1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 * on-disk ntfs structs
7 */
8
9 // clang-format off
10 #ifndef _LINUX_NTFS3_NTFS_H
11 #define _LINUX_NTFS3_NTFS_H
12
13 #include <linux/blkdev.h>
14 #include <linux/build_bug.h>
15 #include <linux/kernel.h>
16 #include <linux/stddef.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19
20 #include "debug.h"
21
22 /* TODO: Check 4K MFT record and 512 bytes cluster. */
23
24 /* Check each run for marked clusters. */
25 #define NTFS3_CHECK_FREE_CLST
26
27 #define NTFS_NAME_LEN 255
28
29 /*
30 * ntfs.sys used 500 maximum links on-disk struct allows up to 0xffff.
31 * xfstest generic/041 creates 3003 hardlinks.
32 */
33 #define NTFS_LINK_MAX 4000
34
35 /*
36 * Activate to use 64 bit clusters instead of 32 bits in ntfs.sys.
37 * Logical and virtual cluster number if needed, may be
38 * redefined to use 64 bit value.
39 */
40 //#define CONFIG_NTFS3_64BIT_CLUSTER
41
42 #define NTFS_LZNT_MAX_CLUSTER 4096
43 #define NTFS_LZNT_CUNIT 4
44 #define NTFS_LZNT_CLUSTERS (1u<<NTFS_LZNT_CUNIT)
45
46 struct GUID {
47 __le32 Data1;
48 __le16 Data2;
49 __le16 Data3;
50 u8 Data4[8];
51 };
52
53 /*
54 * This struct repeats layout of ATTR_FILE_NAME
55 * at offset 0x40.
56 * It used to store global constants NAME_MFT/NAME_MIRROR...
57 * most constant names are shorter than 10.
58 */
59 struct cpu_str {
60 u8 len;
61 u8 unused;
62 u16 name[10];
63 };
64
65 struct le_str {
66 u8 len;
67 u8 unused;
68 __le16 name[];
69 };
70
71 static_assert(SECTOR_SHIFT == 9);
72
73 #ifdef CONFIG_NTFS3_64BIT_CLUSTER
74 typedef u64 CLST;
75 static_assert(sizeof(size_t) == 8);
76 #else
77 typedef u32 CLST;
78 #endif
79
80 #define SPARSE_LCN64 ((u64)-1)
81 #define SPARSE_LCN ((CLST)-1)
82 #define RESIDENT_LCN ((CLST)-2)
83 #define COMPRESSED_LCN ((CLST)-3)
84
85 #define COMPRESSION_UNIT 4
86 #define COMPRESS_MAX_CLUSTER 0x1000
87 #define MFT_INCREASE_CHUNK 1024
88
89 enum RECORD_NUM {
90 MFT_REC_MFT = 0,
91 MFT_REC_MIRR = 1,
92 MFT_REC_LOG = 2,
93 MFT_REC_VOL = 3,
94 MFT_REC_ATTR = 4,
95 MFT_REC_ROOT = 5,
96 MFT_REC_BITMAP = 6,
97 MFT_REC_BOOT = 7,
98 MFT_REC_BADCLUST = 8,
99 //MFT_REC_QUOTA = 9,
100 MFT_REC_SECURE = 9, // NTFS 3.0
101 MFT_REC_UPCASE = 10,
102 MFT_REC_EXTEND = 11, // NTFS 3.0
103 MFT_REC_RESERVED = 11,
104 MFT_REC_FREE = 16,
105 MFT_REC_USER = 24,
106 };
107
108 enum ATTR_TYPE {
109 ATTR_ZERO = cpu_to_le32(0x00),
110 ATTR_STD = cpu_to_le32(0x10),
111 ATTR_LIST = cpu_to_le32(0x20),
112 ATTR_NAME = cpu_to_le32(0x30),
113 // ATTR_VOLUME_VERSION on Nt4
114 ATTR_ID = cpu_to_le32(0x40),
115 ATTR_SECURE = cpu_to_le32(0x50),
116 ATTR_LABEL = cpu_to_le32(0x60),
117 ATTR_VOL_INFO = cpu_to_le32(0x70),
118 ATTR_DATA = cpu_to_le32(0x80),
119 ATTR_ROOT = cpu_to_le32(0x90),
120 ATTR_ALLOC = cpu_to_le32(0xA0),
121 ATTR_BITMAP = cpu_to_le32(0xB0),
122 // ATTR_SYMLINK on Nt4
123 ATTR_REPARSE = cpu_to_le32(0xC0),
124 ATTR_EA_INFO = cpu_to_le32(0xD0),
125 ATTR_EA = cpu_to_le32(0xE0),
126 ATTR_PROPERTYSET = cpu_to_le32(0xF0),
127 ATTR_LOGGED_UTILITY_STREAM = cpu_to_le32(0x100),
128 ATTR_END = cpu_to_le32(0xFFFFFFFF)
129 };
130
131 static_assert(sizeof(enum ATTR_TYPE) == 4);
132
133 enum FILE_ATTRIBUTE {
134 FILE_ATTRIBUTE_READONLY = cpu_to_le32(0x00000001),
135 FILE_ATTRIBUTE_HIDDEN = cpu_to_le32(0x00000002),
136 FILE_ATTRIBUTE_SYSTEM = cpu_to_le32(0x00000004),
137 FILE_ATTRIBUTE_ARCHIVE = cpu_to_le32(0x00000020),
138 FILE_ATTRIBUTE_DEVICE = cpu_to_le32(0x00000040),
139 FILE_ATTRIBUTE_TEMPORARY = cpu_to_le32(0x00000100),
140 FILE_ATTRIBUTE_SPARSE_FILE = cpu_to_le32(0x00000200),
141 FILE_ATTRIBUTE_REPARSE_POINT = cpu_to_le32(0x00000400),
142 FILE_ATTRIBUTE_COMPRESSED = cpu_to_le32(0x00000800),
143 FILE_ATTRIBUTE_OFFLINE = cpu_to_le32(0x00001000),
144 FILE_ATTRIBUTE_NOT_CONTENT_INDEXED = cpu_to_le32(0x00002000),
145 FILE_ATTRIBUTE_ENCRYPTED = cpu_to_le32(0x00004000),
146 FILE_ATTRIBUTE_VALID_FLAGS = cpu_to_le32(0x00007fb7),
147 FILE_ATTRIBUTE_DIRECTORY = cpu_to_le32(0x10000000),
148 };
149
150 static_assert(sizeof(enum FILE_ATTRIBUTE) == 4);
151
152 extern const struct cpu_str NAME_MFT;
153 extern const struct cpu_str NAME_MIRROR;
154 extern const struct cpu_str NAME_LOGFILE;
155 extern const struct cpu_str NAME_VOLUME;
156 extern const struct cpu_str NAME_ATTRDEF;
157 extern const struct cpu_str NAME_ROOT;
158 extern const struct cpu_str NAME_BITMAP;
159 extern const struct cpu_str NAME_BOOT;
160 extern const struct cpu_str NAME_BADCLUS;
161 extern const struct cpu_str NAME_QUOTA;
162 extern const struct cpu_str NAME_SECURE;
163 extern const struct cpu_str NAME_UPCASE;
164 extern const struct cpu_str NAME_EXTEND;
165 extern const struct cpu_str NAME_OBJID;
166 extern const struct cpu_str NAME_REPARSE;
167 extern const struct cpu_str NAME_USNJRNL;
168
169 extern const __le16 I30_NAME[4];
170 extern const __le16 SII_NAME[4];
171 extern const __le16 SDH_NAME[4];
172 extern const __le16 SO_NAME[2];
173 extern const __le16 SQ_NAME[2];
174 extern const __le16 SR_NAME[2];
175
176 extern const __le16 BAD_NAME[4];
177 extern const __le16 SDS_NAME[4];
178 extern const __le16 WOF_NAME[17]; /* WofCompressedData */
179
180 /* MFT record number structure. */
181 struct MFT_REF {
182 __le32 low; // The low part of the number.
183 __le16 high; // The high part of the number.
184 __le16 seq; // The sequence number of MFT record.
185 };
186
187 static_assert(sizeof(__le64) == sizeof(struct MFT_REF));
188
ino_get(const struct MFT_REF * ref)189 static inline CLST ino_get(const struct MFT_REF *ref)
190 {
191 #ifdef CONFIG_NTFS3_64BIT_CLUSTER
192 return le32_to_cpu(ref->low) | ((u64)le16_to_cpu(ref->high) << 32);
193 #else
194 return le32_to_cpu(ref->low);
195 #endif
196 }
197
198 struct NTFS_BOOT {
199 u8 jump_code[3]; // 0x00: Jump to boot code.
200 u8 system_id[8]; // 0x03: System ID, equals "NTFS "
201
202 // NOTE: This member is not aligned(!)
203 // bytes_per_sector[0] must be 0.
204 // bytes_per_sector[1] must be multiplied by 256.
205 u8 bytes_per_sector[2]; // 0x0B: Bytes per sector.
206
207 u8 sectors_per_clusters;// 0x0D: Sectors per cluster.
208 u8 unused1[7];
209 u8 media_type; // 0x15: Media type (0xF8 - harddisk)
210 u8 unused2[2];
211 __le16 sct_per_track; // 0x18: number of sectors per track.
212 __le16 heads; // 0x1A: number of heads per cylinder.
213 __le32 hidden_sectors; // 0x1C: number of 'hidden' sectors.
214 u8 unused3[4];
215 u8 bios_drive_num; // 0x24: BIOS drive number =0x80.
216 u8 unused4;
217 u8 signature_ex; // 0x26: Extended BOOT signature =0x80.
218 u8 unused5;
219 __le64 sectors_per_volume;// 0x28: Size of volume in sectors.
220 __le64 mft_clst; // 0x30: First cluster of $MFT
221 __le64 mft2_clst; // 0x38: First cluster of $MFTMirr
222 s8 record_size; // 0x40: Size of MFT record in clusters(sectors).
223 u8 unused6[3];
224 s8 index_size; // 0x44: Size of INDX record in clusters(sectors).
225 u8 unused7[3];
226 __le64 serial_num; // 0x48: Volume serial number
227 __le32 check_sum; // 0x50: Simple additive checksum of all
228 // of the u32's which precede the 'check_sum'.
229
230 u8 boot_code[0x200 - 0x50 - 2 - 4]; // 0x54:
231 u8 boot_magic[2]; // 0x1FE: Boot signature =0x55 + 0xAA
232 };
233
234 static_assert(sizeof(struct NTFS_BOOT) == 0x200);
235
236 enum NTFS_SIGNATURE {
237 NTFS_FILE_SIGNATURE = cpu_to_le32(0x454C4946), // 'FILE'
238 NTFS_INDX_SIGNATURE = cpu_to_le32(0x58444E49), // 'INDX'
239 NTFS_CHKD_SIGNATURE = cpu_to_le32(0x444B4843), // 'CHKD'
240 NTFS_RSTR_SIGNATURE = cpu_to_le32(0x52545352), // 'RSTR'
241 NTFS_RCRD_SIGNATURE = cpu_to_le32(0x44524352), // 'RCRD'
242 NTFS_BAAD_SIGNATURE = cpu_to_le32(0x44414142), // 'BAAD'
243 NTFS_HOLE_SIGNATURE = cpu_to_le32(0x454C4F48), // 'HOLE'
244 NTFS_FFFF_SIGNATURE = cpu_to_le32(0xffffffff),
245 };
246
247 static_assert(sizeof(enum NTFS_SIGNATURE) == 4);
248
249 /* MFT Record header structure. */
250 struct NTFS_RECORD_HEADER {
251 /* Record magic number, equals 'FILE'/'INDX'/'RSTR'/'RCRD'. */
252 enum NTFS_SIGNATURE sign; // 0x00:
253 __le16 fix_off; // 0x04:
254 __le16 fix_num; // 0x06:
255 __le64 lsn; // 0x08: Log file sequence number,
256 };
257
258 static_assert(sizeof(struct NTFS_RECORD_HEADER) == 0x10);
259
is_baad(const struct NTFS_RECORD_HEADER * hdr)260 static inline int is_baad(const struct NTFS_RECORD_HEADER *hdr)
261 {
262 return hdr->sign == NTFS_BAAD_SIGNATURE;
263 }
264
265 /* Possible bits in struct MFT_REC.flags. */
266 enum RECORD_FLAG {
267 RECORD_FLAG_IN_USE = cpu_to_le16(0x0001),
268 RECORD_FLAG_DIR = cpu_to_le16(0x0002),
269 RECORD_FLAG_SYSTEM = cpu_to_le16(0x0004),
270 RECORD_FLAG_UNKNOWN = cpu_to_le16(0x0008),
271 };
272
273 /* MFT Record structure. */
274 struct MFT_REC {
275 struct NTFS_RECORD_HEADER rhdr; // 'FILE'
276
277 __le16 seq; // 0x10: Sequence number for this record.
278 __le16 hard_links; // 0x12: The number of hard links to record.
279 __le16 attr_off; // 0x14: Offset to attributes.
280 __le16 flags; // 0x16: See RECORD_FLAG.
281 __le32 used; // 0x18: The size of used part.
282 __le32 total; // 0x1C: Total record size.
283
284 struct MFT_REF parent_ref; // 0x20: Parent MFT record.
285 __le16 next_attr_id; // 0x28: The next attribute Id.
286
287 __le16 res; // 0x2A: High part of MFT record?
288 __le32 mft_record; // 0x2C: Current MFT record number.
289 __le16 fixups[]; // 0x30:
290 };
291
292 #define MFTRECORD_FIXUP_OFFSET_1 offsetof(struct MFT_REC, res)
293 #define MFTRECORD_FIXUP_OFFSET_3 offsetof(struct MFT_REC, fixups)
294
295 static_assert(MFTRECORD_FIXUP_OFFSET_1 == 0x2A);
296 static_assert(MFTRECORD_FIXUP_OFFSET_3 == 0x30);
297
is_rec_base(const struct MFT_REC * rec)298 static inline bool is_rec_base(const struct MFT_REC *rec)
299 {
300 const struct MFT_REF *r = &rec->parent_ref;
301
302 return !r->low && !r->high && !r->seq;
303 }
304
is_mft_rec5(const struct MFT_REC * rec)305 static inline bool is_mft_rec5(const struct MFT_REC *rec)
306 {
307 return le16_to_cpu(rec->rhdr.fix_off) >=
308 offsetof(struct MFT_REC, fixups);
309 }
310
is_rec_inuse(const struct MFT_REC * rec)311 static inline bool is_rec_inuse(const struct MFT_REC *rec)
312 {
313 return rec->flags & RECORD_FLAG_IN_USE;
314 }
315
clear_rec_inuse(struct MFT_REC * rec)316 static inline bool clear_rec_inuse(struct MFT_REC *rec)
317 {
318 return rec->flags &= ~RECORD_FLAG_IN_USE;
319 }
320
321 /* Possible values of ATTR_RESIDENT.flags */
322 #define RESIDENT_FLAG_INDEXED 0x01
323
324 struct ATTR_RESIDENT {
325 __le32 data_size; // 0x10: The size of data.
326 __le16 data_off; // 0x14: Offset to data.
327 u8 flags; // 0x16: Resident flags ( 1 - indexed ).
328 u8 res; // 0x17:
329 }; // sizeof() = 0x18
330
331 struct ATTR_NONRESIDENT {
332 __le64 svcn; // 0x10: Starting VCN of this segment.
333 __le64 evcn; // 0x18: End VCN of this segment.
334 __le16 run_off; // 0x20: Offset to packed runs.
335 // Unit of Compression size for this stream, expressed
336 // as a log of the cluster size.
337 //
338 // 0 means file is not compressed
339 // 1, 2, 3, and 4 are potentially legal values if the
340 // stream is compressed, however the implementation
341 // may only choose to use 4, or possibly 3. Note
342 // that 4 means cluster size time 16. If convenient
343 // the implementation may wish to accept a
344 // reasonable range of legal values here (1-5?),
345 // even if the implementation only generates
346 // a smaller set of values itself.
347 u8 c_unit; // 0x22:
348 u8 res1[5]; // 0x23:
349 __le64 alloc_size; // 0x28: The allocated size of attribute in bytes.
350 // (multiple of cluster size)
351 __le64 data_size; // 0x30: The size of attribute in bytes <= alloc_size.
352 __le64 valid_size; // 0x38: The size of valid part in bytes <= data_size.
353 __le64 total_size; // 0x40: The sum of the allocated clusters for a file.
354 // (present only for the first segment (0 == vcn)
355 // of compressed attribute)
356
357 }; // sizeof()=0x40 or 0x48 (if compressed)
358
359 /* Possible values of ATTRIB.flags: */
360 #define ATTR_FLAG_COMPRESSED cpu_to_le16(0x0001)
361 #define ATTR_FLAG_COMPRESSED_MASK cpu_to_le16(0x00FF)
362 #define ATTR_FLAG_ENCRYPTED cpu_to_le16(0x4000)
363 #define ATTR_FLAG_SPARSED cpu_to_le16(0x8000)
364
365 struct ATTRIB {
366 enum ATTR_TYPE type; // 0x00: The type of this attribute.
367 __le32 size; // 0x04: The size of this attribute.
368 u8 non_res; // 0x08: Is this attribute non-resident?
369 u8 name_len; // 0x09: This attribute name length.
370 __le16 name_off; // 0x0A: Offset to the attribute name.
371 __le16 flags; // 0x0C: See ATTR_FLAG_XXX.
372 __le16 id; // 0x0E: Unique id (per record).
373
374 union {
375 struct ATTR_RESIDENT res; // 0x10
376 struct ATTR_NONRESIDENT nres; // 0x10
377 };
378 };
379
380 /* Define attribute sizes. */
381 #define SIZEOF_RESIDENT 0x18
382 #define SIZEOF_NONRESIDENT_EX 0x48
383 #define SIZEOF_NONRESIDENT 0x40
384
385 #define SIZEOF_RESIDENT_LE cpu_to_le16(0x18)
386 #define SIZEOF_NONRESIDENT_EX_LE cpu_to_le16(0x48)
387 #define SIZEOF_NONRESIDENT_LE cpu_to_le16(0x40)
388
attr_ondisk_size(const struct ATTRIB * attr)389 static inline u64 attr_ondisk_size(const struct ATTRIB *attr)
390 {
391 return attr->non_res ? ((attr->flags &
392 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
393 le64_to_cpu(attr->nres.total_size) :
394 le64_to_cpu(attr->nres.alloc_size))
395 : ALIGN(le32_to_cpu(attr->res.data_size), 8);
396 }
397
attr_size(const struct ATTRIB * attr)398 static inline u64 attr_size(const struct ATTRIB *attr)
399 {
400 return attr->non_res ? le64_to_cpu(attr->nres.data_size) :
401 le32_to_cpu(attr->res.data_size);
402 }
403
is_attr_encrypted(const struct ATTRIB * attr)404 static inline bool is_attr_encrypted(const struct ATTRIB *attr)
405 {
406 return attr->flags & ATTR_FLAG_ENCRYPTED;
407 }
408
is_attr_sparsed(const struct ATTRIB * attr)409 static inline bool is_attr_sparsed(const struct ATTRIB *attr)
410 {
411 return attr->flags & ATTR_FLAG_SPARSED;
412 }
413
is_attr_compressed(const struct ATTRIB * attr)414 static inline bool is_attr_compressed(const struct ATTRIB *attr)
415 {
416 return attr->flags & ATTR_FLAG_COMPRESSED;
417 }
418
is_attr_ext(const struct ATTRIB * attr)419 static inline bool is_attr_ext(const struct ATTRIB *attr)
420 {
421 return attr->flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED);
422 }
423
is_attr_indexed(const struct ATTRIB * attr)424 static inline bool is_attr_indexed(const struct ATTRIB *attr)
425 {
426 return !attr->non_res && (attr->res.flags & RESIDENT_FLAG_INDEXED);
427 }
428
attr_name(const struct ATTRIB * attr)429 static inline __le16 const *attr_name(const struct ATTRIB *attr)
430 {
431 return Add2Ptr(attr, le16_to_cpu(attr->name_off));
432 }
433
attr_svcn(const struct ATTRIB * attr)434 static inline u64 attr_svcn(const struct ATTRIB *attr)
435 {
436 return attr->non_res ? le64_to_cpu(attr->nres.svcn) : 0;
437 }
438
439 static_assert(sizeof(struct ATTRIB) == 0x48);
440 static_assert(sizeof(((struct ATTRIB *)NULL)->res) == 0x08);
441 static_assert(sizeof(((struct ATTRIB *)NULL)->nres) == 0x38);
442
resident_data_ex(const struct ATTRIB * attr,u32 datasize)443 static inline void *resident_data_ex(const struct ATTRIB *attr, u32 datasize)
444 {
445 u32 asize, rsize;
446 u16 off;
447
448 if (attr->non_res)
449 return NULL;
450
451 asize = le32_to_cpu(attr->size);
452 off = le16_to_cpu(attr->res.data_off);
453
454 if (asize < datasize + off)
455 return NULL;
456
457 rsize = le32_to_cpu(attr->res.data_size);
458 if (rsize < datasize)
459 return NULL;
460
461 return Add2Ptr(attr, off);
462 }
463
resident_data(const struct ATTRIB * attr)464 static inline void *resident_data(const struct ATTRIB *attr)
465 {
466 return Add2Ptr(attr, le16_to_cpu(attr->res.data_off));
467 }
468
attr_run(const struct ATTRIB * attr)469 static inline void *attr_run(const struct ATTRIB *attr)
470 {
471 return Add2Ptr(attr, le16_to_cpu(attr->nres.run_off));
472 }
473
474 /* Standard information attribute (0x10). */
475 struct ATTR_STD_INFO {
476 __le64 cr_time; // 0x00: File creation file.
477 __le64 m_time; // 0x08: File modification time.
478 __le64 c_time; // 0x10: Last time any attribute was modified.
479 __le64 a_time; // 0x18: File last access time.
480 enum FILE_ATTRIBUTE fa; // 0x20: Standard DOS attributes & more.
481 __le32 max_ver_num; // 0x24: Maximum Number of Versions.
482 __le32 ver_num; // 0x28: Version Number.
483 __le32 class_id; // 0x2C: Class Id from bidirectional Class Id index.
484 };
485
486 static_assert(sizeof(struct ATTR_STD_INFO) == 0x30);
487
488 #define SECURITY_ID_INVALID 0x00000000
489 #define SECURITY_ID_FIRST 0x00000100
490
491 struct ATTR_STD_INFO5 {
492 __le64 cr_time; // 0x00: File creation file.
493 __le64 m_time; // 0x08: File modification time.
494 __le64 c_time; // 0x10: Last time any attribute was modified.
495 __le64 a_time; // 0x18: File last access time.
496 enum FILE_ATTRIBUTE fa; // 0x20: Standard DOS attributes & more.
497 __le32 max_ver_num; // 0x24: Maximum Number of Versions.
498 __le32 ver_num; // 0x28: Version Number.
499 __le32 class_id; // 0x2C: Class Id from bidirectional Class Id index.
500
501 __le32 owner_id; // 0x30: Owner Id of the user owning the file.
502 __le32 security_id; // 0x34: The Security Id is a key in the $SII Index and $SDS.
503 __le64 quota_charge; // 0x38:
504 __le64 usn; // 0x40: Last Update Sequence Number of the file. This is a direct
505 // index into the file $UsnJrnl. If zero, the USN Journal is
506 // disabled.
507 };
508
509 static_assert(sizeof(struct ATTR_STD_INFO5) == 0x48);
510
511 /* Attribute list entry structure (0x20) */
512 struct ATTR_LIST_ENTRY {
513 enum ATTR_TYPE type; // 0x00: The type of attribute.
514 __le16 size; // 0x04: The size of this record.
515 u8 name_len; // 0x06: The length of attribute name.
516 u8 name_off; // 0x07: The offset to attribute name.
517 __le64 vcn; // 0x08: Starting VCN of this attribute.
518 struct MFT_REF ref; // 0x10: MFT record number with attribute.
519 __le16 id; // 0x18: struct ATTRIB ID.
520 __le16 name[]; // 0x1A: Just to align. To get real name can use name_off.
521
522 }; // sizeof(0x20)
523
le_size(u8 name_len)524 static inline u32 le_size(u8 name_len)
525 {
526 return ALIGN(offsetof(struct ATTR_LIST_ENTRY, name) +
527 name_len * sizeof(short), 8);
528 }
529
530 /* Returns 0 if 'attr' has the same type and name. */
le_cmp(const struct ATTR_LIST_ENTRY * le,const struct ATTRIB * attr)531 static inline int le_cmp(const struct ATTR_LIST_ENTRY *le,
532 const struct ATTRIB *attr)
533 {
534 return le->type != attr->type || le->name_len != attr->name_len ||
535 (!le->name_len &&
536 memcmp(Add2Ptr(le, le->name_off),
537 Add2Ptr(attr, le16_to_cpu(attr->name_off)),
538 le->name_len * sizeof(short)));
539 }
540
le_name(const struct ATTR_LIST_ENTRY * le)541 static inline __le16 const *le_name(const struct ATTR_LIST_ENTRY *le)
542 {
543 return Add2Ptr(le, le->name_off);
544 }
545
546 /* File name types (the field type in struct ATTR_FILE_NAME). */
547 #define FILE_NAME_POSIX 0
548 #define FILE_NAME_UNICODE 1
549 #define FILE_NAME_DOS 2
550 #define FILE_NAME_UNICODE_AND_DOS (FILE_NAME_DOS | FILE_NAME_UNICODE)
551
552 /* Filename attribute structure (0x30). */
553 struct NTFS_DUP_INFO {
554 __le64 cr_time; // 0x00: File creation file.
555 __le64 m_time; // 0x08: File modification time.
556 __le64 c_time; // 0x10: Last time any attribute was modified.
557 __le64 a_time; // 0x18: File last access time.
558 __le64 alloc_size; // 0x20: Data attribute allocated size, multiple of cluster size.
559 __le64 data_size; // 0x28: Data attribute size <= Dataalloc_size.
560 enum FILE_ATTRIBUTE fa; // 0x30: Standard DOS attributes & more.
561 __le16 ea_size; // 0x34: Packed EAs.
562 __le16 reparse; // 0x36: Used by Reparse.
563
564 }; // 0x38
565
566 struct ATTR_FILE_NAME {
567 struct MFT_REF home; // 0x00: MFT record for directory.
568 struct NTFS_DUP_INFO dup;// 0x08:
569 u8 name_len; // 0x40: File name length in words.
570 u8 type; // 0x41: File name type.
571 __le16 name[]; // 0x42: File name.
572 };
573
574 static_assert(sizeof(((struct ATTR_FILE_NAME *)NULL)->dup) == 0x38);
575 static_assert(offsetof(struct ATTR_FILE_NAME, name) == 0x42);
576 #define SIZEOF_ATTRIBUTE_FILENAME 0x44
577 #define SIZEOF_ATTRIBUTE_FILENAME_MAX (0x42 + 255 * 2)
578
attr_from_name(struct ATTR_FILE_NAME * fname)579 static inline struct ATTRIB *attr_from_name(struct ATTR_FILE_NAME *fname)
580 {
581 return (struct ATTRIB *)((char *)fname - SIZEOF_RESIDENT);
582 }
583
fname_full_size(const struct ATTR_FILE_NAME * fname)584 static inline u16 fname_full_size(const struct ATTR_FILE_NAME *fname)
585 {
586 /* Don't return struct_size(fname, name, fname->name_len); */
587 return offsetof(struct ATTR_FILE_NAME, name) +
588 fname->name_len * sizeof(short);
589 }
590
paired_name(u8 type)591 static inline u8 paired_name(u8 type)
592 {
593 if (type == FILE_NAME_UNICODE)
594 return FILE_NAME_DOS;
595 if (type == FILE_NAME_DOS)
596 return FILE_NAME_UNICODE;
597 return FILE_NAME_POSIX;
598 }
599
600 /* Index entry defines ( the field flags in NtfsDirEntry ). */
601 #define NTFS_IE_HAS_SUBNODES cpu_to_le16(1)
602 #define NTFS_IE_LAST cpu_to_le16(2)
603
604 /* Directory entry structure. */
605 struct NTFS_DE {
606 union {
607 struct MFT_REF ref; // 0x00: MFT record number with this file.
608 struct {
609 __le16 data_off; // 0x00:
610 __le16 data_size; // 0x02:
611 __le32 res; // 0x04: Must be 0.
612 } view;
613 };
614 __le16 size; // 0x08: The size of this entry.
615 __le16 key_size; // 0x0A: The size of File name length in bytes + 0x42.
616 __le16 flags; // 0x0C: Entry flags: NTFS_IE_XXX.
617 __le16 res; // 0x0E:
618
619 // Here any indexed attribute can be placed.
620 // One of them is:
621 // struct ATTR_FILE_NAME AttrFileName;
622 //
623
624 // The last 8 bytes of this structure contains
625 // the VBN of subnode.
626 // !!! Note !!!
627 // This field is presented only if (flags & NTFS_IE_HAS_SUBNODES)
628 // __le64 vbn;
629 };
630
631 static_assert(sizeof(struct NTFS_DE) == 0x10);
632
de_set_vbn_le(struct NTFS_DE * e,__le64 vcn)633 static inline void de_set_vbn_le(struct NTFS_DE *e, __le64 vcn)
634 {
635 __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
636
637 *v = vcn;
638 }
639
de_set_vbn(struct NTFS_DE * e,CLST vcn)640 static inline void de_set_vbn(struct NTFS_DE *e, CLST vcn)
641 {
642 __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
643
644 *v = cpu_to_le64(vcn);
645 }
646
de_get_vbn_le(const struct NTFS_DE * e)647 static inline __le64 de_get_vbn_le(const struct NTFS_DE *e)
648 {
649 return *(__le64 *)Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
650 }
651
de_get_vbn(const struct NTFS_DE * e)652 static inline CLST de_get_vbn(const struct NTFS_DE *e)
653 {
654 __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
655
656 return le64_to_cpu(*v);
657 }
658
de_get_next(const struct NTFS_DE * e)659 static inline struct NTFS_DE *de_get_next(const struct NTFS_DE *e)
660 {
661 return Add2Ptr(e, le16_to_cpu(e->size));
662 }
663
de_get_fname(const struct NTFS_DE * e)664 static inline struct ATTR_FILE_NAME *de_get_fname(const struct NTFS_DE *e)
665 {
666 return le16_to_cpu(e->key_size) >= SIZEOF_ATTRIBUTE_FILENAME ?
667 Add2Ptr(e, sizeof(struct NTFS_DE)) :
668 NULL;
669 }
670
de_is_last(const struct NTFS_DE * e)671 static inline bool de_is_last(const struct NTFS_DE *e)
672 {
673 return e->flags & NTFS_IE_LAST;
674 }
675
de_has_vcn(const struct NTFS_DE * e)676 static inline bool de_has_vcn(const struct NTFS_DE *e)
677 {
678 return e->flags & NTFS_IE_HAS_SUBNODES;
679 }
680
de_has_vcn_ex(const struct NTFS_DE * e)681 static inline bool de_has_vcn_ex(const struct NTFS_DE *e)
682 {
683 return (e->flags & NTFS_IE_HAS_SUBNODES) &&
684 (u64)(-1) != *((u64 *)Add2Ptr(e, le16_to_cpu(e->size) -
685 sizeof(__le64)));
686 }
687
688 #define MAX_BYTES_PER_NAME_ENTRY \
689 ALIGN(sizeof(struct NTFS_DE) + \
690 offsetof(struct ATTR_FILE_NAME, name) + \
691 NTFS_NAME_LEN * sizeof(short), 8)
692
693 struct INDEX_HDR {
694 __le32 de_off; // 0x00: The offset from the start of this structure
695 // to the first NTFS_DE.
696 __le32 used; // 0x04: The size of this structure plus all
697 // entries (quad-word aligned).
698 __le32 total; // 0x08: The allocated size of for this structure plus all entries.
699 u8 flags; // 0x0C: 0x00 = Small directory, 0x01 = Large directory.
700 u8 res[3];
701
702 //
703 // de_off + used <= total
704 //
705 };
706
707 static_assert(sizeof(struct INDEX_HDR) == 0x10);
708
hdr_first_de(const struct INDEX_HDR * hdr)709 static inline struct NTFS_DE *hdr_first_de(const struct INDEX_HDR *hdr)
710 {
711 u32 de_off = le32_to_cpu(hdr->de_off);
712 u32 used = le32_to_cpu(hdr->used);
713 struct NTFS_DE *e = Add2Ptr(hdr, de_off);
714 u16 esize;
715
716 if (de_off >= used || de_off >= le32_to_cpu(hdr->total))
717 return NULL;
718
719 esize = le16_to_cpu(e->size);
720 if (esize < sizeof(struct NTFS_DE) || de_off + esize > used)
721 return NULL;
722
723 return e;
724 }
725
hdr_next_de(const struct INDEX_HDR * hdr,const struct NTFS_DE * e)726 static inline struct NTFS_DE *hdr_next_de(const struct INDEX_HDR *hdr,
727 const struct NTFS_DE *e)
728 {
729 size_t off = PtrOffset(hdr, e);
730 u32 used = le32_to_cpu(hdr->used);
731 u16 esize;
732
733 if (off >= used)
734 return NULL;
735
736 esize = le16_to_cpu(e->size);
737
738 if (esize < sizeof(struct NTFS_DE) ||
739 off + esize + sizeof(struct NTFS_DE) > used)
740 return NULL;
741
742 return Add2Ptr(e, esize);
743 }
744
hdr_has_subnode(const struct INDEX_HDR * hdr)745 static inline bool hdr_has_subnode(const struct INDEX_HDR *hdr)
746 {
747 return hdr->flags & 1;
748 }
749
750 struct INDEX_BUFFER {
751 struct NTFS_RECORD_HEADER rhdr; // 'INDX'
752 __le64 vbn; // 0x10: vcn if index >= cluster or vsn id index < cluster
753 struct INDEX_HDR ihdr; // 0x18:
754 };
755
756 static_assert(sizeof(struct INDEX_BUFFER) == 0x28);
757
ib_is_empty(const struct INDEX_BUFFER * ib)758 static inline bool ib_is_empty(const struct INDEX_BUFFER *ib)
759 {
760 const struct NTFS_DE *first = hdr_first_de(&ib->ihdr);
761
762 return !first || de_is_last(first);
763 }
764
ib_is_leaf(const struct INDEX_BUFFER * ib)765 static inline bool ib_is_leaf(const struct INDEX_BUFFER *ib)
766 {
767 return !(ib->ihdr.flags & 1);
768 }
769
770 /* Index root structure ( 0x90 ). */
771 enum COLLATION_RULE {
772 NTFS_COLLATION_TYPE_BINARY = cpu_to_le32(0),
773 // $I30
774 NTFS_COLLATION_TYPE_FILENAME = cpu_to_le32(0x01),
775 // $SII of $Secure and $Q of Quota
776 NTFS_COLLATION_TYPE_UINT = cpu_to_le32(0x10),
777 // $O of Quota
778 NTFS_COLLATION_TYPE_SID = cpu_to_le32(0x11),
779 // $SDH of $Secure
780 NTFS_COLLATION_TYPE_SECURITY_HASH = cpu_to_le32(0x12),
781 // $O of ObjId and "$R" for Reparse
782 NTFS_COLLATION_TYPE_UINTS = cpu_to_le32(0x13)
783 };
784
785 static_assert(sizeof(enum COLLATION_RULE) == 4);
786
787 //
788 struct INDEX_ROOT {
789 enum ATTR_TYPE type; // 0x00: The type of attribute to index on.
790 enum COLLATION_RULE rule; // 0x04: The rule.
791 __le32 index_block_size;// 0x08: The size of index record.
792 u8 index_block_clst; // 0x0C: The number of clusters or sectors per index.
793 u8 res[3];
794 struct INDEX_HDR ihdr; // 0x10:
795 };
796
797 static_assert(sizeof(struct INDEX_ROOT) == 0x20);
798 static_assert(offsetof(struct INDEX_ROOT, ihdr) == 0x10);
799
800 #define VOLUME_FLAG_DIRTY cpu_to_le16(0x0001)
801 #define VOLUME_FLAG_RESIZE_LOG_FILE cpu_to_le16(0x0002)
802
803 struct VOLUME_INFO {
804 __le64 res1; // 0x00
805 u8 major_ver; // 0x08: NTFS major version number (before .)
806 u8 minor_ver; // 0x09: NTFS minor version number (after .)
807 __le16 flags; // 0x0A: Volume flags, see VOLUME_FLAG_XXX
808
809 }; // sizeof=0xC
810
811 #define SIZEOF_ATTRIBUTE_VOLUME_INFO 0xc
812
813 #define NTFS_LABEL_MAX_LENGTH (0x100 / sizeof(short))
814 #define NTFS_ATTR_INDEXABLE cpu_to_le32(0x00000002)
815 #define NTFS_ATTR_DUPALLOWED cpu_to_le32(0x00000004)
816 #define NTFS_ATTR_MUST_BE_INDEXED cpu_to_le32(0x00000010)
817 #define NTFS_ATTR_MUST_BE_NAMED cpu_to_le32(0x00000020)
818 #define NTFS_ATTR_MUST_BE_RESIDENT cpu_to_le32(0x00000040)
819 #define NTFS_ATTR_LOG_ALWAYS cpu_to_le32(0x00000080)
820
821 /* $AttrDef file entry. */
822 struct ATTR_DEF_ENTRY {
823 __le16 name[0x40]; // 0x00: Attr name.
824 enum ATTR_TYPE type; // 0x80: struct ATTRIB type.
825 __le32 res; // 0x84:
826 enum COLLATION_RULE rule; // 0x88:
827 __le32 flags; // 0x8C: NTFS_ATTR_XXX (see above).
828 __le64 min_sz; // 0x90: Minimum attribute data size.
829 __le64 max_sz; // 0x98: Maximum attribute data size.
830 };
831
832 static_assert(sizeof(struct ATTR_DEF_ENTRY) == 0xa0);
833
834 /* Object ID (0x40) */
835 struct OBJECT_ID {
836 struct GUID ObjId; // 0x00: Unique Id assigned to file.
837 struct GUID BirthVolumeId; // 0x10: Birth Volume Id is the Object Id of the Volume on.
838 // which the Object Id was allocated. It never changes.
839 struct GUID BirthObjectId; // 0x20: Birth Object Id is the first Object Id that was
840 // ever assigned to this MFT Record. I.e. If the Object Id
841 // is changed for some reason, this field will reflect the
842 // original value of the Object Id.
843 struct GUID DomainId; // 0x30: Domain Id is currently unused but it is intended to be
844 // used in a network environment where the local machine is
845 // part of a Windows 2000 Domain. This may be used in a Windows
846 // 2000 Advanced Server managed domain.
847 };
848
849 static_assert(sizeof(struct OBJECT_ID) == 0x40);
850
851 /* O Directory entry structure ( rule = 0x13 ) */
852 struct NTFS_DE_O {
853 struct NTFS_DE de;
854 struct GUID ObjId; // 0x10: Unique Id assigned to file.
855 struct MFT_REF ref; // 0x20: MFT record number with this file.
856 struct GUID BirthVolumeId; // 0x28: Birth Volume Id is the Object Id of the Volume on
857 // which the Object Id was allocated. It never changes.
858 struct GUID BirthObjectId; // 0x38: Birth Object Id is the first Object Id that was
859 // ever assigned to this MFT Record. I.e. If the Object Id
860 // is changed for some reason, this field will reflect the
861 // original value of the Object Id.
862 // This field is valid if data_size == 0x48.
863 struct GUID BirthDomainId; // 0x48: Domain Id is currently unused but it is intended
864 // to be used in a network environment where the local
865 // machine is part of a Windows 2000 Domain. This may be
866 // used in a Windows 2000 Advanced Server managed domain.
867 };
868
869 static_assert(sizeof(struct NTFS_DE_O) == 0x58);
870
871 #define NTFS_OBJECT_ENTRY_DATA_SIZE1 \
872 0x38 // struct NTFS_DE_O.BirthDomainId is not used
873 #define NTFS_OBJECT_ENTRY_DATA_SIZE2 \
874 0x48 // struct NTFS_DE_O.BirthDomainId is used
875
876 /* Q Directory entry structure ( rule = 0x11 ) */
877 struct NTFS_DE_Q {
878 struct NTFS_DE de;
879 __le32 owner_id; // 0x10: Unique Id assigned to file
880 __le32 Version; // 0x14: 0x02
881 __le32 flags2; // 0x18: Quota flags, see above
882 __le64 BytesUsed; // 0x1C:
883 __le64 ChangeTime; // 0x24:
884 __le64 WarningLimit; // 0x28:
885 __le64 HardLimit; // 0x34:
886 __le64 ExceededTime; // 0x3C:
887
888 // SID is placed here
889 }; // sizeof() = 0x44
890
891 #define SIZEOF_NTFS_DE_Q 0x44
892
893 #define SecurityDescriptorsBlockSize 0x40000 // 256K
894 #define SecurityDescriptorMaxSize 0x20000 // 128K
895 #define Log2OfSecurityDescriptorsBlockSize 18
896
897 struct SECURITY_KEY {
898 __le32 hash; // Hash value for descriptor
899 __le32 sec_id; // Security Id (guaranteed unique)
900 };
901
902 /* Security descriptors (the content of $Secure::SDS data stream) */
903 struct SECURITY_HDR {
904 struct SECURITY_KEY key; // 0x00: Security Key.
905 __le64 off; // 0x08: Offset of this entry in the file.
906 __le32 size; // 0x10: Size of this entry, 8 byte aligned.
907 /*
908 * Security descriptor itself is placed here.
909 * Total size is 16 byte aligned.
910 */
911 } __packed;
912
913 #define SIZEOF_SECURITY_HDR 0x14
914
915 /* SII Directory entry structure */
916 struct NTFS_DE_SII {
917 struct NTFS_DE de;
918 __le32 sec_id; // 0x10: Key: sizeof(security_id) = wKeySize
919 struct SECURITY_HDR sec_hdr; // 0x14:
920 } __packed;
921
922 #define SIZEOF_SII_DIRENTRY 0x28
923
924 /* SDH Directory entry structure */
925 struct NTFS_DE_SDH {
926 struct NTFS_DE de;
927 struct SECURITY_KEY key; // 0x10: Key
928 struct SECURITY_HDR sec_hdr; // 0x18: Data
929 __le16 magic[2]; // 0x2C: 0x00490049 "I I"
930 };
931
932 #define SIZEOF_SDH_DIRENTRY 0x30
933
934 struct REPARSE_KEY {
935 __le32 ReparseTag; // 0x00: Reparse Tag
936 struct MFT_REF ref; // 0x04: MFT record number with this file
937 }; // sizeof() = 0x0C
938
939 static_assert(offsetof(struct REPARSE_KEY, ref) == 0x04);
940 #define SIZEOF_REPARSE_KEY 0x0C
941
942 /* Reparse Directory entry structure */
943 struct NTFS_DE_R {
944 struct NTFS_DE de;
945 struct REPARSE_KEY key; // 0x10: Reparse Key.
946 u32 zero; // 0x1c:
947 }; // sizeof() = 0x20
948
949 static_assert(sizeof(struct NTFS_DE_R) == 0x20);
950
951 /* CompressReparseBuffer.WofVersion */
952 #define WOF_CURRENT_VERSION cpu_to_le32(1)
953 /* CompressReparseBuffer.WofProvider */
954 #define WOF_PROVIDER_WIM cpu_to_le32(1)
955 /* CompressReparseBuffer.WofProvider */
956 #define WOF_PROVIDER_SYSTEM cpu_to_le32(2)
957 /* CompressReparseBuffer.ProviderVer */
958 #define WOF_PROVIDER_CURRENT_VERSION cpu_to_le32(1)
959
960 #define WOF_COMPRESSION_XPRESS4K cpu_to_le32(0) // 4k
961 #define WOF_COMPRESSION_LZX32K cpu_to_le32(1) // 32k
962 #define WOF_COMPRESSION_XPRESS8K cpu_to_le32(2) // 8k
963 #define WOF_COMPRESSION_XPRESS16K cpu_to_le32(3) // 16k
964
965 /*
966 * ATTR_REPARSE (0xC0)
967 *
968 * The reparse struct GUID structure is used by all 3rd party layered drivers to
969 * store data in a reparse point. For non-Microsoft tags, The struct GUID field
970 * cannot be GUID_NULL.
971 * The constraints on reparse tags are defined below.
972 * Microsoft tags can also be used with this format of the reparse point buffer.
973 */
974 struct REPARSE_POINT {
975 __le32 ReparseTag; // 0x00:
976 __le16 ReparseDataLength;// 0x04:
977 __le16 Reserved;
978
979 struct GUID Guid; // 0x08:
980
981 //
982 // Here GenericReparseBuffer is placed
983 //
984 };
985
986 static_assert(sizeof(struct REPARSE_POINT) == 0x18);
987
988 /* Maximum allowed size of the reparse data. */
989 #define MAXIMUM_REPARSE_DATA_BUFFER_SIZE (16 * 1024)
990
991 /*
992 * The value of the following constant needs to satisfy the following
993 * conditions:
994 * (1) Be at least as large as the largest of the reserved tags.
995 * (2) Be strictly smaller than all the tags in use.
996 */
997 #define IO_REPARSE_TAG_RESERVED_RANGE 1
998
999 /*
1000 * The reparse tags are a ULONG. The 32 bits are laid out as follows:
1001 *
1002 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1003 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1004 * +-+-+-+-+-----------------------+-------------------------------+
1005 * |M|R|N|R| Reserved bits | Reparse Tag Value |
1006 * +-+-+-+-+-----------------------+-------------------------------+
1007 *
1008 * M is the Microsoft bit. When set to 1, it denotes a tag owned by Microsoft.
1009 * All ISVs must use a tag with a 0 in this position.
1010 * Note: If a Microsoft tag is used by non-Microsoft software, the
1011 * behavior is not defined.
1012 *
1013 * R is reserved. Must be zero for non-Microsoft tags.
1014 *
1015 * N is name surrogate. When set to 1, the file represents another named
1016 * entity in the system.
1017 *
1018 * The M and N bits are OR-able.
1019 * The following macros check for the M and N bit values:
1020 */
1021
1022 /*
1023 * Macro to determine whether a reparse point tag corresponds to a tag
1024 * owned by Microsoft.
1025 */
1026 #define IsReparseTagMicrosoft(_tag) (((_tag)&IO_REPARSE_TAG_MICROSOFT))
1027
1028 /* Macro to determine whether a reparse point tag is a name surrogate. */
1029 #define IsReparseTagNameSurrogate(_tag) (((_tag)&IO_REPARSE_TAG_NAME_SURROGATE))
1030
1031 /*
1032 * The following constant represents the bits that are valid to use in
1033 * reparse tags.
1034 */
1035 #define IO_REPARSE_TAG_VALID_VALUES 0xF000FFFF
1036
1037 /*
1038 * Macro to determine whether a reparse tag is a valid tag.
1039 */
1040 #define IsReparseTagValid(_tag) \
1041 (!((_tag) & ~IO_REPARSE_TAG_VALID_VALUES) && \
1042 ((_tag) > IO_REPARSE_TAG_RESERVED_RANGE))
1043
1044 /* Microsoft tags for reparse points. */
1045
1046 enum IO_REPARSE_TAG {
1047 IO_REPARSE_TAG_SYMBOLIC_LINK = cpu_to_le32(0),
1048 IO_REPARSE_TAG_NAME_SURROGATE = cpu_to_le32(0x20000000),
1049 IO_REPARSE_TAG_MICROSOFT = cpu_to_le32(0x80000000),
1050 IO_REPARSE_TAG_MOUNT_POINT = cpu_to_le32(0xA0000003),
1051 IO_REPARSE_TAG_SYMLINK = cpu_to_le32(0xA000000C),
1052 IO_REPARSE_TAG_HSM = cpu_to_le32(0xC0000004),
1053 IO_REPARSE_TAG_SIS = cpu_to_le32(0x80000007),
1054 IO_REPARSE_TAG_DEDUP = cpu_to_le32(0x80000013),
1055 IO_REPARSE_TAG_COMPRESS = cpu_to_le32(0x80000017),
1056
1057 /*
1058 * The reparse tag 0x80000008 is reserved for Microsoft internal use.
1059 * May be published in the future.
1060 */
1061
1062 /* Microsoft reparse tag reserved for DFS */
1063 IO_REPARSE_TAG_DFS = cpu_to_le32(0x8000000A),
1064
1065 /* Microsoft reparse tag reserved for the file system filter manager. */
1066 IO_REPARSE_TAG_FILTER_MANAGER = cpu_to_le32(0x8000000B),
1067
1068 /* Non-Microsoft tags for reparse points */
1069
1070 /* Tag allocated to CONGRUENT, May 2000. Used by IFSTEST. */
1071 IO_REPARSE_TAG_IFSTEST_CONGRUENT = cpu_to_le32(0x00000009),
1072
1073 /* Tag allocated to ARKIVIO. */
1074 IO_REPARSE_TAG_ARKIVIO = cpu_to_le32(0x0000000C),
1075
1076 /* Tag allocated to SOLUTIONSOFT. */
1077 IO_REPARSE_TAG_SOLUTIONSOFT = cpu_to_le32(0x2000000D),
1078
1079 /* Tag allocated to COMMVAULT. */
1080 IO_REPARSE_TAG_COMMVAULT = cpu_to_le32(0x0000000E),
1081
1082 /* OneDrive?? */
1083 IO_REPARSE_TAG_CLOUD = cpu_to_le32(0x9000001A),
1084 IO_REPARSE_TAG_CLOUD_1 = cpu_to_le32(0x9000101A),
1085 IO_REPARSE_TAG_CLOUD_2 = cpu_to_le32(0x9000201A),
1086 IO_REPARSE_TAG_CLOUD_3 = cpu_to_le32(0x9000301A),
1087 IO_REPARSE_TAG_CLOUD_4 = cpu_to_le32(0x9000401A),
1088 IO_REPARSE_TAG_CLOUD_5 = cpu_to_le32(0x9000501A),
1089 IO_REPARSE_TAG_CLOUD_6 = cpu_to_le32(0x9000601A),
1090 IO_REPARSE_TAG_CLOUD_7 = cpu_to_le32(0x9000701A),
1091 IO_REPARSE_TAG_CLOUD_8 = cpu_to_le32(0x9000801A),
1092 IO_REPARSE_TAG_CLOUD_9 = cpu_to_le32(0x9000901A),
1093 IO_REPARSE_TAG_CLOUD_A = cpu_to_le32(0x9000A01A),
1094 IO_REPARSE_TAG_CLOUD_B = cpu_to_le32(0x9000B01A),
1095 IO_REPARSE_TAG_CLOUD_C = cpu_to_le32(0x9000C01A),
1096 IO_REPARSE_TAG_CLOUD_D = cpu_to_le32(0x9000D01A),
1097 IO_REPARSE_TAG_CLOUD_E = cpu_to_le32(0x9000E01A),
1098 IO_REPARSE_TAG_CLOUD_F = cpu_to_le32(0x9000F01A),
1099
1100 };
1101
1102 #define SYMLINK_FLAG_RELATIVE 1
1103
1104 /* Microsoft reparse buffer. (see DDK for details) */
1105 struct REPARSE_DATA_BUFFER {
1106 __le32 ReparseTag; // 0x00:
1107 __le16 ReparseDataLength; // 0x04:
1108 __le16 Reserved;
1109
1110 union {
1111 /* If ReparseTag == 0xA0000003 (IO_REPARSE_TAG_MOUNT_POINT) */
1112 struct {
1113 __le16 SubstituteNameOffset; // 0x08
1114 __le16 SubstituteNameLength; // 0x0A
1115 __le16 PrintNameOffset; // 0x0C
1116 __le16 PrintNameLength; // 0x0E
1117 __le16 PathBuffer[]; // 0x10
1118 } MountPointReparseBuffer;
1119
1120 /*
1121 * If ReparseTag == 0xA000000C (IO_REPARSE_TAG_SYMLINK)
1122 * https://msdn.microsoft.com/en-us/library/cc232006.aspx
1123 */
1124 struct {
1125 __le16 SubstituteNameOffset; // 0x08
1126 __le16 SubstituteNameLength; // 0x0A
1127 __le16 PrintNameOffset; // 0x0C
1128 __le16 PrintNameLength; // 0x0E
1129 // 0-absolute path 1- relative path, SYMLINK_FLAG_RELATIVE
1130 __le32 Flags; // 0x10
1131 __le16 PathBuffer[]; // 0x14
1132 } SymbolicLinkReparseBuffer;
1133
1134 /* If ReparseTag == 0x80000017U */
1135 struct {
1136 __le32 WofVersion; // 0x08 == 1
1137 /*
1138 * 1 - WIM backing provider ("WIMBoot"),
1139 * 2 - System compressed file provider
1140 */
1141 __le32 WofProvider; // 0x0C:
1142 __le32 ProviderVer; // 0x10: == 1 WOF_FILE_PROVIDER_CURRENT_VERSION == 1
1143 __le32 CompressionFormat; // 0x14: 0, 1, 2, 3. See WOF_COMPRESSION_XXX
1144 } CompressReparseBuffer;
1145
1146 struct {
1147 u8 DataBuffer[1]; // 0x08:
1148 } GenericReparseBuffer;
1149 };
1150 };
1151
1152 /* ATTR_EA_INFO (0xD0) */
1153
1154 #define FILE_NEED_EA 0x80 // See ntifs.h
1155 /*
1156 *FILE_NEED_EA, indicates that the file to which the EA belongs cannot be
1157 * interpreted without understanding the associated extended attributes.
1158 */
1159 struct EA_INFO {
1160 __le16 size_pack; // 0x00: Size of buffer to hold in packed form.
1161 __le16 count; // 0x02: Count of EA's with FILE_NEED_EA bit set.
1162 __le32 size; // 0x04: Size of buffer to hold in unpacked form.
1163 };
1164
1165 static_assert(sizeof(struct EA_INFO) == 8);
1166
1167 /* ATTR_EA (0xE0) */
1168 struct EA_FULL {
1169 __le32 size; // 0x00: (not in packed)
1170 u8 flags; // 0x04:
1171 u8 name_len; // 0x05:
1172 __le16 elength; // 0x06:
1173 u8 name[]; // 0x08:
1174 };
1175
1176 static_assert(offsetof(struct EA_FULL, name) == 8);
1177
1178 #define ACL_REVISION 2
1179 #define ACL_REVISION_DS 4
1180
1181 #define SE_SELF_RELATIVE cpu_to_le16(0x8000)
1182
1183 struct SECURITY_DESCRIPTOR_RELATIVE {
1184 u8 Revision;
1185 u8 Sbz1;
1186 __le16 Control;
1187 __le32 Owner;
1188 __le32 Group;
1189 __le32 Sacl;
1190 __le32 Dacl;
1191 };
1192 static_assert(sizeof(struct SECURITY_DESCRIPTOR_RELATIVE) == 0x14);
1193
1194 struct ACE_HEADER {
1195 u8 AceType;
1196 u8 AceFlags;
1197 __le16 AceSize;
1198 };
1199 static_assert(sizeof(struct ACE_HEADER) == 4);
1200
1201 struct ACL {
1202 u8 AclRevision;
1203 u8 Sbz1;
1204 __le16 AclSize;
1205 __le16 AceCount;
1206 __le16 Sbz2;
1207 };
1208 static_assert(sizeof(struct ACL) == 8);
1209
1210 struct SID {
1211 u8 Revision;
1212 u8 SubAuthorityCount;
1213 u8 IdentifierAuthority[6];
1214 __le32 SubAuthority[];
1215 };
1216 static_assert(offsetof(struct SID, SubAuthority) == 8);
1217
1218 #endif /* _LINUX_NTFS3_NTFS_H */
1219 // clang-format on
1220