• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2016 Intel Corporation
5  */
6 
7 #ifndef __I915_GEM_OBJECT_TYPES_H__
8 #define __I915_GEM_OBJECT_TYPES_H__
9 
10 #include <linux/mmu_notifier.h>
11 
12 #include <drm/drm_gem.h>
13 #include <drm/ttm/ttm_bo.h>
14 #include <uapi/drm/i915_drm.h>
15 
16 #include "i915_active.h"
17 #include "i915_selftest.h"
18 #include "i915_vma_resource.h"
19 
20 #include "gt/intel_gt_defines.h"
21 
22 struct drm_i915_gem_object;
23 struct intel_fronbuffer;
24 struct intel_memory_region;
25 
26 /*
27  * struct i915_lut_handle tracks the fast lookups from handle to vma used
28  * for execbuf. Although we use a radixtree for that mapping, in order to
29  * remove them as the object or context is closed, we need a secondary list
30  * and a translation entry (i915_lut_handle).
31  */
32 struct i915_lut_handle {
33 	struct list_head obj_link;
34 	struct i915_gem_context *ctx;
35 	u32 handle;
36 };
37 
38 struct drm_i915_gem_object_ops {
39 	unsigned int flags;
40 #define I915_GEM_OBJECT_IS_SHRINKABLE			BIT(1)
41 /* Skip the shrinker management in set_pages/unset_pages */
42 #define I915_GEM_OBJECT_SELF_MANAGED_SHRINK_LIST	BIT(2)
43 #define I915_GEM_OBJECT_IS_PROXY			BIT(3)
44 #define I915_GEM_OBJECT_NO_MMAP				BIT(4)
45 
46 	/* Interface between the GEM object and its backing storage.
47 	 * get_pages() is called once prior to the use of the associated set
48 	 * of pages before to binding them into the GTT, and put_pages() is
49 	 * called after we no longer need them. As we expect there to be
50 	 * associated cost with migrating pages between the backing storage
51 	 * and making them available for the GPU (e.g. clflush), we may hold
52 	 * onto the pages after they are no longer referenced by the GPU
53 	 * in case they may be used again shortly (for example migrating the
54 	 * pages to a different memory domain within the GTT). put_pages()
55 	 * will therefore most likely be called when the object itself is
56 	 * being released or under memory pressure (where we attempt to
57 	 * reap pages for the shrinker).
58 	 */
59 	int (*get_pages)(struct drm_i915_gem_object *obj);
60 	void (*put_pages)(struct drm_i915_gem_object *obj,
61 			  struct sg_table *pages);
62 	int (*truncate)(struct drm_i915_gem_object *obj);
63 	/**
64 	 * shrink - Perform further backend specific actions to facilate
65 	 * shrinking.
66 	 * @obj: The gem object
67 	 * @flags: Extra flags to control shrinking behaviour in the backend
68 	 *
69 	 * Possible values for @flags:
70 	 *
71 	 * I915_GEM_OBJECT_SHRINK_WRITEBACK - Try to perform writeback of the
72 	 * backing pages, if supported.
73 	 *
74 	 * I915_GEM_OBJECT_SHRINK_NO_GPU_WAIT - Don't wait for the object to
75 	 * idle.  Active objects can be considered later. The TTM backend for
76 	 * example might have aync migrations going on, which don't use any
77 	 * i915_vma to track the active GTT binding, and hence having an unbound
78 	 * object might not be enough.
79 	 */
80 #define I915_GEM_OBJECT_SHRINK_WRITEBACK   BIT(0)
81 #define I915_GEM_OBJECT_SHRINK_NO_GPU_WAIT BIT(1)
82 	int (*shrink)(struct drm_i915_gem_object *obj, unsigned int flags);
83 
84 	int (*pread)(struct drm_i915_gem_object *obj,
85 		     const struct drm_i915_gem_pread *arg);
86 	int (*pwrite)(struct drm_i915_gem_object *obj,
87 		      const struct drm_i915_gem_pwrite *arg);
88 	u64 (*mmap_offset)(struct drm_i915_gem_object *obj);
89 	void (*unmap_virtual)(struct drm_i915_gem_object *obj);
90 
91 	int (*dmabuf_export)(struct drm_i915_gem_object *obj);
92 
93 	/**
94 	 * adjust_lru - notify that the madvise value was updated
95 	 * @obj: The gem object
96 	 *
97 	 * The madvise value may have been updated, or object was recently
98 	 * referenced so act accordingly (Perhaps changing an LRU list etc).
99 	 */
100 	void (*adjust_lru)(struct drm_i915_gem_object *obj);
101 
102 	/**
103 	 * delayed_free - Override the default delayed free implementation
104 	 */
105 	void (*delayed_free)(struct drm_i915_gem_object *obj);
106 
107 	/**
108 	 * migrate - Migrate object to a different region either for
109 	 * pinning or for as long as the object lock is held.
110 	 */
111 	int (*migrate)(struct drm_i915_gem_object *obj,
112 		       struct intel_memory_region *mr,
113 		       unsigned int flags);
114 
115 	void (*release)(struct drm_i915_gem_object *obj);
116 
117 	const struct vm_operations_struct *mmap_ops;
118 	const char *name; /* friendly name for debug, e.g. lockdep classes */
119 };
120 
121 /**
122  * enum i915_cache_level - The supported GTT caching values for system memory
123  * pages.
124  *
125  * These translate to some special GTT PTE bits when binding pages into some
126  * address space. It also determines whether an object, or rather its pages are
127  * coherent with the GPU, when also reading or writing through the CPU cache
128  * with those pages.
129  *
130  * Userspace can also control this through struct drm_i915_gem_caching.
131  */
132 enum i915_cache_level {
133 	/**
134 	 * @I915_CACHE_NONE:
135 	 *
136 	 * GPU access is not coherent with the CPU cache. If the cache is dirty
137 	 * and we need the underlying pages to be coherent with some later GPU
138 	 * access then we need to manually flush the pages.
139 	 *
140 	 * On shared LLC platforms reads and writes through the CPU cache are
141 	 * still coherent even with this setting. See also
142 	 * &drm_i915_gem_object.cache_coherent for more details. Due to this we
143 	 * should only ever use uncached for scanout surfaces, otherwise we end
144 	 * up over-flushing in some places.
145 	 *
146 	 * This is the default on non-LLC platforms.
147 	 */
148 	I915_CACHE_NONE = 0,
149 	/**
150 	 * @I915_CACHE_LLC:
151 	 *
152 	 * GPU access is coherent with the CPU cache. If the cache is dirty,
153 	 * then the GPU will ensure that access remains coherent, when both
154 	 * reading and writing through the CPU cache. GPU writes can dirty the
155 	 * CPU cache.
156 	 *
157 	 * Not used for scanout surfaces.
158 	 *
159 	 * Applies to both platforms with shared LLC(HAS_LLC), and snooping
160 	 * based platforms(HAS_SNOOP).
161 	 *
162 	 * This is the default on shared LLC platforms.  The only exception is
163 	 * scanout objects, where the display engine is not coherent with the
164 	 * CPU cache. For such objects I915_CACHE_NONE or I915_CACHE_WT is
165 	 * automatically applied by the kernel in pin_for_display, if userspace
166 	 * has not done so already.
167 	 */
168 	I915_CACHE_LLC,
169 	/**
170 	 * @I915_CACHE_L3_LLC:
171 	 *
172 	 * Explicitly enable the Gfx L3 cache, with coherent LLC.
173 	 *
174 	 * The Gfx L3 sits between the domain specific caches, e.g
175 	 * sampler/render caches, and the larger LLC. LLC is coherent with the
176 	 * GPU, but L3 is only visible to the GPU, so likely needs to be flushed
177 	 * when the workload completes.
178 	 *
179 	 * Not used for scanout surfaces.
180 	 *
181 	 * Only exposed on some gen7 + GGTT. More recent hardware has dropped
182 	 * this explicit setting, where it should now be enabled by default.
183 	 */
184 	I915_CACHE_L3_LLC,
185 	/**
186 	 * @I915_CACHE_WT:
187 	 *
188 	 * Write-through. Used for scanout surfaces.
189 	 *
190 	 * The GPU can utilise the caches, while still having the display engine
191 	 * be coherent with GPU writes, as a result we don't need to flush the
192 	 * CPU caches when moving out of the render domain. This is the default
193 	 * setting chosen by the kernel, if supported by the HW, otherwise we
194 	 * fallback to I915_CACHE_NONE. On the CPU side writes through the CPU
195 	 * cache still need to be flushed, to remain coherent with the display
196 	 * engine.
197 	 */
198 	I915_CACHE_WT,
199 	/**
200 	 * @I915_MAX_CACHE_LEVEL:
201 	 *
202 	 * Mark the last entry in the enum. Used for defining cachelevel_to_pat
203 	 * array for cache_level to pat translation table.
204 	 */
205 	I915_MAX_CACHE_LEVEL,
206 };
207 
208 enum i915_map_type {
209 	I915_MAP_WB = 0,
210 	I915_MAP_WC,
211 #define I915_MAP_OVERRIDE BIT(31)
212 	I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
213 	I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
214 };
215 
216 enum i915_mmap_type {
217 	I915_MMAP_TYPE_GTT = 0,
218 	I915_MMAP_TYPE_WC,
219 	I915_MMAP_TYPE_WB,
220 	I915_MMAP_TYPE_UC,
221 	I915_MMAP_TYPE_FIXED,
222 };
223 
224 struct i915_mmap_offset {
225 	struct drm_vma_offset_node vma_node;
226 	struct drm_i915_gem_object *obj;
227 	enum i915_mmap_type mmap_type;
228 
229 	struct rb_node offset;
230 };
231 
232 struct i915_gem_object_page_iter {
233 	struct scatterlist *sg_pos;
234 	unsigned int sg_idx; /* in pages, but 32bit eek! */
235 
236 	struct radix_tree_root radix;
237 	struct mutex lock; /* protects this cache */
238 };
239 
240 struct drm_i915_gem_object {
241 	/*
242 	 * We might have reason to revisit the below since it wastes
243 	 * a lot of space for non-ttm gem objects.
244 	 * In any case, always use the accessors for the ttm_buffer_object
245 	 * when accessing it.
246 	 */
247 	union {
248 		struct drm_gem_object base;
249 		struct ttm_buffer_object __do_not_access;
250 	};
251 
252 	const struct drm_i915_gem_object_ops *ops;
253 
254 	struct {
255 		/**
256 		 * @vma.lock: protect the list/tree of vmas
257 		 */
258 		spinlock_t lock;
259 
260 		/**
261 		 * @vma.list: List of VMAs backed by this object
262 		 *
263 		 * The VMA on this list are ordered by type, all GGTT vma are
264 		 * placed at the head and all ppGTT vma are placed at the tail.
265 		 * The different types of GGTT vma are unordered between
266 		 * themselves, use the @vma.tree (which has a defined order
267 		 * between all VMA) to quickly find an exact match.
268 		 */
269 		struct list_head list;
270 
271 		/**
272 		 * @vma.tree: Ordered tree of VMAs backed by this object
273 		 *
274 		 * All VMA created for this object are placed in the @vma.tree
275 		 * for fast retrieval via a binary search in
276 		 * i915_vma_instance(). They are also added to @vma.list for
277 		 * easy iteration.
278 		 */
279 		struct rb_root tree;
280 	} vma;
281 
282 	/**
283 	 * @lut_list: List of vma lookup entries in use for this object.
284 	 *
285 	 * If this object is closed, we need to remove all of its VMA from
286 	 * the fast lookup index in associated contexts; @lut_list provides
287 	 * this translation from object to context->handles_vma.
288 	 */
289 	struct list_head lut_list;
290 	spinlock_t lut_lock; /* guards lut_list */
291 
292 	/**
293 	 * @obj_link: Link into @i915_gem_ww_ctx.obj_list
294 	 *
295 	 * When we lock this object through i915_gem_object_lock() with a
296 	 * context, we add it to the list to ensure we can unlock everything
297 	 * when i915_gem_ww_ctx_backoff() or i915_gem_ww_ctx_fini() are called.
298 	 */
299 	struct list_head obj_link;
300 	/**
301 	 * @shared_resv_from: The object shares the resv from this vm.
302 	 */
303 	struct i915_address_space *shares_resv_from;
304 
305 	union {
306 		struct rcu_head rcu;
307 		struct llist_node freed;
308 	};
309 
310 	/**
311 	 * Whether the object is currently in the GGTT or any other supported
312 	 * fake offset mmap backed by lmem.
313 	 */
314 	unsigned int userfault_count;
315 	struct list_head userfault_link;
316 
317 	struct {
318 		spinlock_t lock; /* Protects access to mmo offsets */
319 		struct rb_root offsets;
320 	} mmo;
321 
322 	I915_SELFTEST_DECLARE(struct list_head st_link);
323 
324 	unsigned long flags;
325 #define I915_BO_ALLOC_CONTIGUOUS  BIT(0)
326 #define I915_BO_ALLOC_VOLATILE    BIT(1)
327 #define I915_BO_ALLOC_CPU_CLEAR   BIT(2)
328 #define I915_BO_ALLOC_USER        BIT(3)
329 /* Object is allowed to lose its contents on suspend / resume, even if pinned */
330 #define I915_BO_ALLOC_PM_VOLATILE BIT(4)
331 /* Object needs to be restored early using memcpy during resume */
332 #define I915_BO_ALLOC_PM_EARLY    BIT(5)
333 /*
334  * Object is likely never accessed by the CPU. This will prioritise the BO to be
335  * allocated in the non-mappable portion of lmem. This is merely a hint, and if
336  * dealing with userspace objects the CPU fault handler is free to ignore this.
337  */
338 #define I915_BO_ALLOC_GPU_ONLY	  BIT(6)
339 #define I915_BO_ALLOC_CCS_AUX	  BIT(7)
340 /*
341  * Object is allowed to retain its initial data and will not be cleared on first
342  * access if used along with I915_BO_ALLOC_USER. This is mainly to keep
343  * preallocated framebuffer data intact while transitioning it to i915drmfb.
344  */
345 #define I915_BO_PREALLOC	  BIT(8)
346 #define I915_BO_ALLOC_FLAGS (I915_BO_ALLOC_CONTIGUOUS | \
347 			     I915_BO_ALLOC_VOLATILE | \
348 			     I915_BO_ALLOC_CPU_CLEAR | \
349 			     I915_BO_ALLOC_USER | \
350 			     I915_BO_ALLOC_PM_VOLATILE | \
351 			     I915_BO_ALLOC_PM_EARLY | \
352 			     I915_BO_ALLOC_GPU_ONLY | \
353 			     I915_BO_ALLOC_CCS_AUX | \
354 			     I915_BO_PREALLOC)
355 #define I915_BO_READONLY          BIT(9)
356 #define I915_TILING_QUIRK_BIT     10 /* unknown swizzling; do not release! */
357 #define I915_BO_PROTECTED         BIT(11)
358 	/**
359 	 * @mem_flags - Mutable placement-related flags
360 	 *
361 	 * These are flags that indicate specifics of the memory region
362 	 * the object is currently in. As such they are only stable
363 	 * either under the object lock or if the object is pinned.
364 	 */
365 	unsigned int mem_flags;
366 #define I915_BO_FLAG_STRUCT_PAGE BIT(0) /* Object backed by struct pages */
367 #define I915_BO_FLAG_IOMEM       BIT(1) /* Object backed by IO memory */
368 	/**
369 	 * @pat_index: The desired PAT index.
370 	 *
371 	 * See hardware specification for valid PAT indices for each platform.
372 	 * This field replaces the @cache_level that contains a value of enum
373 	 * i915_cache_level since PAT indices are being used by both userspace
374 	 * and kernel mode driver for caching policy control after GEN12.
375 	 * In the meantime platform specific tables are created to translate
376 	 * i915_cache_level into pat index, for more details check the macros
377 	 * defined i915/i915_pci.c, e.g. PVC_CACHELEVEL.
378 	 * For backward compatibility, this field contains values exactly match
379 	 * the entries of enum i915_cache_level for pre-GEN12 platforms (See
380 	 * LEGACY_CACHELEVEL), so that the PTE encode functions for these
381 	 * legacy platforms can stay the same.
382 	 */
383 	unsigned int pat_index:6;
384 	/**
385 	 * @pat_set_by_user: Indicate whether pat_index is set by user space
386 	 *
387 	 * This field is set to false by default, only set to true if the
388 	 * pat_index is set by user space. By design, user space is capable of
389 	 * managing caching behavior by setting pat_index, in which case this
390 	 * kernel mode driver should never touch the pat_index.
391 	 */
392 	unsigned int pat_set_by_user:1;
393 	/**
394 	 * @cache_coherent:
395 	 *
396 	 * Note: with the change above which replaced @cache_level with pat_index,
397 	 * the use of @cache_coherent is limited to the objects created by kernel
398 	 * or by userspace without pat index specified.
399 	 * Check for @pat_set_by_user to find out if an object has pat index set
400 	 * by userspace. The ioctl's to change cache settings have also been
401 	 * disabled for the objects with pat index set by userspace. Please don't
402 	 * assume @cache_coherent having the flags set as describe here. A helper
403 	 * function i915_gem_object_has_cache_level() provides one way to bypass
404 	 * the use of this field.
405 	 *
406 	 * Track whether the pages are coherent with the GPU if reading or
407 	 * writing through the CPU caches. The largely depends on the
408 	 * @cache_level setting.
409 	 *
410 	 * On platforms which don't have the shared LLC(HAS_SNOOP), like on Atom
411 	 * platforms, coherency must be explicitly requested with some special
412 	 * GTT caching bits(see enum i915_cache_level). When enabling coherency
413 	 * it does come at a performance and power cost on such platforms. On
414 	 * the flip side the kernel does not need to manually flush any buffers
415 	 * which need to be coherent with the GPU, if the object is not coherent
416 	 * i.e @cache_coherent is zero.
417 	 *
418 	 * On platforms that share the LLC with the CPU(HAS_LLC), all GT memory
419 	 * access will automatically snoop the CPU caches(even with CACHE_NONE).
420 	 * The one exception is when dealing with the display engine, like with
421 	 * scanout surfaces. To handle this the kernel will always flush the
422 	 * surface out of the CPU caches when preparing it for scanout.  Also
423 	 * note that since scanout surfaces are only ever read by the display
424 	 * engine we only need to care about flushing any writes through the CPU
425 	 * cache, reads on the other hand will always be coherent.
426 	 *
427 	 * Something strange here is why @cache_coherent is not a simple
428 	 * boolean, i.e coherent vs non-coherent. The reasoning for this is back
429 	 * to the display engine not being fully coherent. As a result scanout
430 	 * surfaces will either be marked as I915_CACHE_NONE or I915_CACHE_WT.
431 	 * In the case of seeing I915_CACHE_NONE the kernel makes the assumption
432 	 * that this is likely a scanout surface, and will set @cache_coherent
433 	 * as only I915_BO_CACHE_COHERENT_FOR_READ, on platforms with the shared
434 	 * LLC. The kernel uses this to always flush writes through the CPU
435 	 * cache as early as possible, where it can, in effect keeping
436 	 * @cache_dirty clean, so we can potentially avoid stalling when
437 	 * flushing the surface just before doing the scanout.  This does mean
438 	 * we might unnecessarily flush non-scanout objects in some places, but
439 	 * the default assumption is that all normal objects should be using
440 	 * I915_CACHE_LLC, at least on platforms with the shared LLC.
441 	 *
442 	 * Supported values:
443 	 *
444 	 * I915_BO_CACHE_COHERENT_FOR_READ:
445 	 *
446 	 * On shared LLC platforms, we use this for special scanout surfaces,
447 	 * where the display engine is not coherent with the CPU cache. As such
448 	 * we need to ensure we flush any writes before doing the scanout. As an
449 	 * optimisation we try to flush any writes as early as possible to avoid
450 	 * stalling later.
451 	 *
452 	 * Thus for scanout surfaces using I915_CACHE_NONE, on shared LLC
453 	 * platforms, we use:
454 	 *
455 	 *	cache_coherent = I915_BO_CACHE_COHERENT_FOR_READ
456 	 *
457 	 * While for normal objects that are fully coherent, including special
458 	 * scanout surfaces marked as I915_CACHE_WT, we use:
459 	 *
460 	 *	cache_coherent = I915_BO_CACHE_COHERENT_FOR_READ |
461 	 *			 I915_BO_CACHE_COHERENT_FOR_WRITE
462 	 *
463 	 * And then for objects that are not coherent at all we use:
464 	 *
465 	 *	cache_coherent = 0
466 	 *
467 	 * I915_BO_CACHE_COHERENT_FOR_WRITE:
468 	 *
469 	 * When writing through the CPU cache, the GPU is still coherent. Note
470 	 * that this also implies I915_BO_CACHE_COHERENT_FOR_READ.
471 	 */
472 #define I915_BO_CACHE_COHERENT_FOR_READ BIT(0)
473 #define I915_BO_CACHE_COHERENT_FOR_WRITE BIT(1)
474 	unsigned int cache_coherent:2;
475 
476 	/**
477 	 * @cache_dirty:
478 	 *
479 	 * Note: with the change above which replaced cache_level with pat_index,
480 	 * the use of @cache_dirty is limited to the objects created by kernel
481 	 * or by userspace without pat index specified.
482 	 * Check for @pat_set_by_user to find out if an object has pat index set
483 	 * by userspace. The ioctl's to change cache settings have also been
484 	 * disabled for the objects with pat_index set by userspace. Please don't
485 	 * assume @cache_dirty is set as describe here. Also see helper function
486 	 * i915_gem_object_has_cache_level() for possible ways to bypass the use
487 	 * of this field.
488 	 *
489 	 * Track if we are we dirty with writes through the CPU cache for this
490 	 * object. As a result reading directly from main memory might yield
491 	 * stale data.
492 	 *
493 	 * This also ties into whether the kernel is tracking the object as
494 	 * coherent with the GPU, as per @cache_coherent, as it determines if
495 	 * flushing might be needed at various points.
496 	 *
497 	 * Another part of @cache_dirty is managing flushing when first
498 	 * acquiring the pages for system memory, at this point the pages are
499 	 * considered foreign, so the default assumption is that the cache is
500 	 * dirty, for example the page zeroing done by the kernel might leave
501 	 * writes though the CPU cache, or swapping-in, while the actual data in
502 	 * main memory is potentially stale.  Note that this is a potential
503 	 * security issue when dealing with userspace objects and zeroing. Now,
504 	 * whether we actually need apply the big sledgehammer of flushing all
505 	 * the pages on acquire depends on if @cache_coherent is marked as
506 	 * I915_BO_CACHE_COHERENT_FOR_WRITE, i.e that the GPU will be coherent
507 	 * for both reads and writes though the CPU cache.
508 	 *
509 	 * Note that on shared LLC platforms we still apply the heavy flush for
510 	 * I915_CACHE_NONE objects, under the assumption that this is going to
511 	 * be used for scanout.
512 	 *
513 	 * Update: On some hardware there is now also the 'Bypass LLC' MOCS
514 	 * entry, which defeats our @cache_coherent tracking, since userspace
515 	 * can freely bypass the CPU cache when touching the pages with the GPU,
516 	 * where the kernel is completely unaware. On such platform we need
517 	 * apply the sledgehammer-on-acquire regardless of the @cache_coherent.
518 	 *
519 	 * Special care is taken on non-LLC platforms, to prevent potential
520 	 * information leak. The driver currently ensures:
521 	 *
522 	 *   1. All userspace objects, by default, have @cache_level set as
523 	 *   I915_CACHE_NONE. The only exception is userptr objects, where we
524 	 *   instead force I915_CACHE_LLC, but we also don't allow userspace to
525 	 *   ever change the @cache_level for such objects. Another special case
526 	 *   is dma-buf, which doesn't rely on @cache_dirty,  but there we
527 	 *   always do a forced flush when acquiring the pages, if there is a
528 	 *   chance that the pages can be read directly from main memory with
529 	 *   the GPU.
530 	 *
531 	 *   2. All I915_CACHE_NONE objects have @cache_dirty initially true.
532 	 *
533 	 *   3. All swapped-out objects(i.e shmem) have @cache_dirty set to
534 	 *   true.
535 	 *
536 	 *   4. The @cache_dirty is never freely reset before the initial
537 	 *   flush, even if userspace adjusts the @cache_level through the
538 	 *   i915_gem_set_caching_ioctl.
539 	 *
540 	 *   5. All @cache_dirty objects(including swapped-in) are initially
541 	 *   flushed with a synchronous call to drm_clflush_sg in
542 	 *   __i915_gem_object_set_pages. The @cache_dirty can be freely reset
543 	 *   at this point. All further asynchronous clfushes are never security
544 	 *   critical, i.e userspace is free to race against itself.
545 	 */
546 	unsigned int cache_dirty:1;
547 
548 	/* @is_dpt: Object houses a display page table (DPT) */
549 	unsigned int is_dpt:1;
550 
551 	/**
552 	 * @read_domains: Read memory domains.
553 	 *
554 	 * These monitor which caches contain read/write data related to the
555 	 * object. When transitioning from one set of domains to another,
556 	 * the driver is called to ensure that caches are suitably flushed and
557 	 * invalidated.
558 	 */
559 	u16 read_domains;
560 
561 	/**
562 	 * @write_domain: Corresponding unique write memory domain.
563 	 */
564 	u16 write_domain;
565 
566 	struct intel_frontbuffer __rcu *frontbuffer;
567 
568 	/** Current tiling stride for the object, if it's tiled. */
569 	unsigned int tiling_and_stride;
570 #define FENCE_MINIMUM_STRIDE 128 /* See i915_tiling_ok() */
571 #define TILING_MASK (FENCE_MINIMUM_STRIDE - 1)
572 #define STRIDE_MASK (~TILING_MASK)
573 
574 	struct {
575 		/*
576 		 * Protects the pages and their use. Do not use directly, but
577 		 * instead go through the pin/unpin interfaces.
578 		 */
579 		atomic_t pages_pin_count;
580 
581 		/**
582 		 * @shrink_pin: Prevents the pages from being made visible to
583 		 * the shrinker, while the shrink_pin is non-zero. Most users
584 		 * should pretty much never have to care about this, outside of
585 		 * some special use cases.
586 		 *
587 		 * By default most objects will start out as visible to the
588 		 * shrinker(if I915_GEM_OBJECT_IS_SHRINKABLE) as soon as the
589 		 * backing pages are attached to the object, like in
590 		 * __i915_gem_object_set_pages(). They will then be removed the
591 		 * shrinker list once the pages are released.
592 		 *
593 		 * The @shrink_pin is incremented by calling
594 		 * i915_gem_object_make_unshrinkable(), which will also remove
595 		 * the object from the shrinker list, if the pin count was zero.
596 		 *
597 		 * Callers will then typically call
598 		 * i915_gem_object_make_shrinkable() or
599 		 * i915_gem_object_make_purgeable() to decrement the pin count,
600 		 * and make the pages visible again.
601 		 */
602 		atomic_t shrink_pin;
603 
604 		/**
605 		 * @ttm_shrinkable: True when the object is using shmem pages
606 		 * underneath. Protected by the object lock.
607 		 */
608 		bool ttm_shrinkable;
609 
610 		/**
611 		 * @unknown_state: Indicate that the object is effectively
612 		 * borked. This is write-once and set if we somehow encounter a
613 		 * fatal error when moving/clearing the pages, and we are not
614 		 * able to fallback to memcpy/memset, like on small-BAR systems.
615 		 * The GPU should also be wedged (or in the process) at this
616 		 * point.
617 		 *
618 		 * Only valid to read this after acquiring the dma-resv lock and
619 		 * waiting for all DMA_RESV_USAGE_KERNEL fences to be signalled,
620 		 * or if we otherwise know that the moving fence has signalled,
621 		 * and we are certain the pages underneath are valid for
622 		 * immediate access (under normal operation), like just prior to
623 		 * binding the object or when setting up the CPU fault handler.
624 		 * See i915_gem_object_has_unknown_state();
625 		 */
626 		bool unknown_state;
627 
628 		/**
629 		 * Priority list of potential placements for this object.
630 		 */
631 		struct intel_memory_region **placements;
632 		int n_placements;
633 
634 		/**
635 		 * Memory region for this object.
636 		 */
637 		struct intel_memory_region *region;
638 
639 		/**
640 		 * Memory manager resource allocated for this object. Only
641 		 * needed for the mock region.
642 		 */
643 		struct ttm_resource *res;
644 
645 		/**
646 		 * Element within memory_region->objects or region->purgeable
647 		 * if the object is marked as DONTNEED. Access is protected by
648 		 * region->obj_lock.
649 		 */
650 		struct list_head region_link;
651 
652 		struct i915_refct_sgt *rsgt;
653 		struct sg_table *pages;
654 		void *mapping;
655 
656 		struct i915_page_sizes page_sizes;
657 
658 		I915_SELFTEST_DECLARE(unsigned int page_mask);
659 
660 		struct i915_gem_object_page_iter get_page;
661 		struct i915_gem_object_page_iter get_dma_page;
662 
663 		/**
664 		 * Element within i915->mm.shrink_list or i915->mm.purge_list,
665 		 * locked by i915->mm.obj_lock.
666 		 */
667 		struct list_head link;
668 
669 		/**
670 		 * Advice: are the backing pages purgeable?
671 		 */
672 		unsigned int madv:2;
673 
674 		/**
675 		 * This is set if the object has been written to since the
676 		 * pages were last acquired.
677 		 */
678 		bool dirty:1;
679 
680 		u32 tlb[I915_MAX_GT];
681 	} mm;
682 
683 	struct {
684 		struct i915_refct_sgt *cached_io_rsgt;
685 		struct i915_gem_object_page_iter get_io_page;
686 		struct drm_i915_gem_object *backup;
687 		bool created:1;
688 	} ttm;
689 
690 	/*
691 	 * Record which PXP key instance this object was created against (if
692 	 * any), so we can use it to determine if the encryption is valid by
693 	 * comparing against the current key instance.
694 	 */
695 	u32 pxp_key_instance;
696 
697 	/** Record of address bit 17 of each page at last unbind. */
698 	unsigned long *bit_17;
699 
700 	union {
701 #ifdef CONFIG_MMU_NOTIFIER
702 		struct i915_gem_userptr {
703 			uintptr_t ptr;
704 			unsigned long notifier_seq;
705 
706 			struct mmu_interval_notifier notifier;
707 			struct page **pvec;
708 			int page_ref;
709 		} userptr;
710 #endif
711 
712 		struct drm_mm_node *stolen;
713 
714 		resource_size_t bo_offset;
715 
716 		unsigned long scratch;
717 		u64 encode;
718 
719 		void *gvt_info;
720 	};
721 };
722 
723 #define intel_bo_to_drm_bo(bo) (&(bo)->base)
724 #define intel_bo_to_i915(bo) to_i915(intel_bo_to_drm_bo(bo)->dev)
725 
726 static inline struct drm_i915_gem_object *
to_intel_bo(struct drm_gem_object * gem)727 to_intel_bo(struct drm_gem_object *gem)
728 {
729 	/* Assert that to_intel_bo(NULL) == NULL */
730 	BUILD_BUG_ON(offsetof(struct drm_i915_gem_object, base));
731 
732 	return container_of(gem, struct drm_i915_gem_object, base);
733 }
734 
735 #endif
736