// SPDX-License-Identifier: GPL-2.0-only /* * VFIO PCI interrupt handling * * Copyright (C) 2012 Red Hat, Inc. All rights reserved. * Author: Alex Williamson * * Derived from original vfio: * Copyright 2010 Cisco Systems, Inc. All rights reserved. * Author: Tom Lyon, pugs@cisco.com */ #include #include #include #include #include #include #include #include #include #include "vfio_pci_priv.h" struct vfio_pci_irq_ctx { struct eventfd_ctx *trigger; struct virqfd *unmask; struct virqfd *mask; char *name; bool masked; struct irq_bypass_producer producer; }; static bool irq_is(struct vfio_pci_core_device *vdev, int type) { return vdev->irq_type == type; } static bool is_intx(struct vfio_pci_core_device *vdev) { return vdev->irq_type == VFIO_PCI_INTX_IRQ_INDEX; } static bool is_irq_none(struct vfio_pci_core_device *vdev) { return !(vdev->irq_type == VFIO_PCI_INTX_IRQ_INDEX || vdev->irq_type == VFIO_PCI_MSI_IRQ_INDEX || vdev->irq_type == VFIO_PCI_MSIX_IRQ_INDEX); } static struct vfio_pci_irq_ctx *vfio_irq_ctx_get(struct vfio_pci_core_device *vdev, unsigned long index) { return xa_load(&vdev->ctx, index); } static void vfio_irq_ctx_free(struct vfio_pci_core_device *vdev, struct vfio_pci_irq_ctx *ctx, unsigned long index) { xa_erase(&vdev->ctx, index); kfree(ctx); } static struct vfio_pci_irq_ctx * vfio_irq_ctx_alloc(struct vfio_pci_core_device *vdev, unsigned long index) { struct vfio_pci_irq_ctx *ctx; int ret; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT); if (!ctx) return NULL; ret = xa_insert(&vdev->ctx, index, ctx, GFP_KERNEL_ACCOUNT); if (ret) { kfree(ctx); return NULL; } return ctx; } /* * INTx */ static void vfio_send_intx_eventfd(void *opaque, void *unused) { struct vfio_pci_core_device *vdev = opaque; if (likely(is_intx(vdev) && !vdev->virq_disabled)) { struct vfio_pci_irq_ctx *ctx; struct eventfd_ctx *trigger; ctx = vfio_irq_ctx_get(vdev, 0); if (WARN_ON_ONCE(!ctx)) return; trigger = READ_ONCE(ctx->trigger); if (likely(trigger)) eventfd_signal(trigger, 1); } } /* Returns true if the INTx vfio_pci_irq_ctx.masked value is changed. */ static bool __vfio_pci_intx_mask(struct vfio_pci_core_device *vdev) { struct pci_dev *pdev = vdev->pdev; struct vfio_pci_irq_ctx *ctx; unsigned long flags; bool masked_changed = false; lockdep_assert_held(&vdev->igate); spin_lock_irqsave(&vdev->irqlock, flags); /* * Masking can come from interrupt, ioctl, or config space * via INTx disable. The latter means this can get called * even when not using intx delivery. In this case, just * try to have the physical bit follow the virtual bit. */ if (unlikely(!is_intx(vdev))) { if (vdev->pci_2_3) pci_intx(pdev, 0); goto out_unlock; } ctx = vfio_irq_ctx_get(vdev, 0); if (WARN_ON_ONCE(!ctx)) goto out_unlock; if (!ctx->masked) { /* * Can't use check_and_mask here because we always want to * mask, not just when something is pending. */ if (vdev->pci_2_3) pci_intx(pdev, 0); else disable_irq_nosync(pdev->irq); ctx->masked = true; masked_changed = true; } out_unlock: spin_unlock_irqrestore(&vdev->irqlock, flags); return masked_changed; } bool vfio_pci_intx_mask(struct vfio_pci_core_device *vdev) { bool mask_changed; mutex_lock(&vdev->igate); mask_changed = __vfio_pci_intx_mask(vdev); mutex_unlock(&vdev->igate); return mask_changed; } /* * If this is triggered by an eventfd, we can't call eventfd_signal * or else we'll deadlock on the eventfd wait queue. Return >0 when * a signal is necessary, which can then be handled via a work queue * or directly depending on the caller. */ static int vfio_pci_intx_unmask_handler(void *opaque, void *unused) { struct vfio_pci_core_device *vdev = opaque; struct pci_dev *pdev = vdev->pdev; struct vfio_pci_irq_ctx *ctx; unsigned long flags; int ret = 0; spin_lock_irqsave(&vdev->irqlock, flags); /* * Unmasking comes from ioctl or config, so again, have the * physical bit follow the virtual even when not using INTx. */ if (unlikely(!is_intx(vdev))) { if (vdev->pci_2_3) pci_intx(pdev, 1); goto out_unlock; } ctx = vfio_irq_ctx_get(vdev, 0); if (WARN_ON_ONCE(!ctx)) goto out_unlock; if (ctx->masked && !vdev->virq_disabled) { /* * A pending interrupt here would immediately trigger, * but we can avoid that overhead by just re-sending * the interrupt to the user. */ if (vdev->pci_2_3) { if (!pci_check_and_unmask_intx(pdev)) ret = 1; } else enable_irq(pdev->irq); ctx->masked = (ret > 0); } out_unlock: spin_unlock_irqrestore(&vdev->irqlock, flags); return ret; } static void __vfio_pci_intx_unmask(struct vfio_pci_core_device *vdev) { lockdep_assert_held(&vdev->igate); if (vfio_pci_intx_unmask_handler(vdev, NULL) > 0) vfio_send_intx_eventfd(vdev, NULL); } void vfio_pci_intx_unmask(struct vfio_pci_core_device *vdev) { mutex_lock(&vdev->igate); __vfio_pci_intx_unmask(vdev); mutex_unlock(&vdev->igate); } static irqreturn_t vfio_intx_handler(int irq, void *dev_id) { struct vfio_pci_core_device *vdev = dev_id; struct vfio_pci_irq_ctx *ctx; unsigned long flags; int ret = IRQ_NONE; ctx = vfio_irq_ctx_get(vdev, 0); if (WARN_ON_ONCE(!ctx)) return ret; spin_lock_irqsave(&vdev->irqlock, flags); if (!vdev->pci_2_3) { disable_irq_nosync(vdev->pdev->irq); ctx->masked = true; ret = IRQ_HANDLED; } else if (!ctx->masked && /* may be shared */ pci_check_and_mask_intx(vdev->pdev)) { ctx->masked = true; ret = IRQ_HANDLED; } spin_unlock_irqrestore(&vdev->irqlock, flags); if (ret == IRQ_HANDLED) vfio_send_intx_eventfd(vdev, NULL); return ret; } static int vfio_intx_enable(struct vfio_pci_core_device *vdev, struct eventfd_ctx *trigger) { struct pci_dev *pdev = vdev->pdev; struct vfio_pci_irq_ctx *ctx; unsigned long irqflags; char *name; int ret; if (!is_irq_none(vdev)) return -EINVAL; if (!pdev->irq) return -ENODEV; name = kasprintf(GFP_KERNEL_ACCOUNT, "vfio-intx(%s)", pci_name(pdev)); if (!name) return -ENOMEM; ctx = vfio_irq_ctx_alloc(vdev, 0); if (!ctx) { kfree(name); return -ENOMEM; } ctx->name = name; ctx->trigger = trigger; /* * Fill the initial masked state based on virq_disabled. After * enable, changing the DisINTx bit in vconfig directly changes INTx * masking. igate prevents races during setup, once running masked * is protected via irqlock. * * Devices supporting DisINTx also reflect the current mask state in * the physical DisINTx bit, which is not affected during IRQ setup. * * Devices without DisINTx support require an exclusive interrupt. * IRQ masking is performed at the IRQ chip. Again, igate protects * against races during setup and IRQ handlers and irqfds are not * yet active, therefore masked is stable and can be used to * conditionally auto-enable the IRQ. * * irq_type must be stable while the IRQ handler is registered, * therefore it must be set before request_irq(). */ ctx->masked = vdev->virq_disabled; if (vdev->pci_2_3) { pci_intx(pdev, !ctx->masked); irqflags = IRQF_SHARED; } else { irqflags = ctx->masked ? IRQF_NO_AUTOEN : 0; } vdev->irq_type = VFIO_PCI_INTX_IRQ_INDEX; ret = request_irq(pdev->irq, vfio_intx_handler, irqflags, ctx->name, vdev); if (ret) { vdev->irq_type = VFIO_PCI_NUM_IRQS; kfree(name); vfio_irq_ctx_free(vdev, ctx, 0); return ret; } return 0; } static int vfio_intx_set_signal(struct vfio_pci_core_device *vdev, struct eventfd_ctx *trigger) { struct pci_dev *pdev = vdev->pdev; struct vfio_pci_irq_ctx *ctx; struct eventfd_ctx *old; ctx = vfio_irq_ctx_get(vdev, 0); if (WARN_ON_ONCE(!ctx)) return -EINVAL; old = ctx->trigger; WRITE_ONCE(ctx->trigger, trigger); /* Releasing an old ctx requires synchronizing in-flight users */ if (old) { synchronize_irq(pdev->irq); vfio_virqfd_flush_thread(&ctx->unmask); eventfd_ctx_put(old); } return 0; } static void vfio_intx_disable(struct vfio_pci_core_device *vdev) { struct pci_dev *pdev = vdev->pdev; struct vfio_pci_irq_ctx *ctx; ctx = vfio_irq_ctx_get(vdev, 0); WARN_ON_ONCE(!ctx); if (ctx) { vfio_virqfd_disable(&ctx->unmask); vfio_virqfd_disable(&ctx->mask); free_irq(pdev->irq, vdev); if (ctx->trigger) eventfd_ctx_put(ctx->trigger); kfree(ctx->name); vfio_irq_ctx_free(vdev, ctx, 0); } vdev->irq_type = VFIO_PCI_NUM_IRQS; } /* * MSI/MSI-X */ static irqreturn_t vfio_msihandler(int irq, void *arg) { struct eventfd_ctx *trigger = arg; eventfd_signal(trigger, 1); return IRQ_HANDLED; } static int vfio_msi_enable(struct vfio_pci_core_device *vdev, int nvec, bool msix) { struct pci_dev *pdev = vdev->pdev; unsigned int flag = msix ? PCI_IRQ_MSIX : PCI_IRQ_MSI; int ret; u16 cmd; if (!is_irq_none(vdev)) return -EINVAL; /* return the number of supported vectors if we can't get all: */ cmd = vfio_pci_memory_lock_and_enable(vdev); ret = pci_alloc_irq_vectors(pdev, 1, nvec, flag); if (ret < nvec) { if (ret > 0) pci_free_irq_vectors(pdev); vfio_pci_memory_unlock_and_restore(vdev, cmd); return ret; } vfio_pci_memory_unlock_and_restore(vdev, cmd); vdev->irq_type = msix ? VFIO_PCI_MSIX_IRQ_INDEX : VFIO_PCI_MSI_IRQ_INDEX; if (!msix) { /* * Compute the virtual hardware field for max msi vectors - * it is the log base 2 of the number of vectors. */ vdev->msi_qmax = fls(nvec * 2 - 1) - 1; } return 0; } /* * vfio_msi_alloc_irq() returns the Linux IRQ number of an MSI or MSI-X device * interrupt vector. If a Linux IRQ number is not available then a new * interrupt is allocated if dynamic MSI-X is supported. * * Where is vfio_msi_free_irq()? Allocated interrupts are maintained, * essentially forming a cache that subsequent allocations can draw from. * Interrupts are freed using pci_free_irq_vectors() when MSI/MSI-X is * disabled. */ static int vfio_msi_alloc_irq(struct vfio_pci_core_device *vdev, unsigned int vector, bool msix) { struct pci_dev *pdev = vdev->pdev; struct msi_map map; int irq; u16 cmd; irq = pci_irq_vector(pdev, vector); if (WARN_ON_ONCE(irq == 0)) return -EINVAL; if (irq > 0 || !msix || !vdev->has_dyn_msix) return irq; cmd = vfio_pci_memory_lock_and_enable(vdev); map = pci_msix_alloc_irq_at(pdev, vector, NULL); vfio_pci_memory_unlock_and_restore(vdev, cmd); return map.index < 0 ? map.index : map.virq; } static int vfio_msi_set_vector_signal(struct vfio_pci_core_device *vdev, unsigned int vector, int fd, bool msix) { struct pci_dev *pdev = vdev->pdev; struct vfio_pci_irq_ctx *ctx; struct eventfd_ctx *trigger; int irq = -EINVAL, ret; u16 cmd; ctx = vfio_irq_ctx_get(vdev, vector); if (ctx) { irq_bypass_unregister_producer(&ctx->producer); irq = pci_irq_vector(pdev, vector); cmd = vfio_pci_memory_lock_and_enable(vdev); free_irq(irq, ctx->trigger); vfio_pci_memory_unlock_and_restore(vdev, cmd); /* Interrupt stays allocated, will be freed at MSI-X disable. */ kfree(ctx->name); eventfd_ctx_put(ctx->trigger); vfio_irq_ctx_free(vdev, ctx, vector); } if (fd < 0) return 0; if (irq == -EINVAL) { /* Interrupt stays allocated, will be freed at MSI-X disable. */ irq = vfio_msi_alloc_irq(vdev, vector, msix); if (irq < 0) return irq; } ctx = vfio_irq_ctx_alloc(vdev, vector); if (!ctx) return -ENOMEM; ctx->name = kasprintf(GFP_KERNEL_ACCOUNT, "vfio-msi%s[%d](%s)", msix ? "x" : "", vector, pci_name(pdev)); if (!ctx->name) { ret = -ENOMEM; goto out_free_ctx; } trigger = eventfd_ctx_fdget(fd); if (IS_ERR(trigger)) { ret = PTR_ERR(trigger); goto out_free_name; } /* * If the vector was previously allocated, refresh the on-device * message data before enabling in case it had been cleared or * corrupted (e.g. due to backdoor resets) since writing. */ cmd = vfio_pci_memory_lock_and_enable(vdev); if (msix) { struct msi_msg msg; get_cached_msi_msg(irq, &msg); pci_write_msi_msg(irq, &msg); } ret = request_irq(irq, vfio_msihandler, 0, ctx->name, trigger); vfio_pci_memory_unlock_and_restore(vdev, cmd); if (ret) goto out_put_eventfd_ctx; ctx->producer.token = trigger; ctx->producer.irq = irq; ret = irq_bypass_register_producer(&ctx->producer); if (unlikely(ret)) { dev_info(&pdev->dev, "irq bypass producer (token %p) registration fails: %d\n", ctx->producer.token, ret); ctx->producer.token = NULL; } ctx->trigger = trigger; return 0; out_put_eventfd_ctx: eventfd_ctx_put(trigger); out_free_name: kfree(ctx->name); out_free_ctx: vfio_irq_ctx_free(vdev, ctx, vector); return ret; } static int vfio_msi_set_block(struct vfio_pci_core_device *vdev, unsigned start, unsigned count, int32_t *fds, bool msix) { unsigned int i, j; int ret = 0; for (i = 0, j = start; i < count && !ret; i++, j++) { int fd = fds ? fds[i] : -1; ret = vfio_msi_set_vector_signal(vdev, j, fd, msix); } if (ret) { for (i = start; i < j; i++) vfio_msi_set_vector_signal(vdev, i, -1, msix); } return ret; } static void vfio_msi_disable(struct vfio_pci_core_device *vdev, bool msix) { struct pci_dev *pdev = vdev->pdev; struct vfio_pci_irq_ctx *ctx; unsigned long i; u16 cmd; xa_for_each(&vdev->ctx, i, ctx) { vfio_virqfd_disable(&ctx->unmask); vfio_virqfd_disable(&ctx->mask); vfio_msi_set_vector_signal(vdev, i, -1, msix); } cmd = vfio_pci_memory_lock_and_enable(vdev); pci_free_irq_vectors(pdev); vfio_pci_memory_unlock_and_restore(vdev, cmd); /* * Both disable paths above use pci_intx_for_msi() to clear DisINTx * via their shutdown paths. Restore for NoINTx devices. */ if (vdev->nointx) pci_intx(pdev, 0); vdev->irq_type = VFIO_PCI_NUM_IRQS; } /* * IOCTL support */ static int vfio_pci_set_intx_unmask(struct vfio_pci_core_device *vdev, unsigned index, unsigned start, unsigned count, uint32_t flags, void *data) { if (!is_intx(vdev) || start != 0 || count != 1) return -EINVAL; if (flags & VFIO_IRQ_SET_DATA_NONE) { __vfio_pci_intx_unmask(vdev); } else if (flags & VFIO_IRQ_SET_DATA_BOOL) { uint8_t unmask = *(uint8_t *)data; if (unmask) __vfio_pci_intx_unmask(vdev); } else if (flags & VFIO_IRQ_SET_DATA_EVENTFD) { struct vfio_pci_irq_ctx *ctx = vfio_irq_ctx_get(vdev, 0); int32_t fd = *(int32_t *)data; if (WARN_ON_ONCE(!ctx)) return -EINVAL; if (fd >= 0) return vfio_virqfd_enable((void *) vdev, vfio_pci_intx_unmask_handler, vfio_send_intx_eventfd, NULL, &ctx->unmask, fd); vfio_virqfd_disable(&ctx->unmask); } return 0; } static int vfio_pci_set_intx_mask(struct vfio_pci_core_device *vdev, unsigned index, unsigned start, unsigned count, uint32_t flags, void *data) { if (!is_intx(vdev) || start != 0 || count != 1) return -EINVAL; if (flags & VFIO_IRQ_SET_DATA_NONE) { __vfio_pci_intx_mask(vdev); } else if (flags & VFIO_IRQ_SET_DATA_BOOL) { uint8_t mask = *(uint8_t *)data; if (mask) __vfio_pci_intx_mask(vdev); } else if (flags & VFIO_IRQ_SET_DATA_EVENTFD) { return -ENOTTY; /* XXX implement me */ } return 0; } static int vfio_pci_set_intx_trigger(struct vfio_pci_core_device *vdev, unsigned index, unsigned start, unsigned count, uint32_t flags, void *data) { if (is_intx(vdev) && !count && (flags & VFIO_IRQ_SET_DATA_NONE)) { vfio_intx_disable(vdev); return 0; } if (!(is_intx(vdev) || is_irq_none(vdev)) || start != 0 || count != 1) return -EINVAL; if (flags & VFIO_IRQ_SET_DATA_EVENTFD) { struct eventfd_ctx *trigger = NULL; int32_t fd = *(int32_t *)data; int ret; if (fd >= 0) { trigger = eventfd_ctx_fdget(fd); if (IS_ERR(trigger)) return PTR_ERR(trigger); } if (is_intx(vdev)) ret = vfio_intx_set_signal(vdev, trigger); else ret = vfio_intx_enable(vdev, trigger); if (ret && trigger) eventfd_ctx_put(trigger); return ret; } if (!is_intx(vdev)) return -EINVAL; if (flags & VFIO_IRQ_SET_DATA_NONE) { vfio_send_intx_eventfd(vdev, NULL); } else if (flags & VFIO_IRQ_SET_DATA_BOOL) { uint8_t trigger = *(uint8_t *)data; if (trigger) vfio_send_intx_eventfd(vdev, NULL); } return 0; } static int vfio_pci_set_msi_trigger(struct vfio_pci_core_device *vdev, unsigned index, unsigned start, unsigned count, uint32_t flags, void *data) { struct vfio_pci_irq_ctx *ctx; unsigned int i; bool msix = (index == VFIO_PCI_MSIX_IRQ_INDEX) ? true : false; if (irq_is(vdev, index) && !count && (flags & VFIO_IRQ_SET_DATA_NONE)) { vfio_msi_disable(vdev, msix); return 0; } if (!(irq_is(vdev, index) || is_irq_none(vdev))) return -EINVAL; if (flags & VFIO_IRQ_SET_DATA_EVENTFD) { int32_t *fds = data; int ret; if (vdev->irq_type == index) return vfio_msi_set_block(vdev, start, count, fds, msix); ret = vfio_msi_enable(vdev, start + count, msix); if (ret) return ret; ret = vfio_msi_set_block(vdev, start, count, fds, msix); if (ret) vfio_msi_disable(vdev, msix); return ret; } if (!irq_is(vdev, index)) return -EINVAL; for (i = start; i < start + count; i++) { ctx = vfio_irq_ctx_get(vdev, i); if (!ctx) continue; if (flags & VFIO_IRQ_SET_DATA_NONE) { eventfd_signal(ctx->trigger, 1); } else if (flags & VFIO_IRQ_SET_DATA_BOOL) { uint8_t *bools = data; if (bools[i - start]) eventfd_signal(ctx->trigger, 1); } } return 0; } static int vfio_pci_set_ctx_trigger_single(struct eventfd_ctx **ctx, unsigned int count, uint32_t flags, void *data) { /* DATA_NONE/DATA_BOOL enables loopback testing */ if (flags & VFIO_IRQ_SET_DATA_NONE) { if (*ctx) { if (count) { eventfd_signal(*ctx, 1); } else { eventfd_ctx_put(*ctx); *ctx = NULL; } return 0; } } else if (flags & VFIO_IRQ_SET_DATA_BOOL) { uint8_t trigger; if (!count) return -EINVAL; trigger = *(uint8_t *)data; if (trigger && *ctx) eventfd_signal(*ctx, 1); return 0; } else if (flags & VFIO_IRQ_SET_DATA_EVENTFD) { int32_t fd; if (!count) return -EINVAL; fd = *(int32_t *)data; if (fd == -1) { if (*ctx) eventfd_ctx_put(*ctx); *ctx = NULL; } else if (fd >= 0) { struct eventfd_ctx *efdctx; efdctx = eventfd_ctx_fdget(fd); if (IS_ERR(efdctx)) return PTR_ERR(efdctx); if (*ctx) eventfd_ctx_put(*ctx); *ctx = efdctx; } return 0; } return -EINVAL; } static int vfio_pci_set_err_trigger(struct vfio_pci_core_device *vdev, unsigned index, unsigned start, unsigned count, uint32_t flags, void *data) { if (index != VFIO_PCI_ERR_IRQ_INDEX || start != 0 || count > 1) return -EINVAL; return vfio_pci_set_ctx_trigger_single(&vdev->err_trigger, count, flags, data); } static int vfio_pci_set_req_trigger(struct vfio_pci_core_device *vdev, unsigned index, unsigned start, unsigned count, uint32_t flags, void *data) { if (index != VFIO_PCI_REQ_IRQ_INDEX || start != 0 || count > 1) return -EINVAL; return vfio_pci_set_ctx_trigger_single(&vdev->req_trigger, count, flags, data); } int vfio_pci_set_irqs_ioctl(struct vfio_pci_core_device *vdev, uint32_t flags, unsigned index, unsigned start, unsigned count, void *data) { int (*func)(struct vfio_pci_core_device *vdev, unsigned index, unsigned start, unsigned count, uint32_t flags, void *data) = NULL; switch (index) { case VFIO_PCI_INTX_IRQ_INDEX: switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) { case VFIO_IRQ_SET_ACTION_MASK: func = vfio_pci_set_intx_mask; break; case VFIO_IRQ_SET_ACTION_UNMASK: func = vfio_pci_set_intx_unmask; break; case VFIO_IRQ_SET_ACTION_TRIGGER: func = vfio_pci_set_intx_trigger; break; } break; case VFIO_PCI_MSI_IRQ_INDEX: case VFIO_PCI_MSIX_IRQ_INDEX: switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) { case VFIO_IRQ_SET_ACTION_MASK: case VFIO_IRQ_SET_ACTION_UNMASK: /* XXX Need masking support exported */ break; case VFIO_IRQ_SET_ACTION_TRIGGER: func = vfio_pci_set_msi_trigger; break; } break; case VFIO_PCI_ERR_IRQ_INDEX: switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) { case VFIO_IRQ_SET_ACTION_TRIGGER: if (pci_is_pcie(vdev->pdev)) func = vfio_pci_set_err_trigger; break; } break; case VFIO_PCI_REQ_IRQ_INDEX: switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) { case VFIO_IRQ_SET_ACTION_TRIGGER: func = vfio_pci_set_req_trigger; break; } break; } if (!func) return -ENOTTY; return func(vdev, index, start, count, flags, data); }