// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2020 Invensense, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include "inv_icm42600.h" #include "inv_icm42600_temp.h" #include "inv_icm42600_buffer.h" #define INV_ICM42600_GYRO_CHAN(_modifier, _index, _ext_info) \ { \ .type = IIO_ANGL_VEL, \ .modified = 1, \ .channel2 = _modifier, \ .info_mask_separate = \ BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_CALIBBIAS), \ .info_mask_shared_by_type = \ BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_shared_by_type_available = \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_CALIBBIAS), \ .info_mask_shared_by_all = \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .info_mask_shared_by_all_available = \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = _index, \ .scan_type = { \ .sign = 's', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_BE, \ }, \ .ext_info = _ext_info, \ } enum inv_icm42600_gyro_scan { INV_ICM42600_GYRO_SCAN_X, INV_ICM42600_GYRO_SCAN_Y, INV_ICM42600_GYRO_SCAN_Z, INV_ICM42600_GYRO_SCAN_TEMP, INV_ICM42600_GYRO_SCAN_TIMESTAMP, }; static const struct iio_chan_spec_ext_info inv_icm42600_gyro_ext_infos[] = { IIO_MOUNT_MATRIX(IIO_SHARED_BY_ALL, inv_icm42600_get_mount_matrix), {}, }; static const struct iio_chan_spec inv_icm42600_gyro_channels[] = { INV_ICM42600_GYRO_CHAN(IIO_MOD_X, INV_ICM42600_GYRO_SCAN_X, inv_icm42600_gyro_ext_infos), INV_ICM42600_GYRO_CHAN(IIO_MOD_Y, INV_ICM42600_GYRO_SCAN_Y, inv_icm42600_gyro_ext_infos), INV_ICM42600_GYRO_CHAN(IIO_MOD_Z, INV_ICM42600_GYRO_SCAN_Z, inv_icm42600_gyro_ext_infos), INV_ICM42600_TEMP_CHAN(INV_ICM42600_GYRO_SCAN_TEMP), IIO_CHAN_SOFT_TIMESTAMP(INV_ICM42600_GYRO_SCAN_TIMESTAMP), }; /* * IIO buffer data: size must be a power of 2 and timestamp aligned * 16 bytes: 6 bytes angular velocity, 2 bytes temperature, 8 bytes timestamp */ struct inv_icm42600_gyro_buffer { struct inv_icm42600_fifo_sensor_data gyro; int16_t temp; int64_t timestamp __aligned(8); }; #define INV_ICM42600_SCAN_MASK_GYRO_3AXIS \ (BIT(INV_ICM42600_GYRO_SCAN_X) | \ BIT(INV_ICM42600_GYRO_SCAN_Y) | \ BIT(INV_ICM42600_GYRO_SCAN_Z)) #define INV_ICM42600_SCAN_MASK_TEMP BIT(INV_ICM42600_GYRO_SCAN_TEMP) static const unsigned long inv_icm42600_gyro_scan_masks[] = { /* 3-axis gyro + temperature */ INV_ICM42600_SCAN_MASK_GYRO_3AXIS | INV_ICM42600_SCAN_MASK_TEMP, 0, }; /* enable gyroscope sensor and FIFO write */ static int inv_icm42600_gyro_update_scan_mode(struct iio_dev *indio_dev, const unsigned long *scan_mask) { struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); struct inv_sensors_timestamp *ts = iio_priv(indio_dev); struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT; unsigned int fifo_en = 0; unsigned int sleep_gyro = 0; unsigned int sleep_temp = 0; unsigned int sleep; int ret; mutex_lock(&st->lock); if (*scan_mask & INV_ICM42600_SCAN_MASK_TEMP) { /* enable temp sensor */ ret = inv_icm42600_set_temp_conf(st, true, &sleep_temp); if (ret) goto out_unlock; fifo_en |= INV_ICM42600_SENSOR_TEMP; } if (*scan_mask & INV_ICM42600_SCAN_MASK_GYRO_3AXIS) { /* enable gyro sensor */ conf.mode = INV_ICM42600_SENSOR_MODE_LOW_NOISE; ret = inv_icm42600_set_gyro_conf(st, &conf, &sleep_gyro); if (ret) goto out_unlock; fifo_en |= INV_ICM42600_SENSOR_GYRO; } /* update data FIFO write */ inv_sensors_timestamp_apply_odr(ts, 0, 0, 0); ret = inv_icm42600_buffer_set_fifo_en(st, fifo_en | st->fifo.en); out_unlock: mutex_unlock(&st->lock); /* sleep maximum required time */ if (sleep_gyro > sleep_temp) sleep = sleep_gyro; else sleep = sleep_temp; if (sleep) msleep(sleep); return ret; } static int inv_icm42600_gyro_read_sensor(struct inv_icm42600_state *st, struct iio_chan_spec const *chan, int16_t *val) { struct device *dev = regmap_get_device(st->map); struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT; unsigned int reg; __be16 *data; int ret; if (chan->type != IIO_ANGL_VEL) return -EINVAL; switch (chan->channel2) { case IIO_MOD_X: reg = INV_ICM42600_REG_GYRO_DATA_X; break; case IIO_MOD_Y: reg = INV_ICM42600_REG_GYRO_DATA_Y; break; case IIO_MOD_Z: reg = INV_ICM42600_REG_GYRO_DATA_Z; break; default: return -EINVAL; } pm_runtime_get_sync(dev); mutex_lock(&st->lock); /* enable gyro sensor */ conf.mode = INV_ICM42600_SENSOR_MODE_LOW_NOISE; ret = inv_icm42600_set_gyro_conf(st, &conf, NULL); if (ret) goto exit; /* read gyro register data */ data = (__be16 *)&st->buffer[0]; ret = regmap_bulk_read(st->map, reg, data, sizeof(*data)); if (ret) goto exit; *val = (int16_t)be16_to_cpup(data); if (*val == INV_ICM42600_DATA_INVALID) ret = -EINVAL; exit: mutex_unlock(&st->lock); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return ret; } /* IIO format int + nano */ static const int inv_icm42600_gyro_scale[] = { /* +/- 2000dps => 0.001065264 rad/s */ [2 * INV_ICM42600_GYRO_FS_2000DPS] = 0, [2 * INV_ICM42600_GYRO_FS_2000DPS + 1] = 1065264, /* +/- 1000dps => 0.000532632 rad/s */ [2 * INV_ICM42600_GYRO_FS_1000DPS] = 0, [2 * INV_ICM42600_GYRO_FS_1000DPS + 1] = 532632, /* +/- 500dps => 0.000266316 rad/s */ [2 * INV_ICM42600_GYRO_FS_500DPS] = 0, [2 * INV_ICM42600_GYRO_FS_500DPS + 1] = 266316, /* +/- 250dps => 0.000133158 rad/s */ [2 * INV_ICM42600_GYRO_FS_250DPS] = 0, [2 * INV_ICM42600_GYRO_FS_250DPS + 1] = 133158, /* +/- 125dps => 0.000066579 rad/s */ [2 * INV_ICM42600_GYRO_FS_125DPS] = 0, [2 * INV_ICM42600_GYRO_FS_125DPS + 1] = 66579, /* +/- 62.5dps => 0.000033290 rad/s */ [2 * INV_ICM42600_GYRO_FS_62_5DPS] = 0, [2 * INV_ICM42600_GYRO_FS_62_5DPS + 1] = 33290, /* +/- 31.25dps => 0.000016645 rad/s */ [2 * INV_ICM42600_GYRO_FS_31_25DPS] = 0, [2 * INV_ICM42600_GYRO_FS_31_25DPS + 1] = 16645, /* +/- 15.625dps => 0.000008322 rad/s */ [2 * INV_ICM42600_GYRO_FS_15_625DPS] = 0, [2 * INV_ICM42600_GYRO_FS_15_625DPS + 1] = 8322, }; static int inv_icm42600_gyro_read_scale(struct inv_icm42600_state *st, int *val, int *val2) { unsigned int idx; idx = st->conf.gyro.fs; *val = inv_icm42600_gyro_scale[2 * idx]; *val2 = inv_icm42600_gyro_scale[2 * idx + 1]; return IIO_VAL_INT_PLUS_NANO; } static int inv_icm42600_gyro_write_scale(struct inv_icm42600_state *st, int val, int val2) { struct device *dev = regmap_get_device(st->map); unsigned int idx; struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT; int ret; for (idx = 0; idx < ARRAY_SIZE(inv_icm42600_gyro_scale); idx += 2) { if (val == inv_icm42600_gyro_scale[idx] && val2 == inv_icm42600_gyro_scale[idx + 1]) break; } if (idx >= ARRAY_SIZE(inv_icm42600_gyro_scale)) return -EINVAL; conf.fs = idx / 2; pm_runtime_get_sync(dev); mutex_lock(&st->lock); ret = inv_icm42600_set_gyro_conf(st, &conf, NULL); mutex_unlock(&st->lock); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return ret; } /* IIO format int + micro */ static const int inv_icm42600_gyro_odr[] = { /* 12.5Hz */ 12, 500000, /* 25Hz */ 25, 0, /* 50Hz */ 50, 0, /* 100Hz */ 100, 0, /* 200Hz */ 200, 0, /* 1kHz */ 1000, 0, /* 2kHz */ 2000, 0, /* 4kHz */ 4000, 0, }; static const int inv_icm42600_gyro_odr_conv[] = { INV_ICM42600_ODR_12_5HZ, INV_ICM42600_ODR_25HZ, INV_ICM42600_ODR_50HZ, INV_ICM42600_ODR_100HZ, INV_ICM42600_ODR_200HZ, INV_ICM42600_ODR_1KHZ_LN, INV_ICM42600_ODR_2KHZ_LN, INV_ICM42600_ODR_4KHZ_LN, }; static int inv_icm42600_gyro_read_odr(struct inv_icm42600_state *st, int *val, int *val2) { unsigned int odr; unsigned int i; odr = st->conf.gyro.odr; for (i = 0; i < ARRAY_SIZE(inv_icm42600_gyro_odr_conv); ++i) { if (inv_icm42600_gyro_odr_conv[i] == odr) break; } if (i >= ARRAY_SIZE(inv_icm42600_gyro_odr_conv)) return -EINVAL; *val = inv_icm42600_gyro_odr[2 * i]; *val2 = inv_icm42600_gyro_odr[2 * i + 1]; return IIO_VAL_INT_PLUS_MICRO; } static int inv_icm42600_gyro_write_odr(struct iio_dev *indio_dev, int val, int val2) { struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); struct inv_sensors_timestamp *ts = iio_priv(indio_dev); struct device *dev = regmap_get_device(st->map); unsigned int idx; struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT; int ret; for (idx = 0; idx < ARRAY_SIZE(inv_icm42600_gyro_odr); idx += 2) { if (val == inv_icm42600_gyro_odr[idx] && val2 == inv_icm42600_gyro_odr[idx + 1]) break; } if (idx >= ARRAY_SIZE(inv_icm42600_gyro_odr)) return -EINVAL; conf.odr = inv_icm42600_gyro_odr_conv[idx / 2]; pm_runtime_get_sync(dev); mutex_lock(&st->lock); ret = inv_sensors_timestamp_update_odr(ts, inv_icm42600_odr_to_period(conf.odr), iio_buffer_enabled(indio_dev)); if (ret) goto out_unlock; ret = inv_icm42600_set_gyro_conf(st, &conf, NULL); if (ret) goto out_unlock; inv_icm42600_buffer_update_fifo_period(st); inv_icm42600_buffer_update_watermark(st); out_unlock: mutex_unlock(&st->lock); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return ret; } /* * Calibration bias values, IIO range format int + nano. * Value is limited to +/-64dps coded on 12 bits signed. Step is 1/32 dps. */ static int inv_icm42600_gyro_calibbias[] = { -1, 117010721, /* min: -1.117010721 rad/s */ 0, 545415, /* step: 0.000545415 rad/s */ 1, 116465306, /* max: 1.116465306 rad/s */ }; static int inv_icm42600_gyro_read_offset(struct inv_icm42600_state *st, struct iio_chan_spec const *chan, int *val, int *val2) { struct device *dev = regmap_get_device(st->map); int64_t val64; int32_t bias; unsigned int reg; int16_t offset; uint8_t data[2]; int ret; if (chan->type != IIO_ANGL_VEL) return -EINVAL; switch (chan->channel2) { case IIO_MOD_X: reg = INV_ICM42600_REG_OFFSET_USER0; break; case IIO_MOD_Y: reg = INV_ICM42600_REG_OFFSET_USER1; break; case IIO_MOD_Z: reg = INV_ICM42600_REG_OFFSET_USER3; break; default: return -EINVAL; } pm_runtime_get_sync(dev); mutex_lock(&st->lock); ret = regmap_bulk_read(st->map, reg, st->buffer, sizeof(data)); memcpy(data, st->buffer, sizeof(data)); mutex_unlock(&st->lock); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); if (ret) return ret; /* 12 bits signed value */ switch (chan->channel2) { case IIO_MOD_X: offset = sign_extend32(((data[1] & 0x0F) << 8) | data[0], 11); break; case IIO_MOD_Y: offset = sign_extend32(((data[0] & 0xF0) << 4) | data[1], 11); break; case IIO_MOD_Z: offset = sign_extend32(((data[1] & 0x0F) << 8) | data[0], 11); break; default: return -EINVAL; } /* * convert raw offset to dps then to rad/s * 12 bits signed raw max 64 to dps: 64 / 2048 * dps to rad: Pi / 180 * result in nano (1000000000) * (offset * 64 * Pi * 1000000000) / (2048 * 180) */ val64 = (int64_t)offset * 64LL * 3141592653LL; /* for rounding, add + or - divisor (2048 * 180) divided by 2 */ if (val64 >= 0) val64 += 2048 * 180 / 2; else val64 -= 2048 * 180 / 2; bias = div_s64(val64, 2048 * 180); *val = bias / 1000000000L; *val2 = bias % 1000000000L; return IIO_VAL_INT_PLUS_NANO; } static int inv_icm42600_gyro_write_offset(struct inv_icm42600_state *st, struct iio_chan_spec const *chan, int val, int val2) { struct device *dev = regmap_get_device(st->map); int64_t val64, min, max; unsigned int reg, regval; int16_t offset; int ret; if (chan->type != IIO_ANGL_VEL) return -EINVAL; switch (chan->channel2) { case IIO_MOD_X: reg = INV_ICM42600_REG_OFFSET_USER0; break; case IIO_MOD_Y: reg = INV_ICM42600_REG_OFFSET_USER1; break; case IIO_MOD_Z: reg = INV_ICM42600_REG_OFFSET_USER3; break; default: return -EINVAL; } /* inv_icm42600_gyro_calibbias: min - step - max in nano */ min = (int64_t)inv_icm42600_gyro_calibbias[0] * 1000000000LL + (int64_t)inv_icm42600_gyro_calibbias[1]; max = (int64_t)inv_icm42600_gyro_calibbias[4] * 1000000000LL + (int64_t)inv_icm42600_gyro_calibbias[5]; val64 = (int64_t)val * 1000000000LL + (int64_t)val2; if (val64 < min || val64 > max) return -EINVAL; /* * convert rad/s to dps then to raw value * rad to dps: 180 / Pi * dps to raw 12 bits signed, max 64: 2048 / 64 * val in nano (1000000000) * val * 180 * 2048 / (Pi * 1000000000 * 64) */ val64 = val64 * 180LL * 2048LL; /* for rounding, add + or - divisor (3141592653 * 64) divided by 2 */ if (val64 >= 0) val64 += 3141592653LL * 64LL / 2LL; else val64 -= 3141592653LL * 64LL / 2LL; offset = div64_s64(val64, 3141592653LL * 64LL); /* clamp value limited to 12 bits signed */ if (offset < -2048) offset = -2048; else if (offset > 2047) offset = 2047; pm_runtime_get_sync(dev); mutex_lock(&st->lock); switch (chan->channel2) { case IIO_MOD_X: /* OFFSET_USER1 register is shared */ ret = regmap_read(st->map, INV_ICM42600_REG_OFFSET_USER1, ®val); if (ret) goto out_unlock; st->buffer[0] = offset & 0xFF; st->buffer[1] = (regval & 0xF0) | ((offset & 0xF00) >> 8); break; case IIO_MOD_Y: /* OFFSET_USER1 register is shared */ ret = regmap_read(st->map, INV_ICM42600_REG_OFFSET_USER1, ®val); if (ret) goto out_unlock; st->buffer[0] = ((offset & 0xF00) >> 4) | (regval & 0x0F); st->buffer[1] = offset & 0xFF; break; case IIO_MOD_Z: /* OFFSET_USER4 register is shared */ ret = regmap_read(st->map, INV_ICM42600_REG_OFFSET_USER4, ®val); if (ret) goto out_unlock; st->buffer[0] = offset & 0xFF; st->buffer[1] = (regval & 0xF0) | ((offset & 0xF00) >> 8); break; default: ret = -EINVAL; goto out_unlock; } ret = regmap_bulk_write(st->map, reg, st->buffer, 2); out_unlock: mutex_unlock(&st->lock); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return ret; } static int inv_icm42600_gyro_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); int16_t data; int ret; switch (chan->type) { case IIO_ANGL_VEL: break; case IIO_TEMP: return inv_icm42600_temp_read_raw(indio_dev, chan, val, val2, mask); default: return -EINVAL; } switch (mask) { case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; ret = inv_icm42600_gyro_read_sensor(st, chan, &data); iio_device_release_direct_mode(indio_dev); if (ret) return ret; *val = data; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: return inv_icm42600_gyro_read_scale(st, val, val2); case IIO_CHAN_INFO_SAMP_FREQ: return inv_icm42600_gyro_read_odr(st, val, val2); case IIO_CHAN_INFO_CALIBBIAS: return inv_icm42600_gyro_read_offset(st, chan, val, val2); default: return -EINVAL; } } static int inv_icm42600_gyro_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { if (chan->type != IIO_ANGL_VEL) return -EINVAL; switch (mask) { case IIO_CHAN_INFO_SCALE: *vals = inv_icm42600_gyro_scale; *type = IIO_VAL_INT_PLUS_NANO; *length = ARRAY_SIZE(inv_icm42600_gyro_scale); return IIO_AVAIL_LIST; case IIO_CHAN_INFO_SAMP_FREQ: *vals = inv_icm42600_gyro_odr; *type = IIO_VAL_INT_PLUS_MICRO; *length = ARRAY_SIZE(inv_icm42600_gyro_odr); return IIO_AVAIL_LIST; case IIO_CHAN_INFO_CALIBBIAS: *vals = inv_icm42600_gyro_calibbias; *type = IIO_VAL_INT_PLUS_NANO; return IIO_AVAIL_RANGE; default: return -EINVAL; } } static int inv_icm42600_gyro_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); int ret; if (chan->type != IIO_ANGL_VEL) return -EINVAL; switch (mask) { case IIO_CHAN_INFO_SCALE: ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; ret = inv_icm42600_gyro_write_scale(st, val, val2); iio_device_release_direct_mode(indio_dev); return ret; case IIO_CHAN_INFO_SAMP_FREQ: return inv_icm42600_gyro_write_odr(indio_dev, val, val2); case IIO_CHAN_INFO_CALIBBIAS: ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; ret = inv_icm42600_gyro_write_offset(st, chan, val, val2); iio_device_release_direct_mode(indio_dev); return ret; default: return -EINVAL; } } static int inv_icm42600_gyro_write_raw_get_fmt(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, long mask) { if (chan->type != IIO_ANGL_VEL) return -EINVAL; switch (mask) { case IIO_CHAN_INFO_SCALE: return IIO_VAL_INT_PLUS_NANO; case IIO_CHAN_INFO_SAMP_FREQ: return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_CALIBBIAS: return IIO_VAL_INT_PLUS_NANO; default: return -EINVAL; } } static int inv_icm42600_gyro_hwfifo_set_watermark(struct iio_dev *indio_dev, unsigned int val) { struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); int ret; mutex_lock(&st->lock); st->fifo.watermark.gyro = val; ret = inv_icm42600_buffer_update_watermark(st); mutex_unlock(&st->lock); return ret; } static int inv_icm42600_gyro_hwfifo_flush(struct iio_dev *indio_dev, unsigned int count) { struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); int ret; if (count == 0) return 0; mutex_lock(&st->lock); ret = inv_icm42600_buffer_hwfifo_flush(st, count); if (!ret) ret = st->fifo.nb.gyro; mutex_unlock(&st->lock); return ret; } static const struct iio_info inv_icm42600_gyro_info = { .read_raw = inv_icm42600_gyro_read_raw, .read_avail = inv_icm42600_gyro_read_avail, .write_raw = inv_icm42600_gyro_write_raw, .write_raw_get_fmt = inv_icm42600_gyro_write_raw_get_fmt, .debugfs_reg_access = inv_icm42600_debugfs_reg, .update_scan_mode = inv_icm42600_gyro_update_scan_mode, .hwfifo_set_watermark = inv_icm42600_gyro_hwfifo_set_watermark, .hwfifo_flush_to_buffer = inv_icm42600_gyro_hwfifo_flush, }; struct iio_dev *inv_icm42600_gyro_init(struct inv_icm42600_state *st) { struct device *dev = regmap_get_device(st->map); const char *name; struct inv_sensors_timestamp_chip ts_chip; struct inv_sensors_timestamp *ts; struct iio_dev *indio_dev; int ret; name = devm_kasprintf(dev, GFP_KERNEL, "%s-gyro", st->name); if (!name) return ERR_PTR(-ENOMEM); indio_dev = devm_iio_device_alloc(dev, sizeof(*ts)); if (!indio_dev) return ERR_PTR(-ENOMEM); /* * clock period is 32kHz (31250ns) * jitter is +/- 2% (20 per mille) */ ts_chip.clock_period = 31250; ts_chip.jitter = 20; ts_chip.init_period = inv_icm42600_odr_to_period(st->conf.accel.odr); ts = iio_priv(indio_dev); inv_sensors_timestamp_init(ts, &ts_chip); iio_device_set_drvdata(indio_dev, st); indio_dev->name = name; indio_dev->info = &inv_icm42600_gyro_info; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = inv_icm42600_gyro_channels; indio_dev->num_channels = ARRAY_SIZE(inv_icm42600_gyro_channels); indio_dev->available_scan_masks = inv_icm42600_gyro_scan_masks; indio_dev->setup_ops = &inv_icm42600_buffer_ops; ret = devm_iio_kfifo_buffer_setup(dev, indio_dev, &inv_icm42600_buffer_ops); if (ret) return ERR_PTR(ret); ret = devm_iio_device_register(dev, indio_dev); if (ret) return ERR_PTR(ret); return indio_dev; } int inv_icm42600_gyro_parse_fifo(struct iio_dev *indio_dev) { struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev); struct inv_sensors_timestamp *ts = iio_priv(indio_dev); ssize_t i, size; unsigned int no; const void *accel, *gyro, *timestamp; const int8_t *temp; unsigned int odr; int64_t ts_val; struct inv_icm42600_gyro_buffer buffer; /* parse all fifo packets */ for (i = 0, no = 0; i < st->fifo.count; i += size, ++no) { size = inv_icm42600_fifo_decode_packet(&st->fifo.data[i], &accel, &gyro, &temp, ×tamp, &odr); /* quit if error or FIFO is empty */ if (size <= 0) return size; /* skip packet if no gyro data or data is invalid */ if (gyro == NULL || !inv_icm42600_fifo_is_data_valid(gyro)) continue; /* update odr */ if (odr & INV_ICM42600_SENSOR_GYRO) inv_sensors_timestamp_apply_odr(ts, st->fifo.period, st->fifo.nb.total, no); /* buffer is copied to userspace, zeroing it to avoid any data leak */ memset(&buffer, 0, sizeof(buffer)); memcpy(&buffer.gyro, gyro, sizeof(buffer.gyro)); /* convert 8 bits FIFO temperature in high resolution format */ buffer.temp = temp ? (*temp * 64) : 0; ts_val = inv_sensors_timestamp_pop(ts); iio_push_to_buffers_with_timestamp(indio_dev, &buffer, ts_val); } return 0; }