• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/sort.h>
9 #include "ctree.h"
10 #include "delayed-ref.h"
11 #include "transaction.h"
12 #include "qgroup.h"
13 #include "space-info.h"
14 #include "tree-mod-log.h"
15 
16 struct kmem_cache *btrfs_delayed_ref_head_cachep;
17 struct kmem_cache *btrfs_delayed_tree_ref_cachep;
18 struct kmem_cache *btrfs_delayed_data_ref_cachep;
19 struct kmem_cache *btrfs_delayed_extent_op_cachep;
20 /*
21  * delayed back reference update tracking.  For subvolume trees
22  * we queue up extent allocations and backref maintenance for
23  * delayed processing.   This avoids deep call chains where we
24  * add extents in the middle of btrfs_search_slot, and it allows
25  * us to buffer up frequently modified backrefs in an rb tree instead
26  * of hammering updates on the extent allocation tree.
27  */
28 
btrfs_check_space_for_delayed_refs(struct btrfs_fs_info * fs_info)29 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
30 {
31 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
32 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
33 	bool ret = false;
34 	u64 reserved;
35 
36 	spin_lock(&global_rsv->lock);
37 	reserved = global_rsv->reserved;
38 	spin_unlock(&global_rsv->lock);
39 
40 	/*
41 	 * Since the global reserve is just kind of magic we don't really want
42 	 * to rely on it to save our bacon, so if our size is more than the
43 	 * delayed_refs_rsv and the global rsv then it's time to think about
44 	 * bailing.
45 	 */
46 	spin_lock(&delayed_refs_rsv->lock);
47 	reserved += delayed_refs_rsv->reserved;
48 	if (delayed_refs_rsv->size >= reserved)
49 		ret = true;
50 	spin_unlock(&delayed_refs_rsv->lock);
51 	return ret;
52 }
53 
btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle * trans)54 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
55 {
56 	u64 num_entries =
57 		atomic_read(&trans->transaction->delayed_refs.num_entries);
58 	u64 avg_runtime;
59 	u64 val;
60 
61 	smp_mb();
62 	avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
63 	val = num_entries * avg_runtime;
64 	if (val >= NSEC_PER_SEC)
65 		return 1;
66 	if (val >= NSEC_PER_SEC / 2)
67 		return 2;
68 
69 	return btrfs_check_space_for_delayed_refs(trans->fs_info);
70 }
71 
72 /**
73  * Release a ref head's reservation
74  *
75  * @fs_info:  the filesystem
76  * @nr:       number of items to drop
77  *
78  * This drops the delayed ref head's count from the delayed refs rsv and frees
79  * any excess reservation we had.
80  */
btrfs_delayed_refs_rsv_release(struct btrfs_fs_info * fs_info,int nr)81 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
82 {
83 	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
84 	u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, nr);
85 	u64 released = 0;
86 
87 	/*
88 	 * We have to check the mount option here because we could be enabling
89 	 * the free space tree for the first time and don't have the compat_ro
90 	 * option set yet.
91 	 *
92 	 * We need extra reservations if we have the free space tree because
93 	 * we'll have to modify that tree as well.
94 	 */
95 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
96 		num_bytes *= 2;
97 
98 	released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
99 	if (released)
100 		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
101 					      0, released, 0);
102 }
103 
104 /*
105  * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
106  * @trans - the trans that may have generated delayed refs
107  *
108  * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
109  * it'll calculate the additional size and add it to the delayed_refs_rsv.
110  */
btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle * trans)111 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
112 {
113 	struct btrfs_fs_info *fs_info = trans->fs_info;
114 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
115 	u64 num_bytes;
116 
117 	if (!trans->delayed_ref_updates)
118 		return;
119 
120 	num_bytes = btrfs_calc_insert_metadata_size(fs_info,
121 						    trans->delayed_ref_updates);
122 	/*
123 	 * We have to check the mount option here because we could be enabling
124 	 * the free space tree for the first time and don't have the compat_ro
125 	 * option set yet.
126 	 *
127 	 * We need extra reservations if we have the free space tree because
128 	 * we'll have to modify that tree as well.
129 	 */
130 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
131 		num_bytes *= 2;
132 
133 	spin_lock(&delayed_rsv->lock);
134 	delayed_rsv->size += num_bytes;
135 	delayed_rsv->full = false;
136 	spin_unlock(&delayed_rsv->lock);
137 	trans->delayed_ref_updates = 0;
138 }
139 
140 /**
141  * Transfer bytes to our delayed refs rsv
142  *
143  * @fs_info:   the filesystem
144  * @num_bytes: number of bytes to transfer
145  *
146  * This transfers up to the num_bytes amount, previously reserved, to the
147  * delayed_refs_rsv.  Any extra bytes are returned to the space info.
148  */
btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info * fs_info,u64 num_bytes)149 void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
150 				       u64 num_bytes)
151 {
152 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
153 	u64 to_free = 0;
154 
155 	spin_lock(&delayed_refs_rsv->lock);
156 	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
157 		u64 delta = delayed_refs_rsv->size -
158 			delayed_refs_rsv->reserved;
159 		if (num_bytes > delta) {
160 			to_free = num_bytes - delta;
161 			num_bytes = delta;
162 		}
163 	} else {
164 		to_free = num_bytes;
165 		num_bytes = 0;
166 	}
167 
168 	if (num_bytes)
169 		delayed_refs_rsv->reserved += num_bytes;
170 	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
171 		delayed_refs_rsv->full = true;
172 	spin_unlock(&delayed_refs_rsv->lock);
173 
174 	if (num_bytes)
175 		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
176 					      0, num_bytes, 1);
177 	if (to_free)
178 		btrfs_space_info_free_bytes_may_use(fs_info,
179 				delayed_refs_rsv->space_info, to_free);
180 }
181 
182 /**
183  * Refill based on our delayed refs usage
184  *
185  * @fs_info: the filesystem
186  * @flush:   control how we can flush for this reservation.
187  *
188  * This will refill the delayed block_rsv up to 1 items size worth of space and
189  * will return -ENOSPC if we can't make the reservation.
190  */
btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info * fs_info,enum btrfs_reserve_flush_enum flush)191 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
192 				  enum btrfs_reserve_flush_enum flush)
193 {
194 	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
195 	u64 limit = btrfs_calc_insert_metadata_size(fs_info, 1);
196 	u64 num_bytes = 0;
197 	int ret = -ENOSPC;
198 
199 	spin_lock(&block_rsv->lock);
200 	if (block_rsv->reserved < block_rsv->size) {
201 		num_bytes = block_rsv->size - block_rsv->reserved;
202 		num_bytes = min(num_bytes, limit);
203 	}
204 	spin_unlock(&block_rsv->lock);
205 
206 	if (!num_bytes)
207 		return 0;
208 
209 	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
210 	if (ret)
211 		return ret;
212 	btrfs_block_rsv_add_bytes(block_rsv, num_bytes, 0);
213 	trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
214 				      0, num_bytes, 1);
215 	return 0;
216 }
217 
218 /*
219  * compare two delayed tree backrefs with same bytenr and type
220  */
comp_tree_refs(struct btrfs_delayed_tree_ref * ref1,struct btrfs_delayed_tree_ref * ref2)221 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
222 			  struct btrfs_delayed_tree_ref *ref2)
223 {
224 	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
225 		if (ref1->root < ref2->root)
226 			return -1;
227 		if (ref1->root > ref2->root)
228 			return 1;
229 	} else {
230 		if (ref1->parent < ref2->parent)
231 			return -1;
232 		if (ref1->parent > ref2->parent)
233 			return 1;
234 	}
235 	return 0;
236 }
237 
238 /*
239  * compare two delayed data backrefs with same bytenr and type
240  */
comp_data_refs(struct btrfs_delayed_data_ref * ref1,struct btrfs_delayed_data_ref * ref2)241 static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
242 			  struct btrfs_delayed_data_ref *ref2)
243 {
244 	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
245 		if (ref1->root < ref2->root)
246 			return -1;
247 		if (ref1->root > ref2->root)
248 			return 1;
249 		if (ref1->objectid < ref2->objectid)
250 			return -1;
251 		if (ref1->objectid > ref2->objectid)
252 			return 1;
253 		if (ref1->offset < ref2->offset)
254 			return -1;
255 		if (ref1->offset > ref2->offset)
256 			return 1;
257 	} else {
258 		if (ref1->parent < ref2->parent)
259 			return -1;
260 		if (ref1->parent > ref2->parent)
261 			return 1;
262 	}
263 	return 0;
264 }
265 
comp_refs(struct btrfs_delayed_ref_node * ref1,struct btrfs_delayed_ref_node * ref2,bool check_seq)266 static int comp_refs(struct btrfs_delayed_ref_node *ref1,
267 		     struct btrfs_delayed_ref_node *ref2,
268 		     bool check_seq)
269 {
270 	int ret = 0;
271 
272 	if (ref1->type < ref2->type)
273 		return -1;
274 	if (ref1->type > ref2->type)
275 		return 1;
276 	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
277 	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
278 		ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
279 				     btrfs_delayed_node_to_tree_ref(ref2));
280 	else
281 		ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
282 				     btrfs_delayed_node_to_data_ref(ref2));
283 	if (ret)
284 		return ret;
285 	if (check_seq) {
286 		if (ref1->seq < ref2->seq)
287 			return -1;
288 		if (ref1->seq > ref2->seq)
289 			return 1;
290 	}
291 	return 0;
292 }
293 
294 /* insert a new ref to head ref rbtree */
htree_insert(struct rb_root_cached * root,struct rb_node * node)295 static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
296 						   struct rb_node *node)
297 {
298 	struct rb_node **p = &root->rb_root.rb_node;
299 	struct rb_node *parent_node = NULL;
300 	struct btrfs_delayed_ref_head *entry;
301 	struct btrfs_delayed_ref_head *ins;
302 	u64 bytenr;
303 	bool leftmost = true;
304 
305 	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
306 	bytenr = ins->bytenr;
307 	while (*p) {
308 		parent_node = *p;
309 		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
310 				 href_node);
311 
312 		if (bytenr < entry->bytenr) {
313 			p = &(*p)->rb_left;
314 		} else if (bytenr > entry->bytenr) {
315 			p = &(*p)->rb_right;
316 			leftmost = false;
317 		} else {
318 			return entry;
319 		}
320 	}
321 
322 	rb_link_node(node, parent_node, p);
323 	rb_insert_color_cached(node, root, leftmost);
324 	return NULL;
325 }
326 
tree_insert(struct rb_root_cached * root,struct btrfs_delayed_ref_node * ins)327 static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
328 		struct btrfs_delayed_ref_node *ins)
329 {
330 	struct rb_node **p = &root->rb_root.rb_node;
331 	struct rb_node *node = &ins->ref_node;
332 	struct rb_node *parent_node = NULL;
333 	struct btrfs_delayed_ref_node *entry;
334 	bool leftmost = true;
335 
336 	while (*p) {
337 		int comp;
338 
339 		parent_node = *p;
340 		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
341 				 ref_node);
342 		comp = comp_refs(ins, entry, true);
343 		if (comp < 0) {
344 			p = &(*p)->rb_left;
345 		} else if (comp > 0) {
346 			p = &(*p)->rb_right;
347 			leftmost = false;
348 		} else {
349 			return entry;
350 		}
351 	}
352 
353 	rb_link_node(node, parent_node, p);
354 	rb_insert_color_cached(node, root, leftmost);
355 	return NULL;
356 }
357 
find_first_ref_head(struct btrfs_delayed_ref_root * dr)358 static struct btrfs_delayed_ref_head *find_first_ref_head(
359 		struct btrfs_delayed_ref_root *dr)
360 {
361 	struct rb_node *n;
362 	struct btrfs_delayed_ref_head *entry;
363 
364 	n = rb_first_cached(&dr->href_root);
365 	if (!n)
366 		return NULL;
367 
368 	entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
369 
370 	return entry;
371 }
372 
373 /*
374  * Find a head entry based on bytenr. This returns the delayed ref head if it
375  * was able to find one, or NULL if nothing was in that spot.  If return_bigger
376  * is given, the next bigger entry is returned if no exact match is found.
377  */
find_ref_head(struct btrfs_delayed_ref_root * dr,u64 bytenr,bool return_bigger)378 static struct btrfs_delayed_ref_head *find_ref_head(
379 		struct btrfs_delayed_ref_root *dr, u64 bytenr,
380 		bool return_bigger)
381 {
382 	struct rb_root *root = &dr->href_root.rb_root;
383 	struct rb_node *n;
384 	struct btrfs_delayed_ref_head *entry;
385 
386 	n = root->rb_node;
387 	entry = NULL;
388 	while (n) {
389 		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
390 
391 		if (bytenr < entry->bytenr)
392 			n = n->rb_left;
393 		else if (bytenr > entry->bytenr)
394 			n = n->rb_right;
395 		else
396 			return entry;
397 	}
398 	if (entry && return_bigger) {
399 		if (bytenr > entry->bytenr) {
400 			n = rb_next(&entry->href_node);
401 			if (!n)
402 				return NULL;
403 			entry = rb_entry(n, struct btrfs_delayed_ref_head,
404 					 href_node);
405 		}
406 		return entry;
407 	}
408 	return NULL;
409 }
410 
btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)411 int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
412 			   struct btrfs_delayed_ref_head *head)
413 {
414 	lockdep_assert_held(&delayed_refs->lock);
415 	if (mutex_trylock(&head->mutex))
416 		return 0;
417 
418 	refcount_inc(&head->refs);
419 	spin_unlock(&delayed_refs->lock);
420 
421 	mutex_lock(&head->mutex);
422 	spin_lock(&delayed_refs->lock);
423 	if (RB_EMPTY_NODE(&head->href_node)) {
424 		mutex_unlock(&head->mutex);
425 		btrfs_put_delayed_ref_head(head);
426 		return -EAGAIN;
427 	}
428 	btrfs_put_delayed_ref_head(head);
429 	return 0;
430 }
431 
drop_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_ref_node * ref)432 static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
433 				    struct btrfs_delayed_ref_root *delayed_refs,
434 				    struct btrfs_delayed_ref_head *head,
435 				    struct btrfs_delayed_ref_node *ref)
436 {
437 	lockdep_assert_held(&head->lock);
438 	rb_erase_cached(&ref->ref_node, &head->ref_tree);
439 	RB_CLEAR_NODE(&ref->ref_node);
440 	if (!list_empty(&ref->add_list))
441 		list_del(&ref->add_list);
442 	ref->in_tree = 0;
443 	btrfs_put_delayed_ref(ref);
444 	atomic_dec(&delayed_refs->num_entries);
445 }
446 
merge_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_ref_node * ref,u64 seq)447 static bool merge_ref(struct btrfs_trans_handle *trans,
448 		      struct btrfs_delayed_ref_root *delayed_refs,
449 		      struct btrfs_delayed_ref_head *head,
450 		      struct btrfs_delayed_ref_node *ref,
451 		      u64 seq)
452 {
453 	struct btrfs_delayed_ref_node *next;
454 	struct rb_node *node = rb_next(&ref->ref_node);
455 	bool done = false;
456 
457 	while (!done && node) {
458 		int mod;
459 
460 		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
461 		node = rb_next(node);
462 		if (seq && next->seq >= seq)
463 			break;
464 		if (comp_refs(ref, next, false))
465 			break;
466 
467 		if (ref->action == next->action) {
468 			mod = next->ref_mod;
469 		} else {
470 			if (ref->ref_mod < next->ref_mod) {
471 				swap(ref, next);
472 				done = true;
473 			}
474 			mod = -next->ref_mod;
475 		}
476 
477 		drop_delayed_ref(trans, delayed_refs, head, next);
478 		ref->ref_mod += mod;
479 		if (ref->ref_mod == 0) {
480 			drop_delayed_ref(trans, delayed_refs, head, ref);
481 			done = true;
482 		} else {
483 			/*
484 			 * Can't have multiples of the same ref on a tree block.
485 			 */
486 			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
487 				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
488 		}
489 	}
490 
491 	return done;
492 }
493 
btrfs_merge_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)494 void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
495 			      struct btrfs_delayed_ref_root *delayed_refs,
496 			      struct btrfs_delayed_ref_head *head)
497 {
498 	struct btrfs_fs_info *fs_info = trans->fs_info;
499 	struct btrfs_delayed_ref_node *ref;
500 	struct rb_node *node;
501 	u64 seq = 0;
502 
503 	lockdep_assert_held(&head->lock);
504 
505 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
506 		return;
507 
508 	/* We don't have too many refs to merge for data. */
509 	if (head->is_data)
510 		return;
511 
512 	seq = btrfs_tree_mod_log_lowest_seq(fs_info);
513 again:
514 	for (node = rb_first_cached(&head->ref_tree); node;
515 	     node = rb_next(node)) {
516 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
517 		if (seq && ref->seq >= seq)
518 			continue;
519 		if (merge_ref(trans, delayed_refs, head, ref, seq))
520 			goto again;
521 	}
522 }
523 
btrfs_check_delayed_seq(struct btrfs_fs_info * fs_info,u64 seq)524 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
525 {
526 	int ret = 0;
527 	u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
528 
529 	if (min_seq != 0 && seq >= min_seq) {
530 		btrfs_debug(fs_info,
531 			    "holding back delayed_ref %llu, lowest is %llu",
532 			    seq, min_seq);
533 		ret = 1;
534 	}
535 
536 	return ret;
537 }
538 
btrfs_select_ref_head(struct btrfs_delayed_ref_root * delayed_refs)539 struct btrfs_delayed_ref_head *btrfs_select_ref_head(
540 		struct btrfs_delayed_ref_root *delayed_refs)
541 {
542 	struct btrfs_delayed_ref_head *head;
543 
544 again:
545 	head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
546 			     true);
547 	if (!head && delayed_refs->run_delayed_start != 0) {
548 		delayed_refs->run_delayed_start = 0;
549 		head = find_first_ref_head(delayed_refs);
550 	}
551 	if (!head)
552 		return NULL;
553 
554 	while (head->processing) {
555 		struct rb_node *node;
556 
557 		node = rb_next(&head->href_node);
558 		if (!node) {
559 			if (delayed_refs->run_delayed_start == 0)
560 				return NULL;
561 			delayed_refs->run_delayed_start = 0;
562 			goto again;
563 		}
564 		head = rb_entry(node, struct btrfs_delayed_ref_head,
565 				href_node);
566 	}
567 
568 	head->processing = 1;
569 	WARN_ON(delayed_refs->num_heads_ready == 0);
570 	delayed_refs->num_heads_ready--;
571 	delayed_refs->run_delayed_start = head->bytenr +
572 		head->num_bytes;
573 	return head;
574 }
575 
btrfs_delete_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)576 void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
577 			   struct btrfs_delayed_ref_head *head)
578 {
579 	lockdep_assert_held(&delayed_refs->lock);
580 	lockdep_assert_held(&head->lock);
581 
582 	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
583 	RB_CLEAR_NODE(&head->href_node);
584 	atomic_dec(&delayed_refs->num_entries);
585 	delayed_refs->num_heads--;
586 	if (head->processing == 0)
587 		delayed_refs->num_heads_ready--;
588 }
589 
590 /*
591  * Helper to insert the ref_node to the tail or merge with tail.
592  *
593  * Return 0 for insert.
594  * Return >0 for merge.
595  */
insert_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_root * root,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * ref)596 static int insert_delayed_ref(struct btrfs_trans_handle *trans,
597 			      struct btrfs_delayed_ref_root *root,
598 			      struct btrfs_delayed_ref_head *href,
599 			      struct btrfs_delayed_ref_node *ref)
600 {
601 	struct btrfs_delayed_ref_node *exist;
602 	int mod;
603 	int ret = 0;
604 
605 	spin_lock(&href->lock);
606 	exist = tree_insert(&href->ref_tree, ref);
607 	if (!exist)
608 		goto inserted;
609 
610 	/* Now we are sure we can merge */
611 	ret = 1;
612 	if (exist->action == ref->action) {
613 		mod = ref->ref_mod;
614 	} else {
615 		/* Need to change action */
616 		if (exist->ref_mod < ref->ref_mod) {
617 			exist->action = ref->action;
618 			mod = -exist->ref_mod;
619 			exist->ref_mod = ref->ref_mod;
620 			if (ref->action == BTRFS_ADD_DELAYED_REF)
621 				list_add_tail(&exist->add_list,
622 					      &href->ref_add_list);
623 			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
624 				ASSERT(!list_empty(&exist->add_list));
625 				list_del(&exist->add_list);
626 			} else {
627 				ASSERT(0);
628 			}
629 		} else
630 			mod = -ref->ref_mod;
631 	}
632 	exist->ref_mod += mod;
633 
634 	/* remove existing tail if its ref_mod is zero */
635 	if (exist->ref_mod == 0)
636 		drop_delayed_ref(trans, root, href, exist);
637 	spin_unlock(&href->lock);
638 	return ret;
639 inserted:
640 	if (ref->action == BTRFS_ADD_DELAYED_REF)
641 		list_add_tail(&ref->add_list, &href->ref_add_list);
642 	atomic_inc(&root->num_entries);
643 	spin_unlock(&href->lock);
644 	return ret;
645 }
646 
647 /*
648  * helper function to update the accounting in the head ref
649  * existing and update must have the same bytenr
650  */
update_existing_head_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * existing,struct btrfs_delayed_ref_head * update)651 static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
652 			 struct btrfs_delayed_ref_head *existing,
653 			 struct btrfs_delayed_ref_head *update)
654 {
655 	struct btrfs_delayed_ref_root *delayed_refs =
656 		&trans->transaction->delayed_refs;
657 	struct btrfs_fs_info *fs_info = trans->fs_info;
658 	int old_ref_mod;
659 
660 	BUG_ON(existing->is_data != update->is_data);
661 
662 	spin_lock(&existing->lock);
663 	if (update->must_insert_reserved) {
664 		/* if the extent was freed and then
665 		 * reallocated before the delayed ref
666 		 * entries were processed, we can end up
667 		 * with an existing head ref without
668 		 * the must_insert_reserved flag set.
669 		 * Set it again here
670 		 */
671 		existing->must_insert_reserved = update->must_insert_reserved;
672 
673 		/*
674 		 * update the num_bytes so we make sure the accounting
675 		 * is done correctly
676 		 */
677 		existing->num_bytes = update->num_bytes;
678 
679 	}
680 
681 	if (update->extent_op) {
682 		if (!existing->extent_op) {
683 			existing->extent_op = update->extent_op;
684 		} else {
685 			if (update->extent_op->update_key) {
686 				memcpy(&existing->extent_op->key,
687 				       &update->extent_op->key,
688 				       sizeof(update->extent_op->key));
689 				existing->extent_op->update_key = true;
690 			}
691 			if (update->extent_op->update_flags) {
692 				existing->extent_op->flags_to_set |=
693 					update->extent_op->flags_to_set;
694 				existing->extent_op->update_flags = true;
695 			}
696 			btrfs_free_delayed_extent_op(update->extent_op);
697 		}
698 	}
699 	/*
700 	 * update the reference mod on the head to reflect this new operation,
701 	 * only need the lock for this case cause we could be processing it
702 	 * currently, for refs we just added we know we're a-ok.
703 	 */
704 	old_ref_mod = existing->total_ref_mod;
705 	existing->ref_mod += update->ref_mod;
706 	existing->total_ref_mod += update->ref_mod;
707 
708 	/*
709 	 * If we are going to from a positive ref mod to a negative or vice
710 	 * versa we need to make sure to adjust pending_csums accordingly.
711 	 */
712 	if (existing->is_data) {
713 		u64 csum_leaves =
714 			btrfs_csum_bytes_to_leaves(fs_info,
715 						   existing->num_bytes);
716 
717 		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
718 			delayed_refs->pending_csums -= existing->num_bytes;
719 			btrfs_delayed_refs_rsv_release(fs_info, csum_leaves);
720 		}
721 		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
722 			delayed_refs->pending_csums += existing->num_bytes;
723 			trans->delayed_ref_updates += csum_leaves;
724 		}
725 	}
726 
727 	spin_unlock(&existing->lock);
728 }
729 
init_delayed_ref_head(struct btrfs_delayed_ref_head * head_ref,struct btrfs_qgroup_extent_record * qrecord,u64 bytenr,u64 num_bytes,u64 ref_root,u64 reserved,int action,bool is_data,bool is_system)730 static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
731 				  struct btrfs_qgroup_extent_record *qrecord,
732 				  u64 bytenr, u64 num_bytes, u64 ref_root,
733 				  u64 reserved, int action, bool is_data,
734 				  bool is_system)
735 {
736 	int count_mod = 1;
737 	int must_insert_reserved = 0;
738 
739 	/* If reserved is provided, it must be a data extent. */
740 	BUG_ON(!is_data && reserved);
741 
742 	/*
743 	 * The head node stores the sum of all the mods, so dropping a ref
744 	 * should drop the sum in the head node by one.
745 	 */
746 	if (action == BTRFS_UPDATE_DELAYED_HEAD)
747 		count_mod = 0;
748 	else if (action == BTRFS_DROP_DELAYED_REF)
749 		count_mod = -1;
750 
751 	/*
752 	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved
753 	 * accounting when the extent is finally added, or if a later
754 	 * modification deletes the delayed ref without ever inserting the
755 	 * extent into the extent allocation tree.  ref->must_insert_reserved
756 	 * is the flag used to record that accounting mods are required.
757 	 *
758 	 * Once we record must_insert_reserved, switch the action to
759 	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
760 	 */
761 	if (action == BTRFS_ADD_DELAYED_EXTENT)
762 		must_insert_reserved = 1;
763 	else
764 		must_insert_reserved = 0;
765 
766 	refcount_set(&head_ref->refs, 1);
767 	head_ref->bytenr = bytenr;
768 	head_ref->num_bytes = num_bytes;
769 	head_ref->ref_mod = count_mod;
770 	head_ref->must_insert_reserved = must_insert_reserved;
771 	head_ref->is_data = is_data;
772 	head_ref->is_system = is_system;
773 	head_ref->ref_tree = RB_ROOT_CACHED;
774 	INIT_LIST_HEAD(&head_ref->ref_add_list);
775 	RB_CLEAR_NODE(&head_ref->href_node);
776 	head_ref->processing = 0;
777 	head_ref->total_ref_mod = count_mod;
778 	spin_lock_init(&head_ref->lock);
779 	mutex_init(&head_ref->mutex);
780 
781 	if (qrecord) {
782 		if (ref_root && reserved) {
783 			qrecord->data_rsv = reserved;
784 			qrecord->data_rsv_refroot = ref_root;
785 		}
786 		qrecord->bytenr = bytenr;
787 		qrecord->num_bytes = num_bytes;
788 		qrecord->old_roots = NULL;
789 	}
790 }
791 
792 /*
793  * helper function to actually insert a head node into the rbtree.
794  * this does all the dirty work in terms of maintaining the correct
795  * overall modification count.
796  */
797 static noinline struct btrfs_delayed_ref_head *
add_delayed_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head_ref,struct btrfs_qgroup_extent_record * qrecord,int action,int * qrecord_inserted_ret)798 add_delayed_ref_head(struct btrfs_trans_handle *trans,
799 		     struct btrfs_delayed_ref_head *head_ref,
800 		     struct btrfs_qgroup_extent_record *qrecord,
801 		     int action, int *qrecord_inserted_ret)
802 {
803 	struct btrfs_delayed_ref_head *existing;
804 	struct btrfs_delayed_ref_root *delayed_refs;
805 	int qrecord_inserted = 0;
806 
807 	delayed_refs = &trans->transaction->delayed_refs;
808 
809 	/* Record qgroup extent info if provided */
810 	if (qrecord) {
811 		if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
812 					delayed_refs, qrecord))
813 			kfree(qrecord);
814 		else
815 			qrecord_inserted = 1;
816 	}
817 
818 	trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
819 
820 	existing = htree_insert(&delayed_refs->href_root,
821 				&head_ref->href_node);
822 	if (existing) {
823 		update_existing_head_ref(trans, existing, head_ref);
824 		/*
825 		 * we've updated the existing ref, free the newly
826 		 * allocated ref
827 		 */
828 		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
829 		head_ref = existing;
830 	} else {
831 		if (head_ref->is_data && head_ref->ref_mod < 0) {
832 			delayed_refs->pending_csums += head_ref->num_bytes;
833 			trans->delayed_ref_updates +=
834 				btrfs_csum_bytes_to_leaves(trans->fs_info,
835 							   head_ref->num_bytes);
836 		}
837 		delayed_refs->num_heads++;
838 		delayed_refs->num_heads_ready++;
839 		atomic_inc(&delayed_refs->num_entries);
840 		trans->delayed_ref_updates++;
841 	}
842 	if (qrecord_inserted_ret)
843 		*qrecord_inserted_ret = qrecord_inserted;
844 
845 	return head_ref;
846 }
847 
848 /*
849  * init_delayed_ref_common - Initialize the structure which represents a
850  *			     modification to a an extent.
851  *
852  * @fs_info:    Internal to the mounted filesystem mount structure.
853  *
854  * @ref:	The structure which is going to be initialized.
855  *
856  * @bytenr:	The logical address of the extent for which a modification is
857  *		going to be recorded.
858  *
859  * @num_bytes:  Size of the extent whose modification is being recorded.
860  *
861  * @ref_root:	The id of the root where this modification has originated, this
862  *		can be either one of the well-known metadata trees or the
863  *		subvolume id which references this extent.
864  *
865  * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
866  *		BTRFS_ADD_DELAYED_EXTENT
867  *
868  * @ref_type:	Holds the type of the extent which is being recorded, can be
869  *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
870  *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
871  *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
872  */
init_delayed_ref_common(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_node * ref,u64 bytenr,u64 num_bytes,u64 ref_root,int action,u8 ref_type)873 static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
874 				    struct btrfs_delayed_ref_node *ref,
875 				    u64 bytenr, u64 num_bytes, u64 ref_root,
876 				    int action, u8 ref_type)
877 {
878 	u64 seq = 0;
879 
880 	if (action == BTRFS_ADD_DELAYED_EXTENT)
881 		action = BTRFS_ADD_DELAYED_REF;
882 
883 	if (is_fstree(ref_root))
884 		seq = atomic64_read(&fs_info->tree_mod_seq);
885 
886 	refcount_set(&ref->refs, 1);
887 	ref->bytenr = bytenr;
888 	ref->num_bytes = num_bytes;
889 	ref->ref_mod = 1;
890 	ref->action = action;
891 	ref->is_head = 0;
892 	ref->in_tree = 1;
893 	ref->seq = seq;
894 	ref->type = ref_type;
895 	RB_CLEAR_NODE(&ref->ref_node);
896 	INIT_LIST_HEAD(&ref->add_list);
897 }
898 
899 /*
900  * add a delayed tree ref.  This does all of the accounting required
901  * to make sure the delayed ref is eventually processed before this
902  * transaction commits.
903  */
btrfs_add_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref,struct btrfs_delayed_extent_op * extent_op)904 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
905 			       struct btrfs_ref *generic_ref,
906 			       struct btrfs_delayed_extent_op *extent_op)
907 {
908 	struct btrfs_fs_info *fs_info = trans->fs_info;
909 	struct btrfs_delayed_tree_ref *ref;
910 	struct btrfs_delayed_ref_head *head_ref;
911 	struct btrfs_delayed_ref_root *delayed_refs;
912 	struct btrfs_qgroup_extent_record *record = NULL;
913 	int qrecord_inserted;
914 	bool is_system;
915 	int action = generic_ref->action;
916 	int level = generic_ref->tree_ref.level;
917 	int ret;
918 	u64 bytenr = generic_ref->bytenr;
919 	u64 num_bytes = generic_ref->len;
920 	u64 parent = generic_ref->parent;
921 	u8 ref_type;
922 
923 	is_system = (generic_ref->tree_ref.owning_root == BTRFS_CHUNK_TREE_OBJECTID);
924 
925 	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
926 	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
927 	if (!ref)
928 		return -ENOMEM;
929 
930 	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
931 	if (!head_ref) {
932 		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
933 		return -ENOMEM;
934 	}
935 
936 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
937 	    !generic_ref->skip_qgroup) {
938 		record = kzalloc(sizeof(*record), GFP_NOFS);
939 		if (!record) {
940 			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
941 			kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
942 			return -ENOMEM;
943 		}
944 	}
945 
946 	if (parent)
947 		ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
948 	else
949 		ref_type = BTRFS_TREE_BLOCK_REF_KEY;
950 
951 	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
952 				generic_ref->tree_ref.owning_root, action,
953 				ref_type);
954 	ref->root = generic_ref->tree_ref.owning_root;
955 	ref->parent = parent;
956 	ref->level = level;
957 
958 	init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
959 			      generic_ref->tree_ref.owning_root, 0, action,
960 			      false, is_system);
961 	head_ref->extent_op = extent_op;
962 
963 	delayed_refs = &trans->transaction->delayed_refs;
964 	spin_lock(&delayed_refs->lock);
965 
966 	/*
967 	 * insert both the head node and the new ref without dropping
968 	 * the spin lock
969 	 */
970 	head_ref = add_delayed_ref_head(trans, head_ref, record,
971 					action, &qrecord_inserted);
972 
973 	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
974 	spin_unlock(&delayed_refs->lock);
975 
976 	/*
977 	 * Need to update the delayed_refs_rsv with any changes we may have
978 	 * made.
979 	 */
980 	btrfs_update_delayed_refs_rsv(trans);
981 
982 	trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
983 				   action == BTRFS_ADD_DELAYED_EXTENT ?
984 				   BTRFS_ADD_DELAYED_REF : action);
985 	if (ret > 0)
986 		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
987 
988 	if (qrecord_inserted)
989 		btrfs_qgroup_trace_extent_post(trans, record);
990 
991 	return 0;
992 }
993 
994 /*
995  * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
996  */
btrfs_add_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref,u64 reserved)997 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
998 			       struct btrfs_ref *generic_ref,
999 			       u64 reserved)
1000 {
1001 	struct btrfs_fs_info *fs_info = trans->fs_info;
1002 	struct btrfs_delayed_data_ref *ref;
1003 	struct btrfs_delayed_ref_head *head_ref;
1004 	struct btrfs_delayed_ref_root *delayed_refs;
1005 	struct btrfs_qgroup_extent_record *record = NULL;
1006 	int qrecord_inserted;
1007 	int action = generic_ref->action;
1008 	int ret;
1009 	u64 bytenr = generic_ref->bytenr;
1010 	u64 num_bytes = generic_ref->len;
1011 	u64 parent = generic_ref->parent;
1012 	u64 ref_root = generic_ref->data_ref.owning_root;
1013 	u64 owner = generic_ref->data_ref.ino;
1014 	u64 offset = generic_ref->data_ref.offset;
1015 	u8 ref_type;
1016 
1017 	ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1018 	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1019 	if (!ref)
1020 		return -ENOMEM;
1021 
1022 	if (parent)
1023 	        ref_type = BTRFS_SHARED_DATA_REF_KEY;
1024 	else
1025 	        ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1026 	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1027 				ref_root, action, ref_type);
1028 	ref->root = ref_root;
1029 	ref->parent = parent;
1030 	ref->objectid = owner;
1031 	ref->offset = offset;
1032 
1033 
1034 	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1035 	if (!head_ref) {
1036 		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1037 		return -ENOMEM;
1038 	}
1039 
1040 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
1041 	    !generic_ref->skip_qgroup) {
1042 		record = kzalloc(sizeof(*record), GFP_NOFS);
1043 		if (!record) {
1044 			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1045 			kmem_cache_free(btrfs_delayed_ref_head_cachep,
1046 					head_ref);
1047 			return -ENOMEM;
1048 		}
1049 	}
1050 
1051 	init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1052 			      reserved, action, true, false);
1053 	head_ref->extent_op = NULL;
1054 
1055 	delayed_refs = &trans->transaction->delayed_refs;
1056 	spin_lock(&delayed_refs->lock);
1057 
1058 	/*
1059 	 * insert both the head node and the new ref without dropping
1060 	 * the spin lock
1061 	 */
1062 	head_ref = add_delayed_ref_head(trans, head_ref, record,
1063 					action, &qrecord_inserted);
1064 
1065 	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
1066 	spin_unlock(&delayed_refs->lock);
1067 
1068 	/*
1069 	 * Need to update the delayed_refs_rsv with any changes we may have
1070 	 * made.
1071 	 */
1072 	btrfs_update_delayed_refs_rsv(trans);
1073 
1074 	trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1075 				   action == BTRFS_ADD_DELAYED_EXTENT ?
1076 				   BTRFS_ADD_DELAYED_REF : action);
1077 	if (ret > 0)
1078 		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1079 
1080 
1081 	if (qrecord_inserted)
1082 		return btrfs_qgroup_trace_extent_post(trans, record);
1083 	return 0;
1084 }
1085 
btrfs_add_delayed_extent_op(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,struct btrfs_delayed_extent_op * extent_op)1086 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1087 				u64 bytenr, u64 num_bytes,
1088 				struct btrfs_delayed_extent_op *extent_op)
1089 {
1090 	struct btrfs_delayed_ref_head *head_ref;
1091 	struct btrfs_delayed_ref_root *delayed_refs;
1092 
1093 	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1094 	if (!head_ref)
1095 		return -ENOMEM;
1096 
1097 	init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1098 			      BTRFS_UPDATE_DELAYED_HEAD, false, false);
1099 	head_ref->extent_op = extent_op;
1100 
1101 	delayed_refs = &trans->transaction->delayed_refs;
1102 	spin_lock(&delayed_refs->lock);
1103 
1104 	add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1105 			     NULL);
1106 
1107 	spin_unlock(&delayed_refs->lock);
1108 
1109 	/*
1110 	 * Need to update the delayed_refs_rsv with any changes we may have
1111 	 * made.
1112 	 */
1113 	btrfs_update_delayed_refs_rsv(trans);
1114 	return 0;
1115 }
1116 
1117 /*
1118  * This does a simple search for the head node for a given extent.  Returns the
1119  * head node if found, or NULL if not.
1120  */
1121 struct btrfs_delayed_ref_head *
btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root * delayed_refs,u64 bytenr)1122 btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1123 {
1124 	lockdep_assert_held(&delayed_refs->lock);
1125 
1126 	return find_ref_head(delayed_refs, bytenr, false);
1127 }
1128 
btrfs_delayed_ref_exit(void)1129 void __cold btrfs_delayed_ref_exit(void)
1130 {
1131 	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1132 	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1133 	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1134 	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1135 }
1136 
btrfs_delayed_ref_init(void)1137 int __init btrfs_delayed_ref_init(void)
1138 {
1139 	btrfs_delayed_ref_head_cachep = kmem_cache_create(
1140 				"btrfs_delayed_ref_head",
1141 				sizeof(struct btrfs_delayed_ref_head), 0,
1142 				SLAB_MEM_SPREAD, NULL);
1143 	if (!btrfs_delayed_ref_head_cachep)
1144 		goto fail;
1145 
1146 	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1147 				"btrfs_delayed_tree_ref",
1148 				sizeof(struct btrfs_delayed_tree_ref), 0,
1149 				SLAB_MEM_SPREAD, NULL);
1150 	if (!btrfs_delayed_tree_ref_cachep)
1151 		goto fail;
1152 
1153 	btrfs_delayed_data_ref_cachep = kmem_cache_create(
1154 				"btrfs_delayed_data_ref",
1155 				sizeof(struct btrfs_delayed_data_ref), 0,
1156 				SLAB_MEM_SPREAD, NULL);
1157 	if (!btrfs_delayed_data_ref_cachep)
1158 		goto fail;
1159 
1160 	btrfs_delayed_extent_op_cachep = kmem_cache_create(
1161 				"btrfs_delayed_extent_op",
1162 				sizeof(struct btrfs_delayed_extent_op), 0,
1163 				SLAB_MEM_SPREAD, NULL);
1164 	if (!btrfs_delayed_extent_op_cachep)
1165 		goto fail;
1166 
1167 	return 0;
1168 fail:
1169 	btrfs_delayed_ref_exit();
1170 	return -ENOMEM;
1171 }
1172