• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27 
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37 
38 #include <trace/events/scsi.h>
39 
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43 
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55 
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58 
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60 
scsi_init_sense_cache(struct Scsi_Host * shost)61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63 	int ret = 0;
64 
65 	mutex_lock(&scsi_sense_cache_mutex);
66 	if (!scsi_sense_cache) {
67 		scsi_sense_cache =
68 			kmem_cache_create_usercopy("scsi_sense_cache",
69 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 				0, SCSI_SENSE_BUFFERSIZE, NULL);
71 		if (!scsi_sense_cache)
72 			ret = -ENOMEM;
73 	}
74 	mutex_unlock(&scsi_sense_cache_mutex);
75 	return ret;
76 }
77 
78 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81 	struct Scsi_Host *host = cmd->device->host;
82 	struct scsi_device *device = cmd->device;
83 	struct scsi_target *starget = scsi_target(device);
84 
85 	/*
86 	 * Set the appropriate busy bit for the device/host.
87 	 *
88 	 * If the host/device isn't busy, assume that something actually
89 	 * completed, and that we should be able to queue a command now.
90 	 *
91 	 * Note that the prior mid-layer assumption that any host could
92 	 * always queue at least one command is now broken.  The mid-layer
93 	 * will implement a user specifiable stall (see
94 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95 	 * if a command is requeued with no other commands outstanding
96 	 * either for the device or for the host.
97 	 */
98 	switch (reason) {
99 	case SCSI_MLQUEUE_HOST_BUSY:
100 		atomic_set(&host->host_blocked, host->max_host_blocked);
101 		break;
102 	case SCSI_MLQUEUE_DEVICE_BUSY:
103 	case SCSI_MLQUEUE_EH_RETRY:
104 		atomic_set(&device->device_blocked,
105 			   device->max_device_blocked);
106 		break;
107 	case SCSI_MLQUEUE_TARGET_BUSY:
108 		atomic_set(&starget->target_blocked,
109 			   starget->max_target_blocked);
110 		break;
111 	}
112 }
113 
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd,unsigned long msecs)114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116 	struct request *rq = scsi_cmd_to_rq(cmd);
117 
118 	if (rq->rq_flags & RQF_DONTPREP) {
119 		rq->rq_flags &= ~RQF_DONTPREP;
120 		scsi_mq_uninit_cmd(cmd);
121 	} else {
122 		WARN_ON_ONCE(true);
123 	}
124 
125 	if (msecs) {
126 		blk_mq_requeue_request(rq, false);
127 		blk_mq_delay_kick_requeue_list(rq->q, msecs);
128 	} else
129 		blk_mq_requeue_request(rq, true);
130 }
131 
132 /**
133  * __scsi_queue_insert - private queue insertion
134  * @cmd: The SCSI command being requeued
135  * @reason:  The reason for the requeue
136  * @unbusy: Whether the queue should be unbusied
137  *
138  * This is a private queue insertion.  The public interface
139  * scsi_queue_insert() always assumes the queue should be unbusied
140  * because it's always called before the completion.  This function is
141  * for a requeue after completion, which should only occur in this
142  * file.
143  */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,bool unbusy)144 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
145 {
146 	struct scsi_device *device = cmd->device;
147 
148 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
149 		"Inserting command %p into mlqueue\n", cmd));
150 
151 	scsi_set_blocked(cmd, reason);
152 
153 	/*
154 	 * Decrement the counters, since these commands are no longer
155 	 * active on the host/device.
156 	 */
157 	if (unbusy)
158 		scsi_device_unbusy(device, cmd);
159 
160 	/*
161 	 * Requeue this command.  It will go before all other commands
162 	 * that are already in the queue. Schedule requeue work under
163 	 * lock such that the kblockd_schedule_work() call happens
164 	 * before blk_mq_destroy_queue() finishes.
165 	 */
166 	cmd->result = 0;
167 
168 	blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
169 }
170 
171 /**
172  * scsi_queue_insert - Reinsert a command in the queue.
173  * @cmd:    command that we are adding to queue.
174  * @reason: why we are inserting command to queue.
175  *
176  * We do this for one of two cases. Either the host is busy and it cannot accept
177  * any more commands for the time being, or the device returned QUEUE_FULL and
178  * can accept no more commands.
179  *
180  * Context: This could be called either from an interrupt context or a normal
181  * process context.
182  */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)183 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
184 {
185 	__scsi_queue_insert(cmd, reason, true);
186 }
187 
188 /**
189  * scsi_execute_cmd - insert request and wait for the result
190  * @sdev:	scsi_device
191  * @cmd:	scsi command
192  * @opf:	block layer request cmd_flags
193  * @buffer:	data buffer
194  * @bufflen:	len of buffer
195  * @timeout:	request timeout in HZ
196  * @retries:	number of times to retry request
197  * @args:	Optional args. See struct definition for field descriptions
198  *
199  * Returns the scsi_cmnd result field if a command was executed, or a negative
200  * Linux error code if we didn't get that far.
201  */
scsi_execute_cmd(struct scsi_device * sdev,const unsigned char * cmd,blk_opf_t opf,void * buffer,unsigned int bufflen,int timeout,int retries,const struct scsi_exec_args * args)202 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
203 		     blk_opf_t opf, void *buffer, unsigned int bufflen,
204 		     int timeout, int retries,
205 		     const struct scsi_exec_args *args)
206 {
207 	static const struct scsi_exec_args default_args;
208 	struct request *req;
209 	struct scsi_cmnd *scmd;
210 	int ret;
211 
212 	if (!args)
213 		args = &default_args;
214 	else if (WARN_ON_ONCE(args->sense &&
215 			      args->sense_len != SCSI_SENSE_BUFFERSIZE))
216 		return -EINVAL;
217 
218 	req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
219 	if (IS_ERR(req))
220 		return PTR_ERR(req);
221 
222 	if (bufflen) {
223 		ret = blk_rq_map_kern(sdev->request_queue, req,
224 				      buffer, bufflen, GFP_NOIO);
225 		if (ret)
226 			goto out;
227 	}
228 	scmd = blk_mq_rq_to_pdu(req);
229 	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
230 	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
231 	scmd->allowed = retries;
232 	scmd->flags |= args->scmd_flags;
233 	req->timeout = timeout;
234 	req->rq_flags |= RQF_QUIET;
235 
236 	/*
237 	 * head injection *required* here otherwise quiesce won't work
238 	 */
239 	blk_execute_rq(req, true);
240 
241 	/*
242 	 * Some devices (USB mass-storage in particular) may transfer
243 	 * garbage data together with a residue indicating that the data
244 	 * is invalid.  Prevent the garbage from being misinterpreted
245 	 * and prevent security leaks by zeroing out the excess data.
246 	 */
247 	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
248 		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
249 
250 	if (args->resid)
251 		*args->resid = scmd->resid_len;
252 	if (args->sense)
253 		memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
254 	if (args->sshdr)
255 		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
256 				     args->sshdr);
257 
258 	ret = scmd->result;
259  out:
260 	blk_mq_free_request(req);
261 
262 	return ret;
263 }
264 EXPORT_SYMBOL(scsi_execute_cmd);
265 
266 /*
267  * Wake up the error handler if necessary. Avoid as follows that the error
268  * handler is not woken up if host in-flight requests number ==
269  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
270  * with an RCU read lock in this function to ensure that this function in
271  * its entirety either finishes before scsi_eh_scmd_add() increases the
272  * host_failed counter or that it notices the shost state change made by
273  * scsi_eh_scmd_add().
274  */
scsi_dec_host_busy(struct Scsi_Host * shost,struct scsi_cmnd * cmd)275 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
276 {
277 	unsigned long flags;
278 
279 	rcu_read_lock();
280 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
281 	if (unlikely(scsi_host_in_recovery(shost))) {
282 		unsigned int busy = scsi_host_busy(shost);
283 
284 		spin_lock_irqsave(shost->host_lock, flags);
285 		if (shost->host_failed || shost->host_eh_scheduled)
286 			scsi_eh_wakeup(shost, busy);
287 		spin_unlock_irqrestore(shost->host_lock, flags);
288 	}
289 	rcu_read_unlock();
290 }
291 
scsi_device_unbusy(struct scsi_device * sdev,struct scsi_cmnd * cmd)292 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
293 {
294 	struct Scsi_Host *shost = sdev->host;
295 	struct scsi_target *starget = scsi_target(sdev);
296 
297 	scsi_dec_host_busy(shost, cmd);
298 
299 	if (starget->can_queue > 0)
300 		atomic_dec(&starget->target_busy);
301 
302 	sbitmap_put(&sdev->budget_map, cmd->budget_token);
303 	cmd->budget_token = -1;
304 }
305 
scsi_kick_queue(struct request_queue * q)306 static void scsi_kick_queue(struct request_queue *q)
307 {
308 	blk_mq_run_hw_queues(q, false);
309 }
310 
311 /*
312  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
313  * and call blk_run_queue for all the scsi_devices on the target -
314  * including current_sdev first.
315  *
316  * Called with *no* scsi locks held.
317  */
scsi_single_lun_run(struct scsi_device * current_sdev)318 static void scsi_single_lun_run(struct scsi_device *current_sdev)
319 {
320 	struct Scsi_Host *shost = current_sdev->host;
321 	struct scsi_device *sdev, *tmp;
322 	struct scsi_target *starget = scsi_target(current_sdev);
323 	unsigned long flags;
324 
325 	spin_lock_irqsave(shost->host_lock, flags);
326 	starget->starget_sdev_user = NULL;
327 	spin_unlock_irqrestore(shost->host_lock, flags);
328 
329 	/*
330 	 * Call blk_run_queue for all LUNs on the target, starting with
331 	 * current_sdev. We race with others (to set starget_sdev_user),
332 	 * but in most cases, we will be first. Ideally, each LU on the
333 	 * target would get some limited time or requests on the target.
334 	 */
335 	scsi_kick_queue(current_sdev->request_queue);
336 
337 	spin_lock_irqsave(shost->host_lock, flags);
338 	if (starget->starget_sdev_user)
339 		goto out;
340 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
341 			same_target_siblings) {
342 		if (sdev == current_sdev)
343 			continue;
344 		if (scsi_device_get(sdev))
345 			continue;
346 
347 		spin_unlock_irqrestore(shost->host_lock, flags);
348 		scsi_kick_queue(sdev->request_queue);
349 		spin_lock_irqsave(shost->host_lock, flags);
350 
351 		scsi_device_put(sdev);
352 	}
353  out:
354 	spin_unlock_irqrestore(shost->host_lock, flags);
355 }
356 
scsi_device_is_busy(struct scsi_device * sdev)357 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
358 {
359 	if (scsi_device_busy(sdev) >= sdev->queue_depth)
360 		return true;
361 	if (atomic_read(&sdev->device_blocked) > 0)
362 		return true;
363 	return false;
364 }
365 
scsi_target_is_busy(struct scsi_target * starget)366 static inline bool scsi_target_is_busy(struct scsi_target *starget)
367 {
368 	if (starget->can_queue > 0) {
369 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
370 			return true;
371 		if (atomic_read(&starget->target_blocked) > 0)
372 			return true;
373 	}
374 	return false;
375 }
376 
scsi_host_is_busy(struct Scsi_Host * shost)377 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
378 {
379 	if (atomic_read(&shost->host_blocked) > 0)
380 		return true;
381 	if (shost->host_self_blocked)
382 		return true;
383 	return false;
384 }
385 
scsi_starved_list_run(struct Scsi_Host * shost)386 static void scsi_starved_list_run(struct Scsi_Host *shost)
387 {
388 	LIST_HEAD(starved_list);
389 	struct scsi_device *sdev;
390 	unsigned long flags;
391 
392 	spin_lock_irqsave(shost->host_lock, flags);
393 	list_splice_init(&shost->starved_list, &starved_list);
394 
395 	while (!list_empty(&starved_list)) {
396 		struct request_queue *slq;
397 
398 		/*
399 		 * As long as shost is accepting commands and we have
400 		 * starved queues, call blk_run_queue. scsi_request_fn
401 		 * drops the queue_lock and can add us back to the
402 		 * starved_list.
403 		 *
404 		 * host_lock protects the starved_list and starved_entry.
405 		 * scsi_request_fn must get the host_lock before checking
406 		 * or modifying starved_list or starved_entry.
407 		 */
408 		if (scsi_host_is_busy(shost))
409 			break;
410 
411 		sdev = list_entry(starved_list.next,
412 				  struct scsi_device, starved_entry);
413 		list_del_init(&sdev->starved_entry);
414 		if (scsi_target_is_busy(scsi_target(sdev))) {
415 			list_move_tail(&sdev->starved_entry,
416 				       &shost->starved_list);
417 			continue;
418 		}
419 
420 		/*
421 		 * Once we drop the host lock, a racing scsi_remove_device()
422 		 * call may remove the sdev from the starved list and destroy
423 		 * it and the queue.  Mitigate by taking a reference to the
424 		 * queue and never touching the sdev again after we drop the
425 		 * host lock.  Note: if __scsi_remove_device() invokes
426 		 * blk_mq_destroy_queue() before the queue is run from this
427 		 * function then blk_run_queue() will return immediately since
428 		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
429 		 */
430 		slq = sdev->request_queue;
431 		if (!blk_get_queue(slq))
432 			continue;
433 		spin_unlock_irqrestore(shost->host_lock, flags);
434 
435 		scsi_kick_queue(slq);
436 		blk_put_queue(slq);
437 
438 		spin_lock_irqsave(shost->host_lock, flags);
439 	}
440 	/* put any unprocessed entries back */
441 	list_splice(&starved_list, &shost->starved_list);
442 	spin_unlock_irqrestore(shost->host_lock, flags);
443 }
444 
445 /**
446  * scsi_run_queue - Select a proper request queue to serve next.
447  * @q:  last request's queue
448  *
449  * The previous command was completely finished, start a new one if possible.
450  */
scsi_run_queue(struct request_queue * q)451 static void scsi_run_queue(struct request_queue *q)
452 {
453 	struct scsi_device *sdev = q->queuedata;
454 
455 	if (scsi_target(sdev)->single_lun)
456 		scsi_single_lun_run(sdev);
457 	if (!list_empty(&sdev->host->starved_list))
458 		scsi_starved_list_run(sdev->host);
459 
460 	blk_mq_run_hw_queues(q, false);
461 }
462 
scsi_requeue_run_queue(struct work_struct * work)463 void scsi_requeue_run_queue(struct work_struct *work)
464 {
465 	struct scsi_device *sdev;
466 	struct request_queue *q;
467 
468 	sdev = container_of(work, struct scsi_device, requeue_work);
469 	q = sdev->request_queue;
470 	scsi_run_queue(q);
471 }
472 
scsi_run_host_queues(struct Scsi_Host * shost)473 void scsi_run_host_queues(struct Scsi_Host *shost)
474 {
475 	struct scsi_device *sdev;
476 
477 	shost_for_each_device(sdev, shost)
478 		scsi_run_queue(sdev->request_queue);
479 }
480 
scsi_uninit_cmd(struct scsi_cmnd * cmd)481 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
482 {
483 	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
484 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
485 
486 		if (drv->uninit_command)
487 			drv->uninit_command(cmd);
488 	}
489 }
490 
scsi_free_sgtables(struct scsi_cmnd * cmd)491 void scsi_free_sgtables(struct scsi_cmnd *cmd)
492 {
493 	if (cmd->sdb.table.nents)
494 		sg_free_table_chained(&cmd->sdb.table,
495 				SCSI_INLINE_SG_CNT);
496 	if (scsi_prot_sg_count(cmd))
497 		sg_free_table_chained(&cmd->prot_sdb->table,
498 				SCSI_INLINE_PROT_SG_CNT);
499 }
500 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
501 
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)502 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
503 {
504 	scsi_free_sgtables(cmd);
505 	scsi_uninit_cmd(cmd);
506 }
507 
scsi_run_queue_async(struct scsi_device * sdev)508 static void scsi_run_queue_async(struct scsi_device *sdev)
509 {
510 	if (scsi_target(sdev)->single_lun ||
511 	    !list_empty(&sdev->host->starved_list)) {
512 		kblockd_schedule_work(&sdev->requeue_work);
513 	} else {
514 		/*
515 		 * smp_mb() present in sbitmap_queue_clear() or implied in
516 		 * .end_io is for ordering writing .device_busy in
517 		 * scsi_device_unbusy() and reading sdev->restarts.
518 		 */
519 		int old = atomic_read(&sdev->restarts);
520 
521 		/*
522 		 * ->restarts has to be kept as non-zero if new budget
523 		 *  contention occurs.
524 		 *
525 		 *  No need to run queue when either another re-run
526 		 *  queue wins in updating ->restarts or a new budget
527 		 *  contention occurs.
528 		 */
529 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
530 			blk_mq_run_hw_queues(sdev->request_queue, true);
531 	}
532 }
533 
534 /* Returns false when no more bytes to process, true if there are more */
scsi_end_request(struct request * req,blk_status_t error,unsigned int bytes)535 static bool scsi_end_request(struct request *req, blk_status_t error,
536 		unsigned int bytes)
537 {
538 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
539 	struct scsi_device *sdev = cmd->device;
540 	struct request_queue *q = sdev->request_queue;
541 
542 	if (blk_update_request(req, error, bytes))
543 		return true;
544 
545 	// XXX:
546 	if (blk_queue_add_random(q))
547 		add_disk_randomness(req->q->disk);
548 
549 	if (!blk_rq_is_passthrough(req)) {
550 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
551 		cmd->flags &= ~SCMD_INITIALIZED;
552 	}
553 
554 	/*
555 	 * Calling rcu_barrier() is not necessary here because the
556 	 * SCSI error handler guarantees that the function called by
557 	 * call_rcu() has been called before scsi_end_request() is
558 	 * called.
559 	 */
560 	destroy_rcu_head(&cmd->rcu);
561 
562 	/*
563 	 * In the MQ case the command gets freed by __blk_mq_end_request,
564 	 * so we have to do all cleanup that depends on it earlier.
565 	 *
566 	 * We also can't kick the queues from irq context, so we
567 	 * will have to defer it to a workqueue.
568 	 */
569 	scsi_mq_uninit_cmd(cmd);
570 
571 	/*
572 	 * queue is still alive, so grab the ref for preventing it
573 	 * from being cleaned up during running queue.
574 	 */
575 	percpu_ref_get(&q->q_usage_counter);
576 
577 	__blk_mq_end_request(req, error);
578 
579 	scsi_run_queue_async(sdev);
580 
581 	percpu_ref_put(&q->q_usage_counter);
582 	return false;
583 }
584 
get_scsi_ml_byte(int result)585 static inline u8 get_scsi_ml_byte(int result)
586 {
587 	return (result >> 8) & 0xff;
588 }
589 
590 /**
591  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
592  * @result:	scsi error code
593  *
594  * Translate a SCSI result code into a blk_status_t value.
595  */
scsi_result_to_blk_status(int result)596 static blk_status_t scsi_result_to_blk_status(int result)
597 {
598 	/*
599 	 * Check the scsi-ml byte first in case we converted a host or status
600 	 * byte.
601 	 */
602 	switch (get_scsi_ml_byte(result)) {
603 	case SCSIML_STAT_OK:
604 		break;
605 	case SCSIML_STAT_RESV_CONFLICT:
606 		return BLK_STS_NEXUS;
607 	case SCSIML_STAT_NOSPC:
608 		return BLK_STS_NOSPC;
609 	case SCSIML_STAT_MED_ERROR:
610 		return BLK_STS_MEDIUM;
611 	case SCSIML_STAT_TGT_FAILURE:
612 		return BLK_STS_TARGET;
613 	}
614 
615 	switch (host_byte(result)) {
616 	case DID_OK:
617 		if (scsi_status_is_good(result))
618 			return BLK_STS_OK;
619 		return BLK_STS_IOERR;
620 	case DID_TRANSPORT_FAILFAST:
621 	case DID_TRANSPORT_MARGINAL:
622 		return BLK_STS_TRANSPORT;
623 	default:
624 		return BLK_STS_IOERR;
625 	}
626 }
627 
628 /**
629  * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
630  * @rq: request to examine
631  *
632  * Description:
633  *     A request could be merge of IOs which require different failure
634  *     handling.  This function determines the number of bytes which
635  *     can be failed from the beginning of the request without
636  *     crossing into area which need to be retried further.
637  *
638  * Return:
639  *     The number of bytes to fail.
640  */
scsi_rq_err_bytes(const struct request * rq)641 static unsigned int scsi_rq_err_bytes(const struct request *rq)
642 {
643 	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
644 	unsigned int bytes = 0;
645 	struct bio *bio;
646 
647 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
648 		return blk_rq_bytes(rq);
649 
650 	/*
651 	 * Currently the only 'mixing' which can happen is between
652 	 * different fastfail types.  We can safely fail portions
653 	 * which have all the failfast bits that the first one has -
654 	 * the ones which are at least as eager to fail as the first
655 	 * one.
656 	 */
657 	for (bio = rq->bio; bio; bio = bio->bi_next) {
658 		if ((bio->bi_opf & ff) != ff)
659 			break;
660 		bytes += bio->bi_iter.bi_size;
661 	}
662 
663 	/* this could lead to infinite loop */
664 	BUG_ON(blk_rq_bytes(rq) && !bytes);
665 	return bytes;
666 }
667 
scsi_cmd_runtime_exceeced(struct scsi_cmnd * cmd)668 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
669 {
670 	struct request *req = scsi_cmd_to_rq(cmd);
671 	unsigned long wait_for;
672 
673 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
674 		return false;
675 
676 	wait_for = (cmd->allowed + 1) * req->timeout;
677 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
678 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
679 			    wait_for/HZ);
680 		return true;
681 	}
682 	return false;
683 }
684 
685 /*
686  * When ALUA transition state is returned, reprep the cmd to
687  * use the ALUA handler's transition timeout. Delay the reprep
688  * 1 sec to avoid aggressive retries of the target in that
689  * state.
690  */
691 #define ALUA_TRANSITION_REPREP_DELAY	1000
692 
693 /* Helper for scsi_io_completion() when special action required. */
scsi_io_completion_action(struct scsi_cmnd * cmd,int result)694 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
695 {
696 	struct request *req = scsi_cmd_to_rq(cmd);
697 	int level = 0;
698 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
699 	      ACTION_RETRY, ACTION_DELAYED_RETRY} action;
700 	struct scsi_sense_hdr sshdr;
701 	bool sense_valid;
702 	bool sense_current = true;      /* false implies "deferred sense" */
703 	blk_status_t blk_stat;
704 
705 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
706 	if (sense_valid)
707 		sense_current = !scsi_sense_is_deferred(&sshdr);
708 
709 	blk_stat = scsi_result_to_blk_status(result);
710 
711 	if (host_byte(result) == DID_RESET) {
712 		/* Third party bus reset or reset for error recovery
713 		 * reasons.  Just retry the command and see what
714 		 * happens.
715 		 */
716 		action = ACTION_RETRY;
717 	} else if (sense_valid && sense_current) {
718 		switch (sshdr.sense_key) {
719 		case UNIT_ATTENTION:
720 			if (cmd->device->removable) {
721 				/* Detected disc change.  Set a bit
722 				 * and quietly refuse further access.
723 				 */
724 				cmd->device->changed = 1;
725 				action = ACTION_FAIL;
726 			} else {
727 				/* Must have been a power glitch, or a
728 				 * bus reset.  Could not have been a
729 				 * media change, so we just retry the
730 				 * command and see what happens.
731 				 */
732 				action = ACTION_RETRY;
733 			}
734 			break;
735 		case ILLEGAL_REQUEST:
736 			/* If we had an ILLEGAL REQUEST returned, then
737 			 * we may have performed an unsupported
738 			 * command.  The only thing this should be
739 			 * would be a ten byte read where only a six
740 			 * byte read was supported.  Also, on a system
741 			 * where READ CAPACITY failed, we may have
742 			 * read past the end of the disk.
743 			 */
744 			if ((cmd->device->use_10_for_rw &&
745 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
746 			    (cmd->cmnd[0] == READ_10 ||
747 			     cmd->cmnd[0] == WRITE_10)) {
748 				/* This will issue a new 6-byte command. */
749 				cmd->device->use_10_for_rw = 0;
750 				action = ACTION_REPREP;
751 			} else if (sshdr.asc == 0x10) /* DIX */ {
752 				action = ACTION_FAIL;
753 				blk_stat = BLK_STS_PROTECTION;
754 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
755 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
756 				action = ACTION_FAIL;
757 				blk_stat = BLK_STS_TARGET;
758 			} else
759 				action = ACTION_FAIL;
760 			break;
761 		case ABORTED_COMMAND:
762 			action = ACTION_FAIL;
763 			if (sshdr.asc == 0x10) /* DIF */
764 				blk_stat = BLK_STS_PROTECTION;
765 			break;
766 		case NOT_READY:
767 			/* If the device is in the process of becoming
768 			 * ready, or has a temporary blockage, retry.
769 			 */
770 			if (sshdr.asc == 0x04) {
771 				switch (sshdr.ascq) {
772 				case 0x01: /* becoming ready */
773 				case 0x04: /* format in progress */
774 				case 0x05: /* rebuild in progress */
775 				case 0x06: /* recalculation in progress */
776 				case 0x07: /* operation in progress */
777 				case 0x08: /* Long write in progress */
778 				case 0x09: /* self test in progress */
779 				case 0x11: /* notify (enable spinup) required */
780 				case 0x14: /* space allocation in progress */
781 				case 0x1a: /* start stop unit in progress */
782 				case 0x1b: /* sanitize in progress */
783 				case 0x1d: /* configuration in progress */
784 				case 0x24: /* depopulation in progress */
785 					action = ACTION_DELAYED_RETRY;
786 					break;
787 				case 0x0a: /* ALUA state transition */
788 					action = ACTION_DELAYED_REPREP;
789 					break;
790 				default:
791 					action = ACTION_FAIL;
792 					break;
793 				}
794 			} else
795 				action = ACTION_FAIL;
796 			break;
797 		case VOLUME_OVERFLOW:
798 			/* See SSC3rXX or current. */
799 			action = ACTION_FAIL;
800 			break;
801 		case DATA_PROTECT:
802 			action = ACTION_FAIL;
803 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
804 			    (sshdr.asc == 0x55 &&
805 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
806 				/* Insufficient zone resources */
807 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
808 			}
809 			break;
810 		default:
811 			action = ACTION_FAIL;
812 			break;
813 		}
814 	} else
815 		action = ACTION_FAIL;
816 
817 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
818 		action = ACTION_FAIL;
819 
820 	switch (action) {
821 	case ACTION_FAIL:
822 		/* Give up and fail the remainder of the request */
823 		if (!(req->rq_flags & RQF_QUIET)) {
824 			static DEFINE_RATELIMIT_STATE(_rs,
825 					DEFAULT_RATELIMIT_INTERVAL,
826 					DEFAULT_RATELIMIT_BURST);
827 
828 			if (unlikely(scsi_logging_level))
829 				level =
830 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
831 						    SCSI_LOG_MLCOMPLETE_BITS);
832 
833 			/*
834 			 * if logging is enabled the failure will be printed
835 			 * in scsi_log_completion(), so avoid duplicate messages
836 			 */
837 			if (!level && __ratelimit(&_rs)) {
838 				scsi_print_result(cmd, NULL, FAILED);
839 				if (sense_valid)
840 					scsi_print_sense(cmd);
841 				scsi_print_command(cmd);
842 			}
843 		}
844 		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
845 			return;
846 		fallthrough;
847 	case ACTION_REPREP:
848 		scsi_mq_requeue_cmd(cmd, 0);
849 		break;
850 	case ACTION_DELAYED_REPREP:
851 		scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
852 		break;
853 	case ACTION_RETRY:
854 		/* Retry the same command immediately */
855 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
856 		break;
857 	case ACTION_DELAYED_RETRY:
858 		/* Retry the same command after a delay */
859 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
860 		break;
861 	}
862 }
863 
864 /*
865  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
866  * new result that may suppress further error checking. Also modifies
867  * *blk_statp in some cases.
868  */
scsi_io_completion_nz_result(struct scsi_cmnd * cmd,int result,blk_status_t * blk_statp)869 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
870 					blk_status_t *blk_statp)
871 {
872 	bool sense_valid;
873 	bool sense_current = true;	/* false implies "deferred sense" */
874 	struct request *req = scsi_cmd_to_rq(cmd);
875 	struct scsi_sense_hdr sshdr;
876 
877 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
878 	if (sense_valid)
879 		sense_current = !scsi_sense_is_deferred(&sshdr);
880 
881 	if (blk_rq_is_passthrough(req)) {
882 		if (sense_valid) {
883 			/*
884 			 * SG_IO wants current and deferred errors
885 			 */
886 			cmd->sense_len = min(8 + cmd->sense_buffer[7],
887 					     SCSI_SENSE_BUFFERSIZE);
888 		}
889 		if (sense_current)
890 			*blk_statp = scsi_result_to_blk_status(result);
891 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
892 		/*
893 		 * Flush commands do not transfers any data, and thus cannot use
894 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
895 		 * This sets *blk_statp explicitly for the problem case.
896 		 */
897 		*blk_statp = scsi_result_to_blk_status(result);
898 	}
899 	/*
900 	 * Recovered errors need reporting, but they're always treated as
901 	 * success, so fiddle the result code here.  For passthrough requests
902 	 * we already took a copy of the original into sreq->result which
903 	 * is what gets returned to the user
904 	 */
905 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
906 		bool do_print = true;
907 		/*
908 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
909 		 * skip print since caller wants ATA registers. Only occurs
910 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
911 		 */
912 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
913 			do_print = false;
914 		else if (req->rq_flags & RQF_QUIET)
915 			do_print = false;
916 		if (do_print)
917 			scsi_print_sense(cmd);
918 		result = 0;
919 		/* for passthrough, *blk_statp may be set */
920 		*blk_statp = BLK_STS_OK;
921 	}
922 	/*
923 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
924 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
925 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
926 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
927 	 * intermediate statuses (both obsolete in SAM-4) as good.
928 	 */
929 	if ((result & 0xff) && scsi_status_is_good(result)) {
930 		result = 0;
931 		*blk_statp = BLK_STS_OK;
932 	}
933 	return result;
934 }
935 
936 /**
937  * scsi_io_completion - Completion processing for SCSI commands.
938  * @cmd:	command that is finished.
939  * @good_bytes:	number of processed bytes.
940  *
941  * We will finish off the specified number of sectors. If we are done, the
942  * command block will be released and the queue function will be goosed. If we
943  * are not done then we have to figure out what to do next:
944  *
945  *   a) We can call scsi_mq_requeue_cmd().  The request will be
946  *	unprepared and put back on the queue.  Then a new command will
947  *	be created for it.  This should be used if we made forward
948  *	progress, or if we want to switch from READ(10) to READ(6) for
949  *	example.
950  *
951  *   b) We can call scsi_io_completion_action().  The request will be
952  *	put back on the queue and retried using the same command as
953  *	before, possibly after a delay.
954  *
955  *   c) We can call scsi_end_request() with blk_stat other than
956  *	BLK_STS_OK, to fail the remainder of the request.
957  */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)958 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
959 {
960 	int result = cmd->result;
961 	struct request *req = scsi_cmd_to_rq(cmd);
962 	blk_status_t blk_stat = BLK_STS_OK;
963 
964 	if (unlikely(result))	/* a nz result may or may not be an error */
965 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
966 
967 	/*
968 	 * Next deal with any sectors which we were able to correctly
969 	 * handle.
970 	 */
971 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
972 		"%u sectors total, %d bytes done.\n",
973 		blk_rq_sectors(req), good_bytes));
974 
975 	/*
976 	 * Failed, zero length commands always need to drop down
977 	 * to retry code. Fast path should return in this block.
978 	 */
979 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
980 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
981 			return; /* no bytes remaining */
982 	}
983 
984 	/* Kill remainder if no retries. */
985 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
986 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
987 			WARN_ONCE(true,
988 			    "Bytes remaining after failed, no-retry command");
989 		return;
990 	}
991 
992 	/*
993 	 * If there had been no error, but we have leftover bytes in the
994 	 * request just queue the command up again.
995 	 */
996 	if (likely(result == 0))
997 		scsi_mq_requeue_cmd(cmd, 0);
998 	else
999 		scsi_io_completion_action(cmd, result);
1000 }
1001 
scsi_cmd_needs_dma_drain(struct scsi_device * sdev,struct request * rq)1002 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1003 		struct request *rq)
1004 {
1005 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1006 	       !op_is_write(req_op(rq)) &&
1007 	       sdev->host->hostt->dma_need_drain(rq);
1008 }
1009 
1010 /**
1011  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1012  * @cmd: SCSI command data structure to initialize.
1013  *
1014  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1015  * for @cmd.
1016  *
1017  * Returns:
1018  * * BLK_STS_OK       - on success
1019  * * BLK_STS_RESOURCE - if the failure is retryable
1020  * * BLK_STS_IOERR    - if the failure is fatal
1021  */
scsi_alloc_sgtables(struct scsi_cmnd * cmd)1022 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1023 {
1024 	struct scsi_device *sdev = cmd->device;
1025 	struct request *rq = scsi_cmd_to_rq(cmd);
1026 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1027 	struct scatterlist *last_sg = NULL;
1028 	blk_status_t ret;
1029 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1030 	int count;
1031 
1032 	if (WARN_ON_ONCE(!nr_segs))
1033 		return BLK_STS_IOERR;
1034 
1035 	/*
1036 	 * Make sure there is space for the drain.  The driver must adjust
1037 	 * max_hw_segments to be prepared for this.
1038 	 */
1039 	if (need_drain)
1040 		nr_segs++;
1041 
1042 	/*
1043 	 * If sg table allocation fails, requeue request later.
1044 	 */
1045 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1046 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1047 		return BLK_STS_RESOURCE;
1048 
1049 	/*
1050 	 * Next, walk the list, and fill in the addresses and sizes of
1051 	 * each segment.
1052 	 */
1053 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1054 
1055 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1056 		unsigned int pad_len =
1057 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1058 
1059 		last_sg->length += pad_len;
1060 		cmd->extra_len += pad_len;
1061 	}
1062 
1063 	if (need_drain) {
1064 		sg_unmark_end(last_sg);
1065 		last_sg = sg_next(last_sg);
1066 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1067 		sg_mark_end(last_sg);
1068 
1069 		cmd->extra_len += sdev->dma_drain_len;
1070 		count++;
1071 	}
1072 
1073 	BUG_ON(count > cmd->sdb.table.nents);
1074 	cmd->sdb.table.nents = count;
1075 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1076 
1077 	if (blk_integrity_rq(rq)) {
1078 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1079 		int ivecs;
1080 
1081 		if (WARN_ON_ONCE(!prot_sdb)) {
1082 			/*
1083 			 * This can happen if someone (e.g. multipath)
1084 			 * queues a command to a device on an adapter
1085 			 * that does not support DIX.
1086 			 */
1087 			ret = BLK_STS_IOERR;
1088 			goto out_free_sgtables;
1089 		}
1090 
1091 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1092 
1093 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1094 				prot_sdb->table.sgl,
1095 				SCSI_INLINE_PROT_SG_CNT)) {
1096 			ret = BLK_STS_RESOURCE;
1097 			goto out_free_sgtables;
1098 		}
1099 
1100 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1101 						prot_sdb->table.sgl);
1102 		BUG_ON(count > ivecs);
1103 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1104 
1105 		cmd->prot_sdb = prot_sdb;
1106 		cmd->prot_sdb->table.nents = count;
1107 	}
1108 
1109 	return BLK_STS_OK;
1110 out_free_sgtables:
1111 	scsi_free_sgtables(cmd);
1112 	return ret;
1113 }
1114 EXPORT_SYMBOL(scsi_alloc_sgtables);
1115 
1116 /**
1117  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1118  * @rq: Request associated with the SCSI command to be initialized.
1119  *
1120  * This function initializes the members of struct scsi_cmnd that must be
1121  * initialized before request processing starts and that won't be
1122  * reinitialized if a SCSI command is requeued.
1123  */
scsi_initialize_rq(struct request * rq)1124 static void scsi_initialize_rq(struct request *rq)
1125 {
1126 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1127 
1128 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1129 	cmd->cmd_len = MAX_COMMAND_SIZE;
1130 	cmd->sense_len = 0;
1131 	init_rcu_head(&cmd->rcu);
1132 	cmd->jiffies_at_alloc = jiffies;
1133 	cmd->retries = 0;
1134 }
1135 
scsi_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)1136 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1137 				   blk_mq_req_flags_t flags)
1138 {
1139 	struct request *rq;
1140 
1141 	rq = blk_mq_alloc_request(q, opf, flags);
1142 	if (!IS_ERR(rq))
1143 		scsi_initialize_rq(rq);
1144 	return rq;
1145 }
1146 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1147 
1148 /*
1149  * Only called when the request isn't completed by SCSI, and not freed by
1150  * SCSI
1151  */
scsi_cleanup_rq(struct request * rq)1152 static void scsi_cleanup_rq(struct request *rq)
1153 {
1154 	if (rq->rq_flags & RQF_DONTPREP) {
1155 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1156 		rq->rq_flags &= ~RQF_DONTPREP;
1157 	}
1158 }
1159 
1160 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
scsi_init_command(struct scsi_device * dev,struct scsi_cmnd * cmd)1161 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1162 {
1163 	struct request *rq = scsi_cmd_to_rq(cmd);
1164 
1165 	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1166 		cmd->flags |= SCMD_INITIALIZED;
1167 		scsi_initialize_rq(rq);
1168 	}
1169 
1170 	cmd->device = dev;
1171 	INIT_LIST_HEAD(&cmd->eh_entry);
1172 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1173 }
1174 
scsi_setup_scsi_cmnd(struct scsi_device * sdev,struct request * req)1175 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1176 		struct request *req)
1177 {
1178 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1179 
1180 	/*
1181 	 * Passthrough requests may transfer data, in which case they must
1182 	 * a bio attached to them.  Or they might contain a SCSI command
1183 	 * that does not transfer data, in which case they may optionally
1184 	 * submit a request without an attached bio.
1185 	 */
1186 	if (req->bio) {
1187 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1188 		if (unlikely(ret != BLK_STS_OK))
1189 			return ret;
1190 	} else {
1191 		BUG_ON(blk_rq_bytes(req));
1192 
1193 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1194 	}
1195 
1196 	cmd->transfersize = blk_rq_bytes(req);
1197 	return BLK_STS_OK;
1198 }
1199 
1200 static blk_status_t
scsi_device_state_check(struct scsi_device * sdev,struct request * req)1201 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1202 {
1203 	switch (sdev->sdev_state) {
1204 	case SDEV_CREATED:
1205 		return BLK_STS_OK;
1206 	case SDEV_OFFLINE:
1207 	case SDEV_TRANSPORT_OFFLINE:
1208 		/*
1209 		 * If the device is offline we refuse to process any
1210 		 * commands.  The device must be brought online
1211 		 * before trying any recovery commands.
1212 		 */
1213 		if (!sdev->offline_already) {
1214 			sdev->offline_already = true;
1215 			sdev_printk(KERN_ERR, sdev,
1216 				    "rejecting I/O to offline device\n");
1217 		}
1218 		return BLK_STS_IOERR;
1219 	case SDEV_DEL:
1220 		/*
1221 		 * If the device is fully deleted, we refuse to
1222 		 * process any commands as well.
1223 		 */
1224 		sdev_printk(KERN_ERR, sdev,
1225 			    "rejecting I/O to dead device\n");
1226 		return BLK_STS_IOERR;
1227 	case SDEV_BLOCK:
1228 	case SDEV_CREATED_BLOCK:
1229 		return BLK_STS_RESOURCE;
1230 	case SDEV_QUIESCE:
1231 		/*
1232 		 * If the device is blocked we only accept power management
1233 		 * commands.
1234 		 */
1235 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1236 			return BLK_STS_RESOURCE;
1237 		return BLK_STS_OK;
1238 	default:
1239 		/*
1240 		 * For any other not fully online state we only allow
1241 		 * power management commands.
1242 		 */
1243 		if (req && !(req->rq_flags & RQF_PM))
1244 			return BLK_STS_OFFLINE;
1245 		return BLK_STS_OK;
1246 	}
1247 }
1248 
1249 /*
1250  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1251  * and return the token else return -1.
1252  */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1253 static inline int scsi_dev_queue_ready(struct request_queue *q,
1254 				  struct scsi_device *sdev)
1255 {
1256 	int token;
1257 
1258 	token = sbitmap_get(&sdev->budget_map);
1259 	if (atomic_read(&sdev->device_blocked)) {
1260 		if (token < 0)
1261 			goto out;
1262 
1263 		if (scsi_device_busy(sdev) > 1)
1264 			goto out_dec;
1265 
1266 		/*
1267 		 * unblock after device_blocked iterates to zero
1268 		 */
1269 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1270 			goto out_dec;
1271 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1272 				   "unblocking device at zero depth\n"));
1273 	}
1274 
1275 	return token;
1276 out_dec:
1277 	if (token >= 0)
1278 		sbitmap_put(&sdev->budget_map, token);
1279 out:
1280 	return -1;
1281 }
1282 
1283 /*
1284  * scsi_target_queue_ready: checks if there we can send commands to target
1285  * @sdev: scsi device on starget to check.
1286  */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1287 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1288 					   struct scsi_device *sdev)
1289 {
1290 	struct scsi_target *starget = scsi_target(sdev);
1291 	unsigned int busy;
1292 
1293 	if (starget->single_lun) {
1294 		spin_lock_irq(shost->host_lock);
1295 		if (starget->starget_sdev_user &&
1296 		    starget->starget_sdev_user != sdev) {
1297 			spin_unlock_irq(shost->host_lock);
1298 			return 0;
1299 		}
1300 		starget->starget_sdev_user = sdev;
1301 		spin_unlock_irq(shost->host_lock);
1302 	}
1303 
1304 	if (starget->can_queue <= 0)
1305 		return 1;
1306 
1307 	busy = atomic_inc_return(&starget->target_busy) - 1;
1308 	if (atomic_read(&starget->target_blocked) > 0) {
1309 		if (busy)
1310 			goto starved;
1311 
1312 		/*
1313 		 * unblock after target_blocked iterates to zero
1314 		 */
1315 		if (atomic_dec_return(&starget->target_blocked) > 0)
1316 			goto out_dec;
1317 
1318 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1319 				 "unblocking target at zero depth\n"));
1320 	}
1321 
1322 	if (busy >= starget->can_queue)
1323 		goto starved;
1324 
1325 	return 1;
1326 
1327 starved:
1328 	spin_lock_irq(shost->host_lock);
1329 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1330 	spin_unlock_irq(shost->host_lock);
1331 out_dec:
1332 	if (starget->can_queue > 0)
1333 		atomic_dec(&starget->target_busy);
1334 	return 0;
1335 }
1336 
1337 /*
1338  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1339  * return 0. We must end up running the queue again whenever 0 is
1340  * returned, else IO can hang.
1341  */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev,struct scsi_cmnd * cmd)1342 static inline int scsi_host_queue_ready(struct request_queue *q,
1343 				   struct Scsi_Host *shost,
1344 				   struct scsi_device *sdev,
1345 				   struct scsi_cmnd *cmd)
1346 {
1347 	if (atomic_read(&shost->host_blocked) > 0) {
1348 		if (scsi_host_busy(shost) > 0)
1349 			goto starved;
1350 
1351 		/*
1352 		 * unblock after host_blocked iterates to zero
1353 		 */
1354 		if (atomic_dec_return(&shost->host_blocked) > 0)
1355 			goto out_dec;
1356 
1357 		SCSI_LOG_MLQUEUE(3,
1358 			shost_printk(KERN_INFO, shost,
1359 				     "unblocking host at zero depth\n"));
1360 	}
1361 
1362 	if (shost->host_self_blocked)
1363 		goto starved;
1364 
1365 	/* We're OK to process the command, so we can't be starved */
1366 	if (!list_empty(&sdev->starved_entry)) {
1367 		spin_lock_irq(shost->host_lock);
1368 		if (!list_empty(&sdev->starved_entry))
1369 			list_del_init(&sdev->starved_entry);
1370 		spin_unlock_irq(shost->host_lock);
1371 	}
1372 
1373 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1374 
1375 	return 1;
1376 
1377 starved:
1378 	spin_lock_irq(shost->host_lock);
1379 	if (list_empty(&sdev->starved_entry))
1380 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1381 	spin_unlock_irq(shost->host_lock);
1382 out_dec:
1383 	scsi_dec_host_busy(shost, cmd);
1384 	return 0;
1385 }
1386 
1387 /*
1388  * Busy state exporting function for request stacking drivers.
1389  *
1390  * For efficiency, no lock is taken to check the busy state of
1391  * shost/starget/sdev, since the returned value is not guaranteed and
1392  * may be changed after request stacking drivers call the function,
1393  * regardless of taking lock or not.
1394  *
1395  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1396  * needs to return 'not busy'. Otherwise, request stacking drivers
1397  * may hold requests forever.
1398  */
scsi_mq_lld_busy(struct request_queue * q)1399 static bool scsi_mq_lld_busy(struct request_queue *q)
1400 {
1401 	struct scsi_device *sdev = q->queuedata;
1402 	struct Scsi_Host *shost;
1403 
1404 	if (blk_queue_dying(q))
1405 		return false;
1406 
1407 	shost = sdev->host;
1408 
1409 	/*
1410 	 * Ignore host/starget busy state.
1411 	 * Since block layer does not have a concept of fairness across
1412 	 * multiple queues, congestion of host/starget needs to be handled
1413 	 * in SCSI layer.
1414 	 */
1415 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1416 		return true;
1417 
1418 	return false;
1419 }
1420 
1421 /*
1422  * Block layer request completion callback. May be called from interrupt
1423  * context.
1424  */
scsi_complete(struct request * rq)1425 static void scsi_complete(struct request *rq)
1426 {
1427 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1428 	enum scsi_disposition disposition;
1429 
1430 	INIT_LIST_HEAD(&cmd->eh_entry);
1431 
1432 	atomic_inc(&cmd->device->iodone_cnt);
1433 	if (cmd->result)
1434 		atomic_inc(&cmd->device->ioerr_cnt);
1435 
1436 	disposition = scsi_decide_disposition(cmd);
1437 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1438 		disposition = SUCCESS;
1439 
1440 	scsi_log_completion(cmd, disposition);
1441 
1442 	switch (disposition) {
1443 	case SUCCESS:
1444 		scsi_finish_command(cmd);
1445 		break;
1446 	case NEEDS_RETRY:
1447 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1448 		break;
1449 	case ADD_TO_MLQUEUE:
1450 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1451 		break;
1452 	default:
1453 		scsi_eh_scmd_add(cmd);
1454 		break;
1455 	}
1456 }
1457 
1458 /**
1459  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1460  * @cmd: command block we are dispatching.
1461  *
1462  * Return: nonzero return request was rejected and device's queue needs to be
1463  * plugged.
1464  */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1465 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1466 {
1467 	struct Scsi_Host *host = cmd->device->host;
1468 	int rtn = 0;
1469 
1470 	atomic_inc(&cmd->device->iorequest_cnt);
1471 
1472 	/* check if the device is still usable */
1473 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1474 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1475 		 * returns an immediate error upwards, and signals
1476 		 * that the device is no longer present */
1477 		cmd->result = DID_NO_CONNECT << 16;
1478 		goto done;
1479 	}
1480 
1481 	/* Check to see if the scsi lld made this device blocked. */
1482 	if (unlikely(scsi_device_blocked(cmd->device))) {
1483 		/*
1484 		 * in blocked state, the command is just put back on
1485 		 * the device queue.  The suspend state has already
1486 		 * blocked the queue so future requests should not
1487 		 * occur until the device transitions out of the
1488 		 * suspend state.
1489 		 */
1490 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1491 			"queuecommand : device blocked\n"));
1492 		atomic_dec(&cmd->device->iorequest_cnt);
1493 		return SCSI_MLQUEUE_DEVICE_BUSY;
1494 	}
1495 
1496 	/* Store the LUN value in cmnd, if needed. */
1497 	if (cmd->device->lun_in_cdb)
1498 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1499 			       (cmd->device->lun << 5 & 0xe0);
1500 
1501 	scsi_log_send(cmd);
1502 
1503 	/*
1504 	 * Before we queue this command, check if the command
1505 	 * length exceeds what the host adapter can handle.
1506 	 */
1507 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1508 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1509 			       "queuecommand : command too long. "
1510 			       "cdb_size=%d host->max_cmd_len=%d\n",
1511 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1512 		cmd->result = (DID_ABORT << 16);
1513 		goto done;
1514 	}
1515 
1516 	if (unlikely(host->shost_state == SHOST_DEL)) {
1517 		cmd->result = (DID_NO_CONNECT << 16);
1518 		goto done;
1519 
1520 	}
1521 
1522 	trace_scsi_dispatch_cmd_start(cmd);
1523 	rtn = host->hostt->queuecommand(host, cmd);
1524 	if (rtn) {
1525 		atomic_dec(&cmd->device->iorequest_cnt);
1526 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1527 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1528 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1529 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1530 
1531 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1532 			"queuecommand : request rejected\n"));
1533 	}
1534 
1535 	return rtn;
1536  done:
1537 	scsi_done(cmd);
1538 	return 0;
1539 }
1540 
1541 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
scsi_mq_inline_sgl_size(struct Scsi_Host * shost)1542 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1543 {
1544 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1545 		sizeof(struct scatterlist);
1546 }
1547 
scsi_prepare_cmd(struct request * req)1548 static blk_status_t scsi_prepare_cmd(struct request *req)
1549 {
1550 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1551 	struct scsi_device *sdev = req->q->queuedata;
1552 	struct Scsi_Host *shost = sdev->host;
1553 	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1554 	struct scatterlist *sg;
1555 
1556 	scsi_init_command(sdev, cmd);
1557 
1558 	cmd->eh_eflags = 0;
1559 	cmd->prot_type = 0;
1560 	cmd->prot_flags = 0;
1561 	cmd->submitter = 0;
1562 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1563 	cmd->underflow = 0;
1564 	cmd->transfersize = 0;
1565 	cmd->host_scribble = NULL;
1566 	cmd->result = 0;
1567 	cmd->extra_len = 0;
1568 	cmd->state = 0;
1569 	if (in_flight)
1570 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1571 
1572 	/*
1573 	 * Only clear the driver-private command data if the LLD does not supply
1574 	 * a function to initialize that data.
1575 	 */
1576 	if (!shost->hostt->init_cmd_priv)
1577 		memset(cmd + 1, 0, shost->hostt->cmd_size);
1578 
1579 	cmd->prot_op = SCSI_PROT_NORMAL;
1580 	if (blk_rq_bytes(req))
1581 		cmd->sc_data_direction = rq_dma_dir(req);
1582 	else
1583 		cmd->sc_data_direction = DMA_NONE;
1584 
1585 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1586 	cmd->sdb.table.sgl = sg;
1587 
1588 	if (scsi_host_get_prot(shost)) {
1589 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1590 
1591 		cmd->prot_sdb->table.sgl =
1592 			(struct scatterlist *)(cmd->prot_sdb + 1);
1593 	}
1594 
1595 	/*
1596 	 * Special handling for passthrough commands, which don't go to the ULP
1597 	 * at all:
1598 	 */
1599 	if (blk_rq_is_passthrough(req))
1600 		return scsi_setup_scsi_cmnd(sdev, req);
1601 
1602 	if (sdev->handler && sdev->handler->prep_fn) {
1603 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1604 
1605 		if (ret != BLK_STS_OK)
1606 			return ret;
1607 	}
1608 
1609 	/* Usually overridden by the ULP */
1610 	cmd->allowed = 0;
1611 	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1612 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1613 }
1614 
scsi_done_internal(struct scsi_cmnd * cmd,bool complete_directly)1615 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1616 {
1617 	struct request *req = scsi_cmd_to_rq(cmd);
1618 
1619 	switch (cmd->submitter) {
1620 	case SUBMITTED_BY_BLOCK_LAYER:
1621 		break;
1622 	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1623 		return scsi_eh_done(cmd);
1624 	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1625 		return;
1626 	}
1627 
1628 	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1629 		return;
1630 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1631 		return;
1632 	trace_scsi_dispatch_cmd_done(cmd);
1633 
1634 	if (complete_directly)
1635 		blk_mq_complete_request_direct(req, scsi_complete);
1636 	else
1637 		blk_mq_complete_request(req);
1638 }
1639 
scsi_done(struct scsi_cmnd * cmd)1640 void scsi_done(struct scsi_cmnd *cmd)
1641 {
1642 	scsi_done_internal(cmd, false);
1643 }
1644 EXPORT_SYMBOL(scsi_done);
1645 
scsi_done_direct(struct scsi_cmnd * cmd)1646 void scsi_done_direct(struct scsi_cmnd *cmd)
1647 {
1648 	scsi_done_internal(cmd, true);
1649 }
1650 EXPORT_SYMBOL(scsi_done_direct);
1651 
scsi_mq_put_budget(struct request_queue * q,int budget_token)1652 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1653 {
1654 	struct scsi_device *sdev = q->queuedata;
1655 
1656 	sbitmap_put(&sdev->budget_map, budget_token);
1657 }
1658 
1659 /*
1660  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1661  * not change behaviour from the previous unplug mechanism, experimentation
1662  * may prove this needs changing.
1663  */
1664 #define SCSI_QUEUE_DELAY 3
1665 
scsi_mq_get_budget(struct request_queue * q)1666 static int scsi_mq_get_budget(struct request_queue *q)
1667 {
1668 	struct scsi_device *sdev = q->queuedata;
1669 	int token = scsi_dev_queue_ready(q, sdev);
1670 
1671 	if (token >= 0)
1672 		return token;
1673 
1674 	atomic_inc(&sdev->restarts);
1675 
1676 	/*
1677 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1678 	 * .restarts must be incremented before .device_busy is read because the
1679 	 * code in scsi_run_queue_async() depends on the order of these operations.
1680 	 */
1681 	smp_mb__after_atomic();
1682 
1683 	/*
1684 	 * If all in-flight requests originated from this LUN are completed
1685 	 * before reading .device_busy, sdev->device_busy will be observed as
1686 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1687 	 * soon. Otherwise, completion of one of these requests will observe
1688 	 * the .restarts flag, and the request queue will be run for handling
1689 	 * this request, see scsi_end_request().
1690 	 */
1691 	if (unlikely(scsi_device_busy(sdev) == 0 &&
1692 				!scsi_device_blocked(sdev)))
1693 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1694 	return -1;
1695 }
1696 
scsi_mq_set_rq_budget_token(struct request * req,int token)1697 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1698 {
1699 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1700 
1701 	cmd->budget_token = token;
1702 }
1703 
scsi_mq_get_rq_budget_token(struct request * req)1704 static int scsi_mq_get_rq_budget_token(struct request *req)
1705 {
1706 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1707 
1708 	return cmd->budget_token;
1709 }
1710 
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1711 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1712 			 const struct blk_mq_queue_data *bd)
1713 {
1714 	struct request *req = bd->rq;
1715 	struct request_queue *q = req->q;
1716 	struct scsi_device *sdev = q->queuedata;
1717 	struct Scsi_Host *shost = sdev->host;
1718 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1719 	blk_status_t ret;
1720 	int reason;
1721 
1722 	WARN_ON_ONCE(cmd->budget_token < 0);
1723 
1724 	/*
1725 	 * If the device is not in running state we will reject some or all
1726 	 * commands.
1727 	 */
1728 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1729 		ret = scsi_device_state_check(sdev, req);
1730 		if (ret != BLK_STS_OK)
1731 			goto out_put_budget;
1732 	}
1733 
1734 	ret = BLK_STS_RESOURCE;
1735 	if (!scsi_target_queue_ready(shost, sdev))
1736 		goto out_put_budget;
1737 	if (unlikely(scsi_host_in_recovery(shost))) {
1738 		if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1739 			ret = BLK_STS_OFFLINE;
1740 		goto out_dec_target_busy;
1741 	}
1742 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1743 		goto out_dec_target_busy;
1744 
1745 	if (!(req->rq_flags & RQF_DONTPREP)) {
1746 		ret = scsi_prepare_cmd(req);
1747 		if (ret != BLK_STS_OK)
1748 			goto out_dec_host_busy;
1749 		req->rq_flags |= RQF_DONTPREP;
1750 	} else {
1751 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1752 	}
1753 
1754 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1755 	if (sdev->simple_tags)
1756 		cmd->flags |= SCMD_TAGGED;
1757 	if (bd->last)
1758 		cmd->flags |= SCMD_LAST;
1759 
1760 	scsi_set_resid(cmd, 0);
1761 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1762 	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1763 
1764 	blk_mq_start_request(req);
1765 	reason = scsi_dispatch_cmd(cmd);
1766 	if (reason) {
1767 		scsi_set_blocked(cmd, reason);
1768 		ret = BLK_STS_RESOURCE;
1769 		goto out_dec_host_busy;
1770 	}
1771 
1772 	return BLK_STS_OK;
1773 
1774 out_dec_host_busy:
1775 	scsi_dec_host_busy(shost, cmd);
1776 out_dec_target_busy:
1777 	if (scsi_target(sdev)->can_queue > 0)
1778 		atomic_dec(&scsi_target(sdev)->target_busy);
1779 out_put_budget:
1780 	scsi_mq_put_budget(q, cmd->budget_token);
1781 	cmd->budget_token = -1;
1782 	switch (ret) {
1783 	case BLK_STS_OK:
1784 		break;
1785 	case BLK_STS_RESOURCE:
1786 	case BLK_STS_ZONE_RESOURCE:
1787 		if (scsi_device_blocked(sdev))
1788 			ret = BLK_STS_DEV_RESOURCE;
1789 		break;
1790 	case BLK_STS_AGAIN:
1791 		cmd->result = DID_BUS_BUSY << 16;
1792 		if (req->rq_flags & RQF_DONTPREP)
1793 			scsi_mq_uninit_cmd(cmd);
1794 		break;
1795 	default:
1796 		if (unlikely(!scsi_device_online(sdev)))
1797 			cmd->result = DID_NO_CONNECT << 16;
1798 		else
1799 			cmd->result = DID_ERROR << 16;
1800 		/*
1801 		 * Make sure to release all allocated resources when
1802 		 * we hit an error, as we will never see this command
1803 		 * again.
1804 		 */
1805 		if (req->rq_flags & RQF_DONTPREP)
1806 			scsi_mq_uninit_cmd(cmd);
1807 		scsi_run_queue_async(sdev);
1808 		break;
1809 	}
1810 	return ret;
1811 }
1812 
scsi_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1813 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1814 				unsigned int hctx_idx, unsigned int numa_node)
1815 {
1816 	struct Scsi_Host *shost = set->driver_data;
1817 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1818 	struct scatterlist *sg;
1819 	int ret = 0;
1820 
1821 	cmd->sense_buffer =
1822 		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1823 	if (!cmd->sense_buffer)
1824 		return -ENOMEM;
1825 
1826 	if (scsi_host_get_prot(shost)) {
1827 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1828 			shost->hostt->cmd_size;
1829 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1830 	}
1831 
1832 	if (shost->hostt->init_cmd_priv) {
1833 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1834 		if (ret < 0)
1835 			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1836 	}
1837 
1838 	return ret;
1839 }
1840 
scsi_mq_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1841 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1842 				 unsigned int hctx_idx)
1843 {
1844 	struct Scsi_Host *shost = set->driver_data;
1845 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1846 
1847 	if (shost->hostt->exit_cmd_priv)
1848 		shost->hostt->exit_cmd_priv(shost, cmd);
1849 	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1850 }
1851 
1852 
scsi_mq_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1853 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1854 {
1855 	struct Scsi_Host *shost = hctx->driver_data;
1856 
1857 	if (shost->hostt->mq_poll)
1858 		return shost->hostt->mq_poll(shost, hctx->queue_num);
1859 
1860 	return 0;
1861 }
1862 
scsi_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)1863 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1864 			  unsigned int hctx_idx)
1865 {
1866 	struct Scsi_Host *shost = data;
1867 
1868 	hctx->driver_data = shost;
1869 	return 0;
1870 }
1871 
scsi_map_queues(struct blk_mq_tag_set * set)1872 static void scsi_map_queues(struct blk_mq_tag_set *set)
1873 {
1874 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1875 
1876 	if (shost->hostt->map_queues)
1877 		return shost->hostt->map_queues(shost);
1878 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1879 }
1880 
__scsi_init_queue(struct Scsi_Host * shost,struct request_queue * q)1881 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1882 {
1883 	struct device *dev = shost->dma_dev;
1884 
1885 	/*
1886 	 * this limit is imposed by hardware restrictions
1887 	 */
1888 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1889 					SG_MAX_SEGMENTS));
1890 
1891 	if (scsi_host_prot_dma(shost)) {
1892 		shost->sg_prot_tablesize =
1893 			min_not_zero(shost->sg_prot_tablesize,
1894 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1895 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1896 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1897 	}
1898 
1899 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1900 	blk_queue_segment_boundary(q, shost->dma_boundary);
1901 	dma_set_seg_boundary(dev, shost->dma_boundary);
1902 
1903 	blk_queue_max_segment_size(q, shost->max_segment_size);
1904 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1905 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1906 
1907 	/*
1908 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1909 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1910 	 * which is set by the platform.
1911 	 *
1912 	 * Devices that require a bigger alignment can increase it later.
1913 	 */
1914 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1915 }
1916 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1917 
1918 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1919 	.get_budget	= scsi_mq_get_budget,
1920 	.put_budget	= scsi_mq_put_budget,
1921 	.queue_rq	= scsi_queue_rq,
1922 	.complete	= scsi_complete,
1923 	.timeout	= scsi_timeout,
1924 #ifdef CONFIG_BLK_DEBUG_FS
1925 	.show_rq	= scsi_show_rq,
1926 #endif
1927 	.init_request	= scsi_mq_init_request,
1928 	.exit_request	= scsi_mq_exit_request,
1929 	.cleanup_rq	= scsi_cleanup_rq,
1930 	.busy		= scsi_mq_lld_busy,
1931 	.map_queues	= scsi_map_queues,
1932 	.init_hctx	= scsi_init_hctx,
1933 	.poll		= scsi_mq_poll,
1934 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1935 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1936 };
1937 
1938 
scsi_commit_rqs(struct blk_mq_hw_ctx * hctx)1939 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1940 {
1941 	struct Scsi_Host *shost = hctx->driver_data;
1942 
1943 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1944 }
1945 
1946 static const struct blk_mq_ops scsi_mq_ops = {
1947 	.get_budget	= scsi_mq_get_budget,
1948 	.put_budget	= scsi_mq_put_budget,
1949 	.queue_rq	= scsi_queue_rq,
1950 	.commit_rqs	= scsi_commit_rqs,
1951 	.complete	= scsi_complete,
1952 	.timeout	= scsi_timeout,
1953 #ifdef CONFIG_BLK_DEBUG_FS
1954 	.show_rq	= scsi_show_rq,
1955 #endif
1956 	.init_request	= scsi_mq_init_request,
1957 	.exit_request	= scsi_mq_exit_request,
1958 	.cleanup_rq	= scsi_cleanup_rq,
1959 	.busy		= scsi_mq_lld_busy,
1960 	.map_queues	= scsi_map_queues,
1961 	.init_hctx	= scsi_init_hctx,
1962 	.poll		= scsi_mq_poll,
1963 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1964 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1965 };
1966 
scsi_mq_setup_tags(struct Scsi_Host * shost)1967 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1968 {
1969 	unsigned int cmd_size, sgl_size;
1970 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1971 
1972 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1973 				scsi_mq_inline_sgl_size(shost));
1974 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1975 	if (scsi_host_get_prot(shost))
1976 		cmd_size += sizeof(struct scsi_data_buffer) +
1977 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1978 
1979 	memset(tag_set, 0, sizeof(*tag_set));
1980 	if (shost->hostt->commit_rqs)
1981 		tag_set->ops = &scsi_mq_ops;
1982 	else
1983 		tag_set->ops = &scsi_mq_ops_no_commit;
1984 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1985 	tag_set->nr_maps = shost->nr_maps ? : 1;
1986 	tag_set->queue_depth = shost->can_queue;
1987 	tag_set->cmd_size = cmd_size;
1988 	tag_set->numa_node = dev_to_node(shost->dma_dev);
1989 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1990 	tag_set->flags |=
1991 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1992 	tag_set->driver_data = shost;
1993 	if (shost->host_tagset)
1994 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1995 
1996 	return blk_mq_alloc_tag_set(tag_set);
1997 }
1998 
scsi_mq_free_tags(struct kref * kref)1999 void scsi_mq_free_tags(struct kref *kref)
2000 {
2001 	struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2002 					       tagset_refcnt);
2003 
2004 	blk_mq_free_tag_set(&shost->tag_set);
2005 	complete(&shost->tagset_freed);
2006 }
2007 
2008 /**
2009  * scsi_device_from_queue - return sdev associated with a request_queue
2010  * @q: The request queue to return the sdev from
2011  *
2012  * Return the sdev associated with a request queue or NULL if the
2013  * request_queue does not reference a SCSI device.
2014  */
scsi_device_from_queue(struct request_queue * q)2015 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2016 {
2017 	struct scsi_device *sdev = NULL;
2018 
2019 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2020 	    q->mq_ops == &scsi_mq_ops)
2021 		sdev = q->queuedata;
2022 	if (!sdev || !get_device(&sdev->sdev_gendev))
2023 		sdev = NULL;
2024 
2025 	return sdev;
2026 }
2027 /*
2028  * pktcdvd should have been integrated into the SCSI layers, but for historical
2029  * reasons like the old IDE driver it isn't.  This export allows it to safely
2030  * probe if a given device is a SCSI one and only attach to that.
2031  */
2032 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2033 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2034 #endif
2035 
2036 /**
2037  * scsi_block_requests - Utility function used by low-level drivers to prevent
2038  * further commands from being queued to the device.
2039  * @shost:  host in question
2040  *
2041  * There is no timer nor any other means by which the requests get unblocked
2042  * other than the low-level driver calling scsi_unblock_requests().
2043  */
scsi_block_requests(struct Scsi_Host * shost)2044 void scsi_block_requests(struct Scsi_Host *shost)
2045 {
2046 	shost->host_self_blocked = 1;
2047 }
2048 EXPORT_SYMBOL(scsi_block_requests);
2049 
2050 /**
2051  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2052  * further commands to be queued to the device.
2053  * @shost:  host in question
2054  *
2055  * There is no timer nor any other means by which the requests get unblocked
2056  * other than the low-level driver calling scsi_unblock_requests(). This is done
2057  * as an API function so that changes to the internals of the scsi mid-layer
2058  * won't require wholesale changes to drivers that use this feature.
2059  */
scsi_unblock_requests(struct Scsi_Host * shost)2060 void scsi_unblock_requests(struct Scsi_Host *shost)
2061 {
2062 	shost->host_self_blocked = 0;
2063 	scsi_run_host_queues(shost);
2064 }
2065 EXPORT_SYMBOL(scsi_unblock_requests);
2066 
scsi_exit_queue(void)2067 void scsi_exit_queue(void)
2068 {
2069 	kmem_cache_destroy(scsi_sense_cache);
2070 }
2071 
2072 /**
2073  *	scsi_mode_select - issue a mode select
2074  *	@sdev:	SCSI device to be queried
2075  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2076  *	@sp:	Save page bit (0 == don't save, 1 == save)
2077  *	@buffer: request buffer (may not be smaller than eight bytes)
2078  *	@len:	length of request buffer.
2079  *	@timeout: command timeout
2080  *	@retries: number of retries before failing
2081  *	@data: returns a structure abstracting the mode header data
2082  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2083  *		must be SCSI_SENSE_BUFFERSIZE big.
2084  *
2085  *	Returns zero if successful; negative error number or scsi
2086  *	status on error
2087  *
2088  */
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2089 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2090 		     unsigned char *buffer, int len, int timeout, int retries,
2091 		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2092 {
2093 	unsigned char cmd[10];
2094 	unsigned char *real_buffer;
2095 	const struct scsi_exec_args exec_args = {
2096 		.sshdr = sshdr,
2097 	};
2098 	int ret;
2099 
2100 	memset(cmd, 0, sizeof(cmd));
2101 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2102 
2103 	/*
2104 	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2105 	 * and the mode select header cannot fit within the maximumm 255 bytes
2106 	 * of the MODE SELECT(6) command.
2107 	 */
2108 	if (sdev->use_10_for_ms ||
2109 	    len + 4 > 255 ||
2110 	    data->block_descriptor_length > 255) {
2111 		if (len > 65535 - 8)
2112 			return -EINVAL;
2113 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2114 		if (!real_buffer)
2115 			return -ENOMEM;
2116 		memcpy(real_buffer + 8, buffer, len);
2117 		len += 8;
2118 		real_buffer[0] = 0;
2119 		real_buffer[1] = 0;
2120 		real_buffer[2] = data->medium_type;
2121 		real_buffer[3] = data->device_specific;
2122 		real_buffer[4] = data->longlba ? 0x01 : 0;
2123 		real_buffer[5] = 0;
2124 		put_unaligned_be16(data->block_descriptor_length,
2125 				   &real_buffer[6]);
2126 
2127 		cmd[0] = MODE_SELECT_10;
2128 		put_unaligned_be16(len, &cmd[7]);
2129 	} else {
2130 		if (data->longlba)
2131 			return -EINVAL;
2132 
2133 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2134 		if (!real_buffer)
2135 			return -ENOMEM;
2136 		memcpy(real_buffer + 4, buffer, len);
2137 		len += 4;
2138 		real_buffer[0] = 0;
2139 		real_buffer[1] = data->medium_type;
2140 		real_buffer[2] = data->device_specific;
2141 		real_buffer[3] = data->block_descriptor_length;
2142 
2143 		cmd[0] = MODE_SELECT;
2144 		cmd[4] = len;
2145 	}
2146 
2147 	ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2148 			       timeout, retries, &exec_args);
2149 	kfree(real_buffer);
2150 	return ret;
2151 }
2152 EXPORT_SYMBOL_GPL(scsi_mode_select);
2153 
2154 /**
2155  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2156  *	@sdev:	SCSI device to be queried
2157  *	@dbd:	set to prevent mode sense from returning block descriptors
2158  *	@modepage: mode page being requested
2159  *	@buffer: request buffer (may not be smaller than eight bytes)
2160  *	@len:	length of request buffer.
2161  *	@timeout: command timeout
2162  *	@retries: number of retries before failing
2163  *	@data: returns a structure abstracting the mode header data
2164  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2165  *		must be SCSI_SENSE_BUFFERSIZE big.
2166  *
2167  *	Returns zero if successful, or a negative error number on failure
2168  */
2169 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2170 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2171 		  unsigned char *buffer, int len, int timeout, int retries,
2172 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2173 {
2174 	unsigned char cmd[12];
2175 	int use_10_for_ms;
2176 	int header_length;
2177 	int result, retry_count = retries;
2178 	struct scsi_sense_hdr my_sshdr;
2179 	const struct scsi_exec_args exec_args = {
2180 		/* caller might not be interested in sense, but we need it */
2181 		.sshdr = sshdr ? : &my_sshdr,
2182 	};
2183 
2184 	memset(data, 0, sizeof(*data));
2185 	memset(&cmd[0], 0, 12);
2186 
2187 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2188 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2189 	cmd[2] = modepage;
2190 
2191 	sshdr = exec_args.sshdr;
2192 
2193  retry:
2194 	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2195 
2196 	if (use_10_for_ms) {
2197 		if (len < 8 || len > 65535)
2198 			return -EINVAL;
2199 
2200 		cmd[0] = MODE_SENSE_10;
2201 		put_unaligned_be16(len, &cmd[7]);
2202 		header_length = 8;
2203 	} else {
2204 		if (len < 4)
2205 			return -EINVAL;
2206 
2207 		cmd[0] = MODE_SENSE;
2208 		cmd[4] = len;
2209 		header_length = 4;
2210 	}
2211 
2212 	memset(buffer, 0, len);
2213 
2214 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2215 				  timeout, retries, &exec_args);
2216 	if (result < 0)
2217 		return result;
2218 
2219 	/* This code looks awful: what it's doing is making sure an
2220 	 * ILLEGAL REQUEST sense return identifies the actual command
2221 	 * byte as the problem.  MODE_SENSE commands can return
2222 	 * ILLEGAL REQUEST if the code page isn't supported */
2223 
2224 	if (!scsi_status_is_good(result)) {
2225 		if (scsi_sense_valid(sshdr)) {
2226 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2227 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2228 				/*
2229 				 * Invalid command operation code: retry using
2230 				 * MODE SENSE(6) if this was a MODE SENSE(10)
2231 				 * request, except if the request mode page is
2232 				 * too large for MODE SENSE single byte
2233 				 * allocation length field.
2234 				 */
2235 				if (use_10_for_ms) {
2236 					if (len > 255)
2237 						return -EIO;
2238 					sdev->use_10_for_ms = 0;
2239 					goto retry;
2240 				}
2241 			}
2242 			if (scsi_status_is_check_condition(result) &&
2243 			    sshdr->sense_key == UNIT_ATTENTION &&
2244 			    retry_count) {
2245 				retry_count--;
2246 				goto retry;
2247 			}
2248 		}
2249 		return -EIO;
2250 	}
2251 	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2252 		     (modepage == 6 || modepage == 8))) {
2253 		/* Initio breakage? */
2254 		header_length = 0;
2255 		data->length = 13;
2256 		data->medium_type = 0;
2257 		data->device_specific = 0;
2258 		data->longlba = 0;
2259 		data->block_descriptor_length = 0;
2260 	} else if (use_10_for_ms) {
2261 		data->length = get_unaligned_be16(&buffer[0]) + 2;
2262 		data->medium_type = buffer[2];
2263 		data->device_specific = buffer[3];
2264 		data->longlba = buffer[4] & 0x01;
2265 		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2266 	} else {
2267 		data->length = buffer[0] + 1;
2268 		data->medium_type = buffer[1];
2269 		data->device_specific = buffer[2];
2270 		data->block_descriptor_length = buffer[3];
2271 	}
2272 	data->header_length = header_length;
2273 
2274 	return 0;
2275 }
2276 EXPORT_SYMBOL(scsi_mode_sense);
2277 
2278 /**
2279  *	scsi_test_unit_ready - test if unit is ready
2280  *	@sdev:	scsi device to change the state of.
2281  *	@timeout: command timeout
2282  *	@retries: number of retries before failing
2283  *	@sshdr: outpout pointer for decoded sense information.
2284  *
2285  *	Returns zero if unsuccessful or an error if TUR failed.  For
2286  *	removable media, UNIT_ATTENTION sets ->changed flag.
2287  **/
2288 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr)2289 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2290 		     struct scsi_sense_hdr *sshdr)
2291 {
2292 	char cmd[] = {
2293 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2294 	};
2295 	const struct scsi_exec_args exec_args = {
2296 		.sshdr = sshdr,
2297 	};
2298 	int result;
2299 
2300 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2301 	do {
2302 		result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2303 					  timeout, 1, &exec_args);
2304 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2305 		    sshdr->sense_key == UNIT_ATTENTION)
2306 			sdev->changed = 1;
2307 	} while (scsi_sense_valid(sshdr) &&
2308 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2309 
2310 	return result;
2311 }
2312 EXPORT_SYMBOL(scsi_test_unit_ready);
2313 
2314 /**
2315  *	scsi_device_set_state - Take the given device through the device state model.
2316  *	@sdev:	scsi device to change the state of.
2317  *	@state:	state to change to.
2318  *
2319  *	Returns zero if successful or an error if the requested
2320  *	transition is illegal.
2321  */
2322 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2323 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2324 {
2325 	enum scsi_device_state oldstate = sdev->sdev_state;
2326 
2327 	if (state == oldstate)
2328 		return 0;
2329 
2330 	switch (state) {
2331 	case SDEV_CREATED:
2332 		switch (oldstate) {
2333 		case SDEV_CREATED_BLOCK:
2334 			break;
2335 		default:
2336 			goto illegal;
2337 		}
2338 		break;
2339 
2340 	case SDEV_RUNNING:
2341 		switch (oldstate) {
2342 		case SDEV_CREATED:
2343 		case SDEV_OFFLINE:
2344 		case SDEV_TRANSPORT_OFFLINE:
2345 		case SDEV_QUIESCE:
2346 		case SDEV_BLOCK:
2347 			break;
2348 		default:
2349 			goto illegal;
2350 		}
2351 		break;
2352 
2353 	case SDEV_QUIESCE:
2354 		switch (oldstate) {
2355 		case SDEV_RUNNING:
2356 		case SDEV_OFFLINE:
2357 		case SDEV_TRANSPORT_OFFLINE:
2358 			break;
2359 		default:
2360 			goto illegal;
2361 		}
2362 		break;
2363 
2364 	case SDEV_OFFLINE:
2365 	case SDEV_TRANSPORT_OFFLINE:
2366 		switch (oldstate) {
2367 		case SDEV_CREATED:
2368 		case SDEV_RUNNING:
2369 		case SDEV_QUIESCE:
2370 		case SDEV_BLOCK:
2371 			break;
2372 		default:
2373 			goto illegal;
2374 		}
2375 		break;
2376 
2377 	case SDEV_BLOCK:
2378 		switch (oldstate) {
2379 		case SDEV_RUNNING:
2380 		case SDEV_CREATED_BLOCK:
2381 		case SDEV_QUIESCE:
2382 		case SDEV_OFFLINE:
2383 			break;
2384 		default:
2385 			goto illegal;
2386 		}
2387 		break;
2388 
2389 	case SDEV_CREATED_BLOCK:
2390 		switch (oldstate) {
2391 		case SDEV_CREATED:
2392 			break;
2393 		default:
2394 			goto illegal;
2395 		}
2396 		break;
2397 
2398 	case SDEV_CANCEL:
2399 		switch (oldstate) {
2400 		case SDEV_CREATED:
2401 		case SDEV_RUNNING:
2402 		case SDEV_QUIESCE:
2403 		case SDEV_OFFLINE:
2404 		case SDEV_TRANSPORT_OFFLINE:
2405 			break;
2406 		default:
2407 			goto illegal;
2408 		}
2409 		break;
2410 
2411 	case SDEV_DEL:
2412 		switch (oldstate) {
2413 		case SDEV_CREATED:
2414 		case SDEV_RUNNING:
2415 		case SDEV_OFFLINE:
2416 		case SDEV_TRANSPORT_OFFLINE:
2417 		case SDEV_CANCEL:
2418 		case SDEV_BLOCK:
2419 		case SDEV_CREATED_BLOCK:
2420 			break;
2421 		default:
2422 			goto illegal;
2423 		}
2424 		break;
2425 
2426 	}
2427 	sdev->offline_already = false;
2428 	sdev->sdev_state = state;
2429 	return 0;
2430 
2431  illegal:
2432 	SCSI_LOG_ERROR_RECOVERY(1,
2433 				sdev_printk(KERN_ERR, sdev,
2434 					    "Illegal state transition %s->%s",
2435 					    scsi_device_state_name(oldstate),
2436 					    scsi_device_state_name(state))
2437 				);
2438 	return -EINVAL;
2439 }
2440 EXPORT_SYMBOL(scsi_device_set_state);
2441 
2442 /**
2443  *	scsi_evt_emit - emit a single SCSI device uevent
2444  *	@sdev: associated SCSI device
2445  *	@evt: event to emit
2446  *
2447  *	Send a single uevent (scsi_event) to the associated scsi_device.
2448  */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2449 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2450 {
2451 	int idx = 0;
2452 	char *envp[3];
2453 
2454 	switch (evt->evt_type) {
2455 	case SDEV_EVT_MEDIA_CHANGE:
2456 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2457 		break;
2458 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2459 		scsi_rescan_device(sdev);
2460 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2461 		break;
2462 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2463 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2464 		break;
2465 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2466 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2467 		break;
2468 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2469 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2470 		break;
2471 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2472 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2473 		break;
2474 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2475 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2476 		break;
2477 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2478 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2479 		break;
2480 	default:
2481 		/* do nothing */
2482 		break;
2483 	}
2484 
2485 	envp[idx++] = NULL;
2486 
2487 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2488 }
2489 
2490 /**
2491  *	scsi_evt_thread - send a uevent for each scsi event
2492  *	@work: work struct for scsi_device
2493  *
2494  *	Dispatch queued events to their associated scsi_device kobjects
2495  *	as uevents.
2496  */
scsi_evt_thread(struct work_struct * work)2497 void scsi_evt_thread(struct work_struct *work)
2498 {
2499 	struct scsi_device *sdev;
2500 	enum scsi_device_event evt_type;
2501 	LIST_HEAD(event_list);
2502 
2503 	sdev = container_of(work, struct scsi_device, event_work);
2504 
2505 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2506 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2507 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2508 
2509 	while (1) {
2510 		struct scsi_event *evt;
2511 		struct list_head *this, *tmp;
2512 		unsigned long flags;
2513 
2514 		spin_lock_irqsave(&sdev->list_lock, flags);
2515 		list_splice_init(&sdev->event_list, &event_list);
2516 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2517 
2518 		if (list_empty(&event_list))
2519 			break;
2520 
2521 		list_for_each_safe(this, tmp, &event_list) {
2522 			evt = list_entry(this, struct scsi_event, node);
2523 			list_del(&evt->node);
2524 			scsi_evt_emit(sdev, evt);
2525 			kfree(evt);
2526 		}
2527 	}
2528 }
2529 
2530 /**
2531  * 	sdev_evt_send - send asserted event to uevent thread
2532  *	@sdev: scsi_device event occurred on
2533  *	@evt: event to send
2534  *
2535  *	Assert scsi device event asynchronously.
2536  */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2537 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2538 {
2539 	unsigned long flags;
2540 
2541 #if 0
2542 	/* FIXME: currently this check eliminates all media change events
2543 	 * for polled devices.  Need to update to discriminate between AN
2544 	 * and polled events */
2545 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2546 		kfree(evt);
2547 		return;
2548 	}
2549 #endif
2550 
2551 	spin_lock_irqsave(&sdev->list_lock, flags);
2552 	list_add_tail(&evt->node, &sdev->event_list);
2553 	schedule_work(&sdev->event_work);
2554 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2555 }
2556 EXPORT_SYMBOL_GPL(sdev_evt_send);
2557 
2558 /**
2559  * 	sdev_evt_alloc - allocate a new scsi event
2560  *	@evt_type: type of event to allocate
2561  *	@gfpflags: GFP flags for allocation
2562  *
2563  *	Allocates and returns a new scsi_event.
2564  */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2565 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2566 				  gfp_t gfpflags)
2567 {
2568 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2569 	if (!evt)
2570 		return NULL;
2571 
2572 	evt->evt_type = evt_type;
2573 	INIT_LIST_HEAD(&evt->node);
2574 
2575 	/* evt_type-specific initialization, if any */
2576 	switch (evt_type) {
2577 	case SDEV_EVT_MEDIA_CHANGE:
2578 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2579 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2580 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2581 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2582 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2583 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2584 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2585 	default:
2586 		/* do nothing */
2587 		break;
2588 	}
2589 
2590 	return evt;
2591 }
2592 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2593 
2594 /**
2595  * 	sdev_evt_send_simple - send asserted event to uevent thread
2596  *	@sdev: scsi_device event occurred on
2597  *	@evt_type: type of event to send
2598  *	@gfpflags: GFP flags for allocation
2599  *
2600  *	Assert scsi device event asynchronously, given an event type.
2601  */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2602 void sdev_evt_send_simple(struct scsi_device *sdev,
2603 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2604 {
2605 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2606 	if (!evt) {
2607 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2608 			    evt_type);
2609 		return;
2610 	}
2611 
2612 	sdev_evt_send(sdev, evt);
2613 }
2614 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2615 
2616 /**
2617  *	scsi_device_quiesce - Block all commands except power management.
2618  *	@sdev:	scsi device to quiesce.
2619  *
2620  *	This works by trying to transition to the SDEV_QUIESCE state
2621  *	(which must be a legal transition).  When the device is in this
2622  *	state, only power management requests will be accepted, all others will
2623  *	be deferred.
2624  *
2625  *	Must be called with user context, may sleep.
2626  *
2627  *	Returns zero if unsuccessful or an error if not.
2628  */
2629 int
scsi_device_quiesce(struct scsi_device * sdev)2630 scsi_device_quiesce(struct scsi_device *sdev)
2631 {
2632 	struct request_queue *q = sdev->request_queue;
2633 	int err;
2634 
2635 	/*
2636 	 * It is allowed to call scsi_device_quiesce() multiple times from
2637 	 * the same context but concurrent scsi_device_quiesce() calls are
2638 	 * not allowed.
2639 	 */
2640 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2641 
2642 	if (sdev->quiesced_by == current)
2643 		return 0;
2644 
2645 	blk_set_pm_only(q);
2646 
2647 	blk_mq_freeze_queue(q);
2648 	/*
2649 	 * Ensure that the effect of blk_set_pm_only() will be visible
2650 	 * for percpu_ref_tryget() callers that occur after the queue
2651 	 * unfreeze even if the queue was already frozen before this function
2652 	 * was called. See also https://lwn.net/Articles/573497/.
2653 	 */
2654 	synchronize_rcu();
2655 	blk_mq_unfreeze_queue(q);
2656 
2657 	mutex_lock(&sdev->state_mutex);
2658 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2659 	if (err == 0)
2660 		sdev->quiesced_by = current;
2661 	else
2662 		blk_clear_pm_only(q);
2663 	mutex_unlock(&sdev->state_mutex);
2664 
2665 	return err;
2666 }
2667 EXPORT_SYMBOL(scsi_device_quiesce);
2668 
2669 /**
2670  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2671  *	@sdev:	scsi device to resume.
2672  *
2673  *	Moves the device from quiesced back to running and restarts the
2674  *	queues.
2675  *
2676  *	Must be called with user context, may sleep.
2677  */
scsi_device_resume(struct scsi_device * sdev)2678 void scsi_device_resume(struct scsi_device *sdev)
2679 {
2680 	/* check if the device state was mutated prior to resume, and if
2681 	 * so assume the state is being managed elsewhere (for example
2682 	 * device deleted during suspend)
2683 	 */
2684 	mutex_lock(&sdev->state_mutex);
2685 	if (sdev->sdev_state == SDEV_QUIESCE)
2686 		scsi_device_set_state(sdev, SDEV_RUNNING);
2687 	if (sdev->quiesced_by) {
2688 		sdev->quiesced_by = NULL;
2689 		blk_clear_pm_only(sdev->request_queue);
2690 	}
2691 	mutex_unlock(&sdev->state_mutex);
2692 }
2693 EXPORT_SYMBOL(scsi_device_resume);
2694 
2695 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2696 device_quiesce_fn(struct scsi_device *sdev, void *data)
2697 {
2698 	scsi_device_quiesce(sdev);
2699 }
2700 
2701 void
scsi_target_quiesce(struct scsi_target * starget)2702 scsi_target_quiesce(struct scsi_target *starget)
2703 {
2704 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2705 }
2706 EXPORT_SYMBOL(scsi_target_quiesce);
2707 
2708 static void
device_resume_fn(struct scsi_device * sdev,void * data)2709 device_resume_fn(struct scsi_device *sdev, void *data)
2710 {
2711 	scsi_device_resume(sdev);
2712 }
2713 
2714 void
scsi_target_resume(struct scsi_target * starget)2715 scsi_target_resume(struct scsi_target *starget)
2716 {
2717 	starget_for_each_device(starget, NULL, device_resume_fn);
2718 }
2719 EXPORT_SYMBOL(scsi_target_resume);
2720 
__scsi_internal_device_block_nowait(struct scsi_device * sdev)2721 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2722 {
2723 	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2724 		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2725 
2726 	return 0;
2727 }
2728 
scsi_start_queue(struct scsi_device * sdev)2729 void scsi_start_queue(struct scsi_device *sdev)
2730 {
2731 	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2732 		blk_mq_unquiesce_queue(sdev->request_queue);
2733 }
2734 
scsi_stop_queue(struct scsi_device * sdev,bool nowait)2735 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait)
2736 {
2737 	/*
2738 	 * The atomic variable of ->queue_stopped covers that
2739 	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2740 	 *
2741 	 * However, we still need to wait until quiesce is done
2742 	 * in case that queue has been stopped.
2743 	 */
2744 	if (!cmpxchg(&sdev->queue_stopped, 0, 1)) {
2745 		if (nowait)
2746 			blk_mq_quiesce_queue_nowait(sdev->request_queue);
2747 		else
2748 			blk_mq_quiesce_queue(sdev->request_queue);
2749 	} else {
2750 		if (!nowait)
2751 			blk_mq_wait_quiesce_done(sdev->request_queue);
2752 	}
2753 }
2754 
2755 /**
2756  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2757  * @sdev: device to block
2758  *
2759  * Pause SCSI command processing on the specified device. Does not sleep.
2760  *
2761  * Returns zero if successful or a negative error code upon failure.
2762  *
2763  * Notes:
2764  * This routine transitions the device to the SDEV_BLOCK state (which must be
2765  * a legal transition). When the device is in this state, command processing
2766  * is paused until the device leaves the SDEV_BLOCK state. See also
2767  * scsi_internal_device_unblock_nowait().
2768  */
scsi_internal_device_block_nowait(struct scsi_device * sdev)2769 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2770 {
2771 	int ret = __scsi_internal_device_block_nowait(sdev);
2772 
2773 	/*
2774 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2775 	 * block layer from calling the midlayer with this device's
2776 	 * request queue.
2777 	 */
2778 	if (!ret)
2779 		scsi_stop_queue(sdev, true);
2780 	return ret;
2781 }
2782 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2783 
2784 /**
2785  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2786  * @sdev: device to block
2787  *
2788  * Pause SCSI command processing on the specified device and wait until all
2789  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2790  *
2791  * Returns zero if successful or a negative error code upon failure.
2792  *
2793  * Note:
2794  * This routine transitions the device to the SDEV_BLOCK state (which must be
2795  * a legal transition). When the device is in this state, command processing
2796  * is paused until the device leaves the SDEV_BLOCK state. See also
2797  * scsi_internal_device_unblock().
2798  */
scsi_internal_device_block(struct scsi_device * sdev)2799 static int scsi_internal_device_block(struct scsi_device *sdev)
2800 {
2801 	int err;
2802 
2803 	mutex_lock(&sdev->state_mutex);
2804 	err = __scsi_internal_device_block_nowait(sdev);
2805 	if (err == 0)
2806 		scsi_stop_queue(sdev, false);
2807 	mutex_unlock(&sdev->state_mutex);
2808 
2809 	return err;
2810 }
2811 
2812 /**
2813  * scsi_internal_device_unblock_nowait - resume a device after a block request
2814  * @sdev:	device to resume
2815  * @new_state:	state to set the device to after unblocking
2816  *
2817  * Restart the device queue for a previously suspended SCSI device. Does not
2818  * sleep.
2819  *
2820  * Returns zero if successful or a negative error code upon failure.
2821  *
2822  * Notes:
2823  * This routine transitions the device to the SDEV_RUNNING state or to one of
2824  * the offline states (which must be a legal transition) allowing the midlayer
2825  * to goose the queue for this device.
2826  */
scsi_internal_device_unblock_nowait(struct scsi_device * sdev,enum scsi_device_state new_state)2827 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2828 					enum scsi_device_state new_state)
2829 {
2830 	switch (new_state) {
2831 	case SDEV_RUNNING:
2832 	case SDEV_TRANSPORT_OFFLINE:
2833 		break;
2834 	default:
2835 		return -EINVAL;
2836 	}
2837 
2838 	/*
2839 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2840 	 * offlined states and goose the device queue if successful.
2841 	 */
2842 	switch (sdev->sdev_state) {
2843 	case SDEV_BLOCK:
2844 	case SDEV_TRANSPORT_OFFLINE:
2845 		sdev->sdev_state = new_state;
2846 		break;
2847 	case SDEV_CREATED_BLOCK:
2848 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2849 		    new_state == SDEV_OFFLINE)
2850 			sdev->sdev_state = new_state;
2851 		else
2852 			sdev->sdev_state = SDEV_CREATED;
2853 		break;
2854 	case SDEV_CANCEL:
2855 	case SDEV_OFFLINE:
2856 		break;
2857 	default:
2858 		return -EINVAL;
2859 	}
2860 	scsi_start_queue(sdev);
2861 
2862 	return 0;
2863 }
2864 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2865 
2866 /**
2867  * scsi_internal_device_unblock - resume a device after a block request
2868  * @sdev:	device to resume
2869  * @new_state:	state to set the device to after unblocking
2870  *
2871  * Restart the device queue for a previously suspended SCSI device. May sleep.
2872  *
2873  * Returns zero if successful or a negative error code upon failure.
2874  *
2875  * Notes:
2876  * This routine transitions the device to the SDEV_RUNNING state or to one of
2877  * the offline states (which must be a legal transition) allowing the midlayer
2878  * to goose the queue for this device.
2879  */
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2880 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2881 					enum scsi_device_state new_state)
2882 {
2883 	int ret;
2884 
2885 	mutex_lock(&sdev->state_mutex);
2886 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2887 	mutex_unlock(&sdev->state_mutex);
2888 
2889 	return ret;
2890 }
2891 
2892 static void
device_block(struct scsi_device * sdev,void * data)2893 device_block(struct scsi_device *sdev, void *data)
2894 {
2895 	int ret;
2896 
2897 	ret = scsi_internal_device_block(sdev);
2898 
2899 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2900 		  dev_name(&sdev->sdev_gendev), ret);
2901 }
2902 
2903 static int
target_block(struct device * dev,void * data)2904 target_block(struct device *dev, void *data)
2905 {
2906 	if (scsi_is_target_device(dev))
2907 		starget_for_each_device(to_scsi_target(dev), NULL,
2908 					device_block);
2909 	return 0;
2910 }
2911 
2912 void
scsi_target_block(struct device * dev)2913 scsi_target_block(struct device *dev)
2914 {
2915 	if (scsi_is_target_device(dev))
2916 		starget_for_each_device(to_scsi_target(dev), NULL,
2917 					device_block);
2918 	else
2919 		device_for_each_child(dev, NULL, target_block);
2920 }
2921 EXPORT_SYMBOL_GPL(scsi_target_block);
2922 
2923 static void
device_unblock(struct scsi_device * sdev,void * data)2924 device_unblock(struct scsi_device *sdev, void *data)
2925 {
2926 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2927 }
2928 
2929 static int
target_unblock(struct device * dev,void * data)2930 target_unblock(struct device *dev, void *data)
2931 {
2932 	if (scsi_is_target_device(dev))
2933 		starget_for_each_device(to_scsi_target(dev), data,
2934 					device_unblock);
2935 	return 0;
2936 }
2937 
2938 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)2939 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2940 {
2941 	if (scsi_is_target_device(dev))
2942 		starget_for_each_device(to_scsi_target(dev), &new_state,
2943 					device_unblock);
2944 	else
2945 		device_for_each_child(dev, &new_state, target_unblock);
2946 }
2947 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2948 
2949 int
scsi_host_block(struct Scsi_Host * shost)2950 scsi_host_block(struct Scsi_Host *shost)
2951 {
2952 	struct scsi_device *sdev;
2953 	int ret = 0;
2954 
2955 	/*
2956 	 * Call scsi_internal_device_block_nowait so we can avoid
2957 	 * calling synchronize_rcu() for each LUN.
2958 	 */
2959 	shost_for_each_device(sdev, shost) {
2960 		mutex_lock(&sdev->state_mutex);
2961 		ret = scsi_internal_device_block_nowait(sdev);
2962 		mutex_unlock(&sdev->state_mutex);
2963 		if (ret) {
2964 			scsi_device_put(sdev);
2965 			break;
2966 		}
2967 	}
2968 
2969 	/*
2970 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2971 	 * calling synchronize_rcu() once is enough.
2972 	 */
2973 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2974 
2975 	if (!ret)
2976 		synchronize_rcu();
2977 
2978 	return ret;
2979 }
2980 EXPORT_SYMBOL_GPL(scsi_host_block);
2981 
2982 int
scsi_host_unblock(struct Scsi_Host * shost,int new_state)2983 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2984 {
2985 	struct scsi_device *sdev;
2986 	int ret = 0;
2987 
2988 	shost_for_each_device(sdev, shost) {
2989 		ret = scsi_internal_device_unblock(sdev, new_state);
2990 		if (ret) {
2991 			scsi_device_put(sdev);
2992 			break;
2993 		}
2994 	}
2995 	return ret;
2996 }
2997 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2998 
2999 /**
3000  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3001  * @sgl:	scatter-gather list
3002  * @sg_count:	number of segments in sg
3003  * @offset:	offset in bytes into sg, on return offset into the mapped area
3004  * @len:	bytes to map, on return number of bytes mapped
3005  *
3006  * Returns virtual address of the start of the mapped page
3007  */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)3008 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3009 			  size_t *offset, size_t *len)
3010 {
3011 	int i;
3012 	size_t sg_len = 0, len_complete = 0;
3013 	struct scatterlist *sg;
3014 	struct page *page;
3015 
3016 	WARN_ON(!irqs_disabled());
3017 
3018 	for_each_sg(sgl, sg, sg_count, i) {
3019 		len_complete = sg_len; /* Complete sg-entries */
3020 		sg_len += sg->length;
3021 		if (sg_len > *offset)
3022 			break;
3023 	}
3024 
3025 	if (unlikely(i == sg_count)) {
3026 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3027 			"elements %d\n",
3028 		       __func__, sg_len, *offset, sg_count);
3029 		WARN_ON(1);
3030 		return NULL;
3031 	}
3032 
3033 	/* Offset starting from the beginning of first page in this sg-entry */
3034 	*offset = *offset - len_complete + sg->offset;
3035 
3036 	/* Assumption: contiguous pages can be accessed as "page + i" */
3037 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3038 	*offset &= ~PAGE_MASK;
3039 
3040 	/* Bytes in this sg-entry from *offset to the end of the page */
3041 	sg_len = PAGE_SIZE - *offset;
3042 	if (*len > sg_len)
3043 		*len = sg_len;
3044 
3045 	return kmap_atomic(page);
3046 }
3047 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3048 
3049 /**
3050  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3051  * @virt:	virtual address to be unmapped
3052  */
scsi_kunmap_atomic_sg(void * virt)3053 void scsi_kunmap_atomic_sg(void *virt)
3054 {
3055 	kunmap_atomic(virt);
3056 }
3057 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3058 
sdev_disable_disk_events(struct scsi_device * sdev)3059 void sdev_disable_disk_events(struct scsi_device *sdev)
3060 {
3061 	atomic_inc(&sdev->disk_events_disable_depth);
3062 }
3063 EXPORT_SYMBOL(sdev_disable_disk_events);
3064 
sdev_enable_disk_events(struct scsi_device * sdev)3065 void sdev_enable_disk_events(struct scsi_device *sdev)
3066 {
3067 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3068 		return;
3069 	atomic_dec(&sdev->disk_events_disable_depth);
3070 }
3071 EXPORT_SYMBOL(sdev_enable_disk_events);
3072 
designator_prio(const unsigned char * d)3073 static unsigned char designator_prio(const unsigned char *d)
3074 {
3075 	if (d[1] & 0x30)
3076 		/* not associated with LUN */
3077 		return 0;
3078 
3079 	if (d[3] == 0)
3080 		/* invalid length */
3081 		return 0;
3082 
3083 	/*
3084 	 * Order of preference for lun descriptor:
3085 	 * - SCSI name string
3086 	 * - NAA IEEE Registered Extended
3087 	 * - EUI-64 based 16-byte
3088 	 * - EUI-64 based 12-byte
3089 	 * - NAA IEEE Registered
3090 	 * - NAA IEEE Extended
3091 	 * - EUI-64 based 8-byte
3092 	 * - SCSI name string (truncated)
3093 	 * - T10 Vendor ID
3094 	 * as longer descriptors reduce the likelyhood
3095 	 * of identification clashes.
3096 	 */
3097 
3098 	switch (d[1] & 0xf) {
3099 	case 8:
3100 		/* SCSI name string, variable-length UTF-8 */
3101 		return 9;
3102 	case 3:
3103 		switch (d[4] >> 4) {
3104 		case 6:
3105 			/* NAA registered extended */
3106 			return 8;
3107 		case 5:
3108 			/* NAA registered */
3109 			return 5;
3110 		case 4:
3111 			/* NAA extended */
3112 			return 4;
3113 		case 3:
3114 			/* NAA locally assigned */
3115 			return 1;
3116 		default:
3117 			break;
3118 		}
3119 		break;
3120 	case 2:
3121 		switch (d[3]) {
3122 		case 16:
3123 			/* EUI64-based, 16 byte */
3124 			return 7;
3125 		case 12:
3126 			/* EUI64-based, 12 byte */
3127 			return 6;
3128 		case 8:
3129 			/* EUI64-based, 8 byte */
3130 			return 3;
3131 		default:
3132 			break;
3133 		}
3134 		break;
3135 	case 1:
3136 		/* T10 vendor ID */
3137 		return 1;
3138 	default:
3139 		break;
3140 	}
3141 
3142 	return 0;
3143 }
3144 
3145 /**
3146  * scsi_vpd_lun_id - return a unique device identification
3147  * @sdev: SCSI device
3148  * @id:   buffer for the identification
3149  * @id_len:  length of the buffer
3150  *
3151  * Copies a unique device identification into @id based
3152  * on the information in the VPD page 0x83 of the device.
3153  * The string will be formatted as a SCSI name string.
3154  *
3155  * Returns the length of the identification or error on failure.
3156  * If the identifier is longer than the supplied buffer the actual
3157  * identifier length is returned and the buffer is not zero-padded.
3158  */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3159 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3160 {
3161 	u8 cur_id_prio = 0;
3162 	u8 cur_id_size = 0;
3163 	const unsigned char *d, *cur_id_str;
3164 	const struct scsi_vpd *vpd_pg83;
3165 	int id_size = -EINVAL;
3166 
3167 	rcu_read_lock();
3168 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3169 	if (!vpd_pg83) {
3170 		rcu_read_unlock();
3171 		return -ENXIO;
3172 	}
3173 
3174 	/* The id string must be at least 20 bytes + terminating NULL byte */
3175 	if (id_len < 21) {
3176 		rcu_read_unlock();
3177 		return -EINVAL;
3178 	}
3179 
3180 	memset(id, 0, id_len);
3181 	for (d = vpd_pg83->data + 4;
3182 	     d < vpd_pg83->data + vpd_pg83->len;
3183 	     d += d[3] + 4) {
3184 		u8 prio = designator_prio(d);
3185 
3186 		if (prio == 0 || cur_id_prio > prio)
3187 			continue;
3188 
3189 		switch (d[1] & 0xf) {
3190 		case 0x1:
3191 			/* T10 Vendor ID */
3192 			if (cur_id_size > d[3])
3193 				break;
3194 			cur_id_prio = prio;
3195 			cur_id_size = d[3];
3196 			if (cur_id_size + 4 > id_len)
3197 				cur_id_size = id_len - 4;
3198 			cur_id_str = d + 4;
3199 			id_size = snprintf(id, id_len, "t10.%*pE",
3200 					   cur_id_size, cur_id_str);
3201 			break;
3202 		case 0x2:
3203 			/* EUI-64 */
3204 			cur_id_prio = prio;
3205 			cur_id_size = d[3];
3206 			cur_id_str = d + 4;
3207 			switch (cur_id_size) {
3208 			case 8:
3209 				id_size = snprintf(id, id_len,
3210 						   "eui.%8phN",
3211 						   cur_id_str);
3212 				break;
3213 			case 12:
3214 				id_size = snprintf(id, id_len,
3215 						   "eui.%12phN",
3216 						   cur_id_str);
3217 				break;
3218 			case 16:
3219 				id_size = snprintf(id, id_len,
3220 						   "eui.%16phN",
3221 						   cur_id_str);
3222 				break;
3223 			default:
3224 				break;
3225 			}
3226 			break;
3227 		case 0x3:
3228 			/* NAA */
3229 			cur_id_prio = prio;
3230 			cur_id_size = d[3];
3231 			cur_id_str = d + 4;
3232 			switch (cur_id_size) {
3233 			case 8:
3234 				id_size = snprintf(id, id_len,
3235 						   "naa.%8phN",
3236 						   cur_id_str);
3237 				break;
3238 			case 16:
3239 				id_size = snprintf(id, id_len,
3240 						   "naa.%16phN",
3241 						   cur_id_str);
3242 				break;
3243 			default:
3244 				break;
3245 			}
3246 			break;
3247 		case 0x8:
3248 			/* SCSI name string */
3249 			if (cur_id_size > d[3])
3250 				break;
3251 			/* Prefer others for truncated descriptor */
3252 			if (d[3] > id_len) {
3253 				prio = 2;
3254 				if (cur_id_prio > prio)
3255 					break;
3256 			}
3257 			cur_id_prio = prio;
3258 			cur_id_size = id_size = d[3];
3259 			cur_id_str = d + 4;
3260 			if (cur_id_size >= id_len)
3261 				cur_id_size = id_len - 1;
3262 			memcpy(id, cur_id_str, cur_id_size);
3263 			break;
3264 		default:
3265 			break;
3266 		}
3267 	}
3268 	rcu_read_unlock();
3269 
3270 	return id_size;
3271 }
3272 EXPORT_SYMBOL(scsi_vpd_lun_id);
3273 
3274 /*
3275  * scsi_vpd_tpg_id - return a target port group identifier
3276  * @sdev: SCSI device
3277  *
3278  * Returns the Target Port Group identifier from the information
3279  * froom VPD page 0x83 of the device.
3280  *
3281  * Returns the identifier or error on failure.
3282  */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3283 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3284 {
3285 	const unsigned char *d;
3286 	const struct scsi_vpd *vpd_pg83;
3287 	int group_id = -EAGAIN, rel_port = -1;
3288 
3289 	rcu_read_lock();
3290 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3291 	if (!vpd_pg83) {
3292 		rcu_read_unlock();
3293 		return -ENXIO;
3294 	}
3295 
3296 	d = vpd_pg83->data + 4;
3297 	while (d < vpd_pg83->data + vpd_pg83->len) {
3298 		switch (d[1] & 0xf) {
3299 		case 0x4:
3300 			/* Relative target port */
3301 			rel_port = get_unaligned_be16(&d[6]);
3302 			break;
3303 		case 0x5:
3304 			/* Target port group */
3305 			group_id = get_unaligned_be16(&d[6]);
3306 			break;
3307 		default:
3308 			break;
3309 		}
3310 		d += d[3] + 4;
3311 	}
3312 	rcu_read_unlock();
3313 
3314 	if (group_id >= 0 && rel_id && rel_port != -1)
3315 		*rel_id = rel_port;
3316 
3317 	return group_id;
3318 }
3319 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3320 
3321 /**
3322  * scsi_build_sense - build sense data for a command
3323  * @scmd:	scsi command for which the sense should be formatted
3324  * @desc:	Sense format (non-zero == descriptor format,
3325  *              0 == fixed format)
3326  * @key:	Sense key
3327  * @asc:	Additional sense code
3328  * @ascq:	Additional sense code qualifier
3329  *
3330  **/
scsi_build_sense(struct scsi_cmnd * scmd,int desc,u8 key,u8 asc,u8 ascq)3331 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3332 {
3333 	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3334 	scmd->result = SAM_STAT_CHECK_CONDITION;
3335 }
3336 EXPORT_SYMBOL_GPL(scsi_build_sense);
3337