1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1999 Eric Youngdale
4 * Copyright (C) 2014 Christoph Hellwig
5 *
6 * SCSI queueing library.
7 * Initial versions: Eric Youngdale (eric@andante.org).
8 * Based upon conversations with large numbers
9 * of people at Linux Expo.
10 */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37
38 #include <trace/events/scsi.h>
39
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43
44 /*
45 * Size of integrity metadata is usually small, 1 inline sg should
46 * cover normal cases.
47 */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define SCSI_INLINE_PROT_SG_CNT 0
50 #define SCSI_INLINE_SG_CNT 0
51 #else
52 #define SCSI_INLINE_PROT_SG_CNT 1
53 #define SCSI_INLINE_SG_CNT 2
54 #endif
55
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
scsi_init_sense_cache(struct Scsi_Host * shost)61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63 int ret = 0;
64
65 mutex_lock(&scsi_sense_cache_mutex);
66 if (!scsi_sense_cache) {
67 scsi_sense_cache =
68 kmem_cache_create_usercopy("scsi_sense_cache",
69 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 0, SCSI_SENSE_BUFFERSIZE, NULL);
71 if (!scsi_sense_cache)
72 ret = -ENOMEM;
73 }
74 mutex_unlock(&scsi_sense_cache_mutex);
75 return ret;
76 }
77
78 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81 struct Scsi_Host *host = cmd->device->host;
82 struct scsi_device *device = cmd->device;
83 struct scsi_target *starget = scsi_target(device);
84
85 /*
86 * Set the appropriate busy bit for the device/host.
87 *
88 * If the host/device isn't busy, assume that something actually
89 * completed, and that we should be able to queue a command now.
90 *
91 * Note that the prior mid-layer assumption that any host could
92 * always queue at least one command is now broken. The mid-layer
93 * will implement a user specifiable stall (see
94 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95 * if a command is requeued with no other commands outstanding
96 * either for the device or for the host.
97 */
98 switch (reason) {
99 case SCSI_MLQUEUE_HOST_BUSY:
100 atomic_set(&host->host_blocked, host->max_host_blocked);
101 break;
102 case SCSI_MLQUEUE_DEVICE_BUSY:
103 case SCSI_MLQUEUE_EH_RETRY:
104 atomic_set(&device->device_blocked,
105 device->max_device_blocked);
106 break;
107 case SCSI_MLQUEUE_TARGET_BUSY:
108 atomic_set(&starget->target_blocked,
109 starget->max_target_blocked);
110 break;
111 }
112 }
113
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd,unsigned long msecs)114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116 struct request *rq = scsi_cmd_to_rq(cmd);
117
118 if (rq->rq_flags & RQF_DONTPREP) {
119 rq->rq_flags &= ~RQF_DONTPREP;
120 scsi_mq_uninit_cmd(cmd);
121 } else {
122 WARN_ON_ONCE(true);
123 }
124
125 if (msecs) {
126 blk_mq_requeue_request(rq, false);
127 blk_mq_delay_kick_requeue_list(rq->q, msecs);
128 } else
129 blk_mq_requeue_request(rq, true);
130 }
131
132 /**
133 * __scsi_queue_insert - private queue insertion
134 * @cmd: The SCSI command being requeued
135 * @reason: The reason for the requeue
136 * @unbusy: Whether the queue should be unbusied
137 *
138 * This is a private queue insertion. The public interface
139 * scsi_queue_insert() always assumes the queue should be unbusied
140 * because it's always called before the completion. This function is
141 * for a requeue after completion, which should only occur in this
142 * file.
143 */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,bool unbusy)144 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
145 {
146 struct scsi_device *device = cmd->device;
147
148 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
149 "Inserting command %p into mlqueue\n", cmd));
150
151 scsi_set_blocked(cmd, reason);
152
153 /*
154 * Decrement the counters, since these commands are no longer
155 * active on the host/device.
156 */
157 if (unbusy)
158 scsi_device_unbusy(device, cmd);
159
160 /*
161 * Requeue this command. It will go before all other commands
162 * that are already in the queue. Schedule requeue work under
163 * lock such that the kblockd_schedule_work() call happens
164 * before blk_mq_destroy_queue() finishes.
165 */
166 cmd->result = 0;
167
168 blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
169 }
170
171 /**
172 * scsi_queue_insert - Reinsert a command in the queue.
173 * @cmd: command that we are adding to queue.
174 * @reason: why we are inserting command to queue.
175 *
176 * We do this for one of two cases. Either the host is busy and it cannot accept
177 * any more commands for the time being, or the device returned QUEUE_FULL and
178 * can accept no more commands.
179 *
180 * Context: This could be called either from an interrupt context or a normal
181 * process context.
182 */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)183 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
184 {
185 __scsi_queue_insert(cmd, reason, true);
186 }
187
188 /**
189 * scsi_execute_cmd - insert request and wait for the result
190 * @sdev: scsi_device
191 * @cmd: scsi command
192 * @opf: block layer request cmd_flags
193 * @buffer: data buffer
194 * @bufflen: len of buffer
195 * @timeout: request timeout in HZ
196 * @retries: number of times to retry request
197 * @args: Optional args. See struct definition for field descriptions
198 *
199 * Returns the scsi_cmnd result field if a command was executed, or a negative
200 * Linux error code if we didn't get that far.
201 */
scsi_execute_cmd(struct scsi_device * sdev,const unsigned char * cmd,blk_opf_t opf,void * buffer,unsigned int bufflen,int timeout,int retries,const struct scsi_exec_args * args)202 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
203 blk_opf_t opf, void *buffer, unsigned int bufflen,
204 int timeout, int retries,
205 const struct scsi_exec_args *args)
206 {
207 static const struct scsi_exec_args default_args;
208 struct request *req;
209 struct scsi_cmnd *scmd;
210 int ret;
211
212 if (!args)
213 args = &default_args;
214 else if (WARN_ON_ONCE(args->sense &&
215 args->sense_len != SCSI_SENSE_BUFFERSIZE))
216 return -EINVAL;
217
218 req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
219 if (IS_ERR(req))
220 return PTR_ERR(req);
221
222 if (bufflen) {
223 ret = blk_rq_map_kern(sdev->request_queue, req,
224 buffer, bufflen, GFP_NOIO);
225 if (ret)
226 goto out;
227 }
228 scmd = blk_mq_rq_to_pdu(req);
229 scmd->cmd_len = COMMAND_SIZE(cmd[0]);
230 memcpy(scmd->cmnd, cmd, scmd->cmd_len);
231 scmd->allowed = retries;
232 scmd->flags |= args->scmd_flags;
233 req->timeout = timeout;
234 req->rq_flags |= RQF_QUIET;
235
236 /*
237 * head injection *required* here otherwise quiesce won't work
238 */
239 blk_execute_rq(req, true);
240
241 /*
242 * Some devices (USB mass-storage in particular) may transfer
243 * garbage data together with a residue indicating that the data
244 * is invalid. Prevent the garbage from being misinterpreted
245 * and prevent security leaks by zeroing out the excess data.
246 */
247 if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
248 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
249
250 if (args->resid)
251 *args->resid = scmd->resid_len;
252 if (args->sense)
253 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
254 if (args->sshdr)
255 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
256 args->sshdr);
257
258 ret = scmd->result;
259 out:
260 blk_mq_free_request(req);
261
262 return ret;
263 }
264 EXPORT_SYMBOL(scsi_execute_cmd);
265
266 /*
267 * Wake up the error handler if necessary. Avoid as follows that the error
268 * handler is not woken up if host in-flight requests number ==
269 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
270 * with an RCU read lock in this function to ensure that this function in
271 * its entirety either finishes before scsi_eh_scmd_add() increases the
272 * host_failed counter or that it notices the shost state change made by
273 * scsi_eh_scmd_add().
274 */
scsi_dec_host_busy(struct Scsi_Host * shost,struct scsi_cmnd * cmd)275 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
276 {
277 unsigned long flags;
278
279 rcu_read_lock();
280 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
281 if (unlikely(scsi_host_in_recovery(shost))) {
282 unsigned int busy = scsi_host_busy(shost);
283
284 spin_lock_irqsave(shost->host_lock, flags);
285 if (shost->host_failed || shost->host_eh_scheduled)
286 scsi_eh_wakeup(shost, busy);
287 spin_unlock_irqrestore(shost->host_lock, flags);
288 }
289 rcu_read_unlock();
290 }
291
scsi_device_unbusy(struct scsi_device * sdev,struct scsi_cmnd * cmd)292 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
293 {
294 struct Scsi_Host *shost = sdev->host;
295 struct scsi_target *starget = scsi_target(sdev);
296
297 scsi_dec_host_busy(shost, cmd);
298
299 if (starget->can_queue > 0)
300 atomic_dec(&starget->target_busy);
301
302 sbitmap_put(&sdev->budget_map, cmd->budget_token);
303 cmd->budget_token = -1;
304 }
305
scsi_kick_queue(struct request_queue * q)306 static void scsi_kick_queue(struct request_queue *q)
307 {
308 blk_mq_run_hw_queues(q, false);
309 }
310
311 /*
312 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
313 * and call blk_run_queue for all the scsi_devices on the target -
314 * including current_sdev first.
315 *
316 * Called with *no* scsi locks held.
317 */
scsi_single_lun_run(struct scsi_device * current_sdev)318 static void scsi_single_lun_run(struct scsi_device *current_sdev)
319 {
320 struct Scsi_Host *shost = current_sdev->host;
321 struct scsi_device *sdev, *tmp;
322 struct scsi_target *starget = scsi_target(current_sdev);
323 unsigned long flags;
324
325 spin_lock_irqsave(shost->host_lock, flags);
326 starget->starget_sdev_user = NULL;
327 spin_unlock_irqrestore(shost->host_lock, flags);
328
329 /*
330 * Call blk_run_queue for all LUNs on the target, starting with
331 * current_sdev. We race with others (to set starget_sdev_user),
332 * but in most cases, we will be first. Ideally, each LU on the
333 * target would get some limited time or requests on the target.
334 */
335 scsi_kick_queue(current_sdev->request_queue);
336
337 spin_lock_irqsave(shost->host_lock, flags);
338 if (starget->starget_sdev_user)
339 goto out;
340 list_for_each_entry_safe(sdev, tmp, &starget->devices,
341 same_target_siblings) {
342 if (sdev == current_sdev)
343 continue;
344 if (scsi_device_get(sdev))
345 continue;
346
347 spin_unlock_irqrestore(shost->host_lock, flags);
348 scsi_kick_queue(sdev->request_queue);
349 spin_lock_irqsave(shost->host_lock, flags);
350
351 scsi_device_put(sdev);
352 }
353 out:
354 spin_unlock_irqrestore(shost->host_lock, flags);
355 }
356
scsi_device_is_busy(struct scsi_device * sdev)357 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
358 {
359 if (scsi_device_busy(sdev) >= sdev->queue_depth)
360 return true;
361 if (atomic_read(&sdev->device_blocked) > 0)
362 return true;
363 return false;
364 }
365
scsi_target_is_busy(struct scsi_target * starget)366 static inline bool scsi_target_is_busy(struct scsi_target *starget)
367 {
368 if (starget->can_queue > 0) {
369 if (atomic_read(&starget->target_busy) >= starget->can_queue)
370 return true;
371 if (atomic_read(&starget->target_blocked) > 0)
372 return true;
373 }
374 return false;
375 }
376
scsi_host_is_busy(struct Scsi_Host * shost)377 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
378 {
379 if (atomic_read(&shost->host_blocked) > 0)
380 return true;
381 if (shost->host_self_blocked)
382 return true;
383 return false;
384 }
385
scsi_starved_list_run(struct Scsi_Host * shost)386 static void scsi_starved_list_run(struct Scsi_Host *shost)
387 {
388 LIST_HEAD(starved_list);
389 struct scsi_device *sdev;
390 unsigned long flags;
391
392 spin_lock_irqsave(shost->host_lock, flags);
393 list_splice_init(&shost->starved_list, &starved_list);
394
395 while (!list_empty(&starved_list)) {
396 struct request_queue *slq;
397
398 /*
399 * As long as shost is accepting commands and we have
400 * starved queues, call blk_run_queue. scsi_request_fn
401 * drops the queue_lock and can add us back to the
402 * starved_list.
403 *
404 * host_lock protects the starved_list and starved_entry.
405 * scsi_request_fn must get the host_lock before checking
406 * or modifying starved_list or starved_entry.
407 */
408 if (scsi_host_is_busy(shost))
409 break;
410
411 sdev = list_entry(starved_list.next,
412 struct scsi_device, starved_entry);
413 list_del_init(&sdev->starved_entry);
414 if (scsi_target_is_busy(scsi_target(sdev))) {
415 list_move_tail(&sdev->starved_entry,
416 &shost->starved_list);
417 continue;
418 }
419
420 /*
421 * Once we drop the host lock, a racing scsi_remove_device()
422 * call may remove the sdev from the starved list and destroy
423 * it and the queue. Mitigate by taking a reference to the
424 * queue and never touching the sdev again after we drop the
425 * host lock. Note: if __scsi_remove_device() invokes
426 * blk_mq_destroy_queue() before the queue is run from this
427 * function then blk_run_queue() will return immediately since
428 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
429 */
430 slq = sdev->request_queue;
431 if (!blk_get_queue(slq))
432 continue;
433 spin_unlock_irqrestore(shost->host_lock, flags);
434
435 scsi_kick_queue(slq);
436 blk_put_queue(slq);
437
438 spin_lock_irqsave(shost->host_lock, flags);
439 }
440 /* put any unprocessed entries back */
441 list_splice(&starved_list, &shost->starved_list);
442 spin_unlock_irqrestore(shost->host_lock, flags);
443 }
444
445 /**
446 * scsi_run_queue - Select a proper request queue to serve next.
447 * @q: last request's queue
448 *
449 * The previous command was completely finished, start a new one if possible.
450 */
scsi_run_queue(struct request_queue * q)451 static void scsi_run_queue(struct request_queue *q)
452 {
453 struct scsi_device *sdev = q->queuedata;
454
455 if (scsi_target(sdev)->single_lun)
456 scsi_single_lun_run(sdev);
457 if (!list_empty(&sdev->host->starved_list))
458 scsi_starved_list_run(sdev->host);
459
460 blk_mq_run_hw_queues(q, false);
461 }
462
scsi_requeue_run_queue(struct work_struct * work)463 void scsi_requeue_run_queue(struct work_struct *work)
464 {
465 struct scsi_device *sdev;
466 struct request_queue *q;
467
468 sdev = container_of(work, struct scsi_device, requeue_work);
469 q = sdev->request_queue;
470 scsi_run_queue(q);
471 }
472
scsi_run_host_queues(struct Scsi_Host * shost)473 void scsi_run_host_queues(struct Scsi_Host *shost)
474 {
475 struct scsi_device *sdev;
476
477 shost_for_each_device(sdev, shost)
478 scsi_run_queue(sdev->request_queue);
479 }
480
scsi_uninit_cmd(struct scsi_cmnd * cmd)481 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
482 {
483 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
484 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
485
486 if (drv->uninit_command)
487 drv->uninit_command(cmd);
488 }
489 }
490
scsi_free_sgtables(struct scsi_cmnd * cmd)491 void scsi_free_sgtables(struct scsi_cmnd *cmd)
492 {
493 if (cmd->sdb.table.nents)
494 sg_free_table_chained(&cmd->sdb.table,
495 SCSI_INLINE_SG_CNT);
496 if (scsi_prot_sg_count(cmd))
497 sg_free_table_chained(&cmd->prot_sdb->table,
498 SCSI_INLINE_PROT_SG_CNT);
499 }
500 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
501
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)502 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
503 {
504 scsi_free_sgtables(cmd);
505 scsi_uninit_cmd(cmd);
506 }
507
scsi_run_queue_async(struct scsi_device * sdev)508 static void scsi_run_queue_async(struct scsi_device *sdev)
509 {
510 if (scsi_target(sdev)->single_lun ||
511 !list_empty(&sdev->host->starved_list)) {
512 kblockd_schedule_work(&sdev->requeue_work);
513 } else {
514 /*
515 * smp_mb() present in sbitmap_queue_clear() or implied in
516 * .end_io is for ordering writing .device_busy in
517 * scsi_device_unbusy() and reading sdev->restarts.
518 */
519 int old = atomic_read(&sdev->restarts);
520
521 /*
522 * ->restarts has to be kept as non-zero if new budget
523 * contention occurs.
524 *
525 * No need to run queue when either another re-run
526 * queue wins in updating ->restarts or a new budget
527 * contention occurs.
528 */
529 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
530 blk_mq_run_hw_queues(sdev->request_queue, true);
531 }
532 }
533
534 /* Returns false when no more bytes to process, true if there are more */
scsi_end_request(struct request * req,blk_status_t error,unsigned int bytes)535 static bool scsi_end_request(struct request *req, blk_status_t error,
536 unsigned int bytes)
537 {
538 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
539 struct scsi_device *sdev = cmd->device;
540 struct request_queue *q = sdev->request_queue;
541
542 if (blk_update_request(req, error, bytes))
543 return true;
544
545 // XXX:
546 if (blk_queue_add_random(q))
547 add_disk_randomness(req->q->disk);
548
549 if (!blk_rq_is_passthrough(req)) {
550 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
551 cmd->flags &= ~SCMD_INITIALIZED;
552 }
553
554 /*
555 * Calling rcu_barrier() is not necessary here because the
556 * SCSI error handler guarantees that the function called by
557 * call_rcu() has been called before scsi_end_request() is
558 * called.
559 */
560 destroy_rcu_head(&cmd->rcu);
561
562 /*
563 * In the MQ case the command gets freed by __blk_mq_end_request,
564 * so we have to do all cleanup that depends on it earlier.
565 *
566 * We also can't kick the queues from irq context, so we
567 * will have to defer it to a workqueue.
568 */
569 scsi_mq_uninit_cmd(cmd);
570
571 /*
572 * queue is still alive, so grab the ref for preventing it
573 * from being cleaned up during running queue.
574 */
575 percpu_ref_get(&q->q_usage_counter);
576
577 __blk_mq_end_request(req, error);
578
579 scsi_run_queue_async(sdev);
580
581 percpu_ref_put(&q->q_usage_counter);
582 return false;
583 }
584
get_scsi_ml_byte(int result)585 static inline u8 get_scsi_ml_byte(int result)
586 {
587 return (result >> 8) & 0xff;
588 }
589
590 /**
591 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
592 * @result: scsi error code
593 *
594 * Translate a SCSI result code into a blk_status_t value.
595 */
scsi_result_to_blk_status(int result)596 static blk_status_t scsi_result_to_blk_status(int result)
597 {
598 /*
599 * Check the scsi-ml byte first in case we converted a host or status
600 * byte.
601 */
602 switch (get_scsi_ml_byte(result)) {
603 case SCSIML_STAT_OK:
604 break;
605 case SCSIML_STAT_RESV_CONFLICT:
606 return BLK_STS_NEXUS;
607 case SCSIML_STAT_NOSPC:
608 return BLK_STS_NOSPC;
609 case SCSIML_STAT_MED_ERROR:
610 return BLK_STS_MEDIUM;
611 case SCSIML_STAT_TGT_FAILURE:
612 return BLK_STS_TARGET;
613 }
614
615 switch (host_byte(result)) {
616 case DID_OK:
617 if (scsi_status_is_good(result))
618 return BLK_STS_OK;
619 return BLK_STS_IOERR;
620 case DID_TRANSPORT_FAILFAST:
621 case DID_TRANSPORT_MARGINAL:
622 return BLK_STS_TRANSPORT;
623 default:
624 return BLK_STS_IOERR;
625 }
626 }
627
628 /**
629 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
630 * @rq: request to examine
631 *
632 * Description:
633 * A request could be merge of IOs which require different failure
634 * handling. This function determines the number of bytes which
635 * can be failed from the beginning of the request without
636 * crossing into area which need to be retried further.
637 *
638 * Return:
639 * The number of bytes to fail.
640 */
scsi_rq_err_bytes(const struct request * rq)641 static unsigned int scsi_rq_err_bytes(const struct request *rq)
642 {
643 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
644 unsigned int bytes = 0;
645 struct bio *bio;
646
647 if (!(rq->rq_flags & RQF_MIXED_MERGE))
648 return blk_rq_bytes(rq);
649
650 /*
651 * Currently the only 'mixing' which can happen is between
652 * different fastfail types. We can safely fail portions
653 * which have all the failfast bits that the first one has -
654 * the ones which are at least as eager to fail as the first
655 * one.
656 */
657 for (bio = rq->bio; bio; bio = bio->bi_next) {
658 if ((bio->bi_opf & ff) != ff)
659 break;
660 bytes += bio->bi_iter.bi_size;
661 }
662
663 /* this could lead to infinite loop */
664 BUG_ON(blk_rq_bytes(rq) && !bytes);
665 return bytes;
666 }
667
scsi_cmd_runtime_exceeced(struct scsi_cmnd * cmd)668 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
669 {
670 struct request *req = scsi_cmd_to_rq(cmd);
671 unsigned long wait_for;
672
673 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
674 return false;
675
676 wait_for = (cmd->allowed + 1) * req->timeout;
677 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
678 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
679 wait_for/HZ);
680 return true;
681 }
682 return false;
683 }
684
685 /*
686 * When ALUA transition state is returned, reprep the cmd to
687 * use the ALUA handler's transition timeout. Delay the reprep
688 * 1 sec to avoid aggressive retries of the target in that
689 * state.
690 */
691 #define ALUA_TRANSITION_REPREP_DELAY 1000
692
693 /* Helper for scsi_io_completion() when special action required. */
scsi_io_completion_action(struct scsi_cmnd * cmd,int result)694 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
695 {
696 struct request *req = scsi_cmd_to_rq(cmd);
697 int level = 0;
698 enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
699 ACTION_RETRY, ACTION_DELAYED_RETRY} action;
700 struct scsi_sense_hdr sshdr;
701 bool sense_valid;
702 bool sense_current = true; /* false implies "deferred sense" */
703 blk_status_t blk_stat;
704
705 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
706 if (sense_valid)
707 sense_current = !scsi_sense_is_deferred(&sshdr);
708
709 blk_stat = scsi_result_to_blk_status(result);
710
711 if (host_byte(result) == DID_RESET) {
712 /* Third party bus reset or reset for error recovery
713 * reasons. Just retry the command and see what
714 * happens.
715 */
716 action = ACTION_RETRY;
717 } else if (sense_valid && sense_current) {
718 switch (sshdr.sense_key) {
719 case UNIT_ATTENTION:
720 if (cmd->device->removable) {
721 /* Detected disc change. Set a bit
722 * and quietly refuse further access.
723 */
724 cmd->device->changed = 1;
725 action = ACTION_FAIL;
726 } else {
727 /* Must have been a power glitch, or a
728 * bus reset. Could not have been a
729 * media change, so we just retry the
730 * command and see what happens.
731 */
732 action = ACTION_RETRY;
733 }
734 break;
735 case ILLEGAL_REQUEST:
736 /* If we had an ILLEGAL REQUEST returned, then
737 * we may have performed an unsupported
738 * command. The only thing this should be
739 * would be a ten byte read where only a six
740 * byte read was supported. Also, on a system
741 * where READ CAPACITY failed, we may have
742 * read past the end of the disk.
743 */
744 if ((cmd->device->use_10_for_rw &&
745 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
746 (cmd->cmnd[0] == READ_10 ||
747 cmd->cmnd[0] == WRITE_10)) {
748 /* This will issue a new 6-byte command. */
749 cmd->device->use_10_for_rw = 0;
750 action = ACTION_REPREP;
751 } else if (sshdr.asc == 0x10) /* DIX */ {
752 action = ACTION_FAIL;
753 blk_stat = BLK_STS_PROTECTION;
754 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
755 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
756 action = ACTION_FAIL;
757 blk_stat = BLK_STS_TARGET;
758 } else
759 action = ACTION_FAIL;
760 break;
761 case ABORTED_COMMAND:
762 action = ACTION_FAIL;
763 if (sshdr.asc == 0x10) /* DIF */
764 blk_stat = BLK_STS_PROTECTION;
765 break;
766 case NOT_READY:
767 /* If the device is in the process of becoming
768 * ready, or has a temporary blockage, retry.
769 */
770 if (sshdr.asc == 0x04) {
771 switch (sshdr.ascq) {
772 case 0x01: /* becoming ready */
773 case 0x04: /* format in progress */
774 case 0x05: /* rebuild in progress */
775 case 0x06: /* recalculation in progress */
776 case 0x07: /* operation in progress */
777 case 0x08: /* Long write in progress */
778 case 0x09: /* self test in progress */
779 case 0x11: /* notify (enable spinup) required */
780 case 0x14: /* space allocation in progress */
781 case 0x1a: /* start stop unit in progress */
782 case 0x1b: /* sanitize in progress */
783 case 0x1d: /* configuration in progress */
784 case 0x24: /* depopulation in progress */
785 action = ACTION_DELAYED_RETRY;
786 break;
787 case 0x0a: /* ALUA state transition */
788 action = ACTION_DELAYED_REPREP;
789 break;
790 default:
791 action = ACTION_FAIL;
792 break;
793 }
794 } else
795 action = ACTION_FAIL;
796 break;
797 case VOLUME_OVERFLOW:
798 /* See SSC3rXX or current. */
799 action = ACTION_FAIL;
800 break;
801 case DATA_PROTECT:
802 action = ACTION_FAIL;
803 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
804 (sshdr.asc == 0x55 &&
805 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
806 /* Insufficient zone resources */
807 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
808 }
809 break;
810 default:
811 action = ACTION_FAIL;
812 break;
813 }
814 } else
815 action = ACTION_FAIL;
816
817 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
818 action = ACTION_FAIL;
819
820 switch (action) {
821 case ACTION_FAIL:
822 /* Give up and fail the remainder of the request */
823 if (!(req->rq_flags & RQF_QUIET)) {
824 static DEFINE_RATELIMIT_STATE(_rs,
825 DEFAULT_RATELIMIT_INTERVAL,
826 DEFAULT_RATELIMIT_BURST);
827
828 if (unlikely(scsi_logging_level))
829 level =
830 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
831 SCSI_LOG_MLCOMPLETE_BITS);
832
833 /*
834 * if logging is enabled the failure will be printed
835 * in scsi_log_completion(), so avoid duplicate messages
836 */
837 if (!level && __ratelimit(&_rs)) {
838 scsi_print_result(cmd, NULL, FAILED);
839 if (sense_valid)
840 scsi_print_sense(cmd);
841 scsi_print_command(cmd);
842 }
843 }
844 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
845 return;
846 fallthrough;
847 case ACTION_REPREP:
848 scsi_mq_requeue_cmd(cmd, 0);
849 break;
850 case ACTION_DELAYED_REPREP:
851 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
852 break;
853 case ACTION_RETRY:
854 /* Retry the same command immediately */
855 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
856 break;
857 case ACTION_DELAYED_RETRY:
858 /* Retry the same command after a delay */
859 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
860 break;
861 }
862 }
863
864 /*
865 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
866 * new result that may suppress further error checking. Also modifies
867 * *blk_statp in some cases.
868 */
scsi_io_completion_nz_result(struct scsi_cmnd * cmd,int result,blk_status_t * blk_statp)869 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
870 blk_status_t *blk_statp)
871 {
872 bool sense_valid;
873 bool sense_current = true; /* false implies "deferred sense" */
874 struct request *req = scsi_cmd_to_rq(cmd);
875 struct scsi_sense_hdr sshdr;
876
877 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
878 if (sense_valid)
879 sense_current = !scsi_sense_is_deferred(&sshdr);
880
881 if (blk_rq_is_passthrough(req)) {
882 if (sense_valid) {
883 /*
884 * SG_IO wants current and deferred errors
885 */
886 cmd->sense_len = min(8 + cmd->sense_buffer[7],
887 SCSI_SENSE_BUFFERSIZE);
888 }
889 if (sense_current)
890 *blk_statp = scsi_result_to_blk_status(result);
891 } else if (blk_rq_bytes(req) == 0 && sense_current) {
892 /*
893 * Flush commands do not transfers any data, and thus cannot use
894 * good_bytes != blk_rq_bytes(req) as the signal for an error.
895 * This sets *blk_statp explicitly for the problem case.
896 */
897 *blk_statp = scsi_result_to_blk_status(result);
898 }
899 /*
900 * Recovered errors need reporting, but they're always treated as
901 * success, so fiddle the result code here. For passthrough requests
902 * we already took a copy of the original into sreq->result which
903 * is what gets returned to the user
904 */
905 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
906 bool do_print = true;
907 /*
908 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
909 * skip print since caller wants ATA registers. Only occurs
910 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
911 */
912 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
913 do_print = false;
914 else if (req->rq_flags & RQF_QUIET)
915 do_print = false;
916 if (do_print)
917 scsi_print_sense(cmd);
918 result = 0;
919 /* for passthrough, *blk_statp may be set */
920 *blk_statp = BLK_STS_OK;
921 }
922 /*
923 * Another corner case: the SCSI status byte is non-zero but 'good'.
924 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
925 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
926 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
927 * intermediate statuses (both obsolete in SAM-4) as good.
928 */
929 if ((result & 0xff) && scsi_status_is_good(result)) {
930 result = 0;
931 *blk_statp = BLK_STS_OK;
932 }
933 return result;
934 }
935
936 /**
937 * scsi_io_completion - Completion processing for SCSI commands.
938 * @cmd: command that is finished.
939 * @good_bytes: number of processed bytes.
940 *
941 * We will finish off the specified number of sectors. If we are done, the
942 * command block will be released and the queue function will be goosed. If we
943 * are not done then we have to figure out what to do next:
944 *
945 * a) We can call scsi_mq_requeue_cmd(). The request will be
946 * unprepared and put back on the queue. Then a new command will
947 * be created for it. This should be used if we made forward
948 * progress, or if we want to switch from READ(10) to READ(6) for
949 * example.
950 *
951 * b) We can call scsi_io_completion_action(). The request will be
952 * put back on the queue and retried using the same command as
953 * before, possibly after a delay.
954 *
955 * c) We can call scsi_end_request() with blk_stat other than
956 * BLK_STS_OK, to fail the remainder of the request.
957 */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)958 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
959 {
960 int result = cmd->result;
961 struct request *req = scsi_cmd_to_rq(cmd);
962 blk_status_t blk_stat = BLK_STS_OK;
963
964 if (unlikely(result)) /* a nz result may or may not be an error */
965 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
966
967 /*
968 * Next deal with any sectors which we were able to correctly
969 * handle.
970 */
971 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
972 "%u sectors total, %d bytes done.\n",
973 blk_rq_sectors(req), good_bytes));
974
975 /*
976 * Failed, zero length commands always need to drop down
977 * to retry code. Fast path should return in this block.
978 */
979 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
980 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
981 return; /* no bytes remaining */
982 }
983
984 /* Kill remainder if no retries. */
985 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
986 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
987 WARN_ONCE(true,
988 "Bytes remaining after failed, no-retry command");
989 return;
990 }
991
992 /*
993 * If there had been no error, but we have leftover bytes in the
994 * request just queue the command up again.
995 */
996 if (likely(result == 0))
997 scsi_mq_requeue_cmd(cmd, 0);
998 else
999 scsi_io_completion_action(cmd, result);
1000 }
1001
scsi_cmd_needs_dma_drain(struct scsi_device * sdev,struct request * rq)1002 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1003 struct request *rq)
1004 {
1005 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1006 !op_is_write(req_op(rq)) &&
1007 sdev->host->hostt->dma_need_drain(rq);
1008 }
1009
1010 /**
1011 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1012 * @cmd: SCSI command data structure to initialize.
1013 *
1014 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1015 * for @cmd.
1016 *
1017 * Returns:
1018 * * BLK_STS_OK - on success
1019 * * BLK_STS_RESOURCE - if the failure is retryable
1020 * * BLK_STS_IOERR - if the failure is fatal
1021 */
scsi_alloc_sgtables(struct scsi_cmnd * cmd)1022 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1023 {
1024 struct scsi_device *sdev = cmd->device;
1025 struct request *rq = scsi_cmd_to_rq(cmd);
1026 unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1027 struct scatterlist *last_sg = NULL;
1028 blk_status_t ret;
1029 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1030 int count;
1031
1032 if (WARN_ON_ONCE(!nr_segs))
1033 return BLK_STS_IOERR;
1034
1035 /*
1036 * Make sure there is space for the drain. The driver must adjust
1037 * max_hw_segments to be prepared for this.
1038 */
1039 if (need_drain)
1040 nr_segs++;
1041
1042 /*
1043 * If sg table allocation fails, requeue request later.
1044 */
1045 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1046 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1047 return BLK_STS_RESOURCE;
1048
1049 /*
1050 * Next, walk the list, and fill in the addresses and sizes of
1051 * each segment.
1052 */
1053 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1054
1055 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1056 unsigned int pad_len =
1057 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1058
1059 last_sg->length += pad_len;
1060 cmd->extra_len += pad_len;
1061 }
1062
1063 if (need_drain) {
1064 sg_unmark_end(last_sg);
1065 last_sg = sg_next(last_sg);
1066 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1067 sg_mark_end(last_sg);
1068
1069 cmd->extra_len += sdev->dma_drain_len;
1070 count++;
1071 }
1072
1073 BUG_ON(count > cmd->sdb.table.nents);
1074 cmd->sdb.table.nents = count;
1075 cmd->sdb.length = blk_rq_payload_bytes(rq);
1076
1077 if (blk_integrity_rq(rq)) {
1078 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1079 int ivecs;
1080
1081 if (WARN_ON_ONCE(!prot_sdb)) {
1082 /*
1083 * This can happen if someone (e.g. multipath)
1084 * queues a command to a device on an adapter
1085 * that does not support DIX.
1086 */
1087 ret = BLK_STS_IOERR;
1088 goto out_free_sgtables;
1089 }
1090
1091 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1092
1093 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1094 prot_sdb->table.sgl,
1095 SCSI_INLINE_PROT_SG_CNT)) {
1096 ret = BLK_STS_RESOURCE;
1097 goto out_free_sgtables;
1098 }
1099
1100 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1101 prot_sdb->table.sgl);
1102 BUG_ON(count > ivecs);
1103 BUG_ON(count > queue_max_integrity_segments(rq->q));
1104
1105 cmd->prot_sdb = prot_sdb;
1106 cmd->prot_sdb->table.nents = count;
1107 }
1108
1109 return BLK_STS_OK;
1110 out_free_sgtables:
1111 scsi_free_sgtables(cmd);
1112 return ret;
1113 }
1114 EXPORT_SYMBOL(scsi_alloc_sgtables);
1115
1116 /**
1117 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1118 * @rq: Request associated with the SCSI command to be initialized.
1119 *
1120 * This function initializes the members of struct scsi_cmnd that must be
1121 * initialized before request processing starts and that won't be
1122 * reinitialized if a SCSI command is requeued.
1123 */
scsi_initialize_rq(struct request * rq)1124 static void scsi_initialize_rq(struct request *rq)
1125 {
1126 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1127
1128 memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1129 cmd->cmd_len = MAX_COMMAND_SIZE;
1130 cmd->sense_len = 0;
1131 init_rcu_head(&cmd->rcu);
1132 cmd->jiffies_at_alloc = jiffies;
1133 cmd->retries = 0;
1134 }
1135
scsi_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)1136 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1137 blk_mq_req_flags_t flags)
1138 {
1139 struct request *rq;
1140
1141 rq = blk_mq_alloc_request(q, opf, flags);
1142 if (!IS_ERR(rq))
1143 scsi_initialize_rq(rq);
1144 return rq;
1145 }
1146 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1147
1148 /*
1149 * Only called when the request isn't completed by SCSI, and not freed by
1150 * SCSI
1151 */
scsi_cleanup_rq(struct request * rq)1152 static void scsi_cleanup_rq(struct request *rq)
1153 {
1154 if (rq->rq_flags & RQF_DONTPREP) {
1155 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1156 rq->rq_flags &= ~RQF_DONTPREP;
1157 }
1158 }
1159
1160 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
scsi_init_command(struct scsi_device * dev,struct scsi_cmnd * cmd)1161 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1162 {
1163 struct request *rq = scsi_cmd_to_rq(cmd);
1164
1165 if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1166 cmd->flags |= SCMD_INITIALIZED;
1167 scsi_initialize_rq(rq);
1168 }
1169
1170 cmd->device = dev;
1171 INIT_LIST_HEAD(&cmd->eh_entry);
1172 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1173 }
1174
scsi_setup_scsi_cmnd(struct scsi_device * sdev,struct request * req)1175 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1176 struct request *req)
1177 {
1178 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1179
1180 /*
1181 * Passthrough requests may transfer data, in which case they must
1182 * a bio attached to them. Or they might contain a SCSI command
1183 * that does not transfer data, in which case they may optionally
1184 * submit a request without an attached bio.
1185 */
1186 if (req->bio) {
1187 blk_status_t ret = scsi_alloc_sgtables(cmd);
1188 if (unlikely(ret != BLK_STS_OK))
1189 return ret;
1190 } else {
1191 BUG_ON(blk_rq_bytes(req));
1192
1193 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1194 }
1195
1196 cmd->transfersize = blk_rq_bytes(req);
1197 return BLK_STS_OK;
1198 }
1199
1200 static blk_status_t
scsi_device_state_check(struct scsi_device * sdev,struct request * req)1201 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1202 {
1203 switch (sdev->sdev_state) {
1204 case SDEV_CREATED:
1205 return BLK_STS_OK;
1206 case SDEV_OFFLINE:
1207 case SDEV_TRANSPORT_OFFLINE:
1208 /*
1209 * If the device is offline we refuse to process any
1210 * commands. The device must be brought online
1211 * before trying any recovery commands.
1212 */
1213 if (!sdev->offline_already) {
1214 sdev->offline_already = true;
1215 sdev_printk(KERN_ERR, sdev,
1216 "rejecting I/O to offline device\n");
1217 }
1218 return BLK_STS_IOERR;
1219 case SDEV_DEL:
1220 /*
1221 * If the device is fully deleted, we refuse to
1222 * process any commands as well.
1223 */
1224 sdev_printk(KERN_ERR, sdev,
1225 "rejecting I/O to dead device\n");
1226 return BLK_STS_IOERR;
1227 case SDEV_BLOCK:
1228 case SDEV_CREATED_BLOCK:
1229 return BLK_STS_RESOURCE;
1230 case SDEV_QUIESCE:
1231 /*
1232 * If the device is blocked we only accept power management
1233 * commands.
1234 */
1235 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1236 return BLK_STS_RESOURCE;
1237 return BLK_STS_OK;
1238 default:
1239 /*
1240 * For any other not fully online state we only allow
1241 * power management commands.
1242 */
1243 if (req && !(req->rq_flags & RQF_PM))
1244 return BLK_STS_OFFLINE;
1245 return BLK_STS_OK;
1246 }
1247 }
1248
1249 /*
1250 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1251 * and return the token else return -1.
1252 */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1253 static inline int scsi_dev_queue_ready(struct request_queue *q,
1254 struct scsi_device *sdev)
1255 {
1256 int token;
1257
1258 token = sbitmap_get(&sdev->budget_map);
1259 if (atomic_read(&sdev->device_blocked)) {
1260 if (token < 0)
1261 goto out;
1262
1263 if (scsi_device_busy(sdev) > 1)
1264 goto out_dec;
1265
1266 /*
1267 * unblock after device_blocked iterates to zero
1268 */
1269 if (atomic_dec_return(&sdev->device_blocked) > 0)
1270 goto out_dec;
1271 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1272 "unblocking device at zero depth\n"));
1273 }
1274
1275 return token;
1276 out_dec:
1277 if (token >= 0)
1278 sbitmap_put(&sdev->budget_map, token);
1279 out:
1280 return -1;
1281 }
1282
1283 /*
1284 * scsi_target_queue_ready: checks if there we can send commands to target
1285 * @sdev: scsi device on starget to check.
1286 */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1287 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1288 struct scsi_device *sdev)
1289 {
1290 struct scsi_target *starget = scsi_target(sdev);
1291 unsigned int busy;
1292
1293 if (starget->single_lun) {
1294 spin_lock_irq(shost->host_lock);
1295 if (starget->starget_sdev_user &&
1296 starget->starget_sdev_user != sdev) {
1297 spin_unlock_irq(shost->host_lock);
1298 return 0;
1299 }
1300 starget->starget_sdev_user = sdev;
1301 spin_unlock_irq(shost->host_lock);
1302 }
1303
1304 if (starget->can_queue <= 0)
1305 return 1;
1306
1307 busy = atomic_inc_return(&starget->target_busy) - 1;
1308 if (atomic_read(&starget->target_blocked) > 0) {
1309 if (busy)
1310 goto starved;
1311
1312 /*
1313 * unblock after target_blocked iterates to zero
1314 */
1315 if (atomic_dec_return(&starget->target_blocked) > 0)
1316 goto out_dec;
1317
1318 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1319 "unblocking target at zero depth\n"));
1320 }
1321
1322 if (busy >= starget->can_queue)
1323 goto starved;
1324
1325 return 1;
1326
1327 starved:
1328 spin_lock_irq(shost->host_lock);
1329 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1330 spin_unlock_irq(shost->host_lock);
1331 out_dec:
1332 if (starget->can_queue > 0)
1333 atomic_dec(&starget->target_busy);
1334 return 0;
1335 }
1336
1337 /*
1338 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1339 * return 0. We must end up running the queue again whenever 0 is
1340 * returned, else IO can hang.
1341 */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev,struct scsi_cmnd * cmd)1342 static inline int scsi_host_queue_ready(struct request_queue *q,
1343 struct Scsi_Host *shost,
1344 struct scsi_device *sdev,
1345 struct scsi_cmnd *cmd)
1346 {
1347 if (atomic_read(&shost->host_blocked) > 0) {
1348 if (scsi_host_busy(shost) > 0)
1349 goto starved;
1350
1351 /*
1352 * unblock after host_blocked iterates to zero
1353 */
1354 if (atomic_dec_return(&shost->host_blocked) > 0)
1355 goto out_dec;
1356
1357 SCSI_LOG_MLQUEUE(3,
1358 shost_printk(KERN_INFO, shost,
1359 "unblocking host at zero depth\n"));
1360 }
1361
1362 if (shost->host_self_blocked)
1363 goto starved;
1364
1365 /* We're OK to process the command, so we can't be starved */
1366 if (!list_empty(&sdev->starved_entry)) {
1367 spin_lock_irq(shost->host_lock);
1368 if (!list_empty(&sdev->starved_entry))
1369 list_del_init(&sdev->starved_entry);
1370 spin_unlock_irq(shost->host_lock);
1371 }
1372
1373 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1374
1375 return 1;
1376
1377 starved:
1378 spin_lock_irq(shost->host_lock);
1379 if (list_empty(&sdev->starved_entry))
1380 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1381 spin_unlock_irq(shost->host_lock);
1382 out_dec:
1383 scsi_dec_host_busy(shost, cmd);
1384 return 0;
1385 }
1386
1387 /*
1388 * Busy state exporting function for request stacking drivers.
1389 *
1390 * For efficiency, no lock is taken to check the busy state of
1391 * shost/starget/sdev, since the returned value is not guaranteed and
1392 * may be changed after request stacking drivers call the function,
1393 * regardless of taking lock or not.
1394 *
1395 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1396 * needs to return 'not busy'. Otherwise, request stacking drivers
1397 * may hold requests forever.
1398 */
scsi_mq_lld_busy(struct request_queue * q)1399 static bool scsi_mq_lld_busy(struct request_queue *q)
1400 {
1401 struct scsi_device *sdev = q->queuedata;
1402 struct Scsi_Host *shost;
1403
1404 if (blk_queue_dying(q))
1405 return false;
1406
1407 shost = sdev->host;
1408
1409 /*
1410 * Ignore host/starget busy state.
1411 * Since block layer does not have a concept of fairness across
1412 * multiple queues, congestion of host/starget needs to be handled
1413 * in SCSI layer.
1414 */
1415 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1416 return true;
1417
1418 return false;
1419 }
1420
1421 /*
1422 * Block layer request completion callback. May be called from interrupt
1423 * context.
1424 */
scsi_complete(struct request * rq)1425 static void scsi_complete(struct request *rq)
1426 {
1427 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1428 enum scsi_disposition disposition;
1429
1430 INIT_LIST_HEAD(&cmd->eh_entry);
1431
1432 atomic_inc(&cmd->device->iodone_cnt);
1433 if (cmd->result)
1434 atomic_inc(&cmd->device->ioerr_cnt);
1435
1436 disposition = scsi_decide_disposition(cmd);
1437 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1438 disposition = SUCCESS;
1439
1440 scsi_log_completion(cmd, disposition);
1441
1442 switch (disposition) {
1443 case SUCCESS:
1444 scsi_finish_command(cmd);
1445 break;
1446 case NEEDS_RETRY:
1447 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1448 break;
1449 case ADD_TO_MLQUEUE:
1450 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1451 break;
1452 default:
1453 scsi_eh_scmd_add(cmd);
1454 break;
1455 }
1456 }
1457
1458 /**
1459 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1460 * @cmd: command block we are dispatching.
1461 *
1462 * Return: nonzero return request was rejected and device's queue needs to be
1463 * plugged.
1464 */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1465 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1466 {
1467 struct Scsi_Host *host = cmd->device->host;
1468 int rtn = 0;
1469
1470 atomic_inc(&cmd->device->iorequest_cnt);
1471
1472 /* check if the device is still usable */
1473 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1474 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1475 * returns an immediate error upwards, and signals
1476 * that the device is no longer present */
1477 cmd->result = DID_NO_CONNECT << 16;
1478 goto done;
1479 }
1480
1481 /* Check to see if the scsi lld made this device blocked. */
1482 if (unlikely(scsi_device_blocked(cmd->device))) {
1483 /*
1484 * in blocked state, the command is just put back on
1485 * the device queue. The suspend state has already
1486 * blocked the queue so future requests should not
1487 * occur until the device transitions out of the
1488 * suspend state.
1489 */
1490 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1491 "queuecommand : device blocked\n"));
1492 atomic_dec(&cmd->device->iorequest_cnt);
1493 return SCSI_MLQUEUE_DEVICE_BUSY;
1494 }
1495
1496 /* Store the LUN value in cmnd, if needed. */
1497 if (cmd->device->lun_in_cdb)
1498 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1499 (cmd->device->lun << 5 & 0xe0);
1500
1501 scsi_log_send(cmd);
1502
1503 /*
1504 * Before we queue this command, check if the command
1505 * length exceeds what the host adapter can handle.
1506 */
1507 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1508 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1509 "queuecommand : command too long. "
1510 "cdb_size=%d host->max_cmd_len=%d\n",
1511 cmd->cmd_len, cmd->device->host->max_cmd_len));
1512 cmd->result = (DID_ABORT << 16);
1513 goto done;
1514 }
1515
1516 if (unlikely(host->shost_state == SHOST_DEL)) {
1517 cmd->result = (DID_NO_CONNECT << 16);
1518 goto done;
1519
1520 }
1521
1522 trace_scsi_dispatch_cmd_start(cmd);
1523 rtn = host->hostt->queuecommand(host, cmd);
1524 if (rtn) {
1525 atomic_dec(&cmd->device->iorequest_cnt);
1526 trace_scsi_dispatch_cmd_error(cmd, rtn);
1527 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1528 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1529 rtn = SCSI_MLQUEUE_HOST_BUSY;
1530
1531 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1532 "queuecommand : request rejected\n"));
1533 }
1534
1535 return rtn;
1536 done:
1537 scsi_done(cmd);
1538 return 0;
1539 }
1540
1541 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
scsi_mq_inline_sgl_size(struct Scsi_Host * shost)1542 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1543 {
1544 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1545 sizeof(struct scatterlist);
1546 }
1547
scsi_prepare_cmd(struct request * req)1548 static blk_status_t scsi_prepare_cmd(struct request *req)
1549 {
1550 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1551 struct scsi_device *sdev = req->q->queuedata;
1552 struct Scsi_Host *shost = sdev->host;
1553 bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1554 struct scatterlist *sg;
1555
1556 scsi_init_command(sdev, cmd);
1557
1558 cmd->eh_eflags = 0;
1559 cmd->prot_type = 0;
1560 cmd->prot_flags = 0;
1561 cmd->submitter = 0;
1562 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1563 cmd->underflow = 0;
1564 cmd->transfersize = 0;
1565 cmd->host_scribble = NULL;
1566 cmd->result = 0;
1567 cmd->extra_len = 0;
1568 cmd->state = 0;
1569 if (in_flight)
1570 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1571
1572 /*
1573 * Only clear the driver-private command data if the LLD does not supply
1574 * a function to initialize that data.
1575 */
1576 if (!shost->hostt->init_cmd_priv)
1577 memset(cmd + 1, 0, shost->hostt->cmd_size);
1578
1579 cmd->prot_op = SCSI_PROT_NORMAL;
1580 if (blk_rq_bytes(req))
1581 cmd->sc_data_direction = rq_dma_dir(req);
1582 else
1583 cmd->sc_data_direction = DMA_NONE;
1584
1585 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1586 cmd->sdb.table.sgl = sg;
1587
1588 if (scsi_host_get_prot(shost)) {
1589 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1590
1591 cmd->prot_sdb->table.sgl =
1592 (struct scatterlist *)(cmd->prot_sdb + 1);
1593 }
1594
1595 /*
1596 * Special handling for passthrough commands, which don't go to the ULP
1597 * at all:
1598 */
1599 if (blk_rq_is_passthrough(req))
1600 return scsi_setup_scsi_cmnd(sdev, req);
1601
1602 if (sdev->handler && sdev->handler->prep_fn) {
1603 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1604
1605 if (ret != BLK_STS_OK)
1606 return ret;
1607 }
1608
1609 /* Usually overridden by the ULP */
1610 cmd->allowed = 0;
1611 memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1612 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1613 }
1614
scsi_done_internal(struct scsi_cmnd * cmd,bool complete_directly)1615 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1616 {
1617 struct request *req = scsi_cmd_to_rq(cmd);
1618
1619 switch (cmd->submitter) {
1620 case SUBMITTED_BY_BLOCK_LAYER:
1621 break;
1622 case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1623 return scsi_eh_done(cmd);
1624 case SUBMITTED_BY_SCSI_RESET_IOCTL:
1625 return;
1626 }
1627
1628 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1629 return;
1630 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1631 return;
1632 trace_scsi_dispatch_cmd_done(cmd);
1633
1634 if (complete_directly)
1635 blk_mq_complete_request_direct(req, scsi_complete);
1636 else
1637 blk_mq_complete_request(req);
1638 }
1639
scsi_done(struct scsi_cmnd * cmd)1640 void scsi_done(struct scsi_cmnd *cmd)
1641 {
1642 scsi_done_internal(cmd, false);
1643 }
1644 EXPORT_SYMBOL(scsi_done);
1645
scsi_done_direct(struct scsi_cmnd * cmd)1646 void scsi_done_direct(struct scsi_cmnd *cmd)
1647 {
1648 scsi_done_internal(cmd, true);
1649 }
1650 EXPORT_SYMBOL(scsi_done_direct);
1651
scsi_mq_put_budget(struct request_queue * q,int budget_token)1652 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1653 {
1654 struct scsi_device *sdev = q->queuedata;
1655
1656 sbitmap_put(&sdev->budget_map, budget_token);
1657 }
1658
1659 /*
1660 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1661 * not change behaviour from the previous unplug mechanism, experimentation
1662 * may prove this needs changing.
1663 */
1664 #define SCSI_QUEUE_DELAY 3
1665
scsi_mq_get_budget(struct request_queue * q)1666 static int scsi_mq_get_budget(struct request_queue *q)
1667 {
1668 struct scsi_device *sdev = q->queuedata;
1669 int token = scsi_dev_queue_ready(q, sdev);
1670
1671 if (token >= 0)
1672 return token;
1673
1674 atomic_inc(&sdev->restarts);
1675
1676 /*
1677 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1678 * .restarts must be incremented before .device_busy is read because the
1679 * code in scsi_run_queue_async() depends on the order of these operations.
1680 */
1681 smp_mb__after_atomic();
1682
1683 /*
1684 * If all in-flight requests originated from this LUN are completed
1685 * before reading .device_busy, sdev->device_busy will be observed as
1686 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1687 * soon. Otherwise, completion of one of these requests will observe
1688 * the .restarts flag, and the request queue will be run for handling
1689 * this request, see scsi_end_request().
1690 */
1691 if (unlikely(scsi_device_busy(sdev) == 0 &&
1692 !scsi_device_blocked(sdev)))
1693 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1694 return -1;
1695 }
1696
scsi_mq_set_rq_budget_token(struct request * req,int token)1697 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1698 {
1699 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1700
1701 cmd->budget_token = token;
1702 }
1703
scsi_mq_get_rq_budget_token(struct request * req)1704 static int scsi_mq_get_rq_budget_token(struct request *req)
1705 {
1706 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1707
1708 return cmd->budget_token;
1709 }
1710
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1711 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1712 const struct blk_mq_queue_data *bd)
1713 {
1714 struct request *req = bd->rq;
1715 struct request_queue *q = req->q;
1716 struct scsi_device *sdev = q->queuedata;
1717 struct Scsi_Host *shost = sdev->host;
1718 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1719 blk_status_t ret;
1720 int reason;
1721
1722 WARN_ON_ONCE(cmd->budget_token < 0);
1723
1724 /*
1725 * If the device is not in running state we will reject some or all
1726 * commands.
1727 */
1728 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1729 ret = scsi_device_state_check(sdev, req);
1730 if (ret != BLK_STS_OK)
1731 goto out_put_budget;
1732 }
1733
1734 ret = BLK_STS_RESOURCE;
1735 if (!scsi_target_queue_ready(shost, sdev))
1736 goto out_put_budget;
1737 if (unlikely(scsi_host_in_recovery(shost))) {
1738 if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1739 ret = BLK_STS_OFFLINE;
1740 goto out_dec_target_busy;
1741 }
1742 if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1743 goto out_dec_target_busy;
1744
1745 if (!(req->rq_flags & RQF_DONTPREP)) {
1746 ret = scsi_prepare_cmd(req);
1747 if (ret != BLK_STS_OK)
1748 goto out_dec_host_busy;
1749 req->rq_flags |= RQF_DONTPREP;
1750 } else {
1751 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1752 }
1753
1754 cmd->flags &= SCMD_PRESERVED_FLAGS;
1755 if (sdev->simple_tags)
1756 cmd->flags |= SCMD_TAGGED;
1757 if (bd->last)
1758 cmd->flags |= SCMD_LAST;
1759
1760 scsi_set_resid(cmd, 0);
1761 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1762 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1763
1764 blk_mq_start_request(req);
1765 reason = scsi_dispatch_cmd(cmd);
1766 if (reason) {
1767 scsi_set_blocked(cmd, reason);
1768 ret = BLK_STS_RESOURCE;
1769 goto out_dec_host_busy;
1770 }
1771
1772 return BLK_STS_OK;
1773
1774 out_dec_host_busy:
1775 scsi_dec_host_busy(shost, cmd);
1776 out_dec_target_busy:
1777 if (scsi_target(sdev)->can_queue > 0)
1778 atomic_dec(&scsi_target(sdev)->target_busy);
1779 out_put_budget:
1780 scsi_mq_put_budget(q, cmd->budget_token);
1781 cmd->budget_token = -1;
1782 switch (ret) {
1783 case BLK_STS_OK:
1784 break;
1785 case BLK_STS_RESOURCE:
1786 case BLK_STS_ZONE_RESOURCE:
1787 if (scsi_device_blocked(sdev))
1788 ret = BLK_STS_DEV_RESOURCE;
1789 break;
1790 case BLK_STS_AGAIN:
1791 cmd->result = DID_BUS_BUSY << 16;
1792 if (req->rq_flags & RQF_DONTPREP)
1793 scsi_mq_uninit_cmd(cmd);
1794 break;
1795 default:
1796 if (unlikely(!scsi_device_online(sdev)))
1797 cmd->result = DID_NO_CONNECT << 16;
1798 else
1799 cmd->result = DID_ERROR << 16;
1800 /*
1801 * Make sure to release all allocated resources when
1802 * we hit an error, as we will never see this command
1803 * again.
1804 */
1805 if (req->rq_flags & RQF_DONTPREP)
1806 scsi_mq_uninit_cmd(cmd);
1807 scsi_run_queue_async(sdev);
1808 break;
1809 }
1810 return ret;
1811 }
1812
scsi_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1813 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1814 unsigned int hctx_idx, unsigned int numa_node)
1815 {
1816 struct Scsi_Host *shost = set->driver_data;
1817 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1818 struct scatterlist *sg;
1819 int ret = 0;
1820
1821 cmd->sense_buffer =
1822 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1823 if (!cmd->sense_buffer)
1824 return -ENOMEM;
1825
1826 if (scsi_host_get_prot(shost)) {
1827 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1828 shost->hostt->cmd_size;
1829 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1830 }
1831
1832 if (shost->hostt->init_cmd_priv) {
1833 ret = shost->hostt->init_cmd_priv(shost, cmd);
1834 if (ret < 0)
1835 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1836 }
1837
1838 return ret;
1839 }
1840
scsi_mq_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1841 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1842 unsigned int hctx_idx)
1843 {
1844 struct Scsi_Host *shost = set->driver_data;
1845 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1846
1847 if (shost->hostt->exit_cmd_priv)
1848 shost->hostt->exit_cmd_priv(shost, cmd);
1849 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1850 }
1851
1852
scsi_mq_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1853 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1854 {
1855 struct Scsi_Host *shost = hctx->driver_data;
1856
1857 if (shost->hostt->mq_poll)
1858 return shost->hostt->mq_poll(shost, hctx->queue_num);
1859
1860 return 0;
1861 }
1862
scsi_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)1863 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1864 unsigned int hctx_idx)
1865 {
1866 struct Scsi_Host *shost = data;
1867
1868 hctx->driver_data = shost;
1869 return 0;
1870 }
1871
scsi_map_queues(struct blk_mq_tag_set * set)1872 static void scsi_map_queues(struct blk_mq_tag_set *set)
1873 {
1874 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1875
1876 if (shost->hostt->map_queues)
1877 return shost->hostt->map_queues(shost);
1878 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1879 }
1880
__scsi_init_queue(struct Scsi_Host * shost,struct request_queue * q)1881 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1882 {
1883 struct device *dev = shost->dma_dev;
1884
1885 /*
1886 * this limit is imposed by hardware restrictions
1887 */
1888 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1889 SG_MAX_SEGMENTS));
1890
1891 if (scsi_host_prot_dma(shost)) {
1892 shost->sg_prot_tablesize =
1893 min_not_zero(shost->sg_prot_tablesize,
1894 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1895 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1896 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1897 }
1898
1899 blk_queue_max_hw_sectors(q, shost->max_sectors);
1900 blk_queue_segment_boundary(q, shost->dma_boundary);
1901 dma_set_seg_boundary(dev, shost->dma_boundary);
1902
1903 blk_queue_max_segment_size(q, shost->max_segment_size);
1904 blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1905 dma_set_max_seg_size(dev, queue_max_segment_size(q));
1906
1907 /*
1908 * Set a reasonable default alignment: The larger of 32-byte (dword),
1909 * which is a common minimum for HBAs, and the minimum DMA alignment,
1910 * which is set by the platform.
1911 *
1912 * Devices that require a bigger alignment can increase it later.
1913 */
1914 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1915 }
1916 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1917
1918 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1919 .get_budget = scsi_mq_get_budget,
1920 .put_budget = scsi_mq_put_budget,
1921 .queue_rq = scsi_queue_rq,
1922 .complete = scsi_complete,
1923 .timeout = scsi_timeout,
1924 #ifdef CONFIG_BLK_DEBUG_FS
1925 .show_rq = scsi_show_rq,
1926 #endif
1927 .init_request = scsi_mq_init_request,
1928 .exit_request = scsi_mq_exit_request,
1929 .cleanup_rq = scsi_cleanup_rq,
1930 .busy = scsi_mq_lld_busy,
1931 .map_queues = scsi_map_queues,
1932 .init_hctx = scsi_init_hctx,
1933 .poll = scsi_mq_poll,
1934 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1935 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1936 };
1937
1938
scsi_commit_rqs(struct blk_mq_hw_ctx * hctx)1939 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1940 {
1941 struct Scsi_Host *shost = hctx->driver_data;
1942
1943 shost->hostt->commit_rqs(shost, hctx->queue_num);
1944 }
1945
1946 static const struct blk_mq_ops scsi_mq_ops = {
1947 .get_budget = scsi_mq_get_budget,
1948 .put_budget = scsi_mq_put_budget,
1949 .queue_rq = scsi_queue_rq,
1950 .commit_rqs = scsi_commit_rqs,
1951 .complete = scsi_complete,
1952 .timeout = scsi_timeout,
1953 #ifdef CONFIG_BLK_DEBUG_FS
1954 .show_rq = scsi_show_rq,
1955 #endif
1956 .init_request = scsi_mq_init_request,
1957 .exit_request = scsi_mq_exit_request,
1958 .cleanup_rq = scsi_cleanup_rq,
1959 .busy = scsi_mq_lld_busy,
1960 .map_queues = scsi_map_queues,
1961 .init_hctx = scsi_init_hctx,
1962 .poll = scsi_mq_poll,
1963 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1964 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1965 };
1966
scsi_mq_setup_tags(struct Scsi_Host * shost)1967 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1968 {
1969 unsigned int cmd_size, sgl_size;
1970 struct blk_mq_tag_set *tag_set = &shost->tag_set;
1971
1972 sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1973 scsi_mq_inline_sgl_size(shost));
1974 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1975 if (scsi_host_get_prot(shost))
1976 cmd_size += sizeof(struct scsi_data_buffer) +
1977 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1978
1979 memset(tag_set, 0, sizeof(*tag_set));
1980 if (shost->hostt->commit_rqs)
1981 tag_set->ops = &scsi_mq_ops;
1982 else
1983 tag_set->ops = &scsi_mq_ops_no_commit;
1984 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1985 tag_set->nr_maps = shost->nr_maps ? : 1;
1986 tag_set->queue_depth = shost->can_queue;
1987 tag_set->cmd_size = cmd_size;
1988 tag_set->numa_node = dev_to_node(shost->dma_dev);
1989 tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1990 tag_set->flags |=
1991 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1992 tag_set->driver_data = shost;
1993 if (shost->host_tagset)
1994 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1995
1996 return blk_mq_alloc_tag_set(tag_set);
1997 }
1998
scsi_mq_free_tags(struct kref * kref)1999 void scsi_mq_free_tags(struct kref *kref)
2000 {
2001 struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2002 tagset_refcnt);
2003
2004 blk_mq_free_tag_set(&shost->tag_set);
2005 complete(&shost->tagset_freed);
2006 }
2007
2008 /**
2009 * scsi_device_from_queue - return sdev associated with a request_queue
2010 * @q: The request queue to return the sdev from
2011 *
2012 * Return the sdev associated with a request queue or NULL if the
2013 * request_queue does not reference a SCSI device.
2014 */
scsi_device_from_queue(struct request_queue * q)2015 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2016 {
2017 struct scsi_device *sdev = NULL;
2018
2019 if (q->mq_ops == &scsi_mq_ops_no_commit ||
2020 q->mq_ops == &scsi_mq_ops)
2021 sdev = q->queuedata;
2022 if (!sdev || !get_device(&sdev->sdev_gendev))
2023 sdev = NULL;
2024
2025 return sdev;
2026 }
2027 /*
2028 * pktcdvd should have been integrated into the SCSI layers, but for historical
2029 * reasons like the old IDE driver it isn't. This export allows it to safely
2030 * probe if a given device is a SCSI one and only attach to that.
2031 */
2032 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2033 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2034 #endif
2035
2036 /**
2037 * scsi_block_requests - Utility function used by low-level drivers to prevent
2038 * further commands from being queued to the device.
2039 * @shost: host in question
2040 *
2041 * There is no timer nor any other means by which the requests get unblocked
2042 * other than the low-level driver calling scsi_unblock_requests().
2043 */
scsi_block_requests(struct Scsi_Host * shost)2044 void scsi_block_requests(struct Scsi_Host *shost)
2045 {
2046 shost->host_self_blocked = 1;
2047 }
2048 EXPORT_SYMBOL(scsi_block_requests);
2049
2050 /**
2051 * scsi_unblock_requests - Utility function used by low-level drivers to allow
2052 * further commands to be queued to the device.
2053 * @shost: host in question
2054 *
2055 * There is no timer nor any other means by which the requests get unblocked
2056 * other than the low-level driver calling scsi_unblock_requests(). This is done
2057 * as an API function so that changes to the internals of the scsi mid-layer
2058 * won't require wholesale changes to drivers that use this feature.
2059 */
scsi_unblock_requests(struct Scsi_Host * shost)2060 void scsi_unblock_requests(struct Scsi_Host *shost)
2061 {
2062 shost->host_self_blocked = 0;
2063 scsi_run_host_queues(shost);
2064 }
2065 EXPORT_SYMBOL(scsi_unblock_requests);
2066
scsi_exit_queue(void)2067 void scsi_exit_queue(void)
2068 {
2069 kmem_cache_destroy(scsi_sense_cache);
2070 }
2071
2072 /**
2073 * scsi_mode_select - issue a mode select
2074 * @sdev: SCSI device to be queried
2075 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2076 * @sp: Save page bit (0 == don't save, 1 == save)
2077 * @buffer: request buffer (may not be smaller than eight bytes)
2078 * @len: length of request buffer.
2079 * @timeout: command timeout
2080 * @retries: number of retries before failing
2081 * @data: returns a structure abstracting the mode header data
2082 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2083 * must be SCSI_SENSE_BUFFERSIZE big.
2084 *
2085 * Returns zero if successful; negative error number or scsi
2086 * status on error
2087 *
2088 */
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2089 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2090 unsigned char *buffer, int len, int timeout, int retries,
2091 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2092 {
2093 unsigned char cmd[10];
2094 unsigned char *real_buffer;
2095 const struct scsi_exec_args exec_args = {
2096 .sshdr = sshdr,
2097 };
2098 int ret;
2099
2100 memset(cmd, 0, sizeof(cmd));
2101 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2102
2103 /*
2104 * Use MODE SELECT(10) if the device asked for it or if the mode page
2105 * and the mode select header cannot fit within the maximumm 255 bytes
2106 * of the MODE SELECT(6) command.
2107 */
2108 if (sdev->use_10_for_ms ||
2109 len + 4 > 255 ||
2110 data->block_descriptor_length > 255) {
2111 if (len > 65535 - 8)
2112 return -EINVAL;
2113 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2114 if (!real_buffer)
2115 return -ENOMEM;
2116 memcpy(real_buffer + 8, buffer, len);
2117 len += 8;
2118 real_buffer[0] = 0;
2119 real_buffer[1] = 0;
2120 real_buffer[2] = data->medium_type;
2121 real_buffer[3] = data->device_specific;
2122 real_buffer[4] = data->longlba ? 0x01 : 0;
2123 real_buffer[5] = 0;
2124 put_unaligned_be16(data->block_descriptor_length,
2125 &real_buffer[6]);
2126
2127 cmd[0] = MODE_SELECT_10;
2128 put_unaligned_be16(len, &cmd[7]);
2129 } else {
2130 if (data->longlba)
2131 return -EINVAL;
2132
2133 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2134 if (!real_buffer)
2135 return -ENOMEM;
2136 memcpy(real_buffer + 4, buffer, len);
2137 len += 4;
2138 real_buffer[0] = 0;
2139 real_buffer[1] = data->medium_type;
2140 real_buffer[2] = data->device_specific;
2141 real_buffer[3] = data->block_descriptor_length;
2142
2143 cmd[0] = MODE_SELECT;
2144 cmd[4] = len;
2145 }
2146
2147 ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2148 timeout, retries, &exec_args);
2149 kfree(real_buffer);
2150 return ret;
2151 }
2152 EXPORT_SYMBOL_GPL(scsi_mode_select);
2153
2154 /**
2155 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2156 * @sdev: SCSI device to be queried
2157 * @dbd: set to prevent mode sense from returning block descriptors
2158 * @modepage: mode page being requested
2159 * @buffer: request buffer (may not be smaller than eight bytes)
2160 * @len: length of request buffer.
2161 * @timeout: command timeout
2162 * @retries: number of retries before failing
2163 * @data: returns a structure abstracting the mode header data
2164 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2165 * must be SCSI_SENSE_BUFFERSIZE big.
2166 *
2167 * Returns zero if successful, or a negative error number on failure
2168 */
2169 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2170 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2171 unsigned char *buffer, int len, int timeout, int retries,
2172 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2173 {
2174 unsigned char cmd[12];
2175 int use_10_for_ms;
2176 int header_length;
2177 int result, retry_count = retries;
2178 struct scsi_sense_hdr my_sshdr;
2179 const struct scsi_exec_args exec_args = {
2180 /* caller might not be interested in sense, but we need it */
2181 .sshdr = sshdr ? : &my_sshdr,
2182 };
2183
2184 memset(data, 0, sizeof(*data));
2185 memset(&cmd[0], 0, 12);
2186
2187 dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2188 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2189 cmd[2] = modepage;
2190
2191 sshdr = exec_args.sshdr;
2192
2193 retry:
2194 use_10_for_ms = sdev->use_10_for_ms || len > 255;
2195
2196 if (use_10_for_ms) {
2197 if (len < 8 || len > 65535)
2198 return -EINVAL;
2199
2200 cmd[0] = MODE_SENSE_10;
2201 put_unaligned_be16(len, &cmd[7]);
2202 header_length = 8;
2203 } else {
2204 if (len < 4)
2205 return -EINVAL;
2206
2207 cmd[0] = MODE_SENSE;
2208 cmd[4] = len;
2209 header_length = 4;
2210 }
2211
2212 memset(buffer, 0, len);
2213
2214 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2215 timeout, retries, &exec_args);
2216 if (result < 0)
2217 return result;
2218
2219 /* This code looks awful: what it's doing is making sure an
2220 * ILLEGAL REQUEST sense return identifies the actual command
2221 * byte as the problem. MODE_SENSE commands can return
2222 * ILLEGAL REQUEST if the code page isn't supported */
2223
2224 if (!scsi_status_is_good(result)) {
2225 if (scsi_sense_valid(sshdr)) {
2226 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2227 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2228 /*
2229 * Invalid command operation code: retry using
2230 * MODE SENSE(6) if this was a MODE SENSE(10)
2231 * request, except if the request mode page is
2232 * too large for MODE SENSE single byte
2233 * allocation length field.
2234 */
2235 if (use_10_for_ms) {
2236 if (len > 255)
2237 return -EIO;
2238 sdev->use_10_for_ms = 0;
2239 goto retry;
2240 }
2241 }
2242 if (scsi_status_is_check_condition(result) &&
2243 sshdr->sense_key == UNIT_ATTENTION &&
2244 retry_count) {
2245 retry_count--;
2246 goto retry;
2247 }
2248 }
2249 return -EIO;
2250 }
2251 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2252 (modepage == 6 || modepage == 8))) {
2253 /* Initio breakage? */
2254 header_length = 0;
2255 data->length = 13;
2256 data->medium_type = 0;
2257 data->device_specific = 0;
2258 data->longlba = 0;
2259 data->block_descriptor_length = 0;
2260 } else if (use_10_for_ms) {
2261 data->length = get_unaligned_be16(&buffer[0]) + 2;
2262 data->medium_type = buffer[2];
2263 data->device_specific = buffer[3];
2264 data->longlba = buffer[4] & 0x01;
2265 data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2266 } else {
2267 data->length = buffer[0] + 1;
2268 data->medium_type = buffer[1];
2269 data->device_specific = buffer[2];
2270 data->block_descriptor_length = buffer[3];
2271 }
2272 data->header_length = header_length;
2273
2274 return 0;
2275 }
2276 EXPORT_SYMBOL(scsi_mode_sense);
2277
2278 /**
2279 * scsi_test_unit_ready - test if unit is ready
2280 * @sdev: scsi device to change the state of.
2281 * @timeout: command timeout
2282 * @retries: number of retries before failing
2283 * @sshdr: outpout pointer for decoded sense information.
2284 *
2285 * Returns zero if unsuccessful or an error if TUR failed. For
2286 * removable media, UNIT_ATTENTION sets ->changed flag.
2287 **/
2288 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr)2289 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2290 struct scsi_sense_hdr *sshdr)
2291 {
2292 char cmd[] = {
2293 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2294 };
2295 const struct scsi_exec_args exec_args = {
2296 .sshdr = sshdr,
2297 };
2298 int result;
2299
2300 /* try to eat the UNIT_ATTENTION if there are enough retries */
2301 do {
2302 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2303 timeout, 1, &exec_args);
2304 if (sdev->removable && scsi_sense_valid(sshdr) &&
2305 sshdr->sense_key == UNIT_ATTENTION)
2306 sdev->changed = 1;
2307 } while (scsi_sense_valid(sshdr) &&
2308 sshdr->sense_key == UNIT_ATTENTION && --retries);
2309
2310 return result;
2311 }
2312 EXPORT_SYMBOL(scsi_test_unit_ready);
2313
2314 /**
2315 * scsi_device_set_state - Take the given device through the device state model.
2316 * @sdev: scsi device to change the state of.
2317 * @state: state to change to.
2318 *
2319 * Returns zero if successful or an error if the requested
2320 * transition is illegal.
2321 */
2322 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2323 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2324 {
2325 enum scsi_device_state oldstate = sdev->sdev_state;
2326
2327 if (state == oldstate)
2328 return 0;
2329
2330 switch (state) {
2331 case SDEV_CREATED:
2332 switch (oldstate) {
2333 case SDEV_CREATED_BLOCK:
2334 break;
2335 default:
2336 goto illegal;
2337 }
2338 break;
2339
2340 case SDEV_RUNNING:
2341 switch (oldstate) {
2342 case SDEV_CREATED:
2343 case SDEV_OFFLINE:
2344 case SDEV_TRANSPORT_OFFLINE:
2345 case SDEV_QUIESCE:
2346 case SDEV_BLOCK:
2347 break;
2348 default:
2349 goto illegal;
2350 }
2351 break;
2352
2353 case SDEV_QUIESCE:
2354 switch (oldstate) {
2355 case SDEV_RUNNING:
2356 case SDEV_OFFLINE:
2357 case SDEV_TRANSPORT_OFFLINE:
2358 break;
2359 default:
2360 goto illegal;
2361 }
2362 break;
2363
2364 case SDEV_OFFLINE:
2365 case SDEV_TRANSPORT_OFFLINE:
2366 switch (oldstate) {
2367 case SDEV_CREATED:
2368 case SDEV_RUNNING:
2369 case SDEV_QUIESCE:
2370 case SDEV_BLOCK:
2371 break;
2372 default:
2373 goto illegal;
2374 }
2375 break;
2376
2377 case SDEV_BLOCK:
2378 switch (oldstate) {
2379 case SDEV_RUNNING:
2380 case SDEV_CREATED_BLOCK:
2381 case SDEV_QUIESCE:
2382 case SDEV_OFFLINE:
2383 break;
2384 default:
2385 goto illegal;
2386 }
2387 break;
2388
2389 case SDEV_CREATED_BLOCK:
2390 switch (oldstate) {
2391 case SDEV_CREATED:
2392 break;
2393 default:
2394 goto illegal;
2395 }
2396 break;
2397
2398 case SDEV_CANCEL:
2399 switch (oldstate) {
2400 case SDEV_CREATED:
2401 case SDEV_RUNNING:
2402 case SDEV_QUIESCE:
2403 case SDEV_OFFLINE:
2404 case SDEV_TRANSPORT_OFFLINE:
2405 break;
2406 default:
2407 goto illegal;
2408 }
2409 break;
2410
2411 case SDEV_DEL:
2412 switch (oldstate) {
2413 case SDEV_CREATED:
2414 case SDEV_RUNNING:
2415 case SDEV_OFFLINE:
2416 case SDEV_TRANSPORT_OFFLINE:
2417 case SDEV_CANCEL:
2418 case SDEV_BLOCK:
2419 case SDEV_CREATED_BLOCK:
2420 break;
2421 default:
2422 goto illegal;
2423 }
2424 break;
2425
2426 }
2427 sdev->offline_already = false;
2428 sdev->sdev_state = state;
2429 return 0;
2430
2431 illegal:
2432 SCSI_LOG_ERROR_RECOVERY(1,
2433 sdev_printk(KERN_ERR, sdev,
2434 "Illegal state transition %s->%s",
2435 scsi_device_state_name(oldstate),
2436 scsi_device_state_name(state))
2437 );
2438 return -EINVAL;
2439 }
2440 EXPORT_SYMBOL(scsi_device_set_state);
2441
2442 /**
2443 * scsi_evt_emit - emit a single SCSI device uevent
2444 * @sdev: associated SCSI device
2445 * @evt: event to emit
2446 *
2447 * Send a single uevent (scsi_event) to the associated scsi_device.
2448 */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2449 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2450 {
2451 int idx = 0;
2452 char *envp[3];
2453
2454 switch (evt->evt_type) {
2455 case SDEV_EVT_MEDIA_CHANGE:
2456 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2457 break;
2458 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2459 scsi_rescan_device(sdev);
2460 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2461 break;
2462 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2463 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2464 break;
2465 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2466 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2467 break;
2468 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2469 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2470 break;
2471 case SDEV_EVT_LUN_CHANGE_REPORTED:
2472 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2473 break;
2474 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2475 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2476 break;
2477 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2478 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2479 break;
2480 default:
2481 /* do nothing */
2482 break;
2483 }
2484
2485 envp[idx++] = NULL;
2486
2487 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2488 }
2489
2490 /**
2491 * scsi_evt_thread - send a uevent for each scsi event
2492 * @work: work struct for scsi_device
2493 *
2494 * Dispatch queued events to their associated scsi_device kobjects
2495 * as uevents.
2496 */
scsi_evt_thread(struct work_struct * work)2497 void scsi_evt_thread(struct work_struct *work)
2498 {
2499 struct scsi_device *sdev;
2500 enum scsi_device_event evt_type;
2501 LIST_HEAD(event_list);
2502
2503 sdev = container_of(work, struct scsi_device, event_work);
2504
2505 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2506 if (test_and_clear_bit(evt_type, sdev->pending_events))
2507 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2508
2509 while (1) {
2510 struct scsi_event *evt;
2511 struct list_head *this, *tmp;
2512 unsigned long flags;
2513
2514 spin_lock_irqsave(&sdev->list_lock, flags);
2515 list_splice_init(&sdev->event_list, &event_list);
2516 spin_unlock_irqrestore(&sdev->list_lock, flags);
2517
2518 if (list_empty(&event_list))
2519 break;
2520
2521 list_for_each_safe(this, tmp, &event_list) {
2522 evt = list_entry(this, struct scsi_event, node);
2523 list_del(&evt->node);
2524 scsi_evt_emit(sdev, evt);
2525 kfree(evt);
2526 }
2527 }
2528 }
2529
2530 /**
2531 * sdev_evt_send - send asserted event to uevent thread
2532 * @sdev: scsi_device event occurred on
2533 * @evt: event to send
2534 *
2535 * Assert scsi device event asynchronously.
2536 */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2537 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2538 {
2539 unsigned long flags;
2540
2541 #if 0
2542 /* FIXME: currently this check eliminates all media change events
2543 * for polled devices. Need to update to discriminate between AN
2544 * and polled events */
2545 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2546 kfree(evt);
2547 return;
2548 }
2549 #endif
2550
2551 spin_lock_irqsave(&sdev->list_lock, flags);
2552 list_add_tail(&evt->node, &sdev->event_list);
2553 schedule_work(&sdev->event_work);
2554 spin_unlock_irqrestore(&sdev->list_lock, flags);
2555 }
2556 EXPORT_SYMBOL_GPL(sdev_evt_send);
2557
2558 /**
2559 * sdev_evt_alloc - allocate a new scsi event
2560 * @evt_type: type of event to allocate
2561 * @gfpflags: GFP flags for allocation
2562 *
2563 * Allocates and returns a new scsi_event.
2564 */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2565 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2566 gfp_t gfpflags)
2567 {
2568 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2569 if (!evt)
2570 return NULL;
2571
2572 evt->evt_type = evt_type;
2573 INIT_LIST_HEAD(&evt->node);
2574
2575 /* evt_type-specific initialization, if any */
2576 switch (evt_type) {
2577 case SDEV_EVT_MEDIA_CHANGE:
2578 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2579 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2580 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2581 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2582 case SDEV_EVT_LUN_CHANGE_REPORTED:
2583 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2584 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2585 default:
2586 /* do nothing */
2587 break;
2588 }
2589
2590 return evt;
2591 }
2592 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2593
2594 /**
2595 * sdev_evt_send_simple - send asserted event to uevent thread
2596 * @sdev: scsi_device event occurred on
2597 * @evt_type: type of event to send
2598 * @gfpflags: GFP flags for allocation
2599 *
2600 * Assert scsi device event asynchronously, given an event type.
2601 */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2602 void sdev_evt_send_simple(struct scsi_device *sdev,
2603 enum scsi_device_event evt_type, gfp_t gfpflags)
2604 {
2605 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2606 if (!evt) {
2607 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2608 evt_type);
2609 return;
2610 }
2611
2612 sdev_evt_send(sdev, evt);
2613 }
2614 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2615
2616 /**
2617 * scsi_device_quiesce - Block all commands except power management.
2618 * @sdev: scsi device to quiesce.
2619 *
2620 * This works by trying to transition to the SDEV_QUIESCE state
2621 * (which must be a legal transition). When the device is in this
2622 * state, only power management requests will be accepted, all others will
2623 * be deferred.
2624 *
2625 * Must be called with user context, may sleep.
2626 *
2627 * Returns zero if unsuccessful or an error if not.
2628 */
2629 int
scsi_device_quiesce(struct scsi_device * sdev)2630 scsi_device_quiesce(struct scsi_device *sdev)
2631 {
2632 struct request_queue *q = sdev->request_queue;
2633 int err;
2634
2635 /*
2636 * It is allowed to call scsi_device_quiesce() multiple times from
2637 * the same context but concurrent scsi_device_quiesce() calls are
2638 * not allowed.
2639 */
2640 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2641
2642 if (sdev->quiesced_by == current)
2643 return 0;
2644
2645 blk_set_pm_only(q);
2646
2647 blk_mq_freeze_queue(q);
2648 /*
2649 * Ensure that the effect of blk_set_pm_only() will be visible
2650 * for percpu_ref_tryget() callers that occur after the queue
2651 * unfreeze even if the queue was already frozen before this function
2652 * was called. See also https://lwn.net/Articles/573497/.
2653 */
2654 synchronize_rcu();
2655 blk_mq_unfreeze_queue(q);
2656
2657 mutex_lock(&sdev->state_mutex);
2658 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2659 if (err == 0)
2660 sdev->quiesced_by = current;
2661 else
2662 blk_clear_pm_only(q);
2663 mutex_unlock(&sdev->state_mutex);
2664
2665 return err;
2666 }
2667 EXPORT_SYMBOL(scsi_device_quiesce);
2668
2669 /**
2670 * scsi_device_resume - Restart user issued commands to a quiesced device.
2671 * @sdev: scsi device to resume.
2672 *
2673 * Moves the device from quiesced back to running and restarts the
2674 * queues.
2675 *
2676 * Must be called with user context, may sleep.
2677 */
scsi_device_resume(struct scsi_device * sdev)2678 void scsi_device_resume(struct scsi_device *sdev)
2679 {
2680 /* check if the device state was mutated prior to resume, and if
2681 * so assume the state is being managed elsewhere (for example
2682 * device deleted during suspend)
2683 */
2684 mutex_lock(&sdev->state_mutex);
2685 if (sdev->sdev_state == SDEV_QUIESCE)
2686 scsi_device_set_state(sdev, SDEV_RUNNING);
2687 if (sdev->quiesced_by) {
2688 sdev->quiesced_by = NULL;
2689 blk_clear_pm_only(sdev->request_queue);
2690 }
2691 mutex_unlock(&sdev->state_mutex);
2692 }
2693 EXPORT_SYMBOL(scsi_device_resume);
2694
2695 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2696 device_quiesce_fn(struct scsi_device *sdev, void *data)
2697 {
2698 scsi_device_quiesce(sdev);
2699 }
2700
2701 void
scsi_target_quiesce(struct scsi_target * starget)2702 scsi_target_quiesce(struct scsi_target *starget)
2703 {
2704 starget_for_each_device(starget, NULL, device_quiesce_fn);
2705 }
2706 EXPORT_SYMBOL(scsi_target_quiesce);
2707
2708 static void
device_resume_fn(struct scsi_device * sdev,void * data)2709 device_resume_fn(struct scsi_device *sdev, void *data)
2710 {
2711 scsi_device_resume(sdev);
2712 }
2713
2714 void
scsi_target_resume(struct scsi_target * starget)2715 scsi_target_resume(struct scsi_target *starget)
2716 {
2717 starget_for_each_device(starget, NULL, device_resume_fn);
2718 }
2719 EXPORT_SYMBOL(scsi_target_resume);
2720
__scsi_internal_device_block_nowait(struct scsi_device * sdev)2721 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2722 {
2723 if (scsi_device_set_state(sdev, SDEV_BLOCK))
2724 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2725
2726 return 0;
2727 }
2728
scsi_start_queue(struct scsi_device * sdev)2729 void scsi_start_queue(struct scsi_device *sdev)
2730 {
2731 if (cmpxchg(&sdev->queue_stopped, 1, 0))
2732 blk_mq_unquiesce_queue(sdev->request_queue);
2733 }
2734
scsi_stop_queue(struct scsi_device * sdev,bool nowait)2735 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait)
2736 {
2737 /*
2738 * The atomic variable of ->queue_stopped covers that
2739 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2740 *
2741 * However, we still need to wait until quiesce is done
2742 * in case that queue has been stopped.
2743 */
2744 if (!cmpxchg(&sdev->queue_stopped, 0, 1)) {
2745 if (nowait)
2746 blk_mq_quiesce_queue_nowait(sdev->request_queue);
2747 else
2748 blk_mq_quiesce_queue(sdev->request_queue);
2749 } else {
2750 if (!nowait)
2751 blk_mq_wait_quiesce_done(sdev->request_queue);
2752 }
2753 }
2754
2755 /**
2756 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2757 * @sdev: device to block
2758 *
2759 * Pause SCSI command processing on the specified device. Does not sleep.
2760 *
2761 * Returns zero if successful or a negative error code upon failure.
2762 *
2763 * Notes:
2764 * This routine transitions the device to the SDEV_BLOCK state (which must be
2765 * a legal transition). When the device is in this state, command processing
2766 * is paused until the device leaves the SDEV_BLOCK state. See also
2767 * scsi_internal_device_unblock_nowait().
2768 */
scsi_internal_device_block_nowait(struct scsi_device * sdev)2769 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2770 {
2771 int ret = __scsi_internal_device_block_nowait(sdev);
2772
2773 /*
2774 * The device has transitioned to SDEV_BLOCK. Stop the
2775 * block layer from calling the midlayer with this device's
2776 * request queue.
2777 */
2778 if (!ret)
2779 scsi_stop_queue(sdev, true);
2780 return ret;
2781 }
2782 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2783
2784 /**
2785 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2786 * @sdev: device to block
2787 *
2788 * Pause SCSI command processing on the specified device and wait until all
2789 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2790 *
2791 * Returns zero if successful or a negative error code upon failure.
2792 *
2793 * Note:
2794 * This routine transitions the device to the SDEV_BLOCK state (which must be
2795 * a legal transition). When the device is in this state, command processing
2796 * is paused until the device leaves the SDEV_BLOCK state. See also
2797 * scsi_internal_device_unblock().
2798 */
scsi_internal_device_block(struct scsi_device * sdev)2799 static int scsi_internal_device_block(struct scsi_device *sdev)
2800 {
2801 int err;
2802
2803 mutex_lock(&sdev->state_mutex);
2804 err = __scsi_internal_device_block_nowait(sdev);
2805 if (err == 0)
2806 scsi_stop_queue(sdev, false);
2807 mutex_unlock(&sdev->state_mutex);
2808
2809 return err;
2810 }
2811
2812 /**
2813 * scsi_internal_device_unblock_nowait - resume a device after a block request
2814 * @sdev: device to resume
2815 * @new_state: state to set the device to after unblocking
2816 *
2817 * Restart the device queue for a previously suspended SCSI device. Does not
2818 * sleep.
2819 *
2820 * Returns zero if successful or a negative error code upon failure.
2821 *
2822 * Notes:
2823 * This routine transitions the device to the SDEV_RUNNING state or to one of
2824 * the offline states (which must be a legal transition) allowing the midlayer
2825 * to goose the queue for this device.
2826 */
scsi_internal_device_unblock_nowait(struct scsi_device * sdev,enum scsi_device_state new_state)2827 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2828 enum scsi_device_state new_state)
2829 {
2830 switch (new_state) {
2831 case SDEV_RUNNING:
2832 case SDEV_TRANSPORT_OFFLINE:
2833 break;
2834 default:
2835 return -EINVAL;
2836 }
2837
2838 /*
2839 * Try to transition the scsi device to SDEV_RUNNING or one of the
2840 * offlined states and goose the device queue if successful.
2841 */
2842 switch (sdev->sdev_state) {
2843 case SDEV_BLOCK:
2844 case SDEV_TRANSPORT_OFFLINE:
2845 sdev->sdev_state = new_state;
2846 break;
2847 case SDEV_CREATED_BLOCK:
2848 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2849 new_state == SDEV_OFFLINE)
2850 sdev->sdev_state = new_state;
2851 else
2852 sdev->sdev_state = SDEV_CREATED;
2853 break;
2854 case SDEV_CANCEL:
2855 case SDEV_OFFLINE:
2856 break;
2857 default:
2858 return -EINVAL;
2859 }
2860 scsi_start_queue(sdev);
2861
2862 return 0;
2863 }
2864 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2865
2866 /**
2867 * scsi_internal_device_unblock - resume a device after a block request
2868 * @sdev: device to resume
2869 * @new_state: state to set the device to after unblocking
2870 *
2871 * Restart the device queue for a previously suspended SCSI device. May sleep.
2872 *
2873 * Returns zero if successful or a negative error code upon failure.
2874 *
2875 * Notes:
2876 * This routine transitions the device to the SDEV_RUNNING state or to one of
2877 * the offline states (which must be a legal transition) allowing the midlayer
2878 * to goose the queue for this device.
2879 */
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2880 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2881 enum scsi_device_state new_state)
2882 {
2883 int ret;
2884
2885 mutex_lock(&sdev->state_mutex);
2886 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2887 mutex_unlock(&sdev->state_mutex);
2888
2889 return ret;
2890 }
2891
2892 static void
device_block(struct scsi_device * sdev,void * data)2893 device_block(struct scsi_device *sdev, void *data)
2894 {
2895 int ret;
2896
2897 ret = scsi_internal_device_block(sdev);
2898
2899 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2900 dev_name(&sdev->sdev_gendev), ret);
2901 }
2902
2903 static int
target_block(struct device * dev,void * data)2904 target_block(struct device *dev, void *data)
2905 {
2906 if (scsi_is_target_device(dev))
2907 starget_for_each_device(to_scsi_target(dev), NULL,
2908 device_block);
2909 return 0;
2910 }
2911
2912 void
scsi_target_block(struct device * dev)2913 scsi_target_block(struct device *dev)
2914 {
2915 if (scsi_is_target_device(dev))
2916 starget_for_each_device(to_scsi_target(dev), NULL,
2917 device_block);
2918 else
2919 device_for_each_child(dev, NULL, target_block);
2920 }
2921 EXPORT_SYMBOL_GPL(scsi_target_block);
2922
2923 static void
device_unblock(struct scsi_device * sdev,void * data)2924 device_unblock(struct scsi_device *sdev, void *data)
2925 {
2926 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2927 }
2928
2929 static int
target_unblock(struct device * dev,void * data)2930 target_unblock(struct device *dev, void *data)
2931 {
2932 if (scsi_is_target_device(dev))
2933 starget_for_each_device(to_scsi_target(dev), data,
2934 device_unblock);
2935 return 0;
2936 }
2937
2938 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)2939 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2940 {
2941 if (scsi_is_target_device(dev))
2942 starget_for_each_device(to_scsi_target(dev), &new_state,
2943 device_unblock);
2944 else
2945 device_for_each_child(dev, &new_state, target_unblock);
2946 }
2947 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2948
2949 int
scsi_host_block(struct Scsi_Host * shost)2950 scsi_host_block(struct Scsi_Host *shost)
2951 {
2952 struct scsi_device *sdev;
2953 int ret = 0;
2954
2955 /*
2956 * Call scsi_internal_device_block_nowait so we can avoid
2957 * calling synchronize_rcu() for each LUN.
2958 */
2959 shost_for_each_device(sdev, shost) {
2960 mutex_lock(&sdev->state_mutex);
2961 ret = scsi_internal_device_block_nowait(sdev);
2962 mutex_unlock(&sdev->state_mutex);
2963 if (ret) {
2964 scsi_device_put(sdev);
2965 break;
2966 }
2967 }
2968
2969 /*
2970 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2971 * calling synchronize_rcu() once is enough.
2972 */
2973 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2974
2975 if (!ret)
2976 synchronize_rcu();
2977
2978 return ret;
2979 }
2980 EXPORT_SYMBOL_GPL(scsi_host_block);
2981
2982 int
scsi_host_unblock(struct Scsi_Host * shost,int new_state)2983 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2984 {
2985 struct scsi_device *sdev;
2986 int ret = 0;
2987
2988 shost_for_each_device(sdev, shost) {
2989 ret = scsi_internal_device_unblock(sdev, new_state);
2990 if (ret) {
2991 scsi_device_put(sdev);
2992 break;
2993 }
2994 }
2995 return ret;
2996 }
2997 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2998
2999 /**
3000 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3001 * @sgl: scatter-gather list
3002 * @sg_count: number of segments in sg
3003 * @offset: offset in bytes into sg, on return offset into the mapped area
3004 * @len: bytes to map, on return number of bytes mapped
3005 *
3006 * Returns virtual address of the start of the mapped page
3007 */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)3008 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3009 size_t *offset, size_t *len)
3010 {
3011 int i;
3012 size_t sg_len = 0, len_complete = 0;
3013 struct scatterlist *sg;
3014 struct page *page;
3015
3016 WARN_ON(!irqs_disabled());
3017
3018 for_each_sg(sgl, sg, sg_count, i) {
3019 len_complete = sg_len; /* Complete sg-entries */
3020 sg_len += sg->length;
3021 if (sg_len > *offset)
3022 break;
3023 }
3024
3025 if (unlikely(i == sg_count)) {
3026 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3027 "elements %d\n",
3028 __func__, sg_len, *offset, sg_count);
3029 WARN_ON(1);
3030 return NULL;
3031 }
3032
3033 /* Offset starting from the beginning of first page in this sg-entry */
3034 *offset = *offset - len_complete + sg->offset;
3035
3036 /* Assumption: contiguous pages can be accessed as "page + i" */
3037 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3038 *offset &= ~PAGE_MASK;
3039
3040 /* Bytes in this sg-entry from *offset to the end of the page */
3041 sg_len = PAGE_SIZE - *offset;
3042 if (*len > sg_len)
3043 *len = sg_len;
3044
3045 return kmap_atomic(page);
3046 }
3047 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3048
3049 /**
3050 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3051 * @virt: virtual address to be unmapped
3052 */
scsi_kunmap_atomic_sg(void * virt)3053 void scsi_kunmap_atomic_sg(void *virt)
3054 {
3055 kunmap_atomic(virt);
3056 }
3057 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3058
sdev_disable_disk_events(struct scsi_device * sdev)3059 void sdev_disable_disk_events(struct scsi_device *sdev)
3060 {
3061 atomic_inc(&sdev->disk_events_disable_depth);
3062 }
3063 EXPORT_SYMBOL(sdev_disable_disk_events);
3064
sdev_enable_disk_events(struct scsi_device * sdev)3065 void sdev_enable_disk_events(struct scsi_device *sdev)
3066 {
3067 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3068 return;
3069 atomic_dec(&sdev->disk_events_disable_depth);
3070 }
3071 EXPORT_SYMBOL(sdev_enable_disk_events);
3072
designator_prio(const unsigned char * d)3073 static unsigned char designator_prio(const unsigned char *d)
3074 {
3075 if (d[1] & 0x30)
3076 /* not associated with LUN */
3077 return 0;
3078
3079 if (d[3] == 0)
3080 /* invalid length */
3081 return 0;
3082
3083 /*
3084 * Order of preference for lun descriptor:
3085 * - SCSI name string
3086 * - NAA IEEE Registered Extended
3087 * - EUI-64 based 16-byte
3088 * - EUI-64 based 12-byte
3089 * - NAA IEEE Registered
3090 * - NAA IEEE Extended
3091 * - EUI-64 based 8-byte
3092 * - SCSI name string (truncated)
3093 * - T10 Vendor ID
3094 * as longer descriptors reduce the likelyhood
3095 * of identification clashes.
3096 */
3097
3098 switch (d[1] & 0xf) {
3099 case 8:
3100 /* SCSI name string, variable-length UTF-8 */
3101 return 9;
3102 case 3:
3103 switch (d[4] >> 4) {
3104 case 6:
3105 /* NAA registered extended */
3106 return 8;
3107 case 5:
3108 /* NAA registered */
3109 return 5;
3110 case 4:
3111 /* NAA extended */
3112 return 4;
3113 case 3:
3114 /* NAA locally assigned */
3115 return 1;
3116 default:
3117 break;
3118 }
3119 break;
3120 case 2:
3121 switch (d[3]) {
3122 case 16:
3123 /* EUI64-based, 16 byte */
3124 return 7;
3125 case 12:
3126 /* EUI64-based, 12 byte */
3127 return 6;
3128 case 8:
3129 /* EUI64-based, 8 byte */
3130 return 3;
3131 default:
3132 break;
3133 }
3134 break;
3135 case 1:
3136 /* T10 vendor ID */
3137 return 1;
3138 default:
3139 break;
3140 }
3141
3142 return 0;
3143 }
3144
3145 /**
3146 * scsi_vpd_lun_id - return a unique device identification
3147 * @sdev: SCSI device
3148 * @id: buffer for the identification
3149 * @id_len: length of the buffer
3150 *
3151 * Copies a unique device identification into @id based
3152 * on the information in the VPD page 0x83 of the device.
3153 * The string will be formatted as a SCSI name string.
3154 *
3155 * Returns the length of the identification or error on failure.
3156 * If the identifier is longer than the supplied buffer the actual
3157 * identifier length is returned and the buffer is not zero-padded.
3158 */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3159 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3160 {
3161 u8 cur_id_prio = 0;
3162 u8 cur_id_size = 0;
3163 const unsigned char *d, *cur_id_str;
3164 const struct scsi_vpd *vpd_pg83;
3165 int id_size = -EINVAL;
3166
3167 rcu_read_lock();
3168 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3169 if (!vpd_pg83) {
3170 rcu_read_unlock();
3171 return -ENXIO;
3172 }
3173
3174 /* The id string must be at least 20 bytes + terminating NULL byte */
3175 if (id_len < 21) {
3176 rcu_read_unlock();
3177 return -EINVAL;
3178 }
3179
3180 memset(id, 0, id_len);
3181 for (d = vpd_pg83->data + 4;
3182 d < vpd_pg83->data + vpd_pg83->len;
3183 d += d[3] + 4) {
3184 u8 prio = designator_prio(d);
3185
3186 if (prio == 0 || cur_id_prio > prio)
3187 continue;
3188
3189 switch (d[1] & 0xf) {
3190 case 0x1:
3191 /* T10 Vendor ID */
3192 if (cur_id_size > d[3])
3193 break;
3194 cur_id_prio = prio;
3195 cur_id_size = d[3];
3196 if (cur_id_size + 4 > id_len)
3197 cur_id_size = id_len - 4;
3198 cur_id_str = d + 4;
3199 id_size = snprintf(id, id_len, "t10.%*pE",
3200 cur_id_size, cur_id_str);
3201 break;
3202 case 0x2:
3203 /* EUI-64 */
3204 cur_id_prio = prio;
3205 cur_id_size = d[3];
3206 cur_id_str = d + 4;
3207 switch (cur_id_size) {
3208 case 8:
3209 id_size = snprintf(id, id_len,
3210 "eui.%8phN",
3211 cur_id_str);
3212 break;
3213 case 12:
3214 id_size = snprintf(id, id_len,
3215 "eui.%12phN",
3216 cur_id_str);
3217 break;
3218 case 16:
3219 id_size = snprintf(id, id_len,
3220 "eui.%16phN",
3221 cur_id_str);
3222 break;
3223 default:
3224 break;
3225 }
3226 break;
3227 case 0x3:
3228 /* NAA */
3229 cur_id_prio = prio;
3230 cur_id_size = d[3];
3231 cur_id_str = d + 4;
3232 switch (cur_id_size) {
3233 case 8:
3234 id_size = snprintf(id, id_len,
3235 "naa.%8phN",
3236 cur_id_str);
3237 break;
3238 case 16:
3239 id_size = snprintf(id, id_len,
3240 "naa.%16phN",
3241 cur_id_str);
3242 break;
3243 default:
3244 break;
3245 }
3246 break;
3247 case 0x8:
3248 /* SCSI name string */
3249 if (cur_id_size > d[3])
3250 break;
3251 /* Prefer others for truncated descriptor */
3252 if (d[3] > id_len) {
3253 prio = 2;
3254 if (cur_id_prio > prio)
3255 break;
3256 }
3257 cur_id_prio = prio;
3258 cur_id_size = id_size = d[3];
3259 cur_id_str = d + 4;
3260 if (cur_id_size >= id_len)
3261 cur_id_size = id_len - 1;
3262 memcpy(id, cur_id_str, cur_id_size);
3263 break;
3264 default:
3265 break;
3266 }
3267 }
3268 rcu_read_unlock();
3269
3270 return id_size;
3271 }
3272 EXPORT_SYMBOL(scsi_vpd_lun_id);
3273
3274 /*
3275 * scsi_vpd_tpg_id - return a target port group identifier
3276 * @sdev: SCSI device
3277 *
3278 * Returns the Target Port Group identifier from the information
3279 * froom VPD page 0x83 of the device.
3280 *
3281 * Returns the identifier or error on failure.
3282 */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3283 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3284 {
3285 const unsigned char *d;
3286 const struct scsi_vpd *vpd_pg83;
3287 int group_id = -EAGAIN, rel_port = -1;
3288
3289 rcu_read_lock();
3290 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3291 if (!vpd_pg83) {
3292 rcu_read_unlock();
3293 return -ENXIO;
3294 }
3295
3296 d = vpd_pg83->data + 4;
3297 while (d < vpd_pg83->data + vpd_pg83->len) {
3298 switch (d[1] & 0xf) {
3299 case 0x4:
3300 /* Relative target port */
3301 rel_port = get_unaligned_be16(&d[6]);
3302 break;
3303 case 0x5:
3304 /* Target port group */
3305 group_id = get_unaligned_be16(&d[6]);
3306 break;
3307 default:
3308 break;
3309 }
3310 d += d[3] + 4;
3311 }
3312 rcu_read_unlock();
3313
3314 if (group_id >= 0 && rel_id && rel_port != -1)
3315 *rel_id = rel_port;
3316
3317 return group_id;
3318 }
3319 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3320
3321 /**
3322 * scsi_build_sense - build sense data for a command
3323 * @scmd: scsi command for which the sense should be formatted
3324 * @desc: Sense format (non-zero == descriptor format,
3325 * 0 == fixed format)
3326 * @key: Sense key
3327 * @asc: Additional sense code
3328 * @ascq: Additional sense code qualifier
3329 *
3330 **/
scsi_build_sense(struct scsi_cmnd * scmd,int desc,u8 key,u8 asc,u8 ascq)3331 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3332 {
3333 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3334 scmd->result = SAM_STAT_CHECK_CONDITION;
3335 }
3336 EXPORT_SYMBOL_GPL(scsi_build_sense);
3337