1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
6 */
7
8 #include <linux/filter.h>
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/delay.h>
14 #include <linux/notifier.h>
15 #include <linux/ip.h>
16 #include <linux/tcp.h>
17 #include <linux/in.h>
18 #include <linux/ethtool.h>
19 #include <linux/topology.h>
20 #include <linux/gfp.h>
21 #include <linux/aer.h>
22 #include <linux/interrupt.h>
23 #include "net_driver.h"
24 #include <net/gre.h>
25 #include <net/udp_tunnel.h>
26 #include "efx.h"
27 #include "efx_common.h"
28 #include "efx_channels.h"
29 #include "ef100.h"
30 #include "rx_common.h"
31 #include "tx_common.h"
32 #include "nic.h"
33 #include "io.h"
34 #include "selftest.h"
35 #include "sriov.h"
36
37 #include "mcdi_port_common.h"
38 #include "mcdi_pcol.h"
39 #include "workarounds.h"
40
41 /**************************************************************************
42 *
43 * Configurable values
44 *
45 *************************************************************************/
46
47 module_param_named(interrupt_mode, efx_interrupt_mode, uint, 0444);
48 MODULE_PARM_DESC(interrupt_mode,
49 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
50
51 module_param(rss_cpus, uint, 0444);
52 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
53
54 /*
55 * Use separate channels for TX and RX events
56 *
57 * Set this to 1 to use separate channels for TX and RX. It allows us
58 * to control interrupt affinity separately for TX and RX.
59 *
60 * This is only used in MSI-X interrupt mode
61 */
62 bool efx_separate_tx_channels;
63 module_param(efx_separate_tx_channels, bool, 0444);
64 MODULE_PARM_DESC(efx_separate_tx_channels,
65 "Use separate channels for TX and RX");
66
67 /* Initial interrupt moderation settings. They can be modified after
68 * module load with ethtool.
69 *
70 * The default for RX should strike a balance between increasing the
71 * round-trip latency and reducing overhead.
72 */
73 static unsigned int rx_irq_mod_usec = 60;
74
75 /* Initial interrupt moderation settings. They can be modified after
76 * module load with ethtool.
77 *
78 * This default is chosen to ensure that a 10G link does not go idle
79 * while a TX queue is stopped after it has become full. A queue is
80 * restarted when it drops below half full. The time this takes (assuming
81 * worst case 3 descriptors per packet and 1024 descriptors) is
82 * 512 / 3 * 1.2 = 205 usec.
83 */
84 static unsigned int tx_irq_mod_usec = 150;
85
86 static bool phy_flash_cfg;
87 module_param(phy_flash_cfg, bool, 0644);
88 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
89
90 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
91 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
92 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
93 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
94 module_param(debug, uint, 0);
95 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
96
97 /**************************************************************************
98 *
99 * Utility functions and prototypes
100 *
101 *************************************************************************/
102
103 static void efx_remove_port(struct efx_nic *efx);
104 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog);
105 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp);
106 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
107 u32 flags);
108
109 /**************************************************************************
110 *
111 * Port handling
112 *
113 **************************************************************************/
114
115 static void efx_fini_port(struct efx_nic *efx);
116
efx_probe_port(struct efx_nic * efx)117 static int efx_probe_port(struct efx_nic *efx)
118 {
119 int rc;
120
121 netif_dbg(efx, probe, efx->net_dev, "create port\n");
122
123 if (phy_flash_cfg)
124 efx->phy_mode = PHY_MODE_SPECIAL;
125
126 /* Connect up MAC/PHY operations table */
127 rc = efx->type->probe_port(efx);
128 if (rc)
129 return rc;
130
131 /* Initialise MAC address to permanent address */
132 eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr);
133
134 return 0;
135 }
136
efx_init_port(struct efx_nic * efx)137 static int efx_init_port(struct efx_nic *efx)
138 {
139 int rc;
140
141 netif_dbg(efx, drv, efx->net_dev, "init port\n");
142
143 mutex_lock(&efx->mac_lock);
144
145 efx->port_initialized = true;
146
147 /* Ensure the PHY advertises the correct flow control settings */
148 rc = efx_mcdi_port_reconfigure(efx);
149 if (rc && rc != -EPERM)
150 goto fail;
151
152 mutex_unlock(&efx->mac_lock);
153 return 0;
154
155 fail:
156 mutex_unlock(&efx->mac_lock);
157 return rc;
158 }
159
efx_fini_port(struct efx_nic * efx)160 static void efx_fini_port(struct efx_nic *efx)
161 {
162 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
163
164 if (!efx->port_initialized)
165 return;
166
167 efx->port_initialized = false;
168
169 efx->link_state.up = false;
170 efx_link_status_changed(efx);
171 }
172
efx_remove_port(struct efx_nic * efx)173 static void efx_remove_port(struct efx_nic *efx)
174 {
175 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
176
177 efx->type->remove_port(efx);
178 }
179
180 /**************************************************************************
181 *
182 * NIC handling
183 *
184 **************************************************************************/
185
186 static LIST_HEAD(efx_primary_list);
187 static LIST_HEAD(efx_unassociated_list);
188
efx_same_controller(struct efx_nic * left,struct efx_nic * right)189 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
190 {
191 return left->type == right->type &&
192 left->vpd_sn && right->vpd_sn &&
193 !strcmp(left->vpd_sn, right->vpd_sn);
194 }
195
efx_associate(struct efx_nic * efx)196 static void efx_associate(struct efx_nic *efx)
197 {
198 struct efx_nic *other, *next;
199
200 if (efx->primary == efx) {
201 /* Adding primary function; look for secondaries */
202
203 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
204 list_add_tail(&efx->node, &efx_primary_list);
205
206 list_for_each_entry_safe(other, next, &efx_unassociated_list,
207 node) {
208 if (efx_same_controller(efx, other)) {
209 list_del(&other->node);
210 netif_dbg(other, probe, other->net_dev,
211 "moving to secondary list of %s %s\n",
212 pci_name(efx->pci_dev),
213 efx->net_dev->name);
214 list_add_tail(&other->node,
215 &efx->secondary_list);
216 other->primary = efx;
217 }
218 }
219 } else {
220 /* Adding secondary function; look for primary */
221
222 list_for_each_entry(other, &efx_primary_list, node) {
223 if (efx_same_controller(efx, other)) {
224 netif_dbg(efx, probe, efx->net_dev,
225 "adding to secondary list of %s %s\n",
226 pci_name(other->pci_dev),
227 other->net_dev->name);
228 list_add_tail(&efx->node,
229 &other->secondary_list);
230 efx->primary = other;
231 return;
232 }
233 }
234
235 netif_dbg(efx, probe, efx->net_dev,
236 "adding to unassociated list\n");
237 list_add_tail(&efx->node, &efx_unassociated_list);
238 }
239 }
240
efx_dissociate(struct efx_nic * efx)241 static void efx_dissociate(struct efx_nic *efx)
242 {
243 struct efx_nic *other, *next;
244
245 list_del(&efx->node);
246 efx->primary = NULL;
247
248 list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
249 list_del(&other->node);
250 netif_dbg(other, probe, other->net_dev,
251 "moving to unassociated list\n");
252 list_add_tail(&other->node, &efx_unassociated_list);
253 other->primary = NULL;
254 }
255 }
256
efx_probe_nic(struct efx_nic * efx)257 static int efx_probe_nic(struct efx_nic *efx)
258 {
259 int rc;
260
261 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
262
263 /* Carry out hardware-type specific initialisation */
264 rc = efx->type->probe(efx);
265 if (rc)
266 return rc;
267
268 do {
269 if (!efx->max_channels || !efx->max_tx_channels) {
270 netif_err(efx, drv, efx->net_dev,
271 "Insufficient resources to allocate"
272 " any channels\n");
273 rc = -ENOSPC;
274 goto fail1;
275 }
276
277 /* Determine the number of channels and queues by trying
278 * to hook in MSI-X interrupts.
279 */
280 rc = efx_probe_interrupts(efx);
281 if (rc)
282 goto fail1;
283
284 rc = efx_set_channels(efx);
285 if (rc)
286 goto fail1;
287
288 /* dimension_resources can fail with EAGAIN */
289 rc = efx->type->dimension_resources(efx);
290 if (rc != 0 && rc != -EAGAIN)
291 goto fail2;
292
293 if (rc == -EAGAIN)
294 /* try again with new max_channels */
295 efx_remove_interrupts(efx);
296
297 } while (rc == -EAGAIN);
298
299 if (efx->n_channels > 1)
300 netdev_rss_key_fill(efx->rss_context.rx_hash_key,
301 sizeof(efx->rss_context.rx_hash_key));
302 efx_set_default_rx_indir_table(efx, &efx->rss_context);
303
304 /* Initialise the interrupt moderation settings */
305 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
306 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
307 true);
308
309 return 0;
310
311 fail2:
312 efx_remove_interrupts(efx);
313 fail1:
314 efx->type->remove(efx);
315 return rc;
316 }
317
efx_remove_nic(struct efx_nic * efx)318 static void efx_remove_nic(struct efx_nic *efx)
319 {
320 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
321
322 efx_remove_interrupts(efx);
323 efx->type->remove(efx);
324 }
325
326 /**************************************************************************
327 *
328 * NIC startup/shutdown
329 *
330 *************************************************************************/
331
efx_probe_all(struct efx_nic * efx)332 static int efx_probe_all(struct efx_nic *efx)
333 {
334 int rc;
335
336 rc = efx_probe_nic(efx);
337 if (rc) {
338 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
339 goto fail1;
340 }
341
342 rc = efx_probe_port(efx);
343 if (rc) {
344 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
345 goto fail2;
346 }
347
348 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
349 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
350 rc = -EINVAL;
351 goto fail3;
352 }
353
354 #ifdef CONFIG_SFC_SRIOV
355 rc = efx->type->vswitching_probe(efx);
356 if (rc) /* not fatal; the PF will still work fine */
357 netif_warn(efx, probe, efx->net_dev,
358 "failed to setup vswitching rc=%d;"
359 " VFs may not function\n", rc);
360 #endif
361
362 rc = efx_probe_filters(efx);
363 if (rc) {
364 netif_err(efx, probe, efx->net_dev,
365 "failed to create filter tables\n");
366 goto fail4;
367 }
368
369 rc = efx_probe_channels(efx);
370 if (rc)
371 goto fail5;
372
373 efx->state = STATE_NET_DOWN;
374
375 return 0;
376
377 fail5:
378 efx_remove_filters(efx);
379 fail4:
380 #ifdef CONFIG_SFC_SRIOV
381 efx->type->vswitching_remove(efx);
382 #endif
383 fail3:
384 efx_remove_port(efx);
385 fail2:
386 efx_remove_nic(efx);
387 fail1:
388 return rc;
389 }
390
efx_remove_all(struct efx_nic * efx)391 static void efx_remove_all(struct efx_nic *efx)
392 {
393 rtnl_lock();
394 efx_xdp_setup_prog(efx, NULL);
395 rtnl_unlock();
396
397 efx_remove_channels(efx);
398 efx_remove_filters(efx);
399 #ifdef CONFIG_SFC_SRIOV
400 efx->type->vswitching_remove(efx);
401 #endif
402 efx_remove_port(efx);
403 efx_remove_nic(efx);
404 }
405
406 /**************************************************************************
407 *
408 * Interrupt moderation
409 *
410 **************************************************************************/
efx_usecs_to_ticks(struct efx_nic * efx,unsigned int usecs)411 unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
412 {
413 if (usecs == 0)
414 return 0;
415 if (usecs * 1000 < efx->timer_quantum_ns)
416 return 1; /* never round down to 0 */
417 return usecs * 1000 / efx->timer_quantum_ns;
418 }
419
efx_ticks_to_usecs(struct efx_nic * efx,unsigned int ticks)420 unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
421 {
422 /* We must round up when converting ticks to microseconds
423 * because we round down when converting the other way.
424 */
425 return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
426 }
427
428 /* Set interrupt moderation parameters */
efx_init_irq_moderation(struct efx_nic * efx,unsigned int tx_usecs,unsigned int rx_usecs,bool rx_adaptive,bool rx_may_override_tx)429 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
430 unsigned int rx_usecs, bool rx_adaptive,
431 bool rx_may_override_tx)
432 {
433 struct efx_channel *channel;
434 unsigned int timer_max_us;
435
436 EFX_ASSERT_RESET_SERIALISED(efx);
437
438 timer_max_us = efx->timer_max_ns / 1000;
439
440 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
441 return -EINVAL;
442
443 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
444 !rx_may_override_tx) {
445 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
446 "RX and TX IRQ moderation must be equal\n");
447 return -EINVAL;
448 }
449
450 efx->irq_rx_adaptive = rx_adaptive;
451 efx->irq_rx_moderation_us = rx_usecs;
452 efx_for_each_channel(channel, efx) {
453 if (efx_channel_has_rx_queue(channel))
454 channel->irq_moderation_us = rx_usecs;
455 else if (efx_channel_has_tx_queues(channel))
456 channel->irq_moderation_us = tx_usecs;
457 else if (efx_channel_is_xdp_tx(channel))
458 channel->irq_moderation_us = tx_usecs;
459 }
460
461 return 0;
462 }
463
efx_get_irq_moderation(struct efx_nic * efx,unsigned int * tx_usecs,unsigned int * rx_usecs,bool * rx_adaptive)464 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
465 unsigned int *rx_usecs, bool *rx_adaptive)
466 {
467 *rx_adaptive = efx->irq_rx_adaptive;
468 *rx_usecs = efx->irq_rx_moderation_us;
469
470 /* If channels are shared between RX and TX, so is IRQ
471 * moderation. Otherwise, IRQ moderation is the same for all
472 * TX channels and is not adaptive.
473 */
474 if (efx->tx_channel_offset == 0) {
475 *tx_usecs = *rx_usecs;
476 } else {
477 struct efx_channel *tx_channel;
478
479 tx_channel = efx->channel[efx->tx_channel_offset];
480 *tx_usecs = tx_channel->irq_moderation_us;
481 }
482 }
483
484 /**************************************************************************
485 *
486 * ioctls
487 *
488 *************************************************************************/
489
490 /* Net device ioctl
491 * Context: process, rtnl_lock() held.
492 */
efx_ioctl(struct net_device * net_dev,struct ifreq * ifr,int cmd)493 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
494 {
495 struct efx_nic *efx = efx_netdev_priv(net_dev);
496 struct mii_ioctl_data *data = if_mii(ifr);
497
498 if (cmd == SIOCSHWTSTAMP)
499 return efx_ptp_set_ts_config(efx, ifr);
500 if (cmd == SIOCGHWTSTAMP)
501 return efx_ptp_get_ts_config(efx, ifr);
502
503 /* Convert phy_id from older PRTAD/DEVAD format */
504 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
505 (data->phy_id & 0xfc00) == 0x0400)
506 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
507
508 return mdio_mii_ioctl(&efx->mdio, data, cmd);
509 }
510
511 /**************************************************************************
512 *
513 * Kernel net device interface
514 *
515 *************************************************************************/
516
517 /* Context: process, rtnl_lock() held. */
efx_net_open(struct net_device * net_dev)518 int efx_net_open(struct net_device *net_dev)
519 {
520 struct efx_nic *efx = efx_netdev_priv(net_dev);
521 int rc;
522
523 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
524 raw_smp_processor_id());
525
526 rc = efx_check_disabled(efx);
527 if (rc)
528 return rc;
529 if (efx->phy_mode & PHY_MODE_SPECIAL)
530 return -EBUSY;
531 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
532 return -EIO;
533
534 /* Notify the kernel of the link state polled during driver load,
535 * before the monitor starts running */
536 efx_link_status_changed(efx);
537
538 efx_start_all(efx);
539 if (efx->state == STATE_DISABLED || efx->reset_pending)
540 netif_device_detach(efx->net_dev);
541 else
542 efx->state = STATE_NET_UP;
543
544 return 0;
545 }
546
547 /* Context: process, rtnl_lock() held.
548 * Note that the kernel will ignore our return code; this method
549 * should really be a void.
550 */
efx_net_stop(struct net_device * net_dev)551 int efx_net_stop(struct net_device *net_dev)
552 {
553 struct efx_nic *efx = efx_netdev_priv(net_dev);
554
555 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
556 raw_smp_processor_id());
557
558 /* Stop the device and flush all the channels */
559 efx_stop_all(efx);
560
561 return 0;
562 }
563
efx_vlan_rx_add_vid(struct net_device * net_dev,__be16 proto,u16 vid)564 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
565 {
566 struct efx_nic *efx = efx_netdev_priv(net_dev);
567
568 if (efx->type->vlan_rx_add_vid)
569 return efx->type->vlan_rx_add_vid(efx, proto, vid);
570 else
571 return -EOPNOTSUPP;
572 }
573
efx_vlan_rx_kill_vid(struct net_device * net_dev,__be16 proto,u16 vid)574 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
575 {
576 struct efx_nic *efx = efx_netdev_priv(net_dev);
577
578 if (efx->type->vlan_rx_kill_vid)
579 return efx->type->vlan_rx_kill_vid(efx, proto, vid);
580 else
581 return -EOPNOTSUPP;
582 }
583
584 static const struct net_device_ops efx_netdev_ops = {
585 .ndo_open = efx_net_open,
586 .ndo_stop = efx_net_stop,
587 .ndo_get_stats64 = efx_net_stats,
588 .ndo_tx_timeout = efx_watchdog,
589 .ndo_start_xmit = efx_hard_start_xmit,
590 .ndo_validate_addr = eth_validate_addr,
591 .ndo_eth_ioctl = efx_ioctl,
592 .ndo_change_mtu = efx_change_mtu,
593 .ndo_set_mac_address = efx_set_mac_address,
594 .ndo_set_rx_mode = efx_set_rx_mode,
595 .ndo_set_features = efx_set_features,
596 .ndo_features_check = efx_features_check,
597 .ndo_vlan_rx_add_vid = efx_vlan_rx_add_vid,
598 .ndo_vlan_rx_kill_vid = efx_vlan_rx_kill_vid,
599 #ifdef CONFIG_SFC_SRIOV
600 .ndo_set_vf_mac = efx_sriov_set_vf_mac,
601 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan,
602 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk,
603 .ndo_get_vf_config = efx_sriov_get_vf_config,
604 .ndo_set_vf_link_state = efx_sriov_set_vf_link_state,
605 #endif
606 .ndo_get_phys_port_id = efx_get_phys_port_id,
607 .ndo_get_phys_port_name = efx_get_phys_port_name,
608 .ndo_setup_tc = efx_setup_tc,
609 #ifdef CONFIG_RFS_ACCEL
610 .ndo_rx_flow_steer = efx_filter_rfs,
611 #endif
612 .ndo_xdp_xmit = efx_xdp_xmit,
613 .ndo_bpf = efx_xdp
614 };
615
efx_xdp_setup_prog(struct efx_nic * efx,struct bpf_prog * prog)616 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog)
617 {
618 struct bpf_prog *old_prog;
619
620 if (efx->xdp_rxq_info_failed) {
621 netif_err(efx, drv, efx->net_dev,
622 "Unable to bind XDP program due to previous failure of rxq_info\n");
623 return -EINVAL;
624 }
625
626 if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) {
627 netif_err(efx, drv, efx->net_dev,
628 "Unable to configure XDP with MTU of %d (max: %d)\n",
629 efx->net_dev->mtu, efx_xdp_max_mtu(efx));
630 return -EINVAL;
631 }
632
633 old_prog = rtnl_dereference(efx->xdp_prog);
634 rcu_assign_pointer(efx->xdp_prog, prog);
635 /* Release the reference that was originally passed by the caller. */
636 if (old_prog)
637 bpf_prog_put(old_prog);
638
639 return 0;
640 }
641
642 /* Context: process, rtnl_lock() held. */
efx_xdp(struct net_device * dev,struct netdev_bpf * xdp)643 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp)
644 {
645 struct efx_nic *efx = efx_netdev_priv(dev);
646
647 switch (xdp->command) {
648 case XDP_SETUP_PROG:
649 return efx_xdp_setup_prog(efx, xdp->prog);
650 default:
651 return -EINVAL;
652 }
653 }
654
efx_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** xdpfs,u32 flags)655 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
656 u32 flags)
657 {
658 struct efx_nic *efx = efx_netdev_priv(dev);
659
660 if (!netif_running(dev))
661 return -EINVAL;
662
663 return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH);
664 }
665
efx_update_name(struct efx_nic * efx)666 static void efx_update_name(struct efx_nic *efx)
667 {
668 strcpy(efx->name, efx->net_dev->name);
669 efx_mtd_rename(efx);
670 efx_set_channel_names(efx);
671 }
672
efx_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)673 static int efx_netdev_event(struct notifier_block *this,
674 unsigned long event, void *ptr)
675 {
676 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
677
678 if ((net_dev->netdev_ops == &efx_netdev_ops) &&
679 event == NETDEV_CHANGENAME)
680 efx_update_name(efx_netdev_priv(net_dev));
681
682 return NOTIFY_DONE;
683 }
684
685 static struct notifier_block efx_netdev_notifier = {
686 .notifier_call = efx_netdev_event,
687 };
688
phy_type_show(struct device * dev,struct device_attribute * attr,char * buf)689 static ssize_t phy_type_show(struct device *dev,
690 struct device_attribute *attr, char *buf)
691 {
692 struct efx_nic *efx = dev_get_drvdata(dev);
693 return sprintf(buf, "%d\n", efx->phy_type);
694 }
695 static DEVICE_ATTR_RO(phy_type);
696
efx_register_netdev(struct efx_nic * efx)697 static int efx_register_netdev(struct efx_nic *efx)
698 {
699 struct net_device *net_dev = efx->net_dev;
700 struct efx_channel *channel;
701 int rc;
702
703 net_dev->watchdog_timeo = 5 * HZ;
704 net_dev->irq = efx->pci_dev->irq;
705 net_dev->netdev_ops = &efx_netdev_ops;
706 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
707 net_dev->priv_flags |= IFF_UNICAST_FLT;
708 net_dev->ethtool_ops = &efx_ethtool_ops;
709 netif_set_tso_max_segs(net_dev, EFX_TSO_MAX_SEGS);
710 net_dev->min_mtu = EFX_MIN_MTU;
711 net_dev->max_mtu = EFX_MAX_MTU;
712
713 rtnl_lock();
714
715 /* Enable resets to be scheduled and check whether any were
716 * already requested. If so, the NIC is probably hosed so we
717 * abort.
718 */
719 if (efx->reset_pending) {
720 pci_err(efx->pci_dev, "aborting probe due to scheduled reset\n");
721 rc = -EIO;
722 goto fail_locked;
723 }
724
725 rc = dev_alloc_name(net_dev, net_dev->name);
726 if (rc < 0)
727 goto fail_locked;
728 efx_update_name(efx);
729
730 /* Always start with carrier off; PHY events will detect the link */
731 netif_carrier_off(net_dev);
732
733 rc = register_netdevice(net_dev);
734 if (rc)
735 goto fail_locked;
736
737 efx_for_each_channel(channel, efx) {
738 struct efx_tx_queue *tx_queue;
739 efx_for_each_channel_tx_queue(tx_queue, channel)
740 efx_init_tx_queue_core_txq(tx_queue);
741 }
742
743 efx_associate(efx);
744
745 efx->state = STATE_NET_DOWN;
746
747 rtnl_unlock();
748
749 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
750 if (rc) {
751 netif_err(efx, drv, efx->net_dev,
752 "failed to init net dev attributes\n");
753 goto fail_registered;
754 }
755
756 efx_init_mcdi_logging(efx);
757
758 return 0;
759
760 fail_registered:
761 rtnl_lock();
762 efx_dissociate(efx);
763 unregister_netdevice(net_dev);
764 fail_locked:
765 efx->state = STATE_UNINIT;
766 rtnl_unlock();
767 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
768 return rc;
769 }
770
efx_unregister_netdev(struct efx_nic * efx)771 static void efx_unregister_netdev(struct efx_nic *efx)
772 {
773 if (!efx->net_dev)
774 return;
775
776 if (WARN_ON(efx_netdev_priv(efx->net_dev) != efx))
777 return;
778
779 if (efx_dev_registered(efx)) {
780 strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
781 efx_fini_mcdi_logging(efx);
782 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
783 unregister_netdev(efx->net_dev);
784 }
785 }
786
787 /**************************************************************************
788 *
789 * List of NICs we support
790 *
791 **************************************************************************/
792
793 /* PCI device ID table */
794 static const struct pci_device_id efx_pci_table[] = {
795 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */
796 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
797 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903), /* SFC9120 VF */
798 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
799 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */
800 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
801 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923), /* SFC9140 VF */
802 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
803 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03), /* SFC9220 PF */
804 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
805 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03), /* SFC9220 VF */
806 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
807 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03), /* SFC9250 PF */
808 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
809 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03), /* SFC9250 VF */
810 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
811 {0} /* end of list */
812 };
813
814 /**************************************************************************
815 *
816 * Data housekeeping
817 *
818 **************************************************************************/
819
efx_update_sw_stats(struct efx_nic * efx,u64 * stats)820 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
821 {
822 u64 n_rx_nodesc_trunc = 0;
823 struct efx_channel *channel;
824
825 efx_for_each_channel(channel, efx)
826 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
827 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
828 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
829 }
830
831 /**************************************************************************
832 *
833 * PCI interface
834 *
835 **************************************************************************/
836
837 /* Main body of final NIC shutdown code
838 * This is called only at module unload (or hotplug removal).
839 */
efx_pci_remove_main(struct efx_nic * efx)840 static void efx_pci_remove_main(struct efx_nic *efx)
841 {
842 /* Flush reset_work. It can no longer be scheduled since we
843 * are not READY.
844 */
845 WARN_ON(efx_net_active(efx->state));
846 efx_flush_reset_workqueue(efx);
847
848 efx_disable_interrupts(efx);
849 efx_clear_interrupt_affinity(efx);
850 efx_nic_fini_interrupt(efx);
851 efx_fini_port(efx);
852 efx->type->fini(efx);
853 efx_fini_napi(efx);
854 efx_remove_all(efx);
855 }
856
857 /* Final NIC shutdown
858 * This is called only at module unload (or hotplug removal). A PF can call
859 * this on its VFs to ensure they are unbound first.
860 */
efx_pci_remove(struct pci_dev * pci_dev)861 static void efx_pci_remove(struct pci_dev *pci_dev)
862 {
863 struct efx_probe_data *probe_data;
864 struct efx_nic *efx;
865
866 efx = pci_get_drvdata(pci_dev);
867 if (!efx)
868 return;
869
870 /* Mark the NIC as fini, then stop the interface */
871 rtnl_lock();
872 efx_dissociate(efx);
873 dev_close(efx->net_dev);
874 efx_disable_interrupts(efx);
875 efx->state = STATE_UNINIT;
876 rtnl_unlock();
877
878 if (efx->type->sriov_fini)
879 efx->type->sriov_fini(efx);
880
881 efx_unregister_netdev(efx);
882
883 efx_mtd_remove(efx);
884
885 efx_pci_remove_main(efx);
886
887 efx_fini_io(efx);
888 pci_dbg(efx->pci_dev, "shutdown successful\n");
889
890 efx_fini_struct(efx);
891 free_netdev(efx->net_dev);
892 probe_data = container_of(efx, struct efx_probe_data, efx);
893 kfree(probe_data);
894
895 pci_disable_pcie_error_reporting(pci_dev);
896 };
897
898 /* NIC VPD information
899 * Called during probe to display the part number of the
900 * installed NIC.
901 */
efx_probe_vpd_strings(struct efx_nic * efx)902 static void efx_probe_vpd_strings(struct efx_nic *efx)
903 {
904 struct pci_dev *dev = efx->pci_dev;
905 unsigned int vpd_size, kw_len;
906 u8 *vpd_data;
907 int start;
908
909 vpd_data = pci_vpd_alloc(dev, &vpd_size);
910 if (IS_ERR(vpd_data)) {
911 pci_warn(dev, "Unable to read VPD\n");
912 return;
913 }
914
915 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
916 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
917 if (start < 0)
918 pci_err(dev, "Part number not found or incomplete\n");
919 else
920 pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
921
922 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
923 PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
924 if (start < 0)
925 pci_err(dev, "Serial number not found or incomplete\n");
926 else
927 efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
928
929 kfree(vpd_data);
930 }
931
932
933 /* Main body of NIC initialisation
934 * This is called at module load (or hotplug insertion, theoretically).
935 */
efx_pci_probe_main(struct efx_nic * efx)936 static int efx_pci_probe_main(struct efx_nic *efx)
937 {
938 int rc;
939
940 /* Do start-of-day initialisation */
941 rc = efx_probe_all(efx);
942 if (rc)
943 goto fail1;
944
945 efx_init_napi(efx);
946
947 down_write(&efx->filter_sem);
948 rc = efx->type->init(efx);
949 up_write(&efx->filter_sem);
950 if (rc) {
951 pci_err(efx->pci_dev, "failed to initialise NIC\n");
952 goto fail3;
953 }
954
955 rc = efx_init_port(efx);
956 if (rc) {
957 netif_err(efx, probe, efx->net_dev,
958 "failed to initialise port\n");
959 goto fail4;
960 }
961
962 rc = efx_nic_init_interrupt(efx);
963 if (rc)
964 goto fail5;
965
966 efx_set_interrupt_affinity(efx);
967 rc = efx_enable_interrupts(efx);
968 if (rc)
969 goto fail6;
970
971 return 0;
972
973 fail6:
974 efx_clear_interrupt_affinity(efx);
975 efx_nic_fini_interrupt(efx);
976 fail5:
977 efx_fini_port(efx);
978 fail4:
979 efx->type->fini(efx);
980 fail3:
981 efx_fini_napi(efx);
982 efx_remove_all(efx);
983 fail1:
984 return rc;
985 }
986
efx_pci_probe_post_io(struct efx_nic * efx)987 static int efx_pci_probe_post_io(struct efx_nic *efx)
988 {
989 struct net_device *net_dev = efx->net_dev;
990 int rc = efx_pci_probe_main(efx);
991
992 if (rc)
993 return rc;
994
995 if (efx->type->sriov_init) {
996 rc = efx->type->sriov_init(efx);
997 if (rc)
998 pci_err(efx->pci_dev, "SR-IOV can't be enabled rc %d\n",
999 rc);
1000 }
1001
1002 /* Determine netdevice features */
1003 net_dev->features |= efx->type->offload_features;
1004
1005 /* Add TSO features */
1006 if (efx->type->tso_versions && efx->type->tso_versions(efx))
1007 net_dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1008
1009 /* Mask for features that also apply to VLAN devices */
1010 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
1011 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
1012 NETIF_F_RXCSUM);
1013
1014 /* Determine user configurable features */
1015 net_dev->hw_features |= net_dev->features & ~efx->fixed_features;
1016
1017 /* Disable receiving frames with bad FCS, by default. */
1018 net_dev->features &= ~NETIF_F_RXALL;
1019
1020 /* Disable VLAN filtering by default. It may be enforced if
1021 * the feature is fixed (i.e. VLAN filters are required to
1022 * receive VLAN tagged packets due to vPort restrictions).
1023 */
1024 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
1025 net_dev->features |= efx->fixed_features;
1026
1027 rc = efx_register_netdev(efx);
1028 if (!rc)
1029 return 0;
1030
1031 efx_pci_remove_main(efx);
1032 return rc;
1033 }
1034
1035 /* NIC initialisation
1036 *
1037 * This is called at module load (or hotplug insertion,
1038 * theoretically). It sets up PCI mappings, resets the NIC,
1039 * sets up and registers the network devices with the kernel and hooks
1040 * the interrupt service routine. It does not prepare the device for
1041 * transmission; this is left to the first time one of the network
1042 * interfaces is brought up (i.e. efx_net_open).
1043 */
efx_pci_probe(struct pci_dev * pci_dev,const struct pci_device_id * entry)1044 static int efx_pci_probe(struct pci_dev *pci_dev,
1045 const struct pci_device_id *entry)
1046 {
1047 struct efx_probe_data *probe_data, **probe_ptr;
1048 struct net_device *net_dev;
1049 struct efx_nic *efx;
1050 int rc;
1051
1052 /* Allocate probe data and struct efx_nic */
1053 probe_data = kzalloc(sizeof(*probe_data), GFP_KERNEL);
1054 if (!probe_data)
1055 return -ENOMEM;
1056 probe_data->pci_dev = pci_dev;
1057 efx = &probe_data->efx;
1058
1059 /* Allocate and initialise a struct net_device */
1060 net_dev = alloc_etherdev_mq(sizeof(probe_data), EFX_MAX_CORE_TX_QUEUES);
1061 if (!net_dev) {
1062 rc = -ENOMEM;
1063 goto fail0;
1064 }
1065 probe_ptr = netdev_priv(net_dev);
1066 *probe_ptr = probe_data;
1067 efx->net_dev = net_dev;
1068 efx->type = (const struct efx_nic_type *) entry->driver_data;
1069 efx->fixed_features |= NETIF_F_HIGHDMA;
1070
1071 pci_set_drvdata(pci_dev, efx);
1072 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
1073 rc = efx_init_struct(efx, pci_dev);
1074 if (rc)
1075 goto fail1;
1076 efx->mdio.dev = net_dev;
1077
1078 pci_info(pci_dev, "Solarflare NIC detected\n");
1079
1080 if (!efx->type->is_vf)
1081 efx_probe_vpd_strings(efx);
1082
1083 /* Set up basic I/O (BAR mappings etc) */
1084 rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask,
1085 efx->type->mem_map_size(efx));
1086 if (rc)
1087 goto fail2;
1088
1089 rc = efx_pci_probe_post_io(efx);
1090 if (rc) {
1091 /* On failure, retry once immediately.
1092 * If we aborted probe due to a scheduled reset, dismiss it.
1093 */
1094 efx->reset_pending = 0;
1095 rc = efx_pci_probe_post_io(efx);
1096 if (rc) {
1097 /* On another failure, retry once more
1098 * after a 50-305ms delay.
1099 */
1100 unsigned char r;
1101
1102 get_random_bytes(&r, 1);
1103 msleep((unsigned int)r + 50);
1104 efx->reset_pending = 0;
1105 rc = efx_pci_probe_post_io(efx);
1106 }
1107 }
1108 if (rc)
1109 goto fail3;
1110
1111 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
1112
1113 /* Try to create MTDs, but allow this to fail */
1114 rtnl_lock();
1115 rc = efx_mtd_probe(efx);
1116 rtnl_unlock();
1117 if (rc && rc != -EPERM)
1118 netif_warn(efx, probe, efx->net_dev,
1119 "failed to create MTDs (%d)\n", rc);
1120
1121 (void)pci_enable_pcie_error_reporting(pci_dev);
1122
1123 if (efx->type->udp_tnl_push_ports)
1124 efx->type->udp_tnl_push_ports(efx);
1125
1126 return 0;
1127
1128 fail3:
1129 efx_fini_io(efx);
1130 fail2:
1131 efx_fini_struct(efx);
1132 fail1:
1133 WARN_ON(rc > 0);
1134 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
1135 free_netdev(net_dev);
1136 fail0:
1137 kfree(probe_data);
1138 return rc;
1139 }
1140
1141 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
1142 * enabled on success
1143 */
1144 #ifdef CONFIG_SFC_SRIOV
efx_pci_sriov_configure(struct pci_dev * dev,int num_vfs)1145 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
1146 {
1147 int rc;
1148 struct efx_nic *efx = pci_get_drvdata(dev);
1149
1150 if (efx->type->sriov_configure) {
1151 rc = efx->type->sriov_configure(efx, num_vfs);
1152 if (rc)
1153 return rc;
1154 else
1155 return num_vfs;
1156 } else
1157 return -EOPNOTSUPP;
1158 }
1159 #endif
1160
efx_pm_freeze(struct device * dev)1161 static int efx_pm_freeze(struct device *dev)
1162 {
1163 struct efx_nic *efx = dev_get_drvdata(dev);
1164
1165 rtnl_lock();
1166
1167 if (efx_net_active(efx->state)) {
1168 efx_device_detach_sync(efx);
1169
1170 efx_stop_all(efx);
1171 efx_disable_interrupts(efx);
1172
1173 efx->state = efx_freeze(efx->state);
1174 }
1175
1176 rtnl_unlock();
1177
1178 return 0;
1179 }
1180
efx_pci_shutdown(struct pci_dev * pci_dev)1181 static void efx_pci_shutdown(struct pci_dev *pci_dev)
1182 {
1183 struct efx_nic *efx = pci_get_drvdata(pci_dev);
1184
1185 if (!efx)
1186 return;
1187
1188 efx_pm_freeze(&pci_dev->dev);
1189 pci_disable_device(pci_dev);
1190 }
1191
efx_pm_thaw(struct device * dev)1192 static int efx_pm_thaw(struct device *dev)
1193 {
1194 int rc;
1195 struct efx_nic *efx = dev_get_drvdata(dev);
1196
1197 rtnl_lock();
1198
1199 if (efx_frozen(efx->state)) {
1200 rc = efx_enable_interrupts(efx);
1201 if (rc)
1202 goto fail;
1203
1204 mutex_lock(&efx->mac_lock);
1205 efx_mcdi_port_reconfigure(efx);
1206 mutex_unlock(&efx->mac_lock);
1207
1208 efx_start_all(efx);
1209
1210 efx_device_attach_if_not_resetting(efx);
1211
1212 efx->state = efx_thaw(efx->state);
1213
1214 efx->type->resume_wol(efx);
1215 }
1216
1217 rtnl_unlock();
1218
1219 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
1220 efx_queue_reset_work(efx);
1221
1222 return 0;
1223
1224 fail:
1225 rtnl_unlock();
1226
1227 return rc;
1228 }
1229
efx_pm_poweroff(struct device * dev)1230 static int efx_pm_poweroff(struct device *dev)
1231 {
1232 struct pci_dev *pci_dev = to_pci_dev(dev);
1233 struct efx_nic *efx = pci_get_drvdata(pci_dev);
1234
1235 efx->type->fini(efx);
1236
1237 efx->reset_pending = 0;
1238
1239 pci_save_state(pci_dev);
1240 return pci_set_power_state(pci_dev, PCI_D3hot);
1241 }
1242
1243 /* Used for both resume and restore */
efx_pm_resume(struct device * dev)1244 static int efx_pm_resume(struct device *dev)
1245 {
1246 struct pci_dev *pci_dev = to_pci_dev(dev);
1247 struct efx_nic *efx = pci_get_drvdata(pci_dev);
1248 int rc;
1249
1250 rc = pci_set_power_state(pci_dev, PCI_D0);
1251 if (rc)
1252 return rc;
1253 pci_restore_state(pci_dev);
1254 rc = pci_enable_device(pci_dev);
1255 if (rc)
1256 return rc;
1257 pci_set_master(efx->pci_dev);
1258 rc = efx->type->reset(efx, RESET_TYPE_ALL);
1259 if (rc)
1260 return rc;
1261 down_write(&efx->filter_sem);
1262 rc = efx->type->init(efx);
1263 up_write(&efx->filter_sem);
1264 if (rc)
1265 return rc;
1266 rc = efx_pm_thaw(dev);
1267 return rc;
1268 }
1269
efx_pm_suspend(struct device * dev)1270 static int efx_pm_suspend(struct device *dev)
1271 {
1272 int rc;
1273
1274 efx_pm_freeze(dev);
1275 rc = efx_pm_poweroff(dev);
1276 if (rc)
1277 efx_pm_resume(dev);
1278 return rc;
1279 }
1280
1281 static const struct dev_pm_ops efx_pm_ops = {
1282 .suspend = efx_pm_suspend,
1283 .resume = efx_pm_resume,
1284 .freeze = efx_pm_freeze,
1285 .thaw = efx_pm_thaw,
1286 .poweroff = efx_pm_poweroff,
1287 .restore = efx_pm_resume,
1288 };
1289
1290 static struct pci_driver efx_pci_driver = {
1291 .name = KBUILD_MODNAME,
1292 .id_table = efx_pci_table,
1293 .probe = efx_pci_probe,
1294 .remove = efx_pci_remove,
1295 .driver.pm = &efx_pm_ops,
1296 .shutdown = efx_pci_shutdown,
1297 .err_handler = &efx_err_handlers,
1298 #ifdef CONFIG_SFC_SRIOV
1299 .sriov_configure = efx_pci_sriov_configure,
1300 #endif
1301 };
1302
1303 /**************************************************************************
1304 *
1305 * Kernel module interface
1306 *
1307 *************************************************************************/
1308
efx_init_module(void)1309 static int __init efx_init_module(void)
1310 {
1311 int rc;
1312
1313 printk(KERN_INFO "Solarflare NET driver\n");
1314
1315 rc = register_netdevice_notifier(&efx_netdev_notifier);
1316 if (rc)
1317 goto err_notifier;
1318
1319 rc = efx_create_reset_workqueue();
1320 if (rc)
1321 goto err_reset;
1322
1323 rc = pci_register_driver(&efx_pci_driver);
1324 if (rc < 0)
1325 goto err_pci;
1326
1327 rc = pci_register_driver(&ef100_pci_driver);
1328 if (rc < 0)
1329 goto err_pci_ef100;
1330
1331 return 0;
1332
1333 err_pci_ef100:
1334 pci_unregister_driver(&efx_pci_driver);
1335 err_pci:
1336 efx_destroy_reset_workqueue();
1337 err_reset:
1338 unregister_netdevice_notifier(&efx_netdev_notifier);
1339 err_notifier:
1340 return rc;
1341 }
1342
efx_exit_module(void)1343 static void __exit efx_exit_module(void)
1344 {
1345 printk(KERN_INFO "Solarflare NET driver unloading\n");
1346
1347 pci_unregister_driver(&ef100_pci_driver);
1348 pci_unregister_driver(&efx_pci_driver);
1349 efx_destroy_reset_workqueue();
1350 unregister_netdevice_notifier(&efx_netdev_notifier);
1351
1352 }
1353
1354 module_init(efx_init_module);
1355 module_exit(efx_exit_module);
1356
1357 MODULE_AUTHOR("Solarflare Communications and "
1358 "Michael Brown <mbrown@fensystems.co.uk>");
1359 MODULE_DESCRIPTION("Solarflare network driver");
1360 MODULE_LICENSE("GPL");
1361 MODULE_DEVICE_TABLE(pci, efx_pci_table);
1362