1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #ifndef BTRFS_CTREE_H
7 #define BTRFS_CTREE_H
8
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/highmem.h>
12 #include <linux/fs.h>
13 #include <linux/rwsem.h>
14 #include <linux/semaphore.h>
15 #include <linux/completion.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/slab.h>
19 #include <trace/events/btrfs.h>
20 #include <asm/unaligned.h>
21 #include <linux/pagemap.h>
22 #include <linux/btrfs.h>
23 #include <linux/btrfs_tree.h>
24 #include <linux/workqueue.h>
25 #include <linux/security.h>
26 #include <linux/sizes.h>
27 #include <linux/dynamic_debug.h>
28 #include <linux/refcount.h>
29 #include <linux/crc32c.h>
30 #include <linux/iomap.h>
31 #include <linux/fscrypt.h>
32 #include "extent-io-tree.h"
33 #include "extent_io.h"
34 #include "extent_map.h"
35 #include "async-thread.h"
36 #include "block-rsv.h"
37 #include "locking.h"
38 #include "misc.h"
39 #include "fs.h"
40
41 struct btrfs_trans_handle;
42 struct btrfs_transaction;
43 struct btrfs_pending_snapshot;
44 struct btrfs_delayed_ref_root;
45 struct btrfs_space_info;
46 struct btrfs_block_group;
47 struct btrfs_ordered_sum;
48 struct btrfs_ref;
49 struct btrfs_bio;
50 struct btrfs_ioctl_encoded_io_args;
51 struct btrfs_device;
52 struct btrfs_fs_devices;
53 struct btrfs_balance_control;
54 struct btrfs_delayed_root;
55 struct reloc_control;
56
57 /* Read ahead values for struct btrfs_path.reada */
58 enum {
59 READA_NONE,
60 READA_BACK,
61 READA_FORWARD,
62 /*
63 * Similar to READA_FORWARD but unlike it:
64 *
65 * 1) It will trigger readahead even for leaves that are not close to
66 * each other on disk;
67 * 2) It also triggers readahead for nodes;
68 * 3) During a search, even when a node or leaf is already in memory, it
69 * will still trigger readahead for other nodes and leaves that follow
70 * it.
71 *
72 * This is meant to be used only when we know we are iterating over the
73 * entire tree or a very large part of it.
74 */
75 READA_FORWARD_ALWAYS,
76 };
77
78 /*
79 * btrfs_paths remember the path taken from the root down to the leaf.
80 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
81 * to any other levels that are present.
82 *
83 * The slots array records the index of the item or block pointer
84 * used while walking the tree.
85 */
86 struct btrfs_path {
87 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
88 int slots[BTRFS_MAX_LEVEL];
89 /* if there is real range locking, this locks field will change */
90 u8 locks[BTRFS_MAX_LEVEL];
91 u8 reada;
92 /* keep some upper locks as we walk down */
93 u8 lowest_level;
94
95 /*
96 * set by btrfs_split_item, tells search_slot to keep all locks
97 * and to force calls to keep space in the nodes
98 */
99 unsigned int search_for_split:1;
100 unsigned int keep_locks:1;
101 unsigned int skip_locking:1;
102 unsigned int search_commit_root:1;
103 unsigned int need_commit_sem:1;
104 unsigned int skip_release_on_error:1;
105 /*
106 * Indicate that new item (btrfs_search_slot) is extending already
107 * existing item and ins_len contains only the data size and not item
108 * header (ie. sizeof(struct btrfs_item) is not included).
109 */
110 unsigned int search_for_extension:1;
111 /* Stop search if any locks need to be taken (for read) */
112 unsigned int nowait:1;
113 };
114
115 /*
116 * The state of btrfs root
117 */
118 enum {
119 /*
120 * btrfs_record_root_in_trans is a multi-step process, and it can race
121 * with the balancing code. But the race is very small, and only the
122 * first time the root is added to each transaction. So IN_TRANS_SETUP
123 * is used to tell us when more checks are required
124 */
125 BTRFS_ROOT_IN_TRANS_SETUP,
126
127 /*
128 * Set if tree blocks of this root can be shared by other roots.
129 * Only subvolume trees and their reloc trees have this bit set.
130 * Conflicts with TRACK_DIRTY bit.
131 *
132 * This affects two things:
133 *
134 * - How balance works
135 * For shareable roots, we need to use reloc tree and do path
136 * replacement for balance, and need various pre/post hooks for
137 * snapshot creation to handle them.
138 *
139 * While for non-shareable trees, we just simply do a tree search
140 * with COW.
141 *
142 * - How dirty roots are tracked
143 * For shareable roots, btrfs_record_root_in_trans() is needed to
144 * track them, while non-subvolume roots have TRACK_DIRTY bit, they
145 * don't need to set this manually.
146 */
147 BTRFS_ROOT_SHAREABLE,
148 BTRFS_ROOT_TRACK_DIRTY,
149 BTRFS_ROOT_IN_RADIX,
150 BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
151 BTRFS_ROOT_DEFRAG_RUNNING,
152 BTRFS_ROOT_FORCE_COW,
153 BTRFS_ROOT_MULTI_LOG_TASKS,
154 BTRFS_ROOT_DIRTY,
155 BTRFS_ROOT_DELETING,
156
157 /*
158 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
159 *
160 * Set for the subvolume tree owning the reloc tree.
161 */
162 BTRFS_ROOT_DEAD_RELOC_TREE,
163 /* Mark dead root stored on device whose cleanup needs to be resumed */
164 BTRFS_ROOT_DEAD_TREE,
165 /* The root has a log tree. Used for subvolume roots and the tree root. */
166 BTRFS_ROOT_HAS_LOG_TREE,
167 /* Qgroup flushing is in progress */
168 BTRFS_ROOT_QGROUP_FLUSHING,
169 /* We started the orphan cleanup for this root. */
170 BTRFS_ROOT_ORPHAN_CLEANUP,
171 /* This root has a drop operation that was started previously. */
172 BTRFS_ROOT_UNFINISHED_DROP,
173 /* This reloc root needs to have its buffers lockdep class reset. */
174 BTRFS_ROOT_RESET_LOCKDEP_CLASS,
175 };
176
177 /*
178 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
179 * code. For detail check comment in fs/btrfs/qgroup.c.
180 */
181 struct btrfs_qgroup_swapped_blocks {
182 spinlock_t lock;
183 /* RM_EMPTY_ROOT() of above blocks[] */
184 bool swapped;
185 struct rb_root blocks[BTRFS_MAX_LEVEL];
186 };
187
188 /*
189 * in ram representation of the tree. extent_root is used for all allocations
190 * and for the extent tree extent_root root.
191 */
192 struct btrfs_root {
193 struct rb_node rb_node;
194
195 struct extent_buffer *node;
196
197 struct extent_buffer *commit_root;
198 struct btrfs_root *log_root;
199 struct btrfs_root *reloc_root;
200
201 unsigned long state;
202 struct btrfs_root_item root_item;
203 struct btrfs_key root_key;
204 struct btrfs_fs_info *fs_info;
205 struct extent_io_tree dirty_log_pages;
206
207 struct mutex objectid_mutex;
208
209 spinlock_t accounting_lock;
210 struct btrfs_block_rsv *block_rsv;
211
212 struct mutex log_mutex;
213 wait_queue_head_t log_writer_wait;
214 wait_queue_head_t log_commit_wait[2];
215 struct list_head log_ctxs[2];
216 /* Used only for log trees of subvolumes, not for the log root tree */
217 atomic_t log_writers;
218 atomic_t log_commit[2];
219 /* Used only for log trees of subvolumes, not for the log root tree */
220 atomic_t log_batch;
221 int log_transid;
222 /* No matter the commit succeeds or not*/
223 int log_transid_committed;
224 /* Just be updated when the commit succeeds. */
225 int last_log_commit;
226 pid_t log_start_pid;
227
228 u64 last_trans;
229
230 u32 type;
231
232 u64 free_objectid;
233
234 struct btrfs_key defrag_progress;
235 struct btrfs_key defrag_max;
236
237 /* The dirty list is only used by non-shareable roots */
238 struct list_head dirty_list;
239
240 struct list_head root_list;
241
242 spinlock_t log_extents_lock[2];
243 struct list_head logged_list[2];
244
245 spinlock_t inode_lock;
246 /* red-black tree that keeps track of in-memory inodes */
247 struct rb_root inode_tree;
248
249 /*
250 * radix tree that keeps track of delayed nodes of every inode,
251 * protected by inode_lock
252 */
253 struct radix_tree_root delayed_nodes_tree;
254 /*
255 * right now this just gets used so that a root has its own devid
256 * for stat. It may be used for more later
257 */
258 dev_t anon_dev;
259
260 spinlock_t root_item_lock;
261 refcount_t refs;
262
263 struct mutex delalloc_mutex;
264 spinlock_t delalloc_lock;
265 /*
266 * all of the inodes that have delalloc bytes. It is possible for
267 * this list to be empty even when there is still dirty data=ordered
268 * extents waiting to finish IO.
269 */
270 struct list_head delalloc_inodes;
271 struct list_head delalloc_root;
272 u64 nr_delalloc_inodes;
273
274 struct mutex ordered_extent_mutex;
275 /*
276 * this is used by the balancing code to wait for all the pending
277 * ordered extents
278 */
279 spinlock_t ordered_extent_lock;
280
281 /*
282 * all of the data=ordered extents pending writeback
283 * these can span multiple transactions and basically include
284 * every dirty data page that isn't from nodatacow
285 */
286 struct list_head ordered_extents;
287 struct list_head ordered_root;
288 u64 nr_ordered_extents;
289
290 /*
291 * Not empty if this subvolume root has gone through tree block swap
292 * (relocation)
293 *
294 * Will be used by reloc_control::dirty_subvol_roots.
295 */
296 struct list_head reloc_dirty_list;
297
298 /*
299 * Number of currently running SEND ioctls to prevent
300 * manipulation with the read-only status via SUBVOL_SETFLAGS
301 */
302 int send_in_progress;
303 /*
304 * Number of currently running deduplication operations that have a
305 * destination inode belonging to this root. Protected by the lock
306 * root_item_lock.
307 */
308 int dedupe_in_progress;
309 /* For exclusion of snapshot creation and nocow writes */
310 struct btrfs_drew_lock snapshot_lock;
311
312 atomic_t snapshot_force_cow;
313
314 /* For qgroup metadata reserved space */
315 spinlock_t qgroup_meta_rsv_lock;
316 u64 qgroup_meta_rsv_pertrans;
317 u64 qgroup_meta_rsv_prealloc;
318 wait_queue_head_t qgroup_flush_wait;
319
320 /* Number of active swapfiles */
321 atomic_t nr_swapfiles;
322
323 /* Record pairs of swapped blocks for qgroup */
324 struct btrfs_qgroup_swapped_blocks swapped_blocks;
325
326 /* Used only by log trees, when logging csum items */
327 struct extent_io_tree log_csum_range;
328
329 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
330 u64 alloc_bytenr;
331 #endif
332
333 #ifdef CONFIG_BTRFS_DEBUG
334 struct list_head leak_list;
335 #endif
336 };
337
btrfs_root_readonly(const struct btrfs_root * root)338 static inline bool btrfs_root_readonly(const struct btrfs_root *root)
339 {
340 /* Byte-swap the constant at compile time, root_item::flags is LE */
341 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
342 }
343
btrfs_root_dead(const struct btrfs_root * root)344 static inline bool btrfs_root_dead(const struct btrfs_root *root)
345 {
346 /* Byte-swap the constant at compile time, root_item::flags is LE */
347 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
348 }
349
btrfs_root_id(const struct btrfs_root * root)350 static inline u64 btrfs_root_id(const struct btrfs_root *root)
351 {
352 return root->root_key.objectid;
353 }
354
355 /*
356 * Structure that conveys information about an extent that is going to replace
357 * all the extents in a file range.
358 */
359 struct btrfs_replace_extent_info {
360 u64 disk_offset;
361 u64 disk_len;
362 u64 data_offset;
363 u64 data_len;
364 u64 file_offset;
365 /* Pointer to a file extent item of type regular or prealloc. */
366 char *extent_buf;
367 /*
368 * Set to true when attempting to replace a file range with a new extent
369 * described by this structure, set to false when attempting to clone an
370 * existing extent into a file range.
371 */
372 bool is_new_extent;
373 /* Indicate if we should update the inode's mtime and ctime. */
374 bool update_times;
375 /* Meaningful only if is_new_extent is true. */
376 int qgroup_reserved;
377 /*
378 * Meaningful only if is_new_extent is true.
379 * Used to track how many extent items we have already inserted in a
380 * subvolume tree that refer to the extent described by this structure,
381 * so that we know when to create a new delayed ref or update an existing
382 * one.
383 */
384 int insertions;
385 };
386
387 /* Arguments for btrfs_drop_extents() */
388 struct btrfs_drop_extents_args {
389 /* Input parameters */
390
391 /*
392 * If NULL, btrfs_drop_extents() will allocate and free its own path.
393 * If 'replace_extent' is true, this must not be NULL. Also the path
394 * is always released except if 'replace_extent' is true and
395 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
396 * the path is kept locked.
397 */
398 struct btrfs_path *path;
399 /* Start offset of the range to drop extents from */
400 u64 start;
401 /* End (exclusive, last byte + 1) of the range to drop extents from */
402 u64 end;
403 /* If true drop all the extent maps in the range */
404 bool drop_cache;
405 /*
406 * If true it means we want to insert a new extent after dropping all
407 * the extents in the range. If this is true, the 'extent_item_size'
408 * parameter must be set as well and the 'extent_inserted' field will
409 * be set to true by btrfs_drop_extents() if it could insert the new
410 * extent.
411 * Note: when this is set to true the path must not be NULL.
412 */
413 bool replace_extent;
414 /*
415 * Used if 'replace_extent' is true. Size of the file extent item to
416 * insert after dropping all existing extents in the range
417 */
418 u32 extent_item_size;
419
420 /* Output parameters */
421
422 /*
423 * Set to the minimum between the input parameter 'end' and the end
424 * (exclusive, last byte + 1) of the last dropped extent. This is always
425 * set even if btrfs_drop_extents() returns an error.
426 */
427 u64 drop_end;
428 /*
429 * The number of allocated bytes found in the range. This can be smaller
430 * than the range's length when there are holes in the range.
431 */
432 u64 bytes_found;
433 /*
434 * Only set if 'replace_extent' is true. Set to true if we were able
435 * to insert a replacement extent after dropping all extents in the
436 * range, otherwise set to false by btrfs_drop_extents().
437 * Also, if btrfs_drop_extents() has set this to true it means it
438 * returned with the path locked, otherwise if it has set this to
439 * false it has returned with the path released.
440 */
441 bool extent_inserted;
442 };
443
444 struct btrfs_file_private {
445 void *filldir_buf;
446 u64 last_index;
447 struct extent_state *llseek_cached_state;
448 bool fsync_skip_inode_lock;
449 };
450
BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info * info)451 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
452 {
453 return info->nodesize - sizeof(struct btrfs_header);
454 }
455
BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info * info)456 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
457 {
458 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
459 }
460
BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info * info)461 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
462 {
463 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
464 }
465
BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info * info)466 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
467 {
468 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
469 }
470
471 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
472 ((bytes) >> (fs_info)->sectorsize_bits)
473
btrfs_crc32c(u32 crc,const void * address,unsigned length)474 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
475 {
476 return crc32c(crc, address, length);
477 }
478
btrfs_crc32c_final(u32 crc,u8 * result)479 static inline void btrfs_crc32c_final(u32 crc, u8 *result)
480 {
481 put_unaligned_le32(~crc, result);
482 }
483
btrfs_name_hash(const char * name,int len)484 static inline u64 btrfs_name_hash(const char *name, int len)
485 {
486 return crc32c((u32)~1, name, len);
487 }
488
489 /*
490 * Figure the key offset of an extended inode ref
491 */
btrfs_extref_hash(u64 parent_objectid,const char * name,int len)492 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
493 int len)
494 {
495 return (u64) crc32c(parent_objectid, name, len);
496 }
497
btrfs_alloc_write_mask(struct address_space * mapping)498 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
499 {
500 return mapping_gfp_constraint(mapping, ~__GFP_FS);
501 }
502
503 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
504 u64 start, u64 end);
505 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
506 u64 num_bytes, u64 *actual_bytes);
507 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
508
509 /* ctree.c */
510 int __init btrfs_ctree_init(void);
511 void __cold btrfs_ctree_exit(void);
512
513 int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
514 const struct btrfs_key *key, int *slot);
515
516 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
517 int btrfs_previous_item(struct btrfs_root *root,
518 struct btrfs_path *path, u64 min_objectid,
519 int type);
520 int btrfs_previous_extent_item(struct btrfs_root *root,
521 struct btrfs_path *path, u64 min_objectid);
522 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
523 struct btrfs_path *path,
524 const struct btrfs_key *new_key);
525 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
526 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
527 struct btrfs_key *key, int lowest_level,
528 u64 min_trans);
529 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
530 struct btrfs_path *path,
531 u64 min_trans);
532 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
533 int slot);
534
535 int btrfs_cow_block(struct btrfs_trans_handle *trans,
536 struct btrfs_root *root, struct extent_buffer *buf,
537 struct extent_buffer *parent, int parent_slot,
538 struct extent_buffer **cow_ret,
539 enum btrfs_lock_nesting nest);
540 int btrfs_copy_root(struct btrfs_trans_handle *trans,
541 struct btrfs_root *root,
542 struct extent_buffer *buf,
543 struct extent_buffer **cow_ret, u64 new_root_objectid);
544 int btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
545 struct btrfs_root *root,
546 struct extent_buffer *buf);
547 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
548 struct btrfs_path *path, int level, int slot);
549 void btrfs_extend_item(struct btrfs_trans_handle *trans,
550 struct btrfs_path *path, u32 data_size);
551 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
552 struct btrfs_path *path, u32 new_size, int from_end);
553 int btrfs_split_item(struct btrfs_trans_handle *trans,
554 struct btrfs_root *root,
555 struct btrfs_path *path,
556 const struct btrfs_key *new_key,
557 unsigned long split_offset);
558 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
559 struct btrfs_root *root,
560 struct btrfs_path *path,
561 const struct btrfs_key *new_key);
562 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
563 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
564 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
565 const struct btrfs_key *key, struct btrfs_path *p,
566 int ins_len, int cow);
567 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
568 struct btrfs_path *p, u64 time_seq);
569 int btrfs_search_slot_for_read(struct btrfs_root *root,
570 const struct btrfs_key *key,
571 struct btrfs_path *p, int find_higher,
572 int return_any);
573 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
574 struct btrfs_root *root, struct extent_buffer *parent,
575 int start_slot, u64 *last_ret,
576 struct btrfs_key *progress);
577 void btrfs_release_path(struct btrfs_path *p);
578 struct btrfs_path *btrfs_alloc_path(void);
579 void btrfs_free_path(struct btrfs_path *p);
580
581 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
582 struct btrfs_path *path, int slot, int nr);
btrfs_del_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)583 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
584 struct btrfs_root *root,
585 struct btrfs_path *path)
586 {
587 return btrfs_del_items(trans, root, path, path->slots[0], 1);
588 }
589
590 /*
591 * Describes a batch of items to insert in a btree. This is used by
592 * btrfs_insert_empty_items().
593 */
594 struct btrfs_item_batch {
595 /*
596 * Pointer to an array containing the keys of the items to insert (in
597 * sorted order).
598 */
599 const struct btrfs_key *keys;
600 /* Pointer to an array containing the data size for each item to insert. */
601 const u32 *data_sizes;
602 /*
603 * The sum of data sizes for all items. The caller can compute this while
604 * setting up the data_sizes array, so it ends up being more efficient
605 * than having btrfs_insert_empty_items() or setup_item_for_insert()
606 * doing it, as it would avoid an extra loop over a potentially large
607 * array, and in the case of setup_item_for_insert(), we would be doing
608 * it while holding a write lock on a leaf and often on upper level nodes
609 * too, unnecessarily increasing the size of a critical section.
610 */
611 u32 total_data_size;
612 /* Size of the keys and data_sizes arrays (number of items in the batch). */
613 int nr;
614 };
615
616 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
617 struct btrfs_root *root,
618 struct btrfs_path *path,
619 const struct btrfs_key *key,
620 u32 data_size);
621 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
622 const struct btrfs_key *key, void *data, u32 data_size);
623 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
624 struct btrfs_root *root,
625 struct btrfs_path *path,
626 const struct btrfs_item_batch *batch);
627
btrfs_insert_empty_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key,u32 data_size)628 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
629 struct btrfs_root *root,
630 struct btrfs_path *path,
631 const struct btrfs_key *key,
632 u32 data_size)
633 {
634 struct btrfs_item_batch batch;
635
636 batch.keys = key;
637 batch.data_sizes = &data_size;
638 batch.total_data_size = data_size;
639 batch.nr = 1;
640
641 return btrfs_insert_empty_items(trans, root, path, &batch);
642 }
643
644 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
645 u64 time_seq);
646
647 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
648 struct btrfs_path *path);
649
650 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
651 struct btrfs_path *path);
652
653 /*
654 * Search in @root for a given @key, and store the slot found in @found_key.
655 *
656 * @root: The root node of the tree.
657 * @key: The key we are looking for.
658 * @found_key: Will hold the found item.
659 * @path: Holds the current slot/leaf.
660 * @iter_ret: Contains the value returned from btrfs_search_slot or
661 * btrfs_get_next_valid_item, whichever was executed last.
662 *
663 * The @iter_ret is an output variable that will contain the return value of
664 * btrfs_search_slot, if it encountered an error, or the value returned from
665 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
666 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
667 *
668 * It's recommended to use a separate variable for iter_ret and then use it to
669 * set the function return value so there's no confusion of the 0/1/errno
670 * values stemming from btrfs_search_slot.
671 */
672 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \
673 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \
674 (iter_ret) >= 0 && \
675 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
676 (path)->slots[0]++ \
677 )
678
679 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
680
681 /*
682 * Search the tree again to find a leaf with greater keys.
683 *
684 * Returns 0 if it found something or 1 if there are no greater leaves.
685 * Returns < 0 on error.
686 */
btrfs_next_leaf(struct btrfs_root * root,struct btrfs_path * path)687 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
688 {
689 return btrfs_next_old_leaf(root, path, 0);
690 }
691
btrfs_next_item(struct btrfs_root * root,struct btrfs_path * p)692 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
693 {
694 return btrfs_next_old_item(root, p, 0);
695 }
696 int btrfs_leaf_free_space(const struct extent_buffer *leaf);
697
is_fstree(u64 rootid)698 static inline int is_fstree(u64 rootid)
699 {
700 if (rootid == BTRFS_FS_TREE_OBJECTID ||
701 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
702 !btrfs_qgroup_level(rootid)))
703 return 1;
704 return 0;
705 }
706
btrfs_is_data_reloc_root(const struct btrfs_root * root)707 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
708 {
709 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
710 }
711
712 u16 btrfs_csum_type_size(u16 type);
713 int btrfs_super_csum_size(const struct btrfs_super_block *s);
714 const char *btrfs_super_csum_name(u16 csum_type);
715 const char *btrfs_super_csum_driver(u16 csum_type);
716 size_t __attribute_const__ btrfs_get_num_csums(void);
717
718 /*
719 * We use page status Private2 to indicate there is an ordered extent with
720 * unfinished IO.
721 *
722 * Rename the Private2 accessors to Ordered, to improve readability.
723 */
724 #define PageOrdered(page) PagePrivate2(page)
725 #define SetPageOrdered(page) SetPagePrivate2(page)
726 #define ClearPageOrdered(page) ClearPagePrivate2(page)
727 #define folio_test_ordered(folio) folio_test_private_2(folio)
728 #define folio_set_ordered(folio) folio_set_private_2(folio)
729 #define folio_clear_ordered(folio) folio_clear_private_2(folio)
730
731 #endif
732