_protection_bits_errors)(struct hl_device *hdev);
1651 int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr,
1652 u32 *block_size, u32 *block_id);
1653 int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1654 u32 block_id, u32 block_size);
1655 void (*enable_events_from_fw)(struct hl_device *hdev);
1656 int (*ack_mmu_errors)(struct hl_device *hdev, u64 mmu_cap_mask);
1657 void (*get_msi_info)(__le32 *table);
1658 int (*map_pll_idx_to_fw_idx)(u32 pll_idx);
1659 void (*init_firmware_preload_params)(struct hl_device *hdev);
1660 void (*init_firmware_loader)(struct hl_device *hdev);
1661 void (*init_cpu_scrambler_dram)(struct hl_device *hdev);
1662 void (*state_dump_init)(struct hl_device *hdev);
1663 u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id);
1664 void (*set_pci_memory_regions)(struct hl_device *hdev);
1665 u32* (*get_stream_master_qid_arr)(void);
1666 void (*check_if_razwi_happened)(struct hl_device *hdev);
1667 int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
1668 u32 page_size, u32 *real_page_size, bool is_dram_addr);
1669 int (*access_dev_mem)(struct hl_device *hdev, enum pci_region region_type,
1670 u64 addr, u64 *val, enum debugfs_access_type acc_type);
1671 u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr);
1672 int (*set_engine_cores)(struct hl_device *hdev, u32 *core_ids,
1673 u32 num_cores, u32 core_command);
1674 int (*send_device_activity)(struct hl_device *hdev, bool open);
1675 };
1676
1677
1678 /*
1679 * CONTEXTS
1680 */
1681
1682 #define HL_KERNEL_ASID_ID 0
1683
1684 /**
1685 * enum hl_va_range_type - virtual address range type.
1686 * @HL_VA_RANGE_TYPE_HOST: range type of host pages
1687 * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages
1688 * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages
1689 */
1690 enum hl_va_range_type {
1691 HL_VA_RANGE_TYPE_HOST,
1692 HL_VA_RANGE_TYPE_HOST_HUGE,
1693 HL_VA_RANGE_TYPE_DRAM,
1694 HL_VA_RANGE_TYPE_MAX
1695 };
1696
1697 /**
1698 * struct hl_va_range - virtual addresses range.
1699 * @lock: protects the virtual addresses list.
1700 * @list: list of virtual addresses blocks available for mappings.
1701 * @start_addr: range start address.
1702 * @end_addr: range end address.
1703 * @page_size: page size of this va range.
1704 */
1705 struct hl_va_range {
1706 struct mutex lock;
1707 struct list_head list;
1708 u64 start_addr;
1709 u64 end_addr;
1710 u32 page_size;
1711 };
1712
1713 /**
1714 * struct hl_cs_counters_atomic - command submission counters
1715 * @out_of_mem_drop_cnt: dropped due to memory allocation issue
1716 * @parsing_drop_cnt: dropped due to error in packet parsing
1717 * @queue_full_drop_cnt: dropped due to queue full
1718 * @device_in_reset_drop_cnt: dropped due to device in reset
1719 * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight
1720 * @validation_drop_cnt: dropped due to error in validation
1721 */
1722 struct hl_cs_counters_atomic {
1723 atomic64_t out_of_mem_drop_cnt;
1724 atomic64_t parsing_drop_cnt;
1725 atomic64_t queue_full_drop_cnt;
1726 atomic64_t device_in_reset_drop_cnt;
1727 atomic64_t max_cs_in_flight_drop_cnt;
1728 atomic64_t validation_drop_cnt;
1729 };
1730
1731 /**
1732 * struct hl_dmabuf_priv - a dma-buf private object.
1733 * @dmabuf: pointer to dma-buf object.
1734 * @ctx: pointer to the dma-buf owner's context.
1735 * @phys_pg_pack: pointer to physical page pack if the dma-buf was exported for
1736 * memory allocation handle.
1737 * @device_address: physical address of the device's memory. Relevant only
1738 * if phys_pg_pack is NULL (dma-buf was exported from address).
1739 * The total size can be taken from the dmabuf object.
1740 */
1741 struct hl_dmabuf_priv {
1742 struct dma_buf *dmabuf;
1743 struct hl_ctx *ctx;
1744 struct hl_vm_phys_pg_pack *phys_pg_pack;
1745 uint64_t device_address;
1746 };
1747
1748 #define HL_CS_OUTCOME_HISTORY_LEN 256
1749
1750 /**
1751 * struct hl_cs_outcome - represents a single completed CS outcome
1752 * @list_link: link to either container's used list or free list
1753 * @map_link: list to the container hash map
1754 * @ts: completion ts
1755 * @seq: the original cs sequence
1756 * @error: error code cs completed with, if any
1757 */
1758 struct hl_cs_outcome {
1759 struct list_head list_link;
1760 struct hlist_node map_link;
1761 ktime_t ts;
1762 u64 seq;
1763 int error;
1764 };
1765
1766 /**
1767 * struct hl_cs_outcome_store - represents a limited store of completed CS outcomes
1768 * @outcome_map: index of completed CS searchable by sequence number
1769 * @used_list: list of outcome objects currently in use
1770 * @free_list: list of outcome objects currently not in use
1771 * @nodes_pool: a static pool of pre-allocated outcome objects
1772 * @db_lock: any operation on the store must take this lock
1773 */
1774 struct hl_cs_outcome_store {
1775 DECLARE_HASHTABLE(outcome_map, 8);
1776 struct list_head used_list;
1777 struct list_head free_list;
1778 struct hl_cs_outcome nodes_pool[HL_CS_OUTCOME_HISTORY_LEN];
1779 spinlock_t db_lock;
1780 };
1781
1782 /**
1783 * struct hl_ctx - user/kernel context.
1784 * @mem_hash: holds mapping from virtual address to virtual memory area
1785 * descriptor (hl_vm_phys_pg_list or hl_userptr).
1786 * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
1787 * @hr_mmu_phys_hash: if host-resident MMU is used, holds a mapping from
1788 * MMU-hop-page physical address to its host-resident
1789 * pgt_info structure.
1790 * @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
1791 * @hdev: pointer to the device structure.
1792 * @refcount: reference counter for the context. Context is released only when
1793 * this hits 0l. It is incremented on CS and CS_WAIT.
1794 * @cs_pending: array of hl fence objects representing pending CS.
1795 * @outcome_store: storage data structure used to remember outcomes of completed
1796 * command submissions for a long time after CS id wraparound.
1797 * @va_range: holds available virtual addresses for host and dram mappings.
1798 * @mem_hash_lock: protects the mem_hash.
1799 * @hw_block_list_lock: protects the HW block memory list.
1800 * @debugfs_list: node in debugfs list of contexts.
1801 * @hw_block_mem_list: list of HW block virtual mapped addresses.
1802 * @cs_counters: context command submission counters.
1803 * @cb_va_pool: device VA pool for command buffers which are mapped to the
1804 * device's MMU.
1805 * @sig_mgr: encaps signals handle manager.
1806 * @cb_va_pool_base: the base address for the device VA pool
1807 * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
1808 * to user so user could inquire about CS. It is used as
1809 * index to cs_pending array.
1810 * @dram_default_hops: array that holds all hops addresses needed for default
1811 * DRAM mapping.
1812 * @cs_lock: spinlock to protect cs_sequence.
1813 * @dram_phys_mem: amount of used physical DRAM memory by this context.
1814 * @thread_ctx_switch_token: token to prevent multiple threads of the same
1815 * context from running the context switch phase.
1816 * Only a single thread should run it.
1817 * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
1818 * the context switch phase from moving to their
1819 * execution phase before the context switch phase
1820 * has finished.
1821 * @asid: context's unique address space ID in the device's MMU.
1822 * @handle: context's opaque handle for user
1823 */
1824 struct hl_ctx {
1825 DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
1826 DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
1827 DECLARE_HASHTABLE(hr_mmu_phys_hash, MMU_HASH_TABLE_BITS);
1828 struct hl_fpriv *hpriv;
1829 struct hl_device *hdev;
1830 struct kref refcount;
1831 struct hl_fence **cs_pending;
1832 struct hl_cs_outcome_store outcome_store;
1833 struct hl_va_range *va_range[HL_VA_RANGE_TYPE_MAX];
1834 struct mutex mem_hash_lock;
1835 struct mutex hw_block_list_lock;
1836 struct list_head debugfs_list;
1837 struct list_head hw_block_mem_list;
1838 struct hl_cs_counters_atomic cs_counters;
1839 struct gen_pool *cb_va_pool;
1840 struct hl_encaps_signals_mgr sig_mgr;
1841 u64 cb_va_pool_base;
1842 u64 cs_sequence;
1843 u64 *dram_default_hops;
1844 spinlock_t cs_lock;
1845 atomic64_t dram_phys_mem;
1846 atomic_t thread_ctx_switch_token;
1847 u32 thread_ctx_switch_wait_token;
1848 u32 asid;
1849 u32 handle;
1850 };
1851
1852 /**
1853 * struct hl_ctx_mgr - for handling multiple contexts.
1854 * @lock: protects ctx_handles.
1855 * @handles: idr to hold all ctx handles.
1856 */
1857 struct hl_ctx_mgr {
1858 struct mutex lock;
1859 struct idr handles;
1860 };
1861
1862
1863 /*
1864 * COMMAND SUBMISSIONS
1865 */
1866
1867 /**
1868 * struct hl_userptr - memory mapping chunk information
1869 * @vm_type: type of the VM.
1870 * @job_node: linked-list node for hanging the object on the Job's list.
1871 * @pages: pointer to struct page array
1872 * @npages: size of @pages array
1873 * @sgt: pointer to the scatter-gather table that holds the pages.
1874 * @dir: for DMA unmapping, the direction must be supplied, so save it.
1875 * @debugfs_list: node in debugfs list of command submissions.
1876 * @pid: the pid of the user process owning the memory
1877 * @addr: user-space virtual address of the start of the memory area.
1878 * @size: size of the memory area to pin & map.
1879 * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
1880 */
1881 struct hl_userptr {
1882 enum vm_type vm_type; /* must be first */
1883 struct list_head job_node;
1884 struct page **pages;
1885 unsigned int npages;
1886 struct sg_table *sgt;
1887 enum dma_data_direction dir;
1888 struct list_head debugfs_list;
1889 pid_t pid;
1890 u64 addr;
1891 u64 size;
1892 u8 dma_mapped;
1893 };
1894
1895 /**
1896 * struct hl_cs - command submission.
1897 * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
1898 * @ctx: the context this CS belongs to.
1899 * @job_list: list of the CS's jobs in the various queues.
1900 * @job_lock: spinlock for the CS's jobs list. Needed for free_job.
1901 * @refcount: reference counter for usage of the CS.
1902 * @fence: pointer to the fence object of this CS.
1903 * @signal_fence: pointer to the fence object of the signal CS (used by wait
1904 * CS only).
1905 * @finish_work: workqueue object to run when CS is completed by H/W.
1906 * @work_tdr: delayed work node for TDR.
1907 * @mirror_node : node in device mirror list of command submissions.
1908 * @staged_cs_node: node in the staged cs list.
1909 * @debugfs_list: node in debugfs list of command submissions.
1910 * @encaps_sig_hdl: holds the encaps signals handle.
1911 * @sequence: the sequence number of this CS.
1912 * @staged_sequence: the sequence of the staged submission this CS is part of,
1913 * relevant only if staged_cs is set.
1914 * @timeout_jiffies: cs timeout in jiffies.
1915 * @submission_time_jiffies: submission time of the cs
1916 * @type: CS_TYPE_*.
1917 * @jobs_cnt: counter of submitted jobs on all queues.
1918 * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs.
1919 * @sob_addr_offset: sob offset from the configuration base address.
1920 * @initial_sob_count: count of completed signals in SOB before current submission of signal or
1921 * cs with encaps signals.
1922 * @submitted: true if CS was submitted to H/W.
1923 * @completed: true if CS was completed by device.
1924 * @timedout : true if CS was timedout.
1925 * @tdr_active: true if TDR was activated for this CS (to prevent
1926 * double TDR activation).
1927 * @aborted: true if CS was aborted due to some device error.
1928 * @timestamp: true if a timestamp must be captured upon completion.
1929 * @staged_last: true if this is the last staged CS and needs completion.
1930 * @staged_first: true if this is the first staged CS and we need to receive
1931 * timeout for this CS.
1932 * @staged_cs: true if this CS is part of a staged submission.
1933 * @skip_reset_on_timeout: true if we shall not reset the device in case
1934 * timeout occurs (debug scenario).
1935 * @encaps_signals: true if this CS has encaps reserved signals.
1936 */
1937 struct hl_cs {
1938 u16 *jobs_in_queue_cnt;
1939 struct hl_ctx *ctx;
1940 struct list_head job_list;
1941 spinlock_t job_lock;
1942 struct kref refcount;
1943 struct hl_fence *fence;
1944 struct hl_fence *signal_fence;
1945 struct work_struct finish_work;
1946 struct delayed_work work_tdr;
1947 struct list_head mirror_node;
1948 struct list_head staged_cs_node;
1949 struct list_head debugfs_list;
1950 struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
1951 u64 sequence;
1952 u64 staged_sequence;
1953 u64 timeout_jiffies;
1954 u64 submission_time_jiffies;
1955 enum hl_cs_type type;
1956 u32 jobs_cnt;
1957 u32 encaps_sig_hdl_id;
1958 u32 sob_addr_offset;
1959 u16 initial_sob_count;
1960 u8 submitted;
1961 u8 completed;
1962 u8 timedout;
1963 u8 tdr_active;
1964 u8 aborted;
1965 u8 timestamp;
1966 u8 staged_last;
1967 u8 staged_first;
1968 u8 staged_cs;
1969 u8 skip_reset_on_timeout;
1970 u8 encaps_signals;
1971 };
1972
1973 /**
1974 * struct hl_cs_job - command submission job.
1975 * @cs_node: the node to hang on the CS jobs list.
1976 * @cs: the CS this job belongs to.
1977 * @user_cb: the CB we got from the user.
1978 * @patched_cb: in case of patching, this is internal CB which is submitted on
1979 * the queue instead of the CB we got from the IOCTL.
1980 * @finish_work: workqueue object to run when job is completed.
1981 * @userptr_list: linked-list of userptr mappings that belong to this job and
1982 * wait for completion.
1983 * @debugfs_list: node in debugfs list of command submission jobs.
1984 * @refcount: reference counter for usage of the CS job.
1985 * @queue_type: the type of the H/W queue this job is submitted to.
1986 * @id: the id of this job inside a CS.
1987 * @hw_queue_id: the id of the H/W queue this job is submitted to.
1988 * @user_cb_size: the actual size of the CB we got from the user.
1989 * @job_cb_size: the actual size of the CB that we put on the queue.
1990 * @encaps_sig_wait_offset: encapsulated signals offset, which allow user
1991 * to wait on part of the reserved signals.
1992 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
1993 * handle to a kernel-allocated CB object, false
1994 * otherwise (SRAM/DRAM/host address).
1995 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
1996 * info is needed later, when adding the 2xMSG_PROT at the
1997 * end of the JOB, to know which barriers to put in the
1998 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
1999 * have streams so the engine can't be busy by another
2000 * stream.
2001 */
2002 struct hl_cs_job {
2003 struct list_head cs_node;
2004 struct hl_cs *cs;
2005 struct hl_cb *user_cb;
2006 struct hl_cb *patched_cb;
2007 struct work_struct finish_work;
2008 struct list_head userptr_list;
2009 struct list_head debugfs_list;
2010 struct kref refcount;
2011 enum hl_queue_type queue_type;
2012 u32 id;
2013 u32 hw_queue_id;
2014 u32 user_cb_size;
2015 u32 job_cb_size;
2016 u32 encaps_sig_wait_offset;
2017 u8 is_kernel_allocated_cb;
2018 u8 contains_dma_pkt;
2019 };
2020
2021 /**
2022 * struct hl_cs_parser - command submission parser properties.
2023 * @user_cb: the CB we got from the user.
2024 * @patched_cb: in case of patching, this is internal CB which is submitted on
2025 * the queue instead of the CB we got from the IOCTL.
2026 * @job_userptr_list: linked-list of userptr mappings that belong to the related
2027 * job and wait for completion.
2028 * @cs_sequence: the sequence number of the related CS.
2029 * @queue_type: the type of the H/W queue this job is submitted to.
2030 * @ctx_id: the ID of the context the related CS belongs to.
2031 * @hw_queue_id: the id of the H/W queue this job is submitted to.
2032 * @user_cb_size: the actual size of the CB we got from the user.
2033 * @patched_cb_size: the size of the CB after parsing.
2034 * @job_id: the id of the related job inside the related CS.
2035 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
2036 * handle to a kernel-allocated CB object, false
2037 * otherwise (SRAM/DRAM/host address).
2038 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
2039 * info is needed later, when adding the 2xMSG_PROT at the
2040 * end of the JOB, to know which barriers to put in the
2041 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
2042 * have streams so the engine can't be busy by another
2043 * stream.
2044 * @completion: true if we need completion for this CS.
2045 */
2046 struct hl_cs_parser {
2047 struct hl_cb *user_cb;
2048 struct hl_cb *patched_cb;
2049 struct list_head *job_userptr_list;
2050 u64 cs_sequence;
2051 enum hl_queue_type queue_type;
2052 u32 ctx_id;
2053 u32 hw_queue_id;
2054 u32 user_cb_size;
2055 u32 patched_cb_size;
2056 u8 job_id;
2057 u8 is_kernel_allocated_cb;
2058 u8 contains_dma_pkt;
2059 u8 completion;
2060 };
2061
2062 /*
2063 * MEMORY STRUCTURE
2064 */
2065
2066 /**
2067 * struct hl_vm_hash_node - hash element from virtual address to virtual
2068 * memory area descriptor (hl_vm_phys_pg_list or
2069 * hl_userptr).
2070 * @node: node to hang on the hash table in context object.
2071 * @vaddr: key virtual address.
2072 * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
2073 */
2074 struct hl_vm_hash_node {
2075 struct hlist_node node;
2076 u64 vaddr;
2077 void *ptr;
2078 };
2079
2080 /**
2081 * struct hl_vm_hw_block_list_node - list element from user virtual address to
2082 * HW block id.
2083 * @node: node to hang on the list in context object.
2084 * @ctx: the context this node belongs to.
2085 * @vaddr: virtual address of the HW block.
2086 * @block_size: size of the block.
2087 * @mapped_size: size of the block which is mapped. May change if partial un-mappings are done.
2088 * @id: HW block id (handle).
2089 */
2090 struct hl_vm_hw_block_list_node {
2091 struct list_head node;
2092 struct hl_ctx *ctx;
2093 unsigned long vaddr;
2094 u32 block_size;
2095 u32 mapped_size;
2096 u32 id;
2097 };
2098
2099 /**
2100 * struct hl_vm_phys_pg_pack - physical page pack.
2101 * @vm_type: describes the type of the virtual area descriptor.
2102 * @pages: the physical page array.
2103 * @npages: num physical pages in the pack.
2104 * @total_size: total size of all the pages in this list.
2105 * @node: used to attach to deletion list that is used when all the allocations are cleared
2106 * at the teardown of the context.
2107 * @mapping_cnt: number of shared mappings.
2108 * @exporting_cnt: number of dma-buf exporting.
2109 * @asid: the context related to this list.
2110 * @page_size: size of each page in the pack.
2111 * @flags: HL_MEM_* flags related to this list.
2112 * @handle: the provided handle related to this list.
2113 * @offset: offset from the first page.
2114 * @contiguous: is contiguous physical memory.
2115 * @created_from_userptr: is product of host virtual address.
2116 */
2117 struct hl_vm_phys_pg_pack {
2118 enum vm_type vm_type; /* must be first */
2119 u64 *pages;
2120 u64 npages;
2121 u64 total_size;
2122 struct list_head node;
2123 atomic_t mapping_cnt;
2124 u32 exporting_cnt;
2125 u32 asid;
2126 u32 page_size;
2127 u32 flags;
2128 u32 handle;
2129 u32 offset;
2130 u8 contiguous;
2131 u8 created_from_userptr;
2132 };
2133
2134 /**
2135 * struct hl_vm_va_block - virtual range block information.
2136 * @node: node to hang on the virtual range list in context object.
2137 * @start: virtual range start address.
2138 * @end: virtual range end address.
2139 * @size: virtual range size.
2140 */
2141 struct hl_vm_va_block {
2142 struct list_head node;
2143 u64 start;
2144 u64 end;
2145 u64 size;
2146 };
2147
2148 /**
2149 * struct hl_vm - virtual memory manager for MMU.
2150 * @dram_pg_pool: pool for DRAM physical pages of 2MB.
2151 * @dram_pg_pool_refcount: reference counter for the pool usage.
2152 * @idr_lock: protects the phys_pg_list_handles.
2153 * @phys_pg_pack_handles: idr to hold all device allocations handles.
2154 * @init_done: whether initialization was done. We need this because VM
2155 * initialization might be skipped during device initialization.
2156 */
2157 struct hl_vm {
2158 struct gen_pool *dram_pg_pool;
2159 struct kref dram_pg_pool_refcount;
2160 spinlock_t idr_lock;
2161 struct idr phys_pg_pack_handles;
2162 u8 init_done;
2163 };
2164
2165
2166 /*
2167 * DEBUG, PROFILING STRUCTURE
2168 */
2169
2170 /**
2171 * struct hl_debug_params - Coresight debug parameters.
2172 * @input: pointer to component specific input parameters.
2173 * @output: pointer to component specific output parameters.
2174 * @output_size: size of output buffer.
2175 * @reg_idx: relevant register ID.
2176 * @op: component operation to execute.
2177 * @enable: true if to enable component debugging, false otherwise.
2178 */
2179 struct hl_debug_params {
2180 void *input;
2181 void *output;
2182 u32 output_size;
2183 u32 reg_idx;
2184 u32 op;
2185 bool enable;
2186 };
2187
2188 /**
2189 * struct hl_notifier_event - holds the notifier data structure
2190 * @eventfd: the event file descriptor to raise the notifications
2191 * @lock: mutex lock to protect the notifier data flows
2192 * @events_mask: indicates the bitmap events
2193 */
2194 struct hl_notifier_event {
2195 struct eventfd_ctx *eventfd;
2196 struct mutex lock;
2197 u64 events_mask;
2198 };
2199
2200 /*
2201 * FILE PRIVATE STRUCTURE
2202 */
2203
2204 /**
2205 * struct hl_fpriv - process information stored in FD private data.
2206 * @hdev: habanalabs device structure.
2207 * @filp: pointer to the given file structure.
2208 * @taskpid: current process ID.
2209 * @ctx: current executing context. TODO: remove for multiple ctx per process
2210 * @ctx_mgr: context manager to handle multiple context for this FD.
2211 * @mem_mgr: manager descriptor for memory exportable via mmap
2212 * @notifier_event: notifier eventfd towards user process
2213 * @debugfs_list: list of relevant ASIC debugfs.
2214 * @dev_node: node in the device list of file private data
2215 * @refcount: number of related contexts.
2216 * @restore_phase_mutex: lock for context switch and restore phase.
2217 * @ctx_lock: protects the pointer to current executing context pointer. TODO: remove for multiple
2218 * ctx per process.
2219 */
2220 struct hl_fpriv {
2221 struct hl_device *hdev;
2222 struct file *filp;
2223 struct pid *taskpid;
2224 struct hl_ctx *ctx;
2225 struct hl_ctx_mgr ctx_mgr;
2226 struct hl_mem_mgr mem_mgr;
2227 struct hl_notifier_event notifier_event;
2228 struct list_head debugfs_list;
2229 struct list_head dev_node;
2230 struct kref refcount;
2231 struct mutex restore_phase_mutex;
2232 struct mutex ctx_lock;
2233 };
2234
2235
2236 /*
2237 * DebugFS
2238 */
2239
2240 /**
2241 * struct hl_info_list - debugfs file ops.
2242 * @name: file name.
2243 * @show: function to output information.
2244 * @write: function to write to the file.
2245 */
2246 struct hl_info_list {
2247 const char *name;
2248 int (*show)(struct seq_file *s, void *data);
2249 ssize_t (*write)(struct file *file, const char __user *buf,
2250 size_t count, loff_t *f_pos);
2251 };
2252
2253 /**
2254 * struct hl_debugfs_entry - debugfs dentry wrapper.
2255 * @info_ent: dentry related ops.
2256 * @dev_entry: ASIC specific debugfs manager.
2257 */
2258 struct hl_debugfs_entry {
2259 const struct hl_info_list *info_ent;
2260 struct hl_dbg_device_entry *dev_entry;
2261 };
2262
2263 /**
2264 * struct hl_dbg_device_entry - ASIC specific debugfs manager.
2265 * @root: root dentry.
2266 * @hdev: habanalabs device structure.
2267 * @entry_arr: array of available hl_debugfs_entry.
2268 * @file_list: list of available debugfs files.
2269 * @file_mutex: protects file_list.
2270 * @cb_list: list of available CBs.
2271 * @cb_spinlock: protects cb_list.
2272 * @cs_list: list of available CSs.
2273 * @cs_spinlock: protects cs_list.
2274 * @cs_job_list: list of available CB jobs.
2275 * @cs_job_spinlock: protects cs_job_list.
2276 * @userptr_list: list of available userptrs (virtual memory chunk descriptor).
2277 * @userptr_spinlock: protects userptr_list.
2278 * @ctx_mem_hash_list: list of available contexts with MMU mappings.
2279 * @ctx_mem_hash_spinlock: protects cb_list.
2280 * @data_dma_blob_desc: data DMA descriptor of blob.
2281 * @mon_dump_blob_desc: monitor dump descriptor of blob.
2282 * @state_dump: data of the system states in case of a bad cs.
2283 * @state_dump_sem: protects state_dump.
2284 * @addr: next address to read/write from/to in read/write32.
2285 * @mmu_addr: next virtual address to translate to physical address in mmu_show.
2286 * @mmu_cap_mask: mmu hw capability mask, to be used in mmu_ack_error.
2287 * @userptr_lookup: the target user ptr to look up for on demand.
2288 * @mmu_asid: ASID to use while translating in mmu_show.
2289 * @state_dump_head: index of the latest state dump
2290 * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
2291 * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read.
2292 * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read.
2293 * @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read.
2294 */
2295 struct hl_dbg_device_entry {
2296 struct dentry *root;
2297 struct hl_device *hdev;
2298 struct hl_debugfs_entry *entry_arr;
2299 struct list_head file_list;
2300 struct mutex file_mutex;
2301 struct list_head cb_list;
2302 spinlock_t cb_spinlock;
2303 struct list_head cs_list;
2304 spinlock_t cs_spinlock;
2305 struct list_head cs_job_list;
2306 spinlock_t cs_job_spinlock;
2307 struct list_head userptr_list;
2308 spinlock_t userptr_spinlock;
2309 struct list_head ctx_mem_hash_list;
2310 spinlock_t ctx_mem_hash_spinlock;
2311 struct debugfs_blob_wrapper data_dma_blob_desc;
2312 struct debugfs_blob_wrapper mon_dump_blob_desc;
2313 char *state_dump[HL_STATE_DUMP_HIST_LEN];
2314 struct rw_semaphore state_dump_sem;
2315 u64 addr;
2316 u64 mmu_addr;
2317 u64 mmu_cap_mask;
2318 u64 userptr_lookup;
2319 u32 mmu_asid;
2320 u32 state_dump_head;
2321 u8 i2c_bus;
2322 u8 i2c_addr;
2323 u8 i2c_reg;
2324 u8 i2c_len;
2325 };
2326
2327 /**
2328 * struct hl_hw_obj_name_entry - single hw object name, member of
2329 * hl_state_dump_specs
2330 * @node: link to the containing hash table
2331 * @name: hw object name
2332 * @id: object identifier
2333 */
2334 struct hl_hw_obj_name_entry {
2335 struct hlist_node node;
2336 const char *name;
2337 u32 id;
2338 };
2339
2340 enum hl_state_dump_specs_props {
2341 SP_SYNC_OBJ_BASE_ADDR,
2342 SP_NEXT_SYNC_OBJ_ADDR,
2343 SP_SYNC_OBJ_AMOUNT,
2344 SP_MON_OBJ_WR_ADDR_LOW,
2345 SP_MON_OBJ_WR_ADDR_HIGH,
2346 SP_MON_OBJ_WR_DATA,
2347 SP_MON_OBJ_ARM_DATA,
2348 SP_MON_OBJ_STATUS,
2349 SP_MONITORS_AMOUNT,
2350 SP_TPC0_CMDQ,
2351 SP_TPC0_CFG_SO,
2352 SP_NEXT_TPC,
2353 SP_MME_CMDQ,
2354 SP_MME_CFG_SO,
2355 SP_NEXT_MME,
2356 SP_DMA_CMDQ,
2357 SP_DMA_CFG_SO,
2358 SP_DMA_QUEUES_OFFSET,
2359 SP_NUM_OF_MME_ENGINES,
2360 SP_SUB_MME_ENG_NUM,
2361 SP_NUM_OF_DMA_ENGINES,
2362 SP_NUM_OF_TPC_ENGINES,
2363 SP_ENGINE_NUM_OF_QUEUES,
2364 SP_ENGINE_NUM_OF_STREAMS,
2365 SP_ENGINE_NUM_OF_FENCES,
2366 SP_FENCE0_CNT_OFFSET,
2367 SP_FENCE0_RDATA_OFFSET,
2368 SP_CP_STS_OFFSET,
2369 SP_NUM_CORES,
2370
2371 SP_MAX
2372 };
2373
2374 enum hl_sync_engine_type {
2375 ENGINE_TPC,
2376 ENGINE_DMA,
2377 ENGINE_MME,
2378 };
2379
2380 /**
2381 * struct hl_mon_state_dump - represents a state dump of a single monitor
2382 * @id: monitor id
2383 * @wr_addr_low: address monitor will write to, low bits
2384 * @wr_addr_high: address monitor will write to, high bits
2385 * @wr_data: data monitor will write
2386 * @arm_data: register value containing monitor configuration
2387 * @status: monitor status
2388 */
2389 struct hl_mon_state_dump {
2390 u32 id;
2391 u32 wr_addr_low;
2392 u32 wr_addr_high;
2393 u32 wr_data;
2394 u32 arm_data;
2395 u32 status;
2396 };
2397
2398 /**
2399 * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry
2400 * @engine_type: type of the engine
2401 * @engine_id: id of the engine
2402 * @sync_id: id of the sync object
2403 */
2404 struct hl_sync_to_engine_map_entry {
2405 struct hlist_node node;
2406 enum hl_sync_engine_type engine_type;
2407 u32 engine_id;
2408 u32 sync_id;
2409 };
2410
2411 /**
2412 * struct hl_sync_to_engine_map - maps sync object id to associated engine id
2413 * @tb: hash table containing the mapping, each element is of type
2414 * struct hl_sync_to_engine_map_entry
2415 */
2416 struct hl_sync_to_engine_map {
2417 DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS);
2418 };
2419
2420 /**
2421 * struct hl_state_dump_specs_funcs - virtual functions used by the state dump
2422 * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine
2423 * @print_single_monitor: format monitor data as string
2424 * @monitor_valid: return true if given monitor dump is valid
2425 * @print_fences_single_engine: format fences data as string
2426 */
2427 struct hl_state_dump_specs_funcs {
2428 int (*gen_sync_to_engine_map)(struct hl_device *hdev,
2429 struct hl_sync_to_engine_map *map);
2430 int (*print_single_monitor)(char **buf, size_t *size, size_t *offset,
2431 struct hl_device *hdev,
2432 struct hl_mon_state_dump *mon);
2433 int (*monitor_valid)(struct hl_mon_state_dump *mon);
2434 int (*print_fences_single_engine)(struct hl_device *hdev,
2435 u64 base_offset,
2436 u64 status_base_offset,
2437 enum hl_sync_engine_type engine_type,
2438 u32 engine_id, char **buf,
2439 size_t *size, size_t *offset);
2440 };
2441
2442 /**
2443 * struct hl_state_dump_specs - defines ASIC known hw objects names
2444 * @so_id_to_str_tb: sync objects names index table
2445 * @monitor_id_to_str_tb: monitors names index table
2446 * @funcs: virtual functions used for state dump
2447 * @sync_namager_names: readable names for sync manager if available (ex: N_E)
2448 * @props: pointer to a per asic const props array required for state dump
2449 */
2450 struct hl_state_dump_specs {
2451 DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2452 DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2453 struct hl_state_dump_specs_funcs funcs;
2454 const char * const *sync_namager_names;
2455 s64 *props;
2456 };
2457
2458
2459 /*
2460 * DEVICES
2461 */
2462
2463 #define HL_STR_MAX 32
2464
2465 #define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1)
2466
2467 /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
2468 * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
2469 */
2470 #define HL_MAX_MINORS 256
2471
2472 /*
2473 * Registers read & write functions.
2474 */
2475
2476 u32 hl_rreg(struct hl_device *hdev, u32 reg);
2477 void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
2478
2479 #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
2480 #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
2481 #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \
2482 hdev->asic_funcs->rreg(hdev, (reg)))
2483
2484 #define WREG32_P(reg, val, mask) \
2485 do { \
2486 u32 tmp_ = RREG32(reg); \
2487 tmp_ &= (mask); \
2488 tmp_ |= ((val) & ~(mask)); \
2489 WREG32(reg, tmp_); \
2490 } while (0)
2491 #define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
2492 #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
2493
2494 #define RMWREG32(reg, val, mask) \
2495 do { \
2496 u32 tmp_ = RREG32(reg); \
2497 tmp_ &= ~(mask); \
2498 tmp_ |= ((val) << __ffs(mask)); \
2499 WREG32(reg, tmp_); \
2500 } while (0)
2501
2502 #define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask))
2503
2504 #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
2505 #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
2506 #define WREG32_FIELD(reg, offset, field, val) \
2507 WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \
2508 ~REG_FIELD_MASK(reg, field)) | \
2509 (val) << REG_FIELD_SHIFT(reg, field))
2510
2511 /* Timeout should be longer when working with simulator but cap the
2512 * increased timeout to some maximum
2513 */
2514 #define hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, elbi) \
2515 ({ \
2516 ktime_t __timeout; \
2517 u32 __elbi_read; \
2518 int __rc = 0; \
2519 if (hdev->pdev) \
2520 __timeout = ktime_add_us(ktime_get(), timeout_us); \
2521 else \
2522 __timeout = ktime_add_us(ktime_get(),\
2523 min((u64)(timeout_us * 10), \
2524 (u64) HL_SIM_MAX_TIMEOUT_US)); \
2525 might_sleep_if(sleep_us); \
2526 for (;;) { \
2527 if (elbi) { \
2528 __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
2529 if (__rc) \
2530 break; \
2531 (val) = __elbi_read; \
2532 } else {\
2533 (val) = RREG32((u32)(addr)); \
2534 } \
2535 if (cond) \
2536 break; \
2537 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2538 if (elbi) { \
2539 __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
2540 if (__rc) \
2541 break; \
2542 (val) = __elbi_read; \
2543 } else {\
2544 (val) = RREG32((u32)(addr)); \
2545 } \
2546 break; \
2547 } \
2548 if (sleep_us) \
2549 usleep_range((sleep_us >> 2) + 1, sleep_us); \
2550 } \
2551 __rc ? __rc : ((cond) ? 0 : -ETIMEDOUT); \
2552 })
2553
2554 #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
2555 hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, false)
2556
2557 #define hl_poll_timeout_elbi(hdev, addr, val, cond, sleep_us, timeout_us) \
2558 hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, true)
2559
2560 /*
2561 * poll array of register addresses.
2562 * condition is satisfied if all registers values match the expected value.
2563 * once some register in the array satisfies the condition it will not be polled again,
2564 * this is done both for efficiency and due to some registers are "clear on read".
2565 * TODO: use read from PCI bar in other places in the code (SW-91406)
2566 */
2567 #define hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2568 timeout_us, elbi) \
2569 ({ \
2570 ktime_t __timeout; \
2571 u64 __elem_bitmask; \
2572 u32 __read_val; \
2573 u8 __arr_idx; \
2574 int __rc = 0; \
2575 \
2576 if (hdev->pdev) \
2577 __timeout = ktime_add_us(ktime_get(), timeout_us); \
2578 else \
2579 __timeout = ktime_add_us(ktime_get(),\
2580 min(((u64)timeout_us * 10), \
2581 (u64) HL_SIM_MAX_TIMEOUT_US)); \
2582 \
2583 might_sleep_if(sleep_us); \
2584 if (arr_size >= 64) \
2585 __rc = -EINVAL; \
2586 else \
2587 __elem_bitmask = BIT_ULL(arr_size) - 1; \
2588 for (;;) { \
2589 if (__rc) \
2590 break; \
2591 for (__arr_idx = 0; __arr_idx < (arr_size); __arr_idx++) { \
2592 if (!(__elem_bitmask & BIT_ULL(__arr_idx))) \
2593 continue; \
2594 if (elbi) { \
2595 __rc = hl_pci_elbi_read(hdev, (addr_arr)[__arr_idx], &__read_val); \
2596 if (__rc) \
2597 break; \
2598 } else { \
2599 __read_val = RREG32((u32)(addr_arr)[__arr_idx]); \
2600 } \
2601 if (__read_val == (expected_val)) \
2602 __elem_bitmask &= ~BIT_ULL(__arr_idx); \
2603 } \
2604 if (__rc || (__elem_bitmask == 0)) \
2605 break; \
2606 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) \
2607 break; \
2608 if (sleep_us) \
2609 usleep_range((sleep_us >> 2) + 1, sleep_us); \
2610 } \
2611 __rc ? __rc : ((__elem_bitmask == 0) ? 0 : -ETIMEDOUT); \
2612 })
2613
2614 #define hl_poll_reg_array_timeout(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2615 timeout_us) \
2616 hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2617 timeout_us, false)
2618
2619 #define hl_poll_reg_array_timeout_elbi(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2620 timeout_us) \
2621 hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2622 timeout_us, true)
2623
2624 /*
2625 * address in this macro points always to a memory location in the
2626 * host's (server's) memory. That location is updated asynchronously
2627 * either by the direct access of the device or by another core.
2628 *
2629 * To work both in LE and BE architectures, we need to distinguish between the
2630 * two states (device or another core updates the memory location). Therefore,
2631 * if mem_written_by_device is true, the host memory being polled will be
2632 * updated directly by the device. If false, the host memory being polled will
2633 * be updated by host CPU. Required so host knows whether or not the memory
2634 * might need to be byte-swapped before returning value to caller.
2635 */
2636 #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
2637 mem_written_by_device) \
2638 ({ \
2639 ktime_t __timeout; \
2640 if (hdev->pdev) \
2641 __timeout = ktime_add_us(ktime_get(), timeout_us); \
2642 else \
2643 __timeout = ktime_add_us(ktime_get(),\
2644 min((u64)(timeout_us * 100), \
2645 (u64) HL_SIM_MAX_TIMEOUT_US)); \
2646 might_sleep_if(sleep_us); \
2647 for (;;) { \
2648 /* Verify we read updates done by other cores or by device */ \
2649 mb(); \
2650 (val) = *((u32 *)(addr)); \
2651 if (mem_written_by_device) \
2652 (val) = le32_to_cpu(*(__le32 *) &(val)); \
2653 if (cond) \
2654 break; \
2655 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2656 (val) = *((u32 *)(addr)); \
2657 if (mem_written_by_device) \
2658 (val) = le32_to_cpu(*(__le32 *) &(val)); \
2659 break; \
2660 } \
2661 if (sleep_us) \
2662 usleep_range((sleep_us >> 2) + 1, sleep_us); \
2663 } \
2664 (cond) ? 0 : -ETIMEDOUT; \
2665 })
2666
2667 #define HL_USR_MAPPED_BLK_INIT(blk, base, sz) \
2668 ({ \
2669 struct user_mapped_block *p = blk; \
2670 \
2671 p->address = base; \
2672 p->size = sz; \
2673 })
2674
2675 #define HL_USR_INTR_STRUCT_INIT(usr_intr, hdev, intr_id, decoder) \
2676 ({ \
2677 usr_intr.hdev = hdev; \
2678 usr_intr.interrupt_id = intr_id; \
2679 usr_intr.is_decoder = decoder; \
2680 INIT_LIST_HEAD(&usr_intr.wait_list_head); \
2681 spin_lock_init(&usr_intr.wait_list_lock); \
2682 })
2683
2684 struct hwmon_chip_info;
2685
2686 /**
2687 * struct hl_device_reset_work - reset workqueue task wrapper.
2688 * @wq: work queue for device reset procedure.
2689 * @reset_work: reset work to be done.
2690 * @hdev: habanalabs device structure.
2691 * @flags: reset flags.
2692 */
2693 struct hl_device_reset_work {
2694 struct workqueue_struct *wq;
2695 struct delayed_work reset_work;
2696 struct hl_device *hdev;
2697 u32 flags;
2698 };
2699
2700 /**
2701 * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident
2702 * page-table internal information.
2703 * @mmu_pgt_pool: pool of page tables used by a host-resident MMU for
2704 * allocating hops.
2705 * @mmu_asid_hop0: per-ASID array of host-resident hop0 tables.
2706 */
2707 struct hl_mmu_hr_priv {
2708 struct gen_pool *mmu_pgt_pool;
2709 struct pgt_info *mmu_asid_hop0;
2710 };
2711
2712 /**
2713 * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident
2714 * page-table internal information.
2715 * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
2716 * @mmu_shadow_hop0: shadow array of hop0 tables.
2717 */
2718 struct hl_mmu_dr_priv {
2719 struct gen_pool *mmu_pgt_pool;
2720 void *mmu_shadow_hop0;
2721 };
2722
2723 /**
2724 * struct hl_mmu_priv - used for holding per-device mmu internal information.
2725 * @dr: information on the device-resident MMU, when exists.
2726 * @hr: information on the host-resident MMU, when exists.
2727 */
2728 struct hl_mmu_priv {
2729 struct hl_mmu_dr_priv dr;
2730 struct hl_mmu_hr_priv hr;
2731 };
2732
2733 /**
2734 * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry
2735 * that was created in order to translate a virtual address to a
2736 * physical one.
2737 * @hop_addr: The address of the hop.
2738 * @hop_pte_addr: The address of the hop entry.
2739 * @hop_pte_val: The value in the hop entry.
2740 */
2741 struct hl_mmu_per_hop_info {
2742 u64 hop_addr;
2743 u64 hop_pte_addr;
2744 u64 hop_pte_val;
2745 };
2746
2747 /**
2748 * struct hl_mmu_hop_info - A structure describing the TLB hops and their
2749 * hop-entries that were created in order to translate a virtual address to a
2750 * physical one.
2751 * @scrambled_vaddr: The value of the virtual address after scrambling. This
2752 * address replaces the original virtual-address when mapped
2753 * in the MMU tables.
2754 * @unscrambled_paddr: The un-scrambled physical address.
2755 * @hop_info: Array holding the per-hop information used for the translation.
2756 * @used_hops: The number of hops used for the translation.
2757 * @range_type: virtual address range type.
2758 */
2759 struct hl_mmu_hop_info {
2760 u64 scrambled_vaddr;
2761 u64 unscrambled_paddr;
2762 struct hl_mmu_per_hop_info hop_info[MMU_ARCH_6_HOPS];
2763 u32 used_hops;
2764 enum hl_va_range_type range_type;
2765 };
2766
2767 /**
2768 * struct hl_hr_mmu_funcs - Device related host resident MMU functions.
2769 * @get_hop0_pgt_info: get page table info structure for HOP0.
2770 * @get_pgt_info: get page table info structure for HOP other than HOP0.
2771 * @add_pgt_info: add page table info structure to hash.
2772 * @get_tlb_mapping_params: get mapping parameters needed for getting TLB info for specific mapping.
2773 */
2774 struct hl_hr_mmu_funcs {
2775 struct pgt_info *(*get_hop0_pgt_info)(struct hl_ctx *ctx);
2776 struct pgt_info *(*get_pgt_info)(struct hl_ctx *ctx, u64 phys_hop_addr);
2777 void (*add_pgt_info)(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr);
2778 int (*get_tlb_mapping_params)(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop,
2779 struct hl_mmu_hop_info *hops,
2780 u64 virt_addr, bool *is_huge);
2781 };
2782
2783 /**
2784 * struct hl_mmu_funcs - Device related MMU functions.
2785 * @init: initialize the MMU module.
2786 * @fini: release the MMU module.
2787 * @ctx_init: Initialize a context for using the MMU module.
2788 * @ctx_fini: disable a ctx from using the mmu module.
2789 * @map: maps a virtual address to physical address for a context.
2790 * @unmap: unmap a virtual address of a context.
2791 * @flush: flush all writes from all cores to reach device MMU.
2792 * @swap_out: marks all mapping of the given context as swapped out.
2793 * @swap_in: marks all mapping of the given context as swapped in.
2794 * @get_tlb_info: returns the list of hops and hop-entries used that were
2795 * created in order to translate the giver virtual address to a
2796 * physical one.
2797 * @hr_funcs: functions specific to host resident MMU.
2798 */
2799 struct hl_mmu_funcs {
2800 int (*init)(struct hl_device *hdev);
2801 void (*fini)(struct hl_device *hdev);
2802 int (*ctx_init)(struct hl_ctx *ctx);
2803 void (*ctx_fini)(struct hl_ctx *ctx);
2804 int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
2805 bool is_dram_addr);
2806 int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr);
2807 void (*flush)(struct hl_ctx *ctx);
2808 void (*swap_out)(struct hl_ctx *ctx);
2809 void (*swap_in)(struct hl_ctx *ctx);
2810 int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops);
2811 struct hl_hr_mmu_funcs hr_funcs;
2812 };
2813
2814 /**
2815 * struct hl_prefetch_work - prefetch work structure handler
2816 * @pf_work: actual work struct.
2817 * @ctx: compute context.
2818 * @va: virtual address to pre-fetch.
2819 * @size: pre-fetch size.
2820 * @flags: operation flags.
2821 * @asid: ASID for maintenance operation.
2822 */
2823 struct hl_prefetch_work {
2824 struct work_struct pf_work;
2825 struct hl_ctx *ctx;
2826 u64 va;
2827 u64 size;
2828 u32 flags;
2829 u32 asid;
2830 };
2831
2832 /*
2833 * number of user contexts allowed to call wait_for_multi_cs ioctl in
2834 * parallel
2835 */
2836 #define MULTI_CS_MAX_USER_CTX 2
2837
2838 /**
2839 * struct multi_cs_completion - multi CS wait completion.
2840 * @completion: completion of any of the CS in the list
2841 * @lock: spinlock for the completion structure
2842 * @timestamp: timestamp for the multi-CS completion
2843 * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS
2844 * is waiting
2845 * @used: 1 if in use, otherwise 0
2846 */
2847 struct multi_cs_completion {
2848 struct completion completion;
2849 spinlock_t lock;
2850 s64 timestamp;
2851 u32 stream_master_qid_map;
2852 u8 used;
2853 };
2854
2855 /**
2856 * struct multi_cs_data - internal data for multi CS call
2857 * @ctx: pointer to the context structure
2858 * @fence_arr: array of fences of all CSs
2859 * @seq_arr: array of CS sequence numbers
2860 * @timeout_jiffies: timeout in jiffies for waiting for CS to complete
2861 * @timestamp: timestamp of first completed CS
2862 * @wait_status: wait for CS status
2863 * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0)
2864 * @arr_len: fence_arr and seq_arr array length
2865 * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0)
2866 * @update_ts: update timestamp. 1- update the timestamp, otherwise 0.
2867 */
2868 struct multi_cs_data {
2869 struct hl_ctx *ctx;
2870 struct hl_fence **fence_arr;
2871 u64 *seq_arr;
2872 s64 timeout_jiffies;
2873 s64 timestamp;
2874 long wait_status;
2875 u32 completion_bitmap;
2876 u8 arr_len;
2877 u8 gone_cs;
2878 u8 update_ts;
2879 };
2880
2881 /**
2882 * struct hl_clk_throttle_timestamp - current/last clock throttling timestamp
2883 * @start: timestamp taken when 'start' event is received in driver
2884 * @end: timestamp taken when 'end' event is received in driver
2885 */
2886 struct hl_clk_throttle_timestamp {
2887 ktime_t start;
2888 ktime_t end;
2889 };
2890
2891 /**
2892 * struct hl_clk_throttle - keeps current/last clock throttling timestamps
2893 * @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER
2894 * index 1 refers to THERMAL
2895 * @lock: protects this structure as it can be accessed from both event queue
2896 * context and info_ioctl context
2897 * @current_reason: bitmask represents the current clk throttling reasons
2898 * @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load
2899 */
2900 struct hl_clk_throttle {
2901 struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX];
2902 struct mutex lock;
2903 u32 current_reason;
2904 u32 aggregated_reason;
2905 };
2906
2907 /**
2908 * struct user_mapped_block - describes a hw block allowed to be mmapped by user
2909 * @address: physical HW block address
2910 * @size: allowed size for mmap
2911 */
2912 struct user_mapped_block {
2913 u32 address;
2914 u32 size;
2915 };
2916
2917 /**
2918 * struct cs_timeout_info - info of last CS timeout occurred.
2919 * @timestamp: CS timeout timestamp.
2920 * @write_enable: if set writing to CS parameters in the structure is enabled. otherwise - disabled,
2921 * so the first (root cause) CS timeout will not be overwritten.
2922 * @seq: CS timeout sequence number.
2923 */
2924 struct cs_timeout_info {
2925 ktime_t timestamp;
2926 atomic_t write_enable;
2927 u64 seq;
2928 };
2929
2930 /**
2931 * struct razwi_info - info about last razwi error occurred.
2932 * @timestamp: razwi timestamp.
2933 * @write_enable: if set writing to razwi parameters in the structure is enabled.
2934 * otherwise - disabled, so the first (root cause) razwi will not be overwritten.
2935 * @addr: address that caused razwi.
2936 * @engine_id_1: engine id of the razwi initiator, if it was initiated by engine that does
2937 * not have engine id it will be set to U16_MAX.
2938 * @engine_id_2: second engine id of razwi initiator. Might happen that razwi have 2 possible
2939 * engines which one them caused the razwi. In that case, it will contain the
2940 * second possible engine id, otherwise it will be set to U16_MAX.
2941 * @non_engine_initiator: in case the initiator of the razwi does not have engine id.
2942 * @type: cause of razwi, page fault or access error, otherwise it will be set to U8_MAX.
2943 */
2944 struct razwi_info {
2945 ktime_t timestamp;
2946 atomic_t write_enable;
2947 u64 addr;
2948 u16 engine_id_1;
2949 u16 engine_id_2;
2950 u8 non_engine_initiator;
2951 u8 type;
2952 };
2953
2954 #define MAX_QMAN_STREAMS_INFO 4
2955 #define OPCODE_INFO_MAX_ADDR_SIZE 8
2956 /**
2957 * struct undefined_opcode_info - info about last undefined opcode error
2958 * @timestamp: timestamp of the undefined opcode error
2959 * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ
2960 * entries. In case all streams array entries are
2961 * filled with values, it means the execution was in Lower-CP.
2962 * @cq_addr: the address of the current handled command buffer
2963 * @cq_size: the size of the current handled command buffer
2964 * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array.
2965 * should be equal to 1 incase of undefined opcode
2966 * in Upper-CP (specific stream) and equal to 4 incase
2967 * of undefined opcode in Lower-CP.
2968 * @engine_id: engine-id that the error occurred on
2969 * @stream_id: the stream id the error occurred on. In case the stream equals to
2970 * MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP.
2971 * @write_enable: if set, writing to undefined opcode parameters in the structure
2972 * is enable so the first (root cause) undefined opcode will not be
2973 * overwritten.
2974 */
2975 struct undefined_opcode_info {
2976 ktime_t timestamp;
2977 u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE];
2978 u64 cq_addr;
2979 u32 cq_size;
2980 u32 cb_addr_streams_len;
2981 u32 engine_id;
2982 u32 stream_id;
2983 bool write_enable;
2984 };
2985
2986 /**
2987 * struct hl_error_info - holds information collected during an error.
2988 * @cs_timeout: CS timeout error information.
2989 * @razwi: razwi information.
2990 * @undef_opcode: undefined opcode information
2991 */
2992 struct hl_error_info {
2993 struct cs_timeout_info cs_timeout;
2994 struct razwi_info razwi;
2995 struct undefined_opcode_info undef_opcode;
2996 };
2997
2998 /**
2999 * struct hl_reset_info - holds current device reset information.
3000 * @lock: lock to protect critical reset flows.
3001 * @compute_reset_cnt: number of compute resets since the driver was loaded.
3002 * @hard_reset_cnt: number of hard resets since the driver was loaded.
3003 * @hard_reset_schedule_flags: hard reset is scheduled to after current compute reset,
3004 * here we hold the hard reset flags.
3005 * @in_reset: is device in reset flow.
3006 * @in_compute_reset: Device is currently in reset but not in hard-reset.
3007 * @needs_reset: true if reset_on_lockup is false and device should be reset
3008 * due to lockup.
3009 * @hard_reset_pending: is there a hard reset work pending.
3010 * @curr_reset_cause: saves an enumerated reset cause when a hard reset is
3011 * triggered, and cleared after it is shared with preboot.
3012 * @prev_reset_trigger: saves the previous trigger which caused a reset, overridden
3013 * with a new value on next reset
3014 * @reset_trigger_repeated: set if device reset is triggered more than once with
3015 * same cause.
3016 * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to
3017 * complete instead.
3018 */
3019 struct hl_reset_info {
3020 spinlock_t lock;
3021 u32 compute_reset_cnt;
3022 u32 hard_reset_cnt;
3023 u32 hard_reset_schedule_flags;
3024 u8 in_reset;
3025 u8 in_compute_reset;
3026 u8 needs_reset;
3027 u8 hard_reset_pending;
3028
3029 u8 curr_reset_cause;
3030 u8 prev_reset_trigger;
3031 u8 reset_trigger_repeated;
3032
3033 u8 skip_reset_on_timeout;
3034 };
3035
3036 /**
3037 * struct hl_device - habanalabs device structure.
3038 * @pdev: pointer to PCI device, can be NULL in case of simulator device.
3039 * @pcie_bar_phys: array of available PCIe bars physical addresses.
3040 * (required only for PCI address match mode)
3041 * @pcie_bar: array of available PCIe bars virtual addresses.
3042 * @rmmio: configuration area address on SRAM.
3043 * @cdev: related char device.
3044 * @cdev_ctrl: char device for control operations only (INFO IOCTL)
3045 * @dev: related kernel basic device structure.
3046 * @dev_ctrl: related kernel device structure for the control device
3047 * @work_heartbeat: delayed work for CPU-CP is-alive check.
3048 * @device_reset_work: delayed work which performs hard reset
3049 * @asic_name: ASIC specific name.
3050 * @asic_type: ASIC specific type.
3051 * @completion_queue: array of hl_cq.
3052 * @user_interrupt: array of hl_user_interrupt. upon the corresponding user
3053 * interrupt, driver will monitor the list of fences
3054 * registered to this interrupt.
3055 * @common_user_cq_interrupt: common user CQ interrupt for all user CQ interrupts.
3056 * upon any user CQ interrupt, driver will monitor the
3057 * list of fences registered to this common structure.
3058 * @common_decoder_interrupt: common decoder interrupt for all user decoder interrupts.
3059 * @shadow_cs_queue: pointer to a shadow queue that holds pointers to
3060 * outstanding command submissions.
3061 * @cq_wq: work queues of completion queues for executing work in process
3062 * context.
3063 * @eq_wq: work queue of event queue for executing work in process context.
3064 * @cs_cmplt_wq: work queue of CS completions for executing work in process
3065 * context.
3066 * @ts_free_obj_wq: work queue for timestamp registration objects release.
3067 * @pf_wq: work queue for MMU pre-fetch operations.
3068 * @kernel_ctx: Kernel driver context structure.
3069 * @kernel_queues: array of hl_hw_queue.
3070 * @cs_mirror_list: CS mirror list for TDR.
3071 * @cs_mirror_lock: protects cs_mirror_list.
3072 * @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver.
3073 * @event_queue: event queue for IRQ from CPU-CP.
3074 * @dma_pool: DMA pool for small allocations.
3075 * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address.
3076 * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address.
3077 * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool.
3078 * @asid_bitmap: holds used/available ASIDs.
3079 * @asid_mutex: protects asid_bitmap.
3080 * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue.
3081 * @debug_lock: protects critical section of setting debug mode for device
3082 * @mmu_lock: protects the MMU page tables and invalidation h/w. Although the
3083 * page tables are per context, the invalidation h/w is per MMU.
3084 * Therefore, we can't allow multiple contexts (we only have two,
3085 * user and kernel) to access the invalidation h/w at the same time.
3086 * In addition, any change to the PGT, modifying the MMU hash or
3087 * walking the PGT requires talking this lock.
3088 * @asic_prop: ASIC specific immutable properties.
3089 * @asic_funcs: ASIC specific functions.
3090 * @asic_specific: ASIC specific information to use only from ASIC files.
3091 * @vm: virtual memory manager for MMU.
3092 * @hwmon_dev: H/W monitor device.
3093 * @hl_chip_info: ASIC's sensors information.
3094 * @device_status_description: device status description.
3095 * @hl_debugfs: device's debugfs manager.
3096 * @cb_pool: list of pre allocated CBs.
3097 * @cb_pool_lock: protects the CB pool.
3098 * @internal_cb_pool_virt_addr: internal command buffer pool virtual address.
3099 * @internal_cb_pool_dma_addr: internal command buffer pool dma address.
3100 * @internal_cb_pool: internal command buffer memory pool.
3101 * @internal_cb_va_base: internal cb pool mmu virtual address base
3102 * @fpriv_list: list of file private data structures. Each structure is created
3103 * when a user opens the device
3104 * @fpriv_ctrl_list: list of file private data structures. Each structure is created
3105 * when a user opens the control device
3106 * @fpriv_list_lock: protects the fpriv_list
3107 * @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list
3108 * @aggregated_cs_counters: aggregated cs counters among all contexts
3109 * @mmu_priv: device-specific MMU data.
3110 * @mmu_func: device-related MMU functions.
3111 * @dec: list of decoder sw instance
3112 * @fw_loader: FW loader manager.
3113 * @pci_mem_region: array of memory regions in the PCI
3114 * @state_dump_specs: constants and dictionaries needed to dump system state.
3115 * @multi_cs_completion: array of multi-CS completion.
3116 * @clk_throttling: holds information about current/previous clock throttling events
3117 * @captured_err_info: holds information about errors.
3118 * @reset_info: holds current device reset information.
3119 * @stream_master_qid_arr: pointer to array with QIDs of master streams.
3120 * @fw_major_version: major version of current loaded preboot.
3121 * @fw_minor_version: minor version of current loaded preboot.
3122 * @dram_used_mem: current DRAM memory consumption.
3123 * @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram
3124 * @timeout_jiffies: device CS timeout value.
3125 * @max_power: the max power of the device, as configured by the sysadmin. This
3126 * value is saved so in case of hard-reset, the driver will restore
3127 * this value and update the F/W after the re-initialization
3128 * @boot_error_status_mask: contains a mask of the device boot error status.
3129 * Each bit represents a different error, according to
3130 * the defines in hl_boot_if.h. If the bit is cleared,
3131 * the error will be ignored by the driver during
3132 * device initialization. Mainly used to debug and
3133 * workaround firmware bugs
3134 * @dram_pci_bar_start: start bus address of PCIe bar towards DRAM.
3135 * @last_successful_open_ktime: timestamp (ktime) of the last successful device open.
3136 * @last_successful_open_jif: timestamp (jiffies) of the last successful
3137 * device open.
3138 * @last_open_session_duration_jif: duration (jiffies) of the last device open
3139 * session.
3140 * @open_counter: number of successful device open operations.
3141 * @fw_poll_interval_usec: FW status poll interval in usec.
3142 * used for CPU boot status
3143 * @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec.
3144 * used for COMMs protocols cmds(COMMS_STS_*)
3145 * @dram_binning: contains mask of drams that is received from the f/w which indicates which
3146 * drams are binned-out
3147 * @tpc_binning: contains mask of tpc engines that is received from the f/w which indicates which
3148 * tpc engines are binned-out
3149 * @card_type: Various ASICs have several card types. This indicates the card
3150 * type of the current device.
3151 * @major: habanalabs kernel driver major.
3152 * @high_pll: high PLL profile frequency.
3153 * @decoder_binning: contains mask of decoder engines that is received from the f/w which
3154 * indicates which decoder engines are binned-out
3155 * @edma_binning: contains mask of edma engines that is received from the f/w which
3156 * indicates which edma engines are binned-out
3157 * @id: device minor.
3158 * @id_control: minor of the control device.
3159 * @cdev_idx: char device index. Used for setting its name.
3160 * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit
3161 * addresses.
3162 * @is_in_dram_scrub: true if dram scrub operation is on going.
3163 * @disabled: is device disabled.
3164 * @late_init_done: is late init stage was done during initialization.
3165 * @hwmon_initialized: is H/W monitor sensors was initialized.
3166 * @reset_on_lockup: true if a reset should be done in case of stuck CS, false
3167 * otherwise.
3168 * @dram_default_page_mapping: is DRAM default page mapping enabled.
3169 * @memory_scrub: true to perform device memory scrub in various locations,
3170 * such as context-switch, context close, page free, etc.
3171 * @pmmu_huge_range: is a different virtual addresses range used for PMMU with
3172 * huge pages.
3173 * @init_done: is the initialization of the device done.
3174 * @device_cpu_disabled: is the device CPU disabled (due to timeouts)
3175 * @in_debug: whether the device is in a state where the profiling/tracing infrastructure
3176 * can be used. This indication is needed because in some ASICs we need to do
3177 * specific operations to enable that infrastructure.
3178 * @cdev_sysfs_created: were char devices and sysfs nodes created.
3179 * @stop_on_err: true if engines should stop on error.
3180 * @supports_sync_stream: is sync stream supported.
3181 * @sync_stream_queue_idx: helper index for sync stream queues initialization.
3182 * @collective_mon_idx: helper index for collective initialization
3183 * @supports_coresight: is CoreSight supported.
3184 * @supports_cb_mapping: is mapping a CB to the device's MMU supported.
3185 * @process_kill_trial_cnt: number of trials reset thread tried killing
3186 * user processes
3187 * @device_fini_pending: true if device_fini was called and might be
3188 * waiting for the reset thread to finish
3189 * @supports_staged_submission: true if staged submissions are supported
3190 * @device_cpu_is_halted: Flag to indicate whether the device CPU was already
3191 * halted. We can't halt it again because the COMMS
3192 * protocol will throw an error. Relevant only for
3193 * cases where Linux was not loaded to device CPU
3194 * @supports_wait_for_multi_cs: true if wait for multi CS is supported
3195 * @is_compute_ctx_active: Whether there is an active compute context executing.
3196 * @compute_ctx_in_release: true if the current compute context is being released.
3197 * @supports_mmu_prefetch: true if prefetch is supported, otherwise false.
3198 * @reset_upon_device_release: reset the device when the user closes the file descriptor of the
3199 * device.
3200 * @nic_ports_mask: Controls which NIC ports are enabled. Used only for testing.
3201 * @fw_components: Controls which f/w components to load to the device. There are multiple f/w
3202 * stages and sometimes we want to stop at a certain stage. Used only for testing.
3203 * @mmu_enable: Whether to enable or disable the device MMU(s). Used only for testing.
3204 * @cpu_queues_enable: Whether to enable queues communication vs. the f/w. Used only for testing.
3205 * @pldm: Whether we are running in Palladium environment. Used only for testing.
3206 * @hard_reset_on_fw_events: Whether to do device hard-reset when a fatal event is received from
3207 * the f/w. Used only for testing.
3208 * @bmc_enable: Whether we are running in a box with BMC. Used only for testing.
3209 * @reset_on_preboot_fail: Whether to reset the device if preboot f/w fails to load.
3210 * Used only for testing.
3211 * @heartbeat: Controls if we want to enable the heartbeat mechanism vs. the f/w, which verifies
3212 * that the f/w is always alive. Used only for testing.
3213 * @supports_ctx_switch: true if a ctx switch is required upon first submission.
3214 */
3215 struct hl_device {
3216 struct pci_dev *pdev;
3217 u64 pcie_bar_phys[HL_PCI_NUM_BARS];
3218 void __iomem *pcie_bar[HL_PCI_NUM_BARS];
3219 void __iomem *rmmio;
3220 struct cdev cdev;
3221 struct cdev cdev_ctrl;
3222 struct device *dev;
3223 struct device *dev_ctrl;
3224 struct delayed_work work_heartbeat;
3225 struct hl_device_reset_work device_reset_work;
3226 char asic_name[HL_STR_MAX];
3227 char status[HL_DEV_STS_MAX][HL_STR_MAX];
3228 enum hl_asic_type asic_type;
3229 struct hl_cq *completion_queue;
3230 struct hl_user_interrupt *user_interrupt;
3231 struct hl_user_interrupt common_user_cq_interrupt;
3232 struct hl_user_interrupt common_decoder_interrupt;
3233 struct hl_cs **shadow_cs_queue;
3234 struct workqueue_struct **cq_wq;
3235 struct workqueue_struct *eq_wq;
3236 struct workqueue_struct *cs_cmplt_wq;
3237 struct workqueue_struct *ts_free_obj_wq;
3238 struct workqueue_struct *pf_wq;
3239 struct hl_ctx *kernel_ctx;
3240 struct hl_hw_queue *kernel_queues;
3241 struct list_head cs_mirror_list;
3242 spinlock_t cs_mirror_lock;
3243 struct hl_mem_mgr kernel_mem_mgr;
3244 struct hl_eq event_queue;
3245 struct dma_pool *dma_pool;
3246 void *cpu_accessible_dma_mem;
3247 dma_addr_t cpu_accessible_dma_address;
3248 struct gen_pool *cpu_accessible_dma_pool;
3249 unsigned long *asid_bitmap;
3250 struct mutex asid_mutex;
3251 struct mutex send_cpu_message_lock;
3252 struct mutex debug_lock;
3253 struct mutex mmu_lock;
3254 struct asic_fixed_properties asic_prop;
3255 const struct hl_asic_funcs *asic_funcs;
3256 void *asic_specific;
3257 struct hl_vm vm;
3258 struct device *hwmon_dev;
3259 struct hwmon_chip_info *hl_chip_info;
3260
3261 struct hl_dbg_device_entry hl_debugfs;
3262
3263 struct list_head cb_pool;
3264 spinlock_t cb_pool_lock;
3265
3266 void *internal_cb_pool_virt_addr;
3267 dma_addr_t internal_cb_pool_dma_addr;
3268 struct gen_pool *internal_cb_pool;
3269 u64 internal_cb_va_base;
3270
3271 struct list_head fpriv_list;
3272 struct list_head fpriv_ctrl_list;
3273 struct mutex fpriv_list_lock;
3274 struct mutex fpriv_ctrl_list_lock;
3275
3276 struct hl_cs_counters_atomic aggregated_cs_counters;
3277
3278 struct hl_mmu_priv mmu_priv;
3279 struct hl_mmu_funcs mmu_func[MMU_NUM_PGT_LOCATIONS];
3280
3281 struct hl_dec *dec;
3282
3283 struct fw_load_mgr fw_loader;
3284
3285 struct pci_mem_region pci_mem_region[PCI_REGION_NUMBER];
3286
3287 struct hl_state_dump_specs state_dump_specs;
3288
3289 struct multi_cs_completion multi_cs_completion[
3290 MULTI_CS_MAX_USER_CTX];
3291 struct hl_clk_throttle clk_throttling;
3292 struct hl_error_info captured_err_info;
3293
3294 struct hl_reset_info reset_info;
3295
3296 u32 *stream_master_qid_arr;
3297 u32 fw_major_version;
3298 u32 fw_minor_version;
3299 atomic64_t dram_used_mem;
3300 u64 memory_scrub_val;
3301 u64 timeout_jiffies;
3302 u64 max_power;
3303 u64 boot_error_status_mask;
3304 u64 dram_pci_bar_start;
3305 u64 last_successful_open_jif;
3306 u64 last_open_session_duration_jif;
3307 u64 open_counter;
3308 u64 fw_poll_interval_usec;
3309 ktime_t last_successful_open_ktime;
3310 u64 fw_comms_poll_interval_usec;
3311 u64 dram_binning;
3312 u64 tpc_binning;
3313
3314 enum cpucp_card_types card_type;
3315 u32 major;
3316 u32 high_pll;
3317 u32 decoder_binning;
3318 u32 edma_binning;
3319 u16 id;
3320 u16 id_control;
3321 u16 cdev_idx;
3322 u16 cpu_pci_msb_addr;
3323 u8 is_in_dram_scrub;
3324 u8 disabled;
3325 u8 late_init_done;
3326 u8 hwmon_initialized;
3327 u8 reset_on_lockup;
3328 u8 dram_default_page_mapping;
3329 u8 memory_scrub;
3330 u8 pmmu_huge_range;
3331 u8 init_done;
3332 u8 device_cpu_disabled;
3333 u8 in_debug;
3334 u8 cdev_sysfs_created;
3335 u8 stop_on_err;
3336 u8 supports_sync_stream;
3337 u8 sync_stream_queue_idx;
3338 u8 collective_mon_idx;
3339 u8 supports_coresight;
3340 u8 supports_cb_mapping;
3341 u8 process_kill_trial_cnt;
3342 u8 device_fini_pending;
3343 u8 supports_staged_submission;
3344 u8 device_cpu_is_halted;
3345 u8 supports_wait_for_multi_cs;
3346 u8 stream_master_qid_arr_size;
3347 u8 is_compute_ctx_active;
3348 u8 compute_ctx_in_release;
3349 u8 supports_mmu_prefetch;
3350 u8 reset_upon_device_release;
3351 u8 supports_ctx_switch;
3352
3353 /* Parameters for bring-up */
3354 u64 nic_ports_mask;
3355 u64 fw_components;
3356 u8 mmu_enable;
3357 u8 cpu_queues_enable;
3358 u8 pldm;
3359 u8 hard_reset_on_fw_events;
3360 u8 bmc_enable;
3361 u8 reset_on_preboot_fail;
3362 u8 heartbeat;
3363 };
3364
3365
3366 /**
3367 * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure
3368 * @refcount: refcount used to protect removing this id when several
3369 * wait cs are used to wait of the reserved encaps signals.
3370 * @hdev: pointer to habanalabs device structure.
3371 * @hw_sob: pointer to H/W SOB used in the reservation.
3372 * @ctx: pointer to the user's context data structure
3373 * @cs_seq: staged cs sequence which contains encapsulated signals
3374 * @id: idr handler id to be used to fetch the handler info
3375 * @q_idx: stream queue index
3376 * @pre_sob_val: current SOB value before reservation
3377 * @count: signals number
3378 */
3379 struct hl_cs_encaps_sig_handle {
3380 struct kref refcount;
3381 struct hl_device *hdev;
3382 struct hl_hw_sob *hw_sob;
3383 struct hl_ctx *ctx;
3384 u64 cs_seq;
3385 u32 id;
3386 u32 q_idx;
3387 u32 pre_sob_val;
3388 u32 count;
3389 };
3390
3391 /*
3392 * IOCTLs
3393 */
3394
3395 /**
3396 * typedef hl_ioctl_t - typedef for ioctl function in the driver
3397 * @hpriv: pointer to the FD's private data, which contains state of
3398 * user process
3399 * @data: pointer to the input/output arguments structure of the IOCTL
3400 *
3401 * Return: 0 for success, negative value for error
3402 */
3403 typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
3404
3405 /**
3406 * struct hl_ioctl_desc - describes an IOCTL entry of the driver.
3407 * @cmd: the IOCTL code as created by the kernel macros.
3408 * @func: pointer to the driver's function that should be called for this IOCTL.
3409 */
3410 struct hl_ioctl_desc {
3411 unsigned int cmd;
3412 hl_ioctl_t *func;
3413 };
3414
3415
3416 /*
3417 * Kernel module functions that can be accessed by entire module
3418 */
3419
3420 /**
3421 * hl_get_sg_info() - get number of pages and the DMA address from SG list.
3422 * @sg: the SG list.
3423 * @dma_addr: pointer to DMA address to return.
3424 *
3425 * Calculate the number of consecutive pages described by the SG list. Take the
3426 * offset of the address in the first page, add to it the length and round it up
3427 * to the number of needed pages.
3428 */
hl_get_sg_info(struct scatterlist * sg,dma_addr_t * dma_addr)3429 static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
3430 {
3431 *dma_addr = sg_dma_address(sg);
3432
3433 return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
3434 (PAGE_SIZE - 1)) >> PAGE_SHIFT;
3435 }
3436
3437 /**
3438 * hl_mem_area_inside_range() - Checks whether address+size are inside a range.
3439 * @address: The start address of the area we want to validate.
3440 * @size: The size in bytes of the area we want to validate.
3441 * @range_start_address: The start address of the valid range.
3442 * @range_end_address: The end address of the valid range.
3443 *
3444 * Return: true if the area is inside the valid range, false otherwise.
3445 */
hl_mem_area_inside_range(u64 address,u64 size,u64 range_start_address,u64 range_end_address)3446 static inline bool hl_mem_area_inside_range(u64 address, u64 size,
3447 u64 range_start_address, u64 range_end_address)
3448 {
3449 u64 end_address = address + size;
3450
3451 if ((address >= range_start_address) &&
3452 (end_address <= range_end_address) &&
3453 (end_address > address))
3454 return true;
3455
3456 return false;
3457 }
3458
3459 /**
3460 * hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
3461 * @address: The start address of the area we want to validate.
3462 * @size: The size in bytes of the area we want to validate.
3463 * @range_start_address: The start address of the valid range.
3464 * @range_end_address: The end address of the valid range.
3465 *
3466 * Return: true if the area overlaps part or all of the valid range,
3467 * false otherwise.
3468 */
hl_mem_area_crosses_range(u64 address,u32 size,u64 range_start_address,u64 range_end_address)3469 static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
3470 u64 range_start_address, u64 range_end_address)
3471 {
3472 u64 end_address = address + size - 1;
3473
3474 return ((address <= range_end_address) && (range_start_address <= end_address));
3475 }
3476
3477 uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr);
3478 void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
3479 gfp_t flag, const char *caller);
3480 void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr,
3481 dma_addr_t dma_handle, const char *caller);
3482 void *hl_cpu_accessible_dma_pool_alloc_caller(struct hl_device *hdev, size_t size,
3483 dma_addr_t *dma_handle, const char *caller);
3484 void hl_cpu_accessible_dma_pool_free_caller(struct hl_device *hdev, size_t size, void *vaddr,
3485 const char *caller);
3486 void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags,
3487 dma_addr_t *dma_handle, const char *caller);
3488 void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr,
3489 const char *caller);
3490 int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir);
3491 void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt,
3492 enum dma_data_direction dir);
3493 int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
3494 enum debugfs_access_type acc_type);
3495 int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type,
3496 u64 addr, u64 *val, enum debugfs_access_type acc_type);
3497 int hl_device_open(struct inode *inode, struct file *filp);
3498 int hl_device_open_ctrl(struct inode *inode, struct file *filp);
3499 bool hl_device_operational(struct hl_device *hdev,
3500 enum hl_device_status *status);
3501 enum hl_device_status hl_device_status(struct hl_device *hdev);
3502 int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable);
3503 int hl_hw_queues_create(struct hl_device *hdev);
3504 void hl_hw_queues_destroy(struct hl_device *hdev);
3505 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
3506 u32 cb_size, u64 cb_ptr);
3507 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
3508 u32 ctl, u32 len, u64 ptr);
3509 int hl_hw_queue_schedule_cs(struct hl_cs *cs);
3510 u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
3511 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
3512 void hl_hw_queue_update_ci(struct hl_cs *cs);
3513 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
3514
3515 #define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1)
3516 #define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1))
3517
3518 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
3519 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
3520 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
3521 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
3522 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
3523 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
3524 irqreturn_t hl_irq_handler_cq(int irq, void *arg);
3525 irqreturn_t hl_irq_handler_eq(int irq, void *arg);
3526 irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg);
3527 irqreturn_t hl_irq_handler_user_interrupt(int irq, void *arg);
3528 irqreturn_t hl_irq_handler_default(int irq, void *arg);
3529 u32 hl_cq_inc_ptr(u32 ptr);
3530
3531 int hl_asid_init(struct hl_device *hdev);
3532 void hl_asid_fini(struct hl_device *hdev);
3533 unsigned long hl_asid_alloc(struct hl_device *hdev);
3534 void hl_asid_free(struct hl_device *hdev, unsigned long asid);
3535
3536 int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
3537 void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
3538 int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
3539 void hl_ctx_do_release(struct kref *ref);
3540 void hl_ctx_get(struct hl_ctx *ctx);
3541 int hl_ctx_put(struct hl_ctx *ctx);
3542 struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev);
3543 struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
3544 int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr,
3545 struct hl_fence **fence, u32 arr_len);
3546 void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
3547 void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
3548
3549 int hl_device_init(struct hl_device *hdev, struct class *hclass);
3550 void hl_device_fini(struct hl_device *hdev);
3551 int hl_device_suspend(struct hl_device *hdev);
3552 int hl_device_resume(struct hl_device *hdev);
3553 int hl_device_reset(struct hl_device *hdev, u32 flags);
3554 void hl_hpriv_get(struct hl_fpriv *hpriv);
3555 int hl_hpriv_put(struct hl_fpriv *hpriv);
3556 int hl_device_utilization(struct hl_device *hdev, u32 *utilization);
3557
3558 int hl_build_hwmon_channel_info(struct hl_device *hdev,
3559 struct cpucp_sensor *sensors_arr);
3560
3561 void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask);
3562
3563 int hl_sysfs_init(struct hl_device *hdev);
3564 void hl_sysfs_fini(struct hl_device *hdev);
3565
3566 int hl_hwmon_init(struct hl_device *hdev);
3567 void hl_hwmon_fini(struct hl_device *hdev);
3568 void hl_hwmon_release_resources(struct hl_device *hdev);
3569
3570 int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg,
3571 struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
3572 bool map_cb, u64 *handle);
3573 int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle);
3574 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
3575 struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle);
3576 void hl_cb_put(struct hl_cb *cb);
3577 struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
3578 bool internal_cb);
3579 int hl_cb_pool_init(struct hl_device *hdev);
3580 int hl_cb_pool_fini(struct hl_device *hdev);
3581 int hl_cb_va_pool_init(struct hl_ctx *ctx);
3582 void hl_cb_va_pool_fini(struct hl_ctx *ctx);
3583
3584 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush);
3585 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
3586 enum hl_queue_type queue_type, bool is_kernel_allocated_cb);
3587 void hl_sob_reset_error(struct kref *ref);
3588 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask);
3589 void hl_fence_put(struct hl_fence *fence);
3590 void hl_fences_put(struct hl_fence **fence, int len);
3591 void hl_fence_get(struct hl_fence *fence);
3592 void cs_get(struct hl_cs *cs);
3593 bool cs_needs_completion(struct hl_cs *cs);
3594 bool cs_needs_timeout(struct hl_cs *cs);
3595 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs);
3596 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq);
3597 void hl_multi_cs_completion_init(struct hl_device *hdev);
3598
3599 void goya_set_asic_funcs(struct hl_device *hdev);
3600 void gaudi_set_asic_funcs(struct hl_device *hdev);
3601 void gaudi2_set_asic_funcs(struct hl_device *hdev);
3602
3603 int hl_vm_ctx_init(struct hl_ctx *ctx);
3604 void hl_vm_ctx_fini(struct hl_ctx *ctx);
3605
3606 int hl_vm_init(struct hl_device *hdev);
3607 void hl_vm_fini(struct hl_device *hdev);
3608
3609 void hl_hw_block_mem_init(struct hl_ctx *ctx);
3610 void hl_hw_block_mem_fini(struct hl_ctx *ctx);
3611
3612 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
3613 enum hl_va_range_type type, u64 size, u32 alignment);
3614 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
3615 u64 start_addr, u64 size);
3616 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
3617 struct hl_userptr *userptr);
3618 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
3619 void hl_userptr_delete_list(struct hl_device *hdev,
3620 struct list_head *userptr_list);
3621 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
3622 struct list_head *userptr_list,
3623 struct hl_userptr **userptr);
3624
3625 int hl_mmu_init(struct hl_device *hdev);
3626 void hl_mmu_fini(struct hl_device *hdev);
3627 int hl_mmu_ctx_init(struct hl_ctx *ctx);
3628 void hl_mmu_ctx_fini(struct hl_ctx *ctx);
3629 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
3630 u32 page_size, bool flush_pte);
3631 int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
3632 u32 page_size, u32 *real_page_size, bool is_dram_addr);
3633 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
3634 bool flush_pte);
3635 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
3636 u64 phys_addr, u32 size);
3637 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size);
3638 int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags);
3639 int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
3640 u32 flags, u32 asid, u64 va, u64 size);
3641 int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
3642 u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte);
3643 u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
3644 u8 hop_idx, u64 hop_addr, u64 virt_addr);
3645 void hl_mmu_hr_flush(struct hl_ctx *ctx);
3646 int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
3647 u64 pgt_size);
3648 void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size);
3649 void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
3650 u32 hop_table_size);
3651 u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr,
3652 u32 hop_table_size);
3653 void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
3654 u64 val, u32 hop_table_size);
3655 void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
3656 u32 hop_table_size);
3657 int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
3658 u32 hop_table_size);
3659 void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr);
3660 struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
3661 struct hl_hr_mmu_funcs *hr_func,
3662 u64 curr_pte);
3663 struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
3664 struct hl_hr_mmu_funcs *hr_func,
3665 struct hl_mmu_properties *mmu_prop);
3666 struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
3667 struct hl_mmu_hr_priv *hr_priv,
3668 struct hl_hr_mmu_funcs *hr_func,
3669 struct hl_mmu_properties *mmu_prop,
3670 u64 curr_pte, bool *is_new_hop);
3671 int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
3672 struct hl_hr_mmu_funcs *hr_func);
3673 void hl_mmu_swap_out(struct hl_ctx *ctx);
3674 void hl_mmu_swap_in(struct hl_ctx *ctx);
3675 int hl_mmu_if_set_funcs(struct hl_device *hdev);
3676 void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3677 void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3678 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr);
3679 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
3680 struct hl_mmu_hop_info *hops);
3681 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr);
3682 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr);
3683 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr);
3684
3685 int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
3686 void __iomem *dst, u32 src_offset, u32 size);
3687 int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value);
3688 int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
3689 u16 len, u32 timeout, u64 *result);
3690 int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type);
3691 int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
3692 size_t irq_arr_size);
3693 int hl_fw_test_cpu_queue(struct hl_device *hdev);
3694 void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
3695 dma_addr_t *dma_handle);
3696 void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
3697 void *vaddr);
3698 int hl_fw_send_heartbeat(struct hl_device *hdev);
3699 int hl_fw_cpucp_info_get(struct hl_device *hdev,
3700 u32 sts_boot_dev_sts0_reg,
3701 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
3702 u32 boot_err1_reg);
3703 int hl_fw_cpucp_handshake(struct hl_device *hdev,
3704 u32 sts_boot_dev_sts0_reg,
3705 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
3706 u32 boot_err1_reg);
3707 int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
3708 int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data);
3709 int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
3710 struct hl_info_pci_counters *counters);
3711 int hl_fw_cpucp_total_energy_get(struct hl_device *hdev,
3712 u64 *total_energy);
3713 int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
3714 enum pll_index *pll_index);
3715 int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
3716 u16 *pll_freq_arr);
3717 int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power);
3718 void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev);
3719 void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev);
3720 int hl_fw_init_cpu(struct hl_device *hdev);
3721 int hl_fw_read_preboot_status(struct hl_device *hdev);
3722 int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
3723 struct fw_load_mgr *fw_loader,
3724 enum comms_cmd cmd, unsigned int size,
3725 bool wait_ok, u32 timeout);
3726 int hl_fw_dram_replaced_row_get(struct hl_device *hdev,
3727 struct cpucp_hbm_row_info *info);
3728 int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num);
3729 int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid);
3730 int hl_fw_send_device_activity(struct hl_device *hdev, bool open);
3731 int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
3732 bool is_wc[3]);
3733 int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data);
3734 int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
3735 int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
3736 struct hl_inbound_pci_region *pci_region);
3737 int hl_pci_set_outbound_region(struct hl_device *hdev,
3738 struct hl_outbound_pci_region *pci_region);
3739 enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr);
3740 int hl_pci_init(struct hl_device *hdev);
3741 void hl_pci_fini(struct hl_device *hdev);
3742
3743 long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr);
3744 void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq);
3745 int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3746 int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3747 int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3748 int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3749 int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3750 int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3751 void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3752 long hl_fw_get_max_power(struct hl_device *hdev);
3753 void hl_fw_set_max_power(struct hl_device *hdev);
3754 int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info,
3755 u32 nonce);
3756 int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3757 int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3758 int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3759 int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3760 int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk);
3761 void hl_fw_set_pll_profile(struct hl_device *hdev);
3762 void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp);
3763 void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp);
3764
3765 void hw_sob_get(struct hl_hw_sob *hw_sob);
3766 void hw_sob_put(struct hl_hw_sob *hw_sob);
3767 void hl_encaps_handle_do_release(struct kref *ref);
3768 void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
3769 struct hl_cs *cs, struct hl_cs_job *job,
3770 struct hl_cs_compl *cs_cmpl);
3771
3772 int hl_dec_init(struct hl_device *hdev);
3773 void hl_dec_fini(struct hl_device *hdev);
3774 void hl_dec_ctx_fini(struct hl_ctx *ctx);
3775
3776 void hl_release_pending_user_interrupts(struct hl_device *hdev);
3777 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
3778 struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig);
3779
3780 int hl_state_dump(struct hl_device *hdev);
3781 const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id);
3782 const char *hl_state_dump_get_monitor_name(struct hl_device *hdev,
3783 struct hl_mon_state_dump *mon);
3784 void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map);
3785 __printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset,
3786 const char *format, ...);
3787 char *hl_format_as_binary(char *buf, size_t buf_len, u32 n);
3788 const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type);
3789
3790 void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg);
3791 void hl_mem_mgr_fini(struct hl_mem_mgr *mmg);
3792 int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma,
3793 void *args);
3794 struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg,
3795 u64 handle);
3796 int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle);
3797 int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf);
3798 struct hl_mmap_mem_buf *
3799 hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg,
3800 struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp,
3801 void *args);
3802 __printf(2, 3) void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...);
3803
3804 #ifdef CONFIG_DEBUG_FS
3805
3806 void hl_debugfs_init(void);
3807 void hl_debugfs_fini(void);
3808 void hl_debugfs_add_device(struct hl_device *hdev);
3809 void hl_debugfs_remove_device(struct hl_device *hdev);
3810 void hl_debugfs_add_file(struct hl_fpriv *hpriv);
3811 void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
3812 void hl_debugfs_add_cb(struct hl_cb *cb);
3813 void hl_debugfs_remove_cb(struct hl_cb *cb);
3814 void hl_debugfs_add_cs(struct hl_cs *cs);
3815 void hl_debugfs_remove_cs(struct hl_cs *cs);
3816 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
3817 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
3818 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
3819 void hl_debugfs_remove_userptr(struct hl_device *hdev,
3820 struct hl_userptr *userptr);
3821 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
3822 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
3823 void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data,
3824 unsigned long length);
3825
3826 #else
3827
hl_debugfs_init(void)3828 static inline void __init hl_debugfs_init(void)
3829 {
3830 }
3831
hl_debugfs_fini(void)3832 static inline void hl_debugfs_fini(void)
3833 {
3834 }
3835
hl_debugfs_add_device(struct hl_device * hdev)3836 static inline void hl_debugfs_add_device(struct hl_device *hdev)
3837 {
3838 }
3839
hl_debugfs_remove_device(struct hl_device * hdev)3840 static inline void hl_debugfs_remove_device(struct hl_device *hdev)
3841 {
3842 }
3843
hl_debugfs_add_file(struct hl_fpriv * hpriv)3844 static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
3845 {
3846 }
3847
hl_debugfs_remove_file(struct hl_fpriv * hpriv)3848 static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
3849 {
3850 }
3851
hl_debugfs_add_cb(struct hl_cb * cb)3852 static inline void hl_debugfs_add_cb(struct hl_cb *cb)
3853 {
3854 }
3855
hl_debugfs_remove_cb(struct hl_cb * cb)3856 static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
3857 {
3858 }
3859
hl_debugfs_add_cs(struct hl_cs * cs)3860 static inline void hl_debugfs_add_cs(struct hl_cs *cs)
3861 {
3862 }
3863
hl_debugfs_remove_cs(struct hl_cs * cs)3864 static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
3865 {
3866 }
3867
hl_debugfs_add_job(struct hl_device * hdev,struct hl_cs_job * job)3868 static inline void hl_debugfs_add_job(struct hl_device *hdev,
3869 struct hl_cs_job *job)
3870 {
3871 }
3872
hl_debugfs_remove_job(struct hl_device * hdev,struct hl_cs_job * job)3873 static inline void hl_debugfs_remove_job(struct hl_device *hdev,
3874 struct hl_cs_job *job)
3875 {
3876 }
3877
hl_debugfs_add_userptr(struct hl_device * hdev,struct hl_userptr * userptr)3878 static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
3879 struct hl_userptr *userptr)
3880 {
3881 }
3882
hl_debugfs_remove_userptr(struct hl_device * hdev,struct hl_userptr * userptr)3883 static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
3884 struct hl_userptr *userptr)
3885 {
3886 }
3887
hl_debugfs_add_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)3888 static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
3889 struct hl_ctx *ctx)
3890 {
3891 }
3892
hl_debugfs_remove_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)3893 static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
3894 struct hl_ctx *ctx)
3895 {
3896 }
3897
hl_debugfs_set_state_dump(struct hl_device * hdev,char * data,unsigned long length)3898 static inline void hl_debugfs_set_state_dump(struct hl_device *hdev,
3899 char *data, unsigned long length)
3900 {
3901 }
3902
3903 #endif
3904
3905 /* Security */
3906 int hl_unsecure_register(struct hl_device *hdev, u32 mm_reg_addr, int offset,
3907 const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[],
3908 int array_size);
3909 int hl_unsecure_registers(struct hl_device *hdev, const u32 mm_reg_array[],
3910 int mm_array_size, int offset, const u32 pb_blocks[],
3911 struct hl_block_glbl_sec sgs_array[], int blocks_array_size);
3912 void hl_config_glbl_sec(struct hl_device *hdev, const u32 pb_blocks[],
3913 struct hl_block_glbl_sec sgs_array[], u32 block_offset,
3914 int array_size);
3915 void hl_secure_block(struct hl_device *hdev,
3916 struct hl_block_glbl_sec sgs_array[], int array_size);
3917 int hl_init_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
3918 u32 dcore_offset, u32 num_instances, u32 instance_offset,
3919 const u32 pb_blocks[], u32 blocks_array_size,
3920 const u32 *regs_array, u32 regs_array_size, u64 mask);
3921 int hl_init_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
3922 u32 num_instances, u32 instance_offset,
3923 const u32 pb_blocks[], u32 blocks_array_size,
3924 const u32 *regs_array, u32 regs_array_size);
3925 int hl_init_pb_ranges_with_mask(struct hl_device *hdev, u32 num_dcores,
3926 u32 dcore_offset, u32 num_instances, u32 instance_offset,
3927 const u32 pb_blocks[], u32 blocks_array_size,
3928 const struct range *regs_range_array, u32 regs_range_array_size,
3929 u64 mask);
3930 int hl_init_pb_ranges(struct hl_device *hdev, u32 num_dcores,
3931 u32 dcore_offset, u32 num_instances, u32 instance_offset,
3932 const u32 pb_blocks[], u32 blocks_array_size,
3933 const struct range *regs_range_array,
3934 u32 regs_range_array_size);
3935 int hl_init_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
3936 u32 num_instances, u32 instance_offset,
3937 const u32 pb_blocks[], u32 blocks_array_size,
3938 const u32 *regs_array, u32 regs_array_size);
3939 int hl_init_pb_ranges_single_dcore(struct hl_device *hdev, u32 dcore_offset,
3940 u32 num_instances, u32 instance_offset,
3941 const u32 pb_blocks[], u32 blocks_array_size,
3942 const struct range *regs_range_array,
3943 u32 regs_range_array_size);
3944 void hl_ack_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
3945 u32 num_instances, u32 instance_offset,
3946 const u32 pb_blocks[], u32 blocks_array_size);
3947 void hl_ack_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
3948 u32 dcore_offset, u32 num_instances, u32 instance_offset,
3949 const u32 pb_blocks[], u32 blocks_array_size, u64 mask);
3950 void hl_ack_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
3951 u32 num_instances, u32 instance_offset,
3952 const u32 pb_blocks[], u32 blocks_array_size);
3953
3954 /* IOCTLs */
3955 long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
3956 long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
3957 int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
3958 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data);
3959 int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data);
3960 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data);
3961
3962 #endif /* HABANALABSP_H_ */
3963