• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* Linux PRO/1000 Ethernet Driver main header file */
5 
6 #ifndef _E1000_H_
7 #define _E1000_H_
8 
9 #include <linux/bitops.h>
10 #include <linux/types.h>
11 #include <linux/timer.h>
12 #include <linux/workqueue.h>
13 #include <linux/io.h>
14 #include <linux/netdevice.h>
15 #include <linux/pci.h>
16 #include <linux/crc32.h>
17 #include <linux/if_vlan.h>
18 #include <linux/timecounter.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/ptp_clock_kernel.h>
21 #include <linux/ptp_classify.h>
22 #include <linux/mii.h>
23 #include <linux/mdio.h>
24 #include <linux/mutex.h>
25 #include <linux/pm_qos.h>
26 #include "hw.h"
27 
28 struct e1000_info;
29 
30 #define e_dbg(format, arg...) \
31 	netdev_dbg(hw->adapter->netdev, format, ## arg)
32 #define e_err(format, arg...) \
33 	netdev_err(adapter->netdev, format, ## arg)
34 #define e_info(format, arg...) \
35 	netdev_info(adapter->netdev, format, ## arg)
36 #define e_warn(format, arg...) \
37 	netdev_warn(adapter->netdev, format, ## arg)
38 #define e_notice(format, arg...) \
39 	netdev_notice(adapter->netdev, format, ## arg)
40 
41 /* Interrupt modes, as used by the IntMode parameter */
42 #define E1000E_INT_MODE_LEGACY		0
43 #define E1000E_INT_MODE_MSI		1
44 #define E1000E_INT_MODE_MSIX		2
45 
46 /* Tx/Rx descriptor defines */
47 #define E1000_DEFAULT_TXD		256
48 #define E1000_MAX_TXD			4096
49 #define E1000_MIN_TXD			64
50 
51 #define E1000_DEFAULT_RXD		256
52 #define E1000_MAX_RXD			4096
53 #define E1000_MIN_RXD			64
54 
55 #define E1000_MIN_ITR_USECS		10 /* 100000 irq/sec */
56 #define E1000_MAX_ITR_USECS		10000 /* 100    irq/sec */
57 
58 #define E1000_FC_PAUSE_TIME		0x0680 /* 858 usec */
59 
60 /* How many Tx Descriptors do we need to call netif_wake_queue ? */
61 /* How many Rx Buffers do we bundle into one write to the hardware ? */
62 #define E1000_RX_BUFFER_WRITE		16 /* Must be power of 2 */
63 
64 #define AUTO_ALL_MODES			0
65 #define E1000_EEPROM_APME		0x0400
66 
67 #define E1000_MNG_VLAN_NONE		(-1)
68 
69 #define DEFAULT_JUMBO			9234
70 
71 /* Time to wait before putting the device into D3 if there's no link (in ms). */
72 #define LINK_TIMEOUT		100
73 
74 /* Count for polling __E1000_RESET condition every 10-20msec.
75  * Experimentation has shown the reset can take approximately 210msec.
76  */
77 #define E1000_CHECK_RESET_COUNT		25
78 
79 #define PCICFG_DESC_RING_STATUS		0xe4
80 #define FLUSH_DESC_REQUIRED		0x100
81 
82 /* in the case of WTHRESH, it appears at least the 82571/2 hardware
83  * writes back 4 descriptors when WTHRESH=5, and 3 descriptors when
84  * WTHRESH=4, so a setting of 5 gives the most efficient bus
85  * utilization but to avoid possible Tx stalls, set it to 1
86  */
87 #define E1000_TXDCTL_DMA_BURST_ENABLE                          \
88 	(E1000_TXDCTL_GRAN | /* set descriptor granularity */  \
89 	 E1000_TXDCTL_COUNT_DESC |                             \
90 	 (1u << 16) | /* wthresh must be +1 more than desired */\
91 	 (1u << 8)  | /* hthresh */                             \
92 	 0x1f)        /* pthresh */
93 
94 #define E1000_RXDCTL_DMA_BURST_ENABLE                          \
95 	(0x01000000 | /* set descriptor granularity */         \
96 	 (4u << 16) | /* set writeback threshold    */         \
97 	 (4u << 8)  | /* set prefetch threshold     */         \
98 	 0x20)        /* set hthresh                */
99 
100 #define E1000_TIDV_FPD BIT(31)
101 #define E1000_RDTR_FPD BIT(31)
102 
103 enum e1000_boards {
104 	board_82571,
105 	board_82572,
106 	board_82573,
107 	board_82574,
108 	board_82583,
109 	board_80003es2lan,
110 	board_ich8lan,
111 	board_ich9lan,
112 	board_ich10lan,
113 	board_pchlan,
114 	board_pch2lan,
115 	board_pch_lpt,
116 	board_pch_spt,
117 	board_pch_cnp,
118 	board_pch_tgp,
119 	board_pch_adp,
120 	board_pch_mtp
121 };
122 
123 struct e1000_ps_page {
124 	struct page *page;
125 	u64 dma; /* must be u64 - written to hw */
126 };
127 
128 /* wrappers around a pointer to a socket buffer,
129  * so a DMA handle can be stored along with the buffer
130  */
131 struct e1000_buffer {
132 	dma_addr_t dma;
133 	struct sk_buff *skb;
134 	union {
135 		/* Tx */
136 		struct {
137 			unsigned long time_stamp;
138 			u16 length;
139 			u16 next_to_watch;
140 			unsigned int segs;
141 			unsigned int bytecount;
142 			u16 mapped_as_page;
143 		};
144 		/* Rx */
145 		struct {
146 			/* arrays of page information for packet split */
147 			struct e1000_ps_page *ps_pages;
148 			struct page *page;
149 		};
150 	};
151 };
152 
153 struct e1000_ring {
154 	struct e1000_adapter *adapter;	/* back pointer to adapter */
155 	void *desc;			/* pointer to ring memory  */
156 	dma_addr_t dma;			/* phys address of ring    */
157 	unsigned int size;		/* length of ring in bytes */
158 	unsigned int count;		/* number of desc. in ring */
159 
160 	u16 next_to_use;
161 	u16 next_to_clean;
162 
163 	void __iomem *head;
164 	void __iomem *tail;
165 
166 	/* array of buffer information structs */
167 	struct e1000_buffer *buffer_info;
168 
169 	char name[IFNAMSIZ + 5];
170 	u32 ims_val;
171 	u32 itr_val;
172 	void __iomem *itr_register;
173 	int set_itr;
174 
175 	struct sk_buff *rx_skb_top;
176 };
177 
178 /* PHY register snapshot values */
179 struct e1000_phy_regs {
180 	u16 bmcr;		/* basic mode control register    */
181 	u16 bmsr;		/* basic mode status register     */
182 	u16 advertise;		/* auto-negotiation advertisement */
183 	u16 lpa;		/* link partner ability register  */
184 	u16 expansion;		/* auto-negotiation expansion reg */
185 	u16 ctrl1000;		/* 1000BASE-T control register    */
186 	u16 stat1000;		/* 1000BASE-T status register     */
187 	u16 estatus;		/* extended status register       */
188 };
189 
190 /* board specific private data structure */
191 struct e1000_adapter {
192 	struct timer_list watchdog_timer;
193 	struct timer_list phy_info_timer;
194 	struct timer_list blink_timer;
195 
196 	struct work_struct reset_task;
197 	struct work_struct watchdog_task;
198 
199 	const struct e1000_info *ei;
200 
201 	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
202 	u32 bd_number;
203 	u32 rx_buffer_len;
204 	u16 mng_vlan_id;
205 	u16 link_speed;
206 	u16 link_duplex;
207 	u16 eeprom_vers;
208 
209 	/* track device up/down/testing state */
210 	unsigned long state;
211 
212 	/* Interrupt Throttle Rate */
213 	u32 itr;
214 	u32 itr_setting;
215 	u16 tx_itr;
216 	u16 rx_itr;
217 
218 	/* Tx - one ring per active queue */
219 	struct e1000_ring *tx_ring ____cacheline_aligned_in_smp;
220 	u32 tx_fifo_limit;
221 
222 	struct napi_struct napi;
223 
224 	unsigned int uncorr_errors;	/* uncorrectable ECC errors */
225 	unsigned int corr_errors;	/* correctable ECC errors */
226 	unsigned int restart_queue;
227 	u32 txd_cmd;
228 
229 	bool detect_tx_hung;
230 	bool tx_hang_recheck;
231 	u8 tx_timeout_factor;
232 
233 	u32 tx_int_delay;
234 	u32 tx_abs_int_delay;
235 
236 	unsigned int total_tx_bytes;
237 	unsigned int total_tx_packets;
238 	unsigned int total_rx_bytes;
239 	unsigned int total_rx_packets;
240 
241 	/* Tx stats */
242 	u64 tpt_old;
243 	u64 colc_old;
244 	u32 gotc;
245 	u64 gotc_old;
246 	u32 tx_timeout_count;
247 	u32 tx_fifo_head;
248 	u32 tx_head_addr;
249 	u32 tx_fifo_size;
250 	u32 tx_dma_failed;
251 	u32 tx_hwtstamp_timeouts;
252 	u32 tx_hwtstamp_skipped;
253 
254 	/* Rx */
255 	bool (*clean_rx)(struct e1000_ring *ring, int *work_done,
256 			 int work_to_do) ____cacheline_aligned_in_smp;
257 	void (*alloc_rx_buf)(struct e1000_ring *ring, int cleaned_count,
258 			     gfp_t gfp);
259 	struct e1000_ring *rx_ring;
260 
261 	u32 rx_int_delay;
262 	u32 rx_abs_int_delay;
263 
264 	/* Rx stats */
265 	u64 hw_csum_err;
266 	u64 hw_csum_good;
267 	u64 rx_hdr_split;
268 	u32 gorc;
269 	u64 gorc_old;
270 	u32 alloc_rx_buff_failed;
271 	u32 rx_dma_failed;
272 	u32 rx_hwtstamp_cleared;
273 
274 	unsigned int rx_ps_pages;
275 	u16 rx_ps_bsize0;
276 	u32 max_frame_size;
277 	u32 min_frame_size;
278 
279 	/* OS defined structs */
280 	struct net_device *netdev;
281 	struct pci_dev *pdev;
282 
283 	/* structs defined in e1000_hw.h */
284 	struct e1000_hw hw;
285 
286 	spinlock_t stats64_lock;	/* protects statistics counters */
287 	struct e1000_hw_stats stats;
288 	struct e1000_phy_info phy_info;
289 	struct e1000_phy_stats phy_stats;
290 
291 	/* Snapshot of PHY registers */
292 	struct e1000_phy_regs phy_regs;
293 
294 	struct e1000_ring test_tx_ring;
295 	struct e1000_ring test_rx_ring;
296 	u32 test_icr;
297 
298 	u32 msg_enable;
299 	unsigned int num_vectors;
300 	struct msix_entry *msix_entries;
301 	int int_mode;
302 	u32 eiac_mask;
303 
304 	u32 eeprom_wol;
305 	u32 wol;
306 	u32 pba;
307 	u32 max_hw_frame_size;
308 
309 	bool fc_autoneg;
310 
311 	unsigned int flags;
312 	unsigned int flags2;
313 	struct work_struct downshift_task;
314 	struct work_struct update_phy_task;
315 	struct work_struct print_hang_task;
316 
317 	int phy_hang_count;
318 
319 	u16 tx_ring_count;
320 	u16 rx_ring_count;
321 
322 	struct hwtstamp_config hwtstamp_config;
323 	struct delayed_work systim_overflow_work;
324 	struct sk_buff *tx_hwtstamp_skb;
325 	unsigned long tx_hwtstamp_start;
326 	struct work_struct tx_hwtstamp_work;
327 	spinlock_t systim_lock;	/* protects SYSTIML/H regsters */
328 	struct cyclecounter cc;
329 	struct timecounter tc;
330 	struct ptp_clock *ptp_clock;
331 	struct ptp_clock_info ptp_clock_info;
332 	struct pm_qos_request pm_qos_req;
333 	long ptp_delta;
334 
335 	u16 eee_advert;
336 };
337 
338 struct e1000_info {
339 	enum e1000_mac_type	mac;
340 	unsigned int		flags;
341 	unsigned int		flags2;
342 	u32			pba;
343 	u32			max_hw_frame_size;
344 	s32			(*get_variants)(struct e1000_adapter *);
345 	const struct e1000_mac_operations *mac_ops;
346 	const struct e1000_phy_operations *phy_ops;
347 	const struct e1000_nvm_operations *nvm_ops;
348 };
349 
350 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca);
351 
352 /* The system time is maintained by a 64-bit counter comprised of the 32-bit
353  * SYSTIMH and SYSTIML registers.  How the counter increments (and therefore
354  * its resolution) is based on the contents of the TIMINCA register - it
355  * increments every incperiod (bits 31:24) clock ticks by incvalue (bits 23:0).
356  * For the best accuracy, the incperiod should be as small as possible.  The
357  * incvalue is scaled by a factor as large as possible (while still fitting
358  * in bits 23:0) so that relatively small clock corrections can be made.
359  *
360  * As a result, a shift of INCVALUE_SHIFT_n is used to fit a value of
361  * INCVALUE_n into the TIMINCA register allowing 32+8+(24-INCVALUE_SHIFT_n)
362  * bits to count nanoseconds leaving the rest for fractional nonseconds.
363  *
364  * Any given INCVALUE also has an associated maximum adjustment value. This
365  * maximum adjustment value is the largest increase (or decrease) which can be
366  * safely applied without overflowing the INCVALUE. Since INCVALUE has
367  * a maximum range of 24 bits, its largest value is 0xFFFFFF.
368  *
369  * To understand where the maximum value comes from, consider the following
370  * equation:
371  *
372  *   new_incval = base_incval + (base_incval * adjustment) / 1billion
373  *
374  * To avoid overflow that means:
375  *   max_incval = base_incval + (base_incval * max_adj) / billion
376  *
377  * Re-arranging:
378  *   max_adj = floor(((max_incval - base_incval) * 1billion) / 1billion)
379  */
380 #define INCVALUE_96MHZ		125
381 #define INCVALUE_SHIFT_96MHZ	17
382 #define INCPERIOD_SHIFT_96MHZ	2
383 #define INCPERIOD_96MHZ		(12 >> INCPERIOD_SHIFT_96MHZ)
384 #define MAX_PPB_96MHZ		23999900 /* 23,999,900 ppb */
385 
386 #define INCVALUE_25MHZ		40
387 #define INCVALUE_SHIFT_25MHZ	18
388 #define INCPERIOD_25MHZ		1
389 #define MAX_PPB_25MHZ		599999900 /* 599,999,900 ppb */
390 
391 #define INCVALUE_24MHZ		125
392 #define INCVALUE_SHIFT_24MHZ	14
393 #define INCPERIOD_24MHZ		3
394 #define MAX_PPB_24MHZ		999999999 /* 999,999,999 ppb */
395 
396 #define INCVALUE_38400KHZ	26
397 #define INCVALUE_SHIFT_38400KHZ	19
398 #define INCPERIOD_38400KHZ	1
399 #define MAX_PPB_38400KHZ	230769100 /* 230,769,100 ppb */
400 
401 /* Another drawback of scaling the incvalue by a large factor is the
402  * 64-bit SYSTIM register overflows more quickly.  This is dealt with
403  * by simply reading the clock before it overflows.
404  *
405  * Clock	ns bits	Overflows after
406  * ~~~~~~	~~~~~~~	~~~~~~~~~~~~~~~
407  * 96MHz	47-bit	2^(47-INCPERIOD_SHIFT_96MHz) / 10^9 / 3600 = 9.77 hrs
408  * 25MHz	46-bit	2^46 / 10^9 / 3600 = 19.55 hours
409  */
410 #define E1000_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 60 * 4)
411 #define E1000_MAX_82574_SYSTIM_REREADS	50
412 #define E1000_82574_SYSTIM_EPSILON	(1ULL << 35ULL)
413 
414 /* hardware capability, feature, and workaround flags */
415 #define FLAG_HAS_AMT                      BIT(0)
416 #define FLAG_HAS_FLASH                    BIT(1)
417 #define FLAG_HAS_HW_VLAN_FILTER           BIT(2)
418 #define FLAG_HAS_WOL                      BIT(3)
419 /* reserved BIT(4) */
420 #define FLAG_HAS_CTRLEXT_ON_LOAD          BIT(5)
421 #define FLAG_HAS_SWSM_ON_LOAD             BIT(6)
422 #define FLAG_HAS_JUMBO_FRAMES             BIT(7)
423 #define FLAG_READ_ONLY_NVM                BIT(8)
424 #define FLAG_IS_ICH                       BIT(9)
425 #define FLAG_HAS_MSIX                     BIT(10)
426 #define FLAG_HAS_SMART_POWER_DOWN         BIT(11)
427 #define FLAG_IS_QUAD_PORT_A               BIT(12)
428 #define FLAG_IS_QUAD_PORT                 BIT(13)
429 #define FLAG_HAS_HW_TIMESTAMP             BIT(14)
430 #define FLAG_APME_IN_WUC                  BIT(15)
431 #define FLAG_APME_IN_CTRL3                BIT(16)
432 #define FLAG_APME_CHECK_PORT_B            BIT(17)
433 #define FLAG_DISABLE_FC_PAUSE_TIME        BIT(18)
434 #define FLAG_NO_WAKE_UCAST                BIT(19)
435 #define FLAG_MNG_PT_ENABLED               BIT(20)
436 #define FLAG_RESET_OVERWRITES_LAA         BIT(21)
437 #define FLAG_TARC_SPEED_MODE_BIT          BIT(22)
438 #define FLAG_TARC_SET_BIT_ZERO            BIT(23)
439 #define FLAG_RX_NEEDS_RESTART             BIT(24)
440 #define FLAG_LSC_GIG_SPEED_DROP           BIT(25)
441 #define FLAG_SMART_POWER_DOWN             BIT(26)
442 #define FLAG_MSI_ENABLED                  BIT(27)
443 /* reserved BIT(28) */
444 #define FLAG_TSO_FORCE                    BIT(29)
445 #define FLAG_RESTART_NOW                  BIT(30)
446 #define FLAG_MSI_TEST_FAILED              BIT(31)
447 
448 #define FLAG2_CRC_STRIPPING               BIT(0)
449 #define FLAG2_HAS_PHY_WAKEUP              BIT(1)
450 #define FLAG2_IS_DISCARDING               BIT(2)
451 #define FLAG2_DISABLE_ASPM_L1             BIT(3)
452 #define FLAG2_HAS_PHY_STATS               BIT(4)
453 #define FLAG2_HAS_EEE                     BIT(5)
454 #define FLAG2_DMA_BURST                   BIT(6)
455 #define FLAG2_DISABLE_ASPM_L0S            BIT(7)
456 #define FLAG2_DISABLE_AIM                 BIT(8)
457 #define FLAG2_CHECK_PHY_HANG              BIT(9)
458 #define FLAG2_NO_DISABLE_RX               BIT(10)
459 #define FLAG2_PCIM2PCI_ARBITER_WA         BIT(11)
460 #define FLAG2_DFLT_CRC_STRIPPING          BIT(12)
461 #define FLAG2_CHECK_RX_HWTSTAMP           BIT(13)
462 #define FLAG2_CHECK_SYSTIM_OVERFLOW       BIT(14)
463 #define FLAG2_ENABLE_S0IX_FLOWS           BIT(15)
464 
465 #define E1000_RX_DESC_PS(R, i)	    \
466 	(&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
467 #define E1000_RX_DESC_EXT(R, i)	    \
468 	(&(((union e1000_rx_desc_extended *)((R).desc))[i]))
469 #define E1000_GET_DESC(R, i, type)	(&(((struct type *)((R).desc))[i]))
470 #define E1000_TX_DESC(R, i)		E1000_GET_DESC(R, i, e1000_tx_desc)
471 #define E1000_CONTEXT_DESC(R, i)	E1000_GET_DESC(R, i, e1000_context_desc)
472 
473 enum e1000_state_t {
474 	__E1000_TESTING,
475 	__E1000_RESETTING,
476 	__E1000_ACCESS_SHARED_RESOURCE,
477 	__E1000_DOWN
478 };
479 
480 enum latency_range {
481 	lowest_latency = 0,
482 	low_latency = 1,
483 	bulk_latency = 2,
484 	latency_invalid = 255
485 };
486 
487 extern char e1000e_driver_name[];
488 
489 void e1000e_check_options(struct e1000_adapter *adapter);
490 void e1000e_set_ethtool_ops(struct net_device *netdev);
491 
492 int e1000e_open(struct net_device *netdev);
493 int e1000e_close(struct net_device *netdev);
494 void e1000e_up(struct e1000_adapter *adapter);
495 void e1000e_down(struct e1000_adapter *adapter, bool reset);
496 void e1000e_reinit_locked(struct e1000_adapter *adapter);
497 void e1000e_reset(struct e1000_adapter *adapter);
498 void e1000e_power_up_phy(struct e1000_adapter *adapter);
499 int e1000e_setup_rx_resources(struct e1000_ring *ring);
500 int e1000e_setup_tx_resources(struct e1000_ring *ring);
501 void e1000e_free_rx_resources(struct e1000_ring *ring);
502 void e1000e_free_tx_resources(struct e1000_ring *ring);
503 void e1000e_get_stats64(struct net_device *netdev,
504 			struct rtnl_link_stats64 *stats);
505 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter);
506 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter);
507 void e1000e_get_hw_control(struct e1000_adapter *adapter);
508 void e1000e_release_hw_control(struct e1000_adapter *adapter);
509 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr);
510 
511 extern unsigned int copybreak;
512 
513 extern const struct e1000_info e1000_82571_info;
514 extern const struct e1000_info e1000_82572_info;
515 extern const struct e1000_info e1000_82573_info;
516 extern const struct e1000_info e1000_82574_info;
517 extern const struct e1000_info e1000_82583_info;
518 extern const struct e1000_info e1000_ich8_info;
519 extern const struct e1000_info e1000_ich9_info;
520 extern const struct e1000_info e1000_ich10_info;
521 extern const struct e1000_info e1000_pch_info;
522 extern const struct e1000_info e1000_pch2_info;
523 extern const struct e1000_info e1000_pch_lpt_info;
524 extern const struct e1000_info e1000_pch_spt_info;
525 extern const struct e1000_info e1000_pch_cnp_info;
526 extern const struct e1000_info e1000_pch_tgp_info;
527 extern const struct e1000_info e1000_pch_adp_info;
528 extern const struct e1000_info e1000_pch_mtp_info;
529 extern const struct e1000_info e1000_es2_info;
530 
531 void e1000e_ptp_init(struct e1000_adapter *adapter);
532 void e1000e_ptp_remove(struct e1000_adapter *adapter);
533 
534 u64 e1000e_read_systim(struct e1000_adapter *adapter,
535 		       struct ptp_system_timestamp *sts);
536 
e1000_phy_hw_reset(struct e1000_hw * hw)537 static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw)
538 {
539 	return hw->phy.ops.reset(hw);
540 }
541 
e1e_rphy(struct e1000_hw * hw,u32 offset,u16 * data)542 static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data)
543 {
544 	return hw->phy.ops.read_reg(hw, offset, data);
545 }
546 
e1e_rphy_locked(struct e1000_hw * hw,u32 offset,u16 * data)547 static inline s32 e1e_rphy_locked(struct e1000_hw *hw, u32 offset, u16 *data)
548 {
549 	return hw->phy.ops.read_reg_locked(hw, offset, data);
550 }
551 
e1e_wphy(struct e1000_hw * hw,u32 offset,u16 data)552 static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data)
553 {
554 	return hw->phy.ops.write_reg(hw, offset, data);
555 }
556 
e1e_wphy_locked(struct e1000_hw * hw,u32 offset,u16 data)557 static inline s32 e1e_wphy_locked(struct e1000_hw *hw, u32 offset, u16 data)
558 {
559 	return hw->phy.ops.write_reg_locked(hw, offset, data);
560 }
561 
562 void e1000e_reload_nvm_generic(struct e1000_hw *hw);
563 
e1000e_read_mac_addr(struct e1000_hw * hw)564 static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw)
565 {
566 	if (hw->mac.ops.read_mac_addr)
567 		return hw->mac.ops.read_mac_addr(hw);
568 
569 	return e1000_read_mac_addr_generic(hw);
570 }
571 
e1000_validate_nvm_checksum(struct e1000_hw * hw)572 static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
573 {
574 	return hw->nvm.ops.validate(hw);
575 }
576 
e1000e_update_nvm_checksum(struct e1000_hw * hw)577 static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw)
578 {
579 	return hw->nvm.ops.update(hw);
580 }
581 
e1000_read_nvm(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)582 static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words,
583 				 u16 *data)
584 {
585 	return hw->nvm.ops.read(hw, offset, words, data);
586 }
587 
e1000_write_nvm(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)588 static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words,
589 				  u16 *data)
590 {
591 	return hw->nvm.ops.write(hw, offset, words, data);
592 }
593 
e1000_get_phy_info(struct e1000_hw * hw)594 static inline s32 e1000_get_phy_info(struct e1000_hw *hw)
595 {
596 	return hw->phy.ops.get_info(hw);
597 }
598 
__er32(struct e1000_hw * hw,unsigned long reg)599 static inline u32 __er32(struct e1000_hw *hw, unsigned long reg)
600 {
601 	return readl(hw->hw_addr + reg);
602 }
603 
604 #define er32(reg)	__er32(hw, E1000_##reg)
605 
606 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val);
607 
608 #define ew32(reg, val)	__ew32(hw, E1000_##reg, (val))
609 
610 #define e1e_flush()	er32(STATUS)
611 
612 #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
613 	(__ew32((a), (reg + ((offset) << 2)), (value)))
614 
615 #define E1000_READ_REG_ARRAY(a, reg, offset) \
616 	(readl((a)->hw_addr + reg + ((offset) << 2)))
617 
618 #endif /* _E1000_H_ */
619