1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright IBM Corp. 2006, 2021
4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5 * Martin Schwidefsky <schwidefsky@de.ibm.com>
6 * Ralph Wuerthner <rwuerthn@de.ibm.com>
7 * Felix Beck <felix.beck@de.ibm.com>
8 * Holger Dengler <hd@linux.vnet.ibm.com>
9 * Harald Freudenberger <freude@linux.ibm.com>
10 *
11 * Adjunct processor bus.
12 */
13
14 #define KMSG_COMPONENT "ap"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16
17 #include <linux/kernel_stat.h>
18 #include <linux/moduleparam.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/freezer.h>
23 #include <linux/interrupt.h>
24 #include <linux/workqueue.h>
25 #include <linux/slab.h>
26 #include <linux/notifier.h>
27 #include <linux/kthread.h>
28 #include <linux/mutex.h>
29 #include <asm/airq.h>
30 #include <asm/tpi.h>
31 #include <linux/atomic.h>
32 #include <asm/isc.h>
33 #include <linux/hrtimer.h>
34 #include <linux/ktime.h>
35 #include <asm/facility.h>
36 #include <linux/crypto.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/debugfs.h>
39 #include <linux/ctype.h>
40 #include <linux/module.h>
41
42 #include "ap_bus.h"
43 #include "ap_debug.h"
44
45 /*
46 * Module parameters; note though this file itself isn't modular.
47 */
48 int ap_domain_index = -1; /* Adjunct Processor Domain Index */
49 static DEFINE_SPINLOCK(ap_domain_lock);
50 module_param_named(domain, ap_domain_index, int, 0440);
51 MODULE_PARM_DESC(domain, "domain index for ap devices");
52 EXPORT_SYMBOL(ap_domain_index);
53
54 static int ap_thread_flag;
55 module_param_named(poll_thread, ap_thread_flag, int, 0440);
56 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
57
58 static char *apm_str;
59 module_param_named(apmask, apm_str, charp, 0440);
60 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
61
62 static char *aqm_str;
63 module_param_named(aqmask, aqm_str, charp, 0440);
64 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
65
66 static int ap_useirq = 1;
67 module_param_named(useirq, ap_useirq, int, 0440);
68 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on).");
69
70 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE);
71 EXPORT_SYMBOL(ap_max_msg_size);
72
73 static struct device *ap_root_device;
74
75 /* Hashtable of all queue devices on the AP bus */
76 DEFINE_HASHTABLE(ap_queues, 8);
77 /* lock used for the ap_queues hashtable */
78 DEFINE_SPINLOCK(ap_queues_lock);
79
80 /* Default permissions (ioctl, card and domain masking) */
81 struct ap_perms ap_perms;
82 EXPORT_SYMBOL(ap_perms);
83 DEFINE_MUTEX(ap_perms_mutex);
84 EXPORT_SYMBOL(ap_perms_mutex);
85
86 /* # of bus scans since init */
87 static atomic64_t ap_scan_bus_count;
88
89 /* # of bindings complete since init */
90 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0);
91
92 /* completion for initial APQN bindings complete */
93 static DECLARE_COMPLETION(ap_init_apqn_bindings_complete);
94
95 static struct ap_config_info *ap_qci_info;
96 static struct ap_config_info *ap_qci_info_old;
97
98 /*
99 * AP bus related debug feature things.
100 */
101 debug_info_t *ap_dbf_info;
102
103 /*
104 * Workqueue timer for bus rescan.
105 */
106 static struct timer_list ap_config_timer;
107 static int ap_config_time = AP_CONFIG_TIME;
108 static void ap_scan_bus(struct work_struct *);
109 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
110
111 /*
112 * Tasklet & timer for AP request polling and interrupts
113 */
114 static void ap_tasklet_fn(unsigned long);
115 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
116 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
117 static struct task_struct *ap_poll_kthread;
118 static DEFINE_MUTEX(ap_poll_thread_mutex);
119 static DEFINE_SPINLOCK(ap_poll_timer_lock);
120 static struct hrtimer ap_poll_timer;
121 /*
122 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
123 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
124 */
125 static unsigned long long poll_timeout = 250000;
126
127 /* Maximum domain id, if not given via qci */
128 static int ap_max_domain_id = 15;
129 /* Maximum adapter id, if not given via qci */
130 static int ap_max_adapter_id = 63;
131
132 static struct bus_type ap_bus_type;
133
134 /* Adapter interrupt definitions */
135 static void ap_interrupt_handler(struct airq_struct *airq,
136 struct tpi_info *tpi_info);
137
138 static bool ap_irq_flag;
139
140 static struct airq_struct ap_airq = {
141 .handler = ap_interrupt_handler,
142 .isc = AP_ISC,
143 };
144
145 /**
146 * ap_airq_ptr() - Get the address of the adapter interrupt indicator
147 *
148 * Returns the address of the local-summary-indicator of the adapter
149 * interrupt handler for AP, or NULL if adapter interrupts are not
150 * available.
151 */
ap_airq_ptr(void)152 void *ap_airq_ptr(void)
153 {
154 if (ap_irq_flag)
155 return ap_airq.lsi_ptr;
156 return NULL;
157 }
158
159 /**
160 * ap_interrupts_available(): Test if AP interrupts are available.
161 *
162 * Returns 1 if AP interrupts are available.
163 */
ap_interrupts_available(void)164 static int ap_interrupts_available(void)
165 {
166 return test_facility(65);
167 }
168
169 /**
170 * ap_qci_available(): Test if AP configuration
171 * information can be queried via QCI subfunction.
172 *
173 * Returns 1 if subfunction PQAP(QCI) is available.
174 */
ap_qci_available(void)175 static int ap_qci_available(void)
176 {
177 return test_facility(12);
178 }
179
180 /**
181 * ap_apft_available(): Test if AP facilities test (APFT)
182 * facility is available.
183 *
184 * Returns 1 if APFT is available.
185 */
ap_apft_available(void)186 static int ap_apft_available(void)
187 {
188 return test_facility(15);
189 }
190
191 /*
192 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
193 *
194 * Returns 1 if the QACT subfunction is available.
195 */
ap_qact_available(void)196 static inline int ap_qact_available(void)
197 {
198 if (ap_qci_info)
199 return ap_qci_info->qact;
200 return 0;
201 }
202
203 /*
204 * ap_fetch_qci_info(): Fetch cryptographic config info
205 *
206 * Returns the ap configuration info fetched via PQAP(QCI).
207 * On success 0 is returned, on failure a negative errno
208 * is returned, e.g. if the PQAP(QCI) instruction is not
209 * available, the return value will be -EOPNOTSUPP.
210 */
ap_fetch_qci_info(struct ap_config_info * info)211 static inline int ap_fetch_qci_info(struct ap_config_info *info)
212 {
213 if (!ap_qci_available())
214 return -EOPNOTSUPP;
215 if (!info)
216 return -EINVAL;
217 return ap_qci(info);
218 }
219
220 /**
221 * ap_init_qci_info(): Allocate and query qci config info.
222 * Does also update the static variables ap_max_domain_id
223 * and ap_max_adapter_id if this info is available.
224 */
ap_init_qci_info(void)225 static void __init ap_init_qci_info(void)
226 {
227 if (!ap_qci_available()) {
228 AP_DBF_INFO("%s QCI not supported\n", __func__);
229 return;
230 }
231
232 ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL);
233 if (!ap_qci_info)
234 return;
235 ap_qci_info_old = kzalloc(sizeof(*ap_qci_info_old), GFP_KERNEL);
236 if (!ap_qci_info_old) {
237 kfree(ap_qci_info);
238 ap_qci_info = NULL;
239 return;
240 }
241 if (ap_fetch_qci_info(ap_qci_info) != 0) {
242 kfree(ap_qci_info);
243 kfree(ap_qci_info_old);
244 ap_qci_info = NULL;
245 ap_qci_info_old = NULL;
246 return;
247 }
248 AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
249
250 if (ap_qci_info->apxa) {
251 if (ap_qci_info->Na) {
252 ap_max_adapter_id = ap_qci_info->Na;
253 AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
254 __func__, ap_max_adapter_id);
255 }
256 if (ap_qci_info->Nd) {
257 ap_max_domain_id = ap_qci_info->Nd;
258 AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
259 __func__, ap_max_domain_id);
260 }
261 }
262
263 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
264 }
265
266 /*
267 * ap_test_config(): helper function to extract the nrth bit
268 * within the unsigned int array field.
269 */
ap_test_config(unsigned int * field,unsigned int nr)270 static inline int ap_test_config(unsigned int *field, unsigned int nr)
271 {
272 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
273 }
274
275 /*
276 * ap_test_config_card_id(): Test, whether an AP card ID is configured.
277 *
278 * Returns 0 if the card is not configured
279 * 1 if the card is configured or
280 * if the configuration information is not available
281 */
ap_test_config_card_id(unsigned int id)282 static inline int ap_test_config_card_id(unsigned int id)
283 {
284 if (id > ap_max_adapter_id)
285 return 0;
286 if (ap_qci_info)
287 return ap_test_config(ap_qci_info->apm, id);
288 return 1;
289 }
290
291 /*
292 * ap_test_config_usage_domain(): Test, whether an AP usage domain
293 * is configured.
294 *
295 * Returns 0 if the usage domain is not configured
296 * 1 if the usage domain is configured or
297 * if the configuration information is not available
298 */
ap_test_config_usage_domain(unsigned int domain)299 int ap_test_config_usage_domain(unsigned int domain)
300 {
301 if (domain > ap_max_domain_id)
302 return 0;
303 if (ap_qci_info)
304 return ap_test_config(ap_qci_info->aqm, domain);
305 return 1;
306 }
307 EXPORT_SYMBOL(ap_test_config_usage_domain);
308
309 /*
310 * ap_test_config_ctrl_domain(): Test, whether an AP control domain
311 * is configured.
312 * @domain AP control domain ID
313 *
314 * Returns 1 if the control domain is configured
315 * 0 in all other cases
316 */
ap_test_config_ctrl_domain(unsigned int domain)317 int ap_test_config_ctrl_domain(unsigned int domain)
318 {
319 if (!ap_qci_info || domain > ap_max_domain_id)
320 return 0;
321 return ap_test_config(ap_qci_info->adm, domain);
322 }
323 EXPORT_SYMBOL(ap_test_config_ctrl_domain);
324
325 /*
326 * ap_queue_info(): Check and get AP queue info.
327 * Returns true if TAPQ succeeded and the info is filled or
328 * false otherwise.
329 */
ap_queue_info(ap_qid_t qid,int * q_type,unsigned int * q_fac,int * q_depth,int * q_ml,bool * q_decfg,bool * q_cstop)330 static bool ap_queue_info(ap_qid_t qid, int *q_type, unsigned int *q_fac,
331 int *q_depth, int *q_ml, bool *q_decfg, bool *q_cstop)
332 {
333 struct ap_queue_status status;
334 union {
335 unsigned long value;
336 struct {
337 unsigned int fac : 32; /* facility bits */
338 unsigned int at : 8; /* ap type */
339 unsigned int _res1 : 8;
340 unsigned int _res2 : 4;
341 unsigned int ml : 4; /* apxl ml */
342 unsigned int _res3 : 4;
343 unsigned int qd : 4; /* queue depth */
344 } tapq_gr2;
345 } tapq_info;
346
347 tapq_info.value = 0;
348
349 /* make sure we don't run into a specifiation exception */
350 if (AP_QID_CARD(qid) > ap_max_adapter_id ||
351 AP_QID_QUEUE(qid) > ap_max_domain_id)
352 return false;
353
354 /* call TAPQ on this APQN */
355 status = ap_test_queue(qid, ap_apft_available(), &tapq_info.value);
356 switch (status.response_code) {
357 case AP_RESPONSE_NORMAL:
358 case AP_RESPONSE_RESET_IN_PROGRESS:
359 case AP_RESPONSE_DECONFIGURED:
360 case AP_RESPONSE_CHECKSTOPPED:
361 case AP_RESPONSE_BUSY:
362 /*
363 * According to the architecture in all these cases the
364 * info should be filled. All bits 0 is not possible as
365 * there is at least one of the mode bits set.
366 */
367 if (WARN_ON_ONCE(!tapq_info.value))
368 return false;
369 *q_type = tapq_info.tapq_gr2.at;
370 *q_fac = tapq_info.tapq_gr2.fac;
371 *q_depth = tapq_info.tapq_gr2.qd;
372 *q_ml = tapq_info.tapq_gr2.ml;
373 *q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
374 *q_cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED;
375 switch (*q_type) {
376 /* For CEX2 and CEX3 the available functions
377 * are not reflected by the facilities bits.
378 * Instead it is coded into the type. So here
379 * modify the function bits based on the type.
380 */
381 case AP_DEVICE_TYPE_CEX2A:
382 case AP_DEVICE_TYPE_CEX3A:
383 *q_fac |= 0x08000000;
384 break;
385 case AP_DEVICE_TYPE_CEX2C:
386 case AP_DEVICE_TYPE_CEX3C:
387 *q_fac |= 0x10000000;
388 break;
389 default:
390 break;
391 }
392 return true;
393 default:
394 /*
395 * A response code which indicates, there is no info available.
396 */
397 return false;
398 }
399 }
400
ap_wait(enum ap_sm_wait wait)401 void ap_wait(enum ap_sm_wait wait)
402 {
403 ktime_t hr_time;
404
405 switch (wait) {
406 case AP_SM_WAIT_AGAIN:
407 case AP_SM_WAIT_INTERRUPT:
408 if (ap_irq_flag)
409 break;
410 if (ap_poll_kthread) {
411 wake_up(&ap_poll_wait);
412 break;
413 }
414 fallthrough;
415 case AP_SM_WAIT_TIMEOUT:
416 spin_lock_bh(&ap_poll_timer_lock);
417 if (!hrtimer_is_queued(&ap_poll_timer)) {
418 hr_time = poll_timeout;
419 hrtimer_forward_now(&ap_poll_timer, hr_time);
420 hrtimer_restart(&ap_poll_timer);
421 }
422 spin_unlock_bh(&ap_poll_timer_lock);
423 break;
424 case AP_SM_WAIT_NONE:
425 default:
426 break;
427 }
428 }
429
430 /**
431 * ap_request_timeout(): Handling of request timeouts
432 * @t: timer making this callback
433 *
434 * Handles request timeouts.
435 */
ap_request_timeout(struct timer_list * t)436 void ap_request_timeout(struct timer_list *t)
437 {
438 struct ap_queue *aq = from_timer(aq, t, timeout);
439
440 spin_lock_bh(&aq->lock);
441 ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT));
442 spin_unlock_bh(&aq->lock);
443 }
444
445 /**
446 * ap_poll_timeout(): AP receive polling for finished AP requests.
447 * @unused: Unused pointer.
448 *
449 * Schedules the AP tasklet using a high resolution timer.
450 */
ap_poll_timeout(struct hrtimer * unused)451 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
452 {
453 tasklet_schedule(&ap_tasklet);
454 return HRTIMER_NORESTART;
455 }
456
457 /**
458 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
459 * @airq: pointer to adapter interrupt descriptor
460 * @tpi_info: ignored
461 */
ap_interrupt_handler(struct airq_struct * airq,struct tpi_info * tpi_info)462 static void ap_interrupt_handler(struct airq_struct *airq,
463 struct tpi_info *tpi_info)
464 {
465 inc_irq_stat(IRQIO_APB);
466 tasklet_schedule(&ap_tasklet);
467 }
468
469 /**
470 * ap_tasklet_fn(): Tasklet to poll all AP devices.
471 * @dummy: Unused variable
472 *
473 * Poll all AP devices on the bus.
474 */
ap_tasklet_fn(unsigned long dummy)475 static void ap_tasklet_fn(unsigned long dummy)
476 {
477 int bkt;
478 struct ap_queue *aq;
479 enum ap_sm_wait wait = AP_SM_WAIT_NONE;
480
481 /* Reset the indicator if interrupts are used. Thus new interrupts can
482 * be received. Doing it in the beginning of the tasklet is therefor
483 * important that no requests on any AP get lost.
484 */
485 if (ap_irq_flag)
486 xchg(ap_airq.lsi_ptr, 0);
487
488 spin_lock_bh(&ap_queues_lock);
489 hash_for_each(ap_queues, bkt, aq, hnode) {
490 spin_lock_bh(&aq->lock);
491 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
492 spin_unlock_bh(&aq->lock);
493 }
494 spin_unlock_bh(&ap_queues_lock);
495
496 ap_wait(wait);
497 }
498
ap_pending_requests(void)499 static int ap_pending_requests(void)
500 {
501 int bkt;
502 struct ap_queue *aq;
503
504 spin_lock_bh(&ap_queues_lock);
505 hash_for_each(ap_queues, bkt, aq, hnode) {
506 if (aq->queue_count == 0)
507 continue;
508 spin_unlock_bh(&ap_queues_lock);
509 return 1;
510 }
511 spin_unlock_bh(&ap_queues_lock);
512 return 0;
513 }
514
515 /**
516 * ap_poll_thread(): Thread that polls for finished requests.
517 * @data: Unused pointer
518 *
519 * AP bus poll thread. The purpose of this thread is to poll for
520 * finished requests in a loop if there is a "free" cpu - that is
521 * a cpu that doesn't have anything better to do. The polling stops
522 * as soon as there is another task or if all messages have been
523 * delivered.
524 */
ap_poll_thread(void * data)525 static int ap_poll_thread(void *data)
526 {
527 DECLARE_WAITQUEUE(wait, current);
528
529 set_user_nice(current, MAX_NICE);
530 set_freezable();
531 while (!kthread_should_stop()) {
532 add_wait_queue(&ap_poll_wait, &wait);
533 set_current_state(TASK_INTERRUPTIBLE);
534 if (!ap_pending_requests()) {
535 schedule();
536 try_to_freeze();
537 }
538 set_current_state(TASK_RUNNING);
539 remove_wait_queue(&ap_poll_wait, &wait);
540 if (need_resched()) {
541 schedule();
542 try_to_freeze();
543 continue;
544 }
545 ap_tasklet_fn(0);
546 }
547
548 return 0;
549 }
550
ap_poll_thread_start(void)551 static int ap_poll_thread_start(void)
552 {
553 int rc;
554
555 if (ap_irq_flag || ap_poll_kthread)
556 return 0;
557 mutex_lock(&ap_poll_thread_mutex);
558 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
559 rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
560 if (rc)
561 ap_poll_kthread = NULL;
562 mutex_unlock(&ap_poll_thread_mutex);
563 return rc;
564 }
565
ap_poll_thread_stop(void)566 static void ap_poll_thread_stop(void)
567 {
568 if (!ap_poll_kthread)
569 return;
570 mutex_lock(&ap_poll_thread_mutex);
571 kthread_stop(ap_poll_kthread);
572 ap_poll_kthread = NULL;
573 mutex_unlock(&ap_poll_thread_mutex);
574 }
575
576 #define is_card_dev(x) ((x)->parent == ap_root_device)
577 #define is_queue_dev(x) ((x)->parent != ap_root_device)
578
579 /**
580 * ap_bus_match()
581 * @dev: Pointer to device
582 * @drv: Pointer to device_driver
583 *
584 * AP bus driver registration/unregistration.
585 */
ap_bus_match(struct device * dev,struct device_driver * drv)586 static int ap_bus_match(struct device *dev, struct device_driver *drv)
587 {
588 struct ap_driver *ap_drv = to_ap_drv(drv);
589 struct ap_device_id *id;
590
591 /*
592 * Compare device type of the device with the list of
593 * supported types of the device_driver.
594 */
595 for (id = ap_drv->ids; id->match_flags; id++) {
596 if (is_card_dev(dev) &&
597 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
598 id->dev_type == to_ap_dev(dev)->device_type)
599 return 1;
600 if (is_queue_dev(dev) &&
601 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
602 id->dev_type == to_ap_dev(dev)->device_type)
603 return 1;
604 }
605 return 0;
606 }
607
608 /**
609 * ap_uevent(): Uevent function for AP devices.
610 * @dev: Pointer to device
611 * @env: Pointer to kobj_uevent_env
612 *
613 * It sets up a single environment variable DEV_TYPE which contains the
614 * hardware device type.
615 */
ap_uevent(struct device * dev,struct kobj_uevent_env * env)616 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env)
617 {
618 int rc = 0;
619 struct ap_device *ap_dev = to_ap_dev(dev);
620
621 /* Uevents from ap bus core don't need extensions to the env */
622 if (dev == ap_root_device)
623 return 0;
624
625 if (is_card_dev(dev)) {
626 struct ap_card *ac = to_ap_card(&ap_dev->device);
627
628 /* Set up DEV_TYPE environment variable. */
629 rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
630 if (rc)
631 return rc;
632 /* Add MODALIAS= */
633 rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
634 if (rc)
635 return rc;
636
637 /* Add MODE=<accel|cca|ep11> */
638 if (ap_test_bit(&ac->functions, AP_FUNC_ACCEL))
639 rc = add_uevent_var(env, "MODE=accel");
640 else if (ap_test_bit(&ac->functions, AP_FUNC_COPRO))
641 rc = add_uevent_var(env, "MODE=cca");
642 else if (ap_test_bit(&ac->functions, AP_FUNC_EP11))
643 rc = add_uevent_var(env, "MODE=ep11");
644 if (rc)
645 return rc;
646 } else {
647 struct ap_queue *aq = to_ap_queue(&ap_dev->device);
648
649 /* Add MODE=<accel|cca|ep11> */
650 if (ap_test_bit(&aq->card->functions, AP_FUNC_ACCEL))
651 rc = add_uevent_var(env, "MODE=accel");
652 else if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO))
653 rc = add_uevent_var(env, "MODE=cca");
654 else if (ap_test_bit(&aq->card->functions, AP_FUNC_EP11))
655 rc = add_uevent_var(env, "MODE=ep11");
656 if (rc)
657 return rc;
658 }
659
660 return 0;
661 }
662
ap_send_init_scan_done_uevent(void)663 static void ap_send_init_scan_done_uevent(void)
664 {
665 char *envp[] = { "INITSCAN=done", NULL };
666
667 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
668 }
669
ap_send_bindings_complete_uevent(void)670 static void ap_send_bindings_complete_uevent(void)
671 {
672 char buf[32];
673 char *envp[] = { "BINDINGS=complete", buf, NULL };
674
675 snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu",
676 atomic64_inc_return(&ap_bindings_complete_count));
677 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
678 }
679
ap_send_config_uevent(struct ap_device * ap_dev,bool cfg)680 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg)
681 {
682 char buf[16];
683 char *envp[] = { buf, NULL };
684
685 snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0);
686
687 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
688 }
689 EXPORT_SYMBOL(ap_send_config_uevent);
690
ap_send_online_uevent(struct ap_device * ap_dev,int online)691 void ap_send_online_uevent(struct ap_device *ap_dev, int online)
692 {
693 char buf[16];
694 char *envp[] = { buf, NULL };
695
696 snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0);
697
698 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
699 }
700 EXPORT_SYMBOL(ap_send_online_uevent);
701
ap_send_mask_changed_uevent(unsigned long * newapm,unsigned long * newaqm)702 static void ap_send_mask_changed_uevent(unsigned long *newapm,
703 unsigned long *newaqm)
704 {
705 char buf[100];
706 char *envp[] = { buf, NULL };
707
708 if (newapm)
709 snprintf(buf, sizeof(buf),
710 "APMASK=0x%016lx%016lx%016lx%016lx\n",
711 newapm[0], newapm[1], newapm[2], newapm[3]);
712 else
713 snprintf(buf, sizeof(buf),
714 "AQMASK=0x%016lx%016lx%016lx%016lx\n",
715 newaqm[0], newaqm[1], newaqm[2], newaqm[3]);
716
717 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
718 }
719
720 /*
721 * calc # of bound APQNs
722 */
723
724 struct __ap_calc_ctrs {
725 unsigned int apqns;
726 unsigned int bound;
727 };
728
__ap_calc_helper(struct device * dev,void * arg)729 static int __ap_calc_helper(struct device *dev, void *arg)
730 {
731 struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg;
732
733 if (is_queue_dev(dev)) {
734 pctrs->apqns++;
735 if (dev->driver)
736 pctrs->bound++;
737 }
738
739 return 0;
740 }
741
ap_calc_bound_apqns(unsigned int * apqns,unsigned int * bound)742 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound)
743 {
744 struct __ap_calc_ctrs ctrs;
745
746 memset(&ctrs, 0, sizeof(ctrs));
747 bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper);
748
749 *apqns = ctrs.apqns;
750 *bound = ctrs.bound;
751 }
752
753 /*
754 * After initial ap bus scan do check if all existing APQNs are
755 * bound to device drivers.
756 */
ap_check_bindings_complete(void)757 static void ap_check_bindings_complete(void)
758 {
759 unsigned int apqns, bound;
760
761 if (atomic64_read(&ap_scan_bus_count) >= 1) {
762 ap_calc_bound_apqns(&apqns, &bound);
763 if (bound == apqns) {
764 if (!completion_done(&ap_init_apqn_bindings_complete)) {
765 complete_all(&ap_init_apqn_bindings_complete);
766 AP_DBF_INFO("%s complete\n", __func__);
767 }
768 ap_send_bindings_complete_uevent();
769 }
770 }
771 }
772
773 /*
774 * Interface to wait for the AP bus to have done one initial ap bus
775 * scan and all detected APQNs have been bound to device drivers.
776 * If these both conditions are not fulfilled, this function blocks
777 * on a condition with wait_for_completion_interruptible_timeout().
778 * If these both conditions are fulfilled (before the timeout hits)
779 * the return value is 0. If the timeout (in jiffies) hits instead
780 * -ETIME is returned. On failures negative return values are
781 * returned to the caller.
782 */
ap_wait_init_apqn_bindings_complete(unsigned long timeout)783 int ap_wait_init_apqn_bindings_complete(unsigned long timeout)
784 {
785 long l;
786
787 if (completion_done(&ap_init_apqn_bindings_complete))
788 return 0;
789
790 if (timeout)
791 l = wait_for_completion_interruptible_timeout(
792 &ap_init_apqn_bindings_complete, timeout);
793 else
794 l = wait_for_completion_interruptible(
795 &ap_init_apqn_bindings_complete);
796 if (l < 0)
797 return l == -ERESTARTSYS ? -EINTR : l;
798 else if (l == 0 && timeout)
799 return -ETIME;
800
801 return 0;
802 }
803 EXPORT_SYMBOL(ap_wait_init_apqn_bindings_complete);
804
__ap_queue_devices_with_id_unregister(struct device * dev,void * data)805 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
806 {
807 if (is_queue_dev(dev) &&
808 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data)
809 device_unregister(dev);
810 return 0;
811 }
812
__ap_revise_reserved(struct device * dev,void * dummy)813 static int __ap_revise_reserved(struct device *dev, void *dummy)
814 {
815 int rc, card, queue, devres, drvres;
816
817 if (is_queue_dev(dev)) {
818 card = AP_QID_CARD(to_ap_queue(dev)->qid);
819 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
820 mutex_lock(&ap_perms_mutex);
821 devres = test_bit_inv(card, ap_perms.apm) &&
822 test_bit_inv(queue, ap_perms.aqm);
823 mutex_unlock(&ap_perms_mutex);
824 drvres = to_ap_drv(dev->driver)->flags
825 & AP_DRIVER_FLAG_DEFAULT;
826 if (!!devres != !!drvres) {
827 AP_DBF_DBG("%s reprobing queue=%02x.%04x\n",
828 __func__, card, queue);
829 rc = device_reprobe(dev);
830 if (rc)
831 AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n",
832 __func__, card, queue);
833 }
834 }
835
836 return 0;
837 }
838
ap_bus_revise_bindings(void)839 static void ap_bus_revise_bindings(void)
840 {
841 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
842 }
843
844 /**
845 * ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the
846 * default host driver or not.
847 * @card: the APID of the adapter card to check
848 * @queue: the APQI of the queue to check
849 *
850 * Note: the ap_perms_mutex must be locked by the caller of this function.
851 *
852 * Return: an int specifying whether the AP adapter is reserved for the host (1)
853 * or not (0).
854 */
ap_owned_by_def_drv(int card,int queue)855 int ap_owned_by_def_drv(int card, int queue)
856 {
857 int rc = 0;
858
859 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
860 return -EINVAL;
861
862 if (test_bit_inv(card, ap_perms.apm) &&
863 test_bit_inv(queue, ap_perms.aqm))
864 rc = 1;
865
866 return rc;
867 }
868 EXPORT_SYMBOL(ap_owned_by_def_drv);
869
870 /**
871 * ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in
872 * a set is reserved for the host drivers
873 * or not.
874 * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check
875 * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check
876 *
877 * Note: the ap_perms_mutex must be locked by the caller of this function.
878 *
879 * Return: an int specifying whether each APQN is reserved for the host (1) or
880 * not (0)
881 */
ap_apqn_in_matrix_owned_by_def_drv(unsigned long * apm,unsigned long * aqm)882 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
883 unsigned long *aqm)
884 {
885 int card, queue, rc = 0;
886
887 for (card = 0; !rc && card < AP_DEVICES; card++)
888 if (test_bit_inv(card, apm) &&
889 test_bit_inv(card, ap_perms.apm))
890 for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
891 if (test_bit_inv(queue, aqm) &&
892 test_bit_inv(queue, ap_perms.aqm))
893 rc = 1;
894
895 return rc;
896 }
897 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
898
ap_device_probe(struct device * dev)899 static int ap_device_probe(struct device *dev)
900 {
901 struct ap_device *ap_dev = to_ap_dev(dev);
902 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
903 int card, queue, devres, drvres, rc = -ENODEV;
904
905 if (!get_device(dev))
906 return rc;
907
908 if (is_queue_dev(dev)) {
909 /*
910 * If the apqn is marked as reserved/used by ap bus and
911 * default drivers, only probe with drivers with the default
912 * flag set. If it is not marked, only probe with drivers
913 * with the default flag not set.
914 */
915 card = AP_QID_CARD(to_ap_queue(dev)->qid);
916 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
917 mutex_lock(&ap_perms_mutex);
918 devres = test_bit_inv(card, ap_perms.apm) &&
919 test_bit_inv(queue, ap_perms.aqm);
920 mutex_unlock(&ap_perms_mutex);
921 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
922 if (!!devres != !!drvres)
923 goto out;
924 }
925
926 /* Add queue/card to list of active queues/cards */
927 spin_lock_bh(&ap_queues_lock);
928 if (is_queue_dev(dev))
929 hash_add(ap_queues, &to_ap_queue(dev)->hnode,
930 to_ap_queue(dev)->qid);
931 spin_unlock_bh(&ap_queues_lock);
932
933 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
934
935 if (rc) {
936 spin_lock_bh(&ap_queues_lock);
937 if (is_queue_dev(dev))
938 hash_del(&to_ap_queue(dev)->hnode);
939 spin_unlock_bh(&ap_queues_lock);
940 } else {
941 ap_check_bindings_complete();
942 }
943
944 out:
945 if (rc)
946 put_device(dev);
947 return rc;
948 }
949
ap_device_remove(struct device * dev)950 static void ap_device_remove(struct device *dev)
951 {
952 struct ap_device *ap_dev = to_ap_dev(dev);
953 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
954
955 /* prepare ap queue device removal */
956 if (is_queue_dev(dev))
957 ap_queue_prepare_remove(to_ap_queue(dev));
958
959 /* driver's chance to clean up gracefully */
960 if (ap_drv->remove)
961 ap_drv->remove(ap_dev);
962
963 /* now do the ap queue device remove */
964 if (is_queue_dev(dev))
965 ap_queue_remove(to_ap_queue(dev));
966
967 /* Remove queue/card from list of active queues/cards */
968 spin_lock_bh(&ap_queues_lock);
969 if (is_queue_dev(dev))
970 hash_del(&to_ap_queue(dev)->hnode);
971 spin_unlock_bh(&ap_queues_lock);
972
973 put_device(dev);
974 }
975
ap_get_qdev(ap_qid_t qid)976 struct ap_queue *ap_get_qdev(ap_qid_t qid)
977 {
978 int bkt;
979 struct ap_queue *aq;
980
981 spin_lock_bh(&ap_queues_lock);
982 hash_for_each(ap_queues, bkt, aq, hnode) {
983 if (aq->qid == qid) {
984 get_device(&aq->ap_dev.device);
985 spin_unlock_bh(&ap_queues_lock);
986 return aq;
987 }
988 }
989 spin_unlock_bh(&ap_queues_lock);
990
991 return NULL;
992 }
993 EXPORT_SYMBOL(ap_get_qdev);
994
ap_driver_register(struct ap_driver * ap_drv,struct module * owner,char * name)995 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
996 char *name)
997 {
998 struct device_driver *drv = &ap_drv->driver;
999
1000 drv->bus = &ap_bus_type;
1001 drv->owner = owner;
1002 drv->name = name;
1003 return driver_register(drv);
1004 }
1005 EXPORT_SYMBOL(ap_driver_register);
1006
ap_driver_unregister(struct ap_driver * ap_drv)1007 void ap_driver_unregister(struct ap_driver *ap_drv)
1008 {
1009 driver_unregister(&ap_drv->driver);
1010 }
1011 EXPORT_SYMBOL(ap_driver_unregister);
1012
ap_bus_force_rescan(void)1013 void ap_bus_force_rescan(void)
1014 {
1015 /* Only trigger AP bus scans after the initial scan is done */
1016 if (atomic64_read(&ap_scan_bus_count) <= 0)
1017 return;
1018
1019 /* processing a asynchronous bus rescan */
1020 del_timer(&ap_config_timer);
1021 queue_work(system_long_wq, &ap_scan_work);
1022 flush_work(&ap_scan_work);
1023 }
1024 EXPORT_SYMBOL(ap_bus_force_rescan);
1025
1026 /*
1027 * A config change has happened, force an ap bus rescan.
1028 */
ap_bus_cfg_chg(void)1029 void ap_bus_cfg_chg(void)
1030 {
1031 AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__);
1032
1033 ap_bus_force_rescan();
1034 }
1035
1036 /*
1037 * hex2bitmap() - parse hex mask string and set bitmap.
1038 * Valid strings are "0x012345678" with at least one valid hex number.
1039 * Rest of the bitmap to the right is padded with 0. No spaces allowed
1040 * within the string, the leading 0x may be omitted.
1041 * Returns the bitmask with exactly the bits set as given by the hex
1042 * string (both in big endian order).
1043 */
hex2bitmap(const char * str,unsigned long * bitmap,int bits)1044 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
1045 {
1046 int i, n, b;
1047
1048 /* bits needs to be a multiple of 8 */
1049 if (bits & 0x07)
1050 return -EINVAL;
1051
1052 if (str[0] == '0' && str[1] == 'x')
1053 str++;
1054 if (*str == 'x')
1055 str++;
1056
1057 for (i = 0; isxdigit(*str) && i < bits; str++) {
1058 b = hex_to_bin(*str);
1059 for (n = 0; n < 4; n++)
1060 if (b & (0x08 >> n))
1061 set_bit_inv(i + n, bitmap);
1062 i += 4;
1063 }
1064
1065 if (*str == '\n')
1066 str++;
1067 if (*str)
1068 return -EINVAL;
1069 return 0;
1070 }
1071
1072 /*
1073 * modify_bitmap() - parse bitmask argument and modify an existing
1074 * bit mask accordingly. A concatenation (done with ',') of these
1075 * terms is recognized:
1076 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
1077 * <bitnr> may be any valid number (hex, decimal or octal) in the range
1078 * 0...bits-1; the leading + or - is required. Here are some examples:
1079 * +0-15,+32,-128,-0xFF
1080 * -0-255,+1-16,+0x128
1081 * +1,+2,+3,+4,-5,-7-10
1082 * Returns the new bitmap after all changes have been applied. Every
1083 * positive value in the string will set a bit and every negative value
1084 * in the string will clear a bit. As a bit may be touched more than once,
1085 * the last 'operation' wins:
1086 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
1087 * cleared again. All other bits are unmodified.
1088 */
modify_bitmap(const char * str,unsigned long * bitmap,int bits)1089 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
1090 {
1091 int a, i, z;
1092 char *np, sign;
1093
1094 /* bits needs to be a multiple of 8 */
1095 if (bits & 0x07)
1096 return -EINVAL;
1097
1098 while (*str) {
1099 sign = *str++;
1100 if (sign != '+' && sign != '-')
1101 return -EINVAL;
1102 a = z = simple_strtoul(str, &np, 0);
1103 if (str == np || a >= bits)
1104 return -EINVAL;
1105 str = np;
1106 if (*str == '-') {
1107 z = simple_strtoul(++str, &np, 0);
1108 if (str == np || a > z || z >= bits)
1109 return -EINVAL;
1110 str = np;
1111 }
1112 for (i = a; i <= z; i++)
1113 if (sign == '+')
1114 set_bit_inv(i, bitmap);
1115 else
1116 clear_bit_inv(i, bitmap);
1117 while (*str == ',' || *str == '\n')
1118 str++;
1119 }
1120
1121 return 0;
1122 }
1123
ap_parse_bitmap_str(const char * str,unsigned long * bitmap,int bits,unsigned long * newmap)1124 static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits,
1125 unsigned long *newmap)
1126 {
1127 unsigned long size;
1128 int rc;
1129
1130 size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1131 if (*str == '+' || *str == '-') {
1132 memcpy(newmap, bitmap, size);
1133 rc = modify_bitmap(str, newmap, bits);
1134 } else {
1135 memset(newmap, 0, size);
1136 rc = hex2bitmap(str, newmap, bits);
1137 }
1138 return rc;
1139 }
1140
ap_parse_mask_str(const char * str,unsigned long * bitmap,int bits,struct mutex * lock)1141 int ap_parse_mask_str(const char *str,
1142 unsigned long *bitmap, int bits,
1143 struct mutex *lock)
1144 {
1145 unsigned long *newmap, size;
1146 int rc;
1147
1148 /* bits needs to be a multiple of 8 */
1149 if (bits & 0x07)
1150 return -EINVAL;
1151
1152 size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1153 newmap = kmalloc(size, GFP_KERNEL);
1154 if (!newmap)
1155 return -ENOMEM;
1156 if (mutex_lock_interruptible(lock)) {
1157 kfree(newmap);
1158 return -ERESTARTSYS;
1159 }
1160 rc = ap_parse_bitmap_str(str, bitmap, bits, newmap);
1161 if (rc == 0)
1162 memcpy(bitmap, newmap, size);
1163 mutex_unlock(lock);
1164 kfree(newmap);
1165 return rc;
1166 }
1167 EXPORT_SYMBOL(ap_parse_mask_str);
1168
1169 /*
1170 * AP bus attributes.
1171 */
1172
ap_domain_show(struct bus_type * bus,char * buf)1173 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
1174 {
1175 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
1176 }
1177
ap_domain_store(struct bus_type * bus,const char * buf,size_t count)1178 static ssize_t ap_domain_store(struct bus_type *bus,
1179 const char *buf, size_t count)
1180 {
1181 int domain;
1182
1183 if (sscanf(buf, "%i\n", &domain) != 1 ||
1184 domain < 0 || domain > ap_max_domain_id ||
1185 !test_bit_inv(domain, ap_perms.aqm))
1186 return -EINVAL;
1187
1188 spin_lock_bh(&ap_domain_lock);
1189 ap_domain_index = domain;
1190 spin_unlock_bh(&ap_domain_lock);
1191
1192 AP_DBF_INFO("%s stored new default domain=%d\n",
1193 __func__, domain);
1194
1195 return count;
1196 }
1197
1198 static BUS_ATTR_RW(ap_domain);
1199
ap_control_domain_mask_show(struct bus_type * bus,char * buf)1200 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
1201 {
1202 if (!ap_qci_info) /* QCI not supported */
1203 return scnprintf(buf, PAGE_SIZE, "not supported\n");
1204
1205 return scnprintf(buf, PAGE_SIZE,
1206 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1207 ap_qci_info->adm[0], ap_qci_info->adm[1],
1208 ap_qci_info->adm[2], ap_qci_info->adm[3],
1209 ap_qci_info->adm[4], ap_qci_info->adm[5],
1210 ap_qci_info->adm[6], ap_qci_info->adm[7]);
1211 }
1212
1213 static BUS_ATTR_RO(ap_control_domain_mask);
1214
ap_usage_domain_mask_show(struct bus_type * bus,char * buf)1215 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf)
1216 {
1217 if (!ap_qci_info) /* QCI not supported */
1218 return scnprintf(buf, PAGE_SIZE, "not supported\n");
1219
1220 return scnprintf(buf, PAGE_SIZE,
1221 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1222 ap_qci_info->aqm[0], ap_qci_info->aqm[1],
1223 ap_qci_info->aqm[2], ap_qci_info->aqm[3],
1224 ap_qci_info->aqm[4], ap_qci_info->aqm[5],
1225 ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
1226 }
1227
1228 static BUS_ATTR_RO(ap_usage_domain_mask);
1229
ap_adapter_mask_show(struct bus_type * bus,char * buf)1230 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf)
1231 {
1232 if (!ap_qci_info) /* QCI not supported */
1233 return scnprintf(buf, PAGE_SIZE, "not supported\n");
1234
1235 return scnprintf(buf, PAGE_SIZE,
1236 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1237 ap_qci_info->apm[0], ap_qci_info->apm[1],
1238 ap_qci_info->apm[2], ap_qci_info->apm[3],
1239 ap_qci_info->apm[4], ap_qci_info->apm[5],
1240 ap_qci_info->apm[6], ap_qci_info->apm[7]);
1241 }
1242
1243 static BUS_ATTR_RO(ap_adapter_mask);
1244
ap_interrupts_show(struct bus_type * bus,char * buf)1245 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1246 {
1247 return scnprintf(buf, PAGE_SIZE, "%d\n",
1248 ap_irq_flag ? 1 : 0);
1249 }
1250
1251 static BUS_ATTR_RO(ap_interrupts);
1252
config_time_show(struct bus_type * bus,char * buf)1253 static ssize_t config_time_show(struct bus_type *bus, char *buf)
1254 {
1255 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1256 }
1257
config_time_store(struct bus_type * bus,const char * buf,size_t count)1258 static ssize_t config_time_store(struct bus_type *bus,
1259 const char *buf, size_t count)
1260 {
1261 int time;
1262
1263 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1264 return -EINVAL;
1265 ap_config_time = time;
1266 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1267 return count;
1268 }
1269
1270 static BUS_ATTR_RW(config_time);
1271
poll_thread_show(struct bus_type * bus,char * buf)1272 static ssize_t poll_thread_show(struct bus_type *bus, char *buf)
1273 {
1274 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1275 }
1276
poll_thread_store(struct bus_type * bus,const char * buf,size_t count)1277 static ssize_t poll_thread_store(struct bus_type *bus,
1278 const char *buf, size_t count)
1279 {
1280 int flag, rc;
1281
1282 if (sscanf(buf, "%d\n", &flag) != 1)
1283 return -EINVAL;
1284 if (flag) {
1285 rc = ap_poll_thread_start();
1286 if (rc)
1287 count = rc;
1288 } else {
1289 ap_poll_thread_stop();
1290 }
1291 return count;
1292 }
1293
1294 static BUS_ATTR_RW(poll_thread);
1295
poll_timeout_show(struct bus_type * bus,char * buf)1296 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1297 {
1298 return scnprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1299 }
1300
poll_timeout_store(struct bus_type * bus,const char * buf,size_t count)1301 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1302 size_t count)
1303 {
1304 unsigned long long time;
1305 ktime_t hr_time;
1306
1307 /* 120 seconds = maximum poll interval */
1308 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1309 time > 120000000000ULL)
1310 return -EINVAL;
1311 poll_timeout = time;
1312 hr_time = poll_timeout;
1313
1314 spin_lock_bh(&ap_poll_timer_lock);
1315 hrtimer_cancel(&ap_poll_timer);
1316 hrtimer_set_expires(&ap_poll_timer, hr_time);
1317 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1318 spin_unlock_bh(&ap_poll_timer_lock);
1319
1320 return count;
1321 }
1322
1323 static BUS_ATTR_RW(poll_timeout);
1324
ap_max_domain_id_show(struct bus_type * bus,char * buf)1325 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1326 {
1327 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_domain_id);
1328 }
1329
1330 static BUS_ATTR_RO(ap_max_domain_id);
1331
ap_max_adapter_id_show(struct bus_type * bus,char * buf)1332 static ssize_t ap_max_adapter_id_show(struct bus_type *bus, char *buf)
1333 {
1334 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_adapter_id);
1335 }
1336
1337 static BUS_ATTR_RO(ap_max_adapter_id);
1338
apmask_show(struct bus_type * bus,char * buf)1339 static ssize_t apmask_show(struct bus_type *bus, char *buf)
1340 {
1341 int rc;
1342
1343 if (mutex_lock_interruptible(&ap_perms_mutex))
1344 return -ERESTARTSYS;
1345 rc = scnprintf(buf, PAGE_SIZE,
1346 "0x%016lx%016lx%016lx%016lx\n",
1347 ap_perms.apm[0], ap_perms.apm[1],
1348 ap_perms.apm[2], ap_perms.apm[3]);
1349 mutex_unlock(&ap_perms_mutex);
1350
1351 return rc;
1352 }
1353
__verify_card_reservations(struct device_driver * drv,void * data)1354 static int __verify_card_reservations(struct device_driver *drv, void *data)
1355 {
1356 int rc = 0;
1357 struct ap_driver *ap_drv = to_ap_drv(drv);
1358 unsigned long *newapm = (unsigned long *)data;
1359
1360 /*
1361 * increase the driver's module refcounter to be sure it is not
1362 * going away when we invoke the callback function.
1363 */
1364 if (!try_module_get(drv->owner))
1365 return 0;
1366
1367 if (ap_drv->in_use) {
1368 rc = ap_drv->in_use(newapm, ap_perms.aqm);
1369 if (rc)
1370 rc = -EBUSY;
1371 }
1372
1373 /* release the driver's module */
1374 module_put(drv->owner);
1375
1376 return rc;
1377 }
1378
apmask_commit(unsigned long * newapm)1379 static int apmask_commit(unsigned long *newapm)
1380 {
1381 int rc;
1382 unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)];
1383
1384 /*
1385 * Check if any bits in the apmask have been set which will
1386 * result in queues being removed from non-default drivers
1387 */
1388 if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) {
1389 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1390 __verify_card_reservations);
1391 if (rc)
1392 return rc;
1393 }
1394
1395 memcpy(ap_perms.apm, newapm, APMASKSIZE);
1396
1397 return 0;
1398 }
1399
apmask_store(struct bus_type * bus,const char * buf,size_t count)1400 static ssize_t apmask_store(struct bus_type *bus, const char *buf,
1401 size_t count)
1402 {
1403 int rc, changes = 0;
1404 DECLARE_BITMAP(newapm, AP_DEVICES);
1405
1406 if (mutex_lock_interruptible(&ap_perms_mutex))
1407 return -ERESTARTSYS;
1408
1409 rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm);
1410 if (rc)
1411 goto done;
1412
1413 changes = memcmp(ap_perms.apm, newapm, APMASKSIZE);
1414 if (changes)
1415 rc = apmask_commit(newapm);
1416
1417 done:
1418 mutex_unlock(&ap_perms_mutex);
1419 if (rc)
1420 return rc;
1421
1422 if (changes) {
1423 ap_bus_revise_bindings();
1424 ap_send_mask_changed_uevent(newapm, NULL);
1425 }
1426
1427 return count;
1428 }
1429
1430 static BUS_ATTR_RW(apmask);
1431
aqmask_show(struct bus_type * bus,char * buf)1432 static ssize_t aqmask_show(struct bus_type *bus, char *buf)
1433 {
1434 int rc;
1435
1436 if (mutex_lock_interruptible(&ap_perms_mutex))
1437 return -ERESTARTSYS;
1438 rc = scnprintf(buf, PAGE_SIZE,
1439 "0x%016lx%016lx%016lx%016lx\n",
1440 ap_perms.aqm[0], ap_perms.aqm[1],
1441 ap_perms.aqm[2], ap_perms.aqm[3]);
1442 mutex_unlock(&ap_perms_mutex);
1443
1444 return rc;
1445 }
1446
__verify_queue_reservations(struct device_driver * drv,void * data)1447 static int __verify_queue_reservations(struct device_driver *drv, void *data)
1448 {
1449 int rc = 0;
1450 struct ap_driver *ap_drv = to_ap_drv(drv);
1451 unsigned long *newaqm = (unsigned long *)data;
1452
1453 /*
1454 * increase the driver's module refcounter to be sure it is not
1455 * going away when we invoke the callback function.
1456 */
1457 if (!try_module_get(drv->owner))
1458 return 0;
1459
1460 if (ap_drv->in_use) {
1461 rc = ap_drv->in_use(ap_perms.apm, newaqm);
1462 if (rc)
1463 rc = -EBUSY;
1464 }
1465
1466 /* release the driver's module */
1467 module_put(drv->owner);
1468
1469 return rc;
1470 }
1471
aqmask_commit(unsigned long * newaqm)1472 static int aqmask_commit(unsigned long *newaqm)
1473 {
1474 int rc;
1475 unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)];
1476
1477 /*
1478 * Check if any bits in the aqmask have been set which will
1479 * result in queues being removed from non-default drivers
1480 */
1481 if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) {
1482 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1483 __verify_queue_reservations);
1484 if (rc)
1485 return rc;
1486 }
1487
1488 memcpy(ap_perms.aqm, newaqm, AQMASKSIZE);
1489
1490 return 0;
1491 }
1492
aqmask_store(struct bus_type * bus,const char * buf,size_t count)1493 static ssize_t aqmask_store(struct bus_type *bus, const char *buf,
1494 size_t count)
1495 {
1496 int rc, changes = 0;
1497 DECLARE_BITMAP(newaqm, AP_DOMAINS);
1498
1499 if (mutex_lock_interruptible(&ap_perms_mutex))
1500 return -ERESTARTSYS;
1501
1502 rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm);
1503 if (rc)
1504 goto done;
1505
1506 changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE);
1507 if (changes)
1508 rc = aqmask_commit(newaqm);
1509
1510 done:
1511 mutex_unlock(&ap_perms_mutex);
1512 if (rc)
1513 return rc;
1514
1515 if (changes) {
1516 ap_bus_revise_bindings();
1517 ap_send_mask_changed_uevent(NULL, newaqm);
1518 }
1519
1520 return count;
1521 }
1522
1523 static BUS_ATTR_RW(aqmask);
1524
scans_show(struct bus_type * bus,char * buf)1525 static ssize_t scans_show(struct bus_type *bus, char *buf)
1526 {
1527 return scnprintf(buf, PAGE_SIZE, "%llu\n",
1528 atomic64_read(&ap_scan_bus_count));
1529 }
1530
scans_store(struct bus_type * bus,const char * buf,size_t count)1531 static ssize_t scans_store(struct bus_type *bus, const char *buf,
1532 size_t count)
1533 {
1534 AP_DBF_INFO("%s force AP bus rescan\n", __func__);
1535
1536 ap_bus_force_rescan();
1537
1538 return count;
1539 }
1540
1541 static BUS_ATTR_RW(scans);
1542
bindings_show(struct bus_type * bus,char * buf)1543 static ssize_t bindings_show(struct bus_type *bus, char *buf)
1544 {
1545 int rc;
1546 unsigned int apqns, n;
1547
1548 ap_calc_bound_apqns(&apqns, &n);
1549 if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns)
1550 rc = scnprintf(buf, PAGE_SIZE, "%u/%u (complete)\n", n, apqns);
1551 else
1552 rc = scnprintf(buf, PAGE_SIZE, "%u/%u\n", n, apqns);
1553
1554 return rc;
1555 }
1556
1557 static BUS_ATTR_RO(bindings);
1558
1559 static struct attribute *ap_bus_attrs[] = {
1560 &bus_attr_ap_domain.attr,
1561 &bus_attr_ap_control_domain_mask.attr,
1562 &bus_attr_ap_usage_domain_mask.attr,
1563 &bus_attr_ap_adapter_mask.attr,
1564 &bus_attr_config_time.attr,
1565 &bus_attr_poll_thread.attr,
1566 &bus_attr_ap_interrupts.attr,
1567 &bus_attr_poll_timeout.attr,
1568 &bus_attr_ap_max_domain_id.attr,
1569 &bus_attr_ap_max_adapter_id.attr,
1570 &bus_attr_apmask.attr,
1571 &bus_attr_aqmask.attr,
1572 &bus_attr_scans.attr,
1573 &bus_attr_bindings.attr,
1574 NULL,
1575 };
1576 ATTRIBUTE_GROUPS(ap_bus);
1577
1578 static struct bus_type ap_bus_type = {
1579 .name = "ap",
1580 .bus_groups = ap_bus_groups,
1581 .match = &ap_bus_match,
1582 .uevent = &ap_uevent,
1583 .probe = ap_device_probe,
1584 .remove = ap_device_remove,
1585 };
1586
1587 /**
1588 * ap_select_domain(): Select an AP domain if possible and we haven't
1589 * already done so before.
1590 */
ap_select_domain(void)1591 static void ap_select_domain(void)
1592 {
1593 struct ap_queue_status status;
1594 int card, dom;
1595
1596 /*
1597 * Choose the default domain. Either the one specified with
1598 * the "domain=" parameter or the first domain with at least
1599 * one valid APQN.
1600 */
1601 spin_lock_bh(&ap_domain_lock);
1602 if (ap_domain_index >= 0) {
1603 /* Domain has already been selected. */
1604 goto out;
1605 }
1606 for (dom = 0; dom <= ap_max_domain_id; dom++) {
1607 if (!ap_test_config_usage_domain(dom) ||
1608 !test_bit_inv(dom, ap_perms.aqm))
1609 continue;
1610 for (card = 0; card <= ap_max_adapter_id; card++) {
1611 if (!ap_test_config_card_id(card) ||
1612 !test_bit_inv(card, ap_perms.apm))
1613 continue;
1614 status = ap_test_queue(AP_MKQID(card, dom),
1615 ap_apft_available(),
1616 NULL);
1617 if (status.response_code == AP_RESPONSE_NORMAL)
1618 break;
1619 }
1620 if (card <= ap_max_adapter_id)
1621 break;
1622 }
1623 if (dom <= ap_max_domain_id) {
1624 ap_domain_index = dom;
1625 AP_DBF_INFO("%s new default domain is %d\n",
1626 __func__, ap_domain_index);
1627 }
1628 out:
1629 spin_unlock_bh(&ap_domain_lock);
1630 }
1631
1632 /*
1633 * This function checks the type and returns either 0 for not
1634 * supported or the highest compatible type value (which may
1635 * include the input type value).
1636 */
ap_get_compatible_type(ap_qid_t qid,int rawtype,unsigned int func)1637 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1638 {
1639 int comp_type = 0;
1640
1641 /* < CEX2A is not supported */
1642 if (rawtype < AP_DEVICE_TYPE_CEX2A) {
1643 AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n",
1644 __func__, AP_QID_CARD(qid),
1645 AP_QID_QUEUE(qid), rawtype);
1646 return 0;
1647 }
1648 /* up to CEX8 known and fully supported */
1649 if (rawtype <= AP_DEVICE_TYPE_CEX8)
1650 return rawtype;
1651 /*
1652 * unknown new type > CEX8, check for compatibility
1653 * to the highest known and supported type which is
1654 * currently CEX8 with the help of the QACT function.
1655 */
1656 if (ap_qact_available()) {
1657 struct ap_queue_status status;
1658 union ap_qact_ap_info apinfo = {0};
1659
1660 apinfo.mode = (func >> 26) & 0x07;
1661 apinfo.cat = AP_DEVICE_TYPE_CEX8;
1662 status = ap_qact(qid, 0, &apinfo);
1663 if (status.response_code == AP_RESPONSE_NORMAL &&
1664 apinfo.cat >= AP_DEVICE_TYPE_CEX2A &&
1665 apinfo.cat <= AP_DEVICE_TYPE_CEX8)
1666 comp_type = apinfo.cat;
1667 }
1668 if (!comp_type)
1669 AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n",
1670 __func__, AP_QID_CARD(qid),
1671 AP_QID_QUEUE(qid), rawtype);
1672 else if (comp_type != rawtype)
1673 AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n",
1674 __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid),
1675 rawtype, comp_type);
1676 return comp_type;
1677 }
1678
1679 /*
1680 * Helper function to be used with bus_find_dev
1681 * matches for the card device with the given id
1682 */
__match_card_device_with_id(struct device * dev,const void * data)1683 static int __match_card_device_with_id(struct device *dev, const void *data)
1684 {
1685 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data;
1686 }
1687
1688 /*
1689 * Helper function to be used with bus_find_dev
1690 * matches for the queue device with a given qid
1691 */
__match_queue_device_with_qid(struct device * dev,const void * data)1692 static int __match_queue_device_with_qid(struct device *dev, const void *data)
1693 {
1694 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data;
1695 }
1696
1697 /*
1698 * Helper function to be used with bus_find_dev
1699 * matches any queue device with given queue id
1700 */
__match_queue_device_with_queue_id(struct device * dev,const void * data)1701 static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1702 {
1703 return is_queue_dev(dev) &&
1704 AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data;
1705 }
1706
1707 /* Helper function for notify_config_changed */
__drv_notify_config_changed(struct device_driver * drv,void * data)1708 static int __drv_notify_config_changed(struct device_driver *drv, void *data)
1709 {
1710 struct ap_driver *ap_drv = to_ap_drv(drv);
1711
1712 if (try_module_get(drv->owner)) {
1713 if (ap_drv->on_config_changed)
1714 ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old);
1715 module_put(drv->owner);
1716 }
1717
1718 return 0;
1719 }
1720
1721 /* Notify all drivers about an qci config change */
notify_config_changed(void)1722 static inline void notify_config_changed(void)
1723 {
1724 bus_for_each_drv(&ap_bus_type, NULL, NULL,
1725 __drv_notify_config_changed);
1726 }
1727
1728 /* Helper function for notify_scan_complete */
__drv_notify_scan_complete(struct device_driver * drv,void * data)1729 static int __drv_notify_scan_complete(struct device_driver *drv, void *data)
1730 {
1731 struct ap_driver *ap_drv = to_ap_drv(drv);
1732
1733 if (try_module_get(drv->owner)) {
1734 if (ap_drv->on_scan_complete)
1735 ap_drv->on_scan_complete(ap_qci_info,
1736 ap_qci_info_old);
1737 module_put(drv->owner);
1738 }
1739
1740 return 0;
1741 }
1742
1743 /* Notify all drivers about bus scan complete */
notify_scan_complete(void)1744 static inline void notify_scan_complete(void)
1745 {
1746 bus_for_each_drv(&ap_bus_type, NULL, NULL,
1747 __drv_notify_scan_complete);
1748 }
1749
1750 /*
1751 * Helper function for ap_scan_bus().
1752 * Remove card device and associated queue devices.
1753 */
ap_scan_rm_card_dev_and_queue_devs(struct ap_card * ac)1754 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
1755 {
1756 bus_for_each_dev(&ap_bus_type, NULL,
1757 (void *)(long)ac->id,
1758 __ap_queue_devices_with_id_unregister);
1759 device_unregister(&ac->ap_dev.device);
1760 }
1761
1762 /*
1763 * Helper function for ap_scan_bus().
1764 * Does the scan bus job for all the domains within
1765 * a valid adapter given by an ap_card ptr.
1766 */
ap_scan_domains(struct ap_card * ac)1767 static inline void ap_scan_domains(struct ap_card *ac)
1768 {
1769 bool decfg, chkstop;
1770 ap_qid_t qid;
1771 unsigned int func;
1772 struct device *dev;
1773 struct ap_queue *aq;
1774 int rc, dom, depth, type, ml;
1775
1776 /*
1777 * Go through the configuration for the domains and compare them
1778 * to the existing queue devices. Also take care of the config
1779 * and error state for the queue devices.
1780 */
1781
1782 for (dom = 0; dom <= ap_max_domain_id; dom++) {
1783 qid = AP_MKQID(ac->id, dom);
1784 dev = bus_find_device(&ap_bus_type, NULL,
1785 (void *)(long)qid,
1786 __match_queue_device_with_qid);
1787 aq = dev ? to_ap_queue(dev) : NULL;
1788 if (!ap_test_config_usage_domain(dom)) {
1789 if (dev) {
1790 AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n",
1791 __func__, ac->id, dom);
1792 device_unregister(dev);
1793 put_device(dev);
1794 }
1795 continue;
1796 }
1797 /* domain is valid, get info from this APQN */
1798 if (!ap_queue_info(qid, &type, &func, &depth,
1799 &ml, &decfg, &chkstop)) {
1800 if (aq) {
1801 AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n",
1802 __func__, ac->id, dom);
1803 device_unregister(dev);
1804 put_device(dev);
1805 }
1806 continue;
1807 }
1808 /* if no queue device exists, create a new one */
1809 if (!aq) {
1810 aq = ap_queue_create(qid, ac->ap_dev.device_type);
1811 if (!aq) {
1812 AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
1813 __func__, ac->id, dom);
1814 continue;
1815 }
1816 aq->card = ac;
1817 aq->config = !decfg;
1818 aq->chkstop = chkstop;
1819 dev = &aq->ap_dev.device;
1820 dev->bus = &ap_bus_type;
1821 dev->parent = &ac->ap_dev.device;
1822 dev_set_name(dev, "%02x.%04x", ac->id, dom);
1823 /* register queue device */
1824 rc = device_register(dev);
1825 if (rc) {
1826 AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
1827 __func__, ac->id, dom);
1828 goto put_dev_and_continue;
1829 }
1830 /* get it and thus adjust reference counter */
1831 get_device(dev);
1832 if (decfg)
1833 AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n",
1834 __func__, ac->id, dom);
1835 else if (chkstop)
1836 AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n",
1837 __func__, ac->id, dom);
1838 else
1839 AP_DBF_INFO("%s(%d,%d) new queue dev created\n",
1840 __func__, ac->id, dom);
1841 goto put_dev_and_continue;
1842 }
1843 /* handle state changes on already existing queue device */
1844 spin_lock_bh(&aq->lock);
1845 /* checkstop state */
1846 if (chkstop && !aq->chkstop) {
1847 /* checkstop on */
1848 aq->chkstop = true;
1849 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1850 aq->dev_state = AP_DEV_STATE_ERROR;
1851 aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED;
1852 }
1853 spin_unlock_bh(&aq->lock);
1854 AP_DBF_DBG("%s(%d,%d) queue dev checkstop on\n",
1855 __func__, ac->id, dom);
1856 /* 'receive' pending messages with -EAGAIN */
1857 ap_flush_queue(aq);
1858 goto put_dev_and_continue;
1859 } else if (!chkstop && aq->chkstop) {
1860 /* checkstop off */
1861 aq->chkstop = false;
1862 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1863 aq->dev_state = AP_DEV_STATE_OPERATING;
1864 aq->sm_state = AP_SM_STATE_RESET_START;
1865 }
1866 spin_unlock_bh(&aq->lock);
1867 AP_DBF_DBG("%s(%d,%d) queue dev checkstop off\n",
1868 __func__, ac->id, dom);
1869 goto put_dev_and_continue;
1870 }
1871 /* config state change */
1872 if (decfg && aq->config) {
1873 /* config off this queue device */
1874 aq->config = false;
1875 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1876 aq->dev_state = AP_DEV_STATE_ERROR;
1877 aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
1878 }
1879 spin_unlock_bh(&aq->lock);
1880 AP_DBF_DBG("%s(%d,%d) queue dev config off\n",
1881 __func__, ac->id, dom);
1882 ap_send_config_uevent(&aq->ap_dev, aq->config);
1883 /* 'receive' pending messages with -EAGAIN */
1884 ap_flush_queue(aq);
1885 goto put_dev_and_continue;
1886 } else if (!decfg && !aq->config) {
1887 /* config on this queue device */
1888 aq->config = true;
1889 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1890 aq->dev_state = AP_DEV_STATE_OPERATING;
1891 aq->sm_state = AP_SM_STATE_RESET_START;
1892 }
1893 spin_unlock_bh(&aq->lock);
1894 AP_DBF_DBG("%s(%d,%d) queue dev config on\n",
1895 __func__, ac->id, dom);
1896 ap_send_config_uevent(&aq->ap_dev, aq->config);
1897 goto put_dev_and_continue;
1898 }
1899 /* handle other error states */
1900 if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
1901 spin_unlock_bh(&aq->lock);
1902 /* 'receive' pending messages with -EAGAIN */
1903 ap_flush_queue(aq);
1904 /* re-init (with reset) the queue device */
1905 ap_queue_init_state(aq);
1906 AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n",
1907 __func__, ac->id, dom);
1908 goto put_dev_and_continue;
1909 }
1910 spin_unlock_bh(&aq->lock);
1911 put_dev_and_continue:
1912 put_device(dev);
1913 }
1914 }
1915
1916 /*
1917 * Helper function for ap_scan_bus().
1918 * Does the scan bus job for the given adapter id.
1919 */
ap_scan_adapter(int ap)1920 static inline void ap_scan_adapter(int ap)
1921 {
1922 bool decfg, chkstop;
1923 ap_qid_t qid;
1924 unsigned int func;
1925 struct device *dev;
1926 struct ap_card *ac;
1927 int rc, dom, depth, type, comp_type, ml;
1928
1929 /* Is there currently a card device for this adapter ? */
1930 dev = bus_find_device(&ap_bus_type, NULL,
1931 (void *)(long)ap,
1932 __match_card_device_with_id);
1933 ac = dev ? to_ap_card(dev) : NULL;
1934
1935 /* Adapter not in configuration ? */
1936 if (!ap_test_config_card_id(ap)) {
1937 if (ac) {
1938 AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n",
1939 __func__, ap);
1940 ap_scan_rm_card_dev_and_queue_devs(ac);
1941 put_device(dev);
1942 }
1943 return;
1944 }
1945
1946 /*
1947 * Adapter ap is valid in the current configuration. So do some checks:
1948 * If no card device exists, build one. If a card device exists, check
1949 * for type and functions changed. For all this we need to find a valid
1950 * APQN first.
1951 */
1952
1953 for (dom = 0; dom <= ap_max_domain_id; dom++)
1954 if (ap_test_config_usage_domain(dom)) {
1955 qid = AP_MKQID(ap, dom);
1956 if (ap_queue_info(qid, &type, &func, &depth,
1957 &ml, &decfg, &chkstop))
1958 break;
1959 }
1960 if (dom > ap_max_domain_id) {
1961 /* Could not find a valid APQN for this adapter */
1962 if (ac) {
1963 AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n",
1964 __func__, ap);
1965 ap_scan_rm_card_dev_and_queue_devs(ac);
1966 put_device(dev);
1967 } else {
1968 AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n",
1969 __func__, ap);
1970 }
1971 return;
1972 }
1973 if (!type) {
1974 /* No apdater type info available, an unusable adapter */
1975 if (ac) {
1976 AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n",
1977 __func__, ap);
1978 ap_scan_rm_card_dev_and_queue_devs(ac);
1979 put_device(dev);
1980 } else {
1981 AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n",
1982 __func__, ap);
1983 }
1984 return;
1985 }
1986
1987 if (ac) {
1988 /* Check APQN against existing card device for changes */
1989 if (ac->raw_hwtype != type) {
1990 AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n",
1991 __func__, ap, type);
1992 ap_scan_rm_card_dev_and_queue_devs(ac);
1993 put_device(dev);
1994 ac = NULL;
1995 } else if (ac->functions != func) {
1996 AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n",
1997 __func__, ap, type);
1998 ap_scan_rm_card_dev_and_queue_devs(ac);
1999 put_device(dev);
2000 ac = NULL;
2001 } else {
2002 /* handle checkstop state change */
2003 if (chkstop && !ac->chkstop) {
2004 /* checkstop on */
2005 ac->chkstop = true;
2006 AP_DBF_INFO("%s(%d) card dev checkstop on\n",
2007 __func__, ap);
2008 } else if (!chkstop && ac->chkstop) {
2009 /* checkstop off */
2010 ac->chkstop = false;
2011 AP_DBF_INFO("%s(%d) card dev checkstop off\n",
2012 __func__, ap);
2013 }
2014 /* handle config state change */
2015 if (decfg && ac->config) {
2016 ac->config = false;
2017 AP_DBF_INFO("%s(%d) card dev config off\n",
2018 __func__, ap);
2019 ap_send_config_uevent(&ac->ap_dev, ac->config);
2020 } else if (!decfg && !ac->config) {
2021 ac->config = true;
2022 AP_DBF_INFO("%s(%d) card dev config on\n",
2023 __func__, ap);
2024 ap_send_config_uevent(&ac->ap_dev, ac->config);
2025 }
2026 }
2027 }
2028
2029 if (!ac) {
2030 /* Build a new card device */
2031 comp_type = ap_get_compatible_type(qid, type, func);
2032 if (!comp_type) {
2033 AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
2034 __func__, ap, type);
2035 return;
2036 }
2037 ac = ap_card_create(ap, depth, type, comp_type, func, ml);
2038 if (!ac) {
2039 AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
2040 __func__, ap);
2041 return;
2042 }
2043 ac->config = !decfg;
2044 ac->chkstop = chkstop;
2045 dev = &ac->ap_dev.device;
2046 dev->bus = &ap_bus_type;
2047 dev->parent = ap_root_device;
2048 dev_set_name(dev, "card%02x", ap);
2049 /* maybe enlarge ap_max_msg_size to support this card */
2050 if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) {
2051 atomic_set(&ap_max_msg_size, ac->maxmsgsize);
2052 AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n",
2053 __func__, ap,
2054 atomic_read(&ap_max_msg_size));
2055 }
2056 /* Register the new card device with AP bus */
2057 rc = device_register(dev);
2058 if (rc) {
2059 AP_DBF_WARN("%s(%d) device_register() failed\n",
2060 __func__, ap);
2061 put_device(dev);
2062 return;
2063 }
2064 /* get it and thus adjust reference counter */
2065 get_device(dev);
2066 if (decfg)
2067 AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n",
2068 __func__, ap, type, func);
2069 else if (chkstop)
2070 AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n",
2071 __func__, ap, type, func);
2072 else
2073 AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n",
2074 __func__, ap, type, func);
2075 }
2076
2077 /* Verify the domains and the queue devices for this card */
2078 ap_scan_domains(ac);
2079
2080 /* release the card device */
2081 put_device(&ac->ap_dev.device);
2082 }
2083
2084 /**
2085 * ap_get_configuration - get the host AP configuration
2086 *
2087 * Stores the host AP configuration information returned from the previous call
2088 * to Query Configuration Information (QCI), then retrieves and stores the
2089 * current AP configuration returned from QCI.
2090 *
2091 * Return: true if the host AP configuration changed between calls to QCI;
2092 * otherwise, return false.
2093 */
ap_get_configuration(void)2094 static bool ap_get_configuration(void)
2095 {
2096 if (!ap_qci_info) /* QCI not supported */
2097 return false;
2098
2099 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
2100 ap_fetch_qci_info(ap_qci_info);
2101
2102 return memcmp(ap_qci_info, ap_qci_info_old,
2103 sizeof(struct ap_config_info)) != 0;
2104 }
2105
2106 /**
2107 * ap_scan_bus(): Scan the AP bus for new devices
2108 * Runs periodically, workqueue timer (ap_config_time)
2109 * @unused: Unused pointer.
2110 */
ap_scan_bus(struct work_struct * unused)2111 static void ap_scan_bus(struct work_struct *unused)
2112 {
2113 int ap, config_changed = 0;
2114
2115 /* config change notify */
2116 config_changed = ap_get_configuration();
2117 if (config_changed)
2118 notify_config_changed();
2119 ap_select_domain();
2120
2121 AP_DBF_DBG("%s running\n", __func__);
2122
2123 /* loop over all possible adapters */
2124 for (ap = 0; ap <= ap_max_adapter_id; ap++)
2125 ap_scan_adapter(ap);
2126
2127 /* scan complete notify */
2128 if (config_changed)
2129 notify_scan_complete();
2130
2131 /* check if there is at least one queue available with default domain */
2132 if (ap_domain_index >= 0) {
2133 struct device *dev =
2134 bus_find_device(&ap_bus_type, NULL,
2135 (void *)(long)ap_domain_index,
2136 __match_queue_device_with_queue_id);
2137 if (dev)
2138 put_device(dev);
2139 else
2140 AP_DBF_INFO("%s no queue device with default domain %d available\n",
2141 __func__, ap_domain_index);
2142 }
2143
2144 if (atomic64_inc_return(&ap_scan_bus_count) == 1) {
2145 AP_DBF_DBG("%s init scan complete\n", __func__);
2146 ap_send_init_scan_done_uevent();
2147 ap_check_bindings_complete();
2148 }
2149
2150 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
2151 }
2152
ap_config_timeout(struct timer_list * unused)2153 static void ap_config_timeout(struct timer_list *unused)
2154 {
2155 queue_work(system_long_wq, &ap_scan_work);
2156 }
2157
ap_debug_init(void)2158 static int __init ap_debug_init(void)
2159 {
2160 ap_dbf_info = debug_register("ap", 2, 1,
2161 DBF_MAX_SPRINTF_ARGS * sizeof(long));
2162 debug_register_view(ap_dbf_info, &debug_sprintf_view);
2163 debug_set_level(ap_dbf_info, DBF_ERR);
2164
2165 return 0;
2166 }
2167
ap_perms_init(void)2168 static void __init ap_perms_init(void)
2169 {
2170 /* all resources usable if no kernel parameter string given */
2171 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
2172 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
2173 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
2174
2175 /* apm kernel parameter string */
2176 if (apm_str) {
2177 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
2178 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
2179 &ap_perms_mutex);
2180 }
2181
2182 /* aqm kernel parameter string */
2183 if (aqm_str) {
2184 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
2185 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
2186 &ap_perms_mutex);
2187 }
2188 }
2189
2190 /**
2191 * ap_module_init(): The module initialization code.
2192 *
2193 * Initializes the module.
2194 */
ap_module_init(void)2195 static int __init ap_module_init(void)
2196 {
2197 int rc;
2198
2199 rc = ap_debug_init();
2200 if (rc)
2201 return rc;
2202
2203 if (!ap_instructions_available()) {
2204 pr_warn("The hardware system does not support AP instructions\n");
2205 return -ENODEV;
2206 }
2207
2208 /* init ap_queue hashtable */
2209 hash_init(ap_queues);
2210
2211 /* set up the AP permissions (ioctls, ap and aq masks) */
2212 ap_perms_init();
2213
2214 /* Get AP configuration data if available */
2215 ap_init_qci_info();
2216
2217 /* check default domain setting */
2218 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
2219 (ap_domain_index >= 0 &&
2220 !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
2221 pr_warn("%d is not a valid cryptographic domain\n",
2222 ap_domain_index);
2223 ap_domain_index = -1;
2224 }
2225
2226 /* enable interrupts if available */
2227 if (ap_interrupts_available() && ap_useirq) {
2228 rc = register_adapter_interrupt(&ap_airq);
2229 ap_irq_flag = (rc == 0);
2230 }
2231
2232 /* Create /sys/bus/ap. */
2233 rc = bus_register(&ap_bus_type);
2234 if (rc)
2235 goto out;
2236
2237 /* Create /sys/devices/ap. */
2238 ap_root_device = root_device_register("ap");
2239 rc = PTR_ERR_OR_ZERO(ap_root_device);
2240 if (rc)
2241 goto out_bus;
2242 ap_root_device->bus = &ap_bus_type;
2243
2244 /* Setup the AP bus rescan timer. */
2245 timer_setup(&ap_config_timer, ap_config_timeout, 0);
2246
2247 /*
2248 * Setup the high resultion poll timer.
2249 * If we are running under z/VM adjust polling to z/VM polling rate.
2250 */
2251 if (MACHINE_IS_VM)
2252 poll_timeout = 1500000;
2253 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2254 ap_poll_timer.function = ap_poll_timeout;
2255
2256 /* Start the low priority AP bus poll thread. */
2257 if (ap_thread_flag) {
2258 rc = ap_poll_thread_start();
2259 if (rc)
2260 goto out_work;
2261 }
2262
2263 queue_work(system_long_wq, &ap_scan_work);
2264
2265 return 0;
2266
2267 out_work:
2268 hrtimer_cancel(&ap_poll_timer);
2269 root_device_unregister(ap_root_device);
2270 out_bus:
2271 bus_unregister(&ap_bus_type);
2272 out:
2273 if (ap_irq_flag)
2274 unregister_adapter_interrupt(&ap_airq);
2275 kfree(ap_qci_info);
2276 return rc;
2277 }
2278 device_initcall(ap_module_init);
2279